
(12)
(19)

PATENT
AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199873752 B2
(10) Patent No. 747283

(54) Title
Data processing system for logically adjacent data samples such as image data
in a machine vision system

(51)7 International Patent Classification(s)
G06K 009/54 G06K 009/56
G06F 015/00 G06K 009/60

(21) Application No: 199873752 (22) Application Date: 1998.05.08

(87) WIPONo: WO99/21126

(30) Priority Data

(31) Number (32) Date
08/953772 1997.10.17

(33) Country
US

(43)
(43)
(44)

Publication Date : 1999.05.10
Publication Journal Date : 1999.07.08
Accepted Journal Date : 2002.05.09

(71) Applicant(s)
Acuity Imaging, LLC

(72) Inventor(s)
Michael John Wilt; Michael Philip Greenberg

(74) Agent/Attorney
PIZZEYS,GPO Box 1374,BRISBANE QLD 4001

(56) Related Art
US 5623624
US 5675403

1 Γ)

f OPI DATE 10/05/99 APPLN. ID 73752/98
i/OJP DATE 08/07/99 PCT NUMBER PCT/US98/09445

AU9873752

(51) International Patent Classification 6 :
G06K 9/54, 9/56, 9/60, G06F 15/00 Al

(11) International Publication Number: WO 99/21126

(43) International Publication Date: 29 April 1999 (29.04.99)

i'l q
IJ

(21) International Application Number: PCT/US98/09445

(22) International Filing Date: 8 May 1998 (08.05.98)

(30) Priority Data:
08/953,772 17 October 1997 (17.10.97) US

(71) Applicant: ACUITY IMAGING, LLC [US/US]; 9-T-ownsend
■West, Nashua, Nil 03063 (US), slrae-iy
A/usUua OlOfcl, — € USA

(72) Inventors: WILT, Michael, John; 136 Castle Hill Road,
Windham, NH 03087 (US). GREENBERG, Michael, Philip;
282 East Dunbarton Road, Goffstown, NH 03045 (US).

(74) Agents: BOURQUE, Daniel, J. et al.; Law Offices of Daniel J.
Bourque, PA, Suite 303, 835 Hanover Street, Manchester,
NH 03104 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

(54) Title: DATA PROCESSING SYSTEM FOR LOGICALLY ADJACENT DATA SAMPLES SUCH AS IMAGE DATA IN A
MACHINE VISION SYSTEM

(57) Abstract

A data processing system (10) including a data processor (20) processes at least one processor word (17) each clock cycle. Each
processor word (17) includes multiple complete data samples (13) which are received indivually as part of a sequential stream of logically
adjacent or related data samples. A predetermined number of the data samples are stored together, as a processor word (17), in dedicated
memory (18). The system also includes a data aligner (50) which allows the data processor to process at least one processor word (17)
comprised of at least one data sample from other two processor words. The aligner (50) controls data sample alignment such as pixel
alignment in a vision system to facilitate image data processing.

1

DATA PROCESSSING SYSTEM FOR LOGICALLY ADJACENT DATA SAMPLES
SUCH A IMAGE DATA IN A MACHINE VISION SYSTEM

FIELD OF THE INVENTION

5 This invention relates to data processing systems and more particularly, to a data
processing system for processing a stream of data containing logically adjacent or
related data samples such as in a machine vision system.

In the specification the term “comprising” shall be understood to have a broad
meaning similar to the term “including” and will be understood to imply the inclusion of a

10 stated integer or step or group of integers or steps but not the exclusion of any other
integer or step or group of integers or steps. This definition also applies to variations on
the term “comprising” such as “comprise” and “comprises”.

:. — BACKGROUND QFTHE INVENTION• · · ·
: *·:’ 15 There are many data processing applications which require the processing of• ·
: *··· enormous amounts of data. In many of these applications, the data to be processed is

received as a sequential stream of logically adjacent data samples. One example of this• · ·
’·; type of data is machine vision data.• · · ·

·....· Machine vision is a specific type of industrial automation technology which
: .’20 extracts data from video images and makes this information available for process control
·....· and/or quality control.
• · Much of the underlying technology used for machine vision is shared with other

• ·
fields. CCD video camera technology is used in camcorders and surveillance cameras.
Digital image capture hardware is used for desktop publishing and multimedia

25 applications. Image analysis software such as the public-domain software application
program “Image” available from the National Institute of Health (NIH) in Bethesda, MD,
is used for scientific image analysis. Image analysis algorithms have received extensive
attention in academic research. Many companies, including the assignee of this
invention, have built machine vision systems by combining these inexpensive and

30 readily available components.
Machine vision technology is utilized in a number of applications. There are four

(4) major machine vision

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

applications namely: 1) inspection applications; 2)

dimensional measurement; 3) object location (for guidance or

parts placement); and 4) part identification. These

applications are useful in, for example, industrial assembly

(robotics) applications and product inspections. For

example, machine vision may be utilized to determine the

position of a base part relative to a reference point.

Similarly, other machine vision applications include

determining whether or not product packaging is intact,

whether integrated circuit component leads are in their

proper location and properly shaped, product logo or label

registration and correctness, and finished product inspection

itself .

A vision system camera gathers a significant amount of

information which must be accurately and rapidly processed in

order to render a decision regarding the inspection

performed. Machine vision data is generally presented as a

sequential stream of logically adjacent and related data

samples. Such volume and type of data presents a significant

hurdle to rapid processing given the sheer volume of

information and the relatedness of the data samples.

Software implementations and most hardware

implementations of prior art machine vision data processing

techniques involve processing one pixel of machine vision

data (one data sample) at a time. Fixed length digital codes

representing unsigned integers (or bytes or binary vectors)

which are packed into words in a computer system's memory

typically represent machine vision image pixels. In many

prior art systems, 1 to 4 pixels of data (one data sample) is

packed into each memory word but these pixels (data samples)

are processed one at a time by a program running on the

computer. Present image processing systems also benefit from

the computer's memory cache that is, the computer typically

fetches entire cache lines into its fast internal cache

memory, thereby minimizing the time spent accessing external

2

WO 99/21126 PCT/US98/09445

memory. Once a cache line of image data is located in the

computer's internal cache memory, the computer may quickly

access the individual pixels for processing.

The primary advantage of these prior art systems is that

5 they are very flexible and may be easily adapted to different

applications. The primary disadvantage, however, is that

these computer systems perform operations sequentially so

that the overall speed of the system is directly proportional

to the speed of the computer. For many present machine-

10 vision applications, the general-purpose computers available

today can not run fast enough to meet the application

requirements .

Accordingly, one of the primary challenges presented by

machine vision is integrating adequate computation hardware.

15 General-purpose CPU's and image processing hardware designed

for other applications cannot meet the price/performance

ratio required for many machine vision applications.

A number of devices have been developed to accelerate

computations on digital image data. These specially-

20 designed processors perform specific computations on an

image data stream much faster than a general-purpose CPU of

a similar size and cost. One example of such devices is a

pipeline processor. Previous image pipeline processing

architectures process image pixels in raster order at high

25 speed, receiving and, for many operations, generating one

new pixel each clock pulse. These devices are often used in

applications where they are connected directly into the

stream of video data generated by the camera.

These pixel-pipeline processors can be useful for

30 machine vision, but they are not optimal for many machine

vision applications. For a machine vision system, the

required speed is a function of the application, not the

video data rate. Many machine vision applications require

data rates that are substantially faster or slower than'the

35 data rate of a standard video camera or other source of

J

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

image data, either analog or digital. Other issues limiting

the usefulness of pixel-pipeline processors for machine

vision are a long processing latency, and the fact that such

pixel-pipeline processors often require substantial re­

configuration effort to switch processing operations.

Several devices have been invented specifically to

perform machine vision computations in a cost-effective

manner. Some systems use a vision coprocessor which

operates directly on the image data stored in the memory

banks controlled by the primary CPU, much the same way an

Intel 8087 or a Motorola MC68881 performs floating-point

computations on data stored in the memory banks of the Intel

8088 or the Motorola 68000 respectively. These systems

achieve a cost advantage by sharing a single memory

controller between the CPU and the coprocessor, but pay a

performance penalty because the CPU is intimately and

extensively involved in controlling the coprocessor.

Another existing machine-vision system architecture

uses a large number of simple vision processors which

operate on individual pixels or multiple rows or columns of

image data in parallel. The number of processors may be

expanded to build a very fast system, but the parallel

memory and interconnection circuitry is relatively complex

and expensive .

Another existing machine-vision system architecture

uses digital signal processing devices (DSP's). These

devices may be programmed to perform operations required for

machine vision, but they are better at one-dimensional

signal processing required for audio or modem applications.

Another disadvantage of DSP based systems, both in vision

and non-vision applications, is that although they may be

programmed to perform many different operations, careful

assembly code optimization and detailed knowledge of the DSP

instructions are required to achieve optimal performance.

In addition, the DSP engines typically require expensive,

4

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

high-speed memory, resulting in an expensive data or vision

processing system.

Another technique used in existing machine-vision

system architectures is to use look-up tables indexed by

pixel values or simple functions of pixel values to

implement normalized correlation and other computations

required for machine vision. The advantages of using look­

up tables are that they may be reprogrammed to implement

different operations, they may perform non-linear

operations, and they may be implemented using readily

available memory components. The disadvantages of look-up

table implementations of computations include the

performance impact of re-loading one or more look-up tables

to change operations and the limited range of computations

that may be performed in this fashion.

SUMMARY OF THE INVENTION

Accordingly, one object of the present invention is to

facilitate exceptional price/performance for machine vision

and other processing systems while addressing many of the -

limitations of the current technology. The invention

provides an innovative architecture which, in one

embodiment, exploits newly available digital memory and in

the preferred embodiment, ASIC (Application Specific

Integrated Circuit) technology. In addition, the present

invention provides a novel implementation of existing image

processing techniques. While the present invention will be

explained with regard to an image processing system or

processing accelerator component of a vision system, this is

not a limitation of the present invention as many data

processing applications can take advantage of the disclosed

invention such as audio signal processing, digital signal

processing, or any other application where a 1, 2 or .more

dimensional data set is to be processed. Additionally,

5

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

image data samples from other sources such as a scanning

microscope, or other related or adjacent data samples such

as seismic survey data, etc., can be processed by the system

of the present invention.

The invention achieves substantial performance benefit

by grouping and storing multiple data samples (multiple

pixel data) received from a stream of related or adjacent

data samples, in one memory or processor word, and by

processing all of the data samples stored in a processor

word simultaneously. This architecture may be used to

implement binary and gray-scale morphology, normalized

correlation, image arithmetic, linear and non-linear

convolutions, histogramming, projection, segmentation, and

many other algorithms which are well known in the art1 and

incorporated herein by reference. This invention uses

straight forward digital circuit implementations of these

computations replicated for each pixel and combined with

additional logic to process all of the pixels stored in a

word of image data simultaneously.

Pixels or other data samples received from a data

stream of logically related data samples are packed into

wider words for storage and transmission before and after

processing. For example (but not a limitation of the

present invention), four 8-bit pixels are packed into a 32

bit wide memory word, transmitted over 32 bit memory busses,

etc. The number of pixels being input (and possibly output)

each memory clock cycle corresponds to this natural

memory/bus organization. Since pixel processing operations

must be capable of starting and ending on any image pixel

boundary, the present system and method re-aligns and

1 Haralick, Robert M. and Shapiro, Linda G. “Computer and Robot Vision, Volume II”, Addison-
Wesley, 1993.

Gonzalez, Rafael C. and Woods, Richard E., “Digital Image Processing”, Addison-Wesley, 1992.

Ballard, Dana H. and Brown, Christopher M.., “Computer vision”, Prentice-Hall, 1982

6

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

signals the validity of pixels throughout each processing

operation .

For maximum performance, pipelined burst-mode SDRAM

(Synchronous Dynamic Random-Access Memory) memories are

used. The present invention makes use of coordinated FIFO

(First In First Out) buffers to provide image processing

units with an uninterrupted stream of data so that

processing may proceed at the full clock rate. The addition

of a buffer and a number of data path switches allows

multiple memory sharing and flexibly locating source and

destination operand arrays.

The present invention incorporates an internal

sequencing engine, permitting the data processor (processing

accelerator) of the invention to run arbitrary sequences of

operations - without requiring intervention from an external

CPU. This sequencing engine reads simple instructions and

saves results in the dedicated processor memory bank(s).

The present invention also allows for snooping or

"capturing" of the image or other data to be processed into

the dedicated processor memory as it is transferred over a

burst-mode peripheral bus to another memory. This feature

permits the invention to receive data in the dedicated

memories while the system simultaneously transmits the data

to the CPU memory for additional processing or to the

display memory for viewing.

Although the multiple pixel per clock technique can be

extended to any number of pixels per word, four pixels per

bus or processor word, one bus or processor word per memory

word, are utilized in the preferred embodiment and

illustrated, for exemplary purposes, in the descriptions

below.

BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 is a schematic block diagram of a data processor

and processing accelerator according to one feature of the

7

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

present invention;

Fig. 2 is a schematic block diagram of a machine vision

system incorporating the present invention in the form of a

vision processing accelerator;

Fig. 3 is a more detailed schematic block diagram of a

machine vision system incorporating the present invention in

the form of a processing accelerator;

Fig. 4 is a schematic block diagram of a portion of the

processing accelerator of the present invention illustrating

the memory sub-system utilized by the present processing

accelerator;

Fig. 5 is a schematic block diagram illustrating a

simplified diagram of a pixel alignment unit in accordance

with one aspect of the present invention;

Figs. 6A-6D are schematic block diagrams illustrating

counters and the pixel alignment data shifter used to

implement the functionality of the alignment unit in

accordance with one aspect of the present invention;

Fig. 7 is a schematic illustration showing the

operation of the alignment unit in accordance with one

aspect of the present invention;

Fig. 8 is a schematic block diagram illustrating the

addition of a FIFO to the data stream to solve a memory

latency problem with a single operand in accordance with one

feature of the present invention;

Fig. 9 is a schematic block diagram illustrating the

addition of a FIFO to the data stream to solve a memory

latency problem with two operands in accordance with one

feature of the present invention;

Fig. 10 is a schematic block diagram illustrating the

addition of a FIFO to the data stream to solve a memory

latency problem with three operands in accordance with one

feature of the present invention;

Fig. 11 is a schematic block diagram of one feature of

the present invention illustrating the use of a result

8

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

buffer to along with a shared memory to allow a three

operand computation with two physical memories;

Fig. 12 is a schematic block diagram of one feature of

the present invention illustrating the flexible data path

arrangement in the present invention embodied in a vision

processing accelerator;

Fig. 13 is a schematic block diagram of a word-wide

normalized correlation processing unit in accordance with

one feature of the present invention;

Figs. 14A-14K are schematic illustrations of the

operation of a word-wide neighborhood formation image

processing unit in accordance with yet another aspect of the

present invention;

Fig. 15 is a schematic block diagram of the preferred

implementation of the word-wide neighborhood formation image

processing unit according to one aspect of the present

invention;

Fig. 16 is a schematic block diagram of a word-wide

segmentation processing unit in accordance with another

feature of the present invention;

Figs. 17 and 18 are schematic block diagrams

illustrating the operation of an internal processing

accelerator sequencing engine in accordance with another

aspect of the present invention; and

Figs. 19 and 20 are schematic block diagrams

illustrating the use of the snoop feature and the peripheral

bus interface according to yet another feature of the

present invention implemented in a machine vision system.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention features a novel data processor

20, Fig. 1, (herein also referred to as a processing

accelerator), for use in a data processing system 10. The

present invention contemplates that the invention disclosed

herein can be implemented by, within and with numerous types

9

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

of data processing systems including, but not limited to,

vision processing systems.

The data processor 20 of the present invention is well

suited for receiving a generally continuous stream 13 of

logically related or adjacent data samples 15, as would be

the case wherein the individual data samples 15 are

individual pixel data values from an image to be processed,

which image (s) are captured by a camera. The data samples

15 may be analog or digital value data samples. As is well

known in the art, the individual data samples 15 are

themselves typically comprised of data elements such as bits

in a byte .

The stream of logically related or adjacent data 13 is

received by a data organizer 12, such as a digitizer or a

frame grabber in a vision system. The data organizer 12

receives the individual data samples 13 and groups a

predetermined number of the data samples 13 into processor

words PO-Pm, 17 for transmission over data bus 26 to the

data memory 18 via the peripheral bus interface 230, data

path 121 and the memory controller 40. The processor words

17 each contain two (2) or more data samples 15. In the

preferred embodiment, the data samples 15 are 8 bits in

length and four (4) logically adjacent or related such data

samples 15 are grouped by the data organizer 12 into one

processor word 17. As will be explained further below, a

memory word can contain more that one processor word 17.

The data processor 20 controls the storing of the

processor words 17 into at least one memory 18 which forms

part of a larger memory subsystem, as will be described

below. Each processor word 17 comprising two or more data

samples 15 is stored under control of the data processor 20

which includes, in the preferred embodiment, at least one

memory controller 40 and one or more address generators 41.

Additional features of the present invention, which will be

explained in greater detail below, include a processing

10

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

sequencer 200, which allows the data processor 20 to operate

generally independently and autonomously from a host CPU; a

data aligner 50 which realigns data samples 15 within a

processor word 17 whenever data samples to be processed

"cross over" the boundary between two (2) processor words 17

br when an array of data to be processed does not start or

end at a processor word boundary; and one or more processing

units 42 such as neighborhood 42a, correlation 42b,

segmentation 42c, and image arithmetic 42d processing units

which each perform a specialized task, as will be explained

below .

herein for

includes a

A typical machine vision system 10a, Fig. 2, on which

the data processor 20 of the present invention is utilized

as . a processing accelerator, is described

exemplary purposes. The vision system 10

digitizer 12 (frame grabber) as the data organizer, which

receives the stream 13 of logically adjacent or related data

samples, such as image data, from camera 14. The digitizer

12 may store image data 13 locally or preferably, for

optimum performance and lowest cost, place the captured and

grouped data samples 15 (image data) in a dedicated image or

data sample memory 18 using an embedded direct memory access

(DMA) controller 7

accelerator 20

also provided.

A data or vision data processing

;the subject of the present invention), is

In the current invention, the processing

accelerator 20 is coupled to the data sample memory 18 by

memory bus 19, for storing and manipulating data samples 15

stored as processor words 17 independent of a vision system

CPU 16 and a vision CPU memory 22.

In one embodiment of such a vision system 10b Fig. 3,

captured images (streams of image data samples 13) from

multiple cameras 14a - 14d can be processed by the vision

accelerator 20, the embedded vision system CPU 16, or by a

host CPU 24 in cases where the vision system is resident on

the host CPU peripheral data bus (e.g. as an adapter or

11

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

peripheral card). The vision system 10b often includes a

local display 28, and serial and discrete input/output ports

30 to support real-time machine vision operations and

intercommunication with other devices.

For maximum efficiency, the digitizer 12 in this

implementation, packs multiple pixels (data samples 15)

(e.g. four 8 bit pixels are packed into a 32 bit word) into

a larger word (processor word 17) to match at least the

memory data bus 19 width and in the preferred embodiment,

the peripheral bus 26 width. If the memory data bus 18

width and the peripheral data bus 26 width are not the same,

the processing accelerator 20 would reformat the processor

word 17 width to match the width of the memory data bus 18

or the peripheral data bus 26. The bus interface unit 230

would perform additional packing of bus or processor words

17 into wider memory words when required.

The digitizer 12 in connection with DMA Master 7 moves

pixel data samples in high speed bursts into a portion of

peripheral data bus address space. In the present

invention, this may be one of the image memories 18a and/or

18b, shared vision system CPU memory 22, host CPU memory 32,

or display controller memory 34.

Once a sufficient number of image data samples

(typically a full image) are stored in image memory 18,

processing accelerator 20 operations can commence. The

result of any such operation may be another image (result

array) or a set of data in registers. Data organizer 12,

DMA Master 7, and DMA controllers 232 (Fig. 1) in the vision

accelerator 20 are provided to efficiently format incoming

image data and to move processed images and image data

samples 15 stored in register data sets as processor words

17 out of the processing accelerator 20 into host or vision

CPU using bus 26 and host bridge 26b; to display controller

memory 34 for local display 28; as well as to any device

coupled over the peripheral data bus bridge 26a.

12

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

The memory subsystem 120, Fig. 4, of the processing

accelerator 20 of the present invention features one or more

dedicated high-speed memory controllers 40. The memory

controllers 40 are completely responsible for the operation

of their respective memory banks 18a, 18b, generating, in

combination with address generators A, B and C 41a-41c, all

the required address and control signals to read or write

complete processor words 17 of image or other data samples

15 at sustained rates of one processor word 17 per clock

pulse, per memory controller 120.

The processing accelerator 20 described herein is

implemented on an integrated circuit, as an ASIC, although

this is not a limitation of the present invention. The

preferred embodiment of the present invention contemplates

that the memory 18 is implemented as burst mode synchronous

memory such as SDRAM, SGRAM, RAMBUS or other such memory

devices, commonly available presently or in the future in

the industry.

One feature of the present invention is the providing

of a data alignment unit 50, Fig. 5, which, together with

Address Generator A 41a and Address Generator C 41c, solves

the problem of allowing the processing accelerator 20 to

process full processor words 17 of data when only selected

data samples 15 of data (certain pixels in a memory word)

less than the full processor word 17, are to be processed.

Exemplary aligner circuitry is illustrated in Figs. 5

and 6A-6D. Figs. 6A-6C illustrate the counting circuitry in

Address Generator A 41a, alignment unit 50 and Address

Generator C 41c, which generate the required width counter

preset and the array framing (sor, eor, and eof) and byte

valid (byte_enable) signals. Fig. 6D illustrates one

embodiment of the actual data alignment circuit. The

processing accelerator 20 scans pixels (processor words 17

each containing multiple data samples 15) in raster order

(left to right, top to bottom) . The user specifies a

13

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

starting address (base) 52 and the number of pixels (data

samples) per row (width) 54 to the nearest pixel.

In the present example of the invention, the processing

accelerator 20 processes four pixels per memory word,

therefore from the user-supplied base value bits [24:0] 69,

bits [24:2] specify a memory word address 67 while bits

[1:0] specify the pixel offset 52 from a memory word

boundary. Similarly, width bits [1:0] 56 specify how many

additional pixels (data samples) are to be processed once

the number of memory (processor) words specified by width

bits [13:2] 54 have been presented on the Operand-A bus 86

by the alignment unit 50. The height parameter 58

determines how many "rows" of data samples will be fetched.

The alignment unit 50 and Address Generators A and C

41a and 41e, Fig. 5, consider both the width and the least

significant bits of the base address and determines the

total number of words to be fetched from memory in each row.

The alignment unit 50 and address generators A and C 41a and

41c contain width 60 and height 62 counters, permitting them

to generate the start of row 71, end of row 73, and end of

frame 75 signals used by processing units 42 (Fig. 4), to

determine which individual pixels or pixel arrays are valid

on each clock pulse. The byte enable outputs 64 of the

alignment unit signal which pixels at the end of a row are

valid.

Figs. 6A-6C illustrate the counting and byte enable

functions of the address generators 41a and 41c and the

alignment unit 50. The number of multiple-pixel words which

must be fetched from memory is computed as shown: The lsb's

of the base 52 and width 54 settings (2 in this example),

corresponding to 4 (four) pixels per word) are added

together and the two msb's 55 of the three bit result (again

corresponding to four pixels per word) are added to the

remaining msb's 54 of the width setting (12 bits in ‘the

present example). The resulting value 57 determines the

14

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

preset value for the width down-counters 60 in Address

Generator A 41a and the alignment unit 50. This counter 60

cycles from this preset value down to zero for each row of

the source image.

During the first state (immediately after initializing

the counter and following the end of each row), the start of

row (sor) signal 71 is asserted and the height down counter

62 is decremented. Each time the width down counter 60

reaches zero, the end of row (eor) signal 73 is asserted.

The height down counter 62 is initialized to the height

preset setting once before the operation is started. When

the height down counter 62 reaches zero, the end of frame

(eof) signal 75 is asserted on the last width down-counter

60 (eor) 73 count.

The byte enable logic 77 in the alignment unit 50

asserts all four byte enables 64 except during the eor

state. During eor state, the byte enable signal pattern 64

is determined by the two lsb's of the base address 52

setting as shown. The byte enable logic 77 can be extended

to other bus widths as follows: when the width setting is an

exact multiple of memory words (width lsb's=0), all byte

enables are asserted. For all other cases, the byte enable

pattern consists of (number of pixel data samples) one's

shifted to the right by the lsb value with zero's filled to

the right.

Note that the above discussion assumes "big-endian"

pixel ordering that is, multiple pixels stored in memory

from left to right. The technique is easily extended to

"little-endian" pixel or data sample ordering and other data

sample/pixel widths where an individual pixel datum does not

cross a memory word boundary.

Fig. 7 is an example of processing nine (9) pixels

(data samples) four (4) pixels per row, with a base offset

of one (1) pixel (beginning with pixel (data sample) labeled

15

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

Pl) . For the example in Fig. 7, the sequence of events is

as follows:

1. On the first memory clock cycle, the first

memory/processor word 17a containing pixels (data samples)

labeled PO through P3 is read from memory 18 and stored in

the alignment unit 50.

2. On the second memory clock cycle, the second

memory/processor word 17b containing pixels (data samples)

labeled P4 through P7 is read from memory 18 and the

alignment unit 50 outputs aligned processor word 70

containing the four (4) pixel data samples labeled Pl

through P4, and asserts byte_enable signal 64a comprising

bits [3:0] and start of row (sor) signal 71, (Fig. 6).

3. On the third clock, processor word 17c containing

pixel data samples labeled P8 through Pll are read from

memory, after which the alignment unit 50 outputs aligned

processor word 74 containing the four pixel data samples

labeled P5 through P8 and asserts byte_enable signal 64b

comprising bits [3:0] which together form a four bit byte

enable signal 64 with its associated meaning as shown in

Fig. 6.

4. On the fourth clock, the alignment unit 50 outputs

processor word 76 containing pixel data sample labeled P9,

and asserts byte_enable signal 64c comprising bits [3:0],

end of row (eor) signal 73 and end of frame (eof) signal 75.

It should be noted that two word fetches are required

before the first valid output is presented.

Fig. 6D is an example of one implementation of a data

shifter portion 80 of the alignment unit 50 for a four-pixel

wide memory bus with 8 bit pixels. Four (4) registers 82a -

82d hold the values of the previous four valid pixel data

samples (labeled P0 through P3 for exemplary purposes) from

the 32 bit Data A Input bus 84. The present value, when

valid, represents the next four pixels (P4..P7). The 2 '

lsb's [0:1] 52 of the base address setting determine how the

16

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

pixels must be realigned for presentation on the Operand A

output bus 86. The two base least significant bits 52

select the appropriate port on each multiplexer 88a - 88d.

To provide at OP_A Out bus 86 a re-aligned processor word.

Pipelined burst-mode memories 18 or similar memory

devices are preferably used in order to achieve maximum data

bandwidth. Examples of these are synchronous

dynamic/graphics random-access memory (SDRAM/SGRAM) and

RAMBUS DRAM (RDRAM). These devices accept an address and

read command and output the corresponding data at a later

time. In general, new commands are allowed to overlap

operations currently in progress.

These types of memories, however, have a read data

latency problem of several clock cycles. Accordingly FIFO-A

90 Fig. 8, which forms part of data path 121, Fig. 4, is

designed to negate Address Generator A 4 la's "in ready A"

signal when enough space remains in the FIFO-A 90 to

accommodate all additional words for which read commands are

currently pending. While this signal is asserted, Address

Generator A 41a is allowed to issue read commands (address

step A) to Memory Subsystem A, 120a. As each valid

processor/memory word 17 is delivered by Memory Subsystem A,

120a, it is pushed onto FIFO-A 90. The alignment unit 50

takes valid processor words from FIFO-A 90, aligns them, and

delivers them to the Operand A bus 86.

Data flow from a DRAM may intermittently be slowed by

the necessity to cross from one "page" of memory to another.

Processor/memory words on the same memory "page" are

accessed rapidly, but a page boundary crossing requires the

memory to precharge, activate, and then transfer all the

words on a page to an internal cache. In the present

design, the two-bank architecture of typical SDRAM/SGRAM

devices has been exploited, but some processor/memory word

interruption is unavoidable (e.g. when a page boundary is'

crossed rapidly and repeatedly). Other interruptions occur

17

WO 99/21126 PCT/US98/09445

during refresh cycles or memory accesses by other agents

(e.g. DMA controller).

For a two or three operand computation, as shown in

Figs. 9-11, data must be valid on both input ports (A and B)

5 and, if output is produced on the result-C bus 92, the data

destination device must be capable of accepting it. By

providing a result buffer or FIFO 94, Fig. 10 and 95, and

Fig. 11, on each output or result port, a steady flow of

data is maintained.

10 Address Generator 41c, Fig. 10, also generates byte

write enable [3:0] signal 96 permitting only valid

pixels/data samples to be written back to memory subsystem

120c. Thus, Address Generator C 41c participates in the

alignment function described in Fig. 5 as part of the

15 present invention. The start of each output row is aligned

on a word boundary, but the width of the row may be any

number of pixels/data samples. Thus, the last

processor/memory word written in each row may not have all

pixels (data samples) replaced. Address Generator C 41c

20 thus exploits the fact that SDRAM/SGRAM devices have

individual byte replacement capability.

FIFO C 94 performs a second important function. Some

operations may produce more than one word of output data for

each input data set (e.g. feature extraction). Secondly,

25 some processing units 42 do not have the ability to stop the

flow of data on each clock pulse. Thus, FIFO C 94 is also

designed to negate its "in ready" signal when sufficient

space remains in the FIFO to fully "drain" the active

processing unit 42 of all data after the flow of input

30 (Operand A, B) data is stopped.

In the present implementation, Memory Subsystem B 120b

has no alignment unit since it is always word aligned.

However, this is not a limitation of the present invention

as those skilled in the art can readily add such an aligner

35 to this memory subsystem also.

18

WO 99/21126 PCT/US98/09445

For greater economy, efficiency, and flexibility, it is

necessary to share memories. Fig. 11 shows the addition of

a Result Buffer 95 and address multiplexer 100 so that

Memory Subsystem 1 Three operand120b can be shared.

5 computations proceed at half speed because processing must

stop and the result buffer 94 must be copied to Memory

Subsystem 1 120b periodically.

For full flexibility, The two memories (0, 1) in memory

subsystems 120a, 120b may contain either source or

10 destination data for a given operation. This is important

because after one operation, for example, the source for the

next operation may now be in the opposite memory. The Data

Buffer 102, Fig. 12, may be used either on the input of

output side in an operation.

15 In Fig. 12, both sources for a two or three operand

function may be in one memory in memory subsystem 120a,

120b. When this is the case, the Data Buffer 102 is first

filled with data for one operand and then data for the

second operand can be fetched from the same memory. If

20 output is required in this case, it must go to the other

memory. Processing proceeds at half speed. Since output

data goes directly to memory, the C FIFO 94 is important in

smoothing out the data flow.

' Similarly, when the operation produces an output which

25 must go to the same memory as an input operand, the Data

Buffer 102 captures the output data which is then dumped

via the C FIFO 94 to the destination memory. To perform a

three operand operation in this case, one of the input

operands must be in the opposite memory.

30 The actual processing of data samples is performed by a

number of word-wide processing units, 42, Fig. 1, each of

which perform a specific processing task.

Fig. 13 is a block diagram of

correlation processing unit 42b. This

35 accepts a processor word 17 of image data samples 15 from

the normalized

processing unit

19

WO 99/21126 PCT/US98/09445

the alignment unit 50 via the Operand A bus 86, and a word

of template data from the Operand B bus 87 every

processor/memory clock cycle. During each clock cycle, all

of the corresponding pixels (data samples) in the two words

5

10

15

20

25

30

35

four (4) computational cells

summation registers 104-106

sum-of-image-squared 106, and

are multiplied together in

lOla-c, and the internal

containing sum-of-image 104,

sum-of-image-times-template 105 are all updated.

Figs. 14A-14K and Fig. 15 show how the word-wide

neighborhood formation unit 42a simultaneously forms four

complete 3x3 neighborhoods surrounding each pixel in the

word being processed. These complete neighborhoods are

passed in parallel to separate processing units, and the

results from the processing units are re-assembled after

processing to form outgoing words. The neighborhood

processing logic keeps track of the boundary conditions, and

feeds background data to the processing units in place of

all of the missing pixels for neighborhoods that are on the

edges of the region of interest.

First row processing: During the first clock cycle,

pixels 00/01/02/03 arrive and are stored in the "right",

Fig. 14B. During the second clock cycle, pixels 04/05/06/07

arrive and are stored in the right, and 00/01/02/03

transfer to the "center", Fig. 14C. During the third clock

cycle, pixels 08/09/010/011 arrive; pixels 04/05/06/07

transfers to the "center"; and pixels 00/01/02/03 transfer

to the "left", Fig 14D. No outputs are computed while the

first row is being transferred, but these words are fed into

the first word-wide row fifo.

Second row processing: During the first clock cycle,

pixels 10/11/12/13 arrive along with 00/01/02/03 coming from

the first row fifo, both these words are are stored in the

"right", Fig. 14E. During the second clock cycle, pixels

14/15/16/17 arrive along with pixels 04/05/06/07 from' the

first row fifo. These new words are stored in the "right",

20

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

while the processor words currently in the "right" move to

the "center", Fig. 14F. This forms the first full

neighborhood that will be processed in the neighborhood

array. The processing unit automatically fills in the

border value for values of "xx". During the third clock

cycle, pixels 18/19/110/111 arrive along with 08/09/010/011

from the first row fifo. These new words are stored in the

"right", while the words currently in the "right" move to

the "center", Fig 14G.

Third row processing: During the first clock cycle,

pixels 20/21/22/23 arrive along with pixels 10/11/12/13 from

the first row fifo and pixels 00/01/02/03 arrive from the

second row fifo, Fig. 14H. Note that during this clock

cycle, the processing unit 42a is processing the right-most

neighborhood group of the previous row. During the second

clock cycle, pixels 24/25/26/27 arrive along with pixels

14/15/16/17 from the first row fifo and pixels 04/05/06/07

from the second row fifo, Fig. 14J. During the third clock

cycle, pixels 28/29/210/211 arrive along with pixels

18/19/110/111 from the first row fifo and pixels

08/09/010/011 from the second row fifo, Fig. 14K.

This forms the first full-valid group of four (4) 3

pixel x 3 pixel neighborhoods. The four 3x3 neighborhoods

processed during this clock cycle are shown in Fig. 14K.

Processing continues until the last row, which which is

computed using values that are

draining out of the row fifos. There is no incoming data

while the last output row is being processed.

Figure 15 shows the preferred, although not the only

possible implementation of the word-wide neighborhood

formation unit 42a. The data enters from the Operand A bus

86, which, for purposes of the present example, carries four

pixels (data samples) in a single processor/memory word.

This data goes into the neighborhood register array 87' and

also into the row 1 shifter 89. When the processor word 17

21

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

enters the neighborhood register array 87, the processor

word 17 is stored in the four pixel registers labeled

p20right, p21right, p22right, and p23right. Each time a

valid processor word arrives, the data "steps" forward with

all of the pixels (data samples) in the "right" registers

moving to the corresponding position in the "center"

registers, and then finally to the "left" registers. Only

the right hand most pixel on the "left" side is needed to

complete the neighborhood. All the pixels on the "right",

however, are needed to copy and fill in the "center". After

the first row of processor words 17 has arrived, the Row 1

shifter 89 starts to provide data into the second row

registers labeled plOright, pllright, pl2right and pl3right,

and after another full row of data arrives, the Row 2

shifter 91 provides data into the Row 3 registers beginning

with the registers labeled p03right, p02right, pOlright, and

pOOright. When valid data enters the central word labeled

plOcenter, pllcenter, pl2center and pl3center, word-wide

neighborhood processing commences with the four parallel

neighborhood processing units 42ai through 42a4 receiving

sets of neighborhood values simultaneously. The

neighborhood values are extracted from the neighborhood

register array 87 as shown in the bottom of Fig. 15.

Fig. 16 shows the first stage of a word-wide

segmentation processing unit 42d useful in a machine vision

system. The word-wide segmentation processing unit 42d only

generates results when transitions are detected in the

stream 17 of pixel image data. Each pixel is determined to

belong in either the foreground or the background according

to a threshold criteria. A transition is defined as any

point in the data stream where a foreground pixel is

adjacent to a background pixel.

At the beginning of the processing of a "row" of image

data, the segment code 120 is initialized to zero. Each

time a transition is detected, the segment code is

22

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

incremented using adder 122, and a result word is generated

containing information about the transition. To implement

this functionality while processing four pixels at a time in

one processor word 17, four threshold comparators 124a-124d

simultaneously determine whether each of the four incoming

pixels 126a-126d is in the foreground or the background.

Four one-bit comparators 128a-128d simultaneously determine

whether there is a transition between each of the four

adjacent pixels in the processing word, or between the left­

most pixel of the current word and the right-most pixel of

the previous word.

Up to four transitions may occur simultaneously,

although with real image data it is much more likely that

there will be no transitions at all or a single transition.

The total number of transitions to be processed during this

clock cycle is computed by adder 130, which also

incorporates the possibility that the current word is the

last word of the row (eor signal 130).

The word-wide segmentation processing unit 42d always

generates a special transition record for the end of the row

(eor 130) , so the maximum number of transition records that

must be generated could be as high as five at the end of a

row. The transition record is encoded into a single 32-bit

word 134, and therefore this processing unit 42d can

actually generate up to five processor words 17 of result

for a single word of input. The interface between this

processing unit 42d and the operation sequencer 210 (Fig.

18) shown in Fig. 16 only permits the word-wide segmentation

processing unit 42d to generate one word of result per clock

pulse, so when it is necessary to generate more than one

result word, the incoming data must be stalled while the

results are generated. This is implemented by using the

total number of transitions 136 to control a signal that

immediately shuts off the incoming data when the total

number of transitions is greater than one.

23

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

As the segment record results are generated, the number

of transitions is counted down, and the incoming data 86 is

permitted to resume as the last result is generated. This

architecture permits the processing accelerator 20 to run at

full speed as long as there is one transition per word or

less .

Fig. 17 illustrates how the sequencer 200 of the

present invention reads simple instructions from one memory

bank and writes results to the other memory bank. Only four

instructions are supported: WRITE, READ, GO, and STOP. The

op-code for the instruction is encoded in two bits, and the

remaining bits contain the register address for the register

specified by the READ or WRITE instruction. The remaining

bits are unused for the GO and STOP instructions. The

WRITE instruction writes the next word found in the

instruction stream to the register specified by the register

address portion of the WRITE instruction. The READ

instruction reads the value from the register specified by

the register address portion of the READ instruction and

outputs the value of this register to the outgoing data

stream. The "program" used by the sequencer engine 200 is a

sequential block of instruction words and WRITE operands;

and the "output" is a sequential block of register values.

The sequencer engine 200 allows the processing accelerator

to operate without CPU attention for significant periods of

time .

The sequencer

dedicated memories

accelerator 20 to

from the

processing

engine 200 runs entirely

18a, 18b, permitting the

perform arbitrary operations without

requiring CPU 16 attention.

The sequencer engine 200, Fig. 18, controls the address

and data selectors such that the address of memory subsystem

0 120a is supplied by the instruction pointer 202 and the

address of memory subsystem 1 120b by the write data pointer

204 . Similarly, data from memory subsystem 0 120a goes to

24

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

FIFO A 90a and data from FIFO C 94 goes to memory subsystem

1 120b. The sequencer 200 generates register addresses and

reads and writes register data.

Memory words are fetched from sequential addresses

supplied by the instruction pointer 202. These words

contain a stream of instructions as described (above).

Instructions are fetched into FIFO A 90a and interpreted by

the instruction decoder 206 under control of the instruction

sequencer 208. On a WRITE instruction, data from a selected

register is written via FIFO C 94 to memory 1 120b addressed

by the write data pointer 204.

On a GO instruction, the instruction sequencer 208

waits until any data remaining in FIFO C 94 has been written

to memory 1 120b, then FIFO A 90a is cleared, flushing any

pre-fetched instructions. Finally, the processing

accelerator operation sequencer 210 is started. During the

operation, the operation sequencer 210 controls data flow

between the memories 120 and processing units 42 via FIFOs

A, B, and C 90a, 90b, and 94. The instruction sequencer 208

waits for the operation sequence to complete, saving the

address of the next instruction in an internal program

counter. When the operation completes and any result data

remaining in FIFO C 94 has been written, the instruction

pointer 202 is re-initialized to the saved next instruction

address, FIFO A 90a is cleared, and sequencer instructions

are re-fetched into FIFO A 90a. When valid data (the next

instruction) is present in FIFO A 90a, sequencer 200

operation resumes .

A similar action also takes place when the sequencer

200 is started under CPU control. In this instance, the

program counter and instruction pointer 202 are both

initialized to the address of the first instruction in

memory 0 120a, all FIFOs are cleared, and the sequencer

waits for the first instruction to appear in FIFO A.

On a STOP instruction, the instruction sequencer 208

25

WO 99/21126 PCT/US98/09445

5

10

15

20

25

30

35

waits until any data remaining in FIFO C 94 has been written

to memory 1 120b before operations are halted.

For maximum efficiency of a system implementing the

present invention, it is often necessary for separate copies

of data samples (e.g. an image) to be present in the

dedicated processing accelerator 20 memory as well as in

vision CPU, host, or display controller memory. One example

is simultaneously displaying a captured image while making

the image available to the processing accelerator. Another

example is making the image available to the vision system

CPU as well as to the processing accelerator so that two

different vision operations can run concurrently. In a

third related example, the vision system CPU renders

graphics on a captured image while the processing

accelerator processes it. To make multiple copies of an

image doubles the bandwidth requirement on the peripheral

bus and increases latency. The current invention solves

this problem by a snooping technique.

A simplified version of the snooping feature of the

present invention is shown in Fig. 19 (with only the shared

CPU memory 22 shown) . The digitizer/DMA 12 is set up to

write image data 13 to a primary target address, which, in

the current example may be in shared vision CPU memory 22,

host CPU memory (not shown), or display memory(not shown).

Snoop handshake signals 220,222 between the digitizer 12 and

the vision accelerator 20 control the digitizer/DMA 12

activity. When the processing accelerator 20 can accept a

known amount of data 13, it asserts the READY signal 222.

The digitizer 12 then commences a DMA operation, sending a

limited number of words over the peripheral bus 26 to the

primary target, the CPU memory 22. When the digitizer 12

becomes peripheral bus master, it asserts the SNOOP signal

220. The processing accelerator 20 captures each processor

word 17 as it traverses the peripheral bus 26 using this

signal and additional peripheral bus data transfer control

26

WO 99/21126 PCT/US98/09445

signals. The vision accelerator 20 places the snooped data

17 in image memory 18 using an internal DMA input address

generator 234 in Fig. 20, ignoring the peripheral bus target

address signals. The READY signal 222 is negated as soon as

5 data capture commences and remains negated until data has

been stored in image memory 18.

The circuit pictured in Fig. 20 adds address and data

paths for exchanging peripheral bus data with registers and

memories in the processing accelerator. The peripheral bus

10 interface 230 uses standard technology and contains

additional FIFOs for buffering transmissions between the CPU

16 or digitizer 12 and the processing accelerator. Because

the peripheral bus interface 230 operates in burst mode, it

can transfer data efficiently to sequential memory

15 locations. As a peripheral bus target (slave) the

peripheral bus interface supplies an address and exchanges

data with the processing accelerator 20. The supplied

direct target address 232 may be used to directly address

image memory 18 and register locations, or, on peripheral

20 bus to memory write cycles, the destination address may

alternatively be supplied by the DMA input address generator

234. In snoop mode (described above), data targeted to

another peripheral bus device is captured in a special snoop

FIFO and written to image memory 18, also under control of

25 the input DMA address generator 234.

The peripheral bus interface 230 also contains a

peripheral bus master circuit. This circuit reads data

from memory 18 addressed by the output DMA source address

generator 236 into the peripheral bus interface master data

30 FIFO within the peripheral bus interface 230. Peripheral

bus destination addresses (in CPU, Host, or display memory)

are supplied by the output DMA destination address generator

240.

Modifications and substitutions by one of ordinary skill

in the art are considered to be within the scope of the

27

WO 99/21126 PCT/US98/09445

present invention which is not to be limited except by the

claims which follow.

What is claimed is:

28

29
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

5

25

1. A data processing system, comprising:

a data organizer, for receiving a sequential stream of data comprising a plurality of

logically adjacent data samples, and for organizing a digital representation of a predetermined number

of said plurality of logically adjacent data samples into a processor word;

at least one data sample memory, responsive to said data organizer, for storing a

plurality of said processor words;

a data word aligner, responsive to said at least one data sample memory, for

receiving at least first and second said processor words, for selecting at least one data sample from

said first processor word and at least one data sample from said second processor word, and for

providing at least one aligned processor word comprising said predetermined number of said plurality

of logically adjacent data samples, said aligned processor word including at least said selected at least

one data sample from said first processor word and said selected at least one data sample from said

second processor word; and

at least one word-wide data processor, responsive to said data word aligner, for

receiving a sequential stream of said aligned processor words, each said aligned processor word

comprising said predetermined number of said logically adjacent data samples, for simultaneously

processing said predetermined number of logically adjacent data samples received as said sequential

stream of aligned processor words, and for generating a sequential stream of data processor result

words based on said simultaneously processed predetermined number of logically adjacent data

samples received as said one aligned processor word from said sequential stream of aligned

processor words, said at least one word-wide data processor selected from the group consisting of: a

neighborhood processing unit; an image arithmetic processing unit; a segmentation processing unit; a

morphology processing unit; and a correlation processing unit.

2. The processing system of claim 1 wherein said logically adjacent data samples include image

data, each of said plurality of logically adjacent image data samples representing one pixel of image

data from an image to be processed, wherein logically adjacent sequential image data samples

represent adjacent pixels of image data from said image to be processed, and wherein said data

30
sample memory stores at least two adjacent pixels of image data together as one said processor

word.

3. The processing system of claim 2 wherein said data sample memory transfers and said word-

5 wide data processor receives at least one processor word each processor cycle.

4. The processing system of any one of claims 1 to 3, further including a memory address

generator, coupled to said at least one data memory, for addressing said memory to provide said at

least first and second processor words.

10
• · · ·

;···.; 5. The processing system of claim 2 or claim 3 wherein said neighborhood processing unit
• · ·
j.;;.· includes a neighborhood image processing unit, for forming at least two neighborhoods of
• ·• ·
Ϊ. **’ predetermined size around at least two pixels of image data.
• · ·• · · ·• ·• ·• ·• · · ·
* 15 6. The processing system of claim 2 or claim 3 wherein said neighborhood processing unit

.··. : includes a neighborhood image processing unit, for forming at least two neighborhoods of• · ·• ·
;“”j predetermined size around each of said at least two adjacent pixels of image data stored together as

• · · ·• · · ·
j * J said processor word.

• · · ·• ·
• 9

9999 •······
* 20 7. The processing system of any one of claims 1 to 6 wherein said word-wide data processor is

• ·• ·
**** coupled to a data bus, said data bus for transporting processor words from said data organizer to a

primary data sample target device; and

wherein said word-wide data processor further includes a data capture device, for

controlling the simultaneous capture of processor words being transmitted over said data bus to said

25 primary data sample target, and for storing a copy of said processor words in said at least one data

sample memory.

8. The processing system of any one of claims 1 to 7 wherein said at least one data sample

memory includes first and second data sample memories; and

31
further including at least one processing sequencer, for reading instructions and

processor register values from said at least one data sample memory, and for writing at least

processor register values to at least said at least one data sample memory.

5 9. The processing system of any one of claims 1 to 8, further including at least one data sample

memory controller, for executing data sample memory control instructions while said at least one data

sample memory is providing sequential data sample values as processor words.

10. The processing system of claim 1, wherein said word-wide sample data processor further

10 includes at least one word-wide sample data processing unit.

11. The processing system of claim 10, wherein said at least one word-wide sample data

processing unit is selected from the group consisting of: a neighborhood processing unit; an arithmetic

processing unit; a segmentation processing unit; a morphology processing unit; and a correlation

15 processing unit.

12. The processing unit of claim 1 further comprising a word-wide neighborhood processing image

processing unit, for simultaneously forming and processing at least two neighborhoods of

predetermined size around at least two pixels of image data.

20
13. The processing system of claim 2, wherein said at least one data sample memory includes at

least one burst-mode data sample memory including a two-dimensional array of sample registers

connected so complete processor words flow through said array and complete neighborhoods of

image data sample values surrounding each pixel of image data may be simultaneously extracted

25 from said array for simultaneous processing.

14. The processing system of claim 1, wherein said data organizer is coupled to a data bus, said

data bus for transporting data from said data organizer to a primary data sample target device; and

wherein said data processor further includes a data capture device for controlling the simultaneous

32
capture of data samples being transmitted over said data bus to said primary sample data target, and

for storing a copy of said data samples in said at least one burst-mode data sample memory.

15. The processing system of claim 1 further including at least one processing sequencer for

5 reading instructions from said at least one data sample memory and for writing at least processor

register values to at least one data sample memory.

16. The processing system of claim 1 further including at least one data sample memory

controller, for executing data sample memory control instructions while said at least one data sample

10 memory is providing sequential data sample values as processor words.

17. A data processing system substantially as herein described in the detailed description with

reference to the drawings

15

DATED THIS FIRST DAY OF MARCH 2002

ACUITY IMAGING LLC

BY

PIZZEYS PATENT AND TRADEMARK ATTORNEYS

I · · · · · · »·· · ··
• ·I · · ·

• · · · · «

SOURCE
OF

LOGICALLY
ADJACENT

DATA
SAMPLES

13

D2 D115

26

DATA
ORGANIZER -J

12

PROCESSING ACCELERATOR 20

MEMORY
18

15—χ.

M ... 1 0

2M M+1

17

17

FIG. 1 J

10a

FIG. 2

W
O
 99/21126

PCT/U
S98/09445

W
O 99/21126

PCT/U
S98/09445

MEMORY SUBSYSTEM 120a

ADDRESS
GENERATORS

41

ADDRO MAO
MEMORY

0
18a

MDO
z

19a

41a
ADDR GEN A MEMORY CONTEROLLER 0

ADDR GEN B

ADDRESS

L40a

DO
DATA
PATH

121

OP-A

ADDR GEN C

41b
MEMORY SUBSYSTEM 120b

IMAGE
PROCESSING

UNITS
42 ΓΌσι

OP-B

RESULT-C

MEMORY CONTEROLLER 1 40b

FIG. 4

W
O
 99/21126

PCT/U
S98/09445

W
O

 99/21126
P

CT
/U

S98/09445

FIG. 5A

CDrocn

FIG. 5B

W
O
 99/21126

PCT/U
S98/09445

r\3
σι

W
O 99/21126

P
CT

/U
S98/09445

I

Ί
62

58

73

EOR-

STEP-

Ί

u

HEIGHT
PRESET[13:0]

INITIAL

HEIGHT
DOWN-COUNTER

PRESET

COUNT=0

LUH *

COUNT

c 75

EOF 00
ro
oi

FIG. 6B

W
O
 99/21126

PCT/U
S98/09445

52
BASE[1:0]

EOR

BYTE ENABLE LOGIC
A

EOR
π

BASE
vv

OUT
4 4 4 4u ΛΛ I I I I

1 00 1111
-► 1 01 1000

1 10 1100
1 11 1110

L 64

►BYTE_ENABLE[3:0] co
rocn

FIG. 6C

W
O

 99/21126
P

CT
/U

S98/09445

Γ 1

80

82a
D[31:24]

a_) P PO
0

P4

DATA_A IN

84-^

82b
D[23:16]

P P1
1 P5—►

82c
D[15:08]

82d.
D[7:00J

P P2

£ P6

P P3

3

Q[31:24]

Q[23:16]

Q[15:08]

Q[07:00]

OPAOUT

86

FIG. 6D

O
K5
Ol

3
o
v©VO

Ov

P
CT

/U
S98/09445

WO 99/21126 PCT/US98/09445

11/25

FIG. 7

41a

ADDRESS
GENERATOR

A

in rdy-A

120a

Address-A

addr step-A

FIG. 8

FIG. 9

hO
ΓΌOi

W
O
 99/21126

PCT/U
S98/09445

WO 99/21126 PCT/US98/09445

13/25

FIG. 10

120a41a 92

41b

ADDRESS
GENERATOR

B

41c-

ADDRESS
GENERATOR

C

2:1 MUX
120b-

100

90a
50

MEMORY
SUBSYSTEM

0
FIFO

A
Data-A ALIGN

A

OP-A

enb-A

MEMORY
SUBSYSTEM

1

OP-B

FIG. 11

UNITS
42

RESULT-C

RESULT
BUFFER

95

£
K5cn

W
O

 99/21126
P

CT
/U

S98/09445

tnrocn

W
O 99/21126

PCT/U
S98/09445

FIG.12

42b

86
A[00:07]-1

101 COMPUTATION CELL

87
B[00:07] 1

A Z
ioiaX
Β Y

hO
16
16

A[00:06]87-ζθθ

:081-L·B[00:06]

A[16:2
87

B[16:23]

TT
A Z
10lbX
Β Y
tt

0
16
16

MASKEN^

X

X

-z
-Y

-x
TC-

31-7-►
LpR

3UL
101CX

YB

A[24i3’teA87

B[24:31]
inY

MASKEN-

TC
ACCUM

L L
Z

ioidx
YB

0
16
16

16.
16 a

a
Eh SUM

104
REGISTER
BUS

σ>ro
01

Et105

■106

CROSS

AUTO

W
O
 99/21126

PCT/U
S98/09445

FIG.13

WO 99/21126 PCT/US98/09445

PIXEL Y COORDINATE

LU
5
z
Q
CC
ooo
X
-J
LU
X
ci-

17/25

0 1 2 4 5 β 7 9 10 11
0
1
2
3
4
5
6
7
8

FIG. 14A

R0W2
R0W1
ROWO

LEFT
XX/XX/XX/XX
XX/XX/XX/XX
XX/XX/XX/XX

CENTER
XX/XX/XX/XX
XX/XX/XX/XX
XX/XX/XX/XX

RIGHT
XX/XX/XX/XX
XX/XX/XX/XX
00/01/02/03

FIGV?4B

LEFT CENTER RIGHT
R0W2 XX/XX/XX/XX XX/XX/XX/XX XX/XX/XX/XX
R0W1 XX/XX/XX/XX XX/XX/XX/XX XX/XX/XX/XX
ROWO XX/XX/XX/XX 00/01/02/03 04/05/06/07

FIGV?4C

LEFT CENTER RIGHT
ROW2 XX/XX/XX/XX XX/XX/XX/XX XX/XX/XX/XX
ROW1 XX/XX/XX/XX XX/XX/XX/XX XX/XX/XX/XX
ROWO 00/01/02/03 04/05/06/07 08/09/010/011

FIGV?4D

LEFT CENTER RIGHT
ROW2 XX/XX/XX/XX XX/XX/XX/XX XX/XX/XX/XX
R0W1 XX/XX/XX/XX XX/XX/XX/XX 00/01/02/03
ROWO XX/XX/XX/XX XX/XX/XX/XX 10/11/12/13

FIG. 14E

WO 99/21126 PCT/US98/O9445

18/25

ROW2
ROW1
ROWO

LEFT
xx/xx/xxpC
xx/xx/xx/x
xx/xx/xx/x

CENTER
xx/xx/xx/x
00/01/02/03
10/11/12/13

RIGHT
"xx/kx/xx/x
04/35/06/07
14/15/16/17

FIG. 14F

ROW2
ROW1
ROWO

LEFT
xx/xx/xxj/x-
00/01/02/03
10/11/12/13

CENTER
XX/XX/XX/X
04/05/06/07
14/15/16/17

RIGHT
"xx/kx/xx/x
08/D9/010/011
18/19/110/111

FIG. 14G

ROW2
ROW1
ROWO

LEFT
ΧΧ/ΧΧ/Χ>βΓ
xx/xx/xx/x
xx/xx/xx/x

CENTER
xx/xx/xx/x
xx/xx/xx/x
xx/xx/xx/x

RIGHT
"OO/b 1/02/03
10/11/12/13
20/21/22/23

FIG. 14H

ROW2
ROW1
ROWO

LEFT
XX/XX/XXj/χ·

xx/xx/xx/x
xx/xx/xx/x

CENTER
00/01/02/03
10/11/12/13
20/21/22/23

RIGHT
"04^35/06/07
14/15/16/17
24/25/26/27

FIG. 141

ROW2
ROW1
ROWO

LEFT
00/01 /02/03"
10/11/12/13
20/21/22/23

CENTER
04/05/06/07
14/15/16/17
24/25/26/27

RIGHT
"08^)9/010/011
18/19/110/111
28/29/210/211

FIG. 14J

03 04 05 04/05/06
13 14 15 14/15/16
23 24 25 24/25/26

05/06/07 06/07/08
15/16/17 16/17/18
25/26/27 26/27/28

FIG. 14K

FIG. 15A

W
O
 99/21126

PCT/U
S98/09445

ro
ο
ro
σι

FIG. 15Β

W
O
 99/21126

PCT/U
S98/09445

S
I Q ABUS-----Εθίθΐ

EOR—

■<
PREV FG |

ΓΊΓ-
ΓΌ
ΓΌ
cn

W
O
 99/21126

PCT/U
S98/09445

FIG. 16
I

SEQUENCER

REGISTER
ADDRESS —\

DATA
FROM

REGISTERS

DATA
TO

REGISTERS
PROCESSING

UNIT
REGISTERS

42
N>ro

FIG.17

W
O
 99/21126

PCT/U
S98/09445

roω
roσι

W
O
 99/21126

PCT/U
S98/09445

FIG. 18 6

WO 99/21126 PCT/US98/09445

24/25

FIG. 19

WO 99/21126 PCT/US98/09445

25/25

ADDR.
GEN

A

IMAGING
ADDRESS

GENERATORS

ADDR.
GEN

B

ADDR.
GEN

C

MEMORY
SUBSYSTEM

0

MEMORY
SUBSYSTEM

1

120a

r 120b

DATA
PATH,
FIFOS

BUFFER,
PROCESSING

UNITS

INSTRUCTION
POINTER

SEQUENCER
200

DATA
POINTER

DATA TO
^REGISTERS

— DATA
FROM

REGISTERS

INPUT DMA
TARGET/SNOOP

ADDRESS Γ
\

234
\

\

OUTPUT DMA I
SOURCE /

ADDRESS
/

236 t
DIRECT TARGET

ADDRESS

TARGET
DIRECT
WRITE,

INPUT DMA,
OR SNOOP

WRITE
DATA

-—TARGET
DIRECT READ

DATA
OR

OUTPUT DMA
MASTER WRITE

DATA

0 REGISTER
ADDRESS

OUTPUT DMA
DESTINATION

ADDRESS

240

PERIPHERAL
BUS INTERFACE 230

FIG. 20

