PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/10795
F Al

GOGF 1/00 (43) International Publication Date: 4 March 1999 (04.03.99)

(21) International Application Number: PCT/US98/17553 | (81) Designated States: JP, European patent (AT, BE, CH, CY, DE,

(22) International Filing Date: 25 August 1998 (25.08.98)

(30) Priority Data:

08/919,844 28 August 1997 (28.08.97) US

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmont, WA 98052 (US).

(72) Inventors: BOND, Barry; 4902 N.E. 21st Street, Renton, WA
98059 (US). BHARATI, Sudeep; 3272 165th Place N.E.,
Bellevue, WA 98008 (US).

(74) Agent: VIKSNINS, Ann, S.; Schwegman, Lundberg, Woessner
& Kluth, P.O. Box 2938, Minneapolis, MN 55402 (US).

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: SECURITY ENHANCEMENT FOR UNTRUSTED EXECUTABLE CODE

36 ;oo 395
APPLICATION PROGRAM ¢ APPLET SNIFF
(CONTROL) CODE e
362 394
361 363 1 1 1
THUNK | THUNK | THUNK
391 | 392 | 383
T |
|
Loaﬁkﬂ SNIFF
ol B B EMULATOR N394
351 352 | 383 | 34
3 30 354
OPERATING SYSTEM

Vbov

PROCESSOR

(587) Abstract

Untrusted executable code programs (applets or controls) are written in native, directly executable code. The executable code is loaded
into a pre—allocated memory range (sandbox) from which references to outside memory are severely restricted by checks (sniff code) added
to the executable code. Conventional application—program interface (API) calls in the untrusted code are replaced with translation—code
modules (thunks) that allow the executable code to access the host operating system, while preventing breaches of the host system’s security.
Static links in the code are replaced by calls to thunk modules. When an API call is made during execution, control transfers to the thrunk,
which determines whether the API call is one which should be allowed to execute on the operating system.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA

CG
CH
CI

CM
CN
Ccu
CZ

DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN
GR

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
Lo
LV
MC
MD
MG
MK

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/10795

SECURITY ENHANCEMENT FOR UNTRUSTED EXECUTABLE CODE

Field of the Invention

The present invention relates to electronic data processing and in
particular to avoiding system damage from executing programs containing
untrusted code.

Background of the Invention

Advances in Internet browsers are creating dynamic and interactive pages
on the World Wide Web. However, the advances are also creating increased
computer system security risks which may arise from merely viewing a web
page. Internet browsers automatically download and run programs or other
executable code which are embedded in the web page. The ability to download
and execute programs from a remote computer exposes the host computer to
several security risks. Hostile programs can, for example, modify a computer
system or data on the computer system, steal user data such as passwords and
bank-account information, or make system resource$ unavailable to the user. As
a result, security issues are critical in the development of Internet applications.

One prior-art approach provides security for a particular form of
executable code, known as Java applets. The executable-code source program is
written and downloaded converted to platform-independent byte code. The
platform-independent tokenized byte code runs on a virtual machine which
places strict limits on what the executable code can do. The executable code in
the prior-art approach has only very limited access to the operating system.
Accordingly, as the Java language becomes more powerful, it must duplicate
many functions that the operating system already performs.

ActiveX controls are a form of executable code which avoid the limited
abilities of Java. ActiveX is an outgrowth of two technologies from Microsoft

Corp. called OLE (Object Linking and Embedding) and COM (Component

PCT/US98/17553

10

15

20

25

WO 99/10795

Object Model). ActiveX supports features that enable it to take advantage of the
Internet. For example, an ActiveX control can be automatically downloaded and
executed by a Web browser.

Because ActiveX controls are written in native code, they have full
access to the operating system and the process memory in which the controls are
running. This access is powerful when the contro!l is running in a tightly
controlled environment such as an extension to a stand-alone application.
However, full access to the operating system creates serious security issues when
ActiveX controls are downloaded from unknown or untrusted sources on the
Internet by an application such as the web browser Internet Explorer. ActiveX
controls are designed to access any of the operating system's services. A hostile
ActiveX control could search for information on the host system's hard drive,
implant a virus, or damage the host system. The problem with the unrestricted
access of ActiveX to the operating system is that the unrestricted access places
the host system at risk to security breaches.

Accordingly, there is a need for a form of executable code with the
ability to access the power of the host operating system, but without
compromising the host system's security.

Summary of the Invention

The present invention implements a security policy for untrusted
executable code written in native, directly executable code. The executable code
is loaded into a pre-allocated memory range, or sandbox, from which references
to outside memory are restricted. Checks (“sniff code”) added to the executable
code enforces these restrictions during execution. Conventional application-
program interface (API) calls in the untrusted code are replaced with translation-
code modules (“thunks”) that allow the executable code to access the host
operating system, while preventing breaches of the host system's security. Static
links in the control or applet are replaced by calls to thunk modules. When an

API call is made during execution, control transfers to the thunk, which

PCT/US98/17553

10

15

20

25

30

WO 99/10795

determines whether the API call is one which should be allowed to execute on
the operating system or not.
Brief Description of the Drawings

Figure 1 is a system view of an exemplary computing environment in
which the present invention may be implemented.

Figure 2 is a block diagram of an execution environment incorporating
the present invention.

Figure 3 is a flowchart describing the major steps of the invention.

Figure 4 is a simplified block diagram of a sandbox area in memory.

Detailed Description of the Invention

In the following detailed description of the embodiments, reference is
made to the accompanying drawings which form a part hereof, and in which is
shown by way of illustration specific embodiments in which the invention may
be practiced. These embodiments are described in sufficient detail to enable
those skilled in the art to practice the invention, and it is to be understood that
other embodiments may be utilized and that structural, logical and electrical
changes may be made without departing from the spirit and scope of the present
inventions. The following detailed description is therefore, not to be taken in a
limiting sense, and the scope of the present inventions is defined only by the
appended claims. Number of the Figures is done so that identical components
which appear in multiple figures are identified by the same reference numbers.

Figure 1 and the following discussion are intended to provide a brief,
general description of a suitable computing environment in which the invention
may be implemented. Although not required, the invention will be described in
the general context of computer-executable instructions, such as program
modules, being executed by a personal computer. Generally, program modules
include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the invention may be practiced with

other computer system configurations, including hand-held devices,

PCT/US98/17553

10

15

20

25

30

WO 99/10795

multiprocessor systems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe computes, and the like.
The invention may also be practiced in distributed computing environments
where tasks are performed by remote processing devices that are linked through
a communications network. In a distributed computing environment, program
modules may be located in both local and remote memory storage devices.

Figure 1 provides a brief, general description of a suitable computing
environment in which the invention may be implemented. The invention will
hereinafter be described in the general context of computer-executable
instructions such as program modules, executed by a personal computer (PC);
however, other environments are possible. Program modules include routines,
programs, objects, components, data structures, etc. that perform particular tasks
or implement particular abstract data types. Those skilled in the art will
appreciate that the invention may be practiced with other computer-system
configurations, including hand-held devices, multiprocessor systems,
microprocessor-based programmable consumer electronics, network PCs,
minicomputers, mainframe computers, and the like. The invention may also be
practiced in distributed computing environments where tasks are performed by
remote processing devices linked through a communications network. Ina
distributed computing environment, program modules may be located in both
local and remote memory storage devices.

Figure 1 shows an exemplary system for implementing the invention. It
employs a general-purpose computing device in the form of a conventional
personal computer 20, which includes processing unit 21, system memory 22,
and system bus 23 that couples the system memory and other system
components to processing unit 21. System bus 23 may be any of several types,
including a memory bus or memory controller, a peripheral bus, and a local bus,
and may use any of a variety of bus structures. System memory 22 includes
read-only memory (ROM) 24 and random-access memory (RAM) 25. A basic
input/output system (BIOS) 26, stored in ROM 24, contains the basic routines

PCT/US98/17553

10

15

20

25

30

WO 99/10795 - PCT/US98/17553

that transfer information between components of personal computer 20. BIOS
24 also contains start-up routines for the system. Personal computer 20 further
includes hard disk drive 27 for reading from and writing to a hard disk (not
shown), magnetic disk drive 28 for reading from and writing to a removable
magnetic disk 29, and optical disk drive 30 for reading from and writing to a
removable optical disk 31 such as a CD-ROM or other optical medium. Hard
disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to
system bus 23 by a hard-disk drive interface 32, a magnetic-disk drive interface
33, and an optical-drive interface 34, respectively. The drives and their
associated computer-readable media provide nonvolatile storage of computer-
readable instructions, data structures, program modules and other data for
personal computer 20. Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a removable optical disk
31, those skilled in the art will appreciate that other types of computer-readable
media which can store data accessible by a computer may also be used in the
exemplary operating environment. Such media may include magnetic cassettes,
flash-memory cards, digital versatile disks, Bernoulli cartridges, RAMs, ROMs,
and the like.

Program modules may be stored on the hard disk, magnetic disk 29,
optical disk 31, ROM 24 and RAM 25. Program modules may include operating
system 35, one or more application programs 36, other program modules 37, and
program data 38. A user may enter commands and information into personal
computer 20 through input devices such as a keyboard 40 and a pointing device
42. Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input devices are often
connected to the processing unit 21 through a serial-port interface 46 coupled to
system bus 23; but they may be connected through other interfaces not shown in
Figure 1, such as a parallel port, a game port, or a universal serial bus (USB). A
monitor 47 or other display device also connects to system bus 23 via an

interface such as a video adapter 48. In addition to the monitor, personal

10

15

20

25

30

WO 99/10795

computers typically include other peripheral output devices (not shown) such as
speakers and printers.

Personal computer 20 may operate in a networked environment using
logical connections to one or more remote computers such as remote computer
49. Remote computer 49 may be another personal computer, a server, a router, a
network PC, a peer device, or other common network node. It typically includes
many or all of the components described above in connection with personal
computer 20; however, only a storage device 50 is illustrated in Figure 1. The
logical connections depicted in Figure 1 include local-area network (LAN) 51
and a wide-area network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets and the
Internet.

When placed in a LAN networking environment, PC 20 connects to local
network 51 through a network interface or adapter 53. When used in a WAN
networking environment such as the Internet, PC 20 typically includes modem
54 or other means for establishing communications over network 52. Modem 54
may be internal or external to PC 20, and connects to system bus 23 via serial-
port interface 46. In a networked environment, program modules depicted as
residing within 20 or portions thereof may be stored in remote storage device 50.

Of course, the network connections shown are illustrative, and other means of
establishing a communications link between the computers may be substituted.

In the present invention, a conventional web browser running on personal
computer 20 as an application program 36 automatically downloads an applet
from the remote computer 49. An “applet” is a short program, usually for
performing a single function, designed to be executed from within another
application. Applets are frequently downloaded from remote computers as they
are needed, and may sometimes be erased from the local computer after they
have been executed by the primary application.

Figure 2 shows a mostly conventional execution environment that

includes facilities for running applets under the invention. The term “applet” is

PCT/US98/17553

10

15

20

25

30

WO 99/10795

not precisely defined in the art. This term generally refers to a small program for
executing a single function or a limited range of functions; however, the term
does not inherently limit the size of the program or its range of functions.
Applets are frequently downloaded from an on-line source such as a World Wide
Web page for a particular purpose; indeed, an applet may be downloaded,
executed immediately, and then purged after execution. In the preferred
embodiment described below, the term “control” or “ActiveX control” may be
considered synonymous to an applet. In any case, the invention itself is not
limited to use with small programs, downloaded programs, or any other specific
form of program. The invention is useful for any program which is not “trusted”
-- that is, a program of uncertain provenance or effects, which might damage the
system if it were given full access to system resources.

An operating system 35 such as Windows95 employs a loader module
351 for loading a normal application program 36 into memory. Program 36
executes under the control of OS 35 by sending instructions directly to
processing unit 21, as symbolized by line 361. Program 36 executes standard
application-program interface (API) functions by calling blocks of API code
352-354. Each API contains instructions directly executable by processor 21 for
carrying out a specified low-level function, such as displaying a dialog box on
display 47, Figure 1. OS 35 commonly includes thousands of individual APIs,
usually packaged as several dozen dynamic link libraries (DLLs); in the
Microsoft Windows NT operating system, these DLLs are collectively known as
“Win32".

An emulator program allows application programs written for one
processing unit 21 to be executed on another processing unit having a different
instruction set. The particular Wx86VM emulator 39 employed here was
originally developed for running programs written for Intel “x86" processors
(80386, 80486, Pentium, etc.) on processors such as the Digital Equipment Corp.
Alpha and the IBM PowerPC. It is described more fully in copending
commonly assigned applications Ser. No. 08/912,454 and 08/904,057. For the

PCT/US98/17553

10

15

20

25

WO 99/10795

present purpose, a somewhat modified version called Wx86VM passes most
instructions unmodified to the x88 processor 21, but blocks or translates others
as will be described. Wx86VM mimics Wx86 in performing APIs by means of
translation modules called “thunk code” (or merely “thunks™) 391-393, although
the purpose of the thunk codes here is to provide security, rather than their
original purpose of allowing API calls from one platform to execute API code
written for a different platform.

When an applet such as 362 is to be executed, a host program 36 such as
an Internet web browser invokes emulator 39. The emulator employs its own
loader module 396 to load the applet code into a predetermined memory area,
and to assign another predetermined memory area for its use. These areas are
called the “sandbox” for that applet. During execution of the applet, emulator 39
compiles the applet’s code in a compiled cache which resides outside the
sandbox. During the compilation process, the emulator also inserts the memory
sniff code 394 into the cache.

Because applet 362 executes on the same processor platform 21 for
which it was written, emulator 39 need not translate individual instructions
(symbolized by line 363) in order to execute an ActiveX control. However, it
does filter and translate them for the purpose of providing security. For
example, APIs use the x86 interrupt (INT) instruction to call the kernel of
operating system 35. An INT instruction in a control therefore could bypass the
API thunks 391-393 and the sniff code 394, and call the kernel directly.
Therefore, emulator 39 blocks this instruction unconditionally; it produces no
output code at all on line 364. Other problematic instructions, such as subroutine
calls (CALL) and returns (RET), and unconditional/conditional jumps
(JMP/Jxx), on line 363 are replaced on line 364 by subroutine calls; when one of
these instructions is simulated, the cache of already compiled code must be
searched in order to determine the in-cache destination address of the call or

jump.

PCT/US98/17553

10

15

20

25

WO 99/10795

API calls from applet 362 do not proceed directly to API code 352-354.
Rather, thunk code 391-393 interqepts them, and decides what to do with them.
Some calls, such as at 391, may be passed directly to the corresponding API 352
by thunk 391; these calls cannot wreak any havoc on the system, and thus
present no security risks. Other thunks, such as 392, may decide whether or not
to pass a call to its corresponding API 353, depending upon certain
characteristics of that particular call; or it may modify the call before presenting
it to the API. Some thunks, such as 393, completely disallow a call to their API
354, these calls violate the system’s security, and cannot be permitted by any
untrusted applet 362.

Figure 4 illustrates the major steps 400 of one embodiment of the
invention that allow applets executed on personal computer 20 to access all of
the operating system services without comprising the personal computer’s
security.

In steps 410, a host application, such as a web browser, loads the applet
into an allocated memory range. The allocated memory range is referred to in
this application as a sandbox. The sandbox includes both an initial memory
segment to store the applet and a run time memory segment for addressable
storage during the execution of the applet; these may be assigned in any
conventional manner. In this embodiment, OS 35 calls the emulator 39 in step
411. Step 412 allocates an area or range of addresses in RAM 22, Figure 1, for
storing the code of applet 362, and another area for the applet to use as run-time
working storage; these two areas together constitute the sandbox in which the
applet may safely execute without affecting any other applet, application
program, or other facility of the system. There will be one WX86 sandbox for
each security domain -- that is, all controls having the same security settings play
in the same sandbox. Because security settings include a Web page’s uniform
resource locator (URL), each open Web page has at least one sandbox. Usually,

all controls on the same Web page will be in the same sandbox. Although their

PCT/US98/17553

10

15

20

25

30

WO 99/10795

10

custom interfaces are not secure, allowing inter-applet calls within a sandbox is
acceptable.

Steps 420 prepare an applet for execution.

Step 421 substitutes the applet’s static links with links to thunk modules.
That is, emulator 39 finds all calls to APIs 352-354 within the code of applet
362 and changes them to calls to the corresponding thunks 391-393. A static
link is a link that remains constant during the execution of the applet. A DLL, or
Dynamic Link Library, is a library of executable functions or data that can be
used by a Windows application. Typically, a DLL provides one or more
particular functions and a DLL is accessed by creating either static or dynamic
link to the DLL. DLL files in the following description end with the extension
(dIl. A thunk DLL is a secure API within the sandbox. The thunk DLLs block
or restrict many APIs that are not considered safe. For instance, CreateFile will
be allowed only in known locations. Similarly, an applet will not be allowed to
create another process to record passwords. As described above, some thunks
merely pass control to the corresponding API. For example, the Win32 APIs
named “CreateWindow”, “CreateDialog”, “Createlcon”, “CreateCursor”, and
similar functions do not affect other processes, and can be permitted to untrusted
code. On the other hand, certain other APIs must be made entirely unavailable
to untrusted code. For example, allowing “CreateProcess” would allow the
untrusted applet to run another program outside the sandbox; operations such as
“ExitWindowsEx()"are blocked completely, so that the untrusted code cannot
log-off the current user or power-down the computer. A thunk such as 393
blocks an API by returning an error code back to the control, as symbolized by
line 395.

Some APIs may be allowed under some conditions, or with certain
modifications. In this case, a thunk such as 392 performs internal operations,
after which it either calls or blocks the corresponding API 353, or passes
modified parameters to the API. For example, “SendMessage()’normally sends

a message to a window. The SendMessage thunk allows an ActiveX control to

PCT/US98/17553

10

15

20

25

30

WO 99/10795

11

send any message to windows created by that control. However, the thunk
blocks all messages owned by the Web browser or by another application
program. This prevents a control from breaching security by sending a
WM_CHAR message to simulate a keystroke to be carried out by a window
belonging to another program.

Another example involves Win 32 APIs such as “GlobalAlloc”,
“HeapCreate”, which normally allocate memory at any location. The thunks for
these APIs incorporate the entire code of the corresponding APIs, recompiled so
as to execute entirely within the sandbox memory, and capable of allocating
memory only within the bounds of the sandbox.

Although not shown here, it is also possible to have a thunk call a
different API than it normally would, or to select among multiple APIs
depending upon parameters of the call from the applet.

Step 422 then compiles the applet’s code into object code which can be
executed by emulator 39, Figure 2. Compilation may proceed all at once or by
parts as code becomes required; compiled code is placed in a compiled cache
357, Fig. 4, located outside the sandbox. Compilation in these ways is
conventional, and is not relevant to the invention itself.

Step 423 inserts check code into the applet’s own code to enforce
prohibitions against disallowed memory references. This check code, called
“sniff code” , examines all memory reads and writes made by the applet’s code,
and allows or disallows them from occurring. By preventing the applets from
accessing memory outside the sandbox, the security of the applet is increased.
Also, providing all the memory to the applet only from the pre-allocated range
reduces the sniff-code overhead and results in an efficient check on the memory
range. Additional optimization techniques are added by compiling the code on a
basic block level. For instance, if several memory references are being made by
the applet using the same register, a compiler could check the entire range
addressable by that register only once, rather than generating separate calls to the

sniff code for each access. Detailed examples will be shown in connection with

PCT/US98/17553

10

15

20

25

30

WO 99/10795

12

Figure 4. Basically, the sniff code allows the applet to reference RAM addresses
only within the allocated sandbox and within certain other memory which cannot
damage the system. (Although emulator 39 allows no memory references
outside the sandbox, it does have the ability to add memory regions to the
sandbox. For purposes such as device-independent bitmap images, the extra
sniff-code overhead is less than the effort otherwise required to copy the images
into the initial sandbox region.)

Steps 430 execute the applet. Step 431 follows the instruction sequence.

If the current instruction is a call to an API, the link placed by step 421
determines whether the call will be blocked completely at step 432, executed at
step 433, or processed further at step 434, then either blocked or allowed.

If the current instruction is a memory-reference instruction such as
LOAD or STORE, step 435 allows step 436 to execute the instruction if it refers
to an address within its sandbox. If not, step 437 determines whether the
reference is otherwise allowed. If so, step 435 executes it; otherwise, step 438
blocks the access and returns an error. The sniff code implements these steps.
Other X86 instructions are executed directly by step 436. After each instruction,
control returns to step 431. Process 400 continues until the host application
terminates it.

In some systems, the execution of an API by a block such as 433 may
present another security exposure. If an API’s argument is a pointer to data in
the sandbox, there is a short period between the time that a thunk validates the
contents of the memory pointed to, and the actual call to the API. In a multi-
threaded applet, another execution thread within the applet could alter the
contents of the memory pointed to, and could thereby transmit unvalidated data
to the API. To prevent such an attack, block 433-1 performs a “deep copy” of an
API’s arguments, and block 433-2 deep-copies any return value from the APL
More specifically, when step 433 executes an AP, step 433-1 first copies all
arguments passed to the API from their location within the sandbox to another

location outside the sandbox before the API is actually called. Because the

PCT/US98/17553

10

15

20

25

30

WO 99/10795

13

applet itself cannot access this copy, the API validates only data which has
already been saved. Step 433 then deposits any return values outside the
sandbox; after the API completes execution, step 433-2 copies the return value
inside the sandbox for the applet’s use. Deep copying may be used selectively, if
desired.

Figure 4 is a memory map of system RAM 25 showing only those areas
relevant to the invention. The preallocated range 251 forms the sandbox. It
contains an initial memory segment for storing an applet 362, a run-time
memory segment 252 for addressable working storage during the applet’s
execution, and a segment for storing the translation-code thunks 391-393 (here
shown only as thunk 391). Memory 22 outside of sandbox 251 contains the API
DLLs, here represented by 352, and kernel32 355. Other working memory areas
are represented as 356. The compiléd cache 357 also lies outside sandbox 215.
The location of WHKRNL32 352 outside sandbox 215 is especially important,
because it is here that the security policy is actually implemented; if it were
inside the sandbox, a rogue applet might be able to compromise security by
modifying it.

The following example illustrates the operation of the invention. As
stated previously, this embodiment utilizes the aforementioned Wx86VM
emulator to run x86 Win32 applets or controls unmodified on an x86 platform
under the Windows95 or Windows NT operating system.

A web browser such as the Microsoft Internet Explorer downloads an
ActiveX control (applet) called foo.ocx from the Internet to the hard drive at
c:\temp\foo.ocx. The extension .ocx indicates an ActiveX control.

Internet Explorer then looks for the presence of Wx86VM in the system.
If the Wx86VM component is available, Internet Explorer calls it and provides
all the security-related information about the control and requests for the control
to be loaded. Wx86VM components look at the security information that
Internet Explorer has provided it, and decides whether to launch it in the

Wx86VM, or to let an object linker, OLE32, handle it.

PCT/US98/17553

10

15

20

25

30

WO 99/10795 PCT/US98/17553

14

If the control is to be launched in the Wx86VM emulator, then Wx86VM
creates an allocated area of memory, or sandbox, 251 for the ActiveX control.
Wx86VM loads the ActiveX control, foo.ocx, (shown as 362 in Figure 4) into
the sandbox.

Wx86VM loads API thunk DLLs (secure APIs) such as 391 into the
sandbox. Wx86VM is able to modify the names of DLLs within the operating-
system loader, as explained more fully in the aforementioned application
(Docket 777.016US1). This allows Wx86VM to insert thunk code between the
x86 image and the native API, to handle differences in calling conventions. The
list of names to remap is stored in a registry. For example, kernel32 (355 in
Figure 4) is remapped to wikrnl32 (shown as thunk 391 in Figure 4), and
user32.dll is remapped to wiuser32.dll. An API thunk is composed of two
DLLs: a DLL prefixed by “wi”, which runs within the Wx86VM and hence is
not trusted, and a DLL prefixed by “wh”, which runs outside of the Wx86VM
and is trusted to implement safety policy.

“Wi” DLLs have the same exports as the native DLL that they substitute
for. These exports are responsible for switching out of the sandbox to the
Wx86.dll, which then calls the appropriate thunk in secure mode; this further
implementé the security policy for that API. If there is no security concern for a
particular API, then the thunk merely calls the native API. This call, called a
“BOP”, is typically an invalid x86 opcode that signals Wx86.dll that a mode-
switch needs to take place. The BOP command has the form “BOP (DLL #, API
#)”. When Wx86VM dispatches the BOP to the host-side thunk DLL, which is
prefixed with “wh” (such as whkrnl32, 352 in Figure 4), that DLL has access to
the sandbox’s register set and stack, so the DLL can copy parameters from the
sandbox’s stack to native stack, validate the API’s arguments, make the call, and
move the return value back into the sandbox’s EAX register.

For example, if an x86 applet or control has a static link to
kernel32!CreateFile, WX86VM resolves that link to wikrnl32!CreateFile. When
the applet calls CreateFile, wikrnl32!CreateFile executes a BOP instruction that

10

15

20

25

30

WO 99/10795

15

switches from the sandbox to native, and calls Wx861DispatchBop() in
Wx86VMLdIl. Wx86DispatchBop() dispatches the call to
whkrnl32!whCreateFile(). That function calls native kernel32!CreateFile(),
copies the return value into the simulated EAX register, and returns.

Wx86VM also loads the emulator 39 code, Wx86¢pu.dll. During
execution of an applet, the emulation halts when the processor encounters a BOP
instruction.

Execution of the applet begins by compiling the needed code and putting
the code in the compiled cache. The compiled code has sniff checks in it to
verify that the memory read or memory write operation is a safe operation. If the
memory being accessed is outside the predetermined sandbox area, the operation
attempting to access the memory will fail. For example, if the applet foo.ocx
contains the instruction MOV EAX,[ESI+4], then the compiler will insert the
sniff code before the MOV instruction to verify that the instruction is safe. So
the following instruction:

MOV EAX, [ESI+4]
becomes:

LEA ECX, [ESI+4]

CALL SNIFFREAD4.ECX

MOV EAX, [ECX]
after the sniff code has been inserted.

Because sniff code adds an overhead, additional optimization techniques
can be applied when compiling the code on a basic block level. For instance, if
the applet makes several memory references using the same register, the
compiler checks the whole range only once and does not generate separate sniff
calls. So if the applet foo.ocx contains the following instructions:

MOV EAX, [ESI+4]

MOV EDX, [ESI+8]
the sniff code will be inserted as:

LEA ECX, [ESI+4]

PCT/US98/17553

10

15

WO 99/10795 PCT/US98/17553
16

CALL SNIFFREADS.ECX .

MOV EAX, [ECX]

MOV EDX, [ECX+4]
rather than inserting the sniff code in the less efficient manner:

LEA ECX, [ESI+4]

CALL SNIFFREAD4.ECX

MOV EAX, [ECX]

LEA ECX, [ESI+4]

CALL SNIFFREADA4.ECX

MOV EDX, [ECX]

The above description is illustrative, and not restrictive. Many other
embodiments will be apparent to those having skill in the art, upon reviewing the
above description. The scope of the invention should therefore be determined
with reference to the appended claims, along with the full scope of equivalents to

which such claims are entitled.

10

15

20

25

WO 99/10795 PCT/US98/17553

17

What is claimed is:

1. A method for executing an untrusted program written for direct execution
on a computer platform having a memory and interface modules, the method
comprising:

allocating a predetermined bounded area of the memory for the untrusted
program;

loading the untrusted program into the bounded memory area;

placing check code within the untrusted program for blocking references
to the memory outside the bounded area;

replacing links in the code to the interface modules with links to
translation-code modules for passing and blocking execution of certain ones of
the interface modules;

executing the untrusted program.

2. The method of claim 1, wherein the bounded memory area further

includes an area of working storage for the untrusted program.

3. The method of claim 2, wherein the check code acts upon blocks of

memory addresses as a whole.

4. The method of claim 1, wherein a first set of the translation-code

modules directly access a corresponding set of the interface modules.

5. The method of claim 4, wherein a second set of the translation-code

modules block access to a second corresponding set of the interface modules.

6. A computer-readable storage medium containing thereon computer-

executable instructions code for:

10

15

20

25

30

WO 99/10795

18

allocating a predetermined bounded area of the memory for storing an
untrusted program;

loading the untrusted program into the bounded memory area;

placing check code within the untrusted program for blocking references
to the memory outside the bounded area;

replacing links in the code to the interface modules with links to
translation-code modules for passing and blocking execution of certain ones of

the interface modules.

7. In a computer system having a native processor, a memory, and an
operating system executable by the native processor, an emulator for running an
untrusted program written in native code directly executable by the native
processor and using interface modules of the operating system, the emulator
comprising:

a load module for loading the untrusted program into a bounded area of
the memory;

check code insertable into the untrusted program for limiting accesses by
the untrusted program outside the bounded area of the memory;

a set of translation-code modules linkable to the untrusted program for

accessing a corresponding set of the interface modules of the operating system.

8. A method for executing an untrusted program written for direct execution
on a native computer platform having a memory and an operating system, the
method comprising:

allocating a predetermined bounded area of the memory for the untrusted
program;

loading the untrusted program code into the bounded memory area;

placing check code within the untrusted program for blocking references

to the memory outside the bounded area.

PCT/US98/17553

10

15

20

25

WO 99/10795

19

9. The method of claim 8, further comprising:
allocating a portion of the bounded memory area as runtime working

storage for the untrusted program.

10. The method of claim 8, further comprising:
loading a plurality of additional code modules into the bounded memory

area, the code modules being accessible to the untrusted program.

11. A method for executing an untrusted program written for direct execution
on a native computer platform having a memory and an operating system, the
operating system including a set of interface modules linkable by the untrusted
program, the method comprising:

constructing a set of translation-code modules corresponding to a
predetermined subset of the interface modules, the translating-code modules
being capable of passing control to respective ones of the interface modules in
the subset;

replacing links in the untrusted-program code to the interface modules
with links to corresponding ones of the translation-code modules, so as to allow

execution of only certain ones of the interface modules by the untrusted program.

12. The method of claim 11, further comprising:
storing the set of translation-code modules within a bounded area of the

memory accessible to the untrusted code.

13. A method of providing security for an applet, the method comprising the
steps of:

loading an applet into a pre-allocated memory range, the pre-allocated
memory range including both an initial memory segment to store the applet and

a run time memory segment for addressable storage during the execution of the

PCT/US98/17553

10

15

20

25

30

WO 99/10795

20

applet so that memory access by the applet is limited to the pre-allocated
memory range, and
substituting each static control link to an unsafe API with a thunk DLL so

that an unsafe API call made by the applet is restricted.

14. A method of providing security for an applet, the method comprising the
steps of:
loading the applet into a pre-allocated memory range;
substituting each static control link in the applet with a thunk DLL;
executing the applet;
transferring control to a DLL when an API call is made by the applet; and
applying predetermined security rules to determine if the API call should
be allowed to execute on the operating system thereby providing security for the

applet.

15. The method of providing security for the applet in claim 14, where in the
pre-allocated memory range of the loading step contains memory for the control

run time.

16. The method of providing security for the applet in claim 14, where in the
executing step utilizes a sniff code to limit memory access by the control to the

pre-allocated memory range.

17. The method of providing security for the applet in claim 16, wherein the

sniff code operates on memory blocks in order to improve performance.

18. The method of providing security for the applet in claim 14, further
comprising the step of transporting calls outside the pre-allocated memory range

utilizing a secure API.

PCT/US98/17553

WO 99/10795 PCT/US98/17553
21

19. The method of providing security for a computer system running a web-
based application, the method comprising the steps:
down loading executable code through the web-based application;
determining a source from which the executable code originated; and
5 if the source of the executable code is an untrusted source:
using Wx86VM to load the executable code into a
predetermined area of memory; and
using Wx86VM to limit direct access of the executable
code to the predetermined area of memory so that the security of

10 the computer system remains unbreached.

20. A computer-readable medium having computer-executable instructions
for utilizing Wx86VM to perform the steps comprising:
loading an applet into a pre-allocated memory range, the pre-allocated
15 memory range including both an initial memory segment allocation and a run
time memory segment allocation so that memory access by the applet is limited
to the pre-allocated memory range, and
substituting each static control link in the applet with a thunk DLL so that

an unsafe API call is restricted.

PCT/US98/17553

WO 99/10795

0S

?
ooo
[

d3INdN0I

31003y | 7

— ————
-—

[A]
.

L

IS
2

JNYOMIN VYV 30IM

NYOMLIN VYV V001

dOLINONW

o2

SHV904d | o Il "Old
NOLLYOddV P
oY VIV | AVH90Nd | SAVHO0¥d | W3LSAS
=] ot wﬁ o AVH90Nd | ¥3HIO | NOLLYOMddY | ONILYIdO
- 5)) -
\ 88 L€ 9¢ ¢& -
C 3 C) \ -
T © <@
> W3aon P
W | Mmoo el]
os~ == wmzﬂ LT~ J_:_ % v "
- |
Sovauaiyy | [FOVREIN| [30vRAINT| [30va3INI | [0V | | g | W90 |
HOMLIN 180d NG NG INNG !
W3S WOLUAO | | ¥SIQ QUINOVA | | ¥SIa QdvH STINGON | |
5 3 TN 5 5 Rvd90d !
X ﬂ oY ﬂ 143 ce ﬂ 4% ﬂ /&1 ¥3HLO !
o7 SN8 WAISAS / ["Shvaooad | |
1l o¢ | NOLYOrddy| | |
m_wﬂm 1IN | Kasks !
: ONISSI0Yd gg | ONUVEIdO | |
e — o s s - — — - - -— —
gy : ; |
Lz) of SOl "
¢ | __¥z __(noy)|
AMOWIN WAISAS | |

2/4 PCT/US98/17553

WO 99/10795

¢ ‘9Ol ¥0SS300¥d
¢
¥4
W3LSAS ONILVY3O
(
Ge . ¥3av01
¥9¢
¢
id mﬂn T T 1GE
¥e¢ | €G€ | 7S¢
$66~ 4OLVINK3 o | | v
JINS ¥3QV0T
_ _
€6E | T6% | 16
MNNHL | ¥NNHL| NNHL
—£9¢
[—19¢
¥6¢ 29¢
3009 (T04.INOD)
44INS 131ddv 7 X NV4908d NOILYOIddY
G6¢ ¢

00¢

WO 99/10795

3/4

PCT/US98/17553

410
400 v
\/ 411+ LOAD EMULATOR
412 -{ ALLOCATE SANDBOX
413-{ LOAD APPLET ;20
421+ SUBSTITUTE LINKS
422 -1 COMPILE APPLET
423 -{ INSERT SNIFF CODE
l/430
431~ NEXT INSTRUC. »
AP| MEMORY OTHER
435 REF
PROCESS
| ¢
Q 434
ARG | 437
EXECUT [433—1
BLOCK i 436
432 433 | | RET EXECUT
438 BLOCK INSTRUC.

FIG. 3

WO 99/10795

4/4

25
!
215
)
362
FOO.0CX
252 4
MEMORY
391+
WIKRNL32
352
WHKRNL32
356
MEMORY
3554
KERNEL32
357
COMPILED
CACHE

FIG. 4

PCT/US98/17553

. INTERNATIONAL SEARCH REPORT

Int. lional Application No

PCT/US 98/17553

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 “GOBF1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y ESAFE TECHNOLOGIES INC.: "New Anti-Vandal 1,8,11,
Software Provides ’'Next Generation’ PC 13,15
Protection”

28 April 1997 , SAN DIEGO, US, XP002086033
Available from Internet:<URL:
http://www.esafe.com/press/pr032997.htmi>
see the whole document

Y EP 0 667 572 A (IBM) 16 August 1995 1,8,11,
13,15
see the whole document

A WO 94 07204 A (UNILOC CORP PTY LIMITED 1,6-8,16
;RICHARDSON RIC BAILIER (AU); UNILOC
SINGA) 31 March 1994

see the whole document

~/--

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : ,)) »

“T" later document published after the international filing date
or priotity date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A" documant defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international X" documnent of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

“L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "y* document of particular relevance; the claimed invention
citation or other speciai reason (as specified) cannot be considered to invoive an inventive step when the

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the intemational filing date but in the ar.
fater than the priority date claimed "&" document member of the same patent family
Date of the actual comptletion of the international search Date of mailing of the international search report
27 November 1998 08/12/1998
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016 Powell, D

Fomm PCT/ISA/210 {second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte .ional Application No

PCT/US 98/17553

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A HAMILTON M A: "JAVA AND THE SHIFT TO
NET-CENTRIC COMPUTING"

COMPUTER,

vol. 29, no. 8, August 1996, pages 31-39,
XP000632765

see page 31, paragraph 4

see page 34, left-hand column, paragraph 4
- right-hand column, last paragraph

see page 36, left-hand column, paragraph 1
- right-hand column, paragraph 1

A EP 0 646 865 A (BULL HN INFORMATION SYST)
5 April 1995

see abstract; figures 1,25-8

see page 6, line 46 - line 51

see page 21, line 32 - line 46

2,9,14,
15

Form PCT/ISA/210 (continuation of second sheat) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Intormation on patent family members

Inte lionai Application No -

PCT/US 98/17553

Patent document Pubiication Patent family Publication

cited in search report date member(s) date

EP 0667572 A 16-08-1995 JP 7230380 A 29-08-1995
us 5673315 A 30-09-1997

WO 9407204 A 31-03-1994 AU 678985 B 19-06-1997
AU 4811393 A 12-04-1994
CA 2145068 A 31-03-1994
CN 1103186 A 31-05-1995
EP 0689697 A 03-01-1996
NZ 255971 A 26-05-1997
us 5490216 A 06-02-1996

EP 0646865 A 05-04-1995 AU 679775 B 10-07-1997
AU 7428994 A 13-04-1995
CA 2132900 A 29-03-1995
JP 7182180 A 21-07-1995
us 5672711 A 05-11-1996
us 5675771 A 07-10-1997
us 5566326 A 15-10-1996
us 5664098 A 02-09-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

