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Hybrid Quantum-Classical Computer for Packing Bits into Qubits for Quantum
Optimization Algorithms

BACKGROUND

Quantum computers promise to solve industry-critical problems which are
otherwise unsolvable. Key application areas include chemistry and materials,
bioscience and bioinformatics, and finance. Interest in quantum computing has
recently surged, in part, due to a wave of advances in the performance of ready-to-use
quantum computers.

The quantum approximate optimization algorithm (QAOA) is a quantum
algorithm for obtaining approximate solutions to certain combinatorial optimization
problems. With the standard approach to QAOA, prospects for outperforming state-
of-the-art classical methods are low. The standard approach requires at least one qubit
for each Boolean variable or for each node in the graph. However, the number of
qubits expected to be available in the near term (several hundred) is far too few to
accommodate valuable problem instances (requiring several thousand) (see, e.g.,
Gavin E. Crooks, “Performance of the Quantum Approximate Optimization
Algorithm on the Maximum Cut Problem,” arXiv preprint arXiv:1811.08419, 2018).

[2.5] Other optimization problems, such as the variational quantum
eigensolvers (VQE), also require the use of many qubits to solve useful problem
instances.

What is needed, therefore, are techniques for applying QAOA or VQE to
valuable problem instances using near-term quantum computers. Such improvements

would have a wide variety of applications in science and engineering.

SUMMARY

A hybrid quantum classical (HQC) computer, which includes both a classical
computer component and a quantum computer component, implements improvements
to the quantum approximate optimization algorithm (QAOA) and other variational
quantum algorithms which enable these algorithms to be applied to valuable problem
instances (e.g., those including several thousand or more qubits) using near-term

quantum computers.
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In one aspect, a method for reducing the number of qubits with which an
operator is represented on a quantum computer comprises: (1) receiving, as input, at a
classical computer, an N-qubit operator; (2) decomposing, at the classical computer,
the N-qubit operator as a linear combination of products of Majorana operators on 2N
Majorana modes; and (3) forming, at the classical computer, a second operator,
representable on M qubits, based on a linear transformation of the Majorana operators
of the N-qubit operator, wherein the linear transformation is from R*(2N) to RN2M),
wherein M<N.

The method may further include: (4) at the quantum computer, generating
marginal expectation values from the packed operator; and (5) at the classical
computer, using the marginal expectation values to generate approximate marginals
by approximating an expectation value of the operator. The input operator may
include an Ising Hamiltonian. The method may further include: (6) generating bit
string samples based on the approximate marginals; or (6) generating bit string
samples based on the approximate marginals.

Generating the bit string samples may include generating the bit string
samples by generating samples and then rounding. Generating the bit string samples
may include generating the bit string samples using direct rounding.

Forming the second operator based on the linear transformation may include
performing a packing of 2-planes. Performing the packing of 2-planes may include
performing skew-symmetric conference matrices. Performing the packing of 2-planes
may include performing numerically-generated semidefinite programming packings.

The input operator may include a fermionic Hamiltonian. The input operator
may include an ising Hamiltonian. The linear transformation may include a stochastic
transformation. The stochastic transformation may include a Johnson-Lindenstrauss
transformation.

The linear transformation may include an explicit transformation. The explicit
transformation may include Hadamard codes. The explicit transformation may
include symmetric conference matrices.

In another aspect, a system includes: a classical computer including a
processor, a non-transitory computer-readable medium, and computer program
instructions stored in the non-transitory computer-readable medium; a quantum
computer comprising a plurality of qubits; wherein the computer program

instructions, when executed by the processor, perform a method for reducing the

2.
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number of qubits with which an operator is represented on the quantum computer.
The method includes: (1) receiving, as input, at a classical computer, an N-qubit
operator; (2) decomposing, at the classical computer, the N-qubit operator as a linear
combination of products of Majorana operators on 2N Majorana modes; and (3)
forming, at the classical computer, a second operator, representable on M qubits,
based on a linear transformation of the Majorana operators of the N-qubit operator,
wherein the linear transformation is from R*(2N) to R*(2M), wherein M<N.

Other features and advantages of various aspects and embodiments of the
present invention will become apparent from the following description and from the

claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a quantum computer according to one embodiment of
the present invention;

FIG. 2A is a flowchart of a method performed by the quantum computer of
FIG. 1 according to one embodiment of the present invention;

FIG. 2B is a diagram of a hybrid quantum-classical computer which performs
quantum annealing according to one embodiment of the present invention;

FIG. 3 is a diagram of a hybrid quantum-classical computer according to one
embodiment of the present invention;

FIG. 4 shows an example MAXCUT instance and its solution according to one
embodiment of the present invention;

FIGS. 5 and 6 illustrate additional details of the method of FIG. 7 according to
one embodiment of the present invention;

FIG. 7 is a flowchart of a method for generating approximate solutions for
MAXCUT according to one embodiment of the present invention;

FIG. 8 illustrates a flow of data types from one step to the next in the method
of FIG. 7 according to one embodiment of the present invention;

FIG. 9 is a dataflow diagram of a system for reducing the number of qubits
with which an operator is represented on a quantum computer according to one
embodiment of the present invention; and

FIG. 10 is a flowchart of a method performed by the system of FIG. 9

according to one embodiment of the present invention.
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DETAILED DESCRIPTION

Embodiments of the present invention are directed to a hybrid quantum
classical (HQC) computer, which includes both a classical computer component and a
quantum computer component, and which implements improvements to the quantum
approximate optimization algorithm (QAOA) which enable QAOA to be applied to
valuable problem instances (e.g., those including several thousand or more qubits)
using near-term quantum computers.

Embodiments of the present invention include systems and methods for
increasing the size of implementable quantum optimization algorithms. This is
achieved by “packing” a number of effective bits (M) onto the quantum computer

which exceeds the number of physical qubits (N). The packing is achieved by

defining a set of observables {20 na qubits such that the algebraic relationships
among them approximately satisfy those of the standard local Pauli-Z observables.
Embodiments of the present invention may, for example, incorporate at least some
elements of a technique introduced in the following paper to explore the concept of
“overlapping qubits™: Rui Chao, Ben W Reichardt, Chris Sutherland, and Thomas

Vidick, “Overlapping qubits,” arXiv preprint arXiv:1701.01062, 2017,

There is a cost to packing the M observables: the s are not algebraically
independent. As described in the above-referenced paper entitled “Overlapping
Qubits,” this penalty prohibits using these packed observables for information storage.
For the purposes of combinatorial optimization, however, as long the algebraic
relations are sufficiently approximately satisfied, a useful approximate solution can be
obtained. This fact underlies the use of standard discrete optimization techniques
known as “relaxations”. Relaxations entail solving an easier variant of the problem
with relaxed constraints, then rounding the (usually) invalid solution back to a valid
one. As long as the relaxation is not too severe, the rounded solution is close to the
optimal solution.

In applying this technique to QAOA for approximately solving MAXCUT,

this relaxation of algebraic independence manifests as distortions in the expectation

AN .. L. . .
** for the minimal energy state. The essential insight is that, although this

{5
values *

slight distortion is incurred in expectation values, embodiments of the present
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invention may use classical rounding techniques to recover good approximate
solutions to MAXCUT.

FIG. 4 shows an example MAXCUT instance and its solution. Assigning each
node to the left or right of the cut leads to some number. In FIG. 4, the MAXCUT
score is six, while there are seven edges total.

The quantum approximate optimization algorithm (QAOA), semidefinite
relaxation techniques used in combinatorial optimization, the method of line packing
in real space, and the algebraic properties of Majorana fermions will now be
described.

A quantum algorithm is developed for obtaining approximate solutions to the
NP-hard problem of MAXCUT in the following paper: Edward Farhi, Jeffrey
Goldstone, and Sam Gutmann, “A quantum approximate optimization algorithm,”
arXiv preprint arXiv:1411.4028, 2014. As depicted in FIG. 4, the problem is, given a
graph G, to assign labels {0,1} to the vertices of the graph so as to maximize the
number of edges in G having oppositely-labeled nodes.

Letting A be the adjacency matrix of G with |V | = M vertices, this problem

can be cast as the following optimization problem:

. &

Tom |, 1o
BIEN N ‘) A
sa{i 4y 2 o

sy

(D
The quantum approximate optimization algorithm described in the above-
referenced paper entitled, “A quantum approximate optimization algorithm,” aims to
tune the parameters of a quantum circuit on M qubits so that the bit strings sampled
on the output tend toward better cut assignments. The structure of the quantum circuit

1s motivated by the quantum adiabatic evolution which transforms the ground state of

the trivial Hamiltonian #x = -

L DI €:47). The quantum system is initialized in the ground state of

-1 ¢ into the ground state of the target Hamiltonian

3

Hx by applying a Hadamard gate s e Z) to each of the qubits i
The structure of the quantum resembles a Trotter approximation to the adiabatic

evolution:

The circuit parameters may be tuned in a variety of ways.
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Note that the number of qubits required for this algorithm is precisely the
number of nodes in the graph. In the remainder of the document we describe the tools
and techniques for reducing the number of physical qubits with which an operator is
represented on the quantum computer. This reduces, for example, the number of

5  physical qubits needed for generating good approximate solutions to MAXCUT. The

key observation, derived from the following section, is that it suffices to generate

R )

#%in order to obtain good guesses

s
R

good guesses at the parity expectation values

for cut assignments. Method employed by embodiments of the present invention

extract good guesses at the parity expectation values using a quantum computer with
10  far fewer than M qubits.

The problem of MAXCUT is NP-hard. Therefore, an algorithm efficiently
solving all instances is not expected to exist. Furthermore, it has been shown that
obtaining a solution which achieves a MAXCUT score better than a certain fraction of
the true optimum is also an NP-hard problem. Nevertheless, approximation algorithms

15  have found widespread application, often achieving high approximation ratios in
practice.

The MAXCUT approximation algorithm which achieves the best constant
approximation ratio is the Goemans-Williamson algorithm. The Goemans-Williamson
algorithm involves two steps: 1) solve a relaxed version of the optimization problems

20 and 2) round the solution back to a valid one. The first step requires re-expressing the
optimization problem of Equation 1 as one that is nearly a semidefinite program. This

is done as follows. First, Equation 1 is written as an optimization over real vectors

with a quadratic constraint:

RE

3
25 st xki=

Next, defining pij = xixj, which is a rank-one positive semidefinite matrix,

rewrite the optimization as:

I
max =8 - sir{dae
& « |

AN ) @
s.t. pli=1 %)
30 and p=>0,

and rank(p)=1,
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where |E| is the number of edges in G. This optimization task is almost a
semidefinite program except that it contains a rank-one constraint. The nonconvexity
of this constraint prevents us from using convex optimization directly.

The Goemans-Williamson algorithm first solves the relaxed version of the
above optimization, whereby the rank-one constraint is removed and the semidefinite
program is carried out. The optimal value of p from this semidefinite program is
denoted p#*. The i — jth entry of p* roughly corresponds to the expected parity
between nodes 1 and j, where the value +1 indicates that the two nodes are given the
same label, while —1 indicates that the two nodes are given different labels. In the true
optimization problem (before the relaxation), the expected values of each parity will
be +1. In the relaxed version, the entries will, in general, lie between these values.
Crucially, however, the entries of p* will not correspond to the expected parity values
arising from any probability distribution over bit strings. In other words, the parity

values expressed in p* are incompatible with one another. This manifests in the fact

that 31&1~ $t{4a3 will be larger than the true MAXCUT score. As an example, in the
case of M = 3 with G being the complete graph, the MAXCUT value is 2. However,
p* will achieve a value of 9/4.

Once the semidefinite programming relaxation is solved, p* is used to
generate cut assignments. This is achieved in two steps. First, treating p* as a

2o A a0 .
LN drawn from a zero-centered multi-

covariance matrix, generate samples
variate Gaussian. Then, round the real-valued entries of these vectors back to +1
according to zi = sign(xi). Goemans and Williamson show that the expected cut size

using this method will be at least o = 0.878... times the maximum cut size. The

W B

constant « is defined by the numerical minimization problem &
Further work by Khot conjectures that no approximation algorithm can guarantee a
better constant-fraction approximation ratio for MAXCUT than o, unless P=NP.

With regard to the bit packing method that is used by embodiments of the
present invention, one insight to be drawn here is that, with a sufficiently good guess
at the parity expectation values (e.g. given by p*), even if they are incompatible with
one another, the bit packing method can generate good cut assignments with a
combination of Gaussian sampling and rounding. Examples of tools used for packing
M bits into fewer-than-M qubits so that good parity expectation values can be

extracted will now be described.
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An underlying technique that embodiments of the present invention may use
for packing almost-independent bits into qubits is line packing. The problem of line
packing is, given m lines through the origin in n-dimensional space, orient the lines
such that the minimal angle among pairs of lines is maximized. A packing is
described by a linear transformation from a larger space to a smaller one, such that the
angles between vectors in the larger space are approximately preserved under
transformation. As an example, given m = 4 lines in n = 3 dimensional space, the
optimal configuration is given by a tetrahedral arrangement of the lines, resulting in a
minimal angle between the lines of arccos (1/3) = 70.5° The concept of line-packing
is addressed by the Johnson-Lindenstrauss lemma. This lemma roughly states that if a
set of lines is allowed to have up to € error in their orthogonality, then one can pack
these lines into \) dimensions.

Embodiments of the present invention, however, achieve packings with a
higher degree of orthonormality using non-asymptotically optimal (i.e. optimal for a
given n and m) packings. The problem of optimally packing m lines in an n-
dimensional space has been considered in the following papers: (1) PW Shor and Neil
James Alexander Sloane, “A family of optimal packings in grassmannian manifolds,”
Journal of Algebraic Combinatorics, 7(2):157—- 163, 1998; and (2) AR Calderbank,
RH Hardin, EM Rains, PW Shor, and Neil James Alexander Sloane, “A group-
theoretic framework for the construction of packings in grassmannian spaces,”
Journal of Algebraic Combinatorics, 9(2):129-140, 1999. In particular, this work
constructed packings of m =n2 +n—2 lines into n dimensions, with explicit error 1/n,
which are provably optimal.

The formalism of identical and indistinguishable quantum particles provides
an algebraic framework with diverse applications including topological quantum
computation and quantum error correction. Such quantum particles are described with
a set of operators satisfying a set of so-called canonical commutation relations. These
operators are used to describe the dynamics of such interacting particles as well as
their properties in thermal equilibrium. A system of M fermions is described using
creation and annihilation operators afi and ai satisfying

{ai,a;} =0 (6)

1.’:{} . (3% ,'-“ W :3‘_\”:’ (7)
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where i,j = 1,....M. For example, the Hamiltonian of a pair-wise interacting system

of fermions is of the form

LA B TR

®)

5 Majorana fermions are fermions that are their own anti-particle. Although the
existence of fundamental particles behaving as Majorana fermions is still in debate,
many condensed matter systems yield quasi-particles obeying Majorana fermion
statistics. The Majorana operators are constructed from fermionic creation and

annihilation operators

10 Y )

(10)
Thus, a system of M fermions corresponds to a system of 2A/ Majorana

fermions. The canonical commutation relations of the Majorana operators are

(11)
15 whereij=1, ... 2M.

In the above-referenced paper entitled, “Overlapping qubits,” a technique for
constructing almost-independent qubits using almost independent Majorana operators
is developed. Embodiments of the present invention use a variant of this method for

20  constructing a set of N almost-independent bits. Following [3], the almost-

341 . . .
independence of a set of Majorana operators * ER TS conveyed by their commutation

relations approximately satisfying those of Equation 11, \
considered to be an approximation of a set of Majorana operators if
st - syl e (12)
25  for all i,j. From these almost-independent Majorana operators, a set of almost-

independent Pauli-Z operators can be constructed as

Z =iy oy s+ By, (13)
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where az,frare set such that # + ¢ 2

P o= 1, ensuring <} is a valid reflection in Hilbert space. These
operators inherit the almost-independence from the Majorana operators used to define

them.

The set of almost-independent Majorana operators can be used for qubit
packing in a general instance of a k-body fermionic Hamiltonian. This is achieved by
using the Majorana representation of the fermionic Hamiltonian and replacing each of
the Majorana operators with their packed versions. Such packings can be used to
reduce the number of qubits used, for example, in quantum algorithms for quantum
chemistry including, but not limited to quantum phase estimation and the variational
quantum eigensolver. As with the standard approaches to such quantum algorithms,
we may choose to represent the fermionic operator to a qubit operator in a number of
different ways, including, but not limited to the Jordan-Wigner transformation, the
Bravyi-Kitaev transformation, etc.

Described next is a qubit packing method used by embodiments of the present
invention to generate approximate solutions for MAXCUT. A diagram of the method
is given in FIG. 7, where each step is depicted in FIGS. 5 and 6. A flowchart
illustrating the flow of data types from one step to the next is shown in FIG. 8.
Overall, the method runs the variational quantum eigensolver algorithm on N qubits,
whereby the optimal parity expectation values of each MAXCUT graph edge is
approximated by measurement statistics of the ground state. With these parity
expectation values, classical rounding techniques are used to generate cut
assignments. The problem instances can be input as binary clauses, which can be
corresponded to an Ising Hamiltonian, or a fermionic Hamiltonian in standard or
Majorana form. In the case of a quadratic binary optimization problem, such as
MAXCUT, the problem instance can be described by a weighted adjacency graph or
matrix 4.

Steps 1-5: In steps 1-5, a problem instance is input, and a set of M
approximately-independent Pauli-Z operators defined on N qubits is constructed.

e Step 1: In a Stage 802, the problem instance is input, the input graph

determines the adjacency graph A; (Output 804) and the number of nodes

M. Each node corresponds to a bit, whereby any boolean vector z

-10 -
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corresponds to an assignment of graph nodes to the left (0) and right (1)
of the cut.
Steps 2 -5: In Steps 2 — 5, (Stage 806), a packing of M bits into N qubits

is determined, with the number of qubits with which the algorithm is

10

15

20

N
N,
. o \} S
3

P S
B ¥

carried out denoted by N, where N <M.

o In Step 2, the elementary operators used to construct the N-qubit
Hamiltonian are the 2N Majorana operators %1%, These
operators are mapped to qubit observables using, for example, the

Jordan-Wigner transformation
vi— Z1...Zi1 X (14)
yirn — Z1... Zi-1Yi (15)
o Step 3: Next a packing P of 2Mf lines into 2N dimensions is
created, packing 2Af almost-orthogonal rays in 2N real dimensions,

o Step 4: The packing P of 2M lines into 2N dimensions is used to

construct 2M almost-independent Majorana operators,

3D

Ny ¥ox

(16)

e - .o N NNt
S =48, S8 el

o Step 5: The M almost-independent bits are packed into NV qubits.
Pairs of the Majorana operators (from Step 4), are taken to

generate a set of A almost independent Pauli-Z operators,

(17

n . T eni
i SR R AT
TR Japed Tl Fi= 1,

ensuring < 7is a valid reflection in Hilbert space.

-11 -
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It can be checked that < = I
), where € is the largest inner product of the packed real vectors in

P.

Step 6: With the set of packed Pauli-Z operators defined, the MAXCUT

5 Hamiltonian is decomposed into a two-body Majorana fermion Hamiltonian (STAGE

810, output 812)
(18]
38 ¥y
RN 38
— ‘1\_\ /; 2 -f--;"}"i‘ VEY YL i{?{sg
» ‘ BESERES A B
S A
£ sedend

Step 7: The variational quantum eigensolver (VQE) algorithm is used (Stage
814) to approximately prepare the ground state of H, determining variational circuit
10 parameters (Qutput 816) which prepare this state.
Step 8: Using the state prepared with these parameters, the two-RDMs of the
Majorana fermion Hamiltonian are estimated using standard methods either on a
quantum computer by measuring the qubits or on a classical computer by classical

simulation of the quantum system (Stage 818)

15
2n
Step 9: The estimated two-RDMs of the Majorana fermion Hamiltonian are
combined (Stage not shown in FIG. 8) to give estimates of the parity expectation
values
f‘i'g X wn “‘ 2} .
20

(22)

thus creating the so-called marginal matrix x# (Output 820)

Step 10 — 12: Generating MAXCUT assignments from marginal data. The

MAXCUT assignments are generated from marginal data as follows:
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o Step 10: The so-called marginal matrix p is minimally made positive
semidefinite (Stage 822, part 1), by adding an identity matrix scaled

by the minimal eigenvalue of p,

5__¢ SRR \»‘I\
5 (23)
where Ao is the minimal eigenvalue of x, resulting in the minimal

eigenvalue of # being zero.

- e Step 11: The marginal matrix * is used to generate samples for cut

assignments as follows. Generate samples (Stage 822, part 2),
10 @ o A i, where A" is the multivariate Gaussian distribution with

zero-mean and covariance matrix * (Output 824).

e Step 12: Round each sample vector to generate bit strings z = sign(x).
Compute the cut score of each bit string z (Stage 826), taking the
maximal value zmax as the approximation to the MAXCUT score.

15 Additionally, the average cut score may be taken as a cost function

used to drive further rounds of VQE.

In the case of Hamiltonians constructed from Ising operators, we can
alternatively use a packing of N 2-planes into a 2M-dimensional space. We replace
Steps 3—5 above with the following:

20 o Step 3: Next a packing P of M planes into 2N dimensions is
created, packing M almost-orthogonal planes in 2N real
dimensions,

o Step 4: The packing P of M planes into 2N dimensions is used to
construct M almost-independent Majorana operator pairs,

25 Z =¥ 1¥Y1m

Where
Yo = Z P31Ya
a

and

7 — a
Y2i+1 = Z PyriYae
a
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with the 2I and 2I+1 columns of P corresponding to a pair of
unit vectors spanning the Ith plane.
(##)
There are numerous ways in which the packings P can be generated.

Stochastic packings can be generated using the standard method of Johnson-
Lindenstrauss, whereby each entry of P is drawn from a zero-centered Gaussian
distribution with unit variance. A compendium of explicit packings (i.e. not
stochastically derived) can be found on the website

http:/meilsloane.com/grass/grassTab.html. The packings described therein include,

but are not limited to, packings derived from:
e numerical searching
e classical error correcting codes (e.g. Hadamard code)
e symmetric conference matrices

e skew symmetric conference matrices

Variations on embodiments of the present invention include, for example,
direct application to weighted MAXCUT, employing a low-rank decomposition of the
Hamiltonian tensor to decrease the number of measurement shots needed to achieve a
desired accuracy of each Pauli expectation, using techniques for increasing the
statistical power of expectation value estimation, and using rounding techniques that
apply beyond MAXCUT Hamiltonian to apply the bit packing technique more
broadly. For example, the variational quantum factoring algorithm (described in Eric
R Anschuetz, Jonathan P Olson, Alan Aspuru-Guzik, and Yudong Cao, “Variational
quantum factoring,” arXiv preprint arXiv:1808.08927, 2018) employs a Hamiltonian
with four-body Pauli-Z terms. Rounding techniques for the marginals derived from
such cases would enable the qubit packing method to be applied.

Referring to FIG. 9, a dataflow diagram is shown of a system 900 for reducing
the number of qubits with which an operator is represented on the quantum computer
102 according to one embodiment of the present invention. Referring to FIG. 10, a
flowchart is shown of a method 1000 performed by the system 900 of FIG. 9
according to one embodiment of the present invention. The method 1000 includes:
(1) receiving, as input, at the classical computer 306, an N-qubit operator 902 (FIG.

10, operation 1002); (2) decomposing, at a decomposition module 904 in the classical

-14 -



CA 03117223 2021-04-20

WO 2020/106955 PCT/US2019/062612

10

15

20

25

30

computer 306, the N-qubit operator 902 as a linear combination 906 of products of
Majorana operators on 2N Majorana modes (FIG. 10, operation 1004); (3) forming, at
an operation generation module 908 on the classical computer 306, a second operator
910, representable on M qubits, based on a linear transformation of the Majorana
operators 906 of the N-qubit operator 902, wherein the linear transformation is from
RMN2N) to RAN2M), wherein M<N (FIG. 10, operation 1006).

It is to be understood that although the invention has been described above in
terms of particular embodiments, the foregoing embodiments are provided as
illustrative only, and do not limit or define the scope of the invention. Various other
embodiments, including but not limited to the following, are also within the scope of
the claims. For example, elements and components described herein may be further
divided into additional components or joined together to form fewer components for
performing the same functions.

Various physical embodiments of a quantum computer are suitable for use
according to the present disclosure. In general, the fundamental data storage unit in
quantum computing is the quantum bit, or qubit. The qubit is a quantum-computing
analog of a classical digital computer system bit. A classical bit is considered to
occupy, at any given point in time, one of two possible states corresponding to the
binary digits (bits) O or 1. By contrast, a qubit is implemented in hardware by a
physical medium with quantum-mechanical characteristics. Such a medium, which
physically instantiates a qubit, may be referred to herein as a “physical instantiation of
a qubit,” a “physical embodiment of a qubit,” a “medium embodying a qubit,” or
similar terms, or simply as a “qubit,” for ease of explanation. It should be understood,
therefore, that references herein to “qubits” within descriptions of embodiments of the
present invention refer to physical media which embody qubits.

Each qubit has an infinite number of different potential quantum-mechanical
states. When the state of a qubit is physically measured, the measurement produces
one of two different basis states resolved from the state of the qubit. Thus, a single
qubit can represent a one, a zero, or any quantum superposition of those two qubit
states; a pair of qubits can be in any quantum superposition of 4 orthogonal basis
states; and three qubits can be in any superposition of 8 orthogonal basis states. The
function that defines the quantum-mechanical states of a qubit is known as its
wavefunction. The wavefunction also specifies the probability distribution of

outcomes for a given measurement. A qubit, which has a quantum state of dimension
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two (i.e., has two orthogonal basis states), may be generalized to a d-dimensional
“qudit,” where d may be any integral value, such as 2, 3, 4, or higher. In the general
case of a qudit, measurement of the qudit produces one of d different basis states
resolved from the state of the qudit. Any reference herein to a qubit should be

5 understood to refer more generally to an d-dimensional qudit with any value of d.

Although certain descriptions of qubits herein may describe such qubits in
terms of their mathematical properties, each such qubit may be implemented in a
physical medium in any of a variety of different ways. Examples of such physical
media include superconducting material, trapped ions, photons, optical cavities,

10 individual electrons trapped within quantum dots, point defects in solids (e.g.,
phosphorus donors in silicon or nitrogen-vacancy centers in diamond), molecules
(e.g., alanine, vanadium complexes), or aggregations of any of the foregoing that
exhibit qubit behavior, that is, comprising quantum states and transitions
therebetween that can be controllably induced or detected.

15 For any given medium that implements a qubit, any of a variety of properties
of that medium may be chosen to implement the qubit. For example, if electrons are
chosen to implement qubits, then the x component of its spin degree of freedom may
be chosen as the property of such electrons to represent the states of such qubits.
Alternatively, the y component, or the z component of the spin degree of freedom

20  may be chosen as the property of such electrons to represent the state of such qubits.
This is merely a specific example of the general feature that for any physical medium
that is chosen to implement qubits, there may be multiple physical degrees of freedom
(e.g.. the x, y, and z components in the electron spin example) that may be chosen to
represent 0 and 1. For any particular degree of freedom, the physical medium may

25  controllably be put in a state of superposition, and measurements may then be taken in
the chosen degree of freedom to obtain readouts of qubit values.

Certain implementations of quantum computers, referred as gate model
quantum computers, comprise quantum gates. In contrast to classical gates, there is
an infinite number of possible single-qubit quantum gates that change the state vector

30  of aqubit. Changing the state of a qubit state vector typically is referred to as a
single-qubit rotation, and may also be referred to herein as a state change or a single-
qubit quantum-gate operation. A rotation, state change, or single-qubit quantum-gate
operation may be represented mathematically by a unitary 2X2 matrix with complex

elements. A rotation corresponds to a rotation of a qubit state within its Hilbert space,
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which may be conceptualized as a rotation of the Bloch sphere. (As is well-known to
those having ordinary skill in the art, the Bloch sphere is a geometrical representation
of the space of pure states of a qubit.) Multi-qubit gates alter the quantum state of a
set of qubits. For example, two-qubit gates rotate the state of two qubits as a rotation
in the four-dimensional Hilbert space of the two qubits. (As is well-known to those
having ordinary skill in the art, a Hilbert space is an abstract vector space possessing
the structure of an inner product that allows length and angle to be measured.
Furthermore, Hilbert spaces are complete: there are enough limits in the space to
allow the techniques of calculus to be used.)

A quantum circuit may be specified as a sequence of quantum gates. As
described in more detail below, the term “quantum gate,” as used herein, refers to the
application of a gate control signal (defined below) to one or more qubits to cause
those qubits to undergo certain physical transformations and thereby to implement a
logical gate operation. To conceptualize a quantum circuit, the matrices
corresponding to the component quantum gates may be multiplied together in the
order specified by the gate sequence to produce a 2nX2n complex matrix representing
the same overall state change on n qubits. A quantum circuit may thus be expressed
as a single resultant operator. However, designing a quantum circuit in terms of
constituent gates allows the design to conform to a standard set of gates, and thus
enable greater ease of deployment. A quantum circuit thus corresponds to a design
for actions taken upon the physical components of a quantum computer.

A given variational quantum circuit may be parameterized in a suitable
device-specific manner. More generally, the quantum gates making up a quantum
circuit may have an associated plurality of tuning parameters. For example, in
embodiments based on optical switching, tuning parameters may correspond to the
angles of individual optical elements.

In certain embodiments of quantum circuits, the quantum circuit includes both
one or more gates and one or more measurement operations. Quantum computers
implemented using such quantum circuits are referred to herein as implementing
“measurement feedback.” For example, a quantum computer implementing
measurement feedback may execute the gates in a quantum circuit and then measure
only a subset (i.e., fewer than all) of the qubits in the quantum computer, and then
decide which gate(s) to execute next based on the outcome(s) of the measurement(s).

In particular, the measurement(s) may indicate a degree of error in the gate
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operation(s), and the quantum computer may decide which gate(s) to execute next
based on the degree of error. The quantum computer may then execute the gate(s)
indicated by the decision. This process of executing gates, measuring a subset of the
qubits, and then deciding which gate(s) to execute next may be repeated any number
of times. Measurement feedback may be useful for performing quantum error
correction, but is not limited to use in performing quantum error correction. For every
quantum circuit, there is an error-corrected implementation of the circuit with or
without measurement feedback.

Some embodiments described herein generate, measure, or utilize quantum
states that approximate a target quantum state (e.g., a ground state of a Hamiltonian).
As will be appreciated by those trained in the art, there are many ways to quantify
how well a first quantum state “approximates” a second quantum state. In the
following description, any concept or definition of approximation known in the art
may be used without departing from the scope hereof. For example, when the first and
second quantum states are represented as first and second vectors, respectively, the
first quantum state approximates the second quantum state when an inner product
between the first and second vectors (called the “fidelity” between the two quantum
states) is greater than a predefined amount (typically labeled €). In this example, the
fidelity quantifies how “close™ or “similar” the first and second quantum states are to
each other. The fidelity represents a probability that a measurement of the first
quantum state will give the same result as if the measurement were performed on the
second quantum state. Proximity between quantum states can also be quantified with
a distance measure, such as a Euclidean norm, a Hamming distance, or another type
of norm known in the art. Proximity between quantum states can also be defined in
computational terms. For example, the first quantum state approximates the second
quantum state when a polynomial time-sampling of the first quantum state gives some
desired information or property that it shares with the second quantum state.

Not all quantum computers are gate model quantum computers. Embodiments
of the present invention are not limited to being implemented using gate model
quantum computers. As an alternative example, embodiments of the present
invention may be implemented, in whole or in part, using a quantum computer that is
implemented using a quantum annealing architecture, which is an alternative to the
gate model quantum computing architecture. More specifically, quantum annealing

(QA) is a metaheuristic for finding the global minimum of a given objective function
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over a given set of candidate solutions (candidate states), by a process using quantum
fluctuations.

FIG. 2B shows a diagram illustrating operations typically performed by a
computer system 250 which implements quantum annealing. The system 250
includes both a quantum computer 252 and a classical computer 254. Operations
shown on the left of the dashed vertical line 256 typically are performed by the
quantum computer 252, while operations shown on the right of the dashed vertical
line 256 typically are performed by the classical computer 254.

Quantum annealing starts with the classical computer 254 generating an initial
Hamiltonian 260 and a final Hamiltonian 262 based on a computational problem 258
to be solved, and providing the initial Hamiltonian 260, the final Hamiltonian 262 and
an annealing schedule 270 as input to the quantum computer 252. The quantum
computer 252 prepares a well-known initial state 266 (FIG. 2B, operation 264), such
as a quantum-mechanical superposition of all possible states (candidate states) with
equal weights, based on the initial Hamiltonian 260. The classical computer 254
provides the initial Hamiltonian 260, a final Hamiltonian 262, and an annealing
schedule 270 to the quantum computer 252. The quantum computer 252 starts in the
initial state 266, and evolves its state according to the annealing schedule 270
following the time-dependent Schrodinger equation, a natural quantum-mechanical
evolution of physical systems (FIG. 2B, operation 268). More specifically, the state
of the quantum computer 252 undergoes time evolution under a time-dependent
Hamiltonian, which starts from the initial Hamiltonian 260 and terminates at the final
Hamiltonian 262. If the rate of change of the system Hamiltonian is slow enough, the
system stays close to the ground state of the instantaneous Hamiltonian. If the rate of
change of the system Hamiltonian is accelerated, the system may leave the ground
state temporarily but produce a higher likelihood of concluding in the ground state of
the final problem Hamiltonian, i.e., diabatic quantum computation. At the end of the
time evolution, the set of qubits on the quantum annealer is in a final state 272, which
is expected to be close to the ground state of the classical Ising model that
corresponds to the solution to the original optimization problem 258. An experimental
demonstration of the success of quantum annealing for random magnets was reported
immediately after the initial theoretical proposal.

The final state 272 of the quantum computer 254 is measured, thereby

producing results 276 (i.e., measurements) (FIG. 2B, operation 274). The
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measurement operation 274 may be performed, for example, in any of the ways
disclosed herein, such as in any of the ways disclosed herein in connection with the
measurement unit 110 in FIG. 1. The classical computer 254 performs postprocessing
on the measurement results 276 to produce output 280 representing a solution to the
original computational problem 258 (FIG. 2B, operation 278).

As yet another alternative example, embodiments of the present invention may
be implemented, in whole or in part, using a quantum computer that is implemented
using a one-way quantum computing architecture, also referred to as a measurement-
based quantum computing architecture, which is another alternative to the gate model
quantum computing architecture. More specifically, the one-way or measurement
based quantum computer (MBQC) is a method of quantum computing that first
prepares an entangled resource state, usually a cluster state or graph state, then
performs single qubit measurements on it. It is "one-way" because the resource state
is destroyed by the measurements.

The outcome of each individual measurement is random, but they are related
in such a way that the computation always succeeds. In general the choices of basis
for later measurements need to depend on the results of earlier measurements, and
hence the measurements cannot all be performed at the same time.

Any of the functions disclosed herein may be implemented using means for
performing those functions. Such means include, but are not limited to, any of the
components disclosed herein, such as the computer-related components described
below.

Referring to FIG. 1, a diagram is shown of a system 100 implemented
according to one embodiment of the present invention. Referring to FIG. 2A, a
flowchart is shown of a method 200 performed by the system 100 of FIG. 1 according
to one embodiment of the present invention. The system 100 includes a quantum
computer 102. The quantum computer 102 includes a plurality of qubits 104, which
may be implemented in any of the ways disclosed herein. There may be any number
of qubits 104 in the quantum computer 104. For example, the qubits 104 may include
or consist of no more than 2 qubits, no more than 4 qubits, no more than 8 qubits, no
more than 16 qubits, no more than 32 qubits, no more than 64 qubits, no more than
128 qubits, no more than 256 qubits, no more than 512 qubits, no more than 1024

qubits, no more than 2048 qubits, no more than 4096 qubits, or no more than 8192
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qubits. These are merely examples, in practice there may be any number of qubits
104 in the quantum computer 102.

There may be any number of gates in a quantum circuit. However, in some
embodiments the number of gates may be at least proportional to the number of qubits
104 in the quantum computer 102. In some embodiments the gate depth may be no
greater than the number of qubits 104 in the quantum computer 102, or no greater
than some linear multiple of the number of qubits 104 in the quantum computer 102
(eg.2,3,4,5,6,0r7).

The qubits 104 may be interconnected in any graph pattern. For example, they
be connected in a linear chain, a two-dimensional grid, an all-to-all connection, any
combination thereof, or any subgraph of any of the preceding.

As will become clear from the description below, although element 102 is
referred to herein as a “quantum computer,” this does not imply that all components
of the quantum computer 102 leverage quantum phenomena. One or more
components of the quantum computer 102 may, for example, be classical (i.e., non-
quantum components) components which do not leverage quantum phenomena.

The quantum computer 102 includes a control unit 106, which may include
any of a variety of circuitry and/or other machinery for performing the functions
disclosed herein. The control unit 106 may, for example, consist entirely of classical
components. The control unit 106 generates and provides as output one or more
control signals 108 to the qubits 104. The control signals 108 may take any of a
variety of forms, such as any kind of electromagnetic signals, such as electrical
signals, magnetic signals, optical signals (e.g., laser pulses), or any combination
thereof.

For example:

e In embodiments in which some or all of the qubits 104 are implemented as

photons (also referred to as a “quantum optical” implementation) that
travel along waveguides, the control unit 106 may be a beam splitter (e.g.,
a heater or a mirror), the control signals 108 may be signals that control
the heater or the rotation of the mirror, the measurement unit 110 may be a
photodetector, and the measurement signals 112 may be photons.

e In embodiments in which some or all of the qubits 104 are implemented as

charge type qubits (e.g., transmon, X-mon, G-mon) or flux-type qubits

(e.g., flux qubits, capacitively shunted flux qubits) (also referred to as a
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“circuit quantum electrodynamic™ (circuit QED) implementation), the
control unit 106 may be a bus resonator activated by a drive, the control
signals 108 may be cavity modes, the measurement unit 110 may be a
second resonator (e.g., a low-Q resonator), and the measurement signals
112 may be voltages measured from the second resonator using dispersive
readout techniques.

In embodiments in which some or all of the qubits 104 are implemented as
superconducting circuits, the control unit 106 may be a circuit QED-
assisted control unit or a direct capacitive coupling control unit or an
inductive capacitive coupling control unit, the control signals 108 may be
cavity modes, the measurement unit 110 may be a second resonator (e.g., a
low-Q resonator), and the measurement signals 112 may be voltages
measured from the second resonator using dispersive readout techniques.
In embodiments in which some or all of the qubits 104 are implemented as
trapped ions (e.g., electronic states of, e.g., magnesium ions), the control
unit 106 may be a laser, the control signals 108 may be laser pulses, the
measurement unit 110 may be a laser and either a CCD or a photodetector
(e.g., a photomultiplier tube), and the measurement signals 112 may be
photons.

In embodiments in which some or all of the qubits 104 are implemented
using nuclear magnetic resonance (NMR) (in which case the qubits may be
molecules, e.g., in liquid or solid form), the control unit 106 may be a
radio frequency (RF) antenna, the control signals 108 may be RF fields
emitted by the RF antenna, the measurement unit 110 may be another RF
antenna, and the measurement signals 112 may be RF fields measured by
the second RF antenna.

In embodiments in which some or all of the qubits 104 are implemented as
nitrogen-vacancy centers (NV centers), the control unit 106 may, for
example, be a laser, a microwave antenna, or a coil, the control signals 108
may be visible light, a microwave signal, or a constant electromagnetic
field, the measurement unit 110 may be a photodetector, and the

measurement signals 112 may be photons.
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e In embodiments in which some or all of the qubits 104 are implemented as
two-dimensional quasiparticles called “anyons”™ (also referred to as a
“topological quantum computer” implementation), the control unit 106
may be nanowires, the control signals 108 may be local electrical fields or
microwave pulses, the measurement unit 110 may be superconducting
circuits, and the measurement signals 112 may be voltages.

e In embodiments in which some or all of the qubits 104 are implemented as
semiconducting material (e.g., nanowires), the control unit 106 may be
microfabricated gates, the control signals 108 may be RF or microwave
signals, the measurement unit 110 may be microfabricated gates, and the
measurement signals 112 may be RF or microwave signals.

Although not shown explicitly in FIG. 1 and not required, the measurement
unit 110 may provide one or more feedback signals 114 to the control unit 106 based
on the measurement signals 112. For example, quantum computers referred to as
“one-way quantum computers” or “measurement-based quantum computers” utilize
such feedback 114 from the measurement unit 110 to the control unit 106. Such
feedback 114 is also necessary for the operation of fault-tolerant quantum computing
and error correction.

The control signals 108 may, for example, include one or more state
preparation signals which, when received by the qubits 104, cause some or all of the
qubits 104 to change their states. Such state preparation signals constitute a quantum
circuit also referred to as an “ansatz circuit.” The resulting state of the qubits 104 is
referred to herein as an “initial state” or an “ansatz state.” The process of outputting
the state preparation signal(s) to cause the qubits 104 to be in their initial state is
referred to herein as “state preparation” (FIG. 2A, section 206). A special case of
state preparation is “initialization,” also referred to as a “reset operation,” in which the
initial state is one in which some or all of the qubits 104 are in the “zero” state i.e. the
default single-qubit state. More generally, state preparation may involve using the
state preparation signals to cause some or all of the qubits 104 to be in any
distribution of desired states. In some embodiments, the control unit 106 may first
perform initialization on the qubits 104 and then perform preparation on the qubits
104, by first outputting a first set of state preparation signals to initialize the qubits
104, and by then outputting a second set of state preparation signals to put the qubits

104 partially or entirely into non-zero states.
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Another example of control signals 108 that may be output by the control unit
106 and received by the qubits 104 are gate control signals. The control unit 106 may
output such gate control signals, thereby applying one or more gates to the qubits 104,
Applying a gate to one or more qubits causes the set of qubits to undergo a physical
state change which embodies a corresponding logical gate operation (e.g., single-qubit
rotation, two-qubit entangling gate or multi-qubit operation) specified by the received
gate control signal. As this implies, in response to receiving the gate control signals,
the qubits 104 undergo physical transformations which cause the qubits 104 to change
state in such a way that the states of the qubits 104, when measured (see below),
represent the results of performing logical gate operations specified by the gate
control signals. The term “quantum gate,” as used herein, refers to the application of
a gate control signal to one or more qubits to cause those qubits to undergo the
physical transformations described above and thereby to implement a logical gate
operation.

It should be understood that the dividing line between state preparation (and
the corresponding state preparation signals) and the application of gates (and the
corresponding gate control signals) may be chosen arbitrarily. For example, some or
all the components and operations that are illustrated in FIGS. 1 and 2A-2B as
elements of “state preparation” may instead be characterized as elements of gate
application. Conversely, for example, some or all of the components and operations
that are illustrated in FIGS. 1 and 2A-2B as elements of “gate application™ may
instead be characterized as elements of state preparation. As one particular example,
the system and method of FIGS. 1 and 2A-2B may be characterized as solely
performing state preparation followed by measurement, without any gate application,
where the elements that are described herein as being part of gate application are
instead considered to be part of state preparation. Conversely, for example, the
system and method of FIGS. 1 and 2A-2B may be characterized as solely performing
gate application followed by measurement, without any state preparation, and where
the elements that are described herein as being part of state preparation are instead
considered to be part of gate application.

The quantum computer 102 also includes a measurement unit 110, which
performs one or more measurement operations on the qubits 104 to read out
measurement signals 112 (also referred to herein as “measurement results™) from the

qubits 104, where the measurement results 112 are signals representing the states of
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some or all of the qubits 104. In practice, the control unit 106 and the measurement
unit 110 may be entirely distinct from each other, or contain some components in
common with each other, or be implemented using a single unit (i.e., a single unit
may implement both the control unit 106 and the measurement unit 110). For
example, a laser unit may be used both to generate the control signals 108 and to
provide stimulus (e.g., one or more laser beams) to the qubits 104 to cause the
measurement signals 112 to be generated.

In general, the quantum computer 102 may perform various operations
described above any number of times. For example, the control unit 106 may
generate one or more control signals 108, thereby causing the qubits 104 to perform
one or more quantum gate operations. The measurement unit 110 may then perform
one or more measurement operations on the qubits 104 to read out a set of one or
more measurement signals 112. The measurement unit 110 may repeat such
measurement operations on the qubits 104 before the control unit 106 generates
additional control signals 108, thereby causing the measurement unit 110 to read out
additional measurement signals 112 resulting from the same gate operations that were
performed before reading out the previous measurement signals 112. The
measurement unit 110 may repeat this process any number of times to generate any
number of measurement signals 112 corresponding to the same gate operations. The
quantum computer 102 may then aggregate such multiple measurements of the same
gate operations in any of a variety of ways.

After the measurement unit 110 has performed one or more measurement
operations on the qubits 104 after they have performed one set of gate operations, the
control unit 106 may generate one or more additional control signals 108, which may
differ from the previous control signals 108, thereby causing the qubits 104 to
perform one or more additional quantum gate operations, which may differ from the
previous set of quantum gate operations. The process described above may then be
repeated, with the measurement unit 110 performing one or more measurement
operations on the qubits 104 in their new states (resulting from the most recently-
performed gate operations).

In general, the system 100 may implement a plurality of quantum circuits as
follows. For each quantum circuit C in the plurality of quantum circuits (FIG. 2A,
operation 202), the system 100 performs a plurality of “shots™ on the qubits 104. The

meaning of a shot will become clear from the description that follows. For each shot
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S in the plurality of shots (FIG. 2A, operation 204), the system 100 prepares the state
of the qubits 104 (FIG. 2A, section 206). More specifically, for each quantum gate G
in quantum circuit C (FIG. 2A, operation 210), the system 100 applies quantum gate
G to the qubits 104 (FIG. 2A, operations 212 and 214).

Then, for each of the qubits Q 104 (FIG. 2A, operation 216), the system 100
measures the qubit Q to produce measurement output representing a current state of
qubit Q (FIG. 2A, operations 218 and 220).

The operations described above are repeated for each shot S (FIG. 2A,
operation 222), and circuit C (FIG. 2A, operation 224). As the description above
implies, a single “shot” involves preparing the state of the qubits 104 and applying all
of the quantum gates in a circuit to the qubits 104 and then measuring the states of the
qubits 104; and the system 100 may perform multiple shots for one or more circuits.

Referring to FIG. 3, a diagram is shown of a hybrid classical quantum
computer (HQC) 300 implemented according to one embodiment of the present
invention. The HQC 300 includes a quantum computer component 102 (which may,
for example, be implemented in the manner shown and described in connection with
FIG. 1) and a classical computer component 306. The classical computer component
may be a machine implemented according to the general computing model established
by John Von Neumann, in which programs are written in the form of ordered lists of
instructions and stored within a classical (e.g., digital) memory 310 and executed by a
classical (e.g., digital) processor 308 of the classical computer. The memory 310 is
classical in the sense that it stores data in a storage medium in the form of bits, which
have a single definite binary state at any point in time. The bits stored in the memory
310 may, for example, represent a computer program. The classical computer
component 304 typically includes a bus 314. The processor 308 may read bits from
and write bits to the memory 310 over the bus 314. For example, the processor 308
may read instructions from the computer program in the memory 310, and may
optionally receive input data 316 from a source external to the computer 302, such as
from a user input device such as a mouse, keyboard, or any other input device. The
processor 308 may use instructions that have been read from the memory 310 to
perform computations on data read from the memory 310 and/or the input 316, and
generate output from those instructions. The processor 308 may store that output
back into the memory 310 and/or provide the output externally as output data 318 via

an output device, such as a monitor, speaker, or network device.
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The quantum computer component 102 may include a plurality of qubits 104,
as described above in connection with FIG. 1. A single qubit may represent a one, a
zero, or any quantum superposition of those two qubit states. The classical computer
component 304 may provide classical state preparation signals 332 to the quantum
computer 102, in response to which the quantum computer 102 may prepare the states
of the qubits 104 in any of the ways disclosed herein, such as in any of the ways
disclosed in connection with FIGS. 1 and 2A-2B.

Once the qubits 104 have been prepared, the classical processor 308 may
provide classical control signals 334 to the quantum computer 102, in response to
which the quantum computer 102 may apply the gate operations specified by the
control signals 332 to the qubits 104, as a result of which the qubits 104 arrive at a
final state. The measurement unit 110 in the quantum computer 102 (which may be
implemented as described above in connection with FIGS. 1 and 2A-2B) may
measure the states of the qubits 104 and produce measurement output 338
representing the collapse of the states of the qubits 104 into one of their eigenstates.
As aresult, the measurement output 338 includes or consists of bits and therefore
represents a classical state. The quantum computer 102 provides the measurement
output 338 to the classical processor 308. The classical processor 308 may store data
representing the measurement output 338 and/or data derived therefrom in the
classical memory 310.

The steps described above may be repeated any number of times, with what is
described above as the final state of the qubits 104 serving as the initial state of the
next iteration. In this way, the classical computer 304 and the quantum computer 102
may cooperate as co-processors to perform joint computations as a single computer
system.

Although certain functions may be described herein as being performed by a
classical computer and other functions may be described herein as being performed by
a quantum computer, these are merely examples and do not constitute limitations of
the present invention. A subset of the functions which are disclosed herein as being
performed by a quantum computer may instead be performed by a classical computer.
For example, a classical computer may execute functionality for emulating a quantum
computer and provide a subset of the functionality described herein, albeit with

functionality limited by the exponential scaling of the simulation. Functions which
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are disclosed herein as being performed by a classical computer may instead be
performed by a quantum computer.

The techniques described above may be implemented, for example, in
hardware, in one or more computer programs tangibly stored on one or more
computer-readable media, firmware, or any combination thereof, such as solely on a
quantum computer, solely on a classical computer, or on a hybrid classical quantum
(HQC) computer. The techniques disclosed herein may, for example, be implemented
solely on a classical computer, in which the classical computer emulates the quantum
computer functions disclosed herein.

The techniques described above may be implemented in one or more computer
programs executing on (or executable by) a programmable computer (such as a
classical computer, a quantum computer, or an HQC) including any combination of
any number of the following: a processor, a storage medium readable and/or writable
by the processor (including, for example, volatile and non-volatile memory and/or
storage elements), an input device, and an output device. Program code may be
applied to input entered using the input device to perform the functions described and
to generate output using the output device.

Embodiments of the present invention include features which are only possible
and/or feasible to implement with the use of one or more computers, computer
processors, and/or other elements of a computer system. Such features are either
impossible or impractical to implement mentally and/or manually, especially when
applied to problem instances having large numbers of qubits (e.g., greater than 10, 50,
100, 500, or 1000 qubits). For example, embodiments of the present invention
implement the quantum approximate optimization algorithm (QAOA), which is a
quantum algorithm which is implemented on a quantum computer. Such an algorithm
cannot be performed mentally or manually and therefore is inherently rooted in
computer technology generally and in quantum computer technology specifically.

Any claims herein which affirmatively require a computer, a processor, a
memory, or similar computer-related elements, are intended to require such elements,
and should not be interpreted as if such elements are not present in or required by
such claims. Such claims are not intended, and should not be interpreted, to cover
methods and/or systems which lack the recited computer-related elements. For
example, any method claim herein which recites that the claimed method is performed

by a computer, a processor, a memory, and/or similar computer-related element, is
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intended to, and should only be interpreted to, encompass methods which are
performed by the recited computer-related element(s). Such a method claim should
not be interpreted, for example, to encompass a method that is performed mentally or
by hand (e.g., using pencil and paper). Similarly, any product claim herein which
recites that the claimed product includes a computer, a processor, a memory, and/or
similar computer-related element, is intended to, and should only be interpreted to,
encompass products which include the recited computer-related element(s). Such a
product claim should not be interpreted, for example, to encompass a product that
does not include the recited computer-related element(s).

In embodiments in which a classical computing component executes a
computer program providing any subset of the functionality within the scope of the
claims below, the computer program may be implemented in any programming
language, such as assembly language, machine language, a high-level procedural
programming language, or an object-oriented programming language. The
programming language may, for example, be a compiled or interpreted programming
language.

Each such computer program may be implemented in a computer program
product tangibly embodied in a machine-readable storage device for execution by a
computer processor, which may be either a classical processor or a quantum
processor. Method steps of the invention may be performed by one or more computer
processors executing a program tangibly embodied on a computer-readable medium
to perform functions of the invention by operating on input and generating output.
Suitable processors include, by way of example, both general and special purpose
microprocessors. Generally, the processor receives (reads) instructions and data from
a memory (such as a read-only memory and/or a random access memory) and writes
(stores) instructions and data to the memory. Storage devices suitable for tangibly
embodying computer program instructions and data include, for example, all forms of
non-volatile memory, such as semiconductor memory devices, including EPROM,
EEPROM, and flash memory devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROMs. Any of the foregoing may
be supplemented by, or incorporated in, specially-designed ASICs (application-
specific integrated circuits) or FPGAs (Field-Programmable Gate Arrays). A classical
computer can generally also receive (read) programs and data from, and write (store)

programs and data to, a non-transitory computer-readable storage medium such as an
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internal disk (not shown) or a removable disk. These elements will also be found in a
conventional desktop or workstation computer as well as other computers suitable for
executing computer programs implementing the methods described herein, which may
be used in conjunction with any digital print engine or marking engine, display
monitor, or other raster output device capable of producing color or gray scale pixels
on paper, film, display screen, or other output medium.

Any data disclosed herein may be implemented, for example, in one or more
data structures tangibly stored on a non-transitory computer-readable medium (such
as a classical computer-readable medium, a quantum computer-readable medium, or
an HQC computer-readable medium). Embodiments of the invention may store such

data in such data structure(s) and read such data from such data structure(s).
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CLAIMS

1. A method for reducing the number of qubits with which an operator is

represented on a quantum computer, the method comprising:

) receiving, as input, at a classical computer, an N-qubit operator;

2 decomposing, at the classical computer, the N-qubit operator as a
linear combination of products of Majorana operators on 2N Majorana
modes;

3) forming, at the classical computer, a second operator, representable on
M qubits, based on a linear transformation of the Majorana operators
of the N-qubit operator, wherein the linear transformation is from

RM2N) to RAN2M), wherein M<N.

2. The method of claim 1, further comprising;

@ at the quantum computer, generating marginal expectation values from
the packed operator; and

&) at the classical computer, using the marginal expectation values to
generate approximate marginals by approximating an expectation

value of the operator.

3. The method of claim 2, wherein the input operator comprises an Ising

Hamiltonian.

4. The method of claim 3, further comprising;

6) generating bit string samples based on the approximate marginals.

5. The method of claim 2, further comprising:

6) generating bit string samples based on the approximate marginals.

6. The method of claim 4 or 5, wherein generating the bit string samples

comprises generating the bit string samples by generating samples and then rounding.
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7. The method of claim 4 or 5, wherein generating the bit string samples

comprises generating the bit string samples using direct rounding.

8. The method of claim 3, wherein forming the second operator based on the

linear transformation comprises performing a packing of 2-planes.

9. The method of claim 8, wherein performing the packing of 2-planes

comprises performing skew-symmetric conference matrices.

10. The method of claim 8, wherein performing the packing of 2-planes

comprises performing numerically-generated semidefinite programming packings.

11. The method of claim 1, wherein the input operator comprises a fermionic

Hamiltonian.

12. The method of claim 1, wherein the input operator comprises an ising

Hamiltonian.

13. The method of claim 1, wherein the linear transformation comprises a

stochastic transformation.

14. The method of claim 13, wherein the stochastic transformation comprises

a Johnson-Lindenstrauss transformation.

15. The method of claim 1, wherein the linear transformation comprises an

explicit transformation.

16. The method of claim 15, wherein the explicit transformation comprises

Hadamard codes.

17. The method of claim 15, wherein the explicit transformation comprises

symmetric conference matrices.

18. A system comprising:
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a classical computer including a processor, a non-transitory computer-readable
medium, and computer program instructions stored in the non-transitory computer-
readable medium;

a quantum computer comprising a plurality of qubits;

wherein the computer program instructions, when executed by the processor,
perform a method for reducing the number of qubits with which an operator is
represented on the quantum computer, the method comprising:

) receiving, as input, at a classical computer, an N-qubit operator;

2 decomposing, at the classical computer, the N-qubit operator as a
linear combination of products of Majorana operators on 2N Majorana
modes;

3) forming, at the classical computer, a second operator, representable on
M qubits, based on a linear transformation of the Majorana operators
of the N-qubit operator, wherein the linear transformation is from

RM2N) to RAN2M), wherein M<N.

19. The system of claim 18, wherein the method further comprises:

@ at the quantum computer, generating marginal expectation values from
the packed operator; and

&) at the classical computer, using the marginal expectation values to
generate approximate marginals by approximating an expectation

value of the operator.

20. The system of claim 19, wherein the input operator comprises an Ising

Hamiltonian.

21. The system of claim 20, wherein the method further comprises:

6) generating bit string samples based on the approximate marginals.

22. The system of claim 19, wherein the method further comprises:

6) generating bit string samples based on the approximate marginals.

23. The system of claim 21 or 22, wherein generating the bit string samples

comprises generating the bit string samples by generating samples and then rounding.
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24. The system of claim 21 or 22, wherein generating the bit string samples

comprises generating the bit string samples using direct rounding.

25. The system of claim 20, wherein forming the second operator based on the

linear transformation comprises performing a packing of 2-planes.

26. The system of claim 25, wherein performing the packing of 2-planes

comprises performing skew-symmetric conference matrices.

27. The system of claim 25, wherein performing the packing of 2-planes

comprises performing numerically-generated semidefinite programming packings.

28. The system of claim 18, wherein the input operator comprises a fermionic

Hamiltonian.

29. The system of claim 18, wherein the input operator comprises an ising

Hamiltonian.

30. The system of claim 18, wherein the linear transformation comprises a

stochastic transformation.

31. The system of claim 30, wherein the stochastic transformation comprises a

Johnson-Lindenstrauss transformation.

32. The system of claim 18, wherein the linear transformation comprises an

explicit transformation.

33. The system of claim 32, wherein the explicit transformation comprises

Hadamard codes.

34. The system of claim 32, wherein the explicit transformation comprises

symmetric conference matrices.
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