UK Patent Application .,GB ,2553865 .,A

(43)Date of A Publication 21.03.2018
(21) Application No: 1700081.1 (51) INT CL:
HO3M 7/40 (2006.01) HO3M 7/42 (2006.01)
(22) Date of Filing: 04.01.2017 HO4L 9/06 (2006.01)
(30) Priority Data: (56) Documents Cited:
(31) GB2016052020 (32) 04.07.2016 (33) WO GB 2539966 A GB 2523348 A

GB 2510198 A US 6618506 B1

(58) Field of Search:
INT CL HO3M, HO4L
Other: EPODOC, WPI, INSPEC, XPI3E, XPIEE

(71) Applicant(s):
SISP Technologies Ltd
47 Albemarle Street, Mayfair, LONDON, W1S 4JW,
United Kingdom

(72) Inventor(s):
Stuart Marlow
Nicholas Stavrinou

(74) Agent and/or Address for Service:
Mathys & Squire LLP
The Shard, 32 London Bridge Street, LONDON,
SE1 9SG, United Kingdom

(54) Title of the Invention: Data processing method and apparatus
Abstract Title: Data compression or encryption by dividing input data, performing frequency analysis and
assigning frequency-based labels

(37) A method of processing data, for use in compression or encryption, is disclosed in which an input sequence of bits
is divided into a plurality of portions. Each portion is sub-divided into a plurality of sub-divisions. Frequency analysis
is performed to determine the number of occurrences of each sub-division permutation and new values are
assigned, based on the frequency analysis, to each of the sub-division permutations. For each portion a label
representing the permutation of bits in that portion is assigned. The label comprises a representation of a value
resulting from adding the new values associated with the sub-division permutations of that portion. A processed
sequence of bits is generated by replacing, within the input sequence of bits, bit portions with the respective label
representing the permutation of bits in that portion. Information in a header indicating an order of a frequency of
occurrence of sub-divisions is represented by an index, with each index relating to one of all possible orders of
occurrence of the sub-divisions.

Frequency analysis of bit portion values having a bit length of 4 bits

Occurrence-

s pased Level Ta‘i'iﬁfﬁ' y;v:eﬁﬁ Disambiguati iitial~ ©! .
Ranking P\:)ar::JZ" otlsﬁ?:;:efs occm:::es) BP Value binary valuein binary labetgpg Dased Label No;]:;g'ts
v v v v v v v v sizg T
ocxf::ng o 27389 0 000 - 000~ |
1 18629 - Level 0 1 001 - 001 “~ 3bits 193617
2 18541 (64539) 2 010 010 |
3 12648 3 "o "o om0 -~ T T T T
4 11079 3 o011 1 0111
5 7800 P levell 4 100 ° 1000 4 bits 155212
5 e e, 100 1 1001
7 w23 s e o0y
8 3857 5 101 o1 10101
9 3658 5 101 10 10110
10 3414 5 101 1 10111
1 3160 " Level2 3 110 00 11000 5 bits 28840
1 3074 @7730) 8 110 o1 11001
13 2605 8 110 10 11010
14 2068 6 110 11 1011
ocheuar;;g 5 62) 7 11 . o 3bis 5886
Total number of Total number of Total number of
bits analysed: 4-bit portions: N bits used:
524288 131072 F|gure 5B 483555

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

VY GO8EGSC 9

1/43

GGS sinpow
Buipoosp

60¢ Juswbhos passanoid

Elely

€0¢ Juawbas bBuissasold

1GG ||npow

~—3 Buipodsp

&

JopesH

| ¢ JopesH

G0G shjesedde uoissesdwoos(

V| ainbi

Ll H

SdlE

N

0c

o|ld _Omwwm.hQC_OO

—

apesH

Tic!
B0¢ Wwawbas passanold m

/G¢ |Inpow
uolnelausn)
JopesH

T

G0l snjesedde uoissaidwo)

Slig g =99

GGc aInpoul
Juswubissy

Elly

£GZ 8|npow
uoipod 319

€0¢ Juswbas Buissanold

T

Ll H

9|4

125

¢

2143

Use current segment with no
(further) processing as
processed segment

START
Divide into processing ~__ 111
segments
'
113
Is potential compression .
level for current segment N
acceptable?
Yes 115 1;7
! / Use processed
Process current segment and segment (including
generate associated header if present) as
extraction information for current segment 129
current segment (typically
include extraction information 8

in processed segment
header)

Use next segment as
current segment

Attempt to reprocess
current segment?

117

Output processed ,_;l 19
segment
121
Yes
Another segment
to process?
7
\v|/No
Output processed segments (_’1 23
together as processed file

END

Figure 1B

3/43

START

Use first processed segment of 131
processed file as current segment ¥ ~—

133

xtraction information
available for current

N

segment? 147
Use current segment with no —
(further) reconstruction as 135 Use reconstructed
reconstructed segment K segment as current
2 - segment
Obtain extraction information (e.g
145 from header) for current segment Use next segment as
J, current segment
Reconstruct segment prior to 2
processing based on extraction ~137 149
information
Output reconstructed ~_139

segment

~\‘1/\41
Another segment Yes

to process?

No

Output reconstructed segme_nts ~_ 143
together as reconstructed file

END

Figure 1C

I m..:m_ 4 70¢Z SsAeue uoneuiquo)

0011

—
—

OLLO (O] OOLL |1 PO

S0g uonJod g

oottkl | | orwoor || ooriio

—siq 95 &S)Iq 9—XS)Iq 9>
8 yus| g ——

0¢ Juswbas bBuissesolid

4143

A\ 4

ax 9

X
Vv

N

aX v9 ax 9

pa
\
—

10¢ 3l

A 4

g0 ¢

N

5/43

V¢ ainbi-

=li=ti-ll-|

=ll=ll=

o Lfooot Lo t|oo L L Lo L

ou ! o v|o oo t|v ofr ofo 1|1 1]o 1]
A A 02 suoiuod g
oS S|oA9)
¢p uolissaldwoo p) I 79 S
SIENEIE! < 9 >
Jamal 10 %09 30 Jaqinu 0 oL 00O L L OLOO L L L O _
° paulwialeqg

€0¢ Wawbag Buissasold

n_m_l_
Yibue| 3g

6/43

Lgp=2 Frequency analysis of bit portion values having a bit length of 2 bits
]] Number of
Ranking Bit portion value occurences Level
Most
occuring 0 n 65,538
st
1 65,537 1% Level
2 65,536
Least 3 65,533
occuring

Total number of Total number

2-bit portions:
I26p214l4 of levels: 1
Flg ure 3 B More than 50% of elements in use
Lep= Frequency analysis of bit portion values having a bit length of 3 bits
Ranking Bit portion value Number of Occurrence-
occurances based Level
Most occurring 0 21,851 _
1 21,849
3 21,847
Level O
4 21,646 g
1T 1 1 21,845
\, 6 21,844
Least occurring 7 1 0 1 21,833 J

Total number of
Total number of 3-bit levels: 1
portions: 174763

Fig u re 3C More than 50% of elements in use

7143

Lgp= 4 Frequency analysis of bit portion values having a bit length of 4 bits
Bit
Ranking Portion Number of Level total Occurrence-
v value occurrences occurrences based Level
................ v v Vv N
Most occurring [o o o 1] 27369
. [o 11] 18620 64539 Level 0
5 [0 0 1 1] 18541
: e
........ 5 —— oo L 6800 A
,,,,,,,, 6 [ot1o1] 778 |
, [Coaa) e =
g [1 1 0 1] 3857
10 [o o 1 o] 31091
______ 11 [1.10 0] 3169 27730 Level 2
...... 12 6100 3074
______ 13 [1 01 0] 2605
$ 1 [CTT0] 2088
Least occurring
9 15 |t 11 0] 192 |)

Total number of
4-bit portions:

131072

Figure 3D

Total number of

levels: 3

8/43

Vi 8Inbi

1
1
]
o]
—
o
o
o
—
—
o
[— |
o
o
—
—
—
o
2
o]
(o]

fo 1 ooJo b v o[t oo 1|1 L oo] SHq ¢

(@]
c
)
FIFIFIFIR]
o
|
(@]
(@]
(@]
:
|
(@]
:
(@]
o
|
i
-
(@]
2
Ko}
w

S:M,mma m_mﬁm_ 0c suoniod 39 *
son|eA uolpod uolissaldwod P Pl 9 y 987 ybue ng
1q sjqissod Jo Jaquinu ° 4
JOMa) 10 %0SG paulwalaqg o " "~ 0oL oo0oO0O LV L OLOO L L L O _

c0¢ Wawboag Buissaoold

LBp=7

Most occurring

A\ 4

Least occurring

9/43

Bit portion values having a bit length of 7 bits

Number of
occurances Level

8331

8,330
8,329
8,329
8,327 >~ Level0
8,326
8,325
8,324

Ranking Bit portion value
d N

0 [t 11000 1]
1 [t 1010 1 1]
2 [1 1000 1 1]
3 [t 11 100 1]
4 [1 00111 1]
5 [1 1 0000 o0f
6 [t 100 10 1]
7 [o 10100 o0f
8 [1 10110 1]
9 [0 00 100 1]
10 [0 00 10 1 0f
11 [000 10 1 1]
12 [0 00 110 0f
13 [000 110 1]
14 [000 111 0f
15 [000 11 1 1]
40 [0000 1 1 1]
113 [00 000 0 0]
127 [1 11 11 1 1]

Figure 4B

o

0

Total number of 7 Total number
bit occurrences: of levels: 1

74,899

Fewer than 50% of elements in use

10/43

VS ainbi-

%G1

%¥l
%Gc
%Ll
%01
%L
%%

\7

uoissaldwod
[erusiod

[o oL ooo L Lol oot L L o L]
[0 o Lfooot Lo t|oo L L Lo L
[0 0L 0o0/0t Lo tolo 1o L
[o ol oo o 1|t oL oot 11 oo
[o [o v o oflo L v oft o0 v L o 1]
[0 ol o ofo + 1o 1+ ofo 1 1|1 0 V]
[0 o v|o oo t|v ofr ofo 1|1 1]o 1]

S0¢ suoniod g
< a 9 >
0 0L 000) L O OO L Lo 4]

€0

uswbag Buissanold

SH] 8
SH] L
SHq 9
SHq §
SH] v
SHq €
SHq ¢

\7
n_m_l_

Uibus) ug

11/43

gsgeey qG =24n @_ = zL0Le) 882v25

:pasn sjq :suoiyod Ngq-v ‘pasAjeue sjq
Jo Jaquinu |ejo | JO Jaqwinu [e10] JO Jaquinu |ejo |
_ e freee m @C_.::OOO
9885 suge < L LEL L Z961 I ! \seo
AT Ll oLl 9 8902 [o 1 1 o] tT 0
0L0L) ol oLl 9 s09z [0 4 o V] €T
L0OLL 10 oLl 9 (08/72) yooe [o o o] @
00011} 00 oLl 9 [Acd 691¢€ 00 L |
0v88¢CT SIEe
1110l Ll L0} G vive [o 1 o o
0110} 0} Lo} g gsoe [+ + L o] 6
10LOL 10 101 S s8¢ [o v 1] 8
|||||||| ookt 00 v s [eeee [000 1] ¢
ool ! 00} v (c0ag0) © ens [ro o] 9
TTesST sWqy < 000} 0 00! 14 TRAsT 0062
1110 l 110 ¢ 61011
|||||||| — oo o0 ko ¢ . oyozl
010 - 010 z (665%9) L¥G8L
L19€61 SHQ € 100 - 100 l 0 [oA9] 62981
e BULINGDO
- c 0 :
\—I % \7 \7 \7 \7 \7 \—I \7
IS _,
vwmq. g “.uwmmn TO0F |oqe| Aseuiq uionjen Aseuiq anjeA dg (s92uain220 SPIUBLINIIO anjeA Bubuey
S)q Jo "oN ~83UB4IN290 femu| uonenBiquesig Ul anjea MaN paseq [e301) J0 JequinN uoljod ;
dgmMaN -9ausundag 19497 paseq ug
=22U3alindd0 .V = n_ml_

S)Iq ¥ 10 Yyibusj uq e buiaey sanjea uoiuod jiq jo sisAjeue Aouanbaly

12 /43

1890V

:pasn suq Jo
Jaquinu [e1o]

0¢6L1T

crelet

GGSTEC

\—/
pasn

sHq
J0 'ON

OG ainbi-

clolel
‘suoiyod 3g-¢
10 Jaquinu |B10]
O b Ll m] .
OLLLL ol LEL L
LOLLL 10 LEL L
(¥85€2)
00LLL 00 LEL L
Siq g A rAELE]R]
L1OLL Ll oLl 9 =
0L0LL ol oLl 9
LO0L1 10 oLl 9
__ 000l 00 oLl 9 _
L10l L o)’ g
0L0L 0 L0l S (e008)
Siq v INELE]]
100l L 001 14 o
0001 0 001 14
L10 - L10 e
010 - 010 z (s81L0)
100 - 100 L S
000 - 000 0
me _"n ™ ™ T Amwu:\%t:uuo one T ose
|2qe] [emul ¢0v 199¢| Aieulq ul anjea Aseuiq anjep maN [ejo}) ._ 1 paseq
eyl lerpu] ul anjea A 925U31IN290
pasiundo uonenbiquesiq 19A97
MaN pasiundo

s1iq ¥ Jo yibua| 1q e Buiaey sanjea uoipod 11q Jo sisAjeue Asuanbalig

882125
:pasAjeue siq
JO Jagquwinu |ejo]
2961 0L L1
8902 0L Lo
5092
¥.l0¢ 001 0
69l¢
L6le

8G0¢

—
—
—
o

1G8¢€
ovly
8.L1L
006.
6.011
oyocl b

o
o
—

Lvasl
62981

—
—
o
—

69¢c/¢ Il 000
™ N
s9Jualingso ONjeA
Jo Jaquiny Uollod

ug

o o
— o
o —
o —

—
—
o
o

e ; Bunooo
b gseen
€1
a
6
; . Buninooo
. 1SOW
\—/
Bunjuey
b =497

13/43

3G a.nb1

uolssaldwo) ﬁxu

vamwzw

SJuno) _w>w|_

UO11eINSJU0D VD).

3 simeusis

paJinbals: _ow::_om:w |
suq. suq

E:E_xm_\/_m WNWIUIA-

s1ig 7 404 9z|S JapeaH:

14 /43

[--'--uy]

[-~‘u‘u‘u‘u]
[--‘u‘u‘u‘u]
[--‘u‘u‘u‘u]
[-u‘u‘u‘u‘u]
[--‘u‘u‘u‘u]
[-u‘u‘u‘u‘u]
[-u‘u‘u‘u‘u]
[u'u‘u‘u‘u‘u]

\—I

¢%05>

u
™

ishele
1O
'ou Xz 2
S|oA9] JO
'ou |e10]

ol
8
ol
ol

Zl
2~

sAele
]0 ‘ou Xz

V9 ainbi4

© v WV S W T <+ O

->

S|oA9] 1O
"oU |B10L

== 1111
-1l
-1l
Ll
-1l
Ll
Ll
el
\7
S|9A9|

uoissaidwoo

Jo Jsaquinu
paulwislagd

[0 L b oofo L Lo L ofJo L 1L o i

'VQ ov0 'VQ ov0 QoD

1 1 1
[o "l o ofo bt 1]o 1 ofo 1L |1 o
[0 L vfofJofo 1+ 1 oi]ofo 1+ v 1]of]
[0 L v fofofofr v ov]oof[L v v o]
[0 L vfofofo v oi]ofo 1|1 1]of]
[0 Lovfofofofu|r o v]ofofu] v]of]
[0 LI v{ofofo v 1{ofi]o]o v t[i]of]
[0 vl oo ool o] v]ofofr t]ifof]
[o Vv fofofo v vfofr]ofo t{i]i]o]}]
[o L [vfofofof i v]of[ofofifs]r]o]]
0 L L 00O L L O OO L L Lo |
2 a ¥9 >
[0 0L 00O L L O OO L L L 0 |

T0¢ Wawbag Buissasold

[0'0'0'0'0'9l

[0'0'0'0'e'el

[0'0'0'¥'L'1]
[0'0'L'e" L L]
[0'0'z'C 1 1]
AN
[0'0€'L L1
[L'Z' L L]
[0 1L L]
[
0
u

oneunBiuoo
v Aede

uoljeuIqo)

(3%

8¢

N O <t v © ~

\7

ON JaJ
Byuog

15/43

Ler=6 CA, Frequency analysis of 1° combination arrays
Ranking CAValue Numberof — Occurrence-
occurances based Level
Most occurring 0 010 30,000
Level O
2 9,000
3 8,000 Level 1
1 8,000
5 4400
l 6 4,001 Level 2
Least occurring 7 3,981

Total number of
3-bit portions:
87382

Total number
of levels: 3

Figure 6B

LBp =6 CA1
Frequency analysis of 2" combination arrays
Ranking CA Value Number of Occurrence-
occurances based Level
Most occurring 0 49940 - Lewel0
1 8,752
2 6.240 Level 1
3 010 5,251
4 4727
415 |
Level 2
J 6 110

4,158
Least occurring 7 3.038
Total number
of levels: 3

-
o
-

Total number of
3-bit portions:
87382

Figure 6C

a9 a.nbi

[]

L b oofo r Lot o]Jo 1 o | [ooooodl Le

16 /43

B SN W S W

uoneinbiyuo uaso

h Huod v HO™— [0 3] o ofo + Jo v oJo v] o v] [o00'o'eel 82
[0 - L tJoJoJo v v o] JoJo v v v To]] [oo0tvLiLl L
[o - - - 1ToJoJolv v olvToJolv v v Tolt] [oo'seil 9
[0 - Lo fofo]o v [ofitfo]o [t Vo] ToozEl 5
[0 - Lo lofofo sy oft]olol] vTol] lorzl ¥
[0 - Vv JoJofo v o] oo v v W] looeriild ¢
[0~ Jv o ofo]v +JoJvJoo]v]]o]] lobisl 4
[0~ [+ JoJoJo vJvJo] oo v v]o]v] loziiul !
[o i sJoJofo v v o vJofo v] o] v] Drpiiiiudl 0
o L L 000 L L O OO L L Lo | T T

. uoneinbyuoo JequinN

€ <N ¥ 4 vo Aewe CRITENETEY

000 10+ 00/ + 1 0 | uoneuquoy Uoneinbyuos

o
o
—

T0¢ Woawbag Buissaoold

28¢l8

q/ QLDO_H_ ¢ 1S|9AJ] JO :suomod q-¢ BULLIN500
Jequinu [e10 1O Joquinu |ejo] ﬁ.mmm._
4} 9 ¢ € 4} ¢ 8€6'¢ (L 0 1| L N
Z 19A87 ‘
8 4 4 Z 4} € 2 |0AGT 8GL'y 0l | 9
4 4 | L 4} ¢ GlE'Y (1L 1 L] g
0 0 0 0 rd) ¢ o Zl'y 00 L] v
¥ 4)) 8 4 ! om0 . 1onon Is5gs [0 1L o] ¢
0 0 0 0 I R ovzo [0 0 0] ¢
- - - 0 ¥ ! ﬁ ess'e [o o] 1
WRELER BurLunooo
- - - 0 0 0 01nT { opgey [L 0] 0 SO
°y0J0Z °YDJoL °yDJOo0 aouepsul FOZ3N[EA 069 aNjeA [ELCY [ona7 paseq S90URINIIO gnep yO Hunjuey
|9A3] UHM [SA3] UM |9A3] YUm VO maN lenu| pasiundo -s2ualnsa0 JO Jaquinp
puluiqwos Buluiquiod Buluiquod
%
€0Z anjeA uonenbiquesiq sAelre uoneuiquod , z Jo sisAjeue Aouanbaig VO
™
z8¢c.8
< <N ®._3@_“_ € :S|9A9] JO :suoiyod 1Ig-¢ Buuinaoo
=~ lequinu jejoL 10 Joquinu |ejo1 Isea
N ¢ € ¢ ¢ 186°C (0 0 1] L R
A z z £ £ S ¢ 1ona1 1 T T -
| } ¢ ¢ 00¥'y (0 1L 1] g
o o e e ooo'g [L O L] ¥
! ! z z lonon ﬁ | 19neT oooe [1L L o] ¢
o oo ___ _z_ _z o006 L 0 0] ¢
- 0 ! ! 00002 [0 0 0] b 5uum000
0 19A87 0 19A87 h :
- 0 0 0 oo0'0c [0 L 0] o 1SOW
TOZ anjeA asuejsuy| T0Z @anjep 069 anjen |oAdT |2A97 paseq $92URINJ20 gnie Buiyue
uonjenBiquesiq VO MmaN lemuj pasiwndo -32Ua.LNII0 Jo JaquinN PA VO at E

sAelre uoneuiquod (| Jo sisAjeue Aouanbaig

18 /43

‘ New CA, Values
..] . - —
0 4 8 12
New CA, 1 1 5 9 13
Values 2 2 6 10 14
3] 3 7 11 15
‘ Combined New CA Values '
Figure 8A
‘ _ New CA, Values
.. - . - —
0foo00 0100 1000 1100
New CA, 1[0001 0101 1001 1101
Values 2J0010 0110 1010 1110
30011 0111 1011 1111

Combined New CA Values in binary

Figure 8B

vvv New CA, Values
T A " " " Y. v
Xo Xo+ Yo Xo+Yy Xp+Y, Xo+Y; Xo+ VY,
X1 X1+Yp X1+Yq Xi+Y, X1 +Y; X1 +Y,
New CA, X, X5+ Yp X5+Yq X;+Y, X, +Y; X5 +Y,
Values X3 Xs+Yo [Xz+Yr [X5+Y, [X3+Ys .. X3+Yy,
Xn Xn+ Yo Xn+Y; Xn+Y; Xn+ Y3 X+ Y,
S R Combined New CA Values using addition

Figure 8C

_ New CA; Values
Yo Y1 Y2 Y3 Ya
Xo Zp Z Z Z3 Zy
New CA, X1 Zs Zg Z7 Z3 Zg
Values X5 Z10 711 Z1 Z13 214
X3 Z15 Z16 Zy7 Z18 Z19
S N Combined New CA Values

Figure 8D

6 24nbi4

sanjeA 'sig pauiqwod —
TTTT Jrtot Jrito JTT00 _m
0TTT Jotot Jotto Jotoo) 4 sanjep san|eA 'siq paulqwod
TOTT J1o01 Jtoto Jtooo n *s1Q %) 11t fror Jtto 100 J sanjep San|eA "s1qg pauiquiod
00TT 000T 0010 0000 0 0TT 00T 010 000 0 510 O TT 0T 10 00 - sanjeA 'sid oY)
4 y _; - y y y P |)] y _; d)
33 8 ¥ 0 9 ¥ 2 0 € 2 T 0
san|eA ‘sia 'vd san|eA 'sia ') sanjeA *sia D
(213A37) D (213A37) ™D (213A31) ™D
(213A37) 09D (T13A37) 09D (013A37) 09D
san|eA "siQ pauiquo)
TTT 110 Ic
san|eA "si@ pauiquo)
jott 0T0] [4 san|ep san|ep
101 100 T *s10 %) 11 T T sanjep *s1Q pauiquio)
V.
00T 000 ho 01 0 0 s1a °yD T 0 - sanjep 'si1q oD
¥ 0 2 0 T 0
san|enA 'sia YD san|eA 'sia ') sanjeA sia o
3 (T 13A37) WD (T 13A37) *vD (T13A31) "D
4 (T 13A37) 00 (113737} O¥D (013A37) OWD
/
(@) SSTER
A wa 's1Q pauiqwo)d
11le sanjenp *sig
oH\ c sanjep pauiquo)
Ho T *s1q o) T 1 sanjep sanjep
oo_o 0 0 510 %) uonengiquesig oN
sanjep sanjep
'sIg 1vD s1a YD
(013A31) ' (013A37) ™D (013AF1) ™D

(z13A31) oD (T13A37) 09D (013AF7) 09D

20/43

0l @inbi4

<« 0 1|lo o0 1]

«—11 1L 1[1 0 0]

«—]|1 1L 0]l 0 0]

uoneuwLIoju|
LLLL Am _\v Sl :O:.M:@.Q_.Cﬁm_ﬁ_
bLLL (S1) Sl anjep maN
_ L b P b el _ Areuiq (uoneulquod xew)
indino uolneulquon
uoneuwLIoju|
0L0 ANV A c 0 :O_ﬁﬁsm_nsﬂm_ﬁ_
[0 L 00 1L 1L | e 0bLl (S1) 91 4} 4 anjep maN
Areulq (uonjeuiquios xeu)
indinQo uolneuiquo) _ " Il 00 _
uoneuwLIoju|
I (AN - I uonenbBiquesig
0100 Gz 0 [4 SNjeA M3N
l 0100 Areuiq (uoneulquod xew)
indino uoljeuiquon _ Ll Il 00 _
_ _ }) uoljewoju|
uonenbiquesiq
5 0 00 0000 (SVo 0 0 anjep maN
Areuiq (uoneuiqwo9 xeuw)
uoneuiquo’ uoneulquo _ " 0L 0 _

<« L 0lo I o]

[2g€eT]

0c uonJod)ig

21/43

Label outputs using CA configuration [3,3,0,0,0,0] (No Occurrence Sort)

Value Bit portion [CAO CAl Label Value Bit portion [CAO CAl Label
0]000000 000 000 10010 32100000 100 000 1011011
1]000001 000 001 0101 331100001 100 001 011111
2|000010 000 010 10011 341100010 100 010 1011111
3]000011 000 011 0001 35100011 100 011 001111
4]000100 000 100 110100 36|100100 100 100 11110011
5/000101 000 101 110111 37/100101 100 101 11111111
6/000110 000 110 110110 38/100110 100 110 11111011
7]000111 000 111 110101 39100111 100 111 11110111
8]001000 001 000 101000 40|101000 101 000 1011000
9|001001 001 001 01100 411101001 101 001 011100

10|001010 001 010 101010 421101010 101 010 1011100
11]001011 001 011 00100 431101011 101 011 001100
12]001100 001 100 1110000 441101100 101 100 11110000
13]001101 001 101 1110110 45]101101 101 101 11111100
14|001110 001 110 1110100 46/101110 101 110 11111000
15|001111 001 111 1110010 471101111 101 111 11110100
16]010000 010 000 10000 48|110000 110 000 1011001
17]010001 010 001 01000 491110001 110 001 011101
18]010010 010 010 10001 50]110010 110 010 1011101
19]010011 010 011 0000 51]110011 110 011 001101
20]010100 010 100 110000 521110100 110 100 11110001
21010101 010 101 110011 531110101 110 101 11111101
22|010110 010 110 110010 541110110 110 110 11111001
23]010111 010 111 110001 55110111 110 111 11110101
241011000 011 000 101001 56111000 111 000 1011010
25011001 011 001 01011 571111001 111 001 011110
26011010 011 010 101011 58111010 111 010 1011110
27|011011 011 011 00101 59111011 111 011 001110
28|011100 011 100 1110001 60111100 111 100 11110010
29|011101 011 101 1110111 61]111101 111 101 11111110
30]011110 011 110 1110101 62111110 111 110 11111010
31]011111 011 111 1110011 63]111111 111 111 11110110

Figure 11

22 /43

de¢| 8.nbi-

vZl ainbi4

01 v [¢
le € T C
8 C 0 C
le € c It
8 [1 1
A 1 0 1
8 [[lo
A 1 1 8
9 0 0 0

y18ua g yisusTugf 1ana] |andT

|2ge7| uonensiquwesig 'V A

ST TITIT TE
ST OTTL1T 0%
ST TOT11T 6¢C
ST 00T11 8¢C
VT TIOLT 1T
vT 01011 9¢
VT TOOL1T ST
VT 00011 VT
€1 TT10T 54
€1 0101 44
43 TOTOT TC
43 00101 0C
TT TT001T 6T
TT 01001 ST
0T T0O00T A3
0T 00001 9T
6 TTT10 ST
6 0TT10 VT
3 TOT10 €1
3 00110 43
7 TT010 TT
7 01010 0T
9 TO0T0 6
9 00010 g
8v TTT 7 S TT100 7
8v 0Tl 9 S 01100 9
8v TOT S v TOT00 S
8v 00T v v 00100 v
43 T10 € € T1000 €
43 010 4 4 01000 4
97T T00 T T T0000 T
0 000 0 0 00000 0
anj|ea (Adeuig) anjep g0 an|ea (Adeuig) snjepn [euig1o
vomaN | vD |euldlQ vomeN | vo |euldlo
s1g € - WD 119 S -)

23 /43

qzL a4nbi4

Dz ainbi4

0T S N €
6 7 T €
3 c 0 €
6 7 N 4
3 € T 4
L N 0 4
3 € N T
L N T T
9 T 0 T
L N N 0
9 T T 0
S 0 0 0
yisuan 1g yisuan 1g [ELEN [ELE)
|2ge| uonendiquesiq) oy

L TTT1T TE
L 0TT1T 0f
L T0T1T 6¢C
L 00T1T 3z
L TT01T /T
L 0T01T 9¢
L T001T 57
L 0001T Ve
9 11101 €C
9 01101 43
9 10101 T¢C
9 00101 0¢
9 11001 6T
9 01001 3T
9 T000T /1
9 00001 9T
S TTT10 5
S 0TTT0 7T
S TOTTO 53
S 00TTO 1
14 11010 11
14 01010 01
14 T00TO 6
14 00010 3
L4 11T L 3 TTT00 /
144 0Tt 9 € 0TT00 9
144 10T S € T0T00 g
144 00T 1z € 00100 v
91 110 € z 11000 5
91 010 [4 [4 07000 z
8 100 T T 10000 T
0 000 0 0 00000 0
anjep [(Aseuig)anjep anjen (Adeuig)
voman | voreusug | V20 | yq men anjep [euisiQ
VD |euidlo
e S1E S

vel @inbi

SHg (“¥O7)yZ ‘U
S)g “¥o7 , (*¥O7)yZ Xel

uq |
sug (13A31 - "v9)

(svag) (swa v2) S¥g (1337 - "vO)
0l0L1100 00L1L10LLLOLLLOLO00000LO sid (1337 - vO)
uapglm sjig ua)LIm sig
o [1
< 0 001
—~ 6 611 SHq (°¥07)yg W
< F L0} SHg °¥97 , (*0),Z Xe
L L1 0
(Q\| ! 100
0 000
0 olo ¥a |
s_, _, s¥q (13A31 - °vO)
— 0
(osn ul (osn ul sud (13IA3T - VD)
Jayleym uo Jaylaym uo sig (13A31 - Vo)
S)iq °vO R-
suq (ovo),g S¥eUlLULoSIp Mvmo._v ._N 9lBUILLLIOSIP syqz 63
:skempe S$90p) « U Dve jou saop)
pailosun XeN - papos (uapuadap NdD ‘5£559-0 41) SHa 91 ‘6’3
‘sanjep ‘sanje
VO IV VO IV SHq 98

(juspuadep NdD) sHq ¥ "B'3

SHq g¢ 63

(psuosun)
0 ueyi Jeiealb ale
S9OULINIJ0 Jaylaym
10 (pauos) uonewJoyul
Bupjuel sanjeA Yy)

£pauos sanjeA “yo

INNOD Yo7 13AIT

1NNOD 0 T3ATT

(psuosun)
0 ueyl Jejealb ale
S9OULINIJ0 Jaylaym
10 (pauos) uonewJoyul
Bunjuel sanjea oy

£pauos sanjeA 0y

INNOD Y97 13AIT

1NNOD 0 13ATT

1VINHOL 43avaH

3Z1S ININO3S

NOILVHNOIINOD VO

(¢87) HON3T LIg

FHNLVYNDIS dSIS

uonewoul "y

uoneLwIojul
~oyD

0 lew.o- JspeaH

(syq 9)

0L0L 1100
uayIM s)ig

_I

OO~ —Ov O

25/43

I

0
Bunjuey

Il 0 0

L 1 0
[0 0 0]

uonejaidiayu|

d¢l aJnbi4

(@sn Ul Jayjsym Uo 8jeulwLIosIp
Seop) paosun ‘senieA v IV

(swagl)
001L00L0O0OLLOLLOLLOL
ua)LIM siig

7

—| O] |
Al B (=2 (=2 N Ll B

I L O b
- 0
anjea %yo 403edipul Jojealpul 0

paddemg demg uey) Jojealb
20Ua14N220

1
1

- - O «~ O O «~ O
o

ol o] I~ I~ [|~]| |—

()

= —||e
©

> ol |+~
<

O o

uonewuojul
90U8.1N290 J0
Kouanbayy anjea 0y

sHg ("YOT)ve TUIN
SHG (2 +"7°7) & ("YO)ve Xep

SHg |
sig (13A31 - “v0)

sig (13A31 - "v0)
sig (13A31 - "v0)

sHg (*O)ve TUIN
SHG (2 +°7°7) & (YO)ve Xel

ua L
sig (13N - VD)
sig (13N - VD)
sig (13N - VD)
sigq gz ‘63
(quepuadap
NdD ‘6£659-0) siq 91 ‘63
Syq 987
(uepuadap NdD) sud v ‘6’3

s)q z¢ ‘6’3

UOIIBWIOLU| 92UDIINDD0
10 Aouanbaly anjea U'yo

donewuoul Yy
N

¢Pauos sanjeA “yo

LNNOO™713AIT

1NNOD 0 13AT1)

UOIIBWIOLU| 92UDIINDD0
10 Aouanbaly anjea 0yD

uolewJIoUl
P)

¢Pauos sanjea 0yo

LNNOQ™2713AIT

INNOD073ATT |

1VINJOd ¥3dvdH

3ZIS LINIWOIS

NOILVYHNOIINOD VO

(487) HON3T 119

FANLYNDIS dSIS

| 1ewlo JepesH

26 /43

(sya g)
0L0LLLOO
uapum sug

&—

—
~— -~ o
~ o ~
o o ~—

Bunjuey uonejasdiaul

OO0+ — OO

(snq €2)
0L00LOOLLOLLOLLOLOLLOOO
uapum sjig

3

I L 0 L
- 0
anjea 0%yo Jo0jedlpul
paddemg demg

- - A
|
0
0
|
0
|
|

Jojealpul 0
ueyj Jojealb
90U8.14N920

0Ll :enjeA ¥yQ
Bulunooo 1se

000 -enjeA ¥O
BuLIN00)84

UoIjew.Io Ul 32U3LINID0
Jo Aauanbaly anjea °y9

D¢l ainbi

suq (Yove
:sfem|y

(ash u1 Jay1aym Uo 1BUILILIOSIP
S80p) paposun ‘sanjep vo I

SHg (°vO7)yv2
+9 Uy

S)g (Z + Vo)
« (O7)yZ :Xei

ol I~ Io]f I
| I~ O] O] |+
ol o] I~ | I+

(]
= ~
[
> o
<
O o

s)g ("O)vZ (UIN
SHG (2 +"7°7) & ("YO)ve Xep

SHg |
sig (1331 - "vO)

sig (1331 - "vO)
sig (1331 - "vO)

s)g ("O)vZ (UIN
SHG (2 +°7°7) & (YO)ve Xel

Ha L

sig (13N - °vD)

sig (13N - °vD)

sig (13N - °vD)

siqz ‘63

(luopuadap

NdD ‘§£559-0 4) suq 91 ‘6’3
SHq 987

(Juspuadsp NdD) sud v ‘6’3

sHq zg ‘6’3

UOI}1BWIO4UI @2UBJLINDD0
10 Aouanbaly anjeA Yy

donewuoul Yy
N

¢pauos sanjeA Yy

INNOD™713ATT

1NNOD 0 13ATT)

UOI}1BWIO4UI @2UBJLINDD0
10 Aouanbaly anjeA 0y

uoIew.IoU|
> oyo

¢Pauos sanjeA 0y

INNOD™713ATT

INNOO0713ATT |

1VINIOd d3dv3H

3ZIS LNJNO3S

NOILVHNOIINOD VO

(¢87) HON31 LIg

JANLVYNDIS dSIS

Z lewlo JepesH

27143

Header Format 3

SISP SIGNATURE

BIT LENGH (Lgp)

CA CONFIGURATION

SEGMENT SIZE

HEADER FORMAT

LEVEL 0 COUNT

CAy
information
LEVEL Lca, COUNT
LEVEL 0 COUNT
CA,
information

LEVEL Lca, COUNT

E.g. 32 bits

E.g. 4 bits (CPU dependent)
I—BP bits

E.g. 16 bits (if 0-65535, CPU
dependent)

E.g. 2 bits

(CA; — LEVEL) bits
(CA; — LEVEL) bits
(CA; — LEVEL) bits

(CA, — LEVEL) bits
(CA, — LEVEL) bits

(CA, — LEVEL) bits

Figure 13D

28 /43

Number of BP values/CA
values in processing segment .
. Target Maximum CA/BP Value
with an occurrence greater
than O

1 1
2 1
3 1
4 3
5 3
6 3
7 3
8 3
9 3
10 3
11 3
12 3
13 3
14 3
15 3
16 7
17 7
30 7
32 7
33 7
64 7
127 7
128 7
254 7
255 7
256 15

Figure 14

29/43

SISP number

CAref in _ _

CAref binary Visual Mask CA configuration Lep
11 Ix] {1} 1
210 [x][x] 1,1} 2
311 [xx] (2,0 2
4|100 [x][xx] {1,2,0} 3
5|101 IX1[X][x] {1,1,1} 3
6l110 [xx][x] {2,1,0} 3
71111 [xxx] {3,0,0} 3
8]1000 [x][xxx] {1,3,0,0} 4
911001 [x][xx][x] {1,2,1,0} 4

10{1010 D] [x][x][x] 1,1,1,1} 4
11}1011 IX1[x][xx] {1,1,2,0} 4
12}1100 [xx] [xx] {2,2,0,0} 4
13]1101 Dxx] [X][x] {2,1,1,0} 4
14]1110 [xxx][x] {3,1,0,0} 4
21}10101 IXIXIX][X][X] {1,1,1,1,1} 5
22|10110 X1 [xx][x] {1,1,2,1,0} 5
23]10111 [x][x] [xxx] {1,1,3,0,0} 5
24]11000 [xx] [xxx] {2,3,0,0,0} 5
25]11001 [xx] [xx][x] {2,2,1,0,0} 5
63]111111 [xxxxxx] {1,1,1,1,1,1} 6
1271111111 Do 1,1,1,,1,1,1} 7
192J11000000 [xx] [xxxxxx] {2,6,0,0,0,0,0,0} 8
385]110000001 [xx] [xxxxxx][x] {2,6,1,0,0,0,0,0,0} 9
4531111000101 Doac] oo [x]Ix]1Ix] [3,3,1,1,1,0,0,0,0} 9
65535r1111111111111111 [XOOOOXXXXXXXXX] {16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 16

Figure 15

30/43

9] ainbi-

[--=-t==u] K
[-=-t==u] K
[-+-t-t-t=ufu‘y] u
[--=-t==u] K
[-*-*=-*--"uru] u
[t -
[--f=-5--fufu] -
[-4-f-t-t=--fu] -
0 2
498N Ul £SIoA9)

aJoW 10 ¢ @2AeY

10U anjeA
(suqg ¢ oy |enbe
VO auo
10 uey} Jojealb)
1se9| 1e S|

VO yoeas sa0(Qd

oW«O O,M«O
[0'0'0'0'0'0'0'0 S [0‘0'0'0'0'0'0°0
0'0'0'0'0'00'sl [0 L L 00 0L LO L OO L L1l 0 L] 0'0'00'00'0'0,] SEST9
oo oo
l l
[0‘0°'0'000'0'2] _M. v o001 tofro o 111 oo 1] [000000%0%8l S5
v 'wo %90 YD WO o%)
¢ I l V|
o0ttt [o L v Jo o o][vo o o] o V] [ooooetiel Lk
%)) o)
l l l
booood [o L L 0 0Jo + ro 1 oJo rr 1 o t] Iooo0od €9
WO 0yD WO %D WO YD
1 A 1
[0°0°0°0° L' 1] _M "l o ofo v 1fo L ofJo v 1|1 o 1] [o'0'0'0'e'el oS
oy OyD Oyo Oyo Oyn OyD OyD Oyo
l l l l l l l l
lo‘z] _M L 1]o ofo] ofr oo s 1]o] lo‘] ¢
[1)] [o Vv folofol il fol ool)]]o]] [1)] 4
(1] _M Vi foofo] vl Jo]fo]o]]o]] (1] L
o 0 L L 00O L L O 1L oo L L L ol T T
S|oAd) u
uoissaldwoo € S oneinBiyuoo
10 Jaquinu - Mo f vO Keue #9Iv0
potlajeg L0 0+ 000 b 40100 L} oO L] uopeuwod

Oc¢ uswbag Buissanold

31743

SHg (YO)yZ

/| ainbi
(s¥a g) (s¥a ¥2)
0LOLLLOO O0LLLLOLLLOLLLOLOOOOOOLO
cm...ﬁ_._\\—w> sjd uajLm sig
0 001!
L Ll
0 011l
L L 0L
L L1 0
b 100
0 000
0 010
(osn ui (esn ui
Jaylaym uo Jaylaym uo
9]eUILILIOSIP SUA °"°7 gjeuiwNoSIp
:SABM[E s90p) » CIZ jou seop)
pajosun Xe payuos
‘sanjep ‘sanjep
YO IV VO IV

SHg (YY) U
SHg "YO , ("YO7)v2 :xel

uq |
sug (13A31 - "v9)

sug (1331 - "v9)
sug (1331 - "v9)

SHg (°¥7)yZ U
SHQ °V97 , (07) 2 :xel

uq |
sHg (13A31 - °vD)
sHg (13A31 - °vD) %

A4
L)

sHg (13A31 - °vD)
sjgq g ‘63

sHg 6l ‘63

N
N\

(quepuadap
NdD ‘S£659-0 1) suq g1 ‘63

suq 91 ‘63

(pauosun)
0 ueyj Jojealb ale
S90UBLIND20 Jaylaym
10 (pauos) uonkew.lojul
Bupnues sonjea “yo

épauos sanjeA “yD

INNOD "7 13T

1NNOD 0 13ATT

(pauosun)
0 ueyj Jojealb ale
S90UBLIND20 Jaylaym
10 (pauos) uonkew.lojul
Bupues sonjea 0yo

épayos sanjeA 9y

INNOD°"*7 13T

1NNOD 0 13ATT

1VINHOd y3dvaH

SHq Ut 37IS
LNIWDIS passaidwo)d

371S
ININOIS TYNIDIHO

(auvQ)
NOILVHNOIANOD VO

J L

onewuojul v

uonewJolul
Y %D

.0 1ew.o JapeasH

32/43

qgl a.nbi4

eg| ainbi4

veT LTT =174
8 T9¢ 4T
4} €9¢ T4
8¢ 1874 (474
(44 64C 1S¢
4} LS¢ 0s¢
174 ¥6¢ JEL
6T 51774 P
LT S99¢ JET
6 8¢ Jct
o T6¢ 1T
L TS¢ 0T
€ 84¢)6

[4 T9¢ |8
6T €9¢ J A
1 1474 19

14 11T sm

9 TS¢ v
LE 151 74)€
(44 8¢ J<
8¢l 09¢)T

- (44" 0

23uaNQ anjep | @duauno | anjep
91Ag u1 28uey) anjep 91Ag g

521 14 LT
99 06 12 144 G381 9¢
14 (4 €9 6¢ L 514
€91 89 4] 1£3 [4% 174
Let T€C 1S 61 9L €¢C
86 14 0s gs LS [44
91 [40] 6¥ 861 [4 T¢C
1T STT 8t 861 00¢ 0¢
SL L0T Ly Ix4) [4 6T
6T¢C 43 9t 9 6¢T 8T
65 TSC St 9.1 L9 LT
6.1 61 124 444 eve 91
€l €T 15174 LT1 [4 qt
6v 9¢l 47 6¢ 67T 14
9s L8 1474 €L 06 €1
€11 T€ ot St €91 [4)
9¢l i 6€ 1 51748 11
€e¢ 8 8¢ T YT 0]
18T e LE L6 i 6
L 09 9€ 56 67 8
89 €9 13 601 vl L
14 111 123 98 13 9
9¢ L0T €€ 6cl T S
19 18 [43 <TA» 0S¢ 1%
€91 0¢ T€ Sel SL €
SET €81 0g 09 0T¢ [4
123 1% 6¢ v6 0sT T
L91 14! 8¢ - e 0
anjep 91Ag| onjep | uonisod anjep :Ag| onjep | uonisod

urasueyd | aiAg kg uradueydy | aikg g

04 10 17

Byte Value

Change in byte value

33/43

Byte Values present within exemplary segment

250

.| i -]

R ER NS & R i
50 ALV
| zj / w

A4

|||

Byte Position

Figure 19a

Change in Byte Values present within exemplary segment
250

200

150

100

50

Byte Position

Figure 19b

04 10 17

Occurrence

Change in occurrence

350

300

250

200

150

100

50

34 /43

Occurrence of Byte Values

- | . e . § W =256

Byte Value

Figure 19¢c

Change in Occurrence of Byte Values

160

140 =

120

100

1 i
TV EEY EVD dCP Lub BEYE CEE el g8 b BEY U ¢ &

0] 5 10 15 20 25 30 35 40 45 50 55...

il) e e | — 1eve

B SN
To1E6E06 eG a0 bEEEBET 7

Byte Value

Figure 19d

35/43

Processing segment 203

Byte Value

255; : Average @ \ Average
{_ Byte Value © 25 ., 9
i § 20 3 Occurrence
v 127,594 =l B S — Change
Y i o O 3 Value
83 =)o
B c RN
0 R ¥ Y N ®© qj) \§§ N ad 3
I 6% - rrimtiwrttyte./e1
Byte POSItIOﬂ = 0 WIS AT AT ATIS AT SRANNNY xR RN
255 he Byte Value
co : A TS -
-5 E . » \\l\‘
> g s
T Q .| Average Byte
532 &l 85.076 I\.«Change Value
Byte Position Flg ure zoa
Normalised
Average Average
Normalised Normalised Occurrence ooy rence
Average Average Average Byt ayerage Byte Change
Byte Value 9 Change Value ge By Value Change
Byte Value g Change Value Value

| 127.594 | — 127594 |

[85.076 —{ 85076 |

Normalised

Average Byte —
Change Value \

2560007

Normalised Average
Occurrence Change Value

255000

[79.761 {19767 |

Figure 20b

19761\0

127594

Normalised Average Byte Value

255000

Figure 20c

04 1017

36 /43

Normalised

Average Byte —
Change Value \/

2560007

Normalised Average
Occurrence Change Value

255000

127594

Normalised Average Byte Value

Figure 21a

255000

CAref | Success 1

Success 2

Success 3

..| Success 65535

Success 65536 |

B W IN| -

2560 2560

2561

2562

2563

2564

65531

65532

65533

65534

65536

Figure 21b

04 1017

Normalised
Average Byte —

Change Value

33762 ’\
Normalised Average

Occurrence Change Value

2560007

37143

255000

0 149685

Normalised Average Byte Value

Figure 21c

255000

CAref

Success 1

Success2 | Success3 | ...| Success 65535

Success 65536

RIWIN|=

2560

2560

2561

2562

2563

2563

2564

65531

65532

65533

65534

65535

Figure 21d

04 10 17

Normalised

Average Byte —
Change Value \/

Normalised Average 19761

2560007

38 /43

255000

Occurrence Change Value 127594

Normalised Average Byte Value

Figure 21e

255000

CAref

Success 1 | Success2 | Success3 | .. Success 65535

Success 65536

BWIN| =

2560

2560 12780

2561

2562

2563

2563

2564

65531

65532

65533

65534

65535

Figure 21f

04 10 17

39/43

[
[
!
I
255000 :
Normalised . |
Average Byte — :
Change Value :
I
|
|
I
|
!
|
I
I
2560007
Normalised Average 19761

Occurrence Change Value 127594

255000
Normalised Average Byte Value
CAref | Success1 | Success2 | Success3 | ..| Success 65535 | Success 65536
0
1
2 2
3
q 4 11
2560 2560 12780
2561
2562 2562
2563 2563
2564

65531 65531
65532
65533 65533
65534
65535

Figure 21h

04 10 17

Bit Value

FFT
Amplitude

40/ 43

Processing segment 203

0,1,0,1,1,1,0,1,0,1,0,0,1,0,1,1...

! Figure 22a

Sample of Bit Values in Segment

o

i)

400

35¢

300

250

200

150

100

50

AT

17 21 25 29 33 37 41 49 53 ..

Bit position

Figure 22b

FFT Magnitude

d | i z,
. E
} [—
“lonrom wﬁé [EARRRSREN NS | TR Y Te ‘%ﬁgﬁwﬁmtgééfﬁ@m f ﬁﬁgém’--é
e i B I T T T T T T S e B A e S M Bt Sl SR
Pl W e W U T T M Y S N e e e e e
; Y owd ot 3

Bit length F|gure 22C

41 /43

Binary| 2 Bit | 3 Bit | 4 Bit Recompression New CA |Standardised [Optimised
Value |Reps.|Reps.|Reps.| Tally Index Values Binary L. Binary
o000 3| 2 [1] 6 0 0 0000 0000
11| 3| 2 [1] 6 1 1 0001 1111
0001 2 1 0 3 2 2 0010 0001
o111 2| 1 [o[3 3 3 0011 0111
1000 2 1 0 3 4 4 0100 1000
1110 2 1 0 3 5 5 0101 1110
o011 2 [o | o | 2 6 6 0110 0011
1100 2 0 0 2 7 7 0111 1100
0010 1 0 0 1 8 8 1000 0010
0100 1 0 0 1 9 9 1001 0100
o110 1] o o 1 10 10 1010 0110
1001 1 0 0 1 11 11 1011 1001
1011 1 0 0 1 12 12 1100 1011
1200] 1 [o[o 2 13 13 1101 1101
0101 0 0 0 0 14 14 1110 0101
1010 0 0 0 0 15 15 1111 1010
Figure 23a Figure 23b
Binary | 2 Bit | 3 Bit | 4 Bit | 5Bit | 6 Bit |[Repetition]Recompression New CA Optimised
Value |Reps.|Reps.|Reps.|Reps.|Reps.| Tally Index L Values | Binary
000000| 5 4 3 2 1 15 0] 0 000000
111111 5 4 3 2 1 15 1 L 1 111111
0ooo01| 4 3 2 1 0 10 2 2 000001
011111| 4 3 2 1 0 10 3 3 [011111
100000| 4 3 2 1 0 10 4 4 100000
111110 4 3 2 1 0 10 5 L 5 L 111110
oooo11| 4 2 1 0 0 7 6 6 000011
001111| 4 2 1 0 0 7 7 7 001111
1700000 4 [2] 1] o o 7 8 s [110000
101101 1 0 0 0 0 1 59 59 101101
110010| 1 0 0 0 0 1 60 60 110010
110101 1 0 0 0 0 1 61 61 110101
010101| O 0 0 0 0 0 62 62 010101
101010 O 0 0 0 0 0 63 i 63 101010

Figure 24a

Figure 24b

42 /43

Figure 25b

Figure 25a

[EE

t

38R

SHEQELLN

&

11101

<
&

%

PEEE

Vi RW

wd i w4

]

RS

-
$
g
A

TREFREs b

&

FREx

fgiag

&

AR
EER

He

i

R e

RR SRR R AL

TEERREET R R

3

FEIIN

SRS HEE Y

IIHITHE

RERE)
W

2
N
&

RO AR

tE

IS

EFEL N

BRIITIALIL

=~
&

SRR

3
A

)

18

EQERARL

%
&

1Big

&
Y NI ARy

s0011
Figure 26

33

FRCTAEIL AR SN U VL AT AT U s R Y

F R R AR Y

SRS PR ARTY T SR S S o

43 /43

\QSF\\<>\§:“§§§SQECQS§C¢§§CQ§§\§;\C*EQSF\\<F§§§\§QS§\.

Ilig sEmsm ELay

A QRN AW AT O AR S 2 AT AT X TR B A AR S S Sy

Figure 27b

i&¢§a§ RRETHEA
R By :
Ss&..i..s..\a.&-:{@‘ £
FREST W SR IR AT SRR AT R

: - , }1.‘3:.&}_\x‘%{?-s}}.i}&},@.{. 1883
I A0 f‘i}“\it}{\.f}ﬁiﬂixf,i‘i’*ﬁi@,i‘e’ IITLHRIII AN

RN S R

EER TR A £ AR T 2 S B

Figure 27d

ERTR A FRT 2310 PR R R A I L5 S

FEREY S v PR

Binary Value | Occurrence
" 000 21968
E 001 21879
010 21837
" 011 21891
E 100 21874
101 21995
110 21729
111 21590

Figure 28a

Binary Value |[Occurrence
o001 | 7958
1000 | s367
010 | 8397

" 7837

Figure 28b

Binary Value |[Occurrence
ooorr | 3347
00100 3344
o1 | 3350
1 1.(.).1 1 3 180
1 11.1 1 3(.).;52

Figure 28c

Binary Value |Occurrence|
01(.).(.)00 15‘:96
010001 1287
10(.).(.)11 11.1"37
11 1"(.)11 1;1..28
11 1."111 ﬁ.éo

Figure 28d

10

15

20

25

30

35

40

Data Processing Method and Apparatus

The present invention relates to a method and apparatus of processing data, in particular for
compressing (and/or encrypting) data.

Background

Currently, information held on a computer is stored as ones and zeros (bits) which are grouped into
sets of eight bits which are referred to as bytes. Two bytes are referred to as a word (16 bits), and four
bytes are referred to as a double word (32 bits) or can be used as the mathematical storage referred
to as a 32-bit integer (int32 or Long). An integer which has a bit length of 32 can hold a value between
-2147483648 and +2147483647; or by removing the sign and making it an unsigned 32-bit integer
(UInt32), the longest number that can be stored is 4294967295 (2°%-1).

It is desirable to represent information using the smallest number of bits possible in order to reduce
the space required for storage and to minimise the resources required for signalling information from
one entity to another. In computer science and information theory, data compression (also referred to
as source coding) involves encoding information using fewer bits than the original representation.
Furthermore, it is important that sensitive data, represented using the American Standard Code
Information Interchange (ASCII) standard or by other means, is protected, for example by preventing
access to this data by unauthorised persons or machines. Therefore, methods of encrypting and
decrypting data form an integral part of information technology.

Compression can be either lossy or lossless. Lossless compression reduces bits by identifying and
eliminating statistical redundancy. No information is lost in lossless compression. In contrast, lossy
compression reduces the total number of bits by identifying marginally important information and
removing it.

Once data has been compressed, it must subsequently decompressed in order for it to be used. Both
compression and decompression require computer processing. Therefore, data
compression/decompression must find a compromise between the level of compression achieved and
the computer processing required for compression and decompression. For example, a compression
scheme for video may require expensive hardware for the video to be decompressed fast enough for
it to be watched as it is being decompressed, and the option to decompress the video in full before
watching it may be inconvenient and may require additional storage.

The present invention seeks to provide improved methods of compression and/or decompression
and/or improved methods of encryption and/or decryption.

According to one aspect of the invention there is provided a method of processing data comprising an
input sequence of bits, the method comprising the steps of: dividing the input sequence of bits into a
plurality of portions; respectively sub-dividing each portion into a plurality of sub-divisions comprising
at least a first sub-division and a second sub-division, wherein each sub-division of the plurality of
sub-divisions comprises at least one bit, wherein the at least one bit of each first sub-division is
arranged in a respective first sub-division permutation, and wherein the at least one bit of each
second sub-division is arranged in a respective second sub-division permutation; performing
frequency analysis: to determine, for each of a plurality of possible first sub-division permutations, how
many times, within said input sequence of bits, a portion comprises a first sub-division having bits
arranged in that possible first sub-division permutation; and to determine, for each of a plurality of
possible second sub-division permutations, how many times, within said input sequence of bits, a

10

15

20

25

30

35

40

45

portion comprises a second sub-division having bits arranged in that possible second sub-division
permutation; and forming a processed (e.g. compressed or encrypted) sequence of bits based on said
frequency analysis; wherein said forming a processed sequence of bits further comprises including
extraction information in the processed sequence of bits, said extraction information for use in
reconstructing said input sequence of bits from said processed sequence of bits; and wherein the
extraction information comprises at least one of: first sub-division order information identifying an
ordered sequence comprising each possible first sub-division permutation arranged in order of how
many times, within said input sequence of bits, a portion comprises a first sub-division having bits
arranged in that possible first sub-division permutation; and second sub-division order information
identifying an ordered sequence comprising each possible second sub-division permutation arranged
in order of how many times, within said input sequence of bits, a portion comprises a second sub-
division having bits arranged in that possible second sub-division permutation; and wherein the at
least one of said first sub-division order information and said second sub-division order information
comprises an index value, representing the order of the corresponding ordered sequence, based on a
preconfigured mapping between said index value and the order of the corresponding ordered
sequence.

According to another aspect of the invention there is provided a method of processing data comprising
an input sequence of bits, the method comprising the steps of: dividing the input sequence of bits into
a plurality of portions; respectively sub-dividing each portion into a plurality of sub-divisions comprising
at least a first sub-division and a second sub-division, wherein each sub-division of the plurality of
sub-divisions comprises at least one bit, wherein the at least one bit of each first sub-division is
arranged in a respective first sub-division permutation, and wherein the at least one bit of each
second sub-division is arranged in a respective second sub-division permutation; performing
frequency analysis: to determine, for each of a plurality of possible first sub-division permutations, how
many times, within said input sequence of bits, a portion comprises a first sub-division having bits
arranged in that possible first sub-division permutation; and to determine, for each of a plurality of
possible second sub-division permutations, how many times, within said input sequence of bits, a
portion comprises a second sub-division having bits arranged in that possible second sub-division
permutation; and forming a processed (e.g. compressed or encrypted) sequence of bits based on said
frequency analysis; wherein said forming a processed sequence of bits further comprises including a
header portion in the processed sequence of bits, said header portion comprising extraction
information for use in reconstructing said input sequence of bits from said processed sequence of bits;
and wherein the extraction information comprises at least one of: first sub-division order information
identifying an ordered sequence comprising each possible first sub-division permutation arranged in
order of how many times, within said input sequence of bits, a portion comprises a first sub-division
having bits arranged in that possible first sub-division permutation; and second sub-division order
information identifying an ordered sequence comprising each possible second sub-division
permutation arranged in order of how many times, within said input sequence of bits, a portion
comprises a second sub-division having bits arranged in that possible second sub-division
permutation; and wherein the at least one of said first sub-division order information and said second
sub-division order information comprises an index value, representing the order of the corresponding
ordered sequence, based on a preconfigured mapping between said index value and the order of the
corresponding ordered sequence.

According to another aspect of the invention there is provided a method of processing data comprising
an input sequence of bits, the method comprising the steps of: (i) identifying a processing bit
length for use in processing said input sequence of bits; (i) dividing the input sequence of bits

10

15

20

25

30

35

40

45

into a plurality of portions wherein each portion has a respective portion bit length equal to said
processing bit length and wherein the bits in each portion are arranged in a respective portion
permutation; (iii) respectively sub-dividing each portion into a plurality of sub-divisions comprising at
least a first sub-division and a second sub-division, wherein each sub-division of the plurality of sub-
divisions comprises at least one bit, wherein the at least one bit of each first sub-division is arranged
in a respective first sub-division permutation, and wherein the at least one bit of each second sub-
division is arranged in a respective second sub-division permutation; (iv) performing frequency
analysis: to determine, for each of a plurality of possible first sub-division permutations, how many
times, within said input sequence of bits, a portion comprises a first sub-division having bits arranged
in that possible first sub-division permutation; and to determine, for each of a plurality of possible
second sub-division permutations, how many times, within said input sequence of bits, a portion
comprises a second sub-division having bits arranged in that possible second sub-division
permutation; (v) assigning a respective sub-division value to each of said plurality of possible first sub-
division permutations based on how many times, within said input sequence of bits, a portion
comprises a first sub-division having bits arranged in that possible first sub-division permutation; and
assigning a respective sub-division value to each of said plurality of possible second sub-division
permutations based on how many times, within said input sequence of bits, a portion comprises a
second sub-division having bits arranged in that possible second sub-division permutation; (vi) for
each portion permutation of a plurality of possible portion permutations, generating a respective label
representing that portion permutation, wherein said generating comprises combining: the sub-division
value assigned to the first sub-division permutation corresponding to the first sub-division of that
portion permutation; with the sub-division value assigned to the second sub-division permutation
corresponding to the second sub-division of that portion permutation; wherein said respective label
comprises a representation of a combined value resulting from said combining; and (vii) forming a
processed sequence of bits by replacing, within said input sequence of bits, bit portions comprising
bits arranged in one of said plurality of possible portion permutations, with the respective label
representing that one of said plurality of possible portion permutations, wherein said forming a
processed sequence of bits further comprises including a header portion in the processed sequence
of bits, said header portion comprising extraction information for use in reconstructing said input
sequence of bits from said processed sequence of bits, and the extraction information being
configured for use in identifying the respective portion permutation which each label represents; and
wherein the extraction information comprises: first sub-division order information identifying an
ordered sequence comprising each possible first sub-division permutation arranged in order of how
many times, within said input sequence of bits, a portion comprises a first sub-division having bits
arranged in that possible first sub-division permutation; and second sub-division order information
identifying an ordered sequence comprising each possible second sub-division permutation arranged
in order of how many times, within said input sequence of bits, a portion comprises a second sub-
division having bits arranged in that possible second sub-division permutation; and wherein at least
one of said first sub-division order information and said second sub-division order information
comprises an index value, representing the order of the corresponding ordered sequence, based on a
preconfigured mapping between said index value and the order of the corresponding ordered
sequence.

According to one aspect of the invention there is provided a method of processing data comprising an
input sequence of bits, the method comprising the steps of: (i) identifying a processing bit length for
use in processing said input sequence of bits; (ii) dividing the input sequence of bits into a plurality of
portions wherein each portion has a respective portion bit length equal to said processing bit length
and wherein the bits in each portion are arranged in a respective portion permutation; (iii) respectively

10

15

20

25

30

35

40

45

sub-dividing each portion into a plurality of sub-divisions comprising at least a first sub-division and a
second sub-division, wherein each sub-division of the plurality of sub-divisions comprises at least one
bit, wherein the at least one bit of each first sub-division is arranged in a respective first sub-division
permutation, and wherein the at least one bit of each second sub-division is arranged in a respective
second sub-division permutation; (iv) performing frequency analysis: to determine, for each of a
plurality of possible first sub-division permutations, how many times, within said input sequence of
bits, a portion comprises a first sub-division having bits arranged in that possible first sub-division
permutation; and to determine, for each of a plurality of possible second sub-division permutations,
how many times, within said input sequence of bits, a portion comprises a second sub-division having
bits arranged in that possible second sub-division permutation; (v) assigning, based on said frequency
analysis, a first respective sub-division value to each of said plurality of possible first sub-division
permutations and assigning a second respective sub-division value to each of said plurality of possible
second sub-division permutations; (vi) for each portion permutation of a plurality of possible portion
permutations, generating a respective label representing that portion permutation, wherein said
generating comprises combining: the first sub-division value assigned to the first sub-division
permutation corresponding to the first sub-division of that portion permutation; with the second sub-
division value assigned to the second sub-division permutation corresponding to the second sub-
division of that portion permutation; wherein said respective label comprises a representation of a
combined value resulting from said combining; and (vii) forming a processed sequence of bits by
replacing, within said input sequence of bits, bit portions comprising bits arranged in one of said
plurality of possible portion permutations, with the respective label representing that one of said
plurality of possible portion permutations.

When generating, for each portion permutation, a respective label representing that portion
permutation, said combining may comprise arithmetically adding said first sub-division value assigned
to the first sub-division permutation corresponding to the first sub-division of that portion permutation
to said second sub-division value assigned to the second sub-division permutation corresponding to
the second sub-division of that portion permutation. The combined value may then comprise a result
of the addition.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when a particular first sub-division value is assigned for a
plurality of different first sub-division permutations), generating, for each of said respective plurality of
different first sub-division permutations having that particular first sub-division value, a different
respective first additional value for use in discriminating between said respective plurality of first sub-
division permutations having that particular first sub-division value.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when a particular second sub-division value is to be
assigned for a plurality of different second sub-division permutations, generating, for each of said
respective plurality of different second sub-division permutations having that particular second sub-
division value, a different respective second additional value for use in discriminating between said
respective plurality of second sub-division permutations having that particular second sub-division
value.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when a first additional value and a second additional
value have been generated for a particular portion permutation: combining said first additional value
and said second additional value to produce a combined additional value, wherein the label for

10

15

20

25

30

35

40

that particular portion permutation comprises a representation of the combined value together with the
combined additional value for that particular portion permutation.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when one of a first additional value and a second
additional value have been generated for a particular portion permutation, generating a label for that
particular portion permutation that comprises a representation of the combined value together with
that one of a first additional value and a second additional value.

When respectively sub-dividing each portion into a plurality of sub-divisions, said first sub-division may
have a different number of bits to said second sub-division.

When generating, for each portion permutation, a respective label representing that portion
permutation, each label generated may have a respective label bit length, and the labels are
generated such that labels generated for portion permutations which occur a greater number of times
within said input sequence of bits may generally have a smaller label bit length than labels generated
for portion permutations which occur a lesser number of times within said input sequence of bits.

When generating, for each portion permutation, a respective label representing that portion
permutation, each label generated may have a respective label bit length, and the labels are
generated such that at least some of the labels may have a label bit length which may be smaller than
the processing bit length.

The frequency analysis may comprise, for each one of said plurality of possible first sub-division
permutations, determining a respective occurrence level which is the number of times, within said
sequence of bits, that a portion occurs comprising that one of said plurality of possible first sub-
division permutations. The frequency analysis may comprise may comprise, for each one of said
plurality of possible second sub-division permutations, determining a respective occurrence level
which is the number of times, within said sequence of bits, a portion occurs comprising that one of
said plurality of possible second sub-division permutations.

For a given first sub-division value, the number of first sub-division permutations which are assigned
the given first sub-division value may depend on the occurrence levels associated with the first sub-
division permutations which are assigned the given first sub-division value; and for a given second
sub-division value, the number of second sub-division permutations which are assigned the given
second sub-division value may depend on the occurrence levels associated with the second sub-
division permutations which are assigned the given second sub-division value.

When assigning, based on said frequency analysis, a first (or second) respective sub-division value to
each of said plurality of possible first sub-division permutations, said assigning may comprise:
grouping, based on said frequency analysis, said plurality of possible first (or second) sub-division
permutations into a plurality of sets (or ‘levels’). Each set may comprise at least one first (or second)
sub-division permutation. The at least one first (or second) sub-division permutation in each set may
have a corresponding occurrence level that falls within a different respective range of occurrence
levels associated with that set.

For a given first (or second) sub-division value, the number of first sub-division permutations which
are assigned the given first sub-division value may depend on the set associated with the first (or
second) sub-division permutation(s) which are assigned the given first sub-division value.

10

15

20

25

30

35

40

45

Forming a processed sequence of bits may further comprise including a header portion in the
processed sequence, said header portion comprising extraction information for use in reconstructing
said input sequence of bits from said processed sequence, and the extraction information being
configured for use in identifying the respective portion permutation which each label represents.

The extraction information may be configured for use in identifying how the said plurality of possible
first (or second) sub-division permutations are grouped into sets. The extraction information may
identify how many first (or second) sub-division permutations each set comprises. The extraction
information may be further configured to identify the processing bit length used in processing said
input sequence of bits. The extraction information may be further configured to identify how each
portion is sub-divided into a plurality of sub-divisions. The extraction information may be further
configured to identify how many bits each first sub-division comprises and how many bits each second
sub-division comprises. The extraction information may be further configured to identify how many bits
the input sequence of bits comprises.

The process may further comprise repeating steps (i) to (vii) at least one further time using said
processed sequence as said input sequence.

According to one aspect of the invention there is provided a method of processing data, the method
comprising the steps of: (i) dividing the data into a plurality of processing segments wherein each
processing segment comprises an input sequence of bits; (ii) identifying a current processing bit
length for use in processing a current processing segment of said data to form a processed segment
meeting at least one predetermined processing criterion; (ii) dividing the current processing segment
into a plurality of portions wherein each portion has a respective portion bit length equal to said
current processing bit length and wherein the bits in each portion are arranged in a respective one of
a number of possible permutations; (iv) assigning a respective label to each of a plurality of said
possible permutations; and (v) forming a processed segment by replacing, within said current
processing segment, bit portions comprising bits arranged in one of said plurality of possible
permutations with the respective label assigned to that one of said possible permutations; (vi)
identifying a new processing bit length for use in processing a next processing segment of said data to
form a processed segment meeting at least one predetermined processing criterion; (vii) repeating, for
each of said plurality of processing segments, steps (ii) to (vi) wherein the new processing bit length is
used as the current processing bit length and the next processing segment of said data is used as the
current processing segment, and wherein a processing bit length used for at least one of said
processing segments of said data is different to a processing bit length used for at least one other of
said processing segments of said data.

According to one aspect of the invention there is provided a method of processing data comprising an
input sequence of bits, the method comprising the steps of: (i) setting a current processing bit length,
of at least one bit, for use in processing said input sequence of bits; (ii) dividing the input sequence of
bits into a plurality of portions wherein each portion has a respective portion bit length equal to said
current processing bit length and wherein the bits in each portion are arranged in a respective one of
a number of possible permutations; (iii) for each of a plurality of possible permutations analysing the
input sequence of bits to respectively identify how many times, within said input sequence of bits, a
portion having that possible permutation occurs; (iv) determining whether at least one predetermined
processing criterion has been achieved by comparing results of said analysing with the predetermined
processing criterion; (v) processing said input sequence of bits based on said determining wherein
said processing comprises: when the determining determines that the predetermined processing
criterion has not been achieved performing at least one of: setting a new processing bit length that is

10

15

20

25

30

35

40

different to the current processing bit length and repeating steps (ii) to (v) using said new processing
bit length as the current processing bit length; and ending processing of said input sequence of bits;
and when the determining determines that the at least one predetermined processing criterion has
been achieved: assigning a respective label to each of said plurality of possible permutations; and
forming a processed sequence of bits by replacing, within said sequence of bits, bit portions
comprising bits arranged in one of said plurality of possible permutations with the respective label
assigned to that one of said possible permutations.

The predetermined processing criterion may comprise whether 50% of the possible permutations
which occur in the input sequence of bits occur at least twice as frequently as the other 50% of the
possible permutations which occur in the input sequence of bits.

The predetermined processing criterion may comprise whether 50% of the possible permutations
occur in the input sequence of bits.

According to one aspect of the invention there is provided a method of reconstructing a processed
sequence of bits produced by a method according to any preceding claim, the method of
reconstructing a processed sequence comprising the steps of: obtaining extraction information for use
in reconstructing an original sequence of bits from said processed sequence; reconstructing said
original sequence of bits from said processed sequence based on said extraction information.

According to another aspect there is provided a method of compression in which an input sequence of
bits is divided into a plurality of portions; each portion is sub-divided into a plurality of sub-divisions;
frequency analysis is performed to determine the number of occurrences of each sub-division
permutation and new values are assigned, based on the frequency analysis, to each of the sub-
division permutations. For each portion a label, representing the permutation of bits in that portion, is
assigned, wherein the label comprises a representation of a combined value resulting from combining
the new values associated with the sub-division permutations of that portion. A processed sequence
of bits is generated by replacing, within the input sequence of bits, bit portions with the respective
label representing the permutation of bits in that portion.

According to another aspect there is provided a method of processing data comprising an input
sequence of bits, the method comprising the steps of: (i) identifying a processing bit length for use in
processing said input sequence of bits; (ii) dividing the input sequence of bits into a plurality of
portions wherein each portion has a respective portion bit length equal to said processing bit length
and wherein the bits in each portion are arranged in a respective portion permutation; (iii) respectively
sub-dividing each portion into a plurality of sub-divisions comprising at least a first sub-division and a
second sub-division, wherein each sub-division of the plurality of sub-divisions comprises at least one
bit, wherein the at least one bit of each first sub-division is arranged in a respective first sub-division
permutation, and wherein the at least one bit of each second sub-division is arranged in a respective
second sub-division permutation; (iv) performing frequency analysis: to determine, for each of a
plurality of possible first sub-division permutations, how many times, within said input sequence of
bits, a portion comprises a first sub-division having bits arranged in that possible first sub-division
permutation; and to determine, for each of a plurality of possible second sub-division permutations,
how many times, within said input sequence of bits, a portion comprises a second sub-division having
bits arranged in that possible second sub-division permutation; (v) assigning a respective sub-division
value to each of said plurality of possible first sub-division permutations based on how many times,
within said input sequence of bits, a portion comprises a first sub-division having bits arranged in that
possible first sub-division permutation; and assigning a respective sub-division value to each of said

10

15

20

25

30

35

40

plurality of possible second sub-division permutations based on how many times, within said input
sequence of bits, a portion comprises a second sub-division having bits arranged in that possible
second sub-division permutation; (vi) for each portion permutation of a plurality of possible portion
permutations, generating a respective label representing that portion permutation, wherein said
generating comprises combining: the sub-division value assigned to the first sub-division permutation
corresponding to the first sub-division of that portion permutation; with the sub-division value assigned
to the second sub-division permutation corresponding to the second sub-division of that portion
permutation; wherein said respective label comprises a representation of a combined value resulting
from said combining; and (vii) forming a processed sequence of bits by replacing, within said input
sequence of bits, bit portions comprising bits arranged in one of said plurality of possible portion
permutations, with the respective label representing that one of said plurality of possible portion
permutations.

When generating, for each portion permutation, a respective label representing that portion
permutation, said combining may comprise: arithmetically adding said sub-division value assigned to
the first sub-division permutation corresponding to the first sub-division of that portion permutation to
said sub-division value assigned to the second sub-division permutation corresponding to the second
sub-division of that portion permutation; wherein said combined value comprises a result of said
addition.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may further comprise: when a first particular sub-division value is
assigned for a plurality of different first sub-division permutations: generating, for each of said
respective plurality of different first sub-division permutations having that first particular sub-division
value, a different respective first additional value for use in discriminating between said respective
plurality of first sub-division permutations having that first particular sub-division value; and when a
second particular sub-division value is to be assigned for a plurality of different second sub-division
permutations: generating, for each of said respective plurality of different second sub-division
permutations having that second particular sub-division value, a different respective second additional
value for use in discriminating between said respective plurality of second sub-division permutations
having that second particular sub-division value.

For a first given sub-division value, the number of first sub-division permutations which are assigned
the first given sub-division value may depend on the occurrence levels associated with the first sub-
division permutations which are assigned the first given sub-division value; and for a second given
sub-division value, the number of second sub-division permutations which are assigned the second
given sub-division value may depend on the occurrence levels associated with the second sub-
division permutations which are assigned the second given sub-division value.

When assigning, based on said frequency analysis, a respective sub-division value to each of said
plurality of possible first (or second) sub-division permutations, said assigning may comprise:
grouping, based on said frequency analysis, said plurality of possible first (or second) sub-division
permutations into a plurality of sets (or ‘levels’); wherein each set comprises at least one first (or
second) sub-division permutation; and wherein the at least one first (or second) sub-division
permutation in each set has a corresponding occurrence level that falls within a different respective
range of occurrence levels associated with that set.

For a first (or second) given sub-division value, the number of first sub-division permutations which
are assigned the first (or second) given sub-division value may depend on the set associated with the

10

15

20

25

30

35

40

first (or second) sub-division permutation(s) which are assigned the first (or second) given sub-division
value.

The method may further comprise repeating steps (i) to (vii) at least one further time using said
processed sequence of bits as said input sequence of bits.

The sub-division values assigned to each of the plurality of possible first sub-division permutations
and each of the plurality of second sub-division permutations may be assigned such that sub-division
values assigned to permutations with a lower occurrence level have higher levels of statistical
redundancy than the sub-division values assigned to permutations with a higher occurrence level.

According to another aspect there is provided a method of processing data, the method comprising
the steps of: (i) dividing the data into a plurality of processing segments wherein each processing
segment comprises an input sequence of bits; (i) identifying a current processing configuration
defining a current processing bit length for use in processing a current processing segment of said
data to form a processed segment meeting at least one predetermined processing criterion; (i)
dividing the current processing segment into a plurality of portions wherein each portion has a
respective portion bit length equal to said current processing bit length and wherein the bits in each
portion are arranged in a respective one of a number of possible permutations; (iv) assigning a
respective label to each of a plurality of said possible permutations; (v) forming a processed segment
by replacing, within said current processing segment, bit portions comprising bits arranged in one of
said plurality of possible permutations with the respective label assigned to that one of said possible
permutations; (vi) identifying a new processing configuration for use in processing a next processing
segment of said data to form a processed segment meeting at least one predetermined processing
criterion; and (vii) repeating, for each of said plurality of processing segments, steps (ii) to (vi) wherein
the new processing configuration is used as the current processing configuration and the next
processing segment of said data is used as the current processing segment, and wherein the
processing configuration used for at least one of said processing segments of said data defines a
different processing bit length to a processing bit length defined by a processing configuration used for
at least one other of said processing segments of said data.

Each processing segment may be assigned a marker which represents characteristics of the data
within the processing segment, and the current processing configuration may be identified based on
the marker assigned to the current processing segment.

Each processing configuration may define one of: a plurality of sub-divisions of each portion, each
sub-division having a respective sub-division bit length, wherein a sum of said respective sub-division
bit lengths equals said processing bit length; and an undivided processing portion, the bit length of
which is said processing bit length.

The processing configuration used for at least one of said processing segments of said data may
define a first plurality of sub-divisions having a first combination of sub-division bit lengths; and the
processing configuration used for at least one other of said processing segments of said data may
define a second plurality of sub-divisions having a second combination of sub-division bit lengths; and
the first combination of sub-division bit lengths may be different to the second combination of sub-
division bit lengths.

The processing configuration used for at least one of said processing segments of said data may
define a plurality of sub-divisions having a combination of sub-division bit lengths; and the processing

10

15

20

25

30

35

40

10

configuration used for at least one other of said processing segments of said data may define an
undivided processing portion.

The method may further comprise, between steps (v) and (vi), identifying a new processing
configuration for use in reprocessing the processed segment and repeating steps (ii) to (v) wherein
the new processing configuration is used as the current processing configuration and the processed
segment of said data is used as the current processing segment.

According to another aspect there is provided a method of processing data comprising an input
sequence of bits, the method comprising the steps of: (i) identifying a current processing
configuration defining a current processing bit length for use in processing said input sequence of bits,
wherein the current processing configuration defines a plurality of sub-divisions of each portion, each
sub-division having a respective sub-division bit length, wherein a sum of said respective sub-division
bit lengths equals said current processing bit length; (ii) dividing the input sequence of bits into a
plurality of portions, each portion comprising one or more sub-divisions according to the current
processing configuration, wherein each portion has a respective portion bit length equal to said
current processing bit length and wherein the bits in each sub-division are arranged in a respective
one of a number of possible sub-division permutations; (iii) for each of a plurality of possible sub-
division permutations, analysing the input sequence of bits to respectively identify how many times,
within said input sequence of bits, a portion comprises a sub-division having that possible sub-division
permutation occurs; (iv) determining whether at least one predetermined processing criterion has
been achieved by comparing results of said analysing with the predetermined processing criterion; (v)
processing said input sequence of bits based on said determining wherein said processing comprises:
when the determining determines that the predetermined processing criterion has not been achieved,
performing at least one of: identifying a new processing configuration that is different to the current
processing configuration and repeating steps (ii) to (v) using said new processing configuration as the
current processing configuration; and ending processing of said input sequence of bits; and when the
determining determines that the at least one predetermined processing criterion has been achieved:
assigning a respective sub-division value to each of said plurality of possible sub-division
permutations; and forming a processed sequence of bits by replacing, within said sequence of bits, bit
portions comprising a sub-division having bits arranged in one of said plurality of possible sub-division
permutations with a portion label based on the sub-division values assigned to that sub-division
permutation.

The respective sub-division value assigned to each of said plurality of possible permutations may be
based on how many times, within said input sequence of bits, a portion comprises a sub-division
having bits arranged in that possible permutation.

The sub-division values assigned to each of the plurality of possible permutations may be assigned
such that sub-division values assigned to permutations which occur less often have higher levels of
statistical redundancy than the sub-division values assigned to permutations which occur more often.

When the determining determines that the predetermined processing criterion has not been achieved
and a new processing configuration is identified, the new processing configuration may be selected in
a predetermined order, for example ascending order of processing bit length.

The input sequence of bits may comprise a processing segment, and the processing segment may be
assigned a marker which represents a distribution characteristic of the data within the processing
segment, and said identification of current processing configuration may be based on the marker of
the processing segment.

10

15

20

25

30

35

40

11

Identification of the current processing configuration may comprise using the marker of the processing
segment to identify a processing configuration which has previously been used to process a different
processing segment (e.g. in a different file).

The marker may be determined based on mathematical analysis of the distribution characteristic of
the data within the processing segment.

The marker may be determined by: dividing the input sequence of bits into a plurality of portions,
where the bits in each portion are arranged in a respective one of a number of possible portion
permutations; determining the occurrence of each possible portion permutation within the input
sequence of bits; and measuring the distribution of the occurrences of the possible portion
permutations.

The distribution characteristic may comprise at least one of: the average byte value of the data within
the processing segment, the average change in byte value of the data within the processing segment,
and the average change in byte value occurrence of the data within the processing segment.

The marker may comprise a multi-dimensional marker.

The processing configuration may be one of a plurality of processing configurations, each having a
respective reference number, and said processing configuration may be identified by means of its
reference number.

Each reference number may provide a binary representation of the sub-divisions defined by the
corresponding processing configuration.

The processing configuration may be identified based on Fourier analysis of the input sequence of
bits.

The processing configuration may be identified by performing Fourier analysis on the input sequence
of bits and obtaining at least one Fourier coefficient; selecting a processing bit length based on the at
least one Fourier coefficient; and identifying a processing configuration indicating the selected
processing bit length.

The predetermined processing criterion may comprise whether at least one possible permutations
does not occur in the input sequence of bits.

The predetermined processing criterion may comprise whether a measure of a distribution (e.g. a
coefficient of variation) of occurrences of the possible permutations within the sequence of bits
exceeds a threshold.

According to another aspect there is provided a method of processing data, the method comprising
the steps of: (i) dividing the data into a plurality of processing segments wherein each processing
segment comprises an input sequence of bits; (ii) performing a mathematical analysis of a processing
segment to determine a distribution characteristic of data within the processing segment and
assigning at least one marker to the processing segment based on the mathematical analysis; (i)
identifying, based on the marker assigned to the processing segment, a current processing
configuration defining a current processing bit length for use in processing a current processing
segment of said data to form a processed segment meeting at least one predetermined processing
criterion; (ii) dividing the current processing segment into a plurality of portions wherein each portion
has a respective portion bit length equal to said current processing bit length and wherein the bits in

10

15

20

25

30

35

12

each portion are arranged in a respective one of a number of possible permutations; (iv) assigning a
respective label to each of a plurality of said possible permutations; and (v) forming a processed
segment by replacing, within said current processing segment, bit portions comprising bits arranged in
one of said plurality of possible permutations with the respective label assigned to that one of said
possible permutations.

The current processing configuration may define a plurality of sub-divisions of each portion, each sub-
division having a respective sub-division bit length, wherein a sum of said respective sub-division bit
lengths equals said current processing bit length.

Aspects of the invention extend to computer program products such as computer readable storage
media having instructions stored thereon which are operable to program a programmable processor to
carry out a method as described in the aspects and possibilities set out above or recited in the claims
and/or to program a suitably adapted computer to provide the apparatus recited in any of the claims.

Embodiments of the invention will now be described, by way of example only, with reference to the
attached figures in which:

Figure 1a is a simplified schematic block diagram illustrating a system for compressing and
decompressing data;

Figure 1b is a flow chart illustrating an overview of a method of compression;
Figure 1cis a flow chart illustrating an overview of a method of decompression;

Figure 2 illustrates the main data groups used in the methods of compression described below,
including exemplary data sizes/values for the purposes of explanation only;

Figures 3A to 3D illustrate how a bit portion length is selected in a first example;
Figures 4A and 4B illustrate how a bit portion length is selected in a second example;
Figures 5A to 5E illustrate an alternative method of selecting a bit portion length;

Figures 6A to 6D illustrate a method of determining which configuration of combination arrays to use
once a bit portion length has been determined according to one or more of the methods of Figures 3A
to 3D, 4A and 4B and 5A to 5E;

Figures 7A and 7B illustrate a first part of a method of assigning labels to bit portions once a
combination array CA configuration has been selected according to the method illustrated in Figures
6A to 6D;

Figures 8A to 8D are tables detailing possible combined new CA values with their corresponding new
CAg values and new CA; values;

Figure 9 is a table detailing possible combination of CA; disambiguation values and CA,
disambiguation values, and the resulting combined disambiguation values, for the example illustrated
in Figures 7A and 7B;

Figure 10 illustrates how labels are assigned to bit portions;

Figure 11 is a table listing all of the possible bit portions of length 6 bits and the labels assigned to
each bit portion, based on the combination arrays CA; and CA; in Figures 7A and 7B;

10

15

20

25

30

Figures 12A to 12D are examples of generating new CA values (and disambiguation values) for bit
portions having a bit portion length of 8 bits, using a particular CA configuration;

Figures 13A to 13D are simplified representations of four exemplary header structures;

Figure 14 illustrates the target maximum BP and/or CA values calculated in accordance with an
alternative embodiment;

Figure 15 illustrates a number of CA configurations and associated reference numbers;

Figure 16 illustrates a method of determining which configuration of combination arrays to use to
divide up a processing segment;

Figure 17 is a simplified representation of a further exemplary header structure;

Figures 18a and 18b are tables showing extracts from an exemplary 65536 byte processing segment
and data related to the processing segment;

Figures 19a, 19b, 19c and 19d are graphs plotting the data shown in the tables of Figures 18a and
18b;

Figures 20a to 20c are schematic diagrams illustrating a simplified overview of how a segment marker
is generated,;

Figures 21a to 21h illustrate the process of populating the three dimensional segmark matrix and
populating an associated table of successful CA configurations;

Figures 22a, 22b and 22c illustrate schematically steps of a method of analysing a processing
segment using Fourier analysis to determine a bit length Lgp to use in splitting up the processing
segment into bit portions and/or combination arrays;

Figure 23a is a table showing every possible 4 bit binary value from 0000 to 1111, in which a
recompression index is assigned to each binary value, and Figure 23b is a table showing optimised
binary values which are assigned to combined new CA values;

Figures 24a and 24b are equivalent to Figures 23a and 23b, but instead show how binary values with
a bit length of 6 are optimised;

Figure 25a is an extract from an exemplary array which represents a segment of randomly organised
and evenly distributed data, and Figure 25b is a table showing the number of occurrences, within the
segment, of the first 17 byte values;

Figure 26 is an extract from the exemplary array of Figure 25a written as a binary stream;

Figures 27a to 27d are extracts from the exemplary array of Figure 25a, written as a binary stream
and split into portions having different bit lengths;

Figures 28a to 28d are tables showing the number of occurrences, within the segment, of a selection
of portion values, including the portion values having the highest and lowest occurrences.

Overview — System

10

15

20

25

30

35

40

14

Figure 1a is a simplified schematic block diagram illustrating a system for compressing and
decompressing data, and Figures 1b and 1c show related methods. The system of Figure 1a
comprises compression apparatus 105 for compressing a file 201 to produce a compressed file 202.

The system of Figure 1a also comprises decompression apparatus 505 for decompressing a
compressed file 202, which has been compressed using the compression apparatus 105, in order to
re-create the original file 201.

As indicated in Figure 1a the file 201 may comprise, for example, a text document, music data, the
contents of a database or video data.

The compression apparatus 105 is configured to extract data comprising a sequence of bits from the
file 201, the sequence of bits corresponding to a processing segment 203. The processing segments
203 can be configured, on the fly, to be any suitable size, therefore allowing the processing segment
size to be selected adaptively based, for example, on the processing capabilities of the compression
apparatus 105 or other relevant factors.

The compression apparatus 105 comprises a bit portion module 253, which is beneficially configured
to analyse each of the processing segments 203 and select, based on this analysis, a bit portion
length Lgp (also referred to as a bit length) for use in dividing the processing segments into smaller
data units referred to as ‘bit portions’ 205. As an example, Figure 1a illustrates a processing segment
having been assigned a bit portion length Lgp of 8 bits by the bit portion module 253, however the bit
portion module 253 is configured to select a respective bit portion length Lgr based on frequency
analysis of each processing segment 203, and therefore different processing segments can be
assigned different bit portion lengths. Using this frequency analysis, the bit portion module 253 is
configured to select the bit portion length Lgp based on which bit portion length Lgr apparently
provides the best (or among the best) prospects for compression. The bit portion module 253 can also
be configured to select any bit portion length Lgp with acceptable prospects for compression, for
example to optimise for speed as opposed to compression.

If the bit portion module 253 determines that no bit portion length will allow compression of the
processing segment 203 (or the compression does not meet a predefined compression threshold, for
example a greater than 5% reduction in size), it is configured to refrain from assigning a bit portion
length to the processing segment, and the processing segment 203 will be output by the compression
apparatus 105 in in its original (unprocessed) form.

Once a bit portion length is selected and the processing segment 203 sub-divided into bit portions 205
accordingly, the bit portions 205 may advantageously be further sub-divided into smaller data sub-
divisions referred to as combination arrays (although, depending on requirements, such further sub-
division may not be implemented). These combination arrays represent the smallest data unit used in
processing the processing segment 203.

The way in which a file may be sub-divided into smaller data units to aid efficient processing is
described in more detail below, in the section titled ‘Overview - Main Data Groups’, with reference to
Figure 2.

The compression apparatus 105 further comprises a label assignment module 255 which is
configured to assign a respective label to each permutation of bits represented by the bit portions 205,
based on analysis of the frequency of occurrence of the bit portion value corresponding to that

10

15

20

25

30

35

40

15

permutation, and/or frequency of occurrence of combination array values that form that permutation,
within a processing segment.

The way in which a label for a bit portion permutation may be assigned is introduced below in the
section titled ‘Overview - Assigning Labels’.

Where a bit portion is sub-divided into combination arrays, the respective combination array values
within each bit portion 205 are assigned a new value (or ‘label’). The new values assigned to the
combination array values within each bit portion are combined together and, if necessary, the resulting
combination concatenated with any additional information required for transforming the resulting
combination back into its original form. The respective combination for each bit portion 205, together
with any information concatenated with that combination, form a bit portion label that is, in effect,
assigned to a corresponding permutation bits represented by that bit portion 205. In so doing, each bit
portion label is, in effect, also assigned to every bit potion 205 comprising bits arranged in the
permutation associated with that label.

The concept of combining different data values is introduced below, in the section titled ‘Overview -
Combine Method’. The way in which combination array values may be labelled and combined to form
a label for a bit portion permutation is described in more detail below in the section titled ‘Method of
Assigning labels to Bit Portion Permutations using Combination Arrays’.

The label assignment module 255 is configured to output a processed segment 209 corresponding to
a processing segment 203 in which each bit portion 205 has been replaced with the bit portion label
assigned to the permutation of bits represented by that bit portion 205. In this example, the resulting
processed segment 209 is smaller than the processing segment and can thus be thought of as a
‘compressed’ segment. The processed segment 209 comprises each of the labels assigned to the bit
portions 205 of the processing segment 203.

The compression apparatus 105 further comprises a header generation module 257 which is
configured to generate a header 211 for each processing segment 203. The header 211 comprises
extraction information which is used by the decompression apparatus 505 to extract the processing
segment 203 from the processed segment 209. The extraction information preferably allows the
decompression apparatus 505 to interpret the labels in the processed segment 209 in order to allow
the decompression apparatus 505 to map the labels to their associated bit portion values.

Preferably, each header starts with a compression method signature, and provides information
relating to the chosen bit portion length Lgp, the combination array configuration used, the size of the
original processing segment 203, and information on how labels were assigned to each of the bit
portions 205.

As visually indicated in Figure 1a, the total size of each of the processed segments 209 in
combination with its header 211 is less than the size of the corresponding processing segment 203.
Furthermore, the size of the processed segments 209 and their associated headers 211 may vary.

As shown in Figure 1a, the compression apparatus 105 outputs a compressed file 202, which
comprises fewer bits in total than the original file 201. This is due to the fact that the size of each of
the processed segments 209 in combination with its header 211 is less than the size of the
corresponding processing segment 203.

10

15

20

25

30

35

40

16

The decompression apparatus 505 is configured to process each header 211 and associated
processed segment 209 of the compressed file 202. Each header can be identified, for example, by
the signature included in the header.

The decompression apparatus 505 comprises a header decoding module 557 and a label decoding
module 555. The header decoding module 557 is configured to decode the information in the header
211, for use by the label decoding module 555 in decoding the labels in the processed segment 209
and thus map the labels to their associated bit portion values. The label decoding module is
configured to output a processing segment 203 comprising all the bit portion values associated with
the labels in the processed segment 209. The processing segment 203 therefore corresponds to the
original processing segment 203.

The system for compressing and decompressing data illustrated in Figure 1a can alternatively or
additionally be used to encrypt and decrypt data. Any file 202 produced by the apparatus 105 will
exhibit some level of encryption, because the information contained in the file 202 is represented by
different data to that used in the original file 201. In such embodiments where the system of Figure 1a
is used to encrypt and/or decrypt data, the total size of each of the processed segments 209 in
combination with its header 211 may be greater than the size of the corresponding processing
segment 203. Accordingly, when the apparatus 105 is used as encryption/decryption apparatus, the
encrypted file 202 output by the encryption side of the apparatus 105 may not always be a
‘compressed’ file.

Figure 1b is a flow chart illustrating, in overview, a method of compression that may be employed by
the compression apparatus 105 of Figure 1a.

In the method of Figure 1a, at step 111 an input sequence of bits is divided into the processing
segments. At step 113 the determination is made of whether there is a bit portion length that will allow
compression of the processing segment 203 (or the compression does not meet a predefined
compression threshold, for example a greater than 5% reduction in size). In other words it is
determined whether the potential compression level for the current processing segment is acceptable,
for example whether a predetermined processing criterion is satisfied.

If it is determined that the potential compression level for the current processing segment is
acceptable, the method continues to step 115 in which the current segment is processed, as
described above. Specifically, the possessing segment is analysed and a bit length is selected based
on the analysis. The labels are then assigned to each of the bit portions. Extraction information for use
in reconstructing the original processing segment is then generated and, in this example, placed in a
header. More detail on how the current segment is processed is provided in Figures 2-10 and the
associated description.

At step 117, it is determined whether to attempt to reprocess the current segment. If the current
segment is to be reprocessed, the processed segment (including the header if present) is used as the
current segment, and the method returns to step 113. If the current segment is not reprocessed, the
method continues to step 119 where a processed segment is output.

If at step 113 it is determined that the potential compression level for the current processing segment
is not acceptable, the method continues to step 125 in which the current segment is used as the
processed segment, without any processing (or further processing) of the current segment. Then, at
step 119, the processed segment is output.

10

15

20

25

30

35

17

After the processed segment is output, it is determined at step 121 whether there is another
processing segment in the input sequence of bits for processing. If yes, the next processing segment
of the input sequence of bits is used as the current segment, and the method returns to step 113.

If it is determined at step 121 that there are no more processing segments in the input sequence of
bits for processing, the processed segments are output together as a processed file at step 123.

Figure 1c is a flow chart illustrating in overview, a method of decompression that may be employed by
the decompression apparatus 505 of Figure 1a.

At step 131 the first processed segment of processed file is used as the current segment.

At step 133 it is determined whether extraction information is available for the current segment. In this
example, any extraction information is found in the header of the processed segment. If extraction
information is available, the method proceeds to step 135 where extraction information is obtained for
current segment, for example from an associated header.

Next, at step 137, the processing segment in its form prior to processing is reconstructed from the
current segment, based on extraction information.

At step 147, the reconstructed segment is used as the current segment, and the method returns to
step 133.

If, at step 133, extraction information is not available, the method proceeds to step 145 where the
current segment is used as the reconstructed segment, without any reconstruction (or further
reconstruction) of the current segment. Then, at step 139, the processed segment is output.

Next, at step 141, it is determined whether there is another processed segment of the processed file.
If yes, the next processed segment of the processed file is used as the current segment, and the
method returns to step 133.

If it is determined at step 141 that there are no more processed segments in the processed file, the
reconstructed segments are output together as a reconstructed file at step 143.

It will be appreciated that the methods of compressing and decompressing data described herein can
beneficially be used in various applications.

For example, compressing data using the methods described herein can allow larger amounts of data
to be stored in a given storage medium, and larger amounts of data to be transmitted in any given
transmission of data. This in turn will reduce the cost for data storage, which could be particularly
advantageous where large amounts of data need to be stored, such as in data farms. Cost saving can
be made because, for example, data farms will require less power to maintain their data storing
devices. Advantageously, even if different types of data are being stored (e.g. in a data farm) the
methods of compression described allow compression to be achieved for generally any data,
regardless of the data type (e.g. audio, text, video).

In the field of telecommunications, the described techniques can be used to compress data before
transmission, which would allow a reduction in the amount of resources needed to make
transmissions.

Devices can be configured to carry out both compression and decompression of data according to the
described methods, or devices can be configured to carry out only one of compression and

10

15

20

25

30

35

40

18

decompression. Media-playing devices, such as mobile phones and DVD players, may only be
configured to decompress compressed media files using the methods described herein. In some
cases such media-playing devices may be provided with a dedicated chip for this purpose, or the
decompression may be performed by software modules in the device which are not tied to any
specific hardware. Providing the processing power of a device is sufficient and enough storage space
is available, entire files can be decompressed before use (for example a short video clip can be
decompressed and then viewed). In other cases, files can be decompressed on the fly during use (for
example a film can be decompressed and watched simultaneously). Considering, mobile phones,
storing data in compressed form and then decompressing the data when required using the methods
described herein would allow significant amounts of space to be saved on mobile phones, for example
allowing multiple high quality films to be stored on the mobile phone memory.

Although the time and/or power taken to compress/decompress a given piece of data can vary, in
many instances compression takes significantly longer (and/or requires more processing power) than
decompression. In some applications this is not especially limiting, for example where films are
compressed at a central internet server, and downloaded or streamed in compressed form and then
decompressed at a user device for viewing.

In some cases the time and/or processing power required for compression using the methods
described herein can be greater than existing compressions techniques. However, the methods
described herein have the advantage that greater compression can be achieved, and additionally or
alternatively substantial compression can be achieved more consistently across different types of data
when compared to existing data compression techniques. The compression methods described can
achieve this because the ability to use different bit lengths and different combination array
configuration when processing data means that, in effect, different compression algorithms are
applied, not only to different iterations of compression for the same file, but also to different parts of
the same file.

As described below, the use of combination arrays allows header sizes to be reduced. This is
advantageous because headers 211 are generally added to all compressed segments 209. This
contrasts with many existing compression techniques in which files are analysed as a whole, and data
for use in decompression, such as a hash table, relates to the file as a whole and is only included
once in the compressed file.

The compression methods described herein advantageously analyse each processing segment
203 of a file 201 individually, unlike existing compression methods which analyse a file as a whole.
Analysing the processing segments 203 individually (and analysing a processing segment in multiple
different ways using bit portions and/or combination arrays) allows the described methods to achieve
better and more consistent compression of data.

Overview - Main Data Groups

The way in which a file may be sub-divided into smaller data units to aid efficient processing will now
be described, by way of example only with reference to Figure 2.

Figure 2 illustrates the main data groups used in the methods of compression described below,
including exemplary data sizes/values for the purposes of explanation only.

A file 201 may comprise, for example, a text document, a music file, a database or a video file. The
file 201 may have any size; in this example the file size is 2GB. As a further example, an ultra-high 4K

10

15

20

25

30

35

40

19

definition DVD is approximately 100GB. A traditional high definition DVD is approximately 6GB. An
hour of high definition downloadable video from the internet is approximately 1GB. As an example,
using the compression techniques described below, it has been found that any of these types of file
can be compressed, typically down to 1/64 of their original size.

In the compression methods described below, the file 201 is divided up into one or more processing
segments 203, which are generally smaller in size than the file 201. In this example, the 2GB file 201
is broken up into a plurality of 64KB processing segments 203. Padding bits/bytes may be used to
ensure a file 201 can be divided into an integer number of segments 203.

The processing segments 203 can be used where the size of the file 201 is too large for a computer
processor to read and/or process the whole file at once. Generally most files fall into this category,
however in some cases a whole file 201 may be read and/or processed without being divided into
processing segments.

The size of the processing segments 203 is usually fixed and selected based on normal computer
processing capabilities; however in some examples the size of processing segments 203 is not fixed
(see Modifications and Alternatives section).

The method involves assigning labels to groups of bits in a processing segment 203, where the
grouping of bits and corresponding labels are chosen in a way which ensures that the number of bits
required to represent the information of the processing segment 203 is less than the original size of
the processing segment 203 in bits. In overview, smaller labels (i.e. labels comprising fewer bits) are
used to represent more frequently occurring groups of bits, while larger labels (i.e. labels comprising
more bits) are used to represent less frequently occurring groups of bits.

In preferred embodiments, two or more main groupings of bits in the processing segment are used: bit
portions 205, and combination arrays 207.

As illustrated in Figure 2, each bit portion 205 generally comprises a plurality of consecutive bits, and
each combination array 207 generally comprises a sub-group of consecutive bits (or a single bit) from
a bit portion 205.

In this example, a 64KB processing segment 203 is divided into a plurality of bit portions 205 each
having a bit portion length Lgp of 6 bits. As shown in Figure 2, each of the bit portions 205 comprises a
permutation of 6 bits, where the first three bit portions have permutations of 011100, 100110 and
111100 respectively. The first bit portion, comprising the bit permutation 011100, is considered to
have a bit portion (BP) value of 011100, or 28 in base 10.

Dividing each processing segment 203 up into bit portions 205 provides a way of analysing the
characteristics of the processing segment 203, where the results of this analysis are used to
determine the prospects for compressing the segment 203 using a particular bit length.

Advantageously, the size of the bit portions 205 is not predetermined, and it can therefore be
determined for each processing segment 203 what size of bit portion provides the best prospects for
compressing the segment 203.

In this example, the bit portion 205 has a bit portion length Lgp of 6 bits, which are sub-divided into
three combination arrays 207. The first two combination arrays each comprise a single bit, and the
third combination array comprises four consecutive bits. As shown in Figure 2, all bit portions 205 are
divided up into combination arrays of the same configuration — in this example the configuration is : [1

10

15

20

25

30

20

bit array][1 bit array][4 bit array]. As also shown in Figure 2, while the configuration (or pattern) of
combination arrays 207 is the same for each bit portion 205 of a processing segment 203, the
contents of the combination arrays 207 may vary between each bit portion 205, depending on the
permutation of bits in each bit portion 205.

As shown in Figure 2, each of the combination arrays comprises permutation of any number of bits
(including one bit), where the number of bits in the permutation depends on the combination array
(CA) configuration. In Figure 2, the first three combination arrays have permutations of 0, 1 and 1100
respectively. These first three combination array permutations are considered to have combination
array (CA) values of 0, 1 and 1100 respectively; or 0, 1 and 12 respectively in base 10.

In some alternative embodiments, processing segments are only divided up into groups of
consecutive bits (or single bits) once, without these groups (e.g. bit portions 205) being sub-divided
into further groups of consecutive bits or single bits (e.g. combination arrays 207).

Although in this example the bit portion 205 comprises three combination arrays 207, the bit portion
can advantageously be divided into any number of combination arrays 207, each combination array
207 having any size. This means that the particular configuration of compression arrays can be
selected to provide optimised compression for a particular segment. In this example, where the bit
portion length Lgp of the bit portions 205 is 6 bits, there are 32 different possible configurations of the
combination arrays 207, as set out below:

Configurations for a Combination Array Bit portion length Lgp of 6
{1,1,1,1,1,1,{1,1,1,1,2,0},{1,1,1,2,1,0},{1,1,1,3,0,0},{1,1,2,1,1,0},{1,1,2,2,0,0},
{1,1,3,1,0,0},{1,1,4,0,0,0},{1,2,1,1,1,0}{1,2,1,2,0,0},{1,2,2,1,0,0},{1,2,3,0,0,0},
{1,3,1,1,0,0},{1,3,2,0,0,0},{1,4,1,0,0,0},{1,5,0,0,0,0}{2,1,1,1,1,0},{2,1,1,2,0,0},
{2,1,2,1,0,0},{2,1,3,0,0,0},{2,2,1,1,0,0}{2,2,2,0,0,0},{2,3,1,0,0,0},{2,4,0,0,0,0},
{3,1,1,1,0,0},{3,1,2,0,0,0},{3,2,1,0,0,0},{3,3,0,0,0,0},{4,1,1,0,0,0},{4,2,0,0,0,0},

{5,1,0,0,0,0},{6,0,0,0,0,0},

Table 2

In Table 2, each set of six numbers within curly brackets represents a possible configuration of
combination arrays 207. Each number represents the size of a combination array in bits, where 0
indicates that no array is used. For example, {1, 1, 3, 1, 0, 0} denotes dividing a bit portion 205 into
four combination arrays 207, the first two combination arrays comprising a single bit each, followed by
a 3 bit combination array, in turn followed by another single bit array.

It is noted that the total number of different possible configurations of combination arrays depends on
the bit portion length, where the number of possible configurations is equal to 28771,

As stated above, the configuration of combination arrays is selected to provide the best compression
of a segment 203. Generally, all bit portions 205 of a particular processing segment 203 are divided
into the same configuration of combination arrays and the combination array configuration exploits
any patterns, repetition and/or redundancy in the processing segment 203 in order to achieve effective
compression.

Overview - Combine Method

The concept of combining different data values will now be introduced and explained, by way of
example only.

10

15

21

A byte can hold a value between 0 (00000000) and 255 (11111111). The ASCII standard provides for
representation of characters, letters or symbols where each character, letter or symbol is represented
using an ASCII code which has a value of between 0 and 255. As a result, each letter, character or
symbol requires one byte of information to be represented, as Table 1, below, illustrates.

Letter ASCII Binary Letter ASCII Binary
Code Code
097 01100001 065 01000001
098 01100010 066 01000010
099 01100011 067 01000011
100 01100100 068 01000100
101 01100101 069 01000101
102 01100110 070 01000110
103 01100111 071 01000111
104 01101000 072 01001000
105 01101001 073 01001001
106 01101010 074 01001010
107 01101011 075 01001011
108 01101100 076 01001100
109 01101101 077 01001101
110 01101110 078 01001110
111 01101111 079 01001111
112 01110000 080 01010000
113 01110001 081 01010001
114 01110010 082 01010010
115 01110011 083 01010011
116 01110100 084 01010100
117 01110101 085 01010101
118 01110110 086 01010110
119 01110111 087 01010111
120 01111000 088 01011000
121 01111001 089 01011001
122 01111010 090 01011010

N< X $ < C —~®0H 30T O3 3 —x——T3JQ—-0OOOT®
N<XXS<CHOWIOUTVOZErXc—IETMMOO®>

Table 1

Considering, for example, the letters J and o, these have ASCII codes of 74 (01001010) and 111
(01101111) respectively. Therefore, a conventional representation of the name Jo would be
0100101001101111, which is 16 bits long.

The number of bits required to represent the name can be decreased by combining the respective
ASCII values using at least one mathematical operation. For example, the two values can be added
together:

74+111=185

Advantageously, the number 185 can be represented in binary using only 8 bits (10111001), therefore
saving 8 bits on the 16 bit value of 0100101001101111.

10

15

20

25

30

35

22

However, the letters J and o are not the only combination of letters which would sum to give the total
185. For example, the letters | and p would also yield the total 185 when added together. This is
referred to as a collision.

Therefore, in this example it is necessary to provide additional disambiguation information in order to
indicate which of the potential combinations of ASCII characters is being represented.

The number of collisions (i.e. combinations resulting in the same total when combined using a
mathematical operation such as addition) can be decreased by changing the numeric value used to
represent the characters being combined.

For example, the first ASCIlI character value can be multiplied by 10 before the two values are
combined. Taking the example of “Jo” again:

74%10+111 =740+111 = 851

The number 851 can be represented in binary using only 10 bits (1101010011), therefore saving 6 bits
on the 16 bit value of 0100101001101111.

In this example, it is also necessary to provide additional disambiguation information in order to
indicate which of the potential combinations of ASCII characters is being represented.

However, multiplying the first ASCII character value by 10 before the two values are added has the
effect of reducing the number of combinations yielding the same result (“collisions”). This means that
less additional disambiguation information is required.

Collisions when combining bytes can be reduced still further by replacing the ASCII values used to
represent characters with numeric labels. Labels can also reduce the number of bits used to represent
the combined value. For example, if the letters J and O are represented by the labels 0 and 1
respectively, then combining the two labels using addition results in a combined value of 1. As long as
no other characters are assigned the labels 0 or 1, the combined value of 1 will be unique, with no
collisions occurring. Moreover, in this example the combined value can be represented using only 1
bit.

Although described with reference to ASCII characters for ease of understanding, the above-
described methods of combining data can be applied to any data, comprising any number of bits.

The methods described herein allow data, such as a file, to be compressed by dividing the data into
groups of bits, assigning labels to the groups of bits and then “combining” two or more of these groups
of data together by combining their respective labels. In some embodiments, the combining comprises
a mathematical operation such as addition.

In an e-book that uses letters and numbers (see Table 1), it is possible that either the first bit or the
last bit is only ever 0 and the 1 is never used, or vice versa, depending on encoding.

Advantageously, in preferred embodiments the way in which a file is divided into groups of bits can be
chosen in order to provide improved compression of the file. For example, when one part of the file is
being processed it may be divided up in a different way to another part of the file.

Also, the preferred embodiments allow data from different types of media, and by extension having
vary different characteristics, to be compressed effectively, due to the flexibility when dividing the data
into groups of bits and assigning labels to the groups of bits. Existing compression techniques tend to

10

15

20

25

30

35

be more effective in compressing particular types of media data (e.g. text, image data or the like)
because they are better optimised for the inherent characteristics of that data. Advantageously, the
preferred embodiments can achieve compression of files and/or data which would ordinarily be
difficult to compress using such existing compression techniques.

Overview - Assigning Labels

The bits of the processing segment are analysed to determine a way of dividing the processing
segment into groups of bits which will allow compression to be achieved when labels are assigned to
the groups of bits. The processing segment is then divided into groups of bits according to the
determined configuration. The groups of bits may comprise bit portions and/or combination arrays as
introduced above.

Next, a label is assigned to each of the groups of bits, wherein each label is unique (although
generally only unique for the processing segment being processed; labels may be reused between
processing segments). Some or all of the labels may comprise multiple parts. Preferably, all labels
comprise a first part which acts as a primary identifier of the bit portion value (later referred to as
“Combined new CA value”).

The first part of the bit label may uniquely (i.e. unambiguously) identify a bit portion value, in which
case the label need only comprise the first part. However, when the first part of the label does not
unambiguously identify the bit portion value (i.e. multiple different bit portion values are associated
with the same first part of the label), the label further comprises a second part (later referred to as
“Combined disambiguation information DI”).

The purpose of the second part of the label is to identify which of the multiple different bit portion
values associated with the first part is being represented by the label.

In order to illustrate this with an example, consider the following four different bit portion values:
01011, 10110, 10111, 10010

Each of these four different bit portion values may be associated with the same first part of a label
(e.g. 11):

01011, 10110, 10111, 10010

I I I I
11 11 11 11

In such a case, each bit portion value can be unambiguously identified using one of four second parts
of the label (e.g. 00, 01, 10, 11):

01011, 10110, 10111, 10010

I I I I
11 11 11 11

00 01 10 11
In the examples provided here, the complete label for the bit portion values would be as follows:

01011, 10110, 10111, 10010
I I I I

10

15

20

25

30

35

24

1100 1101 1110 1111

Preferably, the length of the first part in bits remains constant for all bit portion values in a processing
segment 203, while the length of the second part can vary, or the second part may not be used at all
to identify some bit portion values.

It can therefore be seen that the label as a whole can vary in length of bits. All the labels used for the
bit portion values of a particular processing segment can vary in length but share a common minimum
length, corresponding to the length of the first part of the label. However, between different processing
segments the length of the first part of the label can vary, as it is assigned based on frequency
analysis of the processing segment (as described in further detail below).

Method of Selecting Bit portion length

Figures 3A to 3D illustrate a method of selecting what bit portion length Lgp should be used when
dividing a processing segment 203 into a number of bit portions 205.

This is done by dividing the processing segment 203 up into bit portions 205 of different bit portion
lengths Lgp, and performing frequency analysis for each of the different bit portion lengths used.

Some existing compression techniques use fixed bit portion lengths. It has been found that by using
variable bit portion lengths, which can change depending on which part of a file is being processed,
additional compression can be obtained which would otherwise not have been achievable.

Figures 3A and 4A provide overviews of the frequency analysis results obtained for bit portion lengths
2 to 4 and 3 to 7 respectively, with different exemplary results. Figures 3B, 3C, 3D and 4B illustrate
frequency analysis performed on bit portion lengths of 2, 3, 4 and 7 respectively.

As shown in Figure 3A, in this example a bit portion length of 2 bits is tested first. The processing
segment 203 is divided up into a plurality of bit portions 205, each having a bit portion length of 2 bits.
As shown in Figure 3A, frequency analysis is performed on the bit portions 205 of this initial bit portion
length Lgp = 2, and it is determined whether at least one of two criteria are fulfilled.

The first criterion is whether two or more compression “levels” (levels are described further below) are
present within the analysed bit portion BP values, and the second criterion is whether 50% or fewer of
the possible bit values are present in the processing segment 203.

If neither of the criteria are fulfilled, the bit portion length is incremented by one bit - to 3 bits - and the
processing segment 203 is re-divided up into a plurality of bit portions 205, this time each having a bit
portion length of 3 bits. For each bit portion length being tested, if the frequency analysis results fail to
fulfil either of the two criteria, the next bit portion length is tested (i.e. the bit portion length is
incremented by one bit and the processing segment 203 is re-divided up into a plurality of bit portions
205, each having the same number of bits as the current bit portion length).

Figure 3B illustrates the frequency analysis performed on the plurality of bit portions 205, in this case
each having a bit portion length of 2 bits. As each bit portion 205 of the processing segment 203 is
only made up of 2 bits, a bit portion 205 can only have one of four values — 00, 01, 10 or 11. Once the
processing segment 203 has been divided into the plurality of bit portions 205, the number of
occurrences of each possible bit portion value is determined (i.e. the frequency of each value).

10

15

20

25

30

25

The bit portion values are then sorted in order of most occurring to least occurring, as shown in Figure
3B. In this example, the bit portion value 01 occurs the greatest number of times, with 65,538
occurrences and the bit portion value 00 occurs the least number of times, with 65,533 occurrences.

The number of compression levels is then determined based on the number of occurrences of each of
the bit portions values.

The level in which a bit portion (BP) value is placed determines how many bits the label assigned to
the BP value will have. All BP values in the same level will be assigned the same number of bits. In
preferred embodiments, the 1% level (level 0) is allocated labels with the minimum possible number of
bits. Furthermore, in preferred embodiments, the labels allocated to each successive level are one bit
longer than the previous level. An exemplary set of labels and associated labels are shown in Table 3
below.

Level Label
00

01
100
101
1100
1101
1110
1111
Table 3

NINININ| =] =[Ol O

In preferred embodiments, a “level” is defined as being a group of bit portion values in which none of
the bit portion values occur less than half as frequently as the most occurring bit portion value in that
group. For example, in a group of bit portion values where the most occurring bit portion value occurs
28,000 times, all of the bit portion values in the group will have occurrences greater than 14,000. In
the example shown in Figure 3B, the least occurring bit portion value occurs 65,533 times, and
therefore all of the bit portion values are considered to occupy the same level. Bit portion length Lgp =
2 therefore fails to satisfy the first criterion.

Next, it is determined whether 50% of the possible bit portion values occur in the processing segment.
For example, if only the bit portion values 01 and 11 occurred in the processing segment 203, and bit
portion values 10 and 00 both never occurred, then exactly 50% of the possible bit portion values are
present in the processing segment. This would be an indication that the processing segment 203 can
be compressed using the selected bit portion length. However, in the example illustrated in Figure 3B
all four of the possible bit portion values are present in the processing segment and therefore 100% of
the possible bit portion values are present. As can be seen in Figure 3A, the bit portion length of 2 bits
is listed as having one compression level and as not satisfying the requirement that 50% or fewer of
the possible bit portion values are present. Bit portion length Lgp = 2 therefore fails to satisfy the
second criterion.

Therefore, the processing segment 203 is divided into a plurality of bit portions each having a bit
portion length of 3 bits instead of 2 bits and frequency analysis is again performed. This is illustrated
in Figure 3C. Figure 3C shows that if bit portion length Lge = 3 there are 8 possible bit portion values.

10

15

20

25

30

35

26

The bit portion values are then sorted in order of most occurring to least occurring, as shown in Figure
3C. In this example, the bit portion value 011 occurs the greatest number of times, with 21,851
occurrences and the bit portion value 101 occurs the least number of times, with 21,833 occurrences.

Bit portion length Lgpr = 3 therefore fails to satisfy the first criterion.

Furthermore, in the example illustrated in Figure 3C all eight (i.e. 100%) of the possible bit portion
values are present in the processing segment. Bit portion length Lgp = 2 therefore fails to satisfy the
second criterion.

Next, the processing segment 203 will be divided into a plurality of bit portions 205 having a bit portion
length of 4 bits. This is illustrated in Figure 3D.

Figure 3D shows that if bit portion length Lgp = 4 there are 16 possible bit portion values.

As shown in Figure 3D, bit portion values are sorted in order of most occurring to least occurring. In
this example, the bit portion value 0001 occurs the greatest number of times, with 27,369 occurrences
and the bit portion value 1110 occurs the least number of times, with 1,962 occurrences.

Therefore, unlike for bit portion lengths 2 and 3 described above, multiple compression levels are
present within the analysed bit portion BP values. Specifically, the 4™ BP value (1001) occurs 12,646
times, which is less than half of 27,369. Therefore, the 4™ bit portion value belongs to a 2" level (level

1.

Furthermore, the 8" BP value (1000) occurs 4,146 times, which is less than half of 12,646. Therefore,
the 4™ bit portion value belongs to a 3™ level (level 2).

This means that three levels are present, and bit portion length Lge = 4 therefore satisfies the first
criterion.

As a result, bit portion length Lgp = 4 would be selected as the chosen bit portion length in this
example.

In the exemplary method of Figure 4A, the processing segment 203 is initially divided up into a
plurality of bit portions 205 each having a bit portion length of 3 bits (rather than 2 bits as illustrated in
Figure 3A). As the exemplary results of Figure 4A, none of bit portion lengths 3 to 6 satisfy either of
the criteria.

Figure 4B shows exemplary frequency analysis results for bit portion length Lgr = 7. If bit portion
length Lgp = 7, there are 128 possible bit portion values (some are omitted for legibility).

As shown in Figure 4B, bit portion values are sorted in order of most occurring to least occurring. In
this example, all bit portion values from the 10" value onwards have an occurrence of 0, and therefore
bit portion length Lgp = 7 satisfies the second criterion. BP values with an occurrence of 0 are not
assigned to a level, and therefore the total number of levels present for Lgp = 7 is 1 (the first criterion
is therefore not fulfilled).

As a result, bit portion length Lgp = 7 would be selected as the chosen bit portion length in this
example.

10

15

20

25

30

35

40

27

It is noted that in the particular example illustrated in Figure 4B, it is possible to achieve improved
compression by assigning levels according to alternative embodiments, such as those described
below.

Alternative method of Selecting Bit portion length

Figures 5A to 5E illustrate an advantageous alternative method of selecting a bit portion length Lgp.
The method involves testing multiple bit portion lengths and determining if compression of the
processing segment can be achieved using the bit portion length being tested, and if so how much
compression can be achieved.

The determination is made by assigning labels to each of the possible bit portion
(BP) values, and then determining whether the processing segment 203 can be represented using
fewer bits if the bit portions are represented using their respective labels (i.e. determining whether the
processing segment 203 can be compressed using the labels). In order to assign the labels and make
the determination as to whether compression can be achieved, frequency analysis is performed on
the bit portion values to determine how many times each possible bit portion value occurs within the
processing segment 203.

The frequency analysis results in a value for the achievable compression of the processing segment
203 for each bit portion length tested (i.e. the minimum compression that is known to be achievable
for the processing segment based on the chosen bit portion length). In Figure 5A, bit portion lengths
from 2 bits to 8 bits are tested, with achievable compressions ranging from 3% (2 bits) to 25% (6 bits).
It is noted that the final compression achieved for the selected bit portion length, once the full
compression method described below has been carried out, may be higher than the achievable
compression value.

It can also been seen from Figure 5A that the bit portion length having the highest potential
compression is 6 bits, whereas a bit portion length of 8 bits would, for this particular segment being
processed, have a lower potential compression. Therefore, in this case any compression techniques
which divide the processing segment into bytes (i.e. 8 bits) would fail to exploit potential additional
compression.

As illustrated by the exemplary bit values in Figure 5A, the same processing segment 203 comprising
the same bits may be analysed multiple times, being divided into bit portions 205 of different sizes
each time.

As shown in Figure 5A, frequency analysis using different bit portion lengths is performed on a
processing segment, in this example of size 64KB (only the first 16 bits and the final bit of the
segment are shown for simplicity).

Figure 5B and 5C illustrate the frequency analysis performed on the processing segment 203 when
divided up into a plurality of bit portions 205, each having a bit portion length of 4 bits. As each bit
portion 205 of the processing segment 203 is made up of 4 bits, a bit portion 205 can have one of
sixteen values — from 0 (0000) to 15 (1111).

Once the processing segment 203 has been divided into the plurality of bit portions 205, the number
of occurrences of each possible bit portion value is determined (i.e. the frequency of each value). The
bit portion values are then sorted in order of most occurring to least occurring, as shown in Figure 5B.
In this example, the bit portion value 0001 occurs the greatest number of times, and the bit portion
value 1110 occurs the least number of times.

10

15

20

25

30

35

40

28

The default order of bit portion values is from smallest to largest, and therefore when two bit portion
values have the same number of occurrences within a processing segment (which may be, for
example, zero), the bit values are not sorted and accordingly will remain in size order. As shown in
Figure 5B, each of the sorted bit portion values is associated with a ranking corresponding to their
sorted position. As can be seen, the most occurring bit portion value is ranked 0 and the least
occurring bit portion value is ranked 15.

In some embodiments, the sorted bit portion values are assigned new values which correspond to
their ranking, with value 0000 corresponding to ranking 0, and value 1111 corresponding to value 15.

Referring to Figures 5B and 5C, in some embodiments the sorted bit portion values are not
renumbered with new values, for example when fewer than 50% of the BP values occur in the
processing segment being analysed.

The occurrences of the bit portions are then analysed in order to split the BP values into levels where
possible. As explained above, a “level” is defined as being a group of bit portion values in which none
of the bit portion values occur less than half as frequently as the most occurring bit portion value in
that group. For example, in a group of bit portion values where the most occurring bit portion value
occurs 28,000 times, all of the bit portion values in the group will have occurrences greater than
14,000.

In the example shown in Figure 5B, it is determined that the BP values can be grouped to create three
levels. These levels are referred to as occurrence-based levels. As can be seen, in Level 0 the
highest occurring bit portion value has 27369 occurrences; in Level 1 the highest occurring bit portion
value has 12646 occurrences; and in Level 2 the highest occurring bit portion value has 3923
occurrences.

In some alternative embodiments, the levels can be defined using different methods. For example, the
occurrences of the BP values may be analysed in order to determine whether the occurrences can be
divided into two or more groups in which the total number of occurrences of one group (i.e. all
occurrence counts in the group summed) of one group is less than or equal to half the total number of
occurrences of another group.

If there are only two levels in a bit portion, compression cannot be achieved unless the bit portion is
broken up into two or more combination arrays (see below for description of how bit portions are
broken up into combination arrays). For example, if a bit portion length of 4 is used, and two levels are
present within the bit portion values, the bit portion can then be broken into two combination arrays. It
has been found that one combination array may have one level in its CA values, while the other CA
may have three levels in its CA values (this becomes more likely the longer the bit portion length
being used).

Once each of the bit portion values has been assigned to an occurrence-based level, each of the bit
portion values can be assigned an initial label 403. However, in some preferred embodiments the BP
values are first re-grouped into optimised levels before the initial labels 403 are assigned. This re-
grouping of the BP values into optimised levels is illustrated in Figure 5C.

The initial labels are assigned to bit portion values to determine an achievable compression ratio for
the processing segment 203, and whether compression can be achieved at all. They are referred to
as “initial labels” because the actual labels assigned to bit portions may be different once the full
compression method as described below is carried out.

10

15

20

25

30

35

29

As can be seen in Figure 5B, the initial labels 403 have varied lengths, but in general bit portion
values with a high frequency of occurrences are assigned a short initial label (e.g. 3 bits long) and bit
portion values with a low frequency of occurrence are assigned a longer initial label (e.g. 5 bits long).

As can also be seen from Figure 5B, the initial labels 403 can comprise one or two parts: all initial
labels 403 comprise a new bit portion (BP) value part; while some initial labels 403 additionally
comprise a disambiguation part.

The new values act as primary identifiers of the bit portion values, and all new BP values assigned
have the same length in bits — in the example shown in Figure 5B, all new BP values are three bits
long. The size in bits of the new BP values is determined by the maximum new BP value. In this case
the maximum new BP value is 7, which is represented in binary as 111, and as a result all new BP
values comprise three bits. However, if the maximum new BP value was 8, this would be represented
in binary as 1000, and as a results all new BP values would comprise 4 bits.

However, new BP values do not unambiguously identify an associated bit portion value in all cases
because in some cases the same new BP value is assigned to multiple BP values. In such cases, a
disambiguation value is used to identify a particular one of the multiple bit portion values associated
with the same new BP value.

In order to ensure that the most frequently occurring bit portion values are assigned the shortest initial
labels, the bit portion values in the first level (Level 0) are each assigned unique new values, as can
be seen in Figure 5B. No disambiguation values are therefore used, and the initial label assigned to
the bit portion values of level 0 only comprises the new value part.

When assigning new bit portion values to the bit portion values in level 1 onwards, the same new BP
values can be assigned to multiple BP values. Where this re-use of new BP values occurs, the
number of disambiguation values which are needed corresponds to the number of bit portion values
which have been assigned the same new bit portion value.

For example, if four bit portion values have been assigned the same new bit portion value, four
disambiguation values are required in order to unambiguously identify a particular bit portion value.
This means that each disambiguation value will comprise two bits. It will be appreciated that, in
general, the higher the number of BP values which are assigned the same new BP value, the larger
the disambiguation value which is assigned to each BP value.

To achieve compression, bit portion values with a high frequency of occurrences should generally be
assigned a short initial label and bit portion values with a with a low frequency of occurrence should
generally be assigned a longer initial label. Since the new BP values comprise the same number of
bits for all possible BP values, it is the disambiguation which principally affects the size of the initial
label 403.

As a general rule, the lower the level (where Level 0 is the lowest), the fewer BP values are assigned
the same new BP value. In this embodiment, the maximum number of repetitions of a new bit portion
value is set to be 2'¢V, where Lev is the level of the bit portion values being assigned new values. For
example, in level 2, the same new bit portion value can be assigned to up to 4 bit portion values.

A more general example of new BP value repetition is shown in Table 4, below.

| BP Level | New BP Value |

10

15

20

25

30

Level O 2o
Level 0 2]
Level O Z
Level O Z3
Level O 2
Level 1 Zs
Level 1 Zs
Level 1 Z6
Level 1 Zs
Level 2 Z7
Level 2 Z7
Level 2 7
Level 2 Z7
Table 4

As shown in Table 4, each new BP value is repeated 2"¢” times. In level 0, new BP values are
repeated 2° = 1 times each. In level 1, new BP values are repeated 2' = 2 times each. In level 2, new
BP values are repeated 22 = 4 times each.

In Figure 5B, level 2 comprises 9 BP values. In this level new BP values can be assigned to up to four
original BP values. Therefore, the four most-occurring BP values are assigned the new BP value 5,
the next four most-occurring BP values are assigned the new BP value 6, and the remaining BP value
in Level 2 is assigned the new BP value 7.

In such a situation, as can be seen from Figure 5B the new BP value 7 is unique, and therefore the
least-occurring BP value in Level 2 is not assigned a disambiguation value. This means that the least-
occurring BP value in Level 2 has an initial label of only 3 bits, while the rest of the (more-occurring)
BP values in level 2 have initial labels of 5 bits. This is not optimum for compression, and therefore a
method of level optimisation is used to move BP values between levels, as illustrated in Figure 5C.

Nevertheless, even without any level optimisation having been performed, it can be seen from Figure
5B that compression can be achieved. The size in bits of each occurrence-based label is shown in
Figure 5B, and from this the number of bits used to represent the BP values in each level can be
determined. This is given by the total number of occurrences for a level multiplied by the occurrence-
based label size.

The total number of bits used to represent all of the BP values in the bit portion 203 can then be
determined by summing the number of bits used for each level. As shown in Figure 5B, this is equal to
483555, which is less than the total number of bits in the processing segment (524288). Accordingly,
assuming a header size of 121 bits, a 7.7% compression is possible. In some embodiments, the bit
portion length may be selected based on this possible compression measure, without any optimisation
of the levels (since compression is achieved without optimisation in some cases).

Figure 5C illustrates how the bit portion length is selected according to preferred embodiments, where
levels are optimised before the potential compression is determined.

In Figure 5C, BP values are first re-grouped into optimised levels before the initial labels 403 are
assigned. The occurrence-based levels determined in Figure 5B are indicated on Figure 5C using

10

15

20

25

30

35

31

dashed braces. It can therefore be seen that the optimised levels are generally different to the
occurrence based levels.

A general aim of level optimisation is to ensure that the number N2F of BP values in each level is
divisible by 2'¢” without remainder, where Lev is the level. This ensures efficient use of the assigned
new BP values.

This can be represented mathematically as:
NEF mod 2"V = 0 Equation 1

For example, as shown in Figure 5B, Level 2 includes 9 BP values, so N2 = 9, and for Level 2, Lev =
2, therefore the number N2 of BP values in the level is not divisible by 2:¢ without a remainder.

Specifically:
NEE mod 2"V = 9mod 22 =9mod 4 =1

The result of N2 mod 2-¢¥ can be used to indicate how many BP values should be moved out of the
level and into a different level. In this example, one BP value should be moved out of level 2.

In some examples, the condition NZE mod 2"¢V = 0 is satisfied by moving the highest-occurring BP
values in the level from level Lev to level Lev -1. In the present example, the most-occurring BP value,
1000, is moved from level 2 to level 1.

It will be appreciated that in other examples, the condition NB? mod 2"¢¥ = 0 may be satisfied by
adding additional BP values to the level (e.g. the lowest-occurring BP values from level Lev -1 are
moved to level Lev).

In this way, the levels are optimised such that the number of BP values in each level is a multiple of
2Le? or equal to 217, satisfying N2F, mod 21¢V = 0.

This process of determining whether the number NEZ of BP values in a level is divisible by 2.¢7 is
repeated for each level, from the highest level to level 0.

It is noted that for level 0, N2 mod 2t will always equal 0, because 2° is equal to 1. Therefore, the
condition N2F mod 2%¢¥ = 0 is always fulfilled for level 0, regardless of how many bit portion values
are present in level 0.

Preferred further conditions for optimising bit portion levels are described below.

An initial label 403 is assigned to each BP value based on its level, in a similar way to that shown in
Figure 5B.

The size in bits of each optimised initial label 403 is shown in Figure 5C, and from this the number of
bits used to represent the BP values in each level can be determined. This is given by the total
number of occurrences for a level multiplied by the optimised initial label size.

As can be seen from Figure 5B, the total number of bits used to represent the bit portions 205 of the
processing segment 203 is 483555 when labels are assigned to bit portions 205 based on
occurrences, without any optimisation of the levels. In contrast, as can be seen from Figure 5C, the
total number of bits used to represent the bit portions 205 of the processing segment 203 is 470687

10

15

20

25

30

32

when labels are assigned to bit portions 205 using optimised levels. This demonstrates that optimising
levels results in a higher achievable compression.

Figures 5D and 5E illustrate how the achievable percentage compression of the processing segment
is determined, based on a bit portion length Lgp of 4 bits and the frequency analysis shown in Figures
5B and 5C.

Figure 5D is a table which summarises the total possible bits used in the header 211 which is
assigned to the compressed portion 209. As shown in Figure 5D, this calculation is based on the
header 211 comprising a signature, and information on the bit portion length, combination array
configuration, and two types of label assignment information — “level counts” and “CA value
information”. A minimum and maximum size of each of these parts is determined, and summed in
order to provide minimum and maximum total sizes of the header 211.

Figure 5E is a table which shows the calculation of the achievable compression of the processing
segment 203 as a percentage of its original size. The maximum header size is used in this calculation
in order to ensure that the percentage compression is achievable.

As shown in Figure 5E, the determined achievable compression for the processing segment based on
a bit portion length Lgp of 4 bits is 10.20%.

Preferred conditions for optimising bit portion levels

In preferred embodiments, in addition to the condition defined by equation 1, level optimisation is
based on the following further conditions.

Firstly, the number of levels in a bit portion should not exceed the bit portion length:
NEevelsMAX — o Equation 2
Secondly, the maximum new bit portion value should equal a target maximum new bit portion value

MaxNewBPVal = TargetMaxNewBPVal Equation 3

Where the target maximum new bit portion value assigned to one or more bit portion values in a
processing segment is defined as follows:

TargetMaxNewBPVal = 21102 WEF*™]+1 _ 1 Equation 4

And where the maximum new bit portion value is defined as follows:

Lev=N5ge—1

NBP
MaxNewBPVal = 2 e |~ 1

Lev=0

Equation 5

10

15

20

25

30

35

Lyp is the bit portion length in bits;
N5evets is the number of levels into which the bit portions values of a bit portion 205 are divided;

NjgvelsMAXis the maximum number of levels into which the bit portion values of a bit portion 205 can
be divided,;

Lev is the level index, for example Lev = 0 for level 0 and Lev = 1 for level 1;

MaxNewBPVal is the maximum new bit portion value assigned to one or more bit portion values in a
processing segment

TargetMaxNewBPVal is the target maximum new bit portion value assigned to one or more bit portion
values in a processing segment;

NEP is the number of bit portion values in a level;

Splitting the analysed BP values into more levels, while still fulfilling the conditions above, typically
results in a smaller maximum new value and therefore smaller initial labels 403 being assigned to
each of the BP values. This allows greater compression to be achieved.

Method of selecting configuration of combination arrays

Figures 6A to 6D illustrate a method of determining which configuration of combination arrays 207 to
use once a bit portion length Lgp has been determined according to one or more of the methods
described above. The method involves dividing the bit portions 205 into combination arrays 207
according to different configurations and performing frequency analysis on the combination arrays, in
order to determine which configuration of combination arrays 207 has the best prospects for
compressing the processing segment 203.

In Figures 6A to 6D an exemplary bit portion length Lgp of 6 bits is used. As illustrated in Table 2,
above, a bit portion 205 having a bit portion length Lgp of 6 can be divided up into combination arrays
using 32 different configurations. Figure 6A provides a visual overview of how each bit portion 205 of
a processing segment 203 is divided into combination arrays 207 according to the first 8 combination
array (CA) configurations, the 29" CA configuration and the final (32"%) CA configuration.

As shown in Figure 6A, each of the possible CA configurations is assigned a reference number, in this
example starting at 0 for the CA configuration [1, 1, 1, 1, 1, 1] and continuing to 31 for the CA
configuration [6, 0, 0, 0, 0, 0].

Frequency analysis is performed on each of the combination array CA configurations, and it is
determined whether at least one of two criteria is fulfilled. The first criterion is whether the total
number of levels is greater than or equal to twice the number of arrays. The second criterion is
whether, for any of the combination arrays of a CA configuration, 50% or fewer of the possible
combination array values occur in the processing segment 203. These criteria are explained in further
detail below with reference to Figures 6B and 6C. The second criterion is whether at least one bit
value has an occurrence of 0 (i.e. there are no occurrences of the bit value within the processing
segment).

For the purpose of explanation, the combination array configuration [3, 3, 0, 0, 0, 0] (reference number
28) will be considered.

10

15

20

25

30

34

The configuration [3, 3, 0, 0, 0, 0] dictates that each bit portion 205 is divided into two arrays, each
comprising 3 bits.

As indicated in Figure 6A, the first array is denoted CA,, and the second array is denoted CA;.

It will be appreciated that as CAq and CA; are each 3 bits long, each can have any of 8 different
combination array values (CA values), as set out in Table 5, below.

Possible CA, | Possible CA; values
values (Lcao = 3) (Lca1 =3)
000 000

001 001

010 010

011 011

100 100

101 101

110 110

111 111
Table 5

For each CA configuration (such as number 28 presently being considered), all equivalent
combination arrays in the processing segment 203 are analysed collectively. For example, all the CAq
arrays defined by CA configuration 28 are analysed to determine their values. The frequency of
occurrence of each possible CA, value is determined, from which CA values can be assigned to
levels. This is illustrated in Figure 6B. The same analysis is done on all CA; arrays, as shown in
Figure 6C.

Considering Figure 6B in more detail, the number of occurrences of each possible CA value is
determined (i.e. the frequency of occurrence of each CA value within the segment). As shown, the
most occurring value 010 occurs 30,000 times in the processing segment 203 and the least occurring
value 100 occurs 3,981 times in the processing segment 203.

The CA, values are sorted in order of most occurring to least occurring (as long as more than 50% of
the CA, values have an occurrence greater than 0 within the processing segment). The default order
of CA values is from smallest to largest, and therefore when two CA values have the same number of
occurrences within a processing segment (which may be, for example, zero), the CA values are not
sorted and accordingly will remain in size order.

The number of compression levels is then determined based on the number of occurrences of each of
the CA, values. In preferred embodiments, a “level” is defined as being a group of bit portion values in
which none of the bit portion values occur less than half as frequently as the most occurring bit portion
value in that group. In the example shown in Figure 6B, the most occurring CA, value occurs 30,000
times, and the second most occurring CAp value occurs 20,000 times which is more than half of
30,000 and therefore both of the most occurring values are assigned to the same level (Level 0).

The third most occurring CAp value, 001, occurs 9,000 times within the processing segment 203.
Since 9,000 is less than half of 30,000, the third most occurring CA, value 001 is assigned to a
second level — Level 1.

10

15

20

25

30

35

40

35

As 9,000 is the highest occurring value in Level 1, any CAq values with an occurrence of less than
4,500 will be assigned to a different level. As shown in Figure 6B, the sixth most occurring CAq value,
110, has an occurrence of 4,400, and therefore it is assigned to a third level — Level 2. No CA, values
have an occurrence of less than 2,200, and therefore CAp has three levels in total.

Next, considering Figure 6C in more detail, the second combination array CA, is analysed in the same
way as for CAy in Figure 4B. The frequency of occurrence of each possible CA, value is determined.
As shown, the most occurring value 011 occurs 19,000 times in the processing segment 203 and the
least occurring value 101 occurs 9,000 times in the processing segment 203.

In a similar way as performed for CAq, the CA4 values are sorted in order of most occurring to least
occurring (as long as more than 50% of the CA; values have an occurrence greater than 0 within the
processing segment).

The number of compression levels is then determined based on the number of occurrences of each of
the CA values.

Using this technique for defining levels, it is found that the total number of levels for CA; is two levels.

The total number of levels for the CA configuration 28 [3, 3, 0, 0, 0, 0] is therefore 5 levels (3 levels for
CAq + 2 levels for CA4).

Turning back to Figure 6A, the total number of levels for CA configuration 28 can be seen in the “total
no. of levels” column. The “2x number of arrays” column indicates 4 for CA configuration 28 (as there
are two combination arrays), and therefore the first criterion is fulfilled - the total number of levels is
greater than twice the number of arrays.

It can be seen from Figures 6B and 6C that all the possible CA, values and all the possible CA, values
occur in the processing segment 203, and therefore the second criterion is not fulfilled — for both of the
combination arrays, more that 50% (in fact 100%) of the possible combination array values occur in
the processing segment 203.

Figure 6D illustrates that CA configuration 28 is treated at the chosen configuration, based on the
analysis performed in Figures 6B and 6C. The chosen CA configuration is then used to compress the
whole processing segment 203, by assigning labels to each of the bit portions 205 in the processing
segment 203, where the labels are generated by splitting the bit portions 205 up into combination
arrays 207 in accordance with CA configuration 28. This method of compressing the processing
segment 203 is explained further below.

After the processing segment 203 is compressed using the chosen CA configuration, it is checked
whether the compression has been successful (e.g. whether any compression has been achieved, or
whether the compression is greater than a predefined threshold). If it is determined that compression
has not been successful, the method will return to analysing CA configurations as shown in Figure 6A,
and a new CA configuration is chosen for use in compressing the processing segment 203.

If none of the possible CA configurations fulfil either of the two criteria, then the processing segment
203 is not compressed and is output by the compression apparatus 105 in its original form.

In some alternative embodiments, if none of the possible CA configurations fulfil either of the two
criteria, a new bit portion length is selected using one or more of the methods described above. A new
CA configuration can then be chosen based on the two criteria for selecting CA configurations. In such

10

15

20

25

30

35

36

cases, it is preferable to set a processing time limit for attempting to compress a single processing
segment, where expiry of the time limit results in the processing segment 203 not being compressed
and being output by the compression apparatus 105 in its original form.

Furthermore, if none of the chosen CA configurations are found to result in successful compression,
the processing segment 203 is not compressed and is output by the compression apparatus 105 in its
original form.

Why Combination Arrays are used

In a similar way to assigning levels to bit portions (explained above), the level in which a CA value is
placed affects how large the disambiguation value assigned to the CA value can be.

In preferred embodiments, CA values in the 1% level (level 0) are not allocated disambiguation values,
and therefore all new CA values assigned to CA values in Level 0 must be unique.

It is noted that a bit portion having only 2 levels may not be able to be compressed using only the bit
portion, or using a single combination array comprising all the bits of the bit portion (unless not all bit
portion values, or not all CA values, occur within the processing segment 203). In such cases dividing
the bit portion up into a plurality of combination arrays can allow compression to be achieved.

It is also noted that the higher the number of levels, the more compression will be achieved, because
the resulting label will be smaller.

Frequency analysis is performed on the bit portions 205. In preferred embodiments, the bit portions
205 are sub-divided up into smaller combination arrays 207 and frequency analysis is also performed
on these combination arrays 207. For example, the bit portion 205 may be divided up into a left hand
part and a right hand part, such as combination arrays CAy and CA; in Figures 4B and 4C. The
frequency analysis of the left hand parts (the CA; values) allows the most occurring left hand part to
be determined. Similarly, the frequency analysis of the right hand parts (the CA; values) allows the
most occurring right hand part to be determined.

In preferred embodiments, the labels assigned to the bit portions are not only dependent on the
frequency of occurrence of the whole bit portions, but also on the frequency of occurrence of the
combination arrays which make up the bit portions. Therefore, in the example where the bit portion
205 is divided up into a left hand part and a right hand part, the most occurring left hand part of the bit
portion will be associated with the smallest new CA, values, and the most occurring right hand part of
the bit portion will be associated with the smallest new CA, value. Typically labels generated based on
analysis of combination arrays will allow greater compression than labels generated only based on
analysis of bit portions.

Also, breaking up bit portions 205 into combination arrays 207 allows the header 211 to use fewer
bits. For example, consider a bit portion comprising 5 bits. Table 6 illustrates two possible CA
configurations which can be used for a bit portion length of 5 bits — [5,0,0,0,0] and [2,3,0,0,0].

As shown in Table 6, if a CA of length 5 bits is used, the number of possible CA values (and BP
values as in this case the combination array is the same as the bit portion) is:

2boa = 25 =32

10

15

20

25

30

37

For each of the 5 combination arrays, in the biggest header format all of the possible CA values are
written out in order of occurrence, and therefore the maximum number of bits used for CA values
within header is 32 * 5 = 160 bits in total.

As shown in Table 6, if two CAs of length 2 and 3 bits are used, the number of possible CA values
(and BP values as in this case the combination array is the same as the bit portion) for CA length 2 is:

2Lcao = 22 = 4

The number of possible CA values (and BP values as in this case the combination array is the same
as the bit portion) for CA length 3 is:

2Lcar =23 =g

For each of the 2 CA, combination arrays, in the biggest header format all of the possible CA values
are written out in order of occurrence, and therefore the maximum number of bits used for CA values
within header is 32 * 5 = 160 bits in total.

Table 6 illustrates the maximum number of bits used for CA values within the header for the bit portion
alone (which can considered as a combination array comprising 5 bits) and for the bit portion being
divided in to two combination arrays of 2 bits and 3 bits respectively.

CA configuration | Maximum no. of bits used for
CA values within header

[5,0,0,0,0] 160 bits in total (32 * 5)
[2,3,0,0,0] 32 bits in total (4 *2) + (8 * 3)
Table 6

As can be seen in Table 6, dividing the bit portion up into combination arrays results in fewer bit being
used for the CA values in the header.

Method of Assigning labels to Bit Portion Permutations using Combination Arrays

Figures 7A and 7B illustrate a first part of a method of assigning labels to the permutations of bits
represented by bit portions 205, and hence to the corresponding bit portions 205, once a combination
array CA configuration has been selected according to the method illustrated in Figures 6A to 6D.

In this example, the CA configuration 28 [3,3,0,0,0,0] was selected (as shown in Figure 6D), which
means that each bit portion 205 is split up into two combination arrays — CAy and CA;. Figures 7A and
7B illustrate how, for each possible CA, value and each possible CA, value, a new CA value 701 and
a disambiguation value 703 is assigned. Figure 10, described below, illustrates how these new CA
values 701 and disambiguation values 703 are used to generate labels for bit portion permutations.

The way in which new CA values 701 and disambiguation values 703 are assigned to CA values is
similar to the way in which new BP values and disambiguation values are assigned to bit portion
values, as shown in Figures 5B and 5C.

As stated above, the level to which a CA value is assigned affects how large the disambiguation value
703 assigned to the CA value can be.

10

15

20

25

30

38

The CAp and CA; values are initially assigned occurrence based levels, as explained above in
reference to Figures 6B and 6C. However, in preferred embodiments, before new CA values 701 and
disambiguation values 703 are assigned, the division of the CA; and CA; values into levels is
optimised. The optimisation of levels for CA values follows a similar principle to optimisation of bit
portion values, as described above.

A general aim of level optimisation is to ensure that the number N4, of CA values in each level is
divisible by 2'¢” without remainder, where Lev is the level. This ensures efficient use of the assigned
new CA values and disambiguation values.

This can be represented mathematically as:
NFA mod 24V = 0 Equation 6

For example, as shown in Figure 6B, Level 2 includes 3 CA values, so N4 = 3, and for Level 2, Lev
= 2, therefore the number N54 of CA values in the level is not divisible by 2-¢” without a remainder.

Specifically:
NFA mod 21V = 3 mod 22 =3 mod 4 =3

In some examples, the condition N£24 mod 2"¢V = 0 is satisfied by moving the highest-occurring CA
values in the level from level Lev to level Lev -1. In other examples, the condition N4 mod 2%¢¥ = 0
may be satisfied by adding additional CA values to the level (e.g. the least-occurring CA value(s) from
level Lev -1 are moved to level Lev).

In the present example, the least-occurring CA value, 101, from level 1 is moved to level 2.

In this way, the levels are optimised such that the number of CA values in each level is a multiple of
2Lev or equal to 2197, thus satisfying NS4, mod 2L¢ = 0.

This process of determining whether the condition N54, mod 2L¢” = 0 is satisfied is repeated for each
level of each combination array, in this example combination arrays CAg and CA;.

As described in relation to optimising levels of BP values, for level 0, N4 mod 2V will always equal
0, because 2° is equal to 1. Therefore, the condition N4 mod 24V = 0 is always fulfilled for level 0,
regardless of how many CA values are presentin level 0.

Preferred further conditions for optimising CA levels are described below.

In Figures 7A and 7B, the levels of CAg; and CA; are optimised using the condition above and the
further preferred conditions for optimising described below.

Once the levels of CA; and CA4 have been optimised, each of the CAy and CA, values can be
assigned a new CA value 701 and a disambiguation value 703.

As described below, where a bit portion permutation is made up of a particular CA, value and a
particular CA4 value, the new CA values 701 and disambiguation values 703 associated with the CAg
value and the CA; value are combined to generate a label for the bit portion value represented by that
permutation.

10

15

20

25

39

In a simplified example, the CA, value 011 may be assigned a new CA value of 2, and a
disambiguation value of 1. The CA; value 101 may be assigned a new CA value of 3, and a
disambiguation value of 2.

To generate a label for the bit portion permutation 011101, the new CA values and disambiguation
values for the CA values 011, 101 are combined. Specifically, new CA values 2 and 3 are combined
by addition to give a combined new CA value of 5. New disambiguation values 1 and 2 are combined
by addition to give a combined disambiguation value of 3. The label for bit portion permutation 011101
is created using the combined new CA value and the combined disambiguation value, so the label is
5, 3 — which is preferably represented in binary, as 10111. The bit portion permutation 011101,
comprising 6 bits, is therefore represented using the label 10111, which comprises 5 bits. As the label
comprises fewer bits that the bit portion permutation it represents, compression is achieved for all bit
portions 205 having bits arranged in that bit portion permutation.

As can be seen in Figures 7A and 7B, new CA values 701 are assigned based on the level a CA
value is in, in a similar way to assigning new BP values as described above. As a general rule, the
lower the level (where Level 0 is the lowest), the fewer CA values are assigned the same (repeated)
new CA value. In this embodiment, maximum number of repetitions of a new CA value is set to be
2tev where Lev is the level of the CA values being assigned new values. This ensures that the
maximum instance of CV values with a high frequency of occurrences is small and the maximum
instance of CV values with a low frequency of occurrence is larger. For example, in level 3, the same
new CA value can be assigned to up to 8 CA values.

A more general example of new CA value repetition is shown in Table 7, below.

CA CA Level New CA Value
Value

ao Level 0 jo
a; Level 0 in
a, Level 0 iz
as Level 0 is
as Level 0 ja
as Level 1 Is
ag Level 1 is
as Level 1 is
ag Level 1 i6
ag Level 2 iz
ag Level 2 i
an Level 2 iz
an Level 2 i
Table 7

As shown in Table 7, each new CA value is repeated 2'¢” times. In level 0, new CA values are
repeated 2° = 1 times each. In level 1, new CA values are repeated 2" = 2 times each. In level 2, new
CA values are repeated 22 = 4 times each.

10

15

20

25

30

35

40

40

Since the assigned new CA values do not unambiguously identify an associated CA value in all cases,
a disambiguation value is used to identify a particular one of the multiple CA values associated with
the same new CA value.

The condition that the maximum number of repetitions of a new CA value in a level is 2"¢V ensures
that the most frequently occurring CA values are assigned the shortest disambiguation values. For
example, the CA values in the first level (Level 0) are each assigned unique new values, since 2° = 1
(as can be seen in Figures 7A and 7B). No disambiguation values are therefore used for CA values in
level 0.

When assigning new CA values 701 to the CA values in level 1 onwards, the same new CA values
701 can be assigned to multiple CA values. Where this re-use of new CA values 701 occurs, the
number of disambiguation values 703 which are needed corresponds to the number of bit portion
values which have been assigned the same new bit portion value.

Considering Figures 7A in detail, in CAg the two CA values in level 0 are assigned new CA values of 0
and 1 respectively. The instance column in Figure 7A provides a count of new CA values, starting at
0. As can be seen from the instance column, there is only a single instance of each of the level 0 CA
values. Therefore, no disambiguation information is assigned to either of the level 0 CA values.

The two CA values in level 1 are both assigned a new CA value of 2, and therefore the first (e.g. most
occurring) level 1 CA value is assigned an instance value of 0 and the second (e.g. next most
occurring) level 1 CA value is assigned an instance value of 1. Disambiguation values 703 are also
assigned to the CA values. In this first combination array, CA,, the disambiguation values can simply
use the instance values, as there are no previous combination arrays to affect the disambiguation
values.

In Figure 7A there are four CA values in level 2, and therefore these CA values are all assigned a new
CA value of 3, and disambiguation values of 0, 1, 2 and 3, corresponding to their instance values.

Considering Figure 7B in detail, in CA; level 0 contains two CA values, and each is assigned a new
CA value with a single instance - in this case the new CA values are 0 and 4 respectively. The two CA
values in level 1 of CA4 are assigned a new CA value of 8, while the four CA values in level 2 of CA4
are assigned a new CA value of 12.

The new CA values assigned in CAg; and CA; are selected such that any combination of new CA
values from each of the combination arrays results in a unique combined new CA value.

Figures 8A to 8D are tables detailing possible combined new CA values with their corresponding new
CAq values and new CA, values.

Figure 8A is a table detailing every possible combination of new CA, values and new CA, values for
the example illustrated in Figures 7A and 7B. As can be seen, the resulting combined new CA values
contain no repetitions. Each combined value uniquely identifies a particular combination of a new CAg
value and a new CA; value — for example the combined new CA value 7 can only be arrived at by
combining new CA values 3 and 4 (using addition in this embodiment).

The new CA, values are consecutively numbered from 0 to 3, while the new CA, values are multiples
of 4, from 4*0 to 4*3. As can be seen Figure 8A, this results in efficient assigning of combined new CA
values, because all the resulting values are consecutive, thus ensuring that the largest combined new
CA value is as small as it can be (15 in this example).

10

15

20

25

30

35

41

More generally, the new CA values assigned for a combination array are multiples of the highest new
CA value in the previous array + 1.

Figure 8B shows the combined new CA values for the example illustrated in Figures 7A and 7B in
binary. The number of binary bits used to represent each of the combined new CA values is based on
the size of the maximum combined new CA value, which in this example is 15. The number 15 is
represented using four bits in binary (1111) and therefore all combined new CA values are
represented using four bits.

Figure 8C shows generalised new CA values for CAg and CA; where CA, is assigned new CA values
from X, to X, and CA; is assigned new CA values from Y, to Y,. As can be seen in Figure 8C, in
preferred embodiments the combined new CA values are generated by adding the corresponding new
CAg and CA values together.

Figure 8D shows a further generalised way of assigning combined new CA values. In this Figure,
each of the combined new CA values are unique (represented by values z, to z4g), however these
values can be generated using any method and are not necessarily generated by adding together new
CA values of CAg and CA;.

As can be seen from Figure 7A and 7B, the way in which the disambiguation values 703 are assigned
for a configuration array depends on the disambiguation values 703 used in the previous combination
array. In Figure 7B, the “Instance” column shows the same Instances as Figure 7A. However, the
three disambiguation value columns in Figure 7B show how the disambiguation values of CA; change
based on the previous combination array, CA,.

In a similar way as described above in relation to new combination arrays, the disambiguation values
of combination arrays, such as CAg and CA4, are combined to generate a combined disambiguation
value.

The disambiguation values assigned in CA; and CA, are selected such that any combination of
disambiguation values from each of the combination arrays results in a unique combined
disambiguation value. Furthermore, the disambiguation values are preferably selected such that the
smallest possible integers are used as disambiguation values, while still resulting in unique combined
disambiguation values.

This can be seen in Figure 9, which is a table detailing possible combination of CA, disambiguation
values and CA; disambiguation values, and the resulting combined disambiguation values,
represented in binary.

As can be seen, the disambiguation values associated with the combination array depends on the
level of the CA values being combined.

If both of the new CA, and CA; values are in level O, there are no disambiguation values to be
combined. This means that the resulting label for the bit portion permutation corresponding to such
CA values will include a combined new CA value (in this example comprising four bits) but will not
include a combined disambiguation value. The new CA values in level 0 are the most occurring values
and therefore this method of generating labels ensures that the bit portions comprising the most
occurring CA values will be assigned the shortest labels.

10

15

20

25

30

35

40

42

In all other instances, Figure 9 shows the possible CA disambiguation values for each combination
array and the resulting combined disambiguation values for the example illustrated in Figures 7A and
7B.

As can be seen, the disambiguation values for CA, are 0-1 for level 1 and 0-3 for level 2. The
disambiguation values for CA, for level 1 can be 0-1, 0 and 2, or 0 and 4; while for level 2 the
disambiguation values can be 0-3; 0, 2, 4 and 6; or 0, 4, 8 and 12.

This ensures that all the resulting combined disambiguation values contain no repetitions. Each
combined disambiguation value uniquely identifies a particular combination of a CA, disambiguation
value and a CA; disambiguation value. Furthermore, as can be seen Figure 9, this results in efficient
assigning of combined disambiguation values, because all the resulting combined disambiguation
values in each table of Figure 9 are consecutive, thus ensuring that for each possible combination of
disambiguation values the largest combined disambiguation value is as small as it can be (maximums
may be 1, 11, 111 or 1111 in this example).

More generally, the disambiguation values assigned for the CA; combination array are multiples of the
highest disambiguation value in CA, + 1 (with the multiples starting at 0).

The number of bits used to represent each combined disambiguation value depends on the maximum
combined disambiguation value for the levels being combined. For example, combining the
disambiguation value 2 from level 2 of CAg and 4 from level 2 of CA; results in a combined
disambiguation value of 6 which is represented in binary using 4 bits as 0110 because the maximum
combined disambiguation value for combining CAg level 2 with CA, level 2 is 15 which in binary using
4 bits is 1111. It can be seen in Figure 9 that by adding together the levels associated with each
combination array determines the length, in bits, of the combined disambiguation values, for example
combining CAq level 1 with CA4 level 2 results in a 3 bit disambiguation length.

Generally, the higher-occurring the CA values being combined are, the fewer bits will be present in the
combined disambiguation value. As explained above, the bit portions comprising the most occurring
CA values will be assigned the shortest labels, in which the labels do not include disambiguation
information.

Figure 10 illustrates how labels are assigned to bit portions permutations, by dividing the bit portion
into combination arrays according to the chosen CA configuration and combining the new CA values
and instance values associated with the combination array values of each of the combination arrays
207 of the bit portion 205.

As shown in the example of Figure 10, the length of the first part (the “Combined new CA value”) in
bits remains constant for all bit portion values in a processing segment 203, while the length of the
second part can vary, or the second part may not be used at all to identify some bit portion values.

Advantageously, using labels in which the length of the first part is constant means that during
decompression the labels can be read more easily by the decompression apparatus 505, for example
requiring less processing power, compared to existing compression methods which use labels which
are based on prefix code alone.

This is because the decompression apparatus does not need to analyse each individual incoming bit
in order to determine the division between labels. Instead, the decompression apparatus 505 can
determine from the header 211 how many bits the first part of each label will comprise (for example in
Figure 10 the first part always comprises 4 bits, for instance 0000). It can also determine from the

10

15

20

25

30

35

40

header how many instance bits (if any) will follow a first part from the value of the first part itself (e.g.
first part 0010 in Figure 10 is always followed by one bit - eithera O ora 1).

Figure 11 is a table listing all of the possible bit portions of length L, = 6 bits and the labels assigned
to each bit portion permutation, based on the combination arrays CAy and CA; in Figures 7A and 7B.
As can be seen, the labels vary in length from 4 bits to 8 bits. The 4 bit labels are associated with the
most occurring combined CA values, while the 8 bit labels are associated with the least occurring
combined CA values. As explained above, the most occurring CA values do not have any
disambiguation value assigned, and therefore the 4 bit labels associated with the most occurring
combined CA values comprise only the combined new CA value part, without a combined
disambiguation value part.

The labels made up of 5, 6, 7 and 8 bits all comprise a 4 bit combined new CA value part, along with a
combined disambiguation value part which comprises 1, 2, 3 or 4 bits respectively.

It is noted that bit portions with 4 bit labels occur approximately twice as frequently as bit portions
assigned a 5 bit label, four times as frequently as bit portions assigned a 6 bit label, eight times as
frequently as bit portions assigned a 7 bit label and sixteen times as frequently as bit portions
assigned an 8 bit label. This is because each additional bit in the disambiguation value represents an
approximate halving of frequency of occurrence of the combined combination values. This is in turn
due to the fact that the disambiguation value assigned to each CA value, for example as shown in
Figures 7A and 7B, is based on the level of the CA value, which is determined based on frequency
analysis. It is noted that the effect of optimising levels means that the halving of frequency between
successive levels is only approximate.

Figures 12A to 12D are examples of generating new CA values (and disambiguation values) for bit
portions having a bit portion length Lge of 8 bits, using a CA configuration of [5,3] — a five bit
combination array and a three bit combination array.

Figures 12A shows the new CA values assigned to the original CA values of the 5-bit CA, and the 3-
bit CA; combination arrays. The CA values of the 5-bit CAy are divided into 3 levels, and the CA
values of the 3-bit CA; are also divided into 3 levels.

Figure 12A shows that the resulting maximum combined new CA value would be 63. This value can
be representing in binary using 6 bits, and therefore the minimum bits label length is 6 bits.

The combined new CA values are generated by combining the two combination arrays - 5-bit CAq and
3-bit CA1 — which each have 3 levels, and therefore the total number of levels in the combination
arrays is 6.

Figure 12B shows the possible disambiguation value lengths (in bits) in relation to the levels of the
CAq and CA4 values being combined in Figure 12A.

It can be seen in Figure 12B that each disambiguation value length (in bits) is the sum of levels of the
CA values being combined — for example combining CA, level 1 with CA; level 2 results in a 3 bit
disambiguation length.

The greatest number of bits used for the combined disambiguation values can also be determined by
subtracting the number of arrays being combined from the total number of levels in the arrays. In this
case, the total number of levels in the combination arrays is 6, and the number of arrays being
combined is two, to the maximum combined disambiguation length is 4 (6 — 2 = 4).

10

15

20

25

30

35

44

As all combined CA values comprise 6 bits, the label length (in bits) is shown in Figure 12B as the
disambiguation bit length + 6.

As can be seen from Figure 12B, only 3 combinations have an label bit portion length of more bits
than the input bit portion length (8 bits), meaning that 67% of the labels are either the same size or
smaller than the input bit portion length.

In in Figure 12C, the same CA configuration of [5,3] is used, however in this example the 5 bit
combination array has been changed to use 4 levels instead of 3.

Figure 12C shows that the resulting maximum combined new CA value would be 31. This value can
be representing in binary using 5 bits, and therefore the minimum bits label length is 5 bits.

The combined new CA values are generated by combining the two combination arrays - 5-bit CAq and
3-bit CA1 — which have 4 and 3 levels respectively, and therefore the total number of levels in the
combination arrays is 7.

Figure 12D shows the possible disambiguation value lengths (in bits) in relation to the levels of the
CAg and CA, values being combined in Figure 12C.

It can be seen in Figure 12D that each disambiguation value length (in bits) is the sum of levels of the
CA values being combined — for example combining CA, level 3 with CA4 level 1 results in a 4 bit
disambiguation length.

The greatest number of bits used for the combined disambiguation values can also be determined by
subtracting the number of arrays being combined from the total number of levels in the arrays. In this
case, the total number of levels in the combination arrays is 7, and the number of arrays being
combined is two, to the maximum combined disambiguation length is 5 (7 — 2 = 5).

As all combined CA values comprise 5 bits, the label length (in bits) is shown in Figure 12B as the
disambiguation bit length + 5.

As can be seen from Figure 12D, only 3 combinations have an label bit portion length of more bits
than the input bit portion length (8 bits), meaning that 75% of the labels are either the same size or
smaller than the input bit portion length.

It is noted that even though the number of levels used for CAq in Figures 12C and 12D has increased
from 3 to 4, the maximum label size in bits remains at 10 bits.

Preferred conditions for optimising CA levels

In preferred embodiments, level optimisation is based on the following conditions.
Firstly, the number of levels in a combination array should not exceed the combination array length:
NEevelsMax — Equation 7
Secondly, the number N54, of combination array values in each level should be divisible by 2"V
NfFA mod 28V = 0 Equation 8

Thirdly, the maximum new combination array value assigned to one or more values in a combination
array should equal a target maximum new combination array value.

10

15

20

25

30

45
MaxNewCAVal = TargetMaxNewCAVal Equation 9

Where the target maximum new combination array value assigned to one or more combination array
values is defined as follows:

TargetMaxNewCAVal = 21log:(Nea*™)]+1 _ 1 Equation 10
And the maximum new combination array value is defined as follows:
Lev=NEg"els 1

NCA
MaxNewCAVal = Z i |~ 1

Lev=0

Equation 11
L¢4 is the combination array length in bits;

NEevels is the number of levels into which the combination array values of a combination array 207 are
divided;

NEevelsMAX g the maximum number of levels into which the combination array values of a combination
array 207 can be divided;

Lev is the level index, for example Lev = 0 for level 0 and Lev = 1 for level 1;

MaxNewCAVal is the maximum new combination array value assigned to one or more combination
array values in a processing segment

TargetMaxNewCAVal is the target maximum new combination array value assigned to one or more
bit portion values in a processing segment;

NFA is the number of combination array values in a level;

However, in some situations not all conditions can be met. For example, if only two levels are present,
it may not be possible for the maximum new combination array value to equal the target maximum
new combination array value, but all other conditions can be met. In such situations, for example in
Figure 5B, the combination array configuration can still be used, as compression is still achievable.

Splitting the analysed CA values into more levels generally results in a smaller maximum new value
and ultimately smaller labels being assigned to bit portions.

Hard-to-compress data

It is possible to achieve compression using the above described methods even if the frequency of
occurrence of BP/CA values is substantially even across all possible BP/CA values and thus all
BP/CA values exist in the same level, so long as at least one of the BP values and/or CA values has
an occurrence of 0.

Compression can be achieved in such cases by assigning one of the BP values and/or CA values to a
different level (e.g. assigning the first BP/CA value to level 0 and all others to level 1). This causes the
first BP and/or CA value to be assigned fewer disambiguation value bits than the remaining BP and/or
CA values (for example, the BP value in level 0 may not be assigned a disambiguation value, and as

10

15

20

25

30

46

a result the label assigned to the BP value in level 0 will be 1 bit in length smaller than the BP values
in level 1).

For example, using a bit portion length of 8 bits, the BP value of level 0 is assigned a new BP value of
0000000 with no disambiguation information. This level 0 BP value is therefore assigned a label which
is 7 bits long; 1 bit shorter than the original 8 bits of the BP value. The remaining BP values are
assigned new BP values of 1-127 (0000001 — 1111111), each with a disambiguation value of either 0
or 1. Therefore, the level 1 new BP values are assigned labels with 8 bits, which is the same number
of bits as the original BP values.

Due to the relatively small size of the header in most situations, compression can still be achieved
even if BP/CA value in level 0 has exactly the same number of occurrence as all other BP/CA values.
This occurs more often when using smaller bit portion lengths because the occurrence values are
higher and offset the header size. It is noted that that the BP/CA values are preferable not sorted to
achieve this compression, in order to avoid having to use a larger header to indicate how the BP/CA
values have been sorted. Therefore, the BP/CA value assigned to a different level (e.g. level 0) need
not be the most occurring.

It should be noted that for each additional BP value and/or CA value that is not in use (occurrence is
0), the compression which can be achieved increases.

For example, if two BP/CA values have an occurrence of 0, the first two BP/CA values can be
assigned to level 0 and the remaining BP/CA values would be assigned to level 1. The result would be
that the two new BP/CA values in level 0 are assigned labels which are 1 bit shorter than the original
BP/CA values. All other BP/CA values would be assigned labels which are the same length as the
original BP/CA values.

For a substantially evenly distributed processing segment, new BP/CA values and disambiguation
values are assigned in the same way, until the point at which 50% of the available BP/CA values be
not in use. At this point, all BP/CA values can be assigned to level 0 and compression can still be
achieved.

If more than 50% of the BP/CA values have an occurrence of 0, higher compression can be achieved
by assigning new BP/CA values and disambiguation values are in the same way as described above.
At this point each additional BP/CA value with an occurrence of O can be assigned to level 0, resulting
in labels which are two bits shorter. The other BP/CA values can be assigned to level 1, resulting in
labels which are one bit shorter than the original BP/CA values.

Number of BP/CA values | No. of bits saved in level | No. of bits saved in level
with occurrence greater | 0 1

than 0

128 to 255 1 bit less 0 bit less

64 to 127 2 bits less 1 bit less

32 10 63 3 bits less 2 bits less

16 to 31 4 bits less 3 bits less

8to15 5 bits less 4 bits less

4t07 6 bits less 5 bits less

1103 7 bits less 6 bits less

Table 10

10

15

20

47

Table 10 shows the number of bits saved for a BP/CA with length of 8 bits, depending on the number
of BP/CA values with occurrence greater than 0.

Bit Portion Length | Number of different possible | Expected number of occurrences of

(in bits) BP values (i.e. permutations | each possible BP value in a
of bits) processing segment of length 64KB

1 2 262144

2 4 65536

3 8 21846

4 16 8192

5 32 3277

6 64 1366

7 128 586

8 256 256

9 512 114

10 1024 52

11 2048 24

12 4096 11

13 8192 5

14 16384 3

15 32768 2

16 65536 1

Table 11

Table 11 shows the expected number of occurrences of each possible BP value in a processing
segment of length 64KB, where all possible BP values occur in the processing segment, and the
frequency of occurrence of BP values is substantially even across all possible BP values. For
example, if the bit portion length is 1, each of the possible BP values (0 and 1) would be expected to
occur 262144 times in the processing segment of 65536 bytes (64KB).

In the case where the frequency of occurrence of BP values is substantially even across all possible
BP values, but at least one BP value does not occur, the number of bits which can potentially be
saved is the expected number of occurrences of each possible BP value in a processing segment
shown in Table 11 above (less the size of the header). For example, for a bit portion length of 3, if only
7 of the 8 possible BP values occur in the processing segment, 21846 bits could potentially be saved
(less the size of the header). As long as the header does not exceed the expected number of
occurrences, compression can be achieved.

The expected number of occurrences of each possible BP value in Table 11 is given by:

BP _ __Lps .
Noccurrences = m Equation 12

Where:
Lps is the processing segment length in bits.

Table 12 shows the expected number of occurrences of each possible CA value for a bit portion
length of 4 bits.

10

15

20

25

48

Bit Portion Combination Number of Expected number of occurrences of

Length (in array Length (in different possible | each possible CA value in a

bits) bits) CA values (i.e. processing segment of length 64KB
permutations of
bits)

4 1 2 65536

4 2 4 32768

4 3 8 16384

4 4 16 8192

Table 12

The possible CA configuration for a bit portion length of 4 are [1,1,1,1], [1,1,2,0], [1,2,1,0], [1,3,0,0],
[2,1,1,0], [2,2,0,0], [3,1,0,0], [4,0,0,0]. Therefore, as shown in Table 12, CA lengths of 1, 2, 3 and 4 are
possible.

Table 12 shows the expected number of occurrences of each possible CA value in a processing
segment of length 64KB, where all possible CA values occur in the processing segment, and the
frequency of occurrence of CA values is substantially even across all possible CA values. For
example, if the CA length is 1, each of the possible CA values (0 and 1) would be expected to occur
65536 times in the processing segment of 65536 bytes (64KB).

In the case where the frequency of occurrence of CA values is substantially even across all possible
CA values, but in one combination array at least one CA value does not occur, the number of bits
which can potentially be saved is the expected number of occurrences of each possible CA value in a
processing segment shown in Table 12 above (less the size of the header). For example, for a CA
length of 3, if only 7 of the 8 possible CA values of a combination array occur in the processing
segment, 16384 bits could potentially be saved (less the size of the header). As long as the header
does not exceed the expected number of occurrences, compression can be achieved.

The expected number of occurrences of each possible CA value in Table 12 is given by:

CA __ Les .
Noceurrences = Lppx2Lca Equation 13

Header Structure
Figures 13A to 13D are simplified representations of four exemplary header structures.

As stated previously, preferably, each header starts with a compression method signature, and
provides information relating to the chosen bit portion length Lgp, the combination array configuration
used, the size of the original processing segment 203, and information on how labels were assigned
to each of the bit portions 205. Figures 13A to 13D are preferred header structures.

Header Format 0

As shown in Figure 13A, the header starts with a signature. In this example, the signature is referred
to as a “SISP” signature, which is an exemplary trade name for the presently described compression
method. The “SISP” signature is 32 bits long.

10

15

20

25

30

35

49

The header also specifies the bit portion length Lgp, which in this example is allocated 4 bits in the
header (and therefore, in this example, the bit portion length Lgp can be a maximum of 16 bits). The
number of bits allocated to the bit portion length Lgp in the header may be CPU dependent.

The CA configuration is also specified in the header, which uses Lgp bits. Preferably, the CA
configuration is specified by its reference number, which (in combination with knowledge of the bit
portion length Lgp) unambiguously identifies the CA configuration used to assign labels to the bit
portions 205.

Furthermore, the size of the processing segment (in bytes) is specified, and in this embodiment the
processing segment size can be between 0 and 65535 bytes because the length of the processing
segment size part of the header is 16 bits as shown.

Also, in preferred embodiments, multiple different header formats can be used (e.g. 3). The header
format can be chosen based on which will result in the smallest total header size for a processing
segment. Therefore, the header includes a part comprising two bits for indicating the header choice.

As described above, the CA configuration may use any number of arrays within a range, where the
range is from one array to Lgp arrays (Lgp arrays would occur when all arrays are one bit in size). The
header contains information relating to each of the combination arrays in the combination array
configuration, and therefore as a minimum the header will contain CA, information if only one array is
used by the CA configuration.

In the example given in Figure 13A, the CA configuration uses more than one array, and therefore the
combination array information comprises CA, information through to CA,, information.

As shown, the CA, information comprises a count for each of levels 0 to Lcao, Where the count
indicates how many CAg values are present in the respective level. The count can be from level 0 to
level Lcag because the maximum number of levels in a combination array is length of the combination
array in bits (Lca).

The CA, information further comprises a single bit indicator to indicate whether the CAq values are
sorted (e.g. by frequency of occurrence).

The CAy information also comprises frequency of occurrence information, which indicates the rankings
of CAp values and whether they are in use.

Specifically, if the CA values have been sorted, all possible CA values are written out in order of
occurrence, including any CA values having an occurrence of 0.

If the CA values have not been sorted, then a single bit for each possible CA value is written out in
unsorted order, where a value of 0O represents no occurrences of the CA value and a value of 1
represents one or more occurrences of the CA value.

As shown, the CA, information comprises the same information fields as the CA, information.

It will be appreciated that equivalent information as the CAq information and CA,, information will be
included in the header for any intervening combination arrays present in the CA configuration.

Header Format 1

10

15

20

25

30

35

50

Figure 13B illustrates header format 1. The header format contains the same parts as header format
0, with the exception of the frequency of occurrence information.

Specifically, for header format 1, if the CA values have been sorted, a single bit for each possible CA
value is written out in unsorted order, where a value of O represents no occurrences of the CA value
and a value of 1 represents one or more occurrences of the CA value. In addition to the occurrence
indicating bit, additional bits may be included after this bit, depending on whether or not the
occurrence is 0 and whether the CA value has been swapped with another CA value. If the
occurrence of a CA value is greater than 0 and the CA value has not been swapped, a “swap
indicator” bit of 0 is included after the occurrence indictor bit. If the occurrence of a CA value is greater
than 0 and the CA value has been swapped, then a “swap indicator” bit is included after the
occurrence indictor bit along with the swapped CA value assigned to the CA value (where the
swapped CA value is represented in bits).

If the CA values have not been sorted, then a single bit for each possible CA value is written out,
where a value of O represents no occurrences of the CA value and a value of 1 represents one or
more occurrences of the CA value.

As shown, the CA, information comprises the same information fields as the CA, information.

It will be appreciated that equivalent information as the CAq information and CA, information will be
included in the header for any intervening combination arrays present in the CA configuration.

Advantageously, header format 1 does not write out every possible CA value in the CA value
frequency of occurrence information part, and therefore the resulting header is smaller.

Header Format 2

Figure 13C illustrates header format 2. The header format contains the same parts as header format
1, with the exception that the frequency of occurrence information specifies the first occurring CA
value (in this example 000) and the last occurring CA value (in this example 110), and that no
information on CA values before and after these first and last occurring CA values is included.

As shown, the CA, information comprises the same information fields as the CA, information.

It will be appreciated that equivalent information as the CA, information and CA, information will be
included in the header for any intervening combination arrays present in the CA configuration.

Advantageously, header format 2 does not write out every possible CA value in the CA value
frequency of occurrence information part, and therefore the resulting header is smaller.

Header Format 3

Figure 13C illustrates header format 3. This header format contains the same parts as the other
header formats, with the exception that no frequency of occurrence information is included. This
means that header format 3 is preferably only be used if all CAq to CA, values occur in the processing
segment and no sort has occurred.

It is noted that the headers advantageously don’t require the mapping between each CA (or BP) value
and the corresponding new value (or label) to be written out specifically. The header instead just
indicates how the permutations (BP or CA values) have been grouped, which allows a decompression

10

15

20

25

30

35

51

apparatus to determine the mapping between each CA (or BP) value and the corresponding new
value (or label).

Reprocessing processed segments and associated headers

Once all of the bit portions 205 of a processing segment 203 have been assigned labels, a processed
segment 209 is output in which the bit portions are represented using their respective labels. A header
211 is output with the processed segment 209 in order to allow the processed segment 209 to be
decompressed (e.g. by a decompression apparatus 505).

In preferred embodiments, the processed segment 209 and associated header 211 are then
reprocessed, using the methods described above, treating the processed segment 209 and
associated header 211 as a new processing segment 203. The reprocessing of the processed
segment 209 and associated header 211 results in the generation of a new processed segment 209
and new associated header 211, where the total size in bits of the new processed segment 209 and
new associated header 211 is less than the total size in bits of the processed segment 209 and
associated header 211.

In alternative embodiments, the compressed file 202 is reprocessed, by dividing the compressed file
202 into new processing segments and performing the methods for compression described above.

Although it is recognised that generally it is not possible to recompress data using the same
compression method, the methods of compression described in this application advantageously allow
the way in which data is processed to be significantly varied, on the fly, (for example changing bit
length, changing CA configuration, changing grouping (levels) of permutations (BP or CA values), in
order to allow data to be recompressed at least once.

Alternative Method for Calculating Target Maximum BP values and CA values

Figure 14 illustrates the target maximum BP and/or CA values calculated in accordance with an
alternative embodiment. In this embodiment, the target maximum new bit portion value assigned to
one or more bit portion values in a processing segment is defined as follows:

TargetMaxNewBPVal = oliog:ltoge EF]|+1 _ 4 Equation 14
NEFesent is the number of bit portions with an occurrence greater than 0 in the processing segment.

Similarly, in this embodiment, the target maximum new CA value assigned to one or more CA values
in a processing segment is defined as follows:

Present

TargetMaxNewCAVal = leogzllogzwm # 1 Equation 15

NEYesent js the number of combination arrays with an occurrence greater than 0 in the processing
segment.

As can be seen from Figure 14, in an example where only 255 out of 256 possible bit portions are
present in a processing segment (where a bit portion length Lgp = 8 is being used), the target
maximum BP value is 7 rather than 15. Since 7 can be represented in binary using one less bit than
15, this means that the label assigned to the most occurring BP values will be one bit less.

10

15

20

25

30

35

40

52

This method of calculating the target maximum new bit portion value can advantageously achieve
higher levels of compression; however it may require additional manipulation of the levels. For
example, in some cases the number of levels determined using frequency analysis will be too low to
achieve the target maximum new bit portion value. Therefore, in some embodiments where this
method of calculating the target maximum new bit portion value is used the bit portions values may be
divided into levels using methods different to those described above.

Combination Array Configuration Reference number

As explained above, a processing segment 203 may be divided into a series of bit portions 205, and
each bit portion may be divided into a plurality of combination arrays 207 according to a CA
configuration.

For ease of understanding a particular CA configuration can be represented by a series of numbers
within brackets, where each number represents the size of a combination array in bits, and where 0
indicates that no array is used. For example, {1, 1, 3, 1, 0, 0} denotes a bit portion 205 with a bit
length of 6 comprising four combination arrays 207, the first two combination arrays comprising a
single bit each, followed by a 3 bit combination array, in turn followed by another single bit array. The
sum of the numbers within the brackets dictates the bit length associated with the CA configuration.

Another way of representing a particular CA configuration is using a visual mask which visually shows
then number of arrays, with each array depicted using a pair of square brackets and the number of
elements in the array depicted using one or more letters (in this case the letter x). Accordingly, CA
configuration {1, 1, 3, 1, 0, 0} can be represented as [X][x][xxx][x].

Generally, a CA configuration defines a repeating pattern of one or more arrays which repeats every
I—BP bits.

It will be appreciated that a bit portion 205 which is not subdivide into combination arrays can also be
represented as a CA configuration made up of a single array. For example, a bit portion having a bit
length Lgp of 3 can be considered a CA configuration of {3,0,0}.

Figure 15 illustrates a number of CA configurations and associated reference numbers, or indexes.
Figure 15 shows CA configurations from CA configuration {1} which corresponds to a single array with
a bit length of 1 to CA configuration {16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} which corresponds to a single
array of has a bit length of 16.

As shown in Figure 15, each CA configuration is assigned a reference number which uniquely
identifies the CA configuration, referred to as the CAref (or the “SISP Number”). CA configuration {1}
is assigned a CAref of 1, while CA configuration {16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} is assigned a CAref
of 65535.

In order to map a CAref to a CA configuration, the binary representation of the CAref is used. As
shown in Figure 15, the conventional representation of binary is used, where leading zeros are
omitted. The binary bits of each binary CAref indicate how to divide a series of bits into combination
arrays.

Specifically, the number of bits in the CAref corresponds to the bit length, which dictates how many
bits are included in each bit portion. The division between combination arrays within the bit portion is
indicated by a change in value of adjacent bits (from a 0 to a 1 or vice versa). Therefore, the number

10

15

20

25

30

35

of bits assigned to each combination array is indicated by how many consecutive bits have the same
value.

The binary CAref can therefore be used as a mask itself which can be used to control how a bit
stream is broken up into arrays.

For example, CAref 25 is 11001 in binary, which represents CA configuration {2, 2, 1,0, 0} —i.e. a CA
configuration of three arrays, comprising two bits, two bits and 1 bit respectively. This can also be
represented as a visual mask, as shown in Figure 15, as [xx][xx][x].

The bit length Lge of a CA configuration can also be determined from its decimal CAref directly,
without converting the CAref into its binary form. The CAref can be directly mapped to the Lgp using
equation 16:

Lgp = llog,(CAref) + 1] Equation 16

Alternative Example of dividing data into portions

It will be appreciated that, depending of the data being processed, certain CA configurations and bit
lengths will provide better prospects for compression than others. In some examples described above,
the bit length is first selected and the bit portions are then divided into combination arrays. However,
in examples described below, the selection of bit length and combination array configuration is made
simultaneously by analysing different combination array configurations with various bit lengths.

Figure 16 illustrates a method of determining which configuration of combination arrays 207 to use to
divide up a processing segment 203. The method involves dividing processing segment 203 into
combination arrays according to each CA configuration and performing frequency analysis on the
combination arrays, in order to determine which configuration of combination arrays 207 has the best
prospects for compressing the processing segment 203. As shown in Figure 16, CA configurations of
any bit length (in this case up to and including 16 bits) are analysed and the CA configuration with the
best prospects for compression is selected.

In Figure 16, instead of first selecting a bit length (using frequency analysis as explained above) and
then splitting the bit length up into different combination array configurations in order to determine a
suitable CA configuration, in this alternative example every different CA configuration of every bit
length is tested until a CA configuration which fulfils a predetermined processing criterion is identified.

The predetermined processing criteria which are considered are equivalent those described above
with reference to Figure 6A. The first criterion is whether the total number of levels is greater than or
equal to twice the number of arrays. The second criterion is whether, for any of the combination arrays
of a CA configuration, 50% or fewer of the possible combination array values occur in the processing
segment 203. In other words, the second criterion is whether at least one bit value has an occurrence
of O (i.e. there are no occurrences of the bit value within the processing segment).

It will be appreciated that when the combination arrays of a processing segments have similar
frequencies of occurrence for every possible CA value, in other words where a processing segment
has a relatively even distribution when divided up based on a particular CA configuration, the
predetermined processing criteria are less likely to be fulfilled. Conversely, the more uneven the

10

15

20

25

30

35

54

distribution of possible CA values, the more likely it is that a predetermined processing criterion will be
fulfilled.

The method illustrated in Figure 16 generally requires more processing to be performed before a CA
configuration is selected, when compared to the method illustrated in Figures 6A to 6D. However, the
method illustrated in Figure 16 has the advantage that the selected CA configuration has the smallest
possible bit length. Selecting a bit length before testing any CA configurations can mean that CA
configurations with sufficiently uneven distributions can be missed if the distribution of the associated
bit length happens to be even. For example, even if a segment split up into bit portions of bit length
LBP =7 has even distribution, a CA configuration of {3,1,3} may still have a very uneven distribution.

It is noted that, in this example, the bit portion module 253 is configured to split processing segments
into combination arrays.

Further Exemplary Header Structure

Figure 17 is a simplified representation of a further exemplary header structure for use where a CAref
is used to identify the CA configuration (and bit length) used in the processing of segments.

The header structure illustrated in Figure 17 is based on the header structure shown in Figure 13A,
with some modifications, and is therefore referred to as Header Format 0’

Unlike the header structure shown in Figure 13A, the Header Format 0’ does not include a “SISP”
signature in order to decrease the size of the header.

As shown in Figure 17, the header starts with specifying the CA Configuration used to process the
processing segment, preferably in the form of a CAref as described above.

Furthermore, the size of the original processing segment (in bytes) is specified, and in this
embodiment the processing segment size can be between 0 and 65535 bytes because the length of
the processing segment size part of the header is 16 bits (though segments can be any size so this
part of the header is not limited to 16 bits). In some examples the original processing segment size is
not included.

Next, the header specifies the size of the compressed segment in bits. It is advantageous that the
segment size is specified in bits because once a segment has been processed it does not necessarily
includes a round number of bytes (i.e. the number of bits may not be a multiple of 8) and therefore
specifying the processed segments length as a number of bit means that the end of the current
processed segment and the start of the next one can be determined. It is noted that the size of the
compressed segment in bits may or may not include the header size.

The other information provided in header format 0’ is equivalent to that described with relation to
Figure 13A, and will therefore not be described further here.

Segment Marker

Each processing segment 203 will have particular characteristics — for example some segments will
have large variations in data and some will have very little variation. The distribution of byte value
occurrences (and/or bit portion value occurrences and/or combination array value occurrences) can
be very even, or can be very uneven. Furthermore, some will have many bytes having low values and
some will have many bytes having high values. In preferred examples, segments are assigned

10

15

20

25

30

35

40

55

segment markers, herein referred to as segmarks (also referred to as SISP Signatures), where the
segmark reflects to particular characteristics of the segment. In other words, the segmark represents
the distribution of data values within a segment.

The segmark assigned to a processing segment 203 can be used as a pointer to a table identifying
one or more CA configurations which are likely to provide good compression of the segment.
Preferably, the table of CA configuration choices comprises one or more combination array
configuration references (CArefs, also referred to as SISP numbers) to identify corresponding CA
configurations which are likely to provide good compression of the segment. Furthermore, the
segmark can be used to identify processing segments with similar characteristics, in turn identify CA
configurations which achieved compression of these similar processing segments.

Segmarks comprise one or more values which reflect the data within a processing segment, such as
the average byte value in the segment. The segmark can be single or multi-dimensional. Figures 18a,
18b, 19a — 19d and 20a — 20c illustrate how an exemplary segmark is determined, where the segmark
comprises three values — the average byte value, the average change in byte value and the average
change in occurrence of byte value within the processing segment.

Figures 18a and 18b show extracts from an exemplary 65536 byte processing segment. Specifically,
Figure 18a shows the values of the first 55 bytes (of the 65536 bytes in the segment), along with the
change in value of each of these bytes with respect to the preceding byte. As the byte in position 0
has no preceding byte, the change in byte value is not applicable. The change in byte value is an
absolute value.

In alternative examples, the change in byte value for the byte in position 0 is determined to be the
same as the value of the byte in position 0. In further alternative examples, the value of the change in
byte value for the byte in position 0 is 0, or half of the value of the byte in position 0.

Figure 18b shows the number of occurrences of byte values within the segment, along with the
change in number of occurrences of the byte values with respect to the preceding byte. For simplicity,
Figure 18b only shows the first 16 and last 6 byte values (0-15 and 250-255). As byte value 0 has no
preceding byte value, the change in number of occurrences is not applicable. The change in number
of occurrences is an absolute value.

Figures 19a, 19b, 19c and 19d are graphs plotting the data shown in the tables of Figures 18a and
18b.

Specifically, Figure 19a is a line graph plotting each byte value within the segment, against its position
within the segment. The average byte value in the processing segment is 127.594, which is indicated
by the dashed line in Figure 19a. For simplicity, Figure 19a only shows the byte values of the first 55
byte positions.

Figure 19b is a line graph plotting the change in each byte value within the segment, against its
position within the segment. The average change in byte value in the processing segment is 85.076,
which is indicated by the dashed line in Figure 19b. For simplicity, Figure 19b only shows the change
in byte values of the first 55 byte positions.

Figure 19c is a bar graph plotting the number of occurrences of each byte value within the segment.
The average occurrence is 256, which is indicated by the dashed line in Figure 19¢c. For simplicity,
Figure 19c only shows the number of occurrences of the first 55 byte values.

10

15

20

25

30

35

40

56

It will be appreciated that, regardless of the number of times each particular byte occurs within a
segment, the average byte value occurrence will always be the same for segments of the same size.
For example, for a processing segment comprising 65536 bytes, the average byte value occurrence
will always be 256 no matter what distribution. For this reason, the average byte value occurrence is
not used to generate a segmark. However, the average change in occurrence can vary greatly
between segments of the same size, and therefore this measurement is suitable for use in the
generation of the segmark.

Figure 19d is a bar graph plotting the change in number of occurrences of each byte value within the
segment. The average change in occurrence is 19.761, which is indicated by the dashed line in Figure
19d. For simplicity, Figure 19d only shows the change in number of occurrences of the first 55 byte
values.

Figures 20a to 20c are schematic diagrams illustrating a simplified overview of how a segmark is
generated. In this example, the whole processing segment is analysed to determine the average byte
value, the average change in byte value, and the average change in byte value occurrence.

In Figure 20a, the determination of these three values is represented using three graphs. The leftmost
graph is a plot showing byte value for each byte position, with the average byte value of 127.594
depicted using a dotted line. The middle graph is a plot showing the change in byte value for each
byte position, with the average change in byte value of 85.076 depicted using a dotted line. The
rightmost graph is a plot showing the change in byte value occurrence for each byte value, with the
average change in byte value occurrence of 19.761 depicted using a dotted line.

It is noted that two segments can have the same segmark (for example, this could occur if the bytes of
the processing segment have the same occurrence but the order is different).

Figure 20b shows normalisation of each of the three values used in the segmark. Normalisation is
performed to make storage and comparison of segmarks easier, and can involve weighting and/or
rounding of the three values. In this example, each of the values is multiplied by 1000 and converted
to an integer. The number is normalised to three decimal places in order to generate a sufficiently
accurate segmark, which minimises the number of segments which have the same segmark.

In this example, the total number of different possible segmarks is 1.66464*10*16, which is a 17 digit
number. The total number of different possible 16 bit segments is 20524288, which is approximately a
157800 digit number. Therefore, it can be seen that multiple processing segments can have the same
segmark.

Figure 20c is a visual representation of a three dimensional matrix made up of the three parameters
used to define the segmark (average byte value, average change in byte value, average change in
occurrence). In Figure 20c, each of the three parameters are normalised as integers as shown in
Figure 20b. Therefore the three dimensional matrix comprises an element for every possible segmark.
When a processing segment is compressed, a pointer to the CA configuration used to achieve
compression can be stored in the element of the three dimensional matrix corresponding to the
segmark. Additionally or alternatively, the CAref of the CA configuration is stored in the three
dimensional matrix.

It is noted that a three dimensional matrix is one option for storing information relating to segmarks;
however this information can be stored in any suitable way, such as in a one dimensional array.

10

15

20

25

30

35

40

57

In Figure 20c the normalised average byte value is shown on the x axis, with a range from 0 (which
would occur if every byte in the segment had a value 0) to 255000 (which would occur if every byte in
the segment has a value 255).

The normalised average byte change value is shown on the y axis, with a range from 0 (which would
occur if all bytes in the segment have the same size) to 255000 (which would occur if every byte in the
segment changed the maximum amount with respect to the previous value - e.g. if the byte of the
segment were 0, 255, 0, 255, 0, 255...).

The normalised average occurrence change value is shown on the z axis, with a range from 0 (which
would occur if all bytes in the segment had the same occurrence) to 256000 (which would occur if the
segment does not include any two consecutive byte values with a non-zero occurrence, or in other
words if at least every other byte has an occurrence of 0). For a segment to have a normalised
average occurrence change value of 256000, at least half of the bytes in the segment must have an
occurrence of 0.

In Figure 20c, the matrix element at position (127594, 85076, 19761) is represented using a solid
back dot in the three-dimensional space. When the exemplary processing segment shown in Figures
18a and 18b is compressed, the CA configuration reference number (CAref) used to achieve
compression is stored in the matrix element at position (127594, 85076, 19761).

In other non-limiting examples, values such as segment length, lowest byte value present in the
segment, highest byte value present in the segment, standard deviation of byte values in the segment,
one or more Fourier analysis coefficients of the bytes in the segment, may be used in addition to or
instead of the three segmark values described above. Furthermore, the average deviation of byte
value occurrences from the mean byte value occurrence can be used. Yet further, the coefficient of
variation of bit portion (or combination array) occurrencError! Reference source not found.es can
be used.

In this example, the segmark is generated by analysing the segment based on splitting the data into
bytes. This is useful as bytes are a standard unit for processing binary data. However, it will be
appreciated that the segmark can be generated based on analysis based on splitting the data into
portions other than bytes — for example 16 bit portions (aka a word).

Although in this example the segmark is generated from analysing all of the bytes present in the
segment, it will be appreciated that a sample of the bytes can instead be analysed.

Normally, CA configurations are tested in order of their CAref, from lowest to highest. However, if it is
determined that one or more neighbouring segmarks have a successful CA reference number
assigned, then the order in which CA configurations is tested is changed such that the successful CA
configurations associated with neighbouring segmarks are tested first.

Using Segment Marker to Point to CA Configuration Table

Figures 21a to 21h illustrate the process of populating the three dimensional segmark matrix and
populating an associated table of successful CA configurations.

Initially, with reference to Figures 21a and 21b, a first processing segment is analysed and determined
to have a segmark of (127594, 85076, 19761). In Figure 21a, the matrix element at position (127594,
85076, 19761) is indicated in the three dimensional segmark matrix as a solid black dot.

10

15

20

25

30

35

40

58

Next, it is determined whether a processing segment having the same segmark has previously been
successfully compressed. This can be established by determining whether the corresponding element
of the segmark array - element (127594, 85076, 19761) — contains a pointer (e.g. a CAref) to a
successful CA configuration. In this case, as the processing segment is the first to be processed, the
segmark matrix is empty and the element does not contain a pointer.

If the element corresponding to the segmark does not contain a pointer, it is next determined whether
any neighbouring elements contain a pointer. Again, in this case the processing segment is the first to
be processed and thus no neighbouring elements contain a pointer.

The method therefore proceeds to the next step, where the processing segment is analysed based on
different CA configurations in order to identify a CA configuration with good prospects for
compression, and compression of the processing segment is attempted using different CA
configurations until compression is achieved.

In this example, the first processing segment having is compressed using CA configuration
{1,1,1,9,0,0,0,0,0,0,0,0} which has a CAref of 2560. The CAref is therefore stored in the element
(127594, 85076, 19761) of the segmark matrix.

Figure 21b shows a table of successful CA configurations associated with the three dimensional
segmark matrix of Figure 21a. The CA configuration table is made up of 65536 rows, with each row
corresponding to a CAref, and 65536 columns, with each column corresponding to a successful
compression of a processing segment.

Each CAref stored in the segmark matrix is used as a pointer to the corresponding row of the CA
configuration table. Therefore, the CAref 2560 points to row 2560 of the CA configuration table. The
CAref of the CA configuration used to achieve compression, CAref 2560, is then stored in the CA
configuration table, in the first available element in row 2560, which in this case is the element in the
column labelled “success 17.

Next, referring to Figures 21c and 21d, a second processing segment is analysed to determine its
segmark and processed to compress the segment.

In this example, the second processing segment is analysed and determined to have a segmark of
(149685, 95624, 33762). As shown in Figure 21c, the segmark matrix element of the second
processing segment at position (149685, 95624, 33762) is indicated in the three dimensional segmark
matrix as a solid black dot. The segmark matrix element of the first processing segment is indicated
using a smaller black dot.

In the same way as before, it is then determined whether a processing segment having the same
segmark has previously been successfully compressed. This can be established by determining
whether the segmark matrix element of the second processing segment - element (149685, 95624,
33762) — contains a pointer (e.g. a CAref) to a successful CA configuration. In this case, the segmark
matrix element of the second processing segment does not contain a pointer.

Therefore, it is next determined whether any neighbouring elements contain a pointer. In this case, the
segmark matrix element of the first processing segment (the smaller black dot) is considered to be a
neighbouring element, and this element contains a pointer to row 2560 of the CA configuration table.
The CArefs stored in row 2560, in this case the single CAref 2560, can then be used to attempt
compression of the second processing segment, preferably only if the CA configuration corresponding
to CA ref 2560 is determined to fulfil at least one predetermined processing criteria.

10

15

20

25

30

35

40

59

In this example, the CA configuration corresponding to CAref 2560 fails to achieve compression of the
second processing segment. As a result, the second processing segment is analysed based on
different CA configurations in order to identify a CA configuration with good prospects for
compression, and compression of the processing segment is attempted using different CA
configurations until compression is achieved.

In this example, the second processing segment is compressed using CA configuration
{1,1,1,7,2,0,0,0,0,0,0,0} which has a CAref of 2563. The CAref is therefore stored in the element
(149685, 95624, 33762) of the segmark matrix.

Referring to Figure 21d, the CAref 2563 points to row 2563 of the CA configuration table. The CAref of
the CA configuration used to achieve compression, CAref 2563, is then stored in the CA configuration
table, in the first available element in row 2563, which in this case is the element in the column
labelled “success 1”.

Next, referring to Figures 21e and 21f, a third processing segment is analysed to determine its
segmark and processed to compress the segment.

In this example, the third processing segment is analysed and determined to have the same segmark
as the first processing segment — a segmark of (127594, 85076, 19761). As shown in Figure 21e, the
segmark matrix element of the third processing segment at position (127594, 85076, 19761) is
indicated in the three dimensional segmark matrix as a solid black dot. The segmark matrix element of
the second processing segment is indicated using a smaller black dot.

In the same way as before, it is then determined whether a processing segment having the same
segmark has previously been successfully compressed. This can be established by determining
whether the segmark matrix element of the third processing segment - element (127594, 85076,
19761) — contains a pointer (e.g. a CAref) to a successful CA configuration. In this case, the segmark
matrix element of the third processing segment does contain a pointer to row 2560 of the CA
configuration table.

In this example, the CA configuration corresponding to CAref 2560 fails to @@achieve compression
of the third processing segment. As a result, the third processing segment is analysed based on
different CA configurations in order to identify a CA configuration with good prospects for
compression, and compression of the processing segment is attempted using different CA
configurations until compression is achieved.

In this example, the third processing segment is compressed using CA configuration CA configuration
of {2,3,4,1,2,2,0,0,0,0,0,0,0,0} which has a CAref of 12780. As shown in Figure 21f, this CAref is
stored in the next available element of row 2560 of the CA configuration table, which in this case is the
element in the column labelled “success 2”.

Figures 21g and 21h show the three dimensional segmark matrix and associated table of successful
CA configurations once they have both been populated with numerous values.

As shown in Figure 21g, neighbouring elements can be defined as elements within a certain volume of
the three dimensional matrix space. This is indicated in Figure 21g as a sphere surrounding a
particular element, represented as a dashed circular line with a larger solid dot at its centre. The
sphere contains eight neighbouring elements, represented as smaller solid dots.

10

15

20

25

30

35

40

60

In some examples, neighbouring elements to a segmark matrix element are considered to be a
predefined number of the closest elements in 3D space, e.g. the closest eight elements. In other
examples, neighbouring elements can be considered to be all elements within a certain distance. The
analysis of how close neighbouring elements are can be performed using known cluster analysis
methods.

Using segmarks as described above can advantageously increase the speed in which CA
configurations that achieve compression are identified.

Fourier Analysis to determine Processing Configuration

Figures 22a, 22b and 22c illustrate schematically steps of a method of analysing a processing
segment using Fourier analysis to determine a bit length Lgp to use in splitting up the processing
segment into bit portions and/or combination arrays. Obtained Fourier coefficients can be used as
guidance as to which CA configurations are likely to yield good compression.

Figure 22a shows an exemplary processing segment 203, in this case made up of 512 bits, although it
will be appreciated that typical processing segments contain significantly more bits.

Figure 22b shows a sample of the bit values in the segment, in this case the first 55 bits, plotted as bit
value versus bit position. Many bit portions have some degree of bit pattern repetition at one or more
frequencies. Figure 22b shows that this exemplary segment includes a bit pattern which repeats every
11 bits.

Figure 22c is a graph illustrating the results of a Fourier analysis of the exemplary processing
segment 203. In this example, a fast Fourier transform (FFT) has been performed on the bit values of
the exemplary processing segment 203. The resulting FFT amplitude is plotted against bit length,
which is equivalent the period (i.e. 1/frequency). As can be seen from Figure 22c, a series of peaks in
amplitude is typically obtained, which correspond to Fourier coefficients. A peak can indicate the
existence of repeating patterns at a particular bit length. In this case, a large peak is present at a bit
length of 512, which is the total number of bits in the processing segment, and therefore in this case
can be disregarded. The next peak, occurring at a bit length of 11, indicates that some degree of
repetition occurs every 11 bits. As stated above, this reflects the bit pattern which repeats every 11
bits.

Therefore, combination arrays (or bit portions) with a bit length of 11 are determined to have good
potential for compressing the processing segment.

The next peak occurs at a bit length of 5.5 bits, and a subsequent peak occurs at 3.6 bits. In this
example, the nearest integer bit length of a peak amplitude is considered as a candidate bit length.
Accordingly, in this case bit lengths of 6 and 4 are also considered as candidate bit lengths, in addition
to a bit length of 11. It is noted that the nearest integer bit lengths both above and below a peak value
may be considered.

In some examples, peaks can be identified by determining the average of all obtained Fourier
amplitudes and then identifying amplitude values which are at least twice the average amplitude.

Preferably, any peaks occurring at a bit length of less than three bits are ignored because
compression is less likely to be successful at bit lengths of less than three bits (as explained above).

Optimising Binary Values Assigned to New CA Values (Recompression Index)

10

15

20

25

30

35

40

61

Figure 23a is a table showing every possible 4 bit binary value from 0000 to 1111, in which a
recompression index is assigned to each binary value. The recompression index indicates how
compressible the binary value is; for example binary value 0001 has a recompression index of 3,
indicating relatively good compressibility, while binary value 1011 has a recompression index of 12,
indicating relatively poor compressibility.

In the examples described above, each CA value is assigned a new CA value, and the new CA values
of different arrays are combined to give combined new CA values. This can be seen in Figures 8a to
8d. For example, if two combination arrays are being combined, the original CA values 100 and 010
may be assigned new CA values 2 and 8, resulting in a combined new CA value of 10. The assigned
binary label for the combined new CA value would, according to the examples described above, be
1010 (i.e. the binary representation of 10). However, in this preferred example, the assigned binary
label for each of the combined new CA values is optimised such that the combined new CA values
associated with the highest occurring CA values are assigned binary labels which have the best
prospects for recompression, e.g. higher levels of statistical redundancy. This is achieved by
analysing all relevant binary values and determining a “recompression index” for each binary value.

The recompression index is calculated by determining how many times strings of consecutive
repeated bits occurs within the binary value. The minimum length of repeated bits which is analysed
is two bits, and the maximum is the bit length of the maximum combined new CA value being
considered. Considering Figure 23a, all 4 bit binary values are listed in the leftmost column and their
respective recompression indices are listed in the rightmost column. The 4 bit binary values are sorted
based on the recompression index, from low to high. Binary values with better prospects for
recompression have a lower recompression index, and binary values with more prospects for
recompression have a higher recompression index.

The intermediate columns show how the recompression index is calculated. The column entitled “2 Bit
Reps.” lists the number of repetitions of 2 consecutive identical bits in the binary value. For example,
the binary value 0001 contains two pairs of consecutive 0’s and no pairs of consecutive 1’s (in this
example the two pairs can be shown as *00*01 and 0*00*1). Therefore, the repetition of two
consecutive bits is considered to be 2 for the binary value 0001. As can be seen from Figure 23a, the
number of repetitions of three and four consecutive identical bits is also determined for each bit
value. The two, three and four bit repetitions are then summed to give a repetition tally. As can be
seen, some of the repetition tallies are the same, in which case the binary values are sorted by their
own relative value, from low to high. Each of the sorted four bit binary values is then assigned a
recompression index, from 0 to 15. In this way, binary values with better prospects for recompression
have a lower recompression index, and binary values with more prospects for recompression have a
higher recompression index.

Figure 23b is a table showing the previously described standardised binary values associated with
combined new CA values 0-15 along with the optimised binary values which are assigned to
combined new CA values. The optimised binary values are assigned using the recompression index,
where in this example the optimised binary value assigned to the new CA value is the optimised
binary value having a recompression index which matches the combined new CA value.

Figures 24a and 24b are equivalent to Figures 23a and 23b, but instead show how binary values with
a bit length of 6 are optimised. These optimised binary values are used for combined new CA values
where the maximum combined new CA value is between 32 and 63, e.g. a number which is normally
represented using 6 bits.

10

15

20

25

30

35

40

62

Hard-to-compress segments

An advantage of the present invention is that it can be used to compress data which is usually
considered hard to compress. Specifically, data which is more evenly distributed is harder to
compress.

The present invention can vary the bit length of bit portions used to process data in order to capitalise
on variations in distribution depending on the bit length being used. Figures 25a, 25b, 26, 27a to 27d
and 28a to 28d illustrate how a segment can have a relatively even distribution when divided up into
bit portions of some bit lengths, but a relatively uneven distribution when divided up into bit portions of
other bit lengths.

Figure 25a is an extract from an exemplary array which represents a segment of randomly organised
and evenly distributed data. In this example, the array comprises 65536 elements, each element
representing a byte (i.e. 8 bits), so in this instance the array includes 65536 bytes having values
between 0 and 255. It will be appreciated that the array could comprise any number of elements and
the elements can represent any number of bits. Figure 25b is a table showing the number of
occurrences, within the segment, of the first 17 byte values (from 0 to 16). As can be seen from Figure
25b, the occurrence of each byte is similar, with the occurrences in the table of Figure 25b ranging
from 229 to 285. This represents a reasonably even distribution.

Figure 26 is an extract from the exemplary array of Figure 25a written as a binary stream.

Figures 27a to 27d are extracts from the exemplary array of Figure 25a, written as a binary stream
and split into bit portions having different bit lengths. In Figure 27a the binary stream is split into bit
portions having a bit lengths of 3, and in Figures 27b, 27¢ and 27d the binary stream is split into bit
portions having bit lengths of 4, 5 and 6 respectively

Figures 28a to 28d are tables showing the number of occurrences, within the segment, of a selection
of bit portion values, including the portion values having the highest and lowest occurrences.

In order to quantify and compare the variability (e.g. distribution) of data in processing segments, the
coefficient of variation can be used. The coefficient of variation is given by the standard deviation of
the data divided by its mean, and is conventionally expressed as a percentage. For example, the
coefficient of variation of occurrence of each possible byte value within a processing segment may be
determined.

Figure 28a shows the number of occurrences of each of the possible 3 bit values within the segment,
when the segment is divided up into bit portions of 3 bits. As can be seen from Figure 28a, the
occurrence of each 3 bit binary value is similar, with the occurrences in the table of Figure 28a ranging
from 21590 to 21995. The average deviation of occurrences from the mean occurrence of 21845 is
122.6, and the coefficient of variation is 0.56%. Therefore, the distribution of the binary values when
the segment is split up into three bits is highly evenly distributed.

Figure 28b shows the number of occurrences of each of a selection of 4 bit values within the segment,
when the segment is divided up into bit portions of 4 bits. As can be seen from Figure 28b, the
occurrence of each 4 bit binary value is similar, with the occurrences in the table of Figure 28b ranging
from 7837 to 8397. The average deviation of occurrences from the mean occurrence of 8192 is 140.0,
and the coefficient of variation is 1.71%. Therefore, the distribution of the binary values when the
segment is split up into 4 bits is still quite even, but less so than then the segment is split up into 4
bits.

10

15

20

25

30

35

40

Figure 28c shows the number of occurrences of each of a selection of 5 bit values within the segment,
when the segment is divided up into bit portions of 5 bits. As can be seen from Figure 28c, the
occurrence of each 5 bit binary value is similar, with the occurrences in the table of Figure 28c ranging
from 3062 to 3350. The average deviation of occurrences from the mean occurrence of 3277 is 72.0,
and the coefficient of variation is 2.2%. Therefore, the distribution of the binary values when the
segment is split up into 5 bits is less even than then the segment is split up into 3 or 4 bits.

Figure 28d shows the number of occurrences of each of a selection of 6 bit values within the segment,
when the segment is divided up into bit portions of 6 bits. As can be seen from Figure 28d, the
occurrence of each 6 bit binary value is similar, with the occurrences in the table of Figure 28d ranging
from 1180 to 1437. The average deviation of occurrences from the mean occurrence of 1365 is 64.25,
and the coefficient of variation is 4.7%. Therefore, the distribution of the binary values when the
segment is split up into 6 bits is less even than when the segment is split up into 3, 4 or 5 bits.

Accordingly, the exemplary array used in Figures 25a, 25b, 26, 27a to 27d and 28a to 28d exhibits
more even distributions when divided up into 3, 4 and 8 bit portions, but less even distributions when
split up into 5 and 6 bit arrays. Therefore, a bit length of 6 can be used to process the segment using
the methods described herein, and compression of the segment can be achieved.

Preferably, where data is split up into only bit portions, the standard deviation of the occurrences of all
possible bit portion values (also referred to as bit portion permutations) is determined; and where data
is split up into combination arrays, the standard deviation of the occurrences of all possible
combination array values (also referred to as combination array permutations) is determined,

As a general point, when analysing data from a typical file and considering the individual bits in the
data (i.e. splitting the data up with a bit length Lgp of 1), it is common to have a similar number of
occurrences of each of the two possible bit values, 0 and 1. Therefore, at bit length 1, distribution of
occurrences of across possible bit portion values tends to be very even. As the bit length increases,
the distribution will become less evenly distributed across the possible bit portion values. Furthermore,
when analysing data (such as processing segments), the number of levels identified in the bit portion
values is related to the distribution of occurrences of bit portion (and/or combination array) values.
This means that, as the bit length is increased, the number of levels identified tends to increase, up to
a maximum number of levels which is equal to the bit length.

Moreover, by continuing to analyse a segment using different (generally increasing) bit lengths, a
more uneven distribution can normally be identified. A bit length is considered to result in a
sufficiently uneven distribution when one of the predetermined processing criteria is fulfilled. In some
cases the bit length may be so long (e.g. 8 bits or more) that the associated header size would be
undesirably large. In such cases, the bit portions are sub-divided into combination arrays such that an
uneven distribution remains present, but the smaller size of the headers associated with the
combination arrays helping to reduce the overall size of the compressed file.

Other alternative or additional predetermined processing criteria may be defined. For example, a
predetermined processing criterion may be that, from analysing the coefficient of variation of bit
portion (or combination array) occurrences, the coefficient of variation exceeds a threshold. The
threshold may be, for example, 1%, 2%, 5%, or 10%.

A further predetermined processing criterion may be that, from analysing the average deviation of bit
portion (or combination array) occurrences from the mean bit portion (or combination array)
occurrence, the number of bits saved is more than the size of the header

10

15

20

25

30

64

In some examples, the first combination arrays tested for splitting up a processing segment have a bit
length which tends to provide compression — for example a bit length of 6. Optionally, particular
configurations can also be tested first, such as {3, 3, 0, 0, 0, 0}, which has also been determined to
frequently achieve compression.

Modifications and Alternatives

Detailed embodiments have been described above. As those skilled in the art will appreciate, a
number of modifications and alternatives can be made to the above embodiments whilst still benefiting
from the inventions embodied therein.

Although it is described above that a “file” is compressed, it will be appreciated that any data may be
compressed using the same methods as described.

The processing segments 203 can have different sizes to one another even when forming part of the
same file. In one example this allows the final segment 203 of a file 201 to have a smaller size than
the other segments, avoiding the need to use padding bits/bytes. In other examples the size of the
processing segments 203 can be chosen using a similar method to that used to choose the size of bit
portions 205.

The bit portions 205 are generally all of the same size within a processing segment 203; however in
some embodiments the bit portions 205 may be of different sizes (i.e. have different bit portion
lengths) within a processing segment 203.

In some alternative embodiments, each bit portion corresponds to a byte (i.e. 8 bits) of the processing
segment, and there is no further division of the bit portions into combination arrays.

In some embodiments, different bit portions of the same processing segment may be divided into
different configurations of combination arrays, which allows further exploitation of patterns, repetition
and/or redundancy in a processing segment 203.

Although Figure 3A shows the frequency analysis starting with a bit portion length of 2 bits, it can start
at any bit portion length, for example 1 bit or 3 bits.

In other alternative embodiments, the target maximum new bit portion value assigned to one or more
bit portion values in a processing segment is defined as follows:

NLevels
TargetMaxNewBPVal = Lgp — { B}; j

Similarly, in this embodiment, the target maximum new CA value assigned to one or more CA values
in a processing segment is defined as follows:

NLevels
TargetMaxNewCAVal = L., — { ¢ j

2

This method of calculating the target maximum new bit portion value and/or new CA value is simpler
and therefore the calculation can be made more quickly and/or using less processing power, although
the level of compression achieved may not always be as high.

10

15

20

25

30

35

40

65

In some alternative embodiments, the labels assigned to bit portions may be configured to be larger
than the bit portions themselves, for example to increase the level of encryption.

It will be appreciated by those skilled in the art that binary can be written right to left or left to right. For
example, the binary string 00010 would be considered to represent the number 2 if written right to left,
but would be considered to represent the number 16 if written left to right. In preferred embodiments,
the binary used in the methods described above is written left to right as this can make the
decompression process quicker and easier when using variable bit length. For example, writing the
binary left to right can make it easier to identify any padding bits included at the end of a processing
segment.

In some alternative embodiments, no extraction information is included in a compressed file. In some
cases, the same configurations are used to process all processing segments, and therefore the
decompression apparatus can use information corresponding to a “static header” for decompressing
all processed segments. In some alternative embodiments, extraction information is output separately
to the processed segments.

Not including a header with processed segments can be particularly advantageous when encrypting
data, as the “static header” acts as a key for compression, where the key is private and only available
to the compression and decompression apparatus.

In some embodiments, for example when processing large amounts of similar data, all processing
segments are processed in the same way, using the same configurations, and therefore no header is
guaranteed by the compression apparatus 105, and the decompression apparatus 505 decodes all
processed segments 209 in the same way.

It is noted that not all permutations may be assigned labels.

In the above description, processing criteria are employed in order to select bit lengths and/or CA
configurations. In some alternative examples, where segments are encrypted rather than compressed,
different processing criteria may be used. For example, even there are no bit values with an
occurrence of 0, a CA configuration may still be selected.

Using a variable bit length, from e.g. 2 bits up to and including all the bits of the segment, provides
great flexibility in achieving compression. For example, if a segment is highly ordered such that the
first half of the segment comprises one repeating pattern and the second half of the segment
comprises another repeating pattern, then a longer bit length can be used in order to achieve optimal
compression.

Typically, each segment may comprise, for example, 65536 bytes when using a maximum bit length
of 16 bits (n.b. 16 bits provides 65536 different combinations). This segment size is preferred because
it optimises the balance between making sure the segment is small enough to find patterns or
redundancy within the data, and large enough to ensure that the header size isn’t too large in
proportion to the segment.

It is noted that splitting segments up into CA configurations which include only one and/or two bit
arrays is less likely to achieve compression unless at least one CA value has no occurrences.

As described above with reference to Figure 13A, if the CA values have been sorted, in the header
(e.g. header format 0) all possible CA values are written out in order of occurrence, including any CA
values having an occurrence of 0.

10

15

20

66

In alternative examples, the order of the sorted CA values can be indicated in the header without
writing out all the possible CA values in order of occurrence. Instead, each possible way of arranging
the CA values is assigned an index, and the index corresponding to the arrangement of CA values in
the sorted CA values is included in the header. The number of bits in the index is less than the
number of bits required to write out all the possible CA values in order of occurrence. This can be
seen in table 13, below.

CA value Index Index CA value Index Index
arrangement | (decimal) | (binary) arrangement | (decimal) | (binary)
00,01,10,11 0 00000 10,00,01,11 12 01100
00,01,11,10 1 00001 10,00,11,01 13 01101
00,10,01,11 2 00010 10,01,00,11 14 01110
00,10,11,01 3 00011 10,01,11,00 15 01111
00,11,01,10 4 00100 10,11,00,01 16 10000
00,11,10,01 5 00101 10,11,01,00 17 10001
01,00,10,11 6 00110 11,00,01,10 18 10010
01,00,11,10 7 00111 11,00,10,01 19 10011
01,10,00,11 8 01000 11,01,00,10 20 10100
01,10,11,00 9 01001 11,01,10,00 21 10101
01,11,00,10 10 01010 11,10,00,01 22 10110
01,11,10,00 11 01011 11,10,01,00 23 10111
Table 13

Table 13 shows all the possible ways of arranging the two-bit CA values 00, 01, 10, 11 (without
repetition). As can be seen, there are 24 different arrangements of these two-bit CA values. This is
due to the fact that there are four different two-bit CA values, and the number of permutations of four
options is 4! = 4*3*2*1. More generally, if a is the number of bits in a CA value, the number of possible
permutations P without repetition is:

P = 24 Equation 17

Various other modifications will be apparent to those skilled in the art and will not be described in
further detail here.

10

15

20

25

30

35

Claims

sub

67

A method of processing data comprising an input sequence of bits, the method comprising the
steps of:

dividing the input sequence of bits into a plurality of portions;

respectively sub-dividing each portion into a plurality of sub-divisions comprising at least a first

-division and a second sub-division, wherein each sub-division of the plurality of sub-divisions

comprises at least one bit, wherein the at least one bit of each first sub-division is arranged in a
respective first sub-division permutation, and wherein the at least one bit of each second sub-
division is arranged in a respective second sub-division permutation;

info

performing frequency analysis:

to determine, for each of a plurality of possible first sub-division permutations, how many
times, within said input sequence of bits, a portion comprises a first sub-division having bits
arranged in that possible first sub-division permutation; and

to determine, for each of a plurality of possible second sub-division permutations, how
many times, within said input sequence of bits, a portion comprises a second sub-division
having bits arranged in that possible second sub-division permutation; and

forming a processed sequence of bits based on said frequency analysis;

wherein said forming a processed sequence of bits further comprises including extraction
rmation in the processed sequence of bits, said extraction information for use in reconstructing

said input sequence of bits from said processed sequence of bits; and

wherein the extraction information comprises at least one of:

first sub-division order information identifying an ordered sequence comprising each
possible first sub-division permutation arranged in order of how many times, within said input
sequence of bits, a portion comprises a first sub-division having bits arranged in that possible
first sub-division permutation; and

second sub-division order information identifying an ordered sequence comprising each
possible second sub-division permutation arranged in order of how many times, within said
input sequence of bits, a portion comprises a second sub-division having bits arranged in that
possible second sub-division permutation; and

wherein the at least one of said first sub-division order information and said second sub-

division order information comprises an index value, representing the order of the corresponding
ordered sequence, based on a preconfigured mapping between said index value and the order of

the

2.

corresponding ordered sequence.

A method according to claim 1, wherein said extraction information is configured for use in
identifying how the said plurality of possible first (or second) sub-division permutations are
grouped into sets.

68

A method according to claim 2, wherein said extraction information identifies how many first
(or second) sub-division permutations each set comprises.

A method according to any of claims 1 to 3, wherein the extraction information is further
configured to identify how each portion is sub-divided into a plurality of sub-divisions.

A method according to claim 4, wherein the extraction information is further configured to
identify how many bits each first sub-division comprises and how many bits each second sub-
division comprises.

A method according to any of claims 1 to 5 wherein the extraction information is further
configured to identify how many bits the input sequence of bits comprises.

69

Intellectual
Property
Office

Application No: GB1700081.1 Examiner: Mr Steven Davies
Claims searched: 1-6 Date of search: 6 December 2017

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
AE - GB2539966 A
(SISP Technologies)
A - US6618506 B1
(Auerbach et al)
A - GB2510198 A
(Canon KK)
A - GB2523348 A
(Gurulogic)
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC
| HO3M; HO4L |
The following online and other databases have been used in the preparation of this search report

[EPODOC, WPI, INSPEC, XPI3E, XPIEE |

International Classification:

Subclass Subgroup Valid From
HO3M 0007/40 01/01/2006
HO3M 0007/42 01/01/2006
HO4L 0009/06 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

	BIBLIOGRAPHY
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

