
US 20140331089A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0331089 A1

Mohindra et al. (43) Pub. Date: Nov. 6, 2014

(54) ENABLING REMOTE DEBUGGING OF Publication Classification
VIRTUAL MACHINES RUNNING INA
CLOUD ENVIRONMENT (51) Int. Cl.

G06F II/36 (2006.01)
(71) Applicant: INTERNATIONAL BUSINESS (52) U.S. Cl.

MACHINES CORPORATION, CPC G06F II/362 (2013.01)
Armonk, NY (US) USPC .. 71.4/27

(72) Inventors: Ajay Mohindra, Yorktown Heights, NY (57) ABSTRACT
(US); Sambit Sahu, Hopewell Junction,
NY (US); Upendra Sharma, Elmsford, Enabling remote debugging of virtual machines, in one
NY (US) aspect, may comprise attaching a debug virtual machine to a

target virtual machine deployed in a virtualized environment.
(73) Assignee: International Business Machines Interactions and/or access to the target virtual machine may

Corporation, Armonk, NY (US) be performed via the attached debug virtual machine. The
debug virtual machine may be created and attached to the

(21) Appl. No.: 13/886,414 target virtual machine in response to receiving a request to
debug the target machine, for example, from a remote user of

(22) Filed: May 3, 2013 the target virtual machine.

RECEIVE AREQUEST FOR ADEBUGVM (D-VM) FOR
DEBUGGINGAPARTICULARVMINSTANCE, E.G., 102

GUEST-VM

AUTHENTICATE THE REQUESTAND CREATE AN INSTANCE
OF THE DEBUGVM (D-VM) 104

PROVIDE PADDRESS OF THE DVMTOTHE USER N

PROVISION D-WMUSING ACUSTOMIMAGE 106

ASSIGNADDRESS FORTHE D.VM 108

PROVIDE PADDRESS OF THE DWM TO THE USER

ATTACHD-VM TO THE GUEST.VM

DETACH THE D-WM

Patent Application Publication Nov. 6, 2014 Sheet 1 of 2 US 2014/0331089 A1

RECEIVE AREQUEST FORADEBUG VM (D-VM) FOR
DEBUGGINGAPARTICULARVMINSTANCE, E.G.,

GUEST.VM 102

AUTHENTICATE THE REQUESTAND CREATEAN INSTANCE
OF THE DEBUGVM (D-VM) 104

PROVISION D-WMUSINGA CUSTOMIMAGE 106

ASSIGN ADDRESS FOR THE D.VM 108

PROVIDE PADDRESS OF THE D-VM TO THE USER

ATTACHD-VM TO THE GUEST.VM

DETACH THE D-VM

FIG. 1

Nov. 6, 2014 Sheet 2 of 2 US 2014/0331089 A1 Patent Application Publication

<!---

US 2014/0331089 A1

ENABLING REMOTE DEBUGGING OF
VIRTUAL MACHINES RUNNING INA

CLOUD ENVIRONMENT

FIELD

0001. The present application relates generally to com
puter systems, and more particularly to remote debugging of
virtual machines.

BACKGROUND

0002 “Infrastructure as a service' (IaaS) cloud computing
paradigm has changed the way information technology (IT)
services are managed and delivered to the end consumer. In
Such a cloud environment, the cloud-service providerexposes
application programming interfaces (APIs) and an end user
makes use of these APIs to request for virtual server
resources. The virtual servers are always provisioned with a
specific operating system and in many situations even with a
complete application stack over the operating system. Access
to the virtual machine is usually enabled via secure shell
(SSH) or X-WindowsTM like interface, not a console. Existing
remote management consoles are not designed to operate in a
cloud kind of environment.
0003. It has been often observed in the cloud environments
that virtual servers become inaccessible because of various
system level problems, namely kernel incompatibility, wrong
boot-sequence such as incorrect startup sequence of system
services, bad system or application configuration, etc. This
renders the end user completely helpless as the user can
neither determine the problem nor can fix it. This makes
cloud-environments unsuitable for system development and
testing purposes. In addition, it also makes the cloud service
expensive and inefficient.
0004. A known solution may attacha virtual network com
puting (VNC) port to the virtual machine and provide the
remotely accessible address of the host machine to the end
user. Another known solution may be to contact a system
administrator to fix the problem for the user. Neither of the
Solutions is Suitable for a cloud kind of environment because,
e.g., the first discloses the host machine details to the end user,
which process might make the host Susceptible for hacking
attacks. The second solution might be slow and expensive.

BRIEF SUMMARY

0005. A method of enabling remote debugging of virtual
machines, in one aspect, may comprise attaching a debug
virtual machine to a target virtual machine deployed in a
virtualized environment. The method may also comprise
allowing interacting with the target virtual machine via the
attached debug virtual machine.
0006. A system for enabling remote debugging of virtual
machines, in one aspect, may comprise a target virtual
machine deployed in a virtualized environment. A debug
virtual machine may be attached to the target machine, in
response to receiving a request to debug the target virtual
machine. The debug virtual machine allows a remote user of
the target virtual machine to interact with the target virtual
machine.
0007. A computer readable storage medium storing a pro
gram of instructions executable by a machine to perform one
or more methods described herein also may be provided.
0008 Further features as well as the structure and opera
tion of various embodiments are described in detail below

Nov. 6, 2014

with reference to the accompanying drawings. In the draw
ings, like reference numbers indicate identical or functionally
similar elements.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0009 FIG. 1 is flow diagram illustrating a high-level
method of the present disclosure in one embodiment.
0010 FIG. 2 is a diagram illustrating a system architecture
overview of the present disclosure in one embodiment.

DETAILED DESCRIPTION

0011. In one aspect of the present disclosure, one or more
methods and systems are presented that allow a machine to be
remotely debugged by an end user without exposing the
details of the host machine. Briefly, debugging refers to find
ing and/or fixing one or more problems or detects in a com
puter, for example, computer Software program or computer
hardware device. A methodology in one embodiment of the
present disclosure not only enables remote debugging but can
also be used as a service to the end user. In one embodiment,
a customized virtual machine (VM) (called debuggerVM) is
created, which allows the end user to communicate with the
hung-up VM (VM not functioning as it should) or another
guest VM. For example, a debugger operating system is cre
ated and attached to an operating system to debug that oper
ating system. The customized VM (debuggerVM) allows the
end user to communicate with the VMs (e.g., cloudVMs or
guest VM on a hypervisor or the like operating in a cloud)
during their life-cycle. In addition, a methodology of the
present disclosure can expose extra capabilities to the debug
ger-VM. Such as rebooting and kernel-level debugging of the
hung-up VM or a guest VM.
0012. A methodology of the present disclosure in one
embodiment creates a new specialized or customized VM,
which communicates with a hypervisor or the like, for one or
more specialized provisions like rebooting one specific VM,
attaching to the VNC port of the hung-up VM or guest VM.
Briefly, a hypervisor refers to computer software, firmware or
hardware that manages, e.g., creates and runs, virtual
machines. A hypervisor allows multiple (same or different)
operating systems to run on one hardware host (processor). In
one embodiment of the present disclosure, the created VM
(debug VM), via the hypervisor, obtains a serial port based
access to the VM (guest VM) for performing a kernel level
debugging of the accessed VM (e.g., guest VM). A debug VM
may be considered a privileged VM that has the ability to
connect to other virtual machines running under a virtualized
environment.

0013. In one aspect, a methodology of the present disclo
Sure enables a console-like access to VMs, e.g., in a cloud
environment, enabling services such as manipulating boot
sequence, single user mode, interactive boot sequence, and
real-time access to console messages.
0014 FIG. 1 is flow diagram illustrating a high-level
method of the present disclosure in one embodiment. At 102.
a request is received for a debug-VM (D-VM) for debugging
or communicating with a particularVM instance, e.g., Guest
VM (a guest VM, also referred to as a target VM). For
instance, a user may make Such request, e.g., via an appro
priate user interface. A system providing a service of VMS,

US 2014/0331089 A1

e.g., a cloud management system, that manages the provi
Sioning of VMS to clients/customers, may receive the request
for a D-VM.
0015. At 104, the request is authenticated, e.g., by a cloud
service, and an instance of a D-VM is created. For example, a
user may be validated using the user identifier and/or other
data to verify that the user has the authorization to create a
debug VM on a host. Once authenticated, a replica of debug
VM image is created and launched to create the debug VM.
0016. In one embodiment of the present disclosure, D-VM

is created to be a very light weight customized VM with
pre-packaged custom debug tool. Instance of D-VM can be
created on the same host as of the Guest-VM or on another
host. In the case the instance of D-VM is created on another
host, the communication between the host hypervisor may be
performed over a network (for example, using an SSh-tunnel).
0017. At 106, an instance of D-VM is provisioned using
the D-VM image, e.g., using the cloud provisioning engine.
For instance, a system that provides VMs or such services to
users may include an application engine or module that is
enabled to provision a debug VM. For example, a cloud
management platform may have multiple services, namely
image management, identity management and role based
access control, and/or resource provisioning system (such as
compute, storage network resource management systems).
D-VM image may be stored and managed by image manage
ment system, e.g., of Such cloud platform.
0018. At 108, D-VM is assigned one or more addresses,

e.g., a public and private Internet Protocol (IP) address.
0019. At 110, the address (e.g., internet protocol (IP)
address) of the D-VM is provided to the user. The D-VM has
ports which would be attached to the Guest-VM, like serial
and parallel ports. These ports are attached to the Guest-VM
via the hypervisor. The serial and parallel ports of Guest-VM
can be attached to the D-VM using, e.g., hypervisor exposed
features on localhost, cKermit kind of programs over TCP/IP
(e.g., in the case of remote host), or by another method.
0020. The D-VM may also expose an interactive console
access to the Guest-VM. The interactive console of Guest
VM can be exposed by D-VM by using ssh (secure shell) port
forwarding. An example of interactive console may be a VNC
console which can be attached to a remote virtual machine for
providing a virtual-terminal/virtual-console like access to the
virtual machine. The interactive console can be used by VNC
to attach to the remote VMs.
0021. At 112, special processes attach D-VM ports to the
Guest-VM, e.g., via the hypervisor. For example, serial and
parallel ports of the D-VM are attached to the Guest-VM for
various kernel debugging with a custom kernel debugger
implemented with the D-VM. Local-drives (local to the user)
may be attached to the guest VM for utilizing crash-recovery
tools (such as crash-recovery compact disks (CDS) or the
like). Local drives, like compact disc (CD) and digital versa
tile disc (DVD) drives can be accessed by a remote VM via
protocols like remote desktop protocol (RDP) or like meth
odology that allows connecting to another computer over a
network connection.
0022 AVM state manipulation step is performed such
that the cloud management system is aware of it; this is
primarily for ensuring consistency of the state of cloud
recorded by cloud management system. A D-VM could
change the state of the guest VM it is attached to by making
appropriate calls to the cloud management system. For
instance, when the VM is booting, a D-VM may attach itself

Nov. 6, 2014

to the guest VM and the user of D-VM may reboot the guest
VM. In this way, a user may have full access to the guest VM
via the D-VM.
0023. At 114, once complete, the D-VM may be detached
from the guest VM, e.g., by tearing down the tunnels/connec
tions created by the hypervisors for attaching ports/sockets of
D-VM with those of guest VM. After detaching the D-VM, it
can de-provisioned.
0024 FIG. 2 is a diagram illustrating a system architecture
overview of the present disclosure in one embodiment. A
virtualized environment is illustrated in which a number of
virtual machines may be running and, e.g., are serviced to
remote clients. A host computer or processor 204 may be
running a hypervisor 206 that manages one or more virtual
machines, which virtual machines for instance may be allo
cated to an end user 202 as a rented server, e.g., guest VM212.
The hypervisor 206 may be multi-layered. For example, a
hypervisor may host another hypervisor, which in turn hosts
one or more virtual machines. In the process of using the guest
VM 212, e.g., the user may need to debug that VM 212. The
end-user 202 requests for a debug virtual machine (D-VM)
208. In response, an authentication daemon 210 or like pro
cess verifies or authenticates the user 202, e.g., using a cloud
authentication service 214. The cloud authentication service
214, for example, may store a list of valid users and other
information for validating users (e.g., user identifications).
Once validated, an instance of a D-VM is created according to
the guest VM. For example, a D-VM may be customized
according to the type of guest VM, for instance, a D-VM for
Linux operating system or D-VM for WindowsTM operating
system, etc. D-VM is provisioned using a custom image (e.g.,
VM image template), and is assigned an address, which is
provided to the user 202.
(0025. The user 202 receives the D-VM address (e.g., IP
address) and accesses the D-VM by logging into it and
accessing the debugging Software on D-VM to debug the
processes on the guest VM instance 212, e.g., including the
kernel of the guest VM 212.
(0026. Attachment of a debug VM 208 and a guest VM212
may be via a tunnel 218. A tunnel is a connection established
between operating systems, for example in FIG. 2, between
the D-VM 208 and the guest VM 212 via one or more hyper
visors 206. For instance, consider a situation where D-VM is
provisioned on the hypervisor, which also hosts the guest
VM. A tunnel 218 can be created using a common pipe (or
socket) between the two VMs. This pipe/socket may be cre
ated and maintained by the hypervisor 206. Across different
hypervisors (e.g., in cases where a D-VM and a guest VM are
hosted on different hypervisors), this pipe/socket may be
chained between the hypervisors over a network connection.
0027. The end user 202 can attach to the D-VM 208 a VNC
client and see the boot console of the Guest-VM 212. In case
of a security problem the VM 212 may be isolated. In that case
the DVM 208 can be attached and perform an interactive
booting. In a case where disks may be corrupted, a VM on a
reboot may ask for a file system check (fisck). In Such cases,
the D-VM may be attached and perform the fisck.
(0028. The attached D-VM 208 may be pre-configured
with an appropriate stack depending on the debug situation at
hand. For example, one or more debugger tools such as pro
gram compiler debugger (e.g., JAVATM debugger, PHP soft
ware debugger) to debug a compiled or like program may be
configured in the attached D-VM 208. Similarly, to solve
potential disk problems that the guest VM 212 may have, one

US 2014/0331089 A1

or more disk utilities that enable debugging of a disk driver
associated with the guest VM 212 may be configured in the
attached D-VM 208, which utilities would allow the D-VM
208 to examine the disk layout and perform any corrective
operations. Thus, the end-user 202 may utilize one or more of
the configured tools in the D-VM 208 to debug the guest VM
212.

0029. The end user 202 can also configure the D-VM 208
with a tool or utility that is available locally at the end user
202. For example, the end user 202 may have a compact disk
that contains a debug utility. The end user 202 may insert that
compact disk on his or her computer device for the guest VM
212 to access, for example, via a remote protocol.
0030. As another example, the end user 202 may attach a
debugger (e.g., gdb, a standard debugger for GNU, a UNIX
style operating system) for debugging various running pro
cesses and even a kernel running on the guest VM 202. The
methodology of the present disclosure in one embodiment
thus enables cloud environment conducive for kernel devel
opment and debugging. For example, a guest VM that has
problems booting up may be accessed via a debug VM of the
present disclosure, e.g., access the guest VM in its pre-boot
stage to boot it and look for problems and solutions in the
guest VM.
0031. In the case of establishing remote Virtual Private
Cloud (VPC) connections, there is not mechanism to know
what the VPC is sending to a cloud-VM, e.g., guest VM 202.
D-VM 208 can be attached and used to get the access of such
information.
0032. As an example, the D-VM of the present disclosure
may be utilized in the following classes of problems, where
there is inability to access the VM or VM-state.

Problem Class Problem Type Minimum service needed to be up
in Guest VM

Connectivity General Kernel, device drivers, tty-service,
Connectivity ogin-service
Firewall Kernel, device drivers, tty-service,

ogin-service, network-service
Connection Kernel, device drivers, tty-service,
Performance ogin-service, network-monitoring

service
Connection to App Kernel, device drivers, tty-Service,

ogin-service, network-service,
app

Performance instance not Kernel, device drivers, tty-service,
responding ogin-service
instance not shutting Kernel, device drivers, tty-Service,
down ogin-service
Storage resource Kernel, device drivers, tty-service,
problems ogin-service, device-monitoring

service
Virtualized Storage resource Kernel, login-service
Infrastructure related problem Kernel, login, access to load

Load Balancer balancer
related
DNS, Virt IP Kernel, login, nework-service

Application Configuration Kernel, login, app, monitoring
Problem service
Performance Kernel, login, app, monitoring
Problem service

0033. In another aspect, the D-VM of the present disclo
sure may be used for application level problems like perfor
mance management of large distributed applications.
0034. The methodology of the present disclosure may
empower the user to revive the hung-up machine, for which
she has already paid, reduce the problem resolution time,

Nov. 6, 2014

reduce the load on administrators in debugging mundane
problems, and make the cloud or the like environment more
usable to various developmental purposes.
0035. The methodology of the present disclosure in one
embodiment may facilitate debugging of one or more distrib
uted applications deployed across multiple machines (e.g.,
virtual machines), debugging of operating system level bugs
(problems, errors), for instance, device driver problems
deployed on a remote platform (e.g., cloud platform/environ
ment). The methodology of the present disclosure may also
be used in cases where the guest VM is not accessible via SSH
or other network services, which are typically available after
Successful loading of an operating system.
0036 While the above description referred to a VM and
D-VM provisioned in cloud type platform, the methodology
of the present disclosure need not be limited to use only cloud
environment. Rather, D-VMs may be created and attached to
VMs in any other type of platforms, for example, where a
service of VMs may be provided to users.
0037. A computer or processing system may implement a
methodology in one embodiment of the present disclosure.
The processing system may be operational with numerous
other general purpose or special purpose computing system
environments or configurations. Examples of well-known
computing systems, environments, and/or configurations that
may be suitable for use with the processing system may
include, but are not limited to, personal computer systems,
server computer Systems, thin clients, thick clients, handheld
or laptop devices, multiprocessor Systems, microprocessor
based systems, set top boxes, programmable consumer elec
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ
ments that include any of the above systems or devices, and
the like.

0038. The computer system may be described in the gen
eral context of computer system executable instructions. Such
as program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. The computer system may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu
nications network. In a distributed cloud computing environ
ment, program modules may be located in both local and
remote computer system storage media including memory
storage devices.
0039. The components of computer system may include,
but are not limited to, one or more processors or processing
units, a system memory, and a bus that couples various system
components including system memory to processor. The pro
cessor may include a module that performs the methods
described herein. The module may be programmed into the
integrated circuits of the processor, or loaded from memory,
storage device, or network or combinations thereof.
0040 Bus may represent one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus archi
tectures. By way of example, and not limitation, Such archi
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA

US 2014/0331089 A1

(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.
0041 Computer system may include a variety of computer
system readable media. Such media may be any available
media that is accessible by computer system, and it may
include both volatile and non-volatile media, removable and
non-removable media.
0042 System memory can include computer system read
able media in the form of Volatile memory, Such as random
access memory (RAM) and/or cache memory or others. Com
puter system may further include other removable/non-re
movable, Volatile/non-volatile computer system storage
media. By way of example only, storage system can be pro
vided for reading from and writing to a non-removable, non
Volatile magnetic media (e.g., a "hard drive”). Although not
shown, a magnetic disk drive for reading from and writing to
a removable, non-volatile magnetic disk (e.g., a "floppy
disk”), and an optical disk drive for reading from or writing to
a removable, non-volatile optical disk such as a CD-ROM,
DVD-ROM or other optical media can be provided. In such
instances, each can be connected to bus by one or more data
media interfaces.
0043 Computer system may also communicate with one
or more external devices Such as a keyboard, a pointing
device, a display, etc.; one or more devices that enable a user
to interact with computer system; and/or any devices (e.g.,
network card, modem, etc.) that enable computer system to
communicate with one or more other computing devices.
Such communication can occur via Input/Output (I/O) inter
faces.
0044 Still yet, computer system can communicate with
one or more networks such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter. A network adapter
communicates with the other components of computer sys
tem via bus. It should be understood that other hardware
and/or software components could be used in conjunction
with computer system. Examples include, but are not limited
to: microcode, device drivers, redundant processing units,
external disk drive arrays, RAID systems, tape drives, and
data archival storage systems, etc.
0045. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0046) Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having

Nov. 6, 2014

one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0047. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0048 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0049 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages, a scripting language Such
as Perl, VBS or similar languages, and/or functional lan
guages such as Lisp and ML and logic-oriented languages
Such as Prolog. The program code may execute entirely on the
user's computer, partly on the user's computer, as a stand
alone software package, partly on the user's computer and
partly on a remote computer or entirely on the remote com
puter or server. In the latter scenario, the remote computer
may be connected to the user's computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter
nal computer (for example, through the Internet using an
Internet Service Provider).
0050 Aspects of the present invention are described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0051. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or

US 2014/0331089 A1

other devices to function in a particular manner, Such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0052. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0053. The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0054 The computer program product may comprise all
the respective features enabling the implementation of the
methodology described herein, and which when loaded in a
computer system is able to carry out the methods. Com
puter program, Software program, program, or software, in
the present context means any expression, in any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per
form aparticular function either directly or after either or both
of the following: (a) conversion to another language, code or
notation; and/or (b) reproduction in a different material form.
0055. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0056. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements, if any,
in the claims below are intended to include any structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of the present invention has been presented for
purposes of illustration and description, but is not intended to
be exhaustive or limited to the invention in the form disclosed.

Nov. 6, 2014

Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
0057 Various aspects of the present disclosure may be
embodied as a program, Software, or computer instructions
embodied in a computer or machine usable or readable
medium, which causes the computer or machine to perform
the steps of the method when executed on the computer,
processor, and/or machine. A program storage device read
able by a machine, tangibly embodying a program of instruc
tions executable by the machine to perform various function
alities and methods described in the present disclosure is also
provided.
0058. The system and method of the present disclosure
may be implemented and run on a general-purpose computer
or special-purpose computer system. The terms "computer
system” and “computer network” as may be used in the
present application may include a variety of combinations of
fixed and/or portable computer hardware, software, periph
erals, and storage devices. The computer system may include
a plurality of individual components that are networked or
otherwise linked to perform collaboratively, or may include
one or more stand-alone components. The hardware and soft
ware components of the computer system of the present appli
cation may include and may be included within fixed and
portable devices such as desktop, laptop, and/or server. A
module may be a component of a device, Software, program,
or system that implements some “functionality, which can
be embodied as software, hardware, firmware, electronic cir
cuitry, or etc.
0059. The embodiments described above are illustrative
examples and it should not be construed that the present
invention is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of
the invention as defined in the appended claims.

1. A method of enabling remote debugging of virtual
machines, comprising:

attaching a debug virtual machine to a target virtual
machine deployed in a virtualized environment; and

allowing interacting with the target virtual machine via the
attached debug virtual machine.

2. The method of claim 1, wherein the debug virtual
machine allows an end user of the target virtual machine to
access the target virtual machine during a pre-boot stage of
the target virtual machine.

3. The method of claim 1, wherein the attaching is per
formed in response to receiving a request from an end user of
the target machine to debug the target virtual machine.

4. The method of claim 3, wherein in response to the
request, the debug virtual machine is created.

5. The method of claim 3, wherein one or more devices
located locally at the end user are connected over a network to
the target virtual machine via the debug virtual machine,
wherein the debug virtual machine allows using one or more
debugging utilities installed in the one or more devices to
debug the target virtual machine.

US 2014/0331089 A1

6. The method of claim 1, wherein the attaching comprises
creating a tunnel between the debug virtual machine and the
target virtual machine.

7. The method of claim 1, wherein the debug virtual
machine is pre-configured with one or more debug utilities,
wherein the one or more debug utilites are used to debug the
target virtual machine.

8. The method of claim 1, wherein the debug virtual
machine enables debugging of a distributed application
deployed across multiple virtual machines.

9. The method of claim 1, wherein the debug virtual
machine is created on a host machine where the target virtual
machine is deployed.

10. The method of claim 1, wherein the debug virtual
machine is created on a host machine different from a host
machine where the target virtual machine is deployed.

11.-20. (canceled)

Nov. 6, 2014

