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(57) Abstract: A system is provided for natural language processing. In some embodiments, the system includes an encoder for gen-
erating context-specitic word vectors for at least one input sequence of words. The encoder is pre-trained using training data for per-
forming a first natural language processing task. A neural network performs a second natural language processing task on the at least
one input sequence of words using the context-specific word vectors. The first natural language process task is different from the sec-
ond natural language processing task and the neural network is separately trained from the encoder. In some embodiments, the first
natural processing task can be machine translation, and the second natural processing task can be one of sentiment analysis, question

classification, entailment classification, and question answering.
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NATURAL LANGUAGE PROCESSING USING
CONTEXT-SPECIFIC WORD VECTORS

[0001]

TECHNICAL FIELD

[0002]  The present disclosure relates generally to neural networks and more specifically to

neural networks for natural language processing using context-specific word vectors.

BACKGROUND

[0003] Neural networks have demonstrated great promise as a technique for automatically
analyzing real-world information with human-like accuracy. In general, neural network models
receive input information and make predictions based on the input information. For example, a
neural network classifier may predict a class of the input information among a predetermined set
of classes. Whereas other approaches to analyzing real-world information may involve hard-
coded processes, statistical analysis, and/or the like, neural networks learn to make predictions
gradually, by a process of trial and error, using a machine learning process. A given neural
network model may be trained using a large number of training examples, proceeding iteratively
until the neural network model begins to consistently make similar inferences from the training
examples that a human might make. Neural network models have been shown to outperform
and/or have the potential to outperform other computing techniques in a number of applications.
Indeed, some applications have even been identified in which neural networking models exceed

human-level performance.
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SUMMARY

[0003a] Accordingly, there is described a system for natural language processing, the system
comprising: a multi-layer neural network; wherein the system is configured to: convert at least
one input sequence of words in a first language to a sequence of word vectors; generate context-
specific word vectors for the at least one input sequence of words in the first language using an
encoder pre-trained using training data for translating phrases from the first language to phrases
of a second language; concatenate the word vectors and the context-specific word vectors; and
perform a first natural language processing task on the least one input sequence of words in the

first language using the concatenated word vectors and context-specific word vectors.

[0003b] There is also described a system for natural language processing, the system
comprising: an encoder for generating context-specific word vectors for at least one input
sequence of words, wherein the encoder is pre-trained using training data for performing a first
natural language processing task; and a neural network for performing a second natural language
processing task on the at least one input sequence of words using the context-specific word
vectors, wherein the first natural language process task is different from the second natural

language processing task and the neural network is separately trained from the encoder.

[0003¢] There is also described a method comprising: using an encoder, generating context-
specific word vectors for at least one input sequence of words, wherein the encoder is pre-trained
using training data for performing a first natural language processing task; and using a neural
network, performing a second natural language processing task on the at least one input sequence
of words using the context-specific word vectors, wherein the first natural language process task
is different from the second natural language processing task and the neural network is separately

trained from the encoder.

1a
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BRIEF DESCRIPTION OF THE DRAWINGS

[0004]  Figure 1 is a simplified diagram of a computing device according to some

embodiments.

[0005]  Figure 2 is a simplified diagram of a method for pre-training an encoder on a first
natural language processing (NLP) task and performing a second NLP task using same according

to some embodiments.

[0006]  Figure 3 is a simplified diagram illustrating the pre-training of an encoder according to

some embodiments.
[0007]  Figure 4 illustrates an example of word vectors for a sequence of words.

[0008]  Figure 5 is a simplified diagram illustrating the pre-training of an encoder on an NLP

task of translation according to some embodiments

[0009]  Figure 6 is a simplified diagram of a method for pre-training an encoder on an NLP

task of translation according to some embodiments.

[0010] Figure 7 is a simplified diagram of a system for natural language processing according

to some embodiments.

[0011]  Figure 8 is a simplified diagram of a system for natural language processing using an

encoder pre-trained on an NLP task of translation according to some embodiments.

[0012]  Figures 9 and 10 are simplified diagrams comparing performance of systems for

natural language processing based on different input encodings.

[0013]  Figure 11 is a table illustrating performance results of systems for natural language

processing based on different input representations.

[0014]  In the figures, elements having the same designations have the same or similar

functions.
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DETAILED DESCRIPTION

[0015]  This description and the accompanying drawings that illustrate aspects, embodiments,
implementations, or applications should not be taken as limiting—the claims define the protected
invention. Various mechanical, compositional, structural, electrical, and operational changes may
be made without departing from the spirit and scope of this description and the claims. In some
instances, well-known circuits, structures, or techniques have not been shown or described in
detail as these are known to one skilled in the art. Like numbers in two or more figures represent

the same or similar elements.

[0016] In this description, specific details are set forth describing some embodiments
consistent with the present disclosure. Numerous specific details are set forth in order to provide
a thorough understanding of the embodiments. It will be apparent, however, to one skilled in the
art that some embodiments may be practiced without some or all of these specific details. The
specific embodiments disclosed herein are meant to be illustrative but not limiting. One skilled in
the art may realize other elements that, although not specifically described here, are within the
scope and the spirit of this disclosure. In addition, to avoid unnecessary repetition, one or more
features shown and described in association with one embodiment may be incorporated into
other embodiments unless specifically described otherwise or if the one or more features would

make an embodiment non-functional.

[0017]  Natural language processing (NLP) is one class of problems to which neural networks
may be applied. NLP can be used to instill new neural networks with an understanding of
individual words and phrases. For most problems or tasks in NLP, however, understanding
context is also important. Translation models need to understand, for example, how the words in
an English sentence work together in order to generate a German translation. Likewise,
summarization models need context in order to know which words are most important. Models
performing sentiment analysis need to understand how to pick up on key words that change the
sentiment expressed by others. And question answering models rely on an understanding of how
words in a question shift the importance of words in a document. Accordingly, it is desirable to
develop a way to initialize neural networks for NLP with an understanding of how various words

might relate to other words or how context influences a word’s meaning.
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[0018]  According to some embodiments, a neural network is taught how to understand words
in context by training it on a first NLP task—e.g., teaching it how to translate from English to
German. The trained network can then be reused in a new or other neural network that performs
a second NLP task—e.g , classification, question answering, sentiment analysis, entailment
classification, language translation, etc. The pre-trained network’s outputs—context-specific
word vectors (CoVe)—are provided as inputs to new networks that learn other NLP tasks.
Experiments show that providing CoVe to these new networks can improve their performance,
thus validating that various NLP models or tasks can benefit from using a neural network that

has already learned how to contextualize words.

[0019]  In some embodiments, various NLP models or tasks—such as classification, question
answering, sentiment analysis, and translation—can be improved by using context-specific word
vectors generated by training an encoder with a NLP task that may be different from the NLP
task to be performed. More generally speaking, significant gains have been made through
transfer and multi-task learning between synergistic tasks. In many cases, these synergies can be
exploited by architectures that rely on similar components. Embodiments disclosed herein use
networks that have already learned how or been trained to contextualize words to give other

neural networks an advantage in learning to understand other parts of natural language.

[0020]  Figure 1 is a simplified diagram of a computing device 100 according to some
embodiments. As shown in Figure 1, computing device 100 includes a processor 110 coupled to
memory 120. Operation of computing device 100 is controlled by processor 110. And although
computing device 100 is shown with only one processor 110, it is understood that processor 110
may be representative of one or more central processing units, multi-core processors,
microprocessors, microcontrollers, digital signal processors, field programmable gate arrays
(FPGAS), application specific integrated circuits (ASICs), graphics processing units (GPUs),
tensor processing units (TPUs), and/or the like in computing device 100. Computing device 100
may be implemented as a stand-alone subsystem, as a board added to a computing device, and/or

as a virtual machine.

[0021] Memory 120 may be used to store software executed by computing device 100 and/or

one or more data structures used during operation of computing device 100. Memory 120 may
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include one or more types of machine readable media. Some common forms of machine readable
media may include tloppy disk, flexible disk, hard disk, magnetic tape, any other magnetic
medium, CD-ROM, any other optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory
chip or cartridge, and/or any other medium from which a processor or computer is adapted to

read.

[0022]  Processor 110 and/or memory 120 may be arranged in any suitable physical
arrangement. In some embodiments, processor 110 and/or memory 120 may be implemented on
a same board, in a same package (e.g., system-in-package), on a same chip (e.g., system-on-
chip), and/or the like. In some embodiments, processor 110 and/or memory 120 may include
distributed, virtualized, and/or containerized computing resources. Consistent with such
embodiments, processor 110 and/or memory 120 may be located in one or more data centers
and/or cloud computing facilities. In some examples, memory 120 may include non-transitory,
tangible, machine readable media that includes executable code that when run by one or more
processors (e.g., processor 110) may cause the one or more processors to perform any of the

methods described further herein.

[0023]  As shown, memory 120 includes a neural network 130. Neural network 130 may be
used to implement and/or emulate any of the neural networks described further herein. In some
examples, neural network 130 may include a multi-layer or deep neural network. According to
some embodiments, examples of multi-layer neural networks include the ResNet-32, DenseNet,
PyramidNet, SENet, AWD-LSTM, AWD-QRNN and/or the like neural networks. The ResNet-
32 neural network is described in further detail in He, et al., “Deep Residual Learning for Image
Recognition,” arXiv:1512.033835, submitted on December 10, 2015; the DenseNet neural
network is described in further detail in landola, et al., “Densenet: Implementing Efficient
Convnet Descriptor Pyramids,” arXiv. /404. 1569, submitted April 7, 2014, the PyramidNet
neural network is described in further detail in Han, et al., “Deep Pyramidal Residual Networks,”
arXiv:1610.02915, submitted October 10, 2016; the SENet neural network is described in
further detail in Hu, et al., “Squeeze-and-Excitation Networks,” arXiv:1709.01507, September 5,
2017; the AWD-LSTM neural network is described in further detail in Bradbury, et al., “Quasi-



Recurrent Neural Networks,” arXiv:1611.01576, submitted on November 5, 2016.

[0024]  According to some embodiments, the neural network 130 may use an encoder that is
pre-trained for a first kind of NLP task, such as, for example, translation. The computing device
100 may receive training data that includes one or more sequences of words in a first language
(e.g., English), and one or more corresponding sequences of words in a second language (e.g.,
German) that represent the expected and/or desired translation of the respective first language
word sequences. To illustrate, suppose an input word sequence provided to a computing device
100 includes the English word sequence “Let’s go for a walk.” The corresponding German word
sequence is “Lass uns spazieren gehen.” Computing device 100 uses this training data to
generate and output context-specific word vectors or “context vectors” (CoVe) for the words or
sequences of words in the first language. Stated differently, the encoder is taught how to
understand words in context by first teaching it how to translate from one language into another
(e.g., English to German). Once trained, the encoder may be used by the neural network 130 to
perform a second kind of NLP task—e.g., sentiment analysis (Stanford Sentiment Treebank
(SST), IMDD), question classification (TREC), entailment classification (Stanford Natural
Language Inference Corpus (SNLI)), question answering (Stanford Question Answering Dataset
(SQuAD)) and/or the like. To this end, the computing device 100 receives input 150 for the
second kind of NLP task, and generates results 160 for that task.

[0025]  Figure 2 is a simplified diagram of a method 200 for pre-training an encoder on a first
NLP task and performing a second NLP task using the same, according to some embodiments.
One or more of the processes 210-220 of method 200 may be implemented, at least in part, in the
form of executable code stored on non-transitory, tangible, machine-readable media that when
run by one or more processors may cause the one or more processors to perform one or more of
the processes 210-230. In some embodiments, method 200 can be performed by computing
device 100 of Figure 1.

[0026] According to some embodiments, method 200 utilizes transfer learning, or domain
adaptation. Transfer learning has been applied in a variety of areas where researchers identify
synergistic relationships between independently collected datasets. In some embodiments, the

source domain of transfer learning is machine translation.

6
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[0027]  Ataprocess 210, an encoder of a neural network is pre-trained using training data for
performing the first NLP task. In some embodiments, the first NLP task can be translation. The
nature of the translation task has appealing properties for training a general context encoder—
e.g. translation seems to require a more general sense of language understanding than other NLP
tasks, like text classification. During training, the encoder is provided with training and/or testing
data 150 that, in some embodiments, may include one or more sequences of words in a first
language (e.g., English), and one or more corresponding sequences of words in a second
language (e.g., German). The training data 150 can be one or more machine translation (MT)
datasets. Machine translation is a suitable source domain for transfer learning because the task,
by nature, requires the model to faithfully reproduce a sentence in the target language without
losing information in the source language sentence. Moreover, there is an abundance of machine
translation data that can be used for transfer learning; indeed, machine translation training sets
are much larger than those for most other NLP tasks. Possible training sets include various
English-German machine translation (MT) datasets. For example, the WMT 2016 multi-modal
translation shared task—often referred to as “Multi30k™ and described in further detail in Specia,
et al., “A shared task on multimodal machine translation and crosslingual image description,”
Proceedings of the I*' Conference on Machine Translation, WMT, 2016, pp. 543- 553 is a
dataset, consisting of 30,000 sentence pairs that briefly describe Flickr captions. Due to the
nature of image captions, this dataset contains sentences that are, on average, shorter and simpler
than those from larger counterparts. The 2016 version of the machine translation task prepared
for the International Workshop on Spoken Language Translation—described in further detail in
Cettolo, et al., “The IWSLT 2015 evaluation campaign,” In International Workshop on Spoken
Language Translation, 2015, is a larger dataset, consisting of 209,772 sentence pairs from
transcribed TED presentations that cover a wide variety of topics with more conversational
language than in other machine translation datasets. The news translation shared task from WMT
2017 is a large MT dataset, consisting of roughly 7 million sentence pairs that comes from web
crawl data, a news and commentary corpus, European Parliament proceedings, and European
Union press releases. These three MT datasets may be referred to as MT-Small, MT-Medium,
and MT-Large, respectively. Each of these MT datasets is tokenized using the Moses Toolkit ,

which is described in further detail in Koehn, et al., “Moses: Open source toolkit for statistical
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machine translation,” Proceedings of the 45" Annual Meeting of the Association of the

Computational Linguistics, 2007, pp. 177-180.

[0028] The encoder generates or outputs context vectors (or CoVe) 160 for the words or
sequences in the first language. The context vectors from encoders trained on MT-Small, MT-
Medium, and MT-Large may be referred to as CoVe-S, CoVe-M, and CoVe-L. The pre-trained

encoder of the neural network can then be reused or applied to one or more other NLP tasks.

[0029] At aprocess 220, anew or another neural network 130 is trained for second NLP task
using the pre-trained context encoder. The pre-trained encoder’s outputs—context vectors (or
CoVe) for the words or sequences in the first language—are provided as inputs to the new or
other neural network 130 that learns or executes other NLP tasks performed on the same
language, such as classification, question answering, sentiment analysis, other machine
translation tasks, and/or the like. In some embodiments, fixed-length representations obtained
from neural machine translation (NMT) encoders are transferred in for the training. In some
embodiments, representations for each token in an input sequence are transferred in for training.
The latter approach makes the transfer of the pre-trained context encoder for the other NLP task
more directly compatible with subsequent long-term short-term memories (LSTMs), attention
mechanisms, and, in general, layers that expect input sequences. This additionally facilitates the
transfer of sequential dependencies between encoder states. In some embodiments, the pre-

trained encoder is not further trained during process 220.

[0030] At aprocess 230, the neural network 130 is used to perform the second NLP task. The
computing device 100 receives input 150 for the second NLP task, and generates results 160 for

that task. Experiments show that providing the neural network 130 with context vectors from an

encoder pre-trained on a first NLP task (e.g., machine translation)can improve its performance

for a second NLP task (e.g., classification, question answering, sentiment analysis).

[0031]  Aspects or embodiments for each of these processes 210-230 of method 200 are

described in more detail herein.
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[0032]  Figure 3 is a simplified diagram illustrating the pre-training of an encoder 310
according to some embodiments. In some embodiments, the encoder 310 may include or be

implemented with one or more long-term short-term memory (LSTM) encoders.

[0033] The encoder 310 receives training data, which may be in the form of word vectors 320
for one or more sequences of words in a first language (e.g., English). Instead of reading
sequences of words as text, deep learning models read sequences of word vectors. A word vector
associates each word in the language with a list of numbers. Many deep learning models for

NLP rely on word vectors to represent the meaning of individual words.

[0034]  Figure 4 illustrates an example of word vectors for a sequence of words: “Let’s go for
awalk.” In some cmbodiments, the word vectors 320 of a model are initialized to lists of
random numbers before the model is trained for a specific task. In some embodiments, the word
vectors 320 of a model can be initialized with those obtained by running methods like word2vec,
GloVe, or FastText Each of those methods defines a way of learning word vectors with useful
properties. The first two methods work off of the hypothesis that at least part of a word’s
meaning is tied to how it is used. word2vec trains a model to take in a word and predict a local
context window; the model sees a word and tries to predict the words around it. GloVe takes a
similar approach, but it also explicitly adds statistics about how often each word occurs with
each other word. In both cases, each word is represented by a corresponding word vector, and
training forces the word vectors to correlate with each other in ways that are tied to the usage of
the word in natural language. With reference to the specific example of “Let’s go for a walk”
shown in Figure 4, algorithms like word2vec and GloVe produce word vectors correlated with
the word vectors that regularly occur around it in natural language. In this way the vector for

7 W,
a.

“g0” comes to mean that the word “go” appears around words like “Let’s,” “for, and

“walk.”

[0035] Referring back to Figure 3, the encoder 310 is trained by having it perform a first NLP
task which, in some embodiments, can be machine translation (MT) of the word sequence in a
first language (e.g., “Let’s go for a walk”) into a corresponding word sequence in a second
language (e.g., “Lass uns spazieren gehen”). To accomplish this training, the encoder 310

interacts with a decoder 330 to generate the translation 340. In some embodiments, the LSTM
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encoders are trained on several machine translation datasets. Experiments show that the quantity
of training data used to train the MT-LSTM is positively correlated with performance on
downstream tasks, such as when the encoder is used or employed for a second NLP task. This is
yet another advantage of using MT as a training task, as data for MT is more abundant than for
most other supervised NLP tasks, and it suggests that higher quality MT-LSTMs carry over more
useful information. While machine translation might seem unrelated to other NLP tasks, such as
text classification and question answering, this reinforces the idea that machine translation is a

good candidate NLP task for models with a stronger sense of natural language understanding.

[0036] While Figure 3 is a high-level diagram, Figure 5 illustrates more details for the pre-
training of the encoder 310 on the NLP task of machine translation according to some
embodiments. And Figure 6 shows a corresponding method 600 for pre-training the encoder

illustrated in Figure 5.

[0037]  With reference to Figures 5 and 6, the method 600 starts with a process 602, At
process 602, word vectors 320a-e for a sequence of words in a first or source language w* = [w"|,
..., W] (e.g., English - “Let’s go for a walk”) are input or provided to the encoder 310. And
word vectors 540 for a sequence of words in a second or target language w* = [w’y, ..., w",] (e.g.,
German — “Lass uns spazieren gehen”) are input or provided to the decoder 330. Let GloVe(w")
be a sequence of GloVe vectors corresponding to the words in w”*, and let z be a sequence of

randomly initialized word vectors corresponding to the words in w”.

[0038] In some embodiments, the encoder 310 includes or is implemented with a recurrent
neural network (RNN). RNNs are deep learning models that process vector sequences of variable
length. This makes RNNs suitable for processing sequences of word vectors 320a-e. In some
embodiments, the encoder 310 can be implemented with one or more long-term short-term
memory (LSTM) encoders 510a-e, which are a specific kind of RNN capable of handling long

word sequences.

[0039] At aprocess 604, the encoder processes the sequence of word vectors 320a-e to
generate one or more new vector 520a-e, each called a hidden vector. In some embodiments, the
encoder 310 encodes the input sequence, for example, with each LSTM 510a-e taking in a

respective word vector 320a-e and outputting the respective hidden vector 520a-e. The encoder

10
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310 is run forward so that information generated by an LSTM encoder 510 operating on a word
vector 320 appearing earlier in the input sequence is passed to LSTM encoders 510 operating on
word vectors 320 appearing later in the sequence. This allows the hidden vectors of the later
LSTM encoders 510 to incorporate information for the earlier word vectors 320. In some
embodiments, the encoder 310 is also run backwards so that the LSTM encoders 510a-e can
generate or output hidden vectors that incorporate information from words that appear later in the
sequence. These backwards output vectors can be concatenated with the forwards output vectors
to yield a more useful hidden vector. Each pair of forward and backward LSTMs can be treated
as a unit, and is typically referred to as a bidirectional LSTM. A bidirectional LSTM encoder
incorporates information that precedes and follows the respective word. The LSTM trained on
machine translation may be referred to as MT-LSTM. The first bidirectional LSTM 510a
processes its entire sequence before passing outputs to the second LSTM 510b; the second
bidirectional LSTM 510b does the same, and so on. Each of the bidirectional LSTMs (or
biLSTM) generates an output at each time step i as h; as the concatenation of h;” and h;”
according to: hy” = LSTM(x;, hj_;); hi7 = LSTM(x;, hi7;), where x is the input to the respective
biLSTM and LSTM corresponds to a long-term short-term memory network. The encoder 310
with bidirectional LSTMs S10a-e takes in a sequence of word vectors 320a-e, runs a forward and
a backward LSTM operation, concatenates the outputs corresponding to the same input, and
returns the resulting sequence of hidden vectors /4 520a-e for the first language (e.g., English)

sentence.

B o= MT-LSTM{GloVe(uw ), 5

For machine translation, the MT-LSTM supplies the context for an attentional decoder that
produces a distribution over output words p(WZ|H,w#, ..., wZ_; ) at each time-step ¢, where H

refers to the elements of / stacked along the time dimension.

[0040] At a process 606, the decoder 330 is initialized with the final states/hidden vectors A
520a-e from encoder 310. The decoder 330 includes or is implemented with another neural
network that references those hidden vectors # 520a-e as it generates or translates into the second
or target language (e.g., German) sentence. Like the encoder 310, in some embodiments, the

decoder 330 can include or be implemented with one or more LSTMs 530a-b, which can be
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bidirectional. At time-step 7, the decoder 330 first uses the two-layer, unidirectional LSTM to
produce a hidden state vector 550 (h%¢°) based on the previous target embedding (z,_;) and a

context-adjusted hidden state (flt_l):

‘..‘~ o s A»«»\\ TR

The first of the decoder LSTMs 530a is initialized from the final states # of the encoder 310 and

reads in a special German word vector 540a to start.

[0041] At aprocess 610, a word from the sequence in the first language is selected. In some
embodiments, an attention mechanism 560 looks back at the hidden vectors 520a-e in order to
decide which word of the first language (e.g., English) sentence to translate next. The attention
mechanism 560 computes a vector of attention weights a representing the relevance of each

encoding time-step to the current decoder state.

_m.
G
RV

o = wofanax (H AT 4

[0042] At a process 612, the attention mechanism 560 generates a new vector 570, which can
be referred to as the context-adjusted state. The attention mechanism 560 uses the weights o as
coefficients in an attentional sum that is concatenated with the decoder state and passed through

a tanh layer to form the context-adjusted hidden state h:

By s {tand (Wo lf T+ by LR {4}
In other words, the attention mechanism 560 uses the decoder state vector 550a to determine how
important each hidden vector 520a-e is, and then produces the context-adjusted state 570 to

record its observation.

[0043]  Ata process 614, a generator 580 looks at the context-adjusted state 570 to determine
the word in the second language (e.g., German) to output. The context-adjusted state 570 is

passed back to the next LSTM 540 so that it has an accurate sense of what it has already
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translated. The distribution over output words is generated by a final transformation of the

context-adjusted hidden state:
§o Y e - 2 S 3 . ‘{‘ e ;: 3 \\
Pl i el el ) = sofmax {\i‘% JUNY T éwg;

[0044] At a process 616, a determination is made as to whether the current word in the first
language is the final word in the sequence. If not, decoder 330 repeats processes 610-616 until it

has completed generating the translated word sequence in the second language.

[0045]  In some examples, training of an MT-LSTM of the encoder 310 uses fixed 300-
dimensional word vectors, such as the CommonCrawl-840B GloVe model for English word
vectors. These word vectors are completely fixed during training, so that the MT-LSTM learns
how to use the pretrained vectors for translation. The hidden size of the LSTMs in all MT-
LSTMs is 300. Because all MT-LSTMs are bidirectional, they output 600-dimensional vectors.
The encoder 310 can be trained with stochastic gradient descent with a learning rate that begins
at 1 and decays by half each epoch after the validation perplexity increases for the first time.
Dropout with ratio 0:2 may be applied to the inputs and outputs of all layers of the encoder 310
and decoder 330.

[0046] When training is finished, the pre-trained encoders can be used to improve the
performance of neural models trained for other tasks in natural language processing (NLP). The
LSTMs 510 that were trained as an encoder for machine translation can be extracted, and their
learning transferred to downstream NLP tasks (e.g., classification, or question answering). The
pre-trained LSTMs, which may be referred to as an MT-LSTM, can be used to output hidden
vectors for other sentences or word sequences in the first language. These machine translation
hidden vectors, when used as inputs to another NLP model, provide or serve as context-specific
word vectors or “context vectors” (CoVe). If w is a sequence of words and GloVe(w) is the

corresponding sequence of word vectors produced by the GloVe model, then

oVl = MTLSTMIG Valw)) {%;

4
g

is the sequence of context vectors produced by the MT-LSTM. Referring back to Figure 5, for

example, GloVe(w) corresponds to 320a-¢, and CoVe(w) corresponds to 520a-e. In some
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embodiments, for the downstream NLP task, for an input sequence w, each vector in GloVe(w)

can be concatenated with its corresponding vector in CoVe(w) to yield a vector sequence (w):

L%

@ = Wle Vel CoVelwll {6

[0047]  Some examples of computing devices, such as computing device 100 may include
non-transitory, tangible, machine readable media that include executable code that when run by
one or more processors (e.g., processor 110) may cause the one or more processors to perform
the processes of method 600. Some common forms of machine readable media that may include
the processes of method 600 are, for example, floppy disk, flexible disk, hard disk, magnetic
tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM,
any other memory chip or cartridge, and/or any other medium from which a processor or

computer is adapted to read.

[0048]  Figure 7 is a simplified diagram illustrating a system 700 for natural language
processing according to some embodiments. System 700 includes one or more encoders 710,
pre-trained on a first NLP task, such as, for example machine translation, as described herein,
and now re-used as part of a new model. In some embodiments, each encoder 710 is consistent
with encoder 310. In some embodiments, each encoder 710 includes or is implemented with one
or more pre-trained MT-LSTMs. Pre-trained encoder 710 is capable of providing or generating

context vectors (CoVe) from input word vectors 720.

[0049]  Word vectors 720 of a model can be initialized with those obtained by running
methods like word2vec, FastText, or GloVe, each of which defines a way of learning word
vectors with useful properties. In some embodiments, the word vectors 720 of a model are

initialized to lists of random numbers before the model is trained for a specific task.

[0050]  System 700 also includes neural model 730 for performing a second, specific NLP
task, such as, for example, sentiment analysis (Stanford Sentiment Treebank (SST), IMDb),
question classification (TREC), entailment classification (Stanford Natural Language Inference

Corpus (SNLI)), question answering (Stanford Question Answering Dataset (SQuAD)) and/or
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the like. In some embodiments, neural model 730 is consistent with neural network of model
130. Neural model 730 is provided with the context vectors (CoVe) from pre-trained encoders
710. In some embodiments, the context vectors (CoVe) from encoder 710 may be appended or
concatenated with the word vectors 720 (e.g., GloVe) that are typically used as inputs to these
kinds of neural models (see Eq. 6), and the results provided to the neural model 730. This
approach improves the performance of the neural model 730 for downstream tasks over that of
baseline models using pre-trained word vectors alone. In general, context vectors (CoVe) can be
used with any neural model 730 that represents its inputs as a sequence of vectors. Experiments
have shown the advantages of using pre-trained MT-LSTMSs to generate context vectors (CoVe)
for neural models performing NLP tasks such as text classification and question answering
models. For the Stanford Sentiment Treebank (SST) and the Stanford Natural Language
Inference Corpus (SNLI), the use of context vectors (CoVe) pushes performance of the baseline

model to the state of the art.

[0051] Figure 8 is a diagram illustrating a system 800 for natural language processing using
one or more encoders 810 pre-trained on an NLP task of translation according to some
embodiments. In some embodiments, each encoder 810 is consistent with encoder 310, 710.
System 800 may include or be implemented with a multi-layer neural network or neural model
830 for performing a specific NLP task—such as, for example, question classification (TREC),
question answering (SQuAD), sentiment analysis (SST, IMDb), entailment classification (SNLI),
and/or the like—which is different from the NLP task of translation. In some embodiments,

neural model 830 is consistent with neural model 130, 730.

[0052]  The neural model 830 of system 800 may be trained for the specific NLP tasks with
suitable datasets. For example, training of the neural model 830 for question classification may
use the small TREC dataset of open-domain, fact-based questions divided into broad semantic
categories, as described in further detail in Voorhees, et al., “The TREC-8 question answering
track evaluation,” The Eighth Text Retrieval Conference, volume 1999, p. 83. This dataset can be
the fifty-class or six-class versions of TREC, referred to as TREC-50 and TREC-6, respectively.
Both have 4,300 training examples, but TREC-50 has finer-grained labels. For question
answering, the neural model 830 can be trained with the Stanford Question Answering Dataset

(SQuAD), as described in further detail in Rajpurkar, et al., “SQuAD: 100,000+ questions for
15
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machine comprehension of text,” arXiv preprint arXiv:1606.05250, submitted on June 16, 2016.
SQuAD is a large-scale question answering dataset with 87,599 training examples and 10,570
development examples. Examples consist of a paragraph from English Wikipedia and associated
question-answer pairs over the paragraph. SQuAD examples assume that the question is
answerable and the answer is contained verbatim somewhere in the paragraph. For sentiment
analysis, the neural model 830 can be separately trained on two sentiment analysis datasets: the
Stanford Sentiment Treebank (SST) (as described in further detail in Socher, et al., “Recursive
deep models for semantic compositionality over a sentiment Treebank,” Empirical Methods in
Natural Language Processing, 2013) and the IMDD dataset (as described in further detail in
Maas, et al., “Learning word vectors for sentiment analysis,” In Proceedings of the 49" Annual
Meetings of the Association for Computational Linguistics: Human Language Technologies, pp.
142-150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology . P11-1015]). Both of these datasets comprise movie reviews
and their sentiment. The binary version of each dataset is used, as well as the five-class version
of SST. IMDb contains 22,500 multi-sentence reviews, each of which can be truncated to the
first 200 words. SST-2 contains 56,400 examples with the “neutral” class removed and all sub-
trees included, and SST-5 contains 94,200 reviews with all classes and sub-trees. For entailment,
the neural model 830 can be trained with the Stanford Natural Language Inference Corpus
(SNLI), as described in further detail in Bowman, et al., “Recursive neural networks for learning
logical semantics,” arXiv preprint arXiv:1406.1827, submitted on June 6, 2014. SNLI has
550,152 training, 10,000 validation, and 10,000 testing examples. Each example consists of a
premise, a hypothesis, and a label specifying whether the premise entails, contradicts, or is

neutral with respect to the hypothesis.

[0053]  As shown in Figure 8, system 800 includes a neural model 830 for a general
biattentive classification network (BCN). This model 830 is designed to handle both single-
sequence and two-sequence classification tasks. In the case of single-sequence tasks, the input

word sequence is duplicated to form two sequences.

[0054] The two input sequences w* and w” are provided as word vectors 820 (e.g., Glove(w))
to system 800 at pre-trained encoders 810. In some embodiments, each encoder 810 is consistent

with encoder 310, 710. The encoders 810 are pre-trained on the NLP task of machine translation,
16
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and thus provide or generate respective context vectors (CoVe)(w)) from input word vectors 820.
In some embodiments, each word vector 820 (e.g., Glove(w)) is concatenated or appended with
its corresponding context vectors (CoVe)(w)) to generate sequences of vectors, W* and W”, as
described herein (e.g., Eq. 6). The vector sequences, w* and w” are provided as input to the

task-specific portion of the model 830.

[0055] The neural network or model 830 is trained using the pre-trained encoders 810. In
some embodiments, the encoders 810 are not further trained when neural network or model 830

is trained.

[0056] The model 830 includes one or more rectifier linear units (ReLLUs) 832, which receive
the input vector sequences W* and W”. The ReLUs 832 implement or execute a function fthat
applies a feedforward network with ReLU activation (as described in further detail in Nair et al.,
“Rectified linear units improve restricted Boltzmann machines,” Proceedings of the 27"
International Conference on Machine Learning, 2010) to each element of W”* and WY . Encoders
834, each of which can include or be implemented as a bidirectional LSTM (biLSTM), process

the resulting sequences to obtain task specific representations (x and y):

@ = biLSTM (f (7)) @

y = biLSTM (f (<)) (8)
These sequences are each stacked along the time axis to generate matrices X and Y.

[0057] In order to compute representations that are interdependent, model 830 uses a
biattention mechanism 836, as described in further detail in Seo, et al., “Bidirectional attention
flow for machine comprehension,” International Conference on Learning Representations, 2017,
and Xiong, et al., “Dynamic coattention networks for question answering,” Infernational

Conference on Learning Representations, 2017. Biattention conditions each representation on

the other.

17
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[0058]  Using biattention mechanism 836 in neural model 830 provides an advantage, for
example, in some NLP classification tasks such as entailment classification and sentiment
analysis or classification. Entailment classification involves the processing of two word
sequences for which there may be some form of relation—e.g., determining if one sequence
being true entails the other sequence, determining if one sequence being true entails the other
sequence’s negation, or determining if one sequence being true allows the other to be either true
or false. An example of sequences for entailment classification could be: (w*) “two women are
discussing circuit,” and (w") “two people are discussing technology.” With this example,
sequence w" entails sequence w”. Sentiment classification aims to determine the attitude or
sentiment of a speaker or author of a word sequence with respect to some topic. Each of these
sequences could be provided to a respective channel (e.g., as input for ReL.U 832) in the neural
model 830. An example of a sequence for entailment classification could be: (w*) “this movie
was a waste of time.” This sequence could be repeated and provided to each of the channels in
the neural model 830. In some embodiments, the biattention mechanism 836 results in or yields a
better outcome for the NLP classification task by combining attention with element-wise features

of classification.

[0059]  The biattention mechanism 836 first computes an affinity matrix 4 = XY". Biattention

mechanism 836 then extracts attention weights (4. and 4,) with column-wise normalization:

Aows softemae L4} A ms sedbmae {47 ) {9

R

which can be a form of self-attention when the task specific representations are the same (x = y).

Next, the biattention mechanism 836 uses context summaries (C, and C,)
Cem A X D =dY {1

to condition each sequence on the other

[0060] Two separate integrators 838 integrate the conditioning information (generated from
biattention mechanism 836) into the task specific representations (x and y) for each input

sequence. In some embodiments, each integrator 838 which can include or be implemented with

18



a one-layer biLSTM. The biLSTMs operate on the concatenation of the original representations
(to ensure no information is lost in conditioning), their differences from the context summaries
(Cx and G, to explicitly capture the difference from the original signals), and the element-wise

products between originals and context summaries (to amplify or dampen the original signals).

X, = biLSTM ([X; X — C,: X & Cy)) (11

Ve = bILSTM([Y;Y — Co; Y © C4]) (12)
[0061] Pool mechanisms 840 aggregate the outputs of the bidirectional LSTMs of integrators
838 by pooling along the time dimension. In some embodiments, max and mean pooling can be
used to extract features. In some embodiments, adding both min pooling and a parameter-less
form of self-attentive pooling has been found to aid in some tasks. Each type of pooling captures
a different perspective on the conditioned sequences. The self-attentive pooling computes

weights (fx and f,) for each time step of the sequence:

B, = softmax (X),v; +d;) B, =softmax (Yj.vs + d3) (13)

The weights (fx and f)) are used to get weighted summations (Xsetr and ysetr) of each sequence:

Waplf == _‘W“{Z;)y [ Hewlf = }ﬁ[;ﬁmwy (14}

The pooled representations are combined to get one joined representation (Xpoot and ypoot) for all
inputs:
Tpool = [nﬂ‘szﬁ“ ylimean( X, ); min( X, ); .KMME (15

Ypool = [max(Y];); mean(¥;); min(Y.); o] (16)

[0062] For a NLP task of classification, the joined representation are provided or input into
maxout layers 842. The maxout layers 842 can be implemented as a three-layer, batch-
normalized (as described in further detail in Ioffee, et al., “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”” Proceedings of the 32" International
Conference on Machine Learning, 2015) maxout network (as described in further detail in
Goodfellow, et al., “Maxout networks,” Proceedings of the 30" Annual Conference on Machine

Learning, 2013) to produce a probability distribution over possible classes.
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[0063] As discussed above and further emphasized here, Figure & is merely an example of a
system for natural language processing which should not unduly limit the scope of the claims.
One of ordinary skill in the art would recognize many variations, alternatives, and modifications.
In some embodiments, system 800 may be modified so that it performs a different NLP task,
such as, for example, question answering. For a NLP task of question answering, the task
specific sequences x and y are obtained in the same way as for classification (Eq. 7 and Eq. 8),
except that the function fis replaced with a function g that uses a tanh activation instead of a
ReLU activation. In this case, one of the sequences is the document and the other is the question
in the question-document pair. These sequences x and y are then fed through the coattention and
dynamic decoder implemented, for example, as the Dynamic Coattention Network (DCN), as
described in further in Xiong, et al., “Dynamic memory networks for visual and textual question
answering,” In Proceedings of the 33" International Conference on Machine Learning, pages

2397-2406, 2016.

[0064]  Figures 9 and 10 are simplified diagrams comparing the performance of systems for
natural language processing based on different input encodings. These Figures 9 and 10 illustrate
how varying the input representations—e.g., GloVe alone, GloVe plus CoVe, GloVe plus Char,
and GloVe plus CoVe plus Char—affects the final performance of NLP tasks such as sentiment

analysis, question classification, entailment classification, and question answering.

[0065] Likewise, Figure 11 is a table illustrating performance results of systems for natural
language processing based on different input representations (SST-2, SST-5, IMDb, TREC-6,
TREC-50, SNLI, SQuaAD), and with different training sets (MT-Small, MT-Medium, and MT-
Large) for the encoder (CoVe-S, CoVe-M, CoVe-L, respectively).

[0066] Figures 9 and 10 shows that models that used CoVe alongside GloVe achieved higher
performance than models that used only GloVe. Figure 11 shows that using CoVe in Eq. 6 brings
larger improvements than using character n-gram embeddings, as described in further detail in
Hashimoto, et al., “A joint many-task model: Growing a neural network for multiple NLP tasks,”
arXiv preprint arXiv 1611.01587, submitted on November 5, 2016. It also shows that altering
Eq. 6 by additionally appending character n-gram embeddings can boost performance even

further for some NLP tasks. This suggests that the
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information provided by CoVe is complementary to both the word-level information provided by

GloVe as well as the character-level information provided by character n-gram embeddings.

[0067]  Figures 9-11 validate the advantage or benefit of transferring knowledge from an
encoder pretrained on machine translation to a variety of other downstream NLP tasks. In all
cases, models that use context vectors (CoVe) performed better than baselines that used random
word vector initialization, baselines that used pretrained word vectors from a GloVe model, and
baselines that used word vectors from a GloVe model together with character n-gram

embeddings.

[0068]  Although illustrative embodiments have been shown and described, a wide range of
modifications, changes and substitutions arc contemplated in the foregoing disclosure and in
some instances, some features of the embodiments may be employed without a corresponding
use of other features. One of ordinary skill in the art would recognize many variations,
alternatives, and modifications. Thus, the scape of the present application should be limited only
by the following claims, and it is appropriate that the claims be construed broadly and in a

manner consistent with the scope of the embodiments disclosed herein.
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EMBODIMENTS IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS
CLAIMED ARE DEFINED AS FOLLOWS:

1. A system for natural language processing, the system comprising:

a multi-layer neural network;
wherein the system is configured to:

convert at least one input sequence of words in a first language to a sequence of
word vectors;

generate context-specific word vectors for the at least one input sequence of
words in the first language using an encoder pre-trained using training data for translating
phrases from the first language to phrases of a second language;

concatenate the word vectors and the context-specific word vectors; and

perform a first natural language processing task on the least one input sequence of
words in the first language using the concatenated word vectors and context-specific

word vectors.

2. The system of claim 1, wherein the first natural processing task is one of sentiment

analysis, question classification, entailment classification, and question answering.

3. The system of claim 1, wherein the encoder comprises at least one bidirectional long-

term short-term memory configured to process at least one of the word vectors in the sequence.

4. The system of claim 3, wherein the encoder comprises an attention mechanism
configured to compute an attention weight based on an output of the at least one bidirectional

long-term short-term memory.

5. The system of claim 1, wherein a decoder is used in the pre-training of the encoder,

wherein the decoder is initialized with hidden vectors generated by the encoder.

6. The system of claim 5, wherein the decoder comprises at least one bidirectional long-
term short-term memory configured to process at least one word vector in the second language

during training of the encoder.

22
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7. The system of claim 1, further comprising a biattentive classification network configured
to generate attention weights based on the concatenated word vectors and context-specific word

vectors.

8. A system for natural language processing, the system comprising:

an encoder for generating context-specific word vectors for at least one input sequence of
words, wherein the encoder is pre-trained using training data for performing a first natural
language processing task; and

a neural network for performing a second natural language processing task on the at least
one input sequence of words using the context-specific word vectors, wherein the first natural
language process task is different from the second natural language processing task and the

neural network is separately trained from the encoder.
9. The system of claim 8, wherein the first natural processing task is machine translation.

10. The system of claim 8, wherein the second natural processing task is one of sentiment

analysis, question classification, entailment classification, and question answering.

11.  The system of claim 8, wherein the encoder is pre-trained using a machine translation
dataset.
12. The system of claim 8, wherein the neural network is trained using a dataset for one of

sentiment analysis, question classification, entailment classification, and question answering.

13.  The system of claim 8, wherein the first natural processing task is different from the

second natural language processing task.

14, The system of claim 8, wherein the encoder comprises at least one bidirectional long-

term short-term memory.

15. A method comprising:
using an encoder, generating context-specitic word vectors for at least one input sequence
of words, wherein the encoder is pre-trained using training data for performing a first natural

language processing task; and
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using a neural network, performing a second natural language processing task on the at
least one input sequence of words using the context-specific word vectors, wherein the first
natural language process task is different from the second natural language processing task and

the neural network is separately trained from the encoder.
16. The method of claim 15, wherein the first natural processing task is machine translation.

17. The method of claim 15, wherein the second natural processing task is one of sentiment

analysis, question classification, entailment classification, and question answering.

18. The method of claim 15, wherein the encoder is pre-trained using a machine translation
dataset.
19.  The method of claim 15, wherein the neural network is trained using a dataset for one of

sentiment analysis, question classification, entailment classification, and question answering.

20.  The method of claim 15, wherein the first natural processing task is different from the

second natural language processing task.

24



CA 03062891 2019-11-07

PCT/US2018/033487

WO 2018/213763

1/11

T 'Old

091 0ST

1|NS9Y d'IN 1ndu| 41N

k 4
O€ET
)JOMISN OT1
10553920.4
1ZLEIN
02T AMowaip

00T 921A3Q duiandwo)




WO 2018/213763

CA 03062891 2019-11-07

2/11

start

i

PCT/US2018/033487

[ 200

Pre-Train context encoder {7210

with a first NLP task

I

Train NLP neural model
using pre-trained context
encoder

j 220

k4

Use NLP neural model to
perform second NLP task

j’ 230

FIG. 2



CA 03062891 2019-11-07

WO 2018/213763 PCT/US2018/033487

3/11

320

5310

320

320

300

FIG. 3



WO 2018/213763 PCT/US2018/033487

walk

for
FIG. 4

g0

Let’s




CA 03062891 2019-11-07

PCT/US2018/033487

WO 2018/213763

5/11

S0ce poze 20¢€
o N

q0z€

~.
~

1143
.

.

3

q0T

e0rS

FIG. 5



CA 03062891 2019-11-07

PCT/US2018/033487

WO 2018/213763

6/11

z:%%:mmeDmCMff
" 1S41J Ul @duanbas

9°Old

indino
—4  03}33endue| puodas
ul pJOM aulwJala(

-3

91e1s paisnlpe
- 1X9]1U02 91eJI3UDD)

- 193en3ue| 3541} Ul 3duUanbas
WOoJ} pIom 103|3S

19pooud
WOJ} SI01IDA USPPIY/ S91€1S
|eUl} YHUM JSPOI3p Bzi|elu|

1apoaua

duiSn S10123A U3ppPIY )eJ3uUds
01 38engue| 1541} Ul S1I0123A
pJom JO 92uanbas ssadoud

a3en3due| puoass ul
9JUanbas pJom pue adensue|

009
y
909
vo9 |
¥
209

1541} Ul 93uanbas pJom 1nduj

F- 3

14e1S




CA 03062891 2019-11-07

PCT/US2018/033487

WO 2018/213763

7/11

00L~—*

LSl




CA 03062891 2019-11-07

WO 2018/213763 PCT/US2018/033487

8/11

N . SR
00 00

w

N

mmmmm@mmm

FIG. 8



WO 2018/213763 PCT/US2018/033487

§

%
b .

) 5 \Y o QO b3 Y
%%ﬁ %‘5{‘ {*«:i\% Jﬁ?ﬁg" < %%Q’“% %ﬁb %QQ%

Glove+CoVe

.

by
1
1
1
1
1
1
N
L

L1 Glove

]

O & N O © © < N
good e b grd
SIOIDOA DIOM PBZIEIIUI

ALLIOPUERL JBA0 JUDWIBAQJAWIL 9

FIG. 9



WO 2018/213763 PCT/US2018/033487

. !

. by

e 5

o

E—
\%

5 *-%}

o \3}

0 R
Bse —
0 O O T 2
£ <3 T
© 2 %
O 0 O L S

. Is

. X%
....... \\\\\\\\\\\\\\\\\\\\\\\\\\\\Q “{}%
© ¥ N O 0 © < N
e B oo B . R o
SJ0J089A DIOM PaZijeniul
Ajuiopuel J8no m@mmmém | %

.
.
____

FIG. 10



PCT/US2018/033487
11/11

CA 03062891 2019-11-07

WO 2018/213763

1T "Old

ave0s
INS
050941
9L

£'L8 LL% LB
68
.mi

L
'88 6'L8
16 06
R 9 L¥b L%

1'i6 L6 16 906 £ie Uis
i (29 Lys ave [V S 54
il B i'16 606 068 6 8%

o0 P

968 B

b

SRR o e

TRAODHEID  TACD  WPACD  STOACD  JBUD A0l wiopuey




< start ’ [ 200

kA

Pre-Train context encoder \S'" 210
with a first NLP task

L 2

Train NLP neural model f 220
using pre-trained context
encoder

h

230
Use NLP neural model to f
perform second NLP task

End



	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - CLAIMS
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS
	Page 33 - DRAWINGS
	Page 34 - DRAWINGS
	Page 35 - DRAWINGS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - REPRESENTATIVE_DRAWING

