
USOO697845OB2

(12) United States Patent (10) Patent No.: US 6,978,450 B2
Burch (45) Date of Patent: *Dec. 20, 2005

(54) METHOD AND SYSTEM FOR OPTIMIZING 5,655,122 A 8/1997 Wu
COMPLATION TIME OF A PROGRAM BY 5,680,622 A * 10/1997 Even 717/154
SELECTIVELY REUSING OBJECT CODE 5,740,439 A * 4/1998 Atkinson et al. ... 719/320

5,805,899 A * 9/1998 Evans et al. 717/170
(75) Inventor: Carl D. Burch, Cupertino, CA (US) 5,815,720 A 9/1998 Buzbee

5,850,554. A 12/1998 Carver
(73) ASSignee: Hewlett-Packard Development 5,854.932 A 12/1998 Mariani et al. 717/116

Company, L.P., Houston, TX (US) 6,035,124. A 3/2000 Ng 717/146
6,308,320 B1 10/2001 Burch

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 647 days.

OTHER PUBLICATIONS

This patent is Subject to a terminal dis- “PA Risk Compiler Optimization White Paper.” Copyright
claimer. Hewlett-Packard Co. 1992 (#5091-5594E). Visited Jan. 14,

(21) Appl. No.: 10/017,572 1998. <http://cllweb.cup.hp.com/loc.
y - - - 9

(22) Filed: Oct. 23, 2001 (Continued)
O O Primary Examiner Tuan Dam

(65) Prior Publication Data ASSistant Examiner J. Derek Rutten

US 2002/0046400 A1 Apr. 18, 2002
(57) ABSTRACT

Related U.S. Application Data
63) Continuation-in-part of application No. 09/232.398
(63) R al E "N, 3.56 s The present invention provides a System and method for

• -u- as s • J. v. Y-8 sys-1 Yu Y-9-1 a-Yu • optimizing compilation time of a program. In architecture,

(51) Int. Cl. G06F 9/45; G06F 9/44; the System includes a compiler that generates the least one
G06F 17/00 block of code from the program; and a compilation opti

52) U.S. Cl. 717/145717/121717,146 mizer. The compilation optimizer generates a hash value for
(52) /145; 7,/1 63. 7.511 a block of code in the program and Stores the hash value with
(58) Field of Search 717120 151 the block of code if the hash value is not equal to a prior hash

- - - - - - - - - - - - -717152. 162 146; 715 51 value for the block of code; and skips the optimization of the
s s s block of code if the hash value equals the prior hash value.

(56) References Cited The present invention can also be viewed as a method for
optimizing compilation time of a program. The method
operates by generating a current hash value for a block of

U.S. PATENT DOCUMENTS code in the program, Skipping the optimization of the block
5,204,960 A 4/1993 Smith et al. of code if the current hash value equals a prior hash value,
5,230,050 A 7/1993 Iitsuka et al. and storing the current hash value with the block of code if
5. A MA al the hash value is not equal to the prior hash value for the
2- - -2 CSCC a C a

5,325,531 A 6/1994 McKeeman et al. block of code.
5,375,242 A 12/1994 Kumar et al.
5,586.328 A 12/1996 Caron et al. 27 Claims, 6 Drawing Sheets

50

SMARTBUILD50

COMPUTE HASH CODE OVERINTERMEDLATE
CQESTREAMEOR THECURRENTSCOPE

503

502

ESOUTPUTFELEALREADY EXIS N).

YES

OceSTHE
HAS WALUEFCR THIS
SCOPE MATCH THE

CORESPONDING ASH WALU
TRACTED FROM THE PRE-XSIN

CUPTFE

No-f

306

RROCESSING
RETURNTCSKPNORMAL

As HAS WALUETO THE
OUTPUT FILE BEING BUET
FCRs CJRRNT SCOPE

507
S.

RETURN TO CONTINUE
NORMAL PROCESSINS

50s

RETURN

US 6,978.450 B2
Page 2

U.S. PATENT DOCUMENTS

6,308,323 B1 * 10/2001 Douniwa 717/154
6,802,056 B1 * 10/2004 Chaiken et al. 717/136

OTHER PUBLICATIONS

“Pa-RISC Optimizer Trouble-Shootinf Guide.” Carl Burch,
Copyright Hewlett-Packard Co. 1996, version 2.1.
“Compiler Optimizations For The PA-8000.” Anne M. Hol
ler, Hewlett-Packard Company.
Fowler et al. Principles for Writing Reusable Libraries.
ACM. Pp. 150-159. 1995.
“Profile-Based Optimization.” (HP-UX Linker And Librar
ies User's Guide, visited Nov. 18, 1998) <http://info.fc.hp.
com:80/dynaweb/hoeneric BookTextView/25764;
uf-Oix.
“When To Use PBO.” (HP-UX Linker And Libraries User's
Guide, visited Nov. 20, 1998) <http://info.fc.hp.com:80/
dynaweb/huen 1a/GGeneric BookTextView/25845>.
“Using PBO With Id-r.” (HP-UX Linker And Libraries
User's Guide, visited Nov. 20, 1998) <http://info.fc.hp.com:
80/dynaweb/huen 1a/(a Generic BookTextView/27667s.
“Selecting An Optimization Level With PBO.” (HP-UX
Linker And Libraries User's Guide, visited Nov. 20, 1998)
<http://info.fc.hp.com:80/dynaweb/huen 1. a/
(a Generic BookTextView/27412>.
“Storing Profile Information For Multiple programs.” (HP
UX Linker And Libraries User's Guide visited Nov. 20,
1998) <http://info.fc.hp.com:80/dynaweb/
hGeneric BookTextView/26652;uf= 0#X>.
“Forking An Instrumental Application.” (HP-UX Linker
And Libraries User's Guide, visited Nov. 20, 1998) <http://
info.fc.hp.com:80/dynaweb/hoeneric BookTextView/
26892;uf= 0#X>.
“Using PBO To Optimize Shared Libraries.” (HP-UX
Linker And Libraries User's Guide, visited Nov. 20, 1998)
<http://info.fc.hp.com:80/dynaweb/huen 1. a/
(a Generic BookTextView/27544>.
“Optimizing Based On Profile Data (+ P/P).” (HP-UX
Linker And Libraries User's Guide, visited Nov. 20, 1998)
<http://info.fc.hp.com:80/dynaweb/huen 1. a/
(a Generic BookTextView/26943>.
“Linker Optimizations.” (HP-UX Linker And Libraries
User's Guide, visited Dec. 4, 1998) <http://info.fc.hp.com:
80/dynaweb/hBookTextView /25332?DwebQuery= isomd.
“Using The Compiler To Link.” (HP-UXLinker And Librar
ies User's Guide, visited Dec. 4, 1998) <http://info.fc.hp.
com:80/dynaweb/h . . BookTextView /
3313?DwebOuery= isomd.
“Instrumenting (=I/I).” (HP-UX Linker And Libraries
User's Guide, visited Dec. 4, 1998) <http://info.fc.hp.com:
80/dynaweb/h . . . /26095;nh= 1;uf= 02DwebOuery= i
SomiXa.
“Choosing Input Data.” (HP-UX Linker And Libraries
User's Guide, visited Dec. 20, 1998) <http://info.fc.hp.com:
80/dynaweb/h Generic BookTextView/26517;uf=
OiX.

“Sharing The Flow.data File Among Multiple Processes.”
(HP-UX Linker And Libraries User's Guide, visited Dec.
20, 1998) <http://info.fc.hp.com:80/dynaweb/h
Generic BookTextView/26773;uf=O#X>.
“Improving Shared Library Start-Up Time With Fastbind.”
(HP-UX Linker And Libraries User's Guide, visited Nov.
18, 1998) <http://info.fc.hp.com:80/dynaweb/h . . . uen 1
a/OGeneric BookTextView/285.12d.
“What Happens When You Compile And Link A Program,”
(HP-UX Linker And Libraries User's Guide, visited Dec.
08, 1998 <http://docs.hp.com:80/dynaweb/hpux11/dtdc . . .
ric BookTextView/1598? DwebOuery= loaderif12.
“Looking Inside A Compiler.” (HP-UX Linker And Librar
ies User's Guide, visited Dec. 08, 1998) <http://docs.hp.
com:80/dynaweb/hpux11/dtdc . . . extView/1790;nh= 1;uf=
O? DwebQuery= loaderifx>.
“Position-Independent Code.” (HP-UX Linker And Librar
ies User's Guide, visited Dec. 08, 1998) <http://docs.ho.
com:80/dynaweb/hpux11/dtdc . ic BookTextView/
24622? DwebOuery= loaderif12.
“SmartBuild External Specification, Version 1.0, Carl
Burch, Nathaniel Nystrom (Dec. 08, 1998). visited Jan. 13,
1999: <http://cllweb.cup.hp.com./llo/documents/general/
Smartbuild es.html>.
“SmartBuild High-Level Design, Version 1.0, Carl Burch,
Nathaniel Nystrom (Sep. 28, 1998). visited Jan. 13, 1999:
<http://cllweb.cup.hp.com./llo/docuemnts/general/
Smartbuild hld.html>.
“SmartBuild Low Level Design, Version 1.0.” Nathaniel
Nystrom (Oct. 22, 1998). Visited Jan. 13, 1999: <http://
cllweb.cup.hp.com./llo/documents/general/smartbuild llc.
html>.
“Performace Tuning With Pa-RISC Compilers,” Visited Jan.
13, 199. <http://cllweb.cup.hp.com./llo/documents/general/
Smartbuild Ild.html>.
“Boolean Operator,” Visited Dec. 8, 1998.
webOrpedia.internet.com/Programming/OperatorS/
Boolean operator.html>.
Secure Hash Standard (U.S. Dept. of Commerce/National
Institute of Standards and Technology, FIPS PUB 180- 1.
Apr. 17, 1995.
“The MD5 Message-Digest Algorithm, Ronald L. Revist,
Network Working Group, MIT Labratory For Computer
Science and RSA Data Security, Inc. Apr. 1992 (RFC 1321).
“What Is An Object File?” (HP-UX Linker And Libraries
User's Guide, visited Dec. 1, 1998) <http://info.fc.hp.com:
80/dynaweb/h . . . h- 1;uf= O'DwebOuery=
Instrumentingsix>.
Linking Programs On (HP-UX Linker And Libraries User's
Guide, visited Dec. 1, 1998) <http://info.fc.hp.com:80/
dynaw eb/h . . . /2170;nh=1'2Dw ebOuery= Instrumenting>.
“Linking With Libraries.” (HP-UX Linker And Libraries
User's Guide, visited Dec. 1, 1998) <http://info.fc.hp.com:
80/dynaw eb/h ./2682;nh= 1Dw
ebOuery=Instrumenting>.

<http://

* cited by examiner

U.S. Patent *Dec. 20, 2005 Sheet 1 of 6 US 6,978,450 B2

FIG. 1 1 OO

PROCESSOR 104 (R)

MEMORY 106

COMPLATION SYSTEM 108
FILE SYSTEM 11

NTMED. CODE

OPTIMIZER 109 STREAM 122
SOURCE CODE 118 LINKER 112

NT. CODE GEN. 113

NC. SE. LOADER 115
COMPLER TOOL

102
LIBRARY 1 14

SMARTBULD
500 SOURCE

COMPLER107

DATA STORAGE
DEVICE 140 ()— I/O ADAPTER 142(i)

146 COMMUNICATIONS
ADAPTER 144

(--) STNEFF)
152

MOUSE BSPLAY -
ADAPTER 154 N

U.S. Patent *Dec. 20, 2005 Sheet 2 of 6 US 6,978,450 B2

FIG. 2

MEMORY 106

NTERMEDIATE CODE STREAM
122

HASHVALUE 206
SMARTBUILD 500

OBJECT CODE
FILE120

OBJECT CODE
STREAM 203

U.S. Patent *Dec. 20, 2005 Sheet 3 of 6 US 6,978,450 B2

FIG. 3A
COMPLATION SYSTEM 108

SOURCE CODE 118

NTERMEDIATE CODE
STREAM 122

EXECUTE SMARTBUILD 500
(FIG. 4)

CONTINUE
ORMAL PROCESSINGT2

REUSE
OPTIMIZER 109 EXSTNG

----- CODE

OBJECT CODE FILE120

OBJECT CODE STREAM 203

LINKER 112

EXECUTABLE FILE 124

U.S. Patent *Dec. 20, 2005 Sheet 4 of 6 US 6,978,450 B2

FIG. 3B
COMPLATION SYSTEM 108

SOURCE CODE 118

- LG
SOURCE COMPLERS

PASCAL FORTRAN ----

INTERMEDIATE CODE 122

GH EVE
COPE OPTIMIZED2

YES

HGH EVEL
SCOPE OPTIMIZER 109A

INTERMEDIATE CODE 122

EXECUTE SMARTBUILD 500
(FIG. 4)

CONTINUE
NORMAL PROCESSING72

YES

LOWLEVEL SCOPE OPTIMIZER 109E

OBJECT CODE FILE120
OBJECT CODE STREAM 203

LINKER 11 REUSE
EXSTNG

EXECUTABLE FILE 124 CODE

U.S. Patent *Dec. 20, 2005 Sheet 5 of 6 US 6,978,450 B2

FIG. 4
SMARTBUILD 500

COMPUTE HASH CODE OVER INTERMEDIATE
CODE STREAM FOR THE CURRENT SCOPE

DOES OUTPUT FILE AREAOY EXIST?

DOES THE
HASH VALUE FOR THIS
SCOPE MATCH THE

CORESPONDING HASH VALUE
XTRACTED FROM THE PRE-EXISTN

OUTPUT FILEP

ADD HASH VALUE TO THE
OUTPUT FILE BEING BUT
FOR THE CURRENT SCOPE

507
RETURN TO SKIP NORMAL

PROCESSING
RETURN TO CONTINUE
NORMAL PROCESSING

RETURN

U.S. Patent *Dec. 20, 2005 Sheet 6 of 6 US 6,978,450 B2

FIG. 5A
OBJECT CODE FILE 120

SCOPE A 601A

SCOPE B 601 B

SCOPEX 6O1X

FIG. 5B
SCOPE 601

CODE AND DATA STREAM 611

DIGITAL SIGNATURE 612

FIG. 5C
CODE AND DATA STREAM 611

SCOPE AA 601AA

SCOPE BB 601 BB

SCOPE XX 601XX

US 6,978,450 B2
1

METHOD AND SYSTEM FOR OPTIMIZING
COMPLATION TIME OF A PROGRAM BY
SELECTIVELY REUSING OBJECT CODE

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation-in-part of application
Ser. No. 09/232,398, filed Jan. 15, 1999, now U.S. Pat. No.
6,308,320 issued Oct. 23, 2001 entitled “METHOD AND
APPARATUS FOR INCREMENTAL SELECTIVE COM
PILATION OF INTERMEDIATE CODE FILES DURING
COMPUTER SYSTEM COMPILATION AND LINKING,”
which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to a method and
System for compilers in computer Systems. More particu
larly, the present invention relates to an incremental Selec
tive compiler tool that optimizes compilation time of a
program by Selectively reusing object code.

BACKGROUND OF THE INVENTION

Computer Systems typically employ a compiler that may
combine files located in different portions of the computer
System, Such as in the computer System memory. Compiling
a Source file creates an intermediate code Stream, which is
then translated to an object code file corresponding to
compiler directives associated with the Source code file. It
will be appreciated that compiler directives may be instruc
tions or data that affect the manner of compilation, thereby
determining the result of the compilation. For instance,
compiler directives may be used to manage the compilation
of Source code. Minimizing the amount of intermediate code
optimized and compiled during the process of transforming
intermediate code Streams into object code reduces the
computer System resources used by the compiler System.
That is, the efficiency of a compiler may be improved by
minimizing the amount of computer resources required to
complete compilation of intermediate code Streams into the
resulting object code files for execution on the computer
System.

Improvement in the efficiency of compiler Systems has
been hindered by the time and computer resources required
compiling intermediate code Streams into object code files.
Therefore, there has been a need to Selectively reuse parts of
object code files when portions of the intermediate code
Stream that affect the resulting object code file, Such as
compiler directives, have not changed between invocations
of the compiler. The problem with current incremental
compilation Systems is that most of the compilation time is
wasted. The incremental compilation System wastes many
builds due to overly conservative inputs to the recompilation
decision. In particular, typical Source file time Stamp based
Systems cannot limit the Scope of recompilation for any
potentially large Scoped changes Such as header file edits.
Thus, a heretofore unaddressed need exists in the industry to
address the inefficiences and inadequacies of existing com
pilation Systems.

SUMMARY OF THE INVENTION

The present invention provides a System and method for
optimizing compilation time of a program by Selectively
reusing object code. Briefly described, in architecture, the

15

25

35

40

45

50

55

60

65

2
System can be implemented as follows. In architecture, the
System includes a compiler that generates the at least one
block of code from the program; and a compilation opti
mizer. The compilation optimizer generates a hash value for
a block of code in the program and Stores the hash value in
the block of code if the hash value is not equal to a prior hash
value for the block of code; and skips the optimization of the
block of code if the hash value equals the prior hash value.
The present invention can also be viewed as providing a

method for optimizing compilation time of a program. In
this regard, the method can be broadly Summarized by the
following steps: (1) generating a current hash value for a
block of code in the program; (2) Skipping the optimization
of the block of code if the current hash value equals a prior
hash value; and (3) storing the current hash value in the
block of code if the hash value is not equal to the prior hash
value for the block of code.

Other features and advantages of the present invention
will become apparent to one with skill in the art upon
examination of the following drawings and detailed descrip
tion. It is intended that all Such additional features and
advantages be included herein within the Scope of the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that illustrates an example of the
computer System including the incremental Selective com
piler tool of the present invention.

FIG. 2 is a block diagram of the memory of FIG. 1,
including data structures used by the incremental compiler
tool of the present invention.

FIG. 3A is a flow diagram that illustrates an example of
portions of the compilation System utilizing Smartbuild of
the present invention.

FIG. 3B is a flow diagram that illustrates an example of
portions of the compilation System utilizing Smartbuild of
the present invention with a high and low level Scope
optimizer.

FIG. 4 is a flow diagram that illustrates an example of
Smartbuild, of the present invention, utilized with the incre
mental compilation tool.

FIG. 5A is a block diagram illustrating an example of an
object file containing one or more Scopes, as shown in FIGS.
3A and 3B.

FIG. 5B is a block diagram that illustrates an example of
a scope as shown in FIGS. 3A, 3B and 5A.

FIG. 5C is a flow diagram that illustrates an example of
a code and data stream as illustrated in FIG. 5B.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now in more detail to the drawings, in which
like numerals indicate corresponding parts throughout the
several views, the present invention will be described. While
the invention is described in connection with these draw
ings, there is no intent to limit it to the embodiment or
embodiments disclosed therein. On the contrary, the intent is
to cover all alternatives, modifications, and equivalents
included within the Spirit and Scope of the invention as
defined by the appended claims.
The present invention relates to a System and method for

optimizing compilation time. Most compilations are gener
ated into a very similar, if not identical, preexisting object
file. Therefore, it is possible to reuse much or all of the
preexisting object file object code as the result of the current

US 6,978,450 B2
3

compilation. To do this, a Suitable annotation must be
included with each object file to allow efficient identification
of Sections of code and data unchanged from a prior com
pilation. The compiler front-end emits intermediate code
only for those constructs that are needed, isolating the effect
of an input file change to those that could potentially change
the resulting object code. It is then possible to ignore any
change not reflected in the intermediate code generation.
Compiler front ends typically build a symbol table for
declarations, but include only those declarations referenced
in the executable code into the intermediate code Stream,
thereby implicitly excluding a large fraction of the declara
tions read by the compiler front-end.

These annotations can be represented using digital Signa
tures computed over the intermediate code for the function
(or other Scope) to detect changes with a very high degree of
accuracy. In most compilers, practically all Semantics of the
emitted code are reflected in the intermediate code Stream.
When any Small remaining State considered in code genera
tion or optimization is then accounted for, the resulting
digital Signature computed over the intermediate code then
reflects all of the factors that could alter the final output
code. Thus, while the compiler front-end time is not Saved,
it Serves to eliminate irrelevant changes that do not impact
the intermediate code Stream and hence the final code and
data generated.

The present invention extends the use of incremental
compilation Systems as described in the commonly assigned
and co-pending U.S. patent application entitled "Method and
Apparatus for Incremental Selective Compilation of Inter
mediate Code Files During Computer System Compilation
and Linking.” Ser. No. 09/232,398, filed on Jan. 15, 1999,
herein incorporated entirely by reference. This invention
extends the technology of the commonly assigned and
co-pending application to the mainstream of optimizing
code builds that do not use intermediate code from files, but
instead optimize the intermediate code emitted by the com
piler front-end while compiling Source code files.

The Scope of recompilation decisions must match the
Scope of optimization decisions after the point in the pipe
line where recompilation decisions are made (i.e., if the
optimization Scope matches the recompilation decision
Scope for all the necessary data that is contained in the
digital Signatures computed over the intermediate code
Stream for that Scope.) If the optimization Scope was wider
than the recompilation Scope, a change to one Scope could
change code generated outside the Scope, which would then
not be updated. On the other hand, computing the digital
Signature downstream of one optimization phase is not a
problem if the recompilation or reuse decision is only
accounted for in the actions of another optimization phase
further down the compiler's pipeline.

Illustrated in FIG. 1 is a block diagram of an example of
an incremental Selective compiler tool 102 that is an element
of a compilation System 108 and operates in a computer
system 100. The compiler tool 102 enables reuse of parts of
object code files 120 resulting from the compilation of one
or more source code files 118. More particularly, the com
piler tool 102 selectively updates an object code file 120 to
reflect Semantic changes in the Source code file 118 since a
prior compilation. Smartbuild 500 makes the decision to
optimize the intermediate code Stream 122 and generate a
new object code file 120, or instead, to reuse the existing
object code file 120.

It will be appreciated that a “build” refers to the process
of compilation of input files, such as source code files 118
created by the user (such as “C” software code), that

15

25

35

40

45

50

55

60

65

4
generate output files, Such as object code files 120, that are
used by another element of the compilation system 108. For
a general discussion of existing compiler, linker, and opti
mization technologies, See “Principles of Compiler Design,”
by Alfred V. Aho and Jeffrey D. Ullman (Addison-Wesley,
1977), which is herein incorporated by reference in its
entirety as background information.

Further, it will be understood that an intermediate code
Stream 122 may include instructions and data that have
Syntactic and Semantic meaning, Such as a postfix Polish
String as discussed in Aho (pg. 518). Those skilled in the art
will appreciate Polish String notation. Further, an object code
file 120 is a computer file (such as a “...o” file) that may
contain instructions and data in a form that a linker 112 may
use to create an executable code file 124.
A code generator 113 creates object code files 120, and

when the object code files 120 are combined the linker 112
may create executable code 124. It will be appreciated that
the object code files 120 may optionally be combined with
one or more library code files 114 that supply features of the
computer system 100 that enable execution of the executable
code 124. Examples of executable files 124 include those
having an extension of “exe' operating under a Windows(R)
operating System or an “a.out file that may operate under a
UNIX(R) operating system. Therefore, the present embodi
ment employs the linker 112 to resolve any undefined
computer location references in the object code files 120 and
to generate an executable code file 124 capable of executing
on the computer system 100 with input/output (I/O) devices
such as keyboard 148 and a mouse 152.
By means of an example, the form of an object code file

120 may be machine language, or relocatable machine
language as discussed in Aho, (pg. 518). Object code files
120 may be initially or temporarily located in the computer
system 100, and may be relocated by the linker 112 for
optimal execution in the computer system 100. For instance,
an object code file 120 may contain references to symbolic
locations defined within the object code file 120, references
to symbolic locations defined in the computer system 100
but not in the object code file 120, and relocation informa
tion that allows the linker 112 to resolve the symbolic
locations with actual references in the computer system 100.
The object code files 120 may be relocated in computer

memory 106 thus allowing the object code files 120 to be
compiled separately. Further, object code files 120 may be
linked together by the linker 112 and loaded for execution by
a loader 115. Separate compilation and linking enables
flexible management of program execution, Such as includ
ing previously compiled object code files 120 in another
execution.

It will be appreciated that “execute” refers to the process
of manipulating Software or firmware instructions for opera
tion on the computer system 100. The term “code” refers to
instructions or data used by the computer system 100 for the
purpose of generating instructions or data that execute in the
computer system 100. Further, “object code file” 120 and
“object file” 120 maybe used interchangeably herein.
“Executable code file” 124 and “executable file” 124 may be
used interchangeably herein. “Source code file” 118 and
“source file' 118 may be used interchangeably herein. Also,
the terms “procedure,” and “function” will be used inter
changeably herein. Further, the term “module” refers to a
combination of procedures or functions that are treated as
one unit by the computer system 100.
The present embodiment includes an optimizer 109 that

generates object code 120 that includes optimization
changes that may be dependent on a particular computer

US 6,978,450 B2
S

system 100. Further, these system-specific changes allow the
optimizer 109 to generate object code 120 that is highly
tailored to efficiently run on a specific computer system 100.
For example, code may be tailored to Support different cache
organizations or a particular type of computer processors.
Further, the optimizer 109 may take iterative changes to
enhance further processing by the optimizer 109. In the
present embodiment, the linker 112 may operate on the
object code 120 generated by the optimizer 109.

The executable file 124 is created to operate on a par
ticular computer system 100 and contains information used
to load and execute a program. The term “program' refers to
one or more procedures or files of code that are associated
with each other for the purpose of executing as one unit on
a computer system 100. As will be appreciated by those
skilled in the art, information Such as whether the executable
file 124 is shared between other executable files 124 or uses
libraries 114, may be included in the executable file 124. The
executable file 124 may be executed by a loader 115, which
operates to resolve any System-specific information Such as
address locations that are necessary to execute the execut
able file 124. For instance, the loader 115 may resolve
address locations for libraries 114 used in the executable file
124 or may determine where to begin execution of the file
124. More particularly, the loader 115 works with an oper
ating system (OS) 111 to determine the location in the
memory 106 at which the executable file 124 may execute,
and the loader 115 inserts the executable file 124 into the
memory 106 at the appropriate location.

The compiler tool 102 includes instructions and data that
may be referred to as values Such as integer, real, or complex
numbers or characters. Alternatively, the values may be
pointers that reference values. Therefore, a pointer provides
direction to locate a referenced value. A combination of
characters may be referred to as a “string.”
More particularly, the instructions may be operating

instructions of the computer system 100 or addresses. The
addresses may be actual computer addresses or virtual,
Symbolic addresses that represent actual computer
addresses. For instance, an actual computer address may be
a computer hardware register (not shown) or a location in the
memory 106. It will be appreciate that the terms “virtual
address' and "Symbolic address' may be used interchange
ably herein. The Virtual address is a pointer to the actual
address. The instructions and data are herein referred to as
“instructions.”

FIG. 1 further represents the computer system 100 that
includes components Such as the processor 104, the memory
106, a data storage device 140, and I/O adapter 142, a
communications adapter 144, a communications network
146, a user interface adapter 150, the keyboard 148, the
mouse 152, a display adapter 154, and a computer monitor
156. It will be understood by those skilled in the relevant art
that there are many possible configurations of the compo
nents of the computer system 100 and that some components
that may typically be included in the computer system 100
are not shown.

It will be understood by those skilled in the art that
functions ascribed to the compiler tool 102, or any of its
functional files, typically are performed by the central pro
cessing unit that is embodied in FIG. 1 as the processor 104
executing Such Software instructions.

The processor 104 typically operates in cooperation with
other software programs such as the OS 111 and those
included in the compilation system 108 including the com
piler tool 102. Henceforth, the fact of such cooperation
among the processor 104 and the compiler tool 102, whether

15

25

35

40

45

50

55

60

65

6
implemented in Software, hardware, firmware, or any com
bination thereof, may therefore not be repeated or further
described, but will be implied. The OS 111 may cooperate
with a file System 116 that manages the Storage and acceSS
of files within the computer system 100. The interaction
between the file system 116 and the OS 111 will be appre
ciated by those skilled in the art.

It will also be understood by those skilled in the relevant
art that the functions ascribed to the compiler tool 102 and
its functional files, whether implemented in Software, hard
ware, firmware, or any combination thereof, may in Some
embodiments be included in the functions of the OS 111.
That is, the OS 111 may include files from the compiler tool
102. In Such embodiments, the functions ascribed to the
compiler tool 102 typically are performed by the processor
104 executing Such Software instructions in cooperation with
aspects of the OS 111 that incorporate the compiler tool 102.
Therefore, in Such embodiments, cooperation by the com
piler tool 102 with aspects of the OS 111 will not be stated,
but will be understood to be implied.

Computer memory 106 may be any of a variety of known
memory Storage devices or future memory devices, includ
ing any commonly available random access memory
(RAM), cache memory, magnetic medium Such as a resident
hard disk, or other memory Storage devices. In one embodi
ment, the OS 111 and the compiler tool 102 may reside in the
memory 106 during execution in the computer system 100.

Source code 118, intermediate code stream 122, object
code 120, and an executable code 124 may all reside in the
memory 106 when the compiler tool 102 is operating under
the control of the OS 111. The compilation system 108 and
the OS 111, may also reside in the memory 106 when the
compiler tool 102 is operating under the control of the OS
111. It will be appreciated that the compilation system 108
may include the following elements that enable the genera
tion of executable code 124 capable of executing on the
computer system 100. The compilation system 108 may
include the optimizer 109, the intermediate code generator
113 including the compiler tool 102, the linker 112, the
loader 115, the libraries 114, and the source compiler 107.
The compiler tool 102 may be implemented in the “C”

programming language, although it will be understood by
those skilled in the relevant art that other programming
languages could be used. Also, the compiler tool 102 may be
implemented in any combination of Software, hardware, or
firmware.
The data storage device 140 may be any of a variety of

known or future devices, including a compact disk drive, a
tape drive, a removable hard drive, or a diskette drive. Any
Such program Storage device may communicate with the I/O
adapter 142, that in turn communicates with other compo
nents in the computer system 100, to retrieve and store data
used by the computer system 100. As will be appreciated,
Such program Storage devices typically include a computer
uSable Storage medium having Stored therein a computer
Software program and data.

Input devices could include any of a variety of known I/O
devices for accepting information from a user, whether a
human or a machine, whether local or remote. Such devices
include, for example, the keyboard 148, the mouse 152, a
touchscreen display, a touch pad, a microphone with a voice
recognition device, a network card, or a modem. The input
devices may communicate with a user interface I/O adapter
142 that in turn communicates with components in the
computer system 100 to process I/O commands. Output
devices could include any of a variety of known I/O devices
for presenting information to a user, whether a human or a

US 6,978,450 B2
7

machine, whether local or remote. Such devices include, for
example, the display 156, a printer, an audio speaker with a
Voice Synthesis device, a network card, or a modem. Output
devices Such as the display monitor 156 may communicate
with the components in the computer system 100 through
the display adapter 154. Input/output devices could also
include any of a variety of known data Storage devices 140
including a compact disk drive, a removable hard disk drive,
or a diskette drive.
By way of illustration, the executable code 124 may

typically be loaded through an input device and may be
stored on the data storage device 140. A copy of the
executable code 124 or portions of the executable code 124,
may alternatively be placed by the processor 104 into the
memory 106 for faster execution on the computer system
100.
The computer system 100 may communicate with a

network 146 through a communications adapter 144. The
network 146 may be a local area network, a wide area
network, or another known computer network or future
computer network. It will be appreciated that the I/O device
used by the compiler tool 102 may be connected to the
network 146 through the communications adapter 146 and
therefore may not be co-located with the computer System
100. It will be further appreciated that other portions of the
computer System, Such as the data Storage device 140 and
the monitor 156, may be connected to the network 146
through the communications adapter 144 and may not be
co-located.

Illustrated in FIG. 2 is a block diagram of an example of
the memory 106 that includes data structures used by the
incremental compiler tool 102 of the present invention. The
data Structures and functions are listed in the general order
of discussion with references to the figures. The memory
106 may include many of the following. The intermediate
code Stream 122 is one or more instructions that represent
compiler directives. An object code stream 203 is one or
more instructions that represent compiler directives and that
may be included in the object code file 120. Smartbuild 500
(FIG. 4) is the logic that creates the hash value 206 for the
intermediate code stream 122. It is this hash value 206 that
is used to determine if the intermediate code Stream 122 has
changed from the prior compilation represented in the object
file 120.

FIG. 3A is a flow diagram that illustrates an example of
portions of the compilation system 108 utilizing the Smart
build optimizer of the present invention. AS previously
stated, the compilation system 108 utilizing Smartbuild 500
(FIG. 4) provides suitable annotations in each object file
Scope to allow efficient identification of Sections of code
unchanged from prior compilations. Therefore, the compi
lation system 108 can re-utilize those code sections that have
not changed from the previous compilation in a new version
of a compiled System.
A user creates a Source code 118 that may written in any

of a variety of known specific programming languages, Such
as the “C.” C++, Java, Pascal, or FORTRAN languages, or
future languages. A Source compiler 107 processes a Source
code file 118 and thereby transforms the source code file 118
into an intermediate code Stream 122. The intermediate code
stream 122 is then analyzed by Smartbuild 500. The Smart
build process is herein defined in further detail with regard
to FIG. 4.

After the intermediate code stream 122 is analyzed by
Smartbuild 500 the compilation system 108 determines
whether it is to continue normal processing. If the compi
lation system 108 determines it is to continue normal

15

25

35

40

45

50

55

60

65

8
processing, then the compilation System 108 performs the
optimizer 109. However, if it is determined by the compi
lation System 108 that it is not to continue normal processing
after the execution of Smartbuild 500, then the compilation
system 108 determines that it is to reuse the existing
executable file 124 contents for the current Scope, and then
exits.
The optimizer 109 may optionally operate on the inter

mediate code Stream 122 to enhance the resulting object
code file 120 for the purpose of producing an executable file
124 that executes more efficiently. The object code file 120
may preserve the execution instructions included in the
intermediate code Stream 122 by including execution
instructions in the object code stream 203. The linker 112
Subsequently generates an executable file 124 by linking the
associated object code files 120 and other files such as
libraries 114 (as shown in FIG. 1).

Illustrated in FIG. 3B is a flow diagram that depicts an
example of portions of the compilation system 108 utilizing
Smartbuild 500 of the present invention with a high and low
level scope optimizer 109. The compilation system 108
utilizing Smartbuild 500 with the high and low level scope
optimizers is a configuration that reuses the work of the
downstream optimizer, but not the upstream optimizer. This
is often used when the upstream optimizer 109A was of a
wider scope than the downstream optimizer 109B. This is
important because the optimization time cascades-more
optimization time upstream means even more time optimi
Zation time downstream.

A user creates a source code 118 that may be written in
any of a variety of known Specific programming languages,
Such as the “C.” C++, Java, Pascal, or FORTRAN lan
guages, or future languages. A Source compiler 107 pro
cesses a source code file 118 and thereby transforms the
Source code file 118 into an intermediate code stream 122.
It is then determined that the high-level scope of the inter
mediate code stream 122 is to be optimized. If the high-level
Scope of the intermediate code is to be optimized, then the
compiler system 108 performs the high-level scope opti
mizer 109A. This converts intermediate code to more effi
cient intermediate code. Next, the high-level optimized
intermediate code Stream 122 is then input into Smartbuild
500. Smartbuild 500 is described in further detail with
regard to FIG. 4.

However, if it is determined that the high-level scope of
the intermediate code Stream 122 is not to be optimized, then
the compilation system 108 determines whether the compi
lation System 108 is to continue normal processing.

After the intermediate code stream 122 is analyzed by the
Smartbuild 500 the compilation system 108 determines
whether it is to continue normal processing. If the compi
lation system 108 determines it is to continue normal
processing, then the compilation System 108 performs the
low-level optimizer 109B. However, if it is determined by
the compilation system 108 that it is not to continue normal
processing after the execution of the Smartbuild 500, the
compilation system 108 determines that it is to reuse the
existing executable file 124, and exits.
The low-level optimizer 109B may optionally operate on

the intermediate code Stream 122 to enhance the resulting
object code file 120 for the purpose of producing an execut
able file 124 that executes more efficiently. The object code
file 120 may preserve the execution instructions included in
the intermediate code Stream 122 by including execution
instructions in the object code stream 203. The linker 112
Subsequently generates an executable file 124 by linking the

US 6,978,450 B2
9

associated object code files 120 and other files such as
libraries 114 (as shown in FIG. 1).

Illustrated in FIG. 4 is a flow diagram that illustrates an
example of the Smartbuild 500 utilized with the incremental
compilation tool 102 (FIG. 1). Smartbuild 500 determines
whether the intermediate code Stream 122 corresponding to
the code for the scope in the object code file 120 was equal
to the newly generated intermediate code Stream 122. If
Smartbuild 500 determines that the newly generated inter
mediate code Stream 122 is equal to the intermediate code
Stream 122 that was generated for the current Scope in the
object code file 120, then Smartbuild 500 indicates this
situation to the compiler system 108 to prevent wasting time
in a recompilation of identical intermediate code Stream 122.

Smartbuild 500 determines whether the newly generated
intermediate code Stream 122 is identical to the previous
generated intermediate code Stream 122 for a particular
Scope of code and data. This Scope can be of varying Sizes.
The varying degrees of Scope include, but are not limited to,
individual instructions, basic blockS functions, Subroutines,
procedures, Source-file, and whole-program optimization.
These Scopes are herein defined in further detail with regard
to FIGS 5A-5C.

Smartbuild 500 provides analysis of the intermediate code
stream 122 to determine whether the intermediate code
stream 122 has changed. First, Smartbuild 500 computes a
hash code 206 (FIG. 2) over the intermediate code stream
122 for the currently defined Scope. AS previously discussed,
this Scope can be of varying Sizes and includes, but is not
limited to, Subroutine, function, or procedure Scoping,
Source-file Scoping and program Scoping.

At step 502, Smartbuild 500 then determines if the object
code file 120 already contains a code and data stream 611
(FIG. 5B) for the intermediate code stream 122 of the
current scope. If it is determined at step 502 that an code and
data Stream 611 for the current Scope exists, then Smartbuild
500 next determines whether the hash value 206 for the
current Scope matches the corresponding digital Signature
612 (FIG. 5B) extracted from the preexisting object code file
120 at step 503. If it is determined at step 503 that the hash
value 206 for the intermediate code stream 122 for the
current Scope matches the corresponding digital Signature
612 (i.e. a hash value) extracted from the preexisting object
code file 120, then Smartbuild 500 proceeds to step 504 to
skip normal processing and then exits at step 509. Smart
build 500 skips the normal processing because it has deter
mined that there were no changes to the intermediate code
Stream 122 for the current Scope in the preexisting object
code file 120. Because there were no changes, the preexist
ing object code file 120 is still valid.

However, if it is determined at step 502 that an object
code file 120 does not already exist or if it is determined at
step 503 that the hash value 206 for the current scope does
not match the corresponding digital Signature 612 extracted
from the preexisting object code file 120, then Smartbuild
500 assigns the current generated hash value 206 to the
digital signature 612 in the object code file 120 being built
for the current scope, at step 506. At step 507, the Smartbuild
500 then returns to continue normal processing and exits at
step 509.

Illustrated in FIGS. 5A-5C are block diagrams that illus
trates examples of the Scoping that are utilized by the
Smartbuild 500 of the present invention. Illustrated in FIG.
5A is an object file 120 that contains one or more scopes 601.
These Scopes may consist of both object code and data areas.
In FIG. 5B, illustrated is an example of the model of the
scope 601, as illustrated in FIG. 5A. The scope 601 contains

15

25

35

40

45

50

55

60

65

10
the code and data Stream 611 and the digital signature 612.
Within the code and data stream 611 within the scope 601
there can exist additional scopes 601AA through 601XX.
These Scope definitions are recursive definitions utilizing the
example scope definition as shown in FIG. 5B.
The Smartbuild 500 computes a digital signature 611 (i.e.

a hash value 206 (FIG. 2)) for the intermediate code stream
122, for the current scope defined. This digital signature 611
can be computed utilizing a variety of different known
techniques, Such as but not limited to, a Secure hash algo
rithm (SHA), MD5, or any hashing or other means of
representing the contents of the intermediate code Stream
122.
An alternative embodiment relates to validating Software

maintenance changes. Software maintenance activities often
require making changes that are intended to be very local in
effect and then validating that the resulting change is truly as
tightly focused as planned. Existing build Systems. Such as
“make” and Similar file-timestamp-based Systems cannot
answer these questions since they have no knowledge of the
Semantics of the change. For instance, a comment added to
a header file can ripple through every object file that
references that header file-though there in fact has been no
Semantic change in the final code at all.
An alternative embodiment for this invention is a means

of identifying change, more precisely than the variants of
“make' immediately lead to a use in validating the Scope of
Software maintenance changes. Only the intended files
should recompile and no more. Any unexpected recompila
tion (reflected in the updated timestamps of the resulting
object files) indicates an extreme probability that the Scope
of the source changes was not as limited as expected, and the
exact list of Source files to examine are easily determined
from the corresponding object files that changed.
The foregoing description, for purposes of explanation,

used specific nomenclature to provide a thorough under
Standing of the invention. However, it will be apparent to
one skilled in the art that the Specific details are not required
in order to practice the invention. In other instances, known
devices are shown in block diagram form in order to avoid
unnecessary distraction from the underlying invention.
Thus, the foregoing descriptions of Specific embodiments of
the compiler optimization tool are presented for the purposes
of illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed, obviously many modifications and variations are
possible in view of the above teachings. Those skilled in the
art will recognize that changes may be made in form and
detail without departing from the scope of the invention. The
invention is limited only by the claims.
What is claimed is:
1. A method for optimizing compilation time of a pro

gram, the program including at least one block of code, Said
method comprising Steps of:

generating a current hash value for a block of intermediate
code in the program wherein the prior hash value is
asSociated with preexisting object code that corre
sponds to the block of intermediate code,

generating a current object file from the block of inter
mediate code when the current hash value for the block
of intermediate code does not correspond to the prior
hash value;

linking the generated current object file with other blockS
of object code associated with the program;

retrieving the preexisting object code when the current
hash value for the block of intermediate code corre
sponds to the prior hash value; and

US 6,978,450 B2
11

linking the preexisting object code with other blocks of
object code associated with the program.

2. The method of claim 1, further comprising:
Setting a Scope of the least one block of code.
3. The method of claim 1, further comprising the step of:
generating a notice when the hash value is not equal to a

prior hash value for the block of code.
4. The method of claim 1, further comprising:
Skipping optimization of the block of code if the current

hash value equals a prior hash value; and
storing the current hash value in the block of code if the

hash value is not equal to the prior hash value for the
block of code.

5. The method of claim 4, wherein the storing a hash value
Step further comprises:

allocating area for the generated hash value.
6. The method of claim 4, wherein the generating a hash

value Step further comprises:
using a parameter in hashing function to generate the hash

value, wherein the parameter is Selected from at least
one of the group of a code Stream, and a data Stream.

7. A System for optimizing compilation time of a program,
the program including at least one block of code, compris
Ing:
means for generating a hash value for a block of code in

the program;
means for generating a current object file from the block

of intermediate code when the current hash value for
the block of intermediate code does not correspond to
the prior hash value;

means for linking the generated current object file with
other blocks of object code associated with the pro
gram,

means for retrieving the preexisting object code when the
current hash value for the block of intermediate code
corresponds to the prior hash value; and

means for linking the preexisting object code with other
blocks of object code associated with the program.

8. The system of claim 7, further comprising:
means for Setting a Scope of the least one block of code.
9. The system of claim 7, further comprising:
means for generating a notice when the hash value is not

equal to a prior hash value for the block of code.
10. The system of claim 6, further comprising:
means for storing the hash value with the block of code if

the hash value is not equal to a prior hash value for the
block of code; and

means for skipping optimization of the block of code if
the hash value equals the prior hash value.

11. The system of claim 10, wherein the storing means
further comprises:
means for allocating area for the generated hash value.
12. The system of claim 10, wherein the hash value is

generated using a parameter in the block of code, wherein
the parameter is Selected from at least one of the group of a
code Stream, and a data Stream.

13. A computer readable medium for optimizing compi
lation time of a program, the program including at least one
block of code, comprising:

logic for generating a hash value for a block of code in the
program,

logic for generating a current object file from the block of
intermediate code when the current hash value for the
block of intermediate code does not correspond to the
prior hash value;

5

15

25

35

40

45

50

55

60

65

12
logic for linking the generated current object file with

other blocks of object code associated with the pro
gram,

logic for retrieving the preexisting object code when the
current hash value for the block of intermediate code
corresponds to the prior hash value; and

logic for linking the preexisting object code with other
blocks of object code associated with the program.

14. The computer readable medium of claim 13, further
comprising:

logic for Setting a Scope of the least one block of code.
15. The computer readable medium of claim 13, further

comprising:
logic for generating a notice when the hash value is not

equal to a prior hash value for the block of code.
16. The computer readable medium of claim 13, further

comprising:
logic for storing the hash value with the block of code if

the hash value is not equal to a prior hash value for the
block of code; and

logic for skipping optimization of the block of code if the
hash value equals the prior hash value.

17. The computer readable medium of claim 16, wherein
Said logic for Storing a hash value further comprises:

logic for allocating area for the generated hash value.
18. The computer readable medium of claim 16, wherein

the hash value is generated using a parameter in the block of
code, wherein the parameter is Selected from at least one of
the group of a code Stream, and a data Stream.

19. A System for optimizing compilation time of a pro
gram, comprising:

a compiler that generates at least one block of code from
the program; and

a compilation optimizer, wherein the compilation opti
mizer further comprises:

logic that generates a hash value for a block of code in the
program,

logic that generates a current object file from the block of
intermediate code when the current hash value for the
block of intermediate code does not correspond to the
prior hash value;

logic that links the generated current object file with other
blocks of object code associated with the program;

logic that retrieves the preexisting object code when the
current hash value for the block of intermediate code
corresponds to the prior hash value; and

logic that links the preexisting object code with other
blocks of object code associated with the program.

20. The system of claim 19, wherein the compilation
optimizer further comprises:

logic that Sets a Scope of the least one block of code.
21. The system of claim 19, wherein the compilation

optimizer further comprises:
logic that generates a notice when the hash value is not

equal to a prior hash value for the block of code.
22. The system of claim 19, further comprising:
logic that stores the hash value with the block of code if

the hash value is not equal to a prior hash value for the
block of code; and

logic that Skips optimization of the block of code if the
hash value equals the prior hash value.

23. The system of claim 22, wherein the compilation
optimizer further comprises:

logic that allocates area for the generated hash value.
24. The system of claim 22, wherein the hash value is

generated using a parameter in the block of code, wherein

US 6,978,450 B2
13 14

the parameter is Selected from at least one of the group of a the block of intermediate code does not correspond
code Stream, and a data Stream. to the prior hash value; and

25. A method for compiling a program, comprising: linking the generated current object file with other
generating a current hash value for a block of intermediate blocks of object code associated with the program.

code in the program; 5 26. The method of claim 25, further comprising changing
comparing the current hash value with a prior hash value a portion of the block of intermediate code in the program

asSociated with preexisting object code that corre- Such that generating the current hash value and Such that
sponds to the block of intermediate code, comparing the current hash value with the prior hash value

linking the preexisting object code with other blocks of validates Software maintenance changes.
object code associated with the program when the 10 27. The method of claim 25, further comprising changing
current hash value corresponds to the prior hash value; a portion of the block of intermediate code in the program
and Such that generating the current hash value and Such that

when the current hash value for the block of intermediate comparing the current hash value with the prior hash value
code does not correspond to the prior hash value, identifies changes in the program.
generating a current object file from the block of 15

intermediate code when the current hash value for k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,978,450 B2 Page 1 of 2
APPLICATION NO. : 10/017572
DATED : December 20, 2005
INVENTOR(S) : Carl D. Burch

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 10, line 55, in Claim l, after generating insert -- using a computer processor, --.

Column 10, line 56, in Claim 1 delete wherein the and insert -- wherein a -- therefor.

Column 10, line 64, in Claim l, delete program and insert -- program if the current hash value
for the block of intermediate code does not correspond to the prior hash value, --, therefor.

Column ll, line 2, in Claim l, delete program. and insert -- program if the current hash value
for the block of intermediate code corresponds to the prior hash value. --, therefor.

Column ll, line 4, in Claim 2, after the insert -- at --.

Column ll, line 6, in Claim 3, after the insert -- current --.

Column ll, line l l in Claim 4, after if the insert -- current --.

Column ll, line 19, in Claim 6, after in insert -- a--.

Column ll, line 26, in Claim 7, insert -- computer processor -- before means.

Column ll, line 28, in Claim 7, delete the and insert -- a--, therefor.

Column ll, line 29, in Claim 7, delete when the and insert -- when a -- therefor.

Column ll, line 31, in Claim 7, delete the and insert -- a--, therefor.

Column ll, line 39, in Claim 7, delete program. and insert -- program if the current hash value
for the block of intermediate code corresponds to the prior hash value. --, therefor.

Column ll, line 41 in Claim 8, after the insert -- at --.

Column ll, line 45, in Claim 10, delete claim 6 and insert -- claim 7 -- therefor.

Column ll, line 62, in Claim 13, after logic insert -- executed on a computer processor -.

Column ll, line 64, in Claim 13, delete the and insert -- a--, therefor.

Column ll, line 65, in Claim 13, delete when the and insert -- when a -- therefor.

Column ll, line 66, in Claim 13, delete the and insert -- a--, therefor.

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 6,978,450 B2

Column 12, line 8, in Claim 13, delete program. and insert -- program if the current hash value
for the block of intermediate code corresponds to the prior hash value. --, therefor.

Column 12 line l l in Claim 14, after the insert -- at --.

Column 12, line 31, in Claim 19, insert -- the program including at least one block of code. -- before
comprising.

Column 12, line 36, in Claim 19, delete that generates and insert -- executed on a computer
processor for generating --, therefor.

Column 12 line 40, in Claim 19, delete the and insert -- a--, therefor.

Column 12, line 49, in Claim 19, delete program. and insert -- program if the current hash value
for the block of intermediate code corresponds to the prior hash value. --, therefor.

Column 12 line 52, in Claim 20, after the insert -- at --.

Column 13, line 4, in Claim 25, after generating insert -- using a computer processor, --.

Signed and Sealed this

Ninth Day of February, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

