
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0110792 A1

US 2005O110792A1

Morein et al. (43) Pub. Date: May 26, 2005

(54) GRAPHICS PROCESSING ARCHITECTURE (52) U.S. Cl. .. 345/501
EMPLOYING A UNIFIED SHADER

(75) Inventors: Steven Morein, Cambridge, MA (US); (57) ABSTRACT
Laurent Lefebvre, Lachenaie (CA);
Andy Gruber, Arlington, MA (US);
Andi Skende, Shrewsbury, MA (US) A graphics processing architecture employing a single

shader is disclosed. The architecture includes a circuit
Correspondence Address: operative to Select one of a plurality of inputs in response to
VEDDER PRICE KAUFMAN & KAMMHOLZ a control Signal; and a shader, coupled to the arbiter,
222 N. LASALLE STREET operative to process the Selected one of the plurality of
CHICAGO, IL 60601 (US) inputs, the shader including means for performing vertex

(73) Assignee: ATI Technologies, Inc., Markham (CA) operations and pixel operations, and wherein the shader
9 Llwes performs one of the vertex operations or pixel operations

(21) Appl. No.: 10/718,318 based on the selected one of the plurality of inputs. The
shader includes a register block which is used to Store the

(22) Filed: Nov. 20, 2003 plurality of Selected inputs, a Sequencer which maintains
vertex manipulation and pixel manipulations instructions

Publication Classification and a processor capable of executing both floating point
arithmetic and logical operations on the Selected inputs in

(51) Int. Cl." G06T 1/00; G06F 15/00 response to the instructions maintained in the Sequencer.

NDCES

DISPLAY
CONTROLLER

DISPLAY

UNIFIED
SHADER

RENDER
BACK
END

MEMORY
CONTROLLER

MEMORY

MEMORY
TEXTURE DATA
VERTEX st
CACHE

US 2005/0110792 A1 Patent Application Publication May 26, 2005 Sheet 1 of 5

(LHV HORJd) ?, "5)||-||

EON\/N|WITT \/ L\/C]
EXHTMLXE L >JOTOO Ed\/HS LOET8O

Patent Application Publication May 26, 2005 Sheet 2 of 5 US 2005/0110792 A1

FIG. 2A
(PRIOR ART)

FIG. 2B
(PRIOR ART)

Patent Application Publication May 26, 2005 Sheet 3 of 5 US 2005/0110792 A1

55 issues - ess - - 4.

TEXTURE MEMORY MAP

ths as as as a massa as sess sees as as a sess

41 43
44

VERTEX FETCH V-CACHE

42 45

VERTEX VERTEX 48
SHADER STORE

46
47 49

PRIMITIVE 50
ASSEMBLY

40
51

RASTERIZATION 52
ENGINE

53
TO 55
57 PXEL

SHADER
FROM TEXTURE 54
57 CACHE 58

56
59

FIG. 3 POST RASTER
(PRIOR ART) PROCESSING

Patent Application Publication May 26, 2005 Sheet 4 of 5 US 2005/0110792 A1

INDICES

64 63
65

TO MEMORY
68

TEXTURE
VERTEX 69
CACHE

PARAMETER
CACHE

RENDER

UNIFIED
SHADER MEMORY

DATA

BACK
END POSITION

CACHE

77

78
71

PRIMTIVE
79 ASSEMBLY

73

RASTERIZATION

DISPLAY 81 ENGINE

MEMORY
CONTROLLER

CONTROLLER

75

8 84 82

DISPLAY MEMORY

FIG. 4A

Patent Application Publication May 26, 2005 Sheet 5 of 5 US 2005/0110792 A1

INDICES 61

-- 4.--
VERTEX VERTEX
FETCH CACHE

FIG. 4B

61A 61B

FROMMUX MEMORY
FETCH
67

CPU

US 2005/0110792 A1

GRAPHICS PROCESSING ARCHITECTURE
EMPLOYING A UNIFIED SHADER

FIELD OF THE INVENTION

0001. The present invention generally relates to graphics
processors and, more particularly, to a graphics processor
architecture employing a single shader.

BACKGROUND OF THE INVENTION

0002. In computer graphics applications, complex shapes
and structures are formed through the Sampling, intercon
nection and rendering of more Simple objects, referred to as
primitives. An example of Such a primitive is a triangle, or
other Suitable polygon. These primitives, in turn, are formed
by the interconnection of individual pixels. Color and tex
ture are then applied to the individual pixels that comprise
the shape based on their location within the primitive and the
primitives orientation with respect to the generated Shape;
thereby generating the object that is rendered to a corre
sponding display for Subsequent viewing.
0003. The interconnection of primitives and the applica
tion of color and textures to generated shapes are generally
performed by a graphics processor. Conventional graphics
processors include a Series of Shaders that Specify how and
with what corresponding attributes, a final image is drawn
on a screen, or suitable display device. As illustrated in FIG.
1, a conventional shader 10 can be represented as a pro
cessing block 12 that accepts a plurality of bits of input data,
such as, for example, object shape data (14) in object space
(x,y,z); material properties of the object, Such as color (16);
texture information (18); luminance information (20); and
viewing angle information (22) and provides output data
(28) representing the object with texture and other appear
ance properties applied thereto (x, y, z).
0004. In exemplary fashion, as illustrated in FIGS.
2A-2B, the Shader accepts the Vertex coordinate data rep
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected View of
the cube 30' (FIG.2B) as an output. The corrected view may
be provided, for example, by applying an appropriate trans
formation matrix to the data representing the initial cube 30.
More specifically, the representation illustrated in FIG. 2B
is provided by a vertex Shader that accepts as inputs the data
representing, for example, vertices V, V, and V, among
others of cube 30 and providing angularly oriented vertices
V,V, and V, including any appearance attributes of
corresponding cube 30'.
0005. In addition to the vertex shader discussed above, a
shader processing block that operates on the pixel level,
referred to as a pixel Shader is also used when generating an
object for display. Generally, the pixel Shader provides the
color value associated with each pixel of a rendered object.
Conventionally, both the vertex shader and pixel shader are
Separate components that are configured to perform only a
Single transformation or operation. Thus, in order to perform
a position and a texture transformation of an input, at least
two shading operations and hence, at least two shaders, need
to be employed. Conventional graphics processors require
the use of both a vertex shader and a pixel Shader in order
to generate an object. Because both types of Shaders are
required, known graphics processors are relatively large in
size, with most of the real estate being taken up by the vertex
and pixel shaders.

May 26, 2005

0006. In addition to the real estate penalty associated with
conventional graphics processors, there is also a correspond
ing performance penalty associated there with. In conven
tional graphics processors, the Vertex shader and the pixel
shader are juxtaposed in a Sequential, pipelined fashion, with
the vertex shader being positioned before and operating on
vertex data before the pixel shader can operate on individual
pixel data.
0007 Thus, there is a need for an improved graphics
processor employing a shader that is both Space efficient and
computationally effective.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. The present invention and the associated advan
tages and features thereof, will become better understood
and appreciated upon review of the following detailed
description of the invention, taken in conjunction with the
following drawings, where like numerals represent like
elements, in which:
0009 FIG. 1 is a schematic block diagram of a conven
tional shader,
0010 FIGS. 2A-2B are graphical representations of the
operations performed by the shader illustrated in FIG. 1;
0011 FIG. 3 is a schematic block diagram of a conven
tional graphics processor architecture;
0012 FIG. 4A is a Schematic block diagram of a graphics
processor architecture according to the present invention;
0013 FIG. 4B is a schematic block diagram of an
optional input component to the graphics processor accord
ing to an alternate embodiment of the present invention; and
0014 FIG. 5 is an exploded schematic block diagram of
the unified Shader employed in the graphics processor illus
trated in FIG. 4A.

DETAILED DESCRIPTION OF THE
INVENTION

0015 Briefly stated, the present invention is directed to a
graphics processor that employs a unified Shader that is
capable of performing both the vertex operations and the
pixel operations in a Space Saving and computationally
efficient manner. In an exemplary embodiment, a graphics
processor according to the present invention includes an
arbiter circuit for Selecting one of a plurality of inputs for
processing in response to a control Signal; and a shader,
coupled to the arbiter, operative to process the Selected one
of the plurality of inputs, the shader including means for
performing vertex operations and pixel operations, and
wherein the shader performs one of the vertex operations or
pixel operations based on the Selected one of the plurality of
inputs.
0016. The shader includes a general purpose register
block for Storing at least the plurality of Selected inputs, a
Sequencer for Storing logical and arithmetic instructions that
are used to perform vertex and pixel manipulation opera
tions and a processor capable of executing both floating
point arithmetic and logical operations on the Selected inputs
according to the instructions maintained in the Sequencer.
The shader of the present invention is referred to as a
“unified” shader because it is configured to perform both

US 2005/0110792 A1

vertex and pixel operations. By employing the unified
shader of the present invention, the associated graphics
processor is more Space efficient than conventional graphics
processors because the unified shader takes up leSS real
estate than the conventional multi-shader processor archi
tecture.

0.017. In addition, according to the present invention, the
unified shader is more computationally efficient because it
allows the shader to be flexibly allocated to pixels or vertices
based on workload.

0018 Referring now to FIG. 3, illustrated therein is a
graphics processor incorporating a conventional pipeline
architecture. AS shown, the graphics processor 40 includes a
vertex fetch block 42 which receives vertex information
relating to a primitive to be rendered from an off-chip
memory 55 on line 41. The fetched vertex data is then
transmitted to a vertex cache 44 for Storage on line 43. Upon
request, the Vertex data maintained in the vertex cache 44 is
transmitted to a vertex shader 46 on line 45. As discussed
above, an example of the information that is requested by
and transmitted to the vertex shader 46 includes the object
shape, material properties (e.g. color), texture information,
and Viewing angle. Generally, the vertex shader 46 is a
programmable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data represent
ing a perspectively corrected image of the object to be
rendered, along With any texture or color coordinates
thereof.

0019. After performing the transformation operation, the
data representing the transformed vertices are then provided
to a vertex store 48 on line 47. The vertex store 48 then
transmits the modified vertex information contained therein
to a primitive assembly block 50 on line 49. The primitive
assembly block 50 assembles, or converts, the input vertex
information into a plurality of primitives to be Subsequently
processed. Suitable methods of assembling the input vertex
information into primitives is known in the art and will not
be discussed in greater detail here. The assembled primitives
are then transmitted to a rasterization engine 52, which
converts the previously assembled primitives into pixel data
through a proceSS referred to as walking. The resulting pixel
data is then transmitted to a pixel shader 54 on line 53.
0020. The pixel shader 54 generates the color and addi
tional appearance attributes that are to be applied to a given
pixel, and applies the appearance attributes to the respective
pixels. In addition, the pixel Shader 54 is capable of fetching
texture data from a texture map 57 as indexed by the pixel
data from the rasterization engine 52 by transmitting Such
information on line 55 to the texture map. The requested
texture data is then transmitted back from the texture map 57
on line 57 and stored in a texture cache 56 before being
routed to the pixel shader on line 58. Once the texture data
has been received, the pixel Shader 54 then performs Speci
fied logical or arithmetic operations on the received texture
data to generate the pixel color or other appearance attribute
of interest. The generated pixel appearance attribute is then
combined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmitted to
post raster processing blocks (not shown).

May 26, 2005

0021 AS described above, the conventional graphics
processor 40 requires the use of two separate shaders: a
vertex shader 46 and a pixel shader 54. A drawback asso
ciated with Such an architecture is that the overall footprint
of the graphics processor is relatively large as the two
shaders take up a large amount of real estate. Another
drawback associated with conventional graphics processor
architectures is that can exhibit poor computational effi
ciency.

0022 Referring now to FIG. 4A, in an exemplary
embodiment, the graphics processor 60 of the present inven
tion includes a multiplexer 66 having vertex (e.g. indices)
data provided at a first input thereto and interpolated pixel
parameter (e.g. position) data and attribute data from a
rasterization engine 74 provided at a Second input. A control
Signal generated by an arbiter 64 is transmitted to the
multiplexer 66 on line 63. The arbiter 64 determines which
of the two inputs to the multiplexer 66 is transmitted to a
unified shader 62 for further processing. The arbitration
scheme employed by the arbiter 64 is as follows: the vertex
data on the first input of the multiplexer 66 is transmitted to
the unified shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex data;
otherwise, the interpolated pixel parameter data present on
the second input will be passed to the unified shader 62 for
further processing.

0023 Referring briefly to FIG. 5, the unified shader 62
will now be described. AS illustrated, the unified shader 62
includes a general purpose register block 92, a plurality of
Source registers: including Source register A 93, Source
register B 95, and source register C 97, a processor (e.g.
CPU) 96 and a sequencer 99. The general purpose register
block 92 includes Sixty four registers, or available entries,
for Storing the information transmitted from the multiplexer
66 on line 65 or any other information to be maintained
within the unified Shader. The data present in the general
purpose register block 92 is transmitted to the plurality of
Source registers via line 109.

0024. The processor 96 may be comprised of a dedicated
piece of hardware or can be configured as part of a general
purpose computing device (i.e. personal computer). In an
exemplary embodiment, the processor 96 is adapted to
perform 32-bit floating point arithmetic operations as well as
a complete Series of logical operations on corresponding
operands. AS Shown, the processor is logically partitioned
into two Sections. Section 96 is configured to execute, for
example, the 32-bit floating point arithmetic operations of
the unified shader. The second section, 96A, is configured to
perform Scaler operations (e.g. log, exponent, reciprocal
Square root) of the unified shader.
0025. The sequencer 99 includes constants block 91 and
an instruction store 98. The constants block 91 contains, for
example, the Several transformation matrices used in con
nection with Vertex manipulation operations. The instruction
Store 98 contains the necessary instructions that are executed
by the processor 96 in order to perform the respective
arithmetic and logic operations on the data maintained in the
general purpose register block 92 as provided by the Source
registers 93-95. The instruction store 98 further includes
memory fetch instructions that, when executed, causes the
unified shader 62 to fetch texture and other types of data,
from memory 82 (FIG. 4A). In operation, the sequencer 99

US 2005/0110792 A1

determines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc
tion or a memory (e.g. texture fetch) instruction. If the next
instruction is a memory instruction or request, the Sequencer
99 sends the request to a fetch block (not shown) which
retrieves the required information from memory 82 (FIG.
4A). The retrieved information is then transmitted to the
sequencer 99, through the vertex texture cache 68 (FIG. 4A)
as described in greater detail below.

0.026 If the next instruction to be executed is an arith
metic or logical instruction, the Sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate Source regis
ters (93, 95, 97) for execution, and an appropriate signal is
sent to the processor 96 on line 101 indicating what opera
tion or Series of operations are to be executed on the Several
operands present in the Source registers. At this point, the
processor 96 executes the instructions on the operands
present in the Source registers and provides the result on line
85. The information present on line 85 may be transmitted
back to the general purpose register block 92 for Storage, or
transmitted to Succeeding components of the graphics pro
cessor 60.

0027. As discussed above, the instruction store 98 main
tains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader 99
of the present invention is able to perform both vertex and
pixel operations, as Well as execute memory fetch opera
tions. AS Such, the unified shader 62 of the present invention
is able to perform both the vertex Shading and pixel Shading
operations on data in the context of a graphics controller
based on information passed from the multiplexer. By being
adapted to perform memory fetches, the unified shader of the
present invention is able to perform additional processes that
conventional vertex Shaders cannot perform; while at the
Same time, perform pixel operations.

0028. The unified shader 62 has ability to simultaneously
perform vertex manipulation operations and pixel manipu
lation operations at various degrees of completion by being
able to freely Switch between Such programs or instructions,
maintained in the instruction store 98, very quickly. In
application, Vertex data to be processed is transmitted into
the general purpose register block 92 from multiplexer 66.
The instruction store 98 then passes the corresponding
control signals to the processor 96 on line 101 to perform
Such vertex operations. However, if the general purpose
register block 92 does not have enough available Space
therein to Store the incoming vertex data, Such information
will not be transmitted as the arbitration scheme of the
arbiter 64 is not satisfied. In this manner, any pixel calcu
lation operations that are to be, or are currently being,
performed by the processor 96 are continued, based on the
instructions maintained in the instruction store 98, until
enough registers within the general purpose register block
92 become available. Thus, through the sharing of resources
within the unified shader 62, processing of image data is
enhanced as there is no down time associated with the
processor 96.

0029 Referring back to FIG. 4A, the graphics processor
60 further includes a cache block 70, including a parameter
cache 70A and a position cache 70B which accepts the pixel
based output of the unified shader 62 on line 85 and stores

May 26, 2005

the respective pixel parameter and position information in
the corresponding cache. The pixel information present in
the cache block 70 is then transmitted to the primitive
assembly block 72 on line 71. The primitive assembly block
72 is responsible for assembling the information transmitted
thereto from the cache block 70 into a series of triangles, or
other Suitable primitives, for further processing. The
assembled primitives are then transmitted on line 73 to
rasterization engine block 74, where the transmitted primi
tives are then converted into individual pixel data informa
tion through a walking process, or any other Suitable pixel
generation process. The resulting pixel data from the ras
terization engine block 74 is the interpolated pixel parameter
data that is transmitted to the Second input of the multiplexer
66 on line 75.

0030. In those situations when vertex data is transmitted
to the unified shader 62 through the multiplexer 66, the
resulting vertex data generated by the processor 96, is
transmitted to a render back end block 76 which converts the
resulting vertex data into at least one of Several formats
suitable for later display on display device 84. For example,
if a Stained glass appearance effect is to be applied to an
image, the information corresponding to Such appearance
effect is associated with the appropriate position data by the
render back end 76. The information from the render back
end 76 is then transmitted to memory 82 and a display
controller line 80 via memory controller 78. Such appropri
ately formatted information is then transmitted online 83 for
presentation on display device 84.

0031 Referring now to FIG. 4B, shown therein is a
vertex block 61 which is used to provide the vertex infor
mation at the first input of the multiplexer 66 according to
an alternate embodiment of the present invention. The Vertex
block 61 includes a vertex fetch block 61A which is respon
sible for retrieving vertex information from memory 82, if
requested, and transmitting that Vertex information into the
vertex cache 61B. The information stored in the vertex cache
61B comprises the vertex information that is coupled to the
first input of multiplexer 66.

0032. As discussed above, the graphics processor 60 of
the present invention incorporates a unified shader 62 which
is capable of performing both vertex manipulation opera
tions and pixel manipulation operations based on the instruc
tions stored in the instruction store 98. In this fashion, the
graphics processor 60 of the present invention takes up leSS
real estate than conventional graphics processors as Separate
vertex shaders and pixel Shaders are no longer required. In
addition, as the unified shader 62 is capable of alternating
between performing vertex manipulation operations and
pixel manipulation operations, graphics processing effi
ciency is enhanced as one type of data operations is not
dependent upon another type of data operations. Therefore,
any performance penalties experienced as a result of depen
dent operations in conventional graphics processors are
OWCCOC.

0033. The above detailed description of the present
invention and the examples described therein have been
presented for the purposes of illustration and description. It
is therefore contemplated that the present invention cover
any and all modifications, variations and equivalents that fall
within the Spirit and Scope of the basic underlying principles
disclosed and claimed herein.

US 2005/0110792 A1

What is claimed is:
1. A graphics processor, comprising:
an arbiter circuit for Selecting one of a plurality of inputs

in response to a control Signal; and
a shader, coupled to the arbiter circuit, operative to

process the Selected one of the plurality of inputs, the
shader including means for performing vertex opera
tions and pixel operations, and performing one of the
vertex operations or pixel operations based on the
Selected one of the plurality of inputs, wherein the
shader provides a appearance attribute.

2. The graphics processor of claim 1, further including a
vertex Storage block for maintaining vertex information.

3. The graphics processor of claim 2, wherein the vertex
Storage block further includes a parameter cache operative to
maintain appearance attribute data for a corresponding Ver
teX and a position cache operative to maintain position data
for a corresponding vertex.

4. The graphics processor of claim 1, wherein the appear
ance attribute is color, and the color is associated with a
corresponding pixel when the Selected one of the plurality
inputS is pixel data.

5. The graphics processor of claim 1, wherein the appear
ance attribute is position, and the position attribute is asso
ciated with a corresponding vertex when the Selected one of
the plurality of inputS is vertex data.

6. The graphics processor of claim 5, wherein the appear
ance attribute is color, and the color attribute is associated
with a corresponding pixel when the Selected one of the
plurality of inputS is pixel data.

7. The graphics processor of claim 5, wherein the appear
ance attribute is one of the following: color, lighting, texture,
normal and position data.

8. The graphics processor of claim 1, wherein the appear
ance value is depth.

9. The graphics processor of claim 1, wherein the Selec
tion circuit is a multiplexer, and the control Signal is pro
vided by an arbiter, wherein the arbiter is coupled to the
multiplexer.

10. The graphics processor of claim 1, wherein the Shader
provides vertex position data and further including a primi
tive assembly block, coupled to the Shader, operative to
generate primitives in response to the vertex position data.

11. The graphics processor of claim 10, further including
a raster engine, coupled to the primitive assembly block,
operative to generate pixel parameter data in response to the
assembled vertex data.

May 26, 2005

12. The graphics processor of claim 1, wherein the Shader
generates pixel color information in response to the Selected
one of the plurality of inputs.

13. The graphics processor of claim 1, wherein the Shader
includes a register block for maintaining the Selected one of
the plurality of inputs, a computation element operative to
perform arithmetic and logical operations on the data main
tained in the register block, and a Sequencer for maintaining
the instructions that are executed by the computation ele
ment.

14. The graphics processor of claim 1, wherein the Shader
further includes circuitry operative to access a memory.

15. A unified Shader, comprising:

a general purpose register block for maintaining data;

a processor unit; and

a Sequencer, coupled to the general purpose register block
and the processor unit, the Sequencer maintaining
instructions operative to cause the processor unit to
execute vertex calculation and pixel calculation opera
tions on Selected data maintained in the general purpose
register block.

16. The shader of claim 15, wherein the sequencer further
includes circuitry operative to fetch data from a memory.

17. The shader of claim 15, further including a selection
circuit operative to provide information to the general pur
pose block in response to a control Signal.

18. The shader of claim 15, wherein the processor unit
executes instructions that generate a pixel color in response
to the Selected one of the plurality of inputs.

19. The shader of claim 15, wherein the processor unit
executes Vertex calculations while the pixel calculations are
Still in progreSS.

20. The shader of claim 15, wherein the processor unit
generates vertex position and appearance data in response to
a Selected one of the plurality of inputs.

21. The shader of claim 17, wherein the selection circuit
is a multiplexer and the control Signal is provided by an
arbiter.

