wo 2011/036663 A2 I 0K 0O OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization. /g 1IN VAN U 00 NELO08 000001
International Bureau S,/ 0
g ' Joy . . .
. . _ S (10) International Publication Number
(43) International Publication Date \'{:/_?___/
31 March 2011 (31.03.2011) PCT WO 2011/036663 A2

(51) International Patent Classification: Not classitied CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. . DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN. HR. HU. ID. IL. IN. IS. JP. KE. KG. KM. KN. KP
PCT/IL2010/000788 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
21 September 2010 (21.09.2010) Igfé)é\fGZ s?<M’sEE’s i/{G’sPTH’sliIL’ng’ %({), ;{JSTRI\E[J %ﬁ %3,
(25) Filing Language: English TT,TZ UA, UG, US, UZ VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/245,031 23 September 2009 (23.09.2009) Us gl\l\/’[[5\5) LER» LS, l\é[gVMI\’fAZZ» 1]\3%» f{g IS<IE %») TRZI»JUTC}
) , Eurasian , , s s s s > 1,
(71) Applicant (for all designated States except US). COR- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
RELIX LTD. [IL/IL]; 6 Galgalei Haplada Street, POB EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
12607, 46733 Herzeliya Pituach (IL). LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,

(72) Inventors; and SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

(75) Inventors/Applicants (for US only): SHAQED, Ariel GW, ML, MR, NE, SN, TD, TG).
[IL/IL]; 75 Einstein Street, Ramat-Aviv (IL). LEHAVI, Declarations under Rule 4.17:
David [IL/IL]; 7 Heine Street, Haifa 34485 (IL). — of inventorship (Rule 4.17(iv))

(74) Agent: REINHOLD COHN AND PARTNERS; Published:
P.0.B.13239, 61131 Tel Aviv (IL). ’
— without international search report and to be republished

(81) Designated States (unless otherwise indicated, for every upon receipt of that report (Rule 48.2(2))

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(54) Title: METHOD AND SYSTEM FOR RECONSTRUCTING TRANSACTIONS IN A COMMUNICATION NETWORK

(57) Abstract: In a distributed information
network, a method and system for assem-
bling messages in an input set of messages
into one or more message assemblies. The
method involves constructing an initial di-
rected graph of the set of messages, wherein
the directed graph consists of pairs of a first
vertex and a second vertex, wherein, for each
message in the set of messages, a first vertex
is an the out node of the message and the
second vertex is the in node of the message.
A connectivity matrix is defined on the ini-
tial directed graph that is modified in an iter-
ative process. A final directed graph is pro-
duced that is partitioned into disjoint sub-
graphs, each subgraph being an assembly of
messages from the input message set.

5 (x86) 1 (x86)

2]
t=+4.1ms

Fig. 5

10

15

20

25

WO 2011/036663 PCT/IL2010/000788

-1-

METHOD AND SYSTEM FOR RECONSTRUCTING TRANSACTIONS
IN A COMMUNICATION NETWORK

FIELD OF THE INVENTION

This invention relates to methods and systems for analyzing a communication

network.

BACKGROUND OF THE INVENTION

The typical enterprise technology landscape today is characterized by the
distributed nature of its information systems and the heterogeneity of its technologies.
Following decades of evolution and innovation, it is common to see "best-of-breed"
packaged applications, such as ERP, CRM, SCM, SRM, PLM, etc., home-grown
systems, and legacy applications, each with numerous interfaces interconnecting them.
In these distributed and complex environments, the act of processing a typical
transaction spans numerous applications and technological boundaries, often rendering
the enterprise incapable of understanding execution paths for the transactions as well as
their logical and technical interdependencies. Without the requisite knowledge of how
the transactions are executed, the enterprise is severely limited in its ability to monitor
transactions and to detect and remedy bottlenecks, latencies, and points-of-failure.

Enterprise organizations therefore seek to increase the visibility of their
automated business transactions as they see a direct correlation between transaction
visibility and business performance. Achieving a high-degree of visibility enables the
enterprise to improve customer service, to monitor transaction performance and health,
to optimize the business logic, and to implement efficient solutions to problems as they

arise.

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-2

US Patent No. 6,738,813 to Reichman discloses a system for monitoring Web
sites, or other server systems, as seen from the computing devices of other users. In a
preferred embodiment, the system includes an agent component that runs on the
computing devices of service users to provide functionality for accessing and
moniforing the performance of a server. The agents are remotely configurable over the
Internet, and may be configured, for example, to execute a particular Web transaction
while monitoring specified performance parameters (server response times, network
hop delays, server availability, etc). Using a service provider Web site, a user of the
service can set up a monitoriné session in which agent devices of other community
members are used to monitor the performance of the user's server system.

US Patent No. 7,424,530 to Chagoly discloses a method for graph manipulation
of transactional performance data to identify and emphasize root causes of electronic
business system transaction processing performance problems. A system transaction
monitoring system, is utilized to obtain transaction performance data for a system. This
transaction performance data is utilized to present a graph of a given transaction or
transactions.

US Patent Publication 20100228650 discloses a method of tracking information
in a multi-tier computerized environment involving detecting data associated with at
least one request or transaction related to a byte stream; and matching a thread
associated with the byte stream with the at least one request or transaction associated
with the at least one packet according to predetermined fields within the byte stream.

US Patent Publication 20060015512 to Alon et al. discloses an apparatus for
monitoring a selected tier in a multi-tier computing environment. Monitored request
traffic includes at least one entering request received at a request entry port from an
adjacent tier, identifying each request in the monitored request traffic and sending at
least a request identifier to the context agent. The context agent also receives
information relating to the request context of the entering request from the context agent
associated with the adjacent tier and the context agent associates the information
relating to the request context of the entering request with the entering request, in

accordance with a request identifier.

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

SUMMARY OF THE INVENTION

Glossary

There follows a glossary of terms used in the following description and set of
claims together with their definitions, some of them known in the art, others having
been coined.

Computational Node

A computational node is a node of a communication network that receives
and/or generates information. For the sake of convenience, a computational node is
sometimes referred to herein simply a "node”. Examples of nodes are a web server,
database server, a queue, a virtual server in a virtual environment, and a process within
a server. A cluster, a redundancy system, and multiple instances of the same server may
be considered as being a single node.

A Message

A message is the unit of information sent on the application layer. Three types of
ihforrnation related to a message are defined: network information (TCP/IP), instance
information and application (Application layer) information. Each message includes one
or more message ID's and typically also includes any one or more of an ID of the origin
node, the ID of the destination node, origin node time stamp, destination node time
stamp, message type and match ID.

A match ID

A value of a field or combination of fields within a message that identifies the
logical flow of messages to which the message belongs. For example a flow of
messages that constitutes an Order Single transaction instance may include a request
message of the type “Single Order” and a response message these types belong to the
same transaction is the fact that both messages hold the same value in the field
“ClientOrderID”. The value of the field “ClientOrderID” would be the match ID in this
case

The present invention provides a system and method for monitoring transactions
within a distributed information network. The system of the invention comprises one or
more collectors that record data relating to incoming and outgoing messages at the

nodes of the communication network. The recorded data for each message typically

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-4-

includes an “in node ID” and an “out node ID”, the message type, the time stamp of the
message at the in node and the out node, and the match ID or match IDs of the message.

At various times the collector reconstructs recently completed transactions in the
system from the recorded data. In accordance with this aspect of the invention, a
directed graph is defined, wherein, for each message in an input set of messages, a first
vertex and a second vertex are defined, where the first vertex is the out node of the
message and the second vertex is the in node of the message. All of the vertices are
ordered according to their time stamp. A directed edge is introduced into the directed
graph from the out vertex to the in vertex of each message, and a directed connectivity
matrix A is calculated in which a=1 if a directed path exists from the vertex k' to the
vertex k. Otherwise ay=0. The matrix A is then modified in an iterative process
described in detail below. The result of the iterative process is a partition of the input set
of messages into disjoint directed graphs, where each graph contains a vertex tagged as
a beginning of a message path, and each of the graphs represents a transaction in the
system.

The system of the invention also includes a management server. For one or more
of the transactions identified by the collectors, the management server calculates one or
more values of one or more parameters of the transaction. The parameters of the path
type may be, for example, total transit time, or the processing time at each of one or
more nodes. When the determined value of one or more of the parameters exceeds a
predetermined threshold, an alert may be issued that may be displayed on the monitor.
In addition, the processing time of messages at each of one or more nodes may be
determined and a node history may be constructed. Statistics of each of the parameters
of may be compiled, and when the value of any statistic exceeds a predetermined
threshold, an alert can be issued.

The collectors may first use a binning method to partition an initial set of
messages set of messages where all of the messages in a particular transaction are
placed in the same bin. Each bin is then used as an input set of messages for the
collectors.

Thus, in its first aspect, the invention provides a system for assembling in an

input set of messages in a distributed information network into one or more message

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-5.

assemblies, each message having an out node in the network and an in node in the
network, the system comprising,: :

(a) one or more message collection servers; each collection server being
configured, to:

a) construct a directed graph of the set of messages, wherein the directed
graph consists of pairs of a first vertex and a second vertex , wherein , for each message
in the set of messages, a first vertex is an the out node of the message and the second
vertex is the in node of the message;

order the vertices according to a time stamp of each vertex;

construct a connectivity matrix A of the directed graph in which au=1 if a
directed path exists from the vertex k' to the vertex k and ax=0 otherwise.

modify the matrix A in an iterative process in a process comprising:

For k=1 to kmax, kmax being a number of vertices in the graph:

if there is a vertex k'<k on the node of k such that a correlation from the vertex k'
to the vertex k allowed, and if the current value of a#1, introducing a directed edge
into the directed graph from the vertex k' to the vertex k;

setting ag=1;

if k is an out vertex and the corresponding in vertex is k", setting Ak"=Ak or
AKk", where Ak is the kth row of the matrix A and Ak" is the k"th row of the matrix A;
and

partitioning the directed graph into disjoint subgraph, each subgraph being an
assembly of messages from the input message set.

The system according to Claim 1 wherein the processor is further configured to partition
the directed graph into disjoint subgraphs where each subgraph contains a vertex tagged
as a beginning of a message path.

The processor may further be configured to execute a binning algorithm on an
initial set of messages, the binning algorithm partitioning the initial set of messages into
disjoint bins of messages, and one or more of the bins may be used as the input set of
messages. In this case, each message in the initial set of messages is assigned one or
more match IDs and the binning algorithm comprises:

@) determining an equivalence relation among the match IDs, a first match

ID being equivalent to a second match ID if there exists a sequence of

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-6-

messages M1,...Ms in the initial set of messages such that Mk and Mk+1

have a common match ID, and

(i) partitioning the messages into disjoint bins of messages, any two

messages being in the same bin if there exists a sequence of messages

M1,...,Ms such that M1 is the first message, Ms is the second message,

and Mk and Mk+1 have a common match ID.

The system may further comprise a management server configured to calculate
one or more values of one or more parameters of the transactions.One or more of the
parameters may be selected, for example, from a total transit time, and a processing
time at each of one or more nodes. The management server may be configured to issue
an alert when a determined value of one or more of the parameters exceeds a
predetermined threshold. The management server may be further configured to
determine a node history and to calculate statistics of one or more of the parameters of
one or more nodes. The management server may be configured to issue an alert when
the value of any statistic exceeds a predetermined threshold.

In another of its aspects, the invention provides a method for assembling
messages in an input set of messages in a distributed information network into one or
more message assemblies, each message having an out node in the network and an in
node in the network, the method comprising,: :

a) constructing a directed graph of the set of messages, wherein the
directed graph consists of pairs of a first vertex and a second vertex , wherein , for each
message in the set of messages, a first vertex is an the out node of the message and the
second vertex is the in node of the message;

ordering the vertices according to a time stamp of each vertex;

constructing a connectivity matrix A of the directed graph in which ay~1 if a
directed path exists from the vertex k' to the vertex k and a=0 otherwise.

modifying the matrix A in an iterative process in a process comprising:

for k=1 to kmax, kmax being a number of vertices in the graph:

if there is a vertex k'<k on the node of k such that a correlation from the vertex k'
to the vertex k allowed, and if the current value of agx#1, introducing a directed edge
into the directed graph from the vertex k' to the vertex k;

setting ay=1;

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-7.

if k is an out vertex and the corresponding in vertex is k", setting Ak"=Ak or
Ak", where Ak is the kth row of the matrix A and AK" is the k"th row of the matrix A;
and

partitioning the directed graph into disjoint subgraph, each subgraph being an
assembly of messages from the input message set.

The method according to Claim 12 wherein further comprising partitioning the directed
graph into disjoint subgraphs where each subgraph contains a vertex tagged as a
beginning of a message path.

The method of the invention may further comprise executing a binning
algorithm on an initial set of messages, the binning algorithm partitioning the initial set
of messages into disjoint bins of messages, and one or more of the bins may be used as
the input set of messages. In this case, each message in the initial set of messages is
assigned one or more match IDs and the binning algorithm comprises:

@) determining an equivalence relation among the match IDs, a first match

ID being equivalent to a second match ID if there exists a sequence of
messages M1,...Ms in the initial set of messages such that Mk and Mk+1
have a common match ID, and

(ii) partitioning the messages into disjoint bins of messages, any two

messages being in the same bin if there exists a sequence of messages
M1,...,Ms such that M1 is the first message, Ms is the second message,
and Mk and Mk+1 have a common match ID.

The method of the invention may further comprise calculating one or more
values of one or more parameters of the transactions. One or more of the parameters
may be selected from a total transit time, and a processing time at each of one or more
nodes. An alert may be issued when a determined value of one or more of the
parameters exceeds a predetermined threshold.

The method may further comprise determining a node history calculating
statistics of one or more of the parameters of one or more nodes. An alert may be issued

when the value of any statistic exceeds a predetermined threshold.

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-8-

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in
practice, embodiments will now be described, by way of non-limiting example only,
with reference to the accompanying drawings, in which: |

Fig. 1 shows a system for assembling messages in a communication network
into message assemblies, in accordance with one aspect of the invention;

Fig. 2 shows a first representation of a flow of messages between nodes in a
communication network;

Fig. 3 shows a second representation of a flow of messages between nodes in a
communication network;

Fig. 4 shows a flow chart of a method for assembling messages into message
assemblies in accordance with one aspect of the invention; and

Fig. 5 shows two message assemblies constructed from an input set of messages

by the method of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Fig. 2 shows a schematic diagram 10 of message flow through a communication
network. A message m1 originating at node 1 is assigned the match ID "1234" and is
sent to node 2. Receipt of the message m1 at the node 2 generates a message m2 at the
node 2 that is sent to node 3 after having been assigned two match IDs. One of the
match IDs is the match ID of message 1 (1234). The other match ID is AXY. Receipt of
the message m2 at the node 3 generates a message m3 at the node 3 that is sent to the
node 2 with the match ID AXY. Receipt of the message m3 at the node 2 generatés a
message m4 that is sent to the node 1 with the ID AXY.

Fig. 3 shows another schematic diagram 20 of the message flow 10 depicted in
Fig. 2. In the diagram 20, a circle, such as the circle 20 indicates an origin node of a
message, and a square, such as the square 22 indicates the destination node of the
message. The number of the node is indicated inside the circle or square. Transmission
of a message from one node to another is indicated by an arrow from the origin node to

the destination node of the message. The message appears next to the arrow. An arrow

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-9.

from a destination node to an origin node, such as the arrow 24 indicates generation of a
message within a node.

Fig. 1 shows a system, generally indicated by 100, for monitoring transactions
within a distributed information network in accordance with one embodiment of this
aspect of the invention. The network 100 comprises one or more nodes 106, one or
more distribution switches 104, and one or more access switches 101. The nodes 106,
distribution switches 104 and the access switches may be arranged in a hierarchy in
which one or more clients 106 are connected to a common distribution switch 104 and
one or more distribution switches are connected to common access switch 101. The
access switches 101 are connected to a core 105 of the network 100. The network 100
further comprises one or more collectors 102 and a management server 103. In the
embodiment of Fig. 1the collector 102 is connected to one or more access switches 101
through a port monitor. A management server 103 is connected to the network 100 at a
distribution switch 104.

The collector 102 records data relating to incoming and outgoing messages at
the nodes 106. The recorded data for each message includes a in node ID and out node
ID, the message type, the time stamp of the message at the in node and the out node,
and the match ID or match IDs of the message. The collector 102 at various times
reconstructs recently completed transactions in the system 100 from the recorded data,
as described below.

The collector 102 may first use a binning method to partition the set of messages
whose data were recorded into disjoint subsets, where all of the messages in a particular
transaction are placed in the same subset. Initially, all of the messages having a
givenmatch ID are assigned to the same bin. Messages having more than one match ID
will be assigned to more than one bin. After assignment of the messages to bins, two or
more of bins having one or more common messages are combined into a single bin. The
process of combining bins continues until the set of messages is partitioned into disjoint
bins. The binning may be performed, for example, using a standard fast or efficient
"Union Find" implementation, for example as disclosed in "Disjoint-set data structure”
on Wikipedia as last modified on August 28, 2010).

After binning, the collector 102 assembles the messages in each bin into
transactions. Fig. 4 shows a method for assembling the messages in a given bin into

one or more disjoint transactions in accordance with one embodiment of the invention.

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-10 -

The method begins with step 101 where a directed graph is defined, wherein, for each
message in the bin, a first vertex and a second vertex are defined, where the first vertex
is the out node of the message and the second vertex is the in node of the message.
Then, in step 102, all of the vertices are ordered according to their time stamp. In the
case where there are two or more vertices having the same time stamp, the vertices
having the same time stamp can be ordered arbitrarily subject to the restriction that a
vertex corresponding to an out node of a message is positioned in the order before the
vertex corresponding to the in node of the same message. Each vertex is thus assigned a
vertex number k, where k is the position of the vertex in the ordering. Then in step 103,
a directed edge is introduced into the directed graph from the out vertex to the in vertex
of each message. In step 104 a directed connectivity matrix A is calculated in which
aw=1 if a directed path exists from the vertex k' to the vertex k. Otherwise a=0.

The matrix A is now modified in an iterative process as follows. In step 106, k is
set to 1, and in step 108, it is determined whether the vertex k is the earliest vertex on its
node. If no, then in step 110, it is determined whether there is a vertex k' that is earlier
than the vertex k such that a correlation from the vertex k' to the vertex k is a
predetermined allowed correlation. The allowed correlations reflect business
considerations, so that transactions of interest are generated. If at step 110 it is
determined that such an earlier vertex does not exist, or if in step 108 it is determined
that k is the earliest vertex on its node, then the process proceeds to step 112 where it is
determined whether the vertex k is an out vertex. If yes then in step 114 the vertex k is
tagged as being a vertex at the beginning of a message path and the process continues to
step 116. If at step 112 it is determined that k is not an out vertex, the process also
continues to step 116. In step 116 it is determined whether the current value of k is the
maximum value of k. If no, then in step 120 k is increased by 1 and the process returns
to step 108.

If in step 110 it is determined whether there are vertices that are earlier than the
vertex k such that a correlation from the vertex k' to the vertex k is allowed, then in step
122 it is determined whether the current value of ay—1, where the vertex k' is the latest
earlier vertex to the vertex k. If yes, then the process proceeds to step 116. If no, then in
step 124 a directed edge is introduced into the directed graph from the vertex k' to the

vertex k.

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-11-

After step 124, the directed connectivity matrix A is updated. First, in step 126,
aye is set to 1. Then in step 128, Ax (row k of the matrix A) is set to the logical
expression "Ayx or A", wherein is a vector whose ith component is O if the ith
component of Ak and Ak’ are both 0, and the ith component of Ay or Ay is 1 otherwise
(i.e. if the ith component of either Ak or Ak’ is 1). Finally, in step 130, if k is an out
vertex, and the corresponding in vertex is k", then Ay~ is reset to the logical expression
"Ag or Ax". The process then returns to step 116.

If in step 116 it is determined that the value of k is maximal, then in step 118 the
directed graph is partitioned into disjoint subgraphs where each subgraph contains a
vertex tagged in step 114 as a beginning of a message path. Each of the subgraphs
represents a transaction in the system. The process then terminates in step 132.

If most of the correlations in step 110 are allowed and the bin has many nodes,
then the complexity of the process of Fig. 4 is linear with the number of vertices in the
bin. Since the step 124 is executed at most once for each vertex k, the memory required
for vertex is bounded above by a constant so that the memory for all of the vertices may

be allocated as an array.

Transactions identified by the process of Fig. 4 are input to the management
server 103. For one or more of the transactions, the management server calculates one
or more values of one or more parameters of the transaction. The parameters of the path
type may be, for example, total transit time, or the processing time at each of one or
more nodes. The values of the parameters may be displayed on the monitor 109. When
the determined value of one or more of the parameters exceeds a predetermined
threshold, an alert may be issued that may be displayed on the monitor. In addition, the
processing time of messages at each of one or more nodes may be determined and a
node history may be constructed. Statistics of each of the parameters of may be
compiled, and when the value of any statistic exceeds a predetermined threshold, an

alert can be issued.
Example

The invention will now be demonstrated by way of an example. Table 1 shows

data collected by a collector, such as the collector 102, relating to 13 messages.

10

15

WO 2011/036663 PCT/IL2010/000788

-12-

collected by a collector, such as the collector 102. The messages were sent between 4
nodes.

As can be seem in Table 1, Match IDs are shared between node 1 and node 2,
and between node 2 and node 3. Howevernodes 1 and 2 always send different match
IDs and nodes 3 and 4 respond with both match IDs. This might occur, for example, if
the match ID from node 1 is being sent to node 3 by some out-of-band method, or by
some unmonitored path, or is reconstructed by a previous phase of the monitoring. Tier
#1Node 1 communicates with node 2 using a protocol with rhessages "Order" and
"Cancel", receiving a message "Acknowledge" for each; Node 2 communicates with
nodes 3 and 4 using some other protocol with messages "NEW" and "CXL", producing
a message "ACK" or "ACK CXL" for each. These relations define the allowed

correlations between message types.

WO 2011/036663 PCT/IL2010/000788
-13 -
Table 1
ID Message |From (out| Time To (in Time
Type node) Stamp node) Stamp MatchID1 | Mateh ID 2
1 Order 1 +1.1ms 2 +2ms x86
2 Order 1 +1.2ms 2 +1.9ms x87
3 NEW 2 +2.1ms 3 +3.1ms a9
4 NEW 2 +2.2ms 4 +3.2ms a9
5 Cancel 1 +2.2ms 2 +3ms x86
6 CXL 2 +3.2ms 3 +3.8ms all
7 NEW 2 +3.3ms 4 +4ms al0
8 ACK 3 +3.4ms 2 +3.9ms x86 a9
9 ACK 4 +3.4ms 2 +4.1ms a9
10 ACK CXL 3 +3.9ms 1 +5ms x86 all
11 Acknowledge 2 +4.2ms 1 +5ms x86
12 ACK 4 +4.2ms 2 +5ms x87 al0
13 Acknowledge 3 +5.1ms 1 +6ms x87

10

15

20

25

WO 2011/036663 PCT/IL2010/000788

-14 -

Binning

At each step, the message introduced into the system is shown together with the existing
bins. Each bin is displayed as "{NiabchIDbMatChIDZr - | idy,idy,. - '}", which

specifies that the bin holds all messages with the given match IDs, and gives the IDs of

those messages.
Referring again to Table 1, the binning process proceeds as follows:

1. Message 1 is first processed. There is no bin for match ID "x86" (or, indeed, for
any match ID), so a new bin is created. After this step, there is one bin, {x86:
1}.

2. Message 2 is processed. There is no bin for match ID "x87", so a new bin is
created. After this step, there are two bins bins {x86: 1}, {x87: 2}.

3. Message 3 is processed, creating a new bin for match ID "a9". After this step,
the bins are {x86: 1}, {x87: 2}, {a9: 3}.

4. Message 4 is processed, and is added to the existing bin for match ID "a9".
After this step, bins {x86: 1}, {x87: 2}, {a9: 3,4}.

5. Message 5 is processed, and is added to the existing bin for match ID "x86".
After this step, the bins are{x86: 1,5}, {x87: 2}, {a9: 3,4}.

6. Message 6 is processed, creating a new bin for match ID "all". After this step,
thebins are {x86: 1,5}, {x87: 2}, {a9: 3,4}, {all: 6}.

7. Message 7 is processed, creating a new bin for match ID "al0". After this step,
the bins are {x86: 1,5}, {x87: 2}, {a9: 3,4}, {all: 6}, {al0: 7}.

8. Message 8 is processed. Since Message 8 has both Match ID x86 and Match ID
a9, processing Message 8 unifies the bins for match IDs "x86" and "a9" and is
added to the resulting bin. After this step, the bins are{x86,a9: 1,3,4,5,8}, {x87:
2}, {all: 6}, {al0: 7}.

9. Message 9 is processed, and is added to the existing bin for match IDs "x86" and
"a9". After this step, the bins are {x86,a9: 1,3,4,5,8,9}, {x87: 2}, {all: 6},
{al0: 7}.

10

15

20

25

WO 2011/036663 PCT/IL2010/000788

-15-

10. Message 10 is processed. It causes the unification of the bins for match IDs
"x86" and "all", and is added to the resulting bin. After this step, the bins are
{x86,a9,a11: 1,3,4,5,6,8,9,10}, {x87: 2}, {al0: 7}.

11. Message 11 is processed, and is added to the existing bin for match IDs "x86"
and "a9';. After this step, the bins are {x86,a9,a11: 1,3,4,5,6,8,9,10,11}, {x87:
2}, {a10: 7}.

12. Message 12 is processed. It causes the unification of the bins for match IDs
"x87" and "al0", and is added to the resulting bin. After this step, the bins are
{x86,a9,a11: 1,3,4,5,6,8,9,10,11}, {x87,a10: 2,7,12}.

13. Message 13 is processed, and is added to the existing bin for match IDs "x87"
and "alQ". After this step, the bins are {x86,a9,a11: 1,3.4,5,6,8,9,10,11},
(x87,a10: 2,7,12,13}. |

Thus, 2 bins have been constructed containing of of the messages of distinct
transactions. Each bin contains the messages of one or more transactions, and the

messages of each transaction is contained entirely inside a single bin.

After enough time has elapsed, we can safely retire bins to transaction assembly. This
requires a criterion for determining when all transactions of a bin must have ended. For
example, if no transaction may take more than 10ms, at some time after +15ms bin #1 is
sent to transaction assembly, and at some time after +16ms bin #2 is sent to transaction

assembly. Any criterion can be used for retiring bins, including combinations of:

e Time with no new messages added to the bin (this is the method detailed above)
¢ Round-trip messages (e.g. a response received for every request)
e Attempted transaction assembly of the bin (as below) yields transactions

matching some business logic

10

15

20

WO 2011/036663 PCT/IL2010/000788

-16 -

e Assembly

The method of the invention for assembly of messages into transactions will be
demonstrated on the bin {x86,a9,all: 1,3,4,5,6,8,9,10,11}produced by the above

binning process.

In this phase the match IDs are ignored, and the time stamps are used to order
events, and message types are used to check for correlations allowed by business logic.
In this example, the business logic configuration allows correlations only between
"Order", "NEW", "ACK", and "Acknowledge" and between "Cancel", "CXL" and
"CXL ACK".

Referring to step 101 in Fig. 4, an out vertex and an in vertex are created for
each message in the bin (there will thus be 9 OUT vertices, denoted by ovals, and 9 IN
vertices, denoted by rectangles). Each vertex is associated with a message, which in
turn associates it with the appropriate time and node address of that message: for an
OUT vertex that is the sending time, for an IN vertex that is the receiving time.
Referring to step 102 in Fig. 4, these vertices are sorted in order of time. When two
vertices have the same time, the method does not depend on the specific ordering
chosen. Accordingly, the business logic can create a specific ordering to achieve a
preferred display format, or an arbitrary ordering (e.g. that resulting from the sort

function) can be used. After this step, there are 18 vertices, as shown in Table 2:

Table 2

Vertex k| Vertex ID | Type Time Stamp| IP
11OUT 1 Order +1.1 1
2|IN 1 Order +2 2
3|0UT 3 NEW +2.1 2
4|0UT 4 NEW +2.2 2
5|0UT 5 Cancel +2.2 1
6/IN5 Cancel +3 2

WO 2011/036663 PCT/IL2010/000788

-17-

7|IN 3 NEW +3.1 3

8|IN 4 NEW +3.2 4

9|10UT 6 CXL +3.2 2
10{OUT 8 ACK +3.4 3
11{OUT 9 ACK +3.4 4
12(IN 6 CXL +3.8 3
13(OUT 10 ACK CXL |+3.9 3
14(IN 8 ACK +3.9 21
15(IN 9 ACK +4.1 21
16|OUT 11 Acknowledge|+4.2 21
17]IN 11 Acknowledge|+5 11
18{IN 10 ACKCXL [+5 11

Referring now to step 103 in Fig. 4, a "network" edge is added directed from
each OUT vertex to its corresponding IN vertex. For example, there is an edge from
"OUT 6" to "IN 6". For every OUT vertex I, Ai=0...0 (no inbound edges), and for its
matching IN vertex j a_j,i=1 (i.e., an edge exists from i to j), so A_j=0...010...0 where
the "1" appears in position i.

The starting matrix A is accordingly:

000000000000000000
100000000000000000
000000000000000000
000000000000000000
000000000000000000
000010000000000000
001000000000000000
_8=000100000000000000
A_9=000000000000000000
A_10=000000000000000000
A_11=000000000000000000
A_12=000000001000000000
A_13=000000000000000000
A_14=000000000010000000

Al=
A2=
A3=
A4
AS
A 6
AT=
A

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-18 -

A_15=000000000100000000
A_16=000000000000000000
A_17=000000000000000100
A_18=000000000000010000

All values of k are now scanned, (steps 106 through 130 in Fig. 4).

1. Vertex OUT 1 is the first vertex on its node (node 1) (step 108). It is an OUT
vertex [step 112], so it is tagged as the beginning of a new transaction.

2. Vertex IN 1 is the earliest vertex on its node (node 2) [step 108]. It is not an
OUT vertex, nothing further is done.

3. Vertex OUT 3 is not the earliest on its node (node 2) [stepl08]. Correlations
from Order to NEW are allowed [step 110], so £=2. A directed "compute" edge
is introduced from vertex 2 to vertex 3 [step 124], and a_32=1 [stepl26]. Now
A 3=0...011 (becéuse A 2=0...1) [step127]. (i.e. "vertex 3 is reachable from
vertices 2,1 on node 2". OUT 3 is an OUT vertex, with corresponding vertex IN
3 at position 7, s0 A_7=0...0111 [step130].

4. Vertex OUT 4 is not the earliest on its node (node) [stepl108]. Correlations from
NEW to NEW are allowed [step 110], so k'=3, and A 4 = 1110...0. OUT 4 is
an OUT vertex, with corresponding vertex IN 4 at position k"=8, so we set A_8
=11110...0.

5. Vertex OUT 5 is not the earliest on its node (node 1) [stepl08]. However a
correlation from Order to Cancel is not allowed (by the business logic)
[step110], and it is an OUT vertex [stepl12], so it is tagged as the beginning of a
second transaction. Accordingly A 5=0.

6. Vertex IN 5 is not the earliest on its node (node 2) [step 108], but no correlations
from NEW or from Order to Cancel are allowed (by the business logic) [step
110]. It is not an OUT vertex [112], so nothihg further is done.

7. Vertex IN 3 is the earliest on its node 3 [108], but it is not an OUT vertex [step
112], so nothing further is done. Note that A 7=1110...0 from step 3 since
vertex 7 is reachable from vertices 1,2, and 3.

8. Vertex IN 4 is the earliest vertex on its node (node 4) [108], but it is not an OUT
vertex [112], so nothing further is done, keeping A_8=0...01111 from step 4.

9. Vertex OUT 6 is not the earliest vertexon its node (node 2) [108]. A correlation

is allowed from vertex IN 5, so k'=6. A directed "compute" edge is introduced

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

10.

11.

12.

13.

14.

15.

16.

-19.-

from vertex 6 to vertex 9 [112], and a 96=1 [126]. Now A_9 = 0000110...0.
OUT 6 is an OUT vertex, with corresponding vertex IN 6 at position 12, so
A _12=0000011001...0.

Vertex OUT 8 is not the earliest vertex on its node (node 3) [108]. We set k'=7
(correlation from NEW to ACK is allowed) [110], so a directed "compute"”
edgeis introduced from vertex 7 to vertex 10 [124] and a 10,7=1 [126]; now
A 10=11100010...0. OUT 8 is an OUT vertex, with corresponding vertex IN 8
at position 14, so we also have A_14 =111000100010...0.

Vertex OUT 9 is not the earliest vertex on its node (node 4) [108]. We set k'=8
[110], so a directed "compute" edge is introduced from vertex 8 to vertex 11
[124] and a 11,8=1 [126]; now A 11 = 111100010...0. OUT 9 is an OUT
vertex, with corresponding vertex IN 9 at position 15, so we also have A_15 =
111100010010...0.

Vertex IN 6 is not the earliest vertex on its node (node 3) [108]. No correlation
is allowed to it from previous vertices on this node [110], and it is not an OUT
node [112], so nothing further is done.

Vertex OUT 10 is not the earliest vertex on its node (node 3) [108]. We set
k'=12 (correlation from CXL to ACK CXL is allowed) [110], so a directed

"compute" edge is introduced from vertex 12 to vertex 13 [124] and a_13,12=1
[126]. Now A 13 = 0000110010010...0. OUT 10 is an OUT vertex, with
corresponding vertex IN 10 at position 18, so we also have A_18 =
00001100100110...0.

Vertex IN 8 is not the earliest vertex on its node (node 2) [108]. We set k'=4

(values 9 and 6 are disallowed by the business logic configuration) [110], so a
directed "compute" edge is introduced from vertex 4 to vertex 14 [124] and
a _14,4=1[126]. Now A_14=11110010010...0.

Vertex IN 9 is not the earliest vertex on its node (node 2) [108]. We set k'=14
[110], introducing an edge from vertex 14 to vertex15 [124] and a_15,14=1
[126]. Now A 15=111100010010010....0.

Vertex OUT 11 is not the first vertex on its node (node 2) [108]. We set k'=15
[110], introducing an edge from vertex 15 to vertex 16 [124] and a_16,15=1
[126]. Now A 16 =1111000100100110...0. Because it is an OUT vertex with
matching IN vertex 17, we also set A_17=111100010010011100.

WO 2011/036663 PCT/IL2010/000788
-20 -

17. Vertex IN 11 is not the first vertex on its node (node 1) [108]. We set k'=1 (the
previous correlation to OUT 5 is disallowed because business logic
configuration prevents correlating Cancel with Acknowledge) [110], but
a_17,1=1 already in step 16,[122] and nothing further is done.

5 18. Vertex IN 10 is not the first vertex on its node (node 1) [108]. We set k'=5
[110], but as a_18,5=1 already in step 13) [122] nothing further is done.

The results of the assembly are shown in Fig. 5. There are two connected components.
One starts at vertex 1 (corresponding to the "Order" transaction flow), the other at

10 vertex 5 (corresponding to the "Cancel" transaction flow).

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-21-

CLAIMS:

1. In a distributed information network, a system for assembling messages in
an input set of messages into one or more message assemblies, each message having an
out node in the network and an in node in the network, the system comprising,:

one or more message collection servers; each collection server being configured,
to:

a) construct a directed graph of the set of messages, wherein the directed
graph consists of pairs of a first vertex and a second vertex , wherein , for each message
in the set of messages, a first vertex is an the out node of the message and the second
vertex is the in node of the message; |

order the vertices according to a time stamp of each vertex;

construct a connectivity matrix A of the directed graph in which ay~1 if a
directed path exists from the vertex k' to the vertex k and a~0 otherwise.

modify the matrix A in an iterative process in a process comprising:

For k=1 to kmax, kmax being a number of vertices in the graph:
, if there is a vertex k'<k on the node of k such that a correlation from the vertex k'
to the vertex k allowed, and if the current value of ay#1, introducing a directed edge
into the directed graph from the vertex k' to the vertex k;

setting ag=1;

if k is an out vertex and the corresponding in vertex is k", setting Ak"=Ak or
AKk", where Ak is the kth row of the matrix A and Ak" is the k"th row of the matrix A;
and

partitioning the directed graph into disjoint subgraph, each subgraph being an
assembly of messages from the input message set.
2. The system according to Claim 1 wherein the processor is further configured
to partition the directed graph into disjoint subgraphs where each subgraph contains a
vertex tagged as a beginning of a message path.
3. The system according to Claim 1 or 2 wherein the processor is further
configured to execute a binning algorithm on an initial set of messages, the binning
algorithm partitioning the initial set of messages into disjoint bins of messages. .
4. The system according to Claim 3 wherein one or more of the bins is used as

the input set of messages.

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

-2

5. The system according to Claim 3 or 4 wherein each message in the initial set
of messages is assigned one or more match IDs and the binning algorithm comprises:
@) determining an equivalence relation among the match IDs, a first match
ID being equivalent to a second match ID if there exists a sequence of
messages M1,...Ms in the initial set of messages such that Mk and Mk+1
have a common match ID, and
(ii) partitioning the messages into disjoint bins of messages, any two

messages being in the same bin if there exists a sequence of messages
ML1,... . Ms such that M1 is the first message, Ms is the second message,
and Mk and Mk+1 have a common match ID.

6. The system according to any one of the previous claims further comprising a

management server configured to calculate one or more values of one or more

parameters of the transactions.

7. ~ The system according to Claim 6 wherein one or more of the parameters is

selected from a total transit time, and a processing time at each of one or more nodes.

8. The system according to Claim 6 or 7 wherein the management server is

configured to issue an alert when a determined value of one or more of the parameters

exceeds a predetermined threshold.

9. The system according to any one of Claims 6 to 8 wherein the management

server is further configured to determine a node history.

10. The system according to any one of Claims 6 to 9 wherein the management

server is further configured to calculate statistics of one or more of the parameters of

one or more nodes.

11. The system according to Claim 10 wherein the management server is

configured to issue an alert when the value of any statistic exceeds a predetermined

threshold, an alert can be issued.

12. In a distributed information network, a method for assembling messages in

an input set of messages into one or more message assemblies, each message having an

out node in the network and an in node in the network, the method comprising,: :
a) constructing a directed graph of the set of messages, wherein the

directed graph consists of pairs of a first vertex and a second vertex , wherein , for each

message in the set of messages, a first vertex is an the out node of the message and the

second vertex is the in node of the message;

10

15

20

25

30

WO 2011/036663 PCT/IL2010/000788

223 -

ordering the vertices according to a time stamp of each vertex;
constructing a connectivity matrix A of the directed graph in which au~=1 if a
directed path exists from the vertex k' to the vertex k and au=0 otherwise.
modifying the matrix A in an iterative process in a process comprising:
for k=1 to kmax, kmax being a number of vertices in the graph:
if there is a vertex k'<k on the node of k such that a correlation from the vertex k'
to the vertex k allowed, and if the current value of a#1, introducing a directed edge
into the directed graph from the vertex k' to the vertex k; A
setting ag=1; _
if k is an out vertex and the corresponding in vertex is k", setting Ak"=Ak or
Ak", where Ak is the kth row of the matrix A and Ak" is the k"th row of the matrix A;
and
partitioning the directed graph into disjoint subgraph, each subgraph being an
assembly of messages from the input message set.
13. The method according to Claim 12 wherein further comprising partitioning
the directed graph into disjoint subgraphs where each subgraph contains a vertex tagged
as a beginning of a message path.
14. The method according to Claim 12 or 13 further comprising executing a
binning algorithm on an initial set of messages, the binning algorithm partitioning the
initial set of messages into disjoint bins of messages. .
15. The method according to Claim 14 wherein one or more of the bins is used
as the input set of messages.
16. The method according to Claim 14 or 15 wherein each message in the initial
set of messages is assigned one or more match IDé and the binning algorithm
comprises:
(iii) determining an equivalence relation among the match IDs, a first match
ID being equivalent to a second match ID if there exists a sequence of
messages M1,...Ms in the initial set of messages such that Mk and Mk+1
have a common match ID, and
(iv) partitioning the messages into disjoint bins of messages, any two
messages being in the same bin if there exists a sequence of messages
M1,...,Ms such that M1 is the first message, Ms is the second message,

and Mk and Mk+1 have a common match ID.

10

15

WO 2011/036663 PCT/IL2010/000788

-24 -

17. The method according to any one of Claims 12 to 16 further comprising
calculating one or more values of one or more parameters of the transactions.

18. The method according to Claim 17 wherein one or more of the parameters iAs
selected from a total transit time, and a processing time at each of one or more nodes.
19. The method according to Claim 17 or 18 further comprising issuing an alert
when a determined value of one or more of the parameters exceeds a predetermined
threshold. .

20. The method according to any one of Claims 17 to 19 further comprising
determining a node history.

21. The method according to any one of Claims 17 to 20 further comprising
calculating statistics of one or more of the parameters of one or more nodes.

22, The method according to Claim 21 further comprising issuing an alert when

the value of any statistic exceeds a predetermined threshold.

WO 2011/036663 PCT/IL2010/000788
1/5

SUBSTITUTE SHEET (RULE 26)

WO 2011/036663 PCT/IL2010/000788
2/5

my my -—10
Node 1 "my Node 2 M Node 3
L™
_/22

2

my
3
i m3
2

My
] Fig. 3

SUBSTITUTE SHEET (RULE 26)

WO 2011/036663

PCT/IL2010/000788

3/5

START

FOR EACH MESSAGE, DEFINE A FIRST
VERTEX BEING THE OUT NODE OF THE
MESSAGE AND A SECOND VERTEX BEING
THE IN NODE OF THE MESSAGE

L——101

ORDER ALL VERTICES ACCORDING
TO THEIR TIME STAMP

L—102

FOR EACH MESSAGE, INTRODUCE A
DIRECTED EDGE FROM THE OUT
VERTEX OF THE MESSAGE TO THE IN
VERTEX OF THE MESSAGE

L ——103

CONSTRUCT BIT CODED DIRECTED
CONNECTIVITY MATRIX A

L —104

SETK=1 106

1S VERTEX K THE EARLIEST™<_'0®
VERTEX ON ITS NODE?

No

Fig. 4
(BEGINNING)

SUBSTITUTE SHEET (RULE 26)

WO 2011/036663

116

4/5

“INo

PCT/IL2010/000788

No

IS VERTEX
K AN OUT
VERTEX?

—

Yes /f\414

110

IS THERE A VERTEX

%K ON THE NODE OF K SUCH

VERTEX K1 TO VERTEXKIIS

ALLOWED?

THAT A CORRELATION FROM
12 \

No

TAG VERTEX K AS
THE BEGINNING OF
A MESSAGE PATH

Yes

No

Yes

)
IS AKE>\1 22

ISK= KMAX?

No

Y

=K+1

Li20

INTRODUCE DIRECTED
EDGE FROM
VERTEX K' TO VERTEX K

L —124

Yes

Y

SET Ak = 1

-—126

'

SET Ak = “Ax OR Ak”

L —128

|

130

IF KIS AN OUT VERTEX
AND THE CORRESPONDING
IN VERTEX IS K",

SET Ak = “AKOR A"

Y

PARTITION GRAPH INTO
TRANSACTIONS

L—118

END

Fig. 4 (EnD)

SUBSTITUTE SHEET (RULE 26)

PCT/IL2010/000788

WO 2011/036663

5/5

SWiG+ =)
[1]

(98x) L1

gD

SWwg'c+ =1

SW| '+ =1
[2]

(6e) 6

Swg'z+ =1

[Z]

(68 ‘98%) 8

(L1e

SWig+ =1}
[Z]

(98x) |

sSWig+ =1
[1]
‘98x) 01
SWg'C+ =
[€]
(LLe) 9
SWeg+ =1
[e]
(98x%) §

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

