
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

(51) International Patent Classification 6 ; (11) International Publication Number: WO 99/33227
H04L 12/28, 12/56 Al

(43) International Publication Date: 1 July 1999 (01.07.99)

(21) International Application Number: PCT/US98/25688

(22) International Filing Date: 4 December 1998 (04.12.98)

(30) Priority Data:
08/994,709 19 December 1997 (19.12.97) US

(71) Applicant: HOLONTECH CORPORATION [US/US]; 2039
Samaritan Drive, San Jose, CA 95124 (US).

(72) Inventor: BHASKARAN, Sajit; 1336 Avoset Terrace, Sunny
vale, CA 94087 (US).

(74) Agent: MACPHERSON, Alan, H.; Skjerven, Morrill,
MacPherson, Franklin & Friel LLP, Suite 700, 25 Metro
Drive, San Jose, CA 95110 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: CROSS-PLATFORM SERVER CLUSTERING USING A NETWORK FLOW SWITCH

(57) Abstract

A network flow
switch (205) is provided
for connecting a pool of IP
routers (260, 270, 280) to
a cluster of IP servers (200)
sharing a single IP address
(IP 192.31.65.1) without
requiring translation of the
IP address. Rather, all IP
servers (210, 220, 230,
240, 250) have the same
IP address (IP 192.31.65.1).
The network flow switch
(205) routes packets to
individual servers by writing
the data link layer address
of the destination IP server
in the destination data link
layer address field of the
packet. However, no data
link layer address translation
is required for packets
transmitted from the IP
servers (210, 220, 230, 240,
250) to the IP routers. Since
in a typical client-server
environment, the number of
packets sent from the server to the client is much greater than the number of packets sent from the client to the server, the data link layer
address translation requires very little overall processing time. The network flow switch (205) also performs load balancing and fault
tolerance functions. When the network flow switch (205) receives a packet destined to the cluster of IP servers (200), the packet is routed
to the IP server with an optimal workload, so as to ensure that the workload is evenly distributed among the IP servers (210, 220, 230,
240, 250).

Network Flew Switch

0
IP 192.31.65.3

MAC 126.7
IP 192 31.65.4

MAC 126.8

δ
IP 192.31.65.2

MAC 126.6

Network RouterNetwork Router Network Router

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia
AM Armenia FI Finland LT Lithuania SK Slovakia
AT Austria FR France LU Luxembourg SN Senegal
AU Australia GA Gabon LV Latvia SZ Swaziland
AZ Azerbaijan GB United Kingdom MC Monaco TD Chad
BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
BB Barbados GH Ghana MG Madagascar TJ Tajikistan
BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan
BF Burkina Faso GR Greece Republic of Macedonia TR Turkey
BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
BJ Benin IE Ireland MN Mongolia UA Ukraine
BR Brazil IL Israel MR Mauritania UG Uganda
BY Belarus IS Iceland MW Malawi US United States of America
CA Canada IT Italy MX Mexico uz Uzbekistan
CF Central African Republic JP Japan NE Niger VN Viet Nam
CG Congo KE Kenya NL Netherlands YU Yugoslavia
CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe
CI Cdte d’Ivoire KP Democratic People’s NZ New Zealand
CM Cameroon Republic of Korea PL Poland
CN China KR Republic of Korea PT Portugal
CU Cuba KZ Kazakstan RO Romania
CZ Czech Republic LC Saint Lucia RU Russian Federation
DE Germany LI Liechtenstein SD Sudan
DK Denmark LK Sri Lanka SE Sweden
EE Estonia LR Liberia SG Singapore

WO 99/33227 PCT/US98/25688

CROSS-PLATFORM SERVER CLUSTERING USING A NETWORK FLOW

SWITCH

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to computer
networks and more specifically, to high-bandwidth network
switches.

Description of the Related Art
The increasing traffic over computer networks such as the

Internet, as well as corporate intranets, WANs and LANs, often
requires the use of multiple servers to accommodate the needs
of a single service provider or MIS department. For example,
a company that provides a search engine for the Internet may
handle over 80 million hits (i.e., accesses to the company's
web page) every day. A single server cannot handle such a
large volume of service requests within an acceptable response
time. Therefore, it is desirable for high-volume service
providers to be able to use multiple servers to satisfy
service requests.

For example, the Internet Protocol (IP), which is used to
identify computers connected to the Internet and other global,
wide or local area networks, assigns a unique IP address to
each computer connected to the network. Thus, when multiple
servers are used, each server must be accessed using the
server's own IP address.

-1-

WO 99/33227 PCT/US98/25688

On the other hand, it is desirable for users to be able
to access all servers of a service provider using a unique IP
address. Otherwise, the users would have to keep track of the
servers maintained by the service provider and their relative
workloads in order to obtain faster response times. By using
a single "virtual" IP address (i.e., an IP address that does
not correspond to any one of the IP servers, but rather
designates the entire group of IP servers), service providers
are able to divide service requests among the servers. By
using this scheme, IP servers may even be added or removed
from the group of IP servers corresponding to the virtual IP
address to compensate for varying traffic volumes. Multiple
servers used in this fashion are sometimes referred to as a
"cluster."

Fig. 1 illustrates a prior art cluster of IP servers. A
server load balancer 100 routes packets among IP servers 110,
120, 130, 140 and 150 and network routers 160, 170 and 180.
Each of IP servers 110, 120, 130, 140 and 150 and network
routes 160, 170 and 180 has a distinct IP address; however,
any of IP servers 110, 120, 130, 140 and 150 can be accessed
via a virtual IP address (not shown) from networks connected
to network routers 160, 170 and 180. When a packet addressed
to the virtual IP address is received by server load balancer
100, the virtual IP address is translated into the individual
IP addresses of one of the IP servers and the packet is routed
to that IP server. The translation, however, involves
generating a new checksum for the packet and re-writing the
source/destination IP address and the checksum fields of the
IP header field, as well as of the TCP and UDP header fields.
Both the IP header checksum, which is the ISO Layer 3 or

-2-

WO 99/33227 PCT/US98/25688

Network Layer header, and the TCP or UDP header checksums,
which are the ISO Layer 4 or Transport Layer header checksums,
need to be recalculated for each packet. Typically, these
operations require intervention by a processor of the server
load balancer.

When a high volume of requests is processed, the overhead
imposed by the translation has a significant impact on the
response time of the IP servers. In addition, if a large
number of IP servers are used, the time required to perform
the translation creates a bottleneck in the performance of the
server load balancer, since the IP address of each packet
transmitted to and from the IP servers must be translated by
the switch. Therefore, there is a need for a faster method
for sharing a single IP address among multiple IP servers.

In other cases, when multiple IP addresses are used and a
client typically tries to access a primary IP server. If the
primary IP server does not respond within a fixed time period,
the client tries to access backup IP servers, until a response
is received. Thus, when the primary IP server is unavailable,
the client experiences poor response time. Current server
replication systems such as those used in DNS and RADIUS
servers are affected by this problem. There is thus a need
for a method of accessing multiple IP servers which does not
experience poor response time when the primary IP server is
unavailable.

Another potential drawback of the prior art is that each
replicated server requires a unique IP address physically
configured on the server. Since all IP networks are subject to
subnet masking rules (which are often determined by an
external administrator) the scalability of the replication is

-3-

WO 99/33227 PCT/US98/25688

severely limited. For example, if the subnet prefix is 28
bits of a 32-bit IP address, the maximum number of replicated
servers is 16 (2). There is a need for a method of
replicating servers that allows replication of IP servers
independent of subnet masking rules.

IP version 4 addresses are currently scarce on the
Internet, so any method of IP server replication that requires
a proportional consumption of these scarce IP addresses is
inherently wasteful. For example, an example of prior art is
Domain Name Service (DNS) based load balancing. DNS servers
are used for resolving a server name (e.g.,
www.companyname.com) to a globally unique IP address (e.g.,
192.45.54.23). In DNS based server load balancing, many
unique IP addresses per server name are kept and doled out to
allow load balancing. However, this reduces the number of
available IP version 4 addresses. There is thus a need for a
method of clustering IP servers that minimizes consumption of
the scarce IP address space.

Furthermore, when the IP payload of a packet is encrypted
to provide secure transmissions over the Internet, IP address
translation cannot be performed without first decrypting the
IP payload (which contains the TCP or UDP header checksums).
In the current framework for IP Security, referred to as
IPSEC, the transport layer is part of the network layer
payload which will be completely encrypted in a network
application that implements IPSEC. IPSEC is described in RFCs
1825-1827 published by the Internet Engineering Taskforce.
Encryption is performed by the client, and decryption is
performed by the server, using secret crypto-keys which are
unique to each client-server link. Therefore when such

-4-

http://www.companyname.com

WO 99/33227 PCT/US98/25688

encryption is performed in client-server communications, as in
IPSEC, prior art server load balancers will not be able to
perform load balancing operations without violating IPSEC
rules. This is because server load balancers cannot access
the transport layer information (encrypted as part of the IP
payload) without first decrypting the IP payload. Since, the
crypto-keys set up between client and server are by definition
not public, the IP payload cannot be decrypted by the server
load balancer in compliance with IPSEC (indeed, for all
practical purposes, the server load balancer will not work at
all for encrypted packets).

There is thus a need for a system that not only allows
for transmissions of encrypted data packets according to the
IPSEC model, but also allows network administrators to perform
both server load balancing and IPSEC in their networks.

Furthermore, current server load balancers typically
operate on TCP packets only. By contrast, IP headers have an
8-bit protocol field, theoretically supporting up to 256
transport protocols at ISO layer 4. There is thus a need for
a server load balancing system that supports transport
protocols at ISO layer 4 other than TCP (e.g., UDP, IP_in_IP,
etc.).

Prior art systems allow for load balancing and,
sometimes, fault tolerance of network traffic only in the
inbound direction (i.e., client-router-server). Load
balancing and fault tolerance in the reverse (outbound)
direction (i.e., server-router-client) is not supported.
Specifically if multiple router links are provided for the
server to return information to clients, no attempt is made to
load balance traffic flow through the router links. Also,

-5-

WO 99/33227 PCT/US98/25688

when a specific IP server is configured to use a specific
default router IP address in the outbound transmissions, no
fault tolerance or transparent re-routing of packets is
performed when the router fails. There is thus a need for a
system that allows for traffic flow clustering services, in
both the inbound and the outbound directions.

The prior art solutions are hardware devices configured
to appear as IP routers to the cluster of servers being load
balanced. As a result, one more classes of IP router devices
are added to the router administrator's domain of managed IP
routers. This constrains future evolution of the router
network, both in terms of adding new vendors' routers in the
future and adding new and more sophisticated routing features.
Debugging and troubleshooting of routing problems also becomes
more difficult. It would thus be preferable to employ a
completely transparent piece of hardware, such as a LAN switch
or hub, as a load balancing device. In the related art, the
servers and any external routers are connected to the load
balancing device using shared media Ethernet, (i.e., a
broadcast media network). There is a need for a better
solution that allows use of switched circuits (e.g., switched
Ethernet, SONET), as switched circuits inherently provide (a)
dedicated bandwidth and (b) full-duplex (i.e., simultaneous
transmit and receive operations) to call connected devices.

SUMMARY OF THE INVENTION
The present invention provides a network flow switch (and

a method of operation thereof)for connecting a pool of IP
routers to a cluster of IP servers sharing a single IP
address, without requiring translation of the IP address, and

-6-

WO 99/33227 PCT/US98/25688

providing bi-directional clustering. The network flow switch,
by operating transparently at the 150 layers 2 and 3, enables
cross-platform clustering of servers and routers, these
routers being the so-called "first-hop" routers used by the
servers to communicate with the outside world. This means the
servers within any single cluster can come from any
manufacturer of computer hardware and run any operating system
(e.g., Microsoft WINDOWS NT, Unix, MACOS). WINDOWS NT is a
registered trademark of Microsoft Corp, of Redmond,
Washington; MACOS is a registered trademark of Apple Computer,
Inc. of Cupertino, California. It also means the routers can
come from any vendor of routing equipment. The network flow
switch therefore, allows customers freedom of choice in server
operating systems as well as router systems in designing their
server clustering schemes. The only requirements on these
servers and routers is that they all implement standard TCP/IP
communications protocols, or some other protocol stack in
conformance with the ISO/OSI 7-layer model for computer
communications. The network flow switch routes packets to
individual servers by writing the Data Link Layer address of
the destination IP server in the destination Data Link Layer
address field of the packet. Packets transmitted from the IP
servers to the IP routers, on the other hand, do not require
modification of the Data Link Layer address field.

Since in a typical client-server environment the majority
of the packets flowing through the network flow control switch
are transferred from the server to the client, eliminating
processor intervention in routing outbound packets allows for
significant performance enhancements. As a result, the

-7-

WO 99/33227 PCT/US98/25688

likelihood of the network flow switch becoming a bottleneck is
greatly reduced.

Multiple clusters (one or more PI servers sharing a
single IP address) are supported in a single network flow
switch. On any single link attached to each of the IP
servers, multiple clusters can be supported if the IP server's
operating system supports multiple IP addresses on a physical
link.

In some embodiments, the network flow switch, in addition
to routing of the packets, performs load balancing and fault
tolerance functions. In these embodiments, a processor of the
network flow switch periodically executes a load balancing
routine to determine the relative workload of each of the IP
servers. When the network flow switch receives a packet
destined to the cluster of IP servers, the packet is routed to
the IP server with an optimal workload, so as to ensure that
the workload is evenly distributed among the IP servers. In
addition, if a failure of a network router is detected, a
packet addressed to that network router is re-routed to a
different network router by re-writing the Data Link Layer
destination address of the packet. Since the network flow
switch continuously monitors the status of the IP servers, no
lengthy time delay is introduced in client-server
communications when an IP server is disabled.

Since the IP header is not modified, the network flow
switch of the present invention operates on packets encoded
according to any ISO layer 4 protocol and, unlike prior art
server load balancers, is not limited to TCP encoded packets.
In addition, the network flow switch can also handle re

8-

WO 99/33227 PCT/US98/25688

routing, load balancing and fault tolerance of encrypted
packets transparently to both server and client.

In some embodiments, load balancing is also performed for
outbound packets so as to route packets to the router with an
optimal workload.

Thus, a method and apparatus are provided to allow bi
directional clustering for load balancing and fault tolerance
in the inbound direction (i.e., client-router-server), as well
as in the outbound direction (i.e., server-router-client).

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 illustrates a prior art cluster of IP servers,

each having a distinct IP address, and a prior art network
flow switch for translating a virtual IP addressed shared by
all IP servers in the cluster into the individual IP addresses
of the IP servers.

Fig. 2 illustrates a cluster of IP servers and a network
flow switch, according to an embodiment of the invention.
Each IP server has a same IP address. A Data Link Layer
address is used to identify each IP server within the cluster.

Fig. 3A illustrates the format of a packet routed to/from
the cluster of IP servers by the network flow switch 205 of
Fig. 2.

Fig. 3B shows the format of link field 320 of Fig. 3A.
Fig. 4A illustrates the structure of the network flow

switch 205 of Fig. 2.
Fig. 4B is a flow diagram of the process of routing

packets from one of the network clients to one of the IP
servers of Fig. 2 via the network flow switch 205 of Fig. 4A,
according to an embodiment of the invention.

-9-

WO 99/33227 PCT/US98/25688

Fig. 4C is a flow diagram of the process of routing
packets from one of the IP servers to one of the network
clients of Fig. 2 via the network flow switch 205 of Fig. 4A,
according to an embodiment of the invention.

Fig. 5A is a block diagram of a network flow switch
implemented using multiple general-purpose circuit boards,
according to an embodiment of the invention.

Fig. 5B is a block diagram of a network flow switch
implemented using a general-purpose CPU board and a special-
purpose network board, according to an embodiment of the
invention.

Fig. 5C is a block diagram of a network flow switch
implemented using two special-purpose circuit boards,
according to an embodiment of the invention.

Fig. 5D is a block diagram of a network flow switch
implemented using a single special-purpose circuit board,
according to an embodiment of the invention.

Fig. 5E is a block diagram of a network flow switch
implemented using a combination of special-purpose and general
purpose circuit boards, according to an embodiment of the
invention.

Fig. 5F is a block diagram of a network flow switch
implemented using a crossbar switch, according to an
embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION
The method and apparatus of the present invention allow

multiple IP servers to share a same IP address and use a
network flow switch to route packets among the IP servers
based on the Data Link Layer address of the IP servers (e.g.,

-10-

WO 99/33227 PCT/US98/25688

the destination address of the packets is translated into the
Data Link Layer address of one of the IP servers). Since IP
networks ignore the source Data Link Layer address field of
packets transmitted over the network, Data Link Layer address
translation is performed only for packets flowing from an IP
client to an IP server. In the reverse flow direction, that
is, from an IP server to an IP client, no Data Link Layer
address translation is required, thus allowing for very fast
throughput through the network flow switch.

A cluster of IP servers 200 and a network flow switch
205, according to an embodiment of the invention, are shown in
Fig. 2. Network flow switch 205 routes packets among IP
servers 210, 220, 230,240 and 250 and network routers 260, 270
and 280. IP servers 210, 220, 230,240 and 250 are configured
identically and have a virtual IP address 290. In addition,
each of IP servers 210, 220, 230, 240 and 250 has a distinct
Data Link Layer address, and a distinct link name. The link
name is used to identify the unique server within the cluster
of servers sharing a same IP address. As explained below, the
Data Link Layer address is used to translate a virtual Data
Link Layer address to a physical Data Link Layer address,
after an IP server is selected by network flow switch 205 to
receive the packet. IP address 290 is visible to devices
communicating with the cluster 200, while the individual Data
Link Layer addresses of each of the IP servers are not.
Network flow switch 205, in fact, performs a proxy Address
Resolution Protocol (ARP) function that returns a "virtual"
Data Link Layer address (not shown) to a network connected
device in response to a standard ARP query. As a result,
network connected devices see the cluster 200 as having a

-11-

WO 99/33227 PCT/US98/25688

single IP address 290 and a single Data Link Layer address
(not shown).

Network routers 260, 270 and 280, on the other hand, each
have a distinct IP address and a distinct Data Link Layer
address. The routers are used to connect cluster 200 to
external networks (not shown) via network flow switch 205.
Thus, in order to transmit packets of information to cluster
200, a device connected to one of the external networks (e.g.,
a router) issues a standard ARP query to network flow switch
205 to obtain the virtual Data Link Layer address of cluster
200; network flow switch 205 returns a Data Link Layer address
of the selected receiving device (e.g., one of the IP servers)
to the requesting device (e.g., the router). The network
connected device then transmits a series of packets to network
flow switch 205 (e.g., through one of network routers 260, 270
or 280 connected to the external network). The packets are
then re-routed by network flow switch 205 to exactly one of IP
servers 210, 220, 230, 240 and 250.

Since all embodiments of the network flowswitch ensure
that no two servers in the same cluster are on the same
flowswitch part, broadcast isolation of the replicated servers
is enabled. Therefore, IP address conflicts are avoided by
the active intervention of the flowswitch in the event of ARP
query packets being received by the network flowswitch, as
described above.

The format of a packet 300 transmitted over the external
network is illustrated in Fig. 3A. Packet 300 has a header
field 310, a link field 320, an IP header 330, a TCP header
340, a data payload 350, a CRC field 360 and a trailer 370.
Header 310 and trailer 370 are 8-bit wide private tag-fields:

-12-

WO 99/33227 PCT/US98/25688

these are not transmitted over the external network but used
only inside the network flow switch. IP header 330 and TCP
header 340 are standard IP and TCP headers. IP header 330
includes, among other information, a destination IP address
and a source IP address for packet 300. CRC field 360
contains a checksum correction code used to verify that packet
300 has been transmitted without error. If IP header 330 were
modified, as required by prior art methods for sharing a
single IP address among multiple IP servers, the checksum for
CRC field 360 would have to be recalculated, an operation
requiring processor intervention. In addition, if encrypted
information is transmitted according to the IPSEC security
framework, decryption of the IP payload is required. Thus, by
eliminating the need to recompute the checksum for each
packet, the network flow switch of the present invention
achieves better throughput than prior art devices. Network
owners can further deploy IPSEC security mechanisms
transparently and without fear of communications being broken.

Fig. 3B illustrates the format of link field 320. Link
field 320 has a Data Link Layer source address field 380, a
Data Link Layer destination address field 390 and type field
395. Since link field 320 is not part of the IP protocol,
there is no need to recalculate the checksum for CRC field 360
when link field 320 is modified. Accordingly, re-routing of
packets according to the present invention is accomplished by
re-writing the Data Link Layer destination address in Data
Link Layer destination address field 390 of packet 300.
Neither IP header 330 nor CRC field 360 are modified, reducing
the processing time required to route packets to and from the
cluster of IP servers.

-13-

WO 99/33227 PCT/US98/25688

An embodiment of network flow switch 205 (Fig. 2) is
illustrated by the block diagram of Fig. 4A. Network flow
switch 205 has a CPU board 400 and four ethernet cards 415,
416, 417 and 418 connected by a PCI bus 410. CPU board 400,
in turn, has a CPU 402, a memory 404, and a memory controller
406 for controlling access to the memory 404. Each of
ethernet cards 415, 416, 417 and 418 has an ethernet
controller and two input/output ports 411 and 413.

A network flow switch according to one embodiment of the
invention can be constructed entirely from off-the-shelf ASICs
(Application Specific Integrated Circuits), controlled by a
general purpose CPU executing a software program. Since many
commercially available Ethernet switches provide general
purpose CPUs for switch management (e.g., for executing SNMP
and IEEE 802.ID Spanning Tree Protocols) a network switch
according to an embodiment of the invention can be easily
implemented on such hardware platforms. The only requirement
is that the ASIC be able to support some form of "CPU
intervention" triggered when a packet with a particular
destination Data Link Layer address is routed through the
network flow switch. ASICs that support this form of CPU
intervention are available from, among others, Galileo
Technology Ltd. of Kormiel, Israel, MMC Networks, Inc. of
Sunnyvale, Calif, and I-Cube, Inc. of Campbell, Calif.

The process of routing a packet 300 (Fig. 3A) received by
one of network routers 260, 270 or 280 to one of IP servers
210, 220, 230, 240 or 250 of Fig. 2 is illustrated by the flow
diagram of Fig. 4B. Initially, a packet is received on a port
of one of ethernet cards 415, 416, 417 or 418, in stage 420.
In stage 425, ethernet controller 412 then checks a CPU

-14-

WO 99/33227 PCT/US98/25688

intervention bit to determine whether the packet needs to be
sent to the CPU board 400 for further processing. In such a
case the packet is transferred to CPU board 400 over PCI bus
410 and stored in memory 404 by memory controller 406, in
stage 430. If the CPU intervention bit is not set, however,
the processing proceeds to stage 445. Stage 435 performs an
optional load balancing operation to determine which of IP
servers 210, 220, 230, 240 or 250 packet 300 is to be routed
to. The load balancing operation of stage 435 attempts to
divide packets to be processed among the IP servers according
to the capacity and the current utilization of each server. A
load balancing scheme suitable for use in the present
invention is described in a related application titled
"DYNAMIC LOAD BALANCER FOR MULTIPLE NETWORK SERVERS" by Sajit
Bhaskaran and Abraham Matthews, having Serial No. 08/992,038
and attorney docket number M-4969_US, which is herein
incorporated by reference in its entirety. Stage 440 then re
writes the Data Link Layer destination address field of packet
300 to indicate which of IP servers 210, 220, 230, 240 or 250
packet 300 is to be routed to. Finally, the packet is
transferred the one of ethernet cards 415, 416, 417 or 418 to
which the IP server specified by the Data Link Layer
destination address field of packet 300 is connected, in stage
445.

The process of routing a packet 300 (Fig. 3A) from one of
IP servers 210, 220, 230, 240 or 250 to one of network routers
260, 270 or 280 (Fig. 2) is illustrated by the flow diagram of
Fig. 4C. Initially, a packet is received on a port of rone of
ethernet cards 415, 416, 417 or 418 connected to one of IP
servers 210, 220, 230, 240 or 250, in stage 450. Optional

-15-

WO 99/33227 PCT/US98/25688

stage 455 then checks whether the network router to which the
packet 300 is to be routed is in service, in which case
processing proceeds with stage 465. A fault tolerance scheme
suitable for use in the present invention is described in a
related patent application titled "ROUTER POOLING IN A NETWORK
FLOWSWITCH" by Sajit Bhaskaran, having Serial No. 08/994,405
and attorney docket number M-4971_US, which is herein
incorporated by reference in its entirety. Otherwise, in
optional stage 460, ethernet controller 412 transfers packet
300 over PCI bus 410 to CPU board 400 and memory controller
406 stores packet 300 in memory 404. Still in stage 460, CPU
402 re-writes Data Link Layer destination address field 390 of
packet 300 to indicate which of network routers 260, 270 or
280 packet 300 is to be routed to. Finally, memory controller
406 transfers packet 300 over PCI bus 410 to one of ethernet
cards 415, 416, 417 or 418, depending on the contents of Data
Link Layer destination address field 390 of packet 300, in
stage 465.

In some embodiments, the network flow switch provides
load balancing and clustering for outbound packets. In such
case, the network routers are grouped in "router pools," just
as IP servers were grouped in clusters for inbound processing.
Traffic from IP servers going to IP clients is load balanced
if multiple network routers and/or multiple network router
links are present. For example, if four network routers each
with a 100 Mbps Ethernet port are connected to the network
flow switch traffic is approximately load balanced on the four
links, allowing a throughput of nearly 400 Mbps, even if all
the IP servers are each configured with a single and identical
default router IP address.

-16-

WO 99/33227 PCT/US98/25688

This is achieved by programming the network flow switch
to respond to ARP requests from the IP servers for a
particular network router's IP address as follows. The
network flow switch keeps track of the load going to all
network routers in a router pool (e.g., by keeping track of
<in packets, out packets, in bytes, out bytes> vectors). The
IP servers maintain ARP caches of the IP address of the
network routers. The ARP cache is updated by periodically
issuing an ARP request for a network router's IP address. The
network flow switch intercepts the request, examines the IP
server's IP address, and responds to the request by assigning
the Data Link Layer address of the network router in the pool
that is best able to service the load coming from this
particular server ("best" is determined by measures of real
time traffic load or using a simple round robin scheme based
on server source IP addresses).

For purposes of outbound load balancing, unlike for
inbound load balancing, network routers are configured with
unique IP addresses, rather than a single IP address.

In some embodiments, the network flow switch can be
configured to perform only "availability clustering." In
availability clustering, one server is serves as the primary
IP server, while all other IP servers in the cluster act as
secondary IP servers- at any given time (secondary -
operational or secondary - failed). Traffic is always routed
to the primary IP server. If the primary IP server fails, the
failure is automatically detected by the network flow switch
and the failed IP server's status is converted to "secondary -
failed." One of the available IP servers in state "secondary
- operational" is then converted to state "primary". The

-17-

WO 99/33227 PCT/US98/25688

network flow switch continues to monitor the state of servers
in "secondary-failed" state and automatically detects when
they becomes operational again. When this happens, their
status is changed to "secondary - operational". Therefore, a
failed primary IP server which is restored after being in
"secondary - failed" state for some time never pre-empts the
current primary, but rather goes into "secondary -
operational" state.

In addition, the status of every network router in a
router pool is monitored. If the network router fails, all
traffic directed to that network router is transparently re
directed to another network router in the router pool until
the network router is restored. No intervention from the IP
servers is necessary, as the re-direction is handled entirely
by the network flow switch.

Figs. 5A-5C illustrate several possible hardware
implementations of network flow switch 205 (Figs. 2 and 4A).
Each of the hardware implementations of Figs. 5A-5C represents
a different trade-off between ease of implementation and
performance of the network flow switch. For example, the
hardware implementation of Fig. 5A does not require any
special purpose hardware and can be implemented using off-the-
shelf components.

In Figs. 5A-5D, the CPU is a model R-4700 processor,
available from Integrated Device Technology, Inc. of San Jose,
Calif., the memory controller is a model GT-64010 controller,
available from Galileo Technologies Ltd. of Karmiel, Israel
and the ethernet controllers are model GT-48002 ethernet
controllers, also available from Galileo Technologies. While
this specific hardware components are described for clarity,

-18-

WO 99/33227 PCT/US98/25688

the invention is not limited to the specific components,
manufacturers or model numbers. Other components made by
different manufacturers and having different model numbers can
be used in place of the components described in Figs. 5A-5C.

Fig. 5A shows a first hardware implementation of network
flow switch 205 having a CPU board 500 and several ethernet
cards 410, 420, 430 and 440. CPU board 500 has an R-4700
processor connected to an 85C30 asynchronous I/O controller
and to a GT-64010 memory controller. The asynchronous
controller is in turn connected to a pair of RS232/DB-25
input/output ports for interfacing with other devices. The
memory controller, in addition to PCI bus 410, is connected to
a 512 KB EPROM, an 8MB RAM and a 2MB FLASH memory. Ethernet
cards 510, 520, 530 and 540 have a GT-48002 ethernet
controller, a 1MB EDO RAM and a pair of input/output ports.
CPU board 500 and ethernet cards 510, 520, 530 and 540 are
general purpose circuit boards available from Galileo
Technologies. As a result, network flow switch 205 can be
implemented using only general-purpose components, as
illustrated in Fig. 5A.

Fig. 5B illustrates a second hardware implementation of
network flow switch 205 (Figs. 2 and 4A). In Fig. 5B, a
special-purpose network card 560 is used in place of the
general-purpose network cards of Fig. 5A. Thus, Ethernet
cards 510, 520, 530 and 540 are replaced by a single network
card 560. Network card 560, in turn, comprises several
ethernet controllers each connected to a pair of input/output
ports, as well as an on-board PCI bus. The external PCI bus
of Fig. 5A is eliminated altogether. The hardware
implementation of Fig. 5B provides improved performance and

-19-

WO 99/33227 PCT/US98/25688

cost reduction over the hardware implementation of Fig. 5A, at
the cost of adding special-purpose hardware.

Fig. 5C illustrates a third hardware implementation of
network flow switch 205 (Figs. 2 and 4A). In Fig. 5C, two
special-purpose circuit boards are used in place of the
general-purpose circuit boards of Fig. 5A. CPU board 550 has
the same components as CPU board 500 of Fig. 5A, except that a
4MB FSRAM is added. In addition, a content addressable memory
(CAM) and fast PLDs could be added to speed up the performance
of CPU board 550. Ethernet cards 510, 520, 530 and 540,
however, are replaced by a single network card 560, as
explained with respect to Fig. 5B. The hardware
implementation of Fig. 5C provides improved performance over
the hardware implementation of Figs. 5A and 5B (i.e., support
for 100 Mbps transfer rates and faster CPU performance), at
the cost of adding special-purpose hardware.

Fig. 5D illustrates yet a third hardware implementation
of network flow switch 205 (Figs. 2 and 4A) in which the
entire switch is provided on a single circuit board 570.
Circuit board 570 has all the components of CPU board 550 and
network card 560 of Fig. 5C, except that the on-board PCI bus
is replaced by a Buffer Memory Arbiter. Eliminating the PCI
bus allows for further improved performance (transfer rates in
excess of lGbps), at the cost of more expensive special-
purpose hardware.

Fig. 5E illustrates a further hardware implementation of
network flow switch 205 (Figs. 2 and 4A) using a special
purpose circuit board 575 in combination with ethernet cards
510, 520, 530 and 540 (Fig. 5A). Circuit board 575 has the
same components as circuit board 500 of Fig. 5A, except that a

-20-

WO 99/33227 PCT/US98/25688

CPLD 585 and a dual-port SRAM 580 are added. Circuit board
575 is connected to ethernet cards 510, 520, 530 and 540 via
PCI bus 410. In this embodiment, Data Link Layer address
translations are performed by CPLD 585, rather than by CPU R-
4700, allowing for faster processing of packets. CPU R-4700
still performs management tasks, such as periodically checking
the loads on each of the IP servers, detecting failures of IP
servers and network routers, etc.

Fig. 5F illustrates a further hardware implementation of
network flow switch 205 (Figs. 2 and 4A) using a crossbar
switch in place of PCI bus 410. In Fig. 5F, crossbar switch
594 connects management processor cards 590 and 592 to
ethernet cards 582 and 584, as well as circuit cards 586 and
588. Each of circuit cards 586 and 588 includes an ASIC 596
connecting a look-up table 598 with a Data Link Layer chip
595. In this embodiment, management processor cards 590 and
592 are used to perform management tasks as explained above
with respect to Fig. 5E, ethernet cards 582 and 584 are used
for outbound flow of packets as descried with respect to Fig.
5A and circuit cards 586 and 588 are used to translate the
Data Link Layer address fields of inbound packets. This is
achieved by extracting the destination Data Link Layer address
field of the packet in Data Link Layer chip 595 and performing
a fast look-up of look-up table 598, in which the Data Link
Layer address of the IP server with an optimal load is stored.
Data Link Layer chips suitable for use in this invention are
available, among others, from Galileo Technologies, I-Cube and
MMC Networks. If network router fault tolerance is provided,
circuit cards 586 and 588 are also used to translate the Data

-21-

WO 99/33227 PCT/US98/25688

Link Layer address field of outbound packets that are re
routed due to a network router failure.

To increase performance, each of IP servers 210, 220,
230, 240 and 250 and crouters 260, 270 and 280 should be
connected (either directly or via a network) to network flow
switch 205 via a switched port with dedicated full duplex
bandwidth. However, network flow switch 205 (Figs. 2 and 4A)
functions properly even in case it is connected to one of the
IP servers via a shared media port. Each of IP servers 210,
220, 230, 240 and 250, thus, is configured differently
depending on whether the server is connected to network flow
switch 205 via a shared instead of a switched port. Each IP
server is configured automatically at start-up time by
executing a computer program on the server.

In one embodiment of the invention, all or some of the
routers and servers are connected using switched circuits
using switched circuits at the data link layer. This provides
each device connected to the flowswitch (a) dedicated
bandwidth and (b) full duplex operation. Those skilled in the
art, however, will realize that the network flowswitch of the
present inventions can also be applied to non-switched
enviroments (e.g., shared media Ethernet hubs or shared ports
using cascaded Ethernet switches).

Embodiments described above illustrate but do not limit
the invention. In particular, the invention is not limited to
any particular hardware used to implement the network flow
control switch. The invention, however, is not limited to any
particular number of ethernet cards or to any particular kind
of processor, memory controller or bus. In particular, any
number of ethernet cards, with an arbitrarily large numbers of

-22-

WO 99/33227 PCT/US98/25688

physical link ports, can be used in accordance to the present
invention. Processors other than the R-4700 and the GT-64010
can be used in accordance to the invention. Ethernet
switching ASICs other than the Galilieo GT-48002A can be used,
from Galileo or other vendors, such as I-Cube or MMC Networks.
Furthermore, a single processor may be used in place of CPU
402 and memory controller 406 (Fig. 4A). Buses other than a
PCI bus (e.g. SCSI buses) or even crossbar switches can be
used in place of a PCI bus 410 (Fig. 4A). Finally, network
cards other than ethernet cards can be used in place of
ethernet cards 415, 416, 417 and 418 (Fig. 4A) . Furthermore,
the invention is not limited to any type or number of network
cards. In fact, the invention can be applied to an arbitrary
number of network cards connected to an arbitrary number of
networks. Other embodiments and variations are within the
scope of the invention, as defined by the following claims.

-23-

WO 99/33227 PCT/US98/25688

CLAIMS
1. A network flow switch for routing packets to and

from a plurality of IP servers, wherein each of the IP servers
has a same IP address and a unique Data Link Layer address,
the switch comprising:

a processor;
a memory connected to the processor; and
a plurality of network ports connected to a

network;
wherein a packet received on a first network port

is routed to a second network port by writing a Data Link
Layer address of one of the IP servers into the packet.

2. The switch of Claim , wherein the processor and the
memory are part of a single circuit board.

3. The switch of Claim 2, wherein the circuit board
further comprises an I/O controller and a memory controller.

4. The switch of Claim 1, wherein the network ports are
part of a single circuit board.

5. The switch of Claim 1, wherein the processor and the
memory are part of a general-purpose circuit board.

6. The switch of Claim 1, wherein the network ports are
part of a general-purpose circuit board.

7. The switch of Claim 1, wherein the processor and the
memory are part of a special-purpose circuit board.

-24-

WO 99/33227 PCT/US98/25688

8. The switch of Claim 1, wherein the network ports are
part of a special-purpose circuit board.

9. The switch of Claim 1, wherein each network port
further comprises a controller and a memory.

10. The switch of Claim 1, further comprising one or
more ASICs.

11. The switch of Claim 1, wherein routing packets from
one of the IP servers to a network destination does not
require intervention by the processor.

12. The switch of Claim 1, wherein an IP payload of the
packet received on the first network port is encrypted.

13. The switch of Claim 1, wherein the packet is encoded
according to an ISO layer 4 transport protocol other than TCP.

14. A method for routing packets to and from a plurality
of IP servers, wherein each of the servers has a same IP
address and a unique Data Link Layer address, the method
comprising:

receiving a packet in a network flow switch
corresponding to the IP address of the IP servers; and

routing the packet to at least one of the IP servers
based by writing the destination Data Link Layer address
of the IP server into the packet.

-25-

WO 99/33227 PCT/US98/25688

to only one of the IP servers.
15 . The method of Claim 14, wherein the packet is routed

disabled, the packet is routed to a second IP server.
16 . The method of Claim 14, wherein if a first IP is

17 . The method of Claim 16, wherein routing the packet
to the second IP server further comprises writing the Data
Link Layer address of the second IP server into the packet.

18 . The method of Claim 14, wherein the packet is routed
to an IP server having an optimal workload.

19. The method of Claim 18, wherein routing the packet
to the IP server further comprises writing the Data Link Layer
address of the IP server into the packet.

flow switch.

20 . The method of Claim 14, further comprising:
receiving a packet in the network flow switch from

one of the IP servers;
extracting a destination address from the packet;

and
routing the packet to a network destination based on

the destination address of the packet.

21. The method of Claim 20, wherein routing the packet
does not require intervention by a processor of the network

-26-

WO 99/33227 PCT/US98/25688

22. The method of Claim 14, wherein an IP payload of the
packet is encrypted.

23. The method of Claim 14, wherein the packet is
encoded according to an ISO layer 4 transport protocol other
than TCP.

24. A computer program for controlling a network flow
switch, wherein the switch routes packets to and from a
plurality of IP servers, each of the IP servers having a same
IP address and a unique Data Link Layer address, the switch
comprising:

a processor executing the computer program;
a memory connected to the processor; and
a plurality of network ports connected to a network;

the computer program comprising instructions for:
receiving a packet on one of the network ports of

the network flow switch; and
routing the packet to at least one of the IP servers

by writing the Data Link Layer address of the IP server
into the packet.

25. The computer program of Claim 24, further comprising
instructions for routing the packet to a second IP server if a
first IP server is disabled.

26. The computer program of Claim 24 wherein the
instructions for routing the packet to the second IP server
further comprise instructions for writing the Data Link Layer
address of the second IP server into the packet.

-27-

WO 99/33227 PCT/US98/25688

27. The computer program of Claim 24 further comprising
instructions for routing the packet to an IP server having an
optimal workload.

28. The computer program of Claim 24 wherein the
instructions for routing the packet to the IP server further
comprise instructions for writing the Data Link Layer address
of the IP server into the packet.

29 The computer program of Claim 24 further comprising
instructions for:

receiving a packet on one of the network ports of
the network flow switch from one of the IP servers; and

routing the packet to a network destination based on
a destination address of the packet.

30. The computer program of Claim 24, wherein the packet
is encrypted.

31. The computer program of Claim 24, wherein the packet
is encoded according to an ISO layer 4 transport protocol
other than TCP.

32. A method for performing fault-tolerant routing of
packets to and from one of a plurality of IP servers, the
method comprising:

transmitting one or more packets from a client
connected to a network to a network router;

-28-

WO 99/33227 PCT/US98/25688

continuously monitoring a status of each of the
plurality of IP servers in a network flow switch; and

routing the packets through the network flow switch
from the network router to one of the plurality of IP
servers in an operational status.

33. The method of Claim 32, wherein the plurality of IP
servers are configured with a same IP address.

34. The method of Claim 32, wherein IP payloads of the
packets are encrypted.

35. The method of Claim 32, wherein the packets are
encoded according to an ISO layer 4 transport protocol other
than TCP.

-29-

WO 99/33227 PCT/US98/25688

1/11
IP

 19
2.

31
.6

5.
1 IP 192.31.65.

2 IP 192.31.65
.3

 IP 192.31.65.4
 IP 192.31.65.5

G2
LO

Pr
io

r A
rt)

Ne

tw
or

k R
ou

te
r

Ne
tw

or
k R

ou
te

r
Ne

tw
or

k R
ou

te
r

WO 99/33227 PCT/US98/25688

2/11

LO
o
Cxi

IP
 19

2.
31

.6
5.

1 —
29

0 IP 192.3
1.

65
.1

 —
29

0 IP 192.3
1.

65
.1

 —
29

0 IP 192.3
1.

65
.1

 —
29

0 IP 192.3
1.

65
.1

M
AC

 12
6.

1
M

AC
 12

6.
2

M
AC

 12
6.

3
M

AC
 12

6.
4

M
AC

 12
6.

5

WO 99/33227 PCT/US98/25688

3/11

CD
CXI

CD

_Q

CZ>
CXJ

CD

_Q

•*4 “

CD
CD
ro

CD
CXJ
bO

FI
G

. 3B

WO 99/33227 PCT/US98/25688

4/11

LO
O
Cxi

WO 99/33227 PCT/US98/25688

5/11

FIG. 4B

FIG. 40

WO 99/33227 PCT/US98/25688

WO 99/33227 PCT/US98/25688

7/11

WO 99/33227 PCT/US98/25688

8/11

WO 99/33227 PCT/US98/25688

WO 99/33227 PCT/US98/25688

WO 99/33227 PCT/US98/25688

11/11

LO

CX|

M
an

ag
em

en
t

Re
du

nd
an

t M
an

ag
em

en
t

Pr
oc

es
so

r C
ar

d
Pr

oc
es

so
r C

ar
d

CXj
cn
lo

xt*
CD
LO

in
o

Ll_

Ό
O
O

CD
<D cz
CZ
o o

_cz r* —*

LlJ co

xj"
oo
LO FI

G
. 5F

co
cj

Li—

no k—
O
O

CT»
O cz
C _£—
<D o

■ > —*
LxJ OO

CXI
OO
lo

