
US 20220245156A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0245156 A1

Kulkarni et al . (43) Pub . Date : Aug. 4 , 2022

(54) ROUTING DATA BETWEEN PROCESSING
PIPELINES VIA A USER DEFINED DATA
STREAM

(52) U.S. CI .
CPC G06F 16/24568 (2019.01) ; G06F 16/2428

(2019.01) ; G06F 16/2291 (2019.01)
(71) Applicant : SPLUNK Inc. , San Francisco , CA (US)

(57) ABSTRACT (72) Inventors : Sanjeev Kulkarni , Los Altos , CA (US) ;
Boyang Peng , Mountain View , CA
(US) ; Karthikeyan Ramasamy ,
Sunnyvale , CA (US) ; Poornima
Devaraj , Fremont , CA (US)

(21) Appl . No .: 17 / 243,209
(22) Filed : Apr. 28 , 2021

Related U.S. Application Data
(60) Provisional application No. 63 / 143,706 , filed on Jan.

29 , 2021 .

Systems and methods are described for customizable data
streams in a streaming data processing system . Routing
criteria for the customizable data streams are defined by a
user , an automated process , or any other process . The
routing criteria can be defined using graphical controls . The
streaming data processing system uses the routing criteria to
determine data that should be used to populate a particular
data stream . Further , processing pipelines are customized
such that a particular processing pipeline can obtain data
from a particular user defined data stream and write data to
a particular user defined data stream . Data is routed through
the user defined data streams and customized processing
pipelines based on a data route . A data route for a set of data
may include multiple user defined data streams and multiple
processing pipelines . The data route can include a loop of
processing pipelines and data streams .

Publication Classification

(51) Int . Ci .
G06F 16/2455
G06F 16/22
GO6F 16/242

(2006.01)
(2006.01)
(2006.01)

CLIENT DEVICE
(WEB)
204a

CLIENT DEVICE
(COMMAND LINE)

204b

CLIENT DEVICE
(SDK)
2040

200

NETWORK 208

DATA INTAKE AND QUERY SYSTEM 108

QUERY SYSTEM
214

ACCELERATION
DATA STORE

222

DATA
STORE
218

DATA
STORE
218

DATA STORE
CATALOG 220

COMMON STORAGE 216

OTHER
SYSTEM (S)

262
INTAKE SYSTEM

210
INDEXING SYSTEM

212

NETWORK 206

DATA
SOURCE 202

DATA
SOURCE 202

Patent Application Publication Aug. 4 , 2022 Sheet 1 of 53 US 2022/0245156 A1

100
CLIENT DEVICES 102

HOST DEVICES 106
CLIENT

APPLICATIONS 110 HOST
APPLICATIONS 114

MONITORING
COMPONENT 112

NETWORKS
104

DATA INTAKE AND
QUERY SYSTEM 108

FIG . 1

CLIENT DEVICE (WEB) 204a

CLIENT DEVICE (COMMAND LINE) 2046

CLIENT DEVICE (SDK) 204C

200

NETWORK 208

Patent Application Publication

DATA INTAKE AND QUERY SYSTEM 108

QUERY SYSTEM 214

ACCELERATION DATA STORE 222

DATA STORE 218

DATA STORE 218
DATA STORE CATALOG 220

COMMON STORAGE 216

Aug. 4 , 2022 Sheet 2 of 53

OTHER SYSTEM (S)
262

INTAKE SYSTEM 210

INDEXING SYSTEM 212

NETWORK 206

US 2022/0245156 A1

FIG . 2

DATA SOURCE 202

DATA SOURCE 202

Patent Application Publication

INTAKE SYSTEM 210

FORWARDER 302
DATA RETRIEVAL SUBSYSTEM 304

INTAKE INGESTION BUFFER 306

STREAMING DATA PROCESSOR 308
OUTPUT INGESTION BUFFER 310

Aug. 4 , 2022 Sheet 3 of 53

FIG . 3A

US 2022/0245156 A1

INTAKE SYSTEM 210

PUSH - BASED PUBLISHERS 320

OUTPUT INGESTION BUFFER 310 INDEX TOPIC 342

Patent Application Publication

HTTP INTAKE POINT 322

NOTABLE EVENT TOPIC 344

STREAMING DATA PROCESSOR (S) 308

FORWARDER 302

PRIMARY INTAKE INGESTION BUFFER 306A

DIQS INTAKE POINT 324

METRICS TOPIC 346

PULL - BASED PUBLISHERS 330

SEARCH RESULTS TOPIC 348 MOBILE ALERTS TOPIC 350

CUSTOM INTAKE POINT 332A

Aug. 4 , 2022 Sheet 4 of 53

SECONDARY INTAKE INGESTION BUFFER 306B

CUSTOM TOPIC 352A

CUSTOM INTAKE POINT 332B

CUSTOM TOPIC 352B

:

CUSTOM TOPIC 352N

CUSTOM INTAKE POINT 332N

US 2022/0245156 A1

FIG . 3B

INDEXING SYSTEM 212

INDEXING SYSTEM MANAGER 402

BUCKET MANAGER 414

Patent Application Publication

INDEXING NODE 404

INDEXING NODE MANAGER 406

PARTITION MANAGER 408
INDEXER 410

Aug. 4 , 2022 Sheet 5 of 53

DATA STORE 412

BUCKET MANAGER 414
FIG . 4

US 2022/0245156 A1

QUERY SYSTEM 214 QUERY SYSTEM MANAGER 502

Patent Application Publication

SEARCH HEAD 504

SEARCH MASTER 512
SEARCH MANAGER 514

SEARCH NODE CATALOG 510 SEARCH NODE MONITOR 508

SEARCH NODES 506

SEARCH NODE

SEARCH NODE

Aug. 4 , 2022 Sheet 6 of 53

DATA STORE

DATA STORE

CACHE MANAGER 516 FIG . 5

US 2022/0245156 A1

STREAMING DATA PROCESSORS 308

DATA RETRIEVAL

INTAKE INGESTION

SUBSYSTEM 304

BUFFER 306

(1) PUBLISH MESSAGE TO TOPIC

OUTPUT INGESTION BUFFER 310

SUBSRIBER 602

(2) DETERMINE TOPIC SUBSCRIBERS
(3) PUSH MESSAGE TO SUBSCRIBER

Patent Application Publication

ITERATIVE
PROCESSING LOOP
604

(4) ANALYZE MESSAGE

FOR APPLICABLE RULE (S)
(5) APPLY RULE (S) TO TRANSFORM MESSAGE (6) DETERMINE TARGET BUFFER AND TOPIC

(7) PUBLISH TRASNFORMED MESSAGE
TO TOPIC

(8) ACK . INITIAL MESSAGE (9) DETERMINE TOPIC SUBSCRIBERS (10) PUSH MESSAGE TO SUBSCRIBER

(11) ANALYZE MESSAGE FOR
APPLICABLE RULE (S)
(12) APPLY RULE (S) TO PROCESS MESSAGE (13) DETERMINE TARGET BUFFER AND TOPIC

Aug. 4 , 2022 Sheet 7 of 53

(14) PUBLISH MESSAGE TO TOPIC

(15) ACK . INITIAL MESSAGE

(16) DETERMINE TOPIC SUBSCRIBERS (17) PUSH MESSAGE TO SUBSCRIBER

(18) PROCESS MESSAGE

US 2022/0245156 A1

(19) ACK . MESSAGE

FIG . 6

Patent Application Publication Aug. 4 , 2022 Sheet 8 of 53 US 2022/0245156 A1

702

OBTAIN RULES

704

OBTAIN MESSAGE PUBLISHED TO INTAKE INGESTION BUFFER

706

-NO RULE APPLIES TO MESSAGE ?

708
YES

TRANSFORM MESSAGE ACCORDING TO RULE

710

DETERMINE DESTINATION INGESTION BUFFER AND TOPIC

712

PUBLISH MESSAGE TO TOPIC AT DEST , BUFFER

714

ACKNOWLEDGE MESSAGE TO INTAKE INGESTION BUFFER

FIG . 7

INGESTION BUFFER 310

INDEXING NODE MANAGER 406 / INDEXER 410 / PARTITION MANAGER 408 BUCKET MANAGER 414

DATA STORE CATALOG 220

COMMON STORAGE 216

(1) ACTIVATE PARTITION
MANAGER FOR PARTITION

(2) SEND DATA AND BUFFER LOCATION

Patent Application Publication

(3) TRACK BUFFER LOCATION AND
SEND DATA FOR INDEXING

(4) INDEX DATA

(5) REPORT DATA SIZE (6) INSTRUCT TO MOVE DATA TO COMMON STORAGE

(7) STORE DATA TO COMMON STORAGE

(8) REPORT DATA STORED (9) UPDATE DATA STORE CATALOG

Aug. 4 , 2022 Sheet 9 of 53

(10) REPORT COMPLETION OF INDEXING

(12) MERGE DATA

(11) UPDATE BUFFER LOCATION

(13) COPY MERGED DATA TO COMMON STORAGE

(14) REPORT MERGED DATA STORED

(15) DELETE DATA

(16) DELETE DATA

(17) UPDATE DATA STORE CATALOG

US 2022/0245156 A1

FIG . 8

Patent Application Publication Aug. 4 , 2022 Sheet 10 of 53 US 2022/0245156 A1

900

902 RECEIVE DATA

904 STORE DATA IN BUCKETS USING
CONTAINERIZED INDEXING NODE (S)

906 f STORE BUCKETS IN COMMON
STORAGE

FIG . 9

Patent Application Publication Aug. 4 , 2022 Sheet 11 of 53 US 2022/0245156 A1

1000

1002 RECEIVE DATA

1004 STORE DATA IN BUCKETS

10064 MONITOR BUCKETS

10084 an CONVERT BUCKETS

10104 STORE CONVERTED BUCKETS IN
COMMON STORAGE

FIG . 10

Patent Application Publication Aug. 4 , 2022 Sheet 12 of 53 US 2022/0245156 A1

1100

1102 RECEIVE DATA

1104 STORE DATA IN BUCKETS

1106 STORE BUCKETS IN COMMON
STORAGE

1108 NOTIFY INGESTION BUFFER

FIG . 11

Patent Application Publication Aug. 4 , 2022 Sheet 13 of 53 US 2022/0245156 A1

1200

1202 STORE DATA IN BUCKETS

1204 STORE BUCKETS IN COMMON
STORAGE

1206 op UPDATE DATA STORE CATALOG

1208 MERGE BUCKETS

12104 STORE MERGED BUCKET (S) IN
COMMON STORAGE

UPDATE DATA STORE CATALOG
12124 WITH INFORMATION ABOUT MERGED

BUCKET (S)

FIG . 12

INDEXING SYSTEM 212

DATA STORE CATALOG 220

SEARCH HEAD 504

SEARCH NODE MONITOR 508 / SEARCH NODE CATALOG 510

SEARCH NODES 506

(3) MONITOR SEARCH NODES

b

(1) MONITOR DATA STORAGE

b

(5) RECEIVE QUERY AND GENERATE SEARCH MANAGER

(2) UPDATE DATA STORE CATALOG

(4) UPDATE SEARCH NODE CATALOG

Patent Application Publication

(6A) REQUEST DATA IDENTIFIERS

(6B) REQUEST AVAILABLE
SEARCH NODES

(7A) IDENTIFY AND RETURN RELEVANT (78) IDENTIFY AND RETURN AVAILABLE

DATA IDENTIFIERS

SEARCH NODES (8) MAP SEARCH NODES TO
DATA

(9) INSTRUCT SEARCH NODES TO EXECUTE QUERY
COMMON STORAGE 216

Aug. 4 , 2022 Sheet 14 of 53

(10) OBTAIN DATA
(11) SEARCH AND PROCCESS DATA

(12) MONITOR QUERY STATUS (13) SEND INDIVIDUAL QUERY RESULTS

QUERY ACCELERATION DATA STORE 222

(14) PROCESS RESULTS
FROM SEARCH NODES

(15) STORE RESULTS OR PARTIAL RESULTS

US 2022/0245156 A1

(16) TERMINATE SEARCH MANAGER

FIG . 13

Patent Application Publication Aug. 4 , 2022 Sheet 15 of 53 US 2022/0245156 A1

1400

14024 RECEIVE QUERY

1404 IDENTIFY CONTAINERIZED SEARCH
NODES TO EXECUTE QUERY

1406 INSTRUCT CONTAINERIZED SEARCH
NODES TO EXECUTE QUERY

FIG . 14

Patent Application Publication Aug. 4 , 2022 Sheet 16 of 53 US 2022/0245156 A1

1500

1502 RECEIVE QUERY

1504 IDENTIFY SEARCH NODES TO
EXECUTE QUERY

1506 IDENTIFY BUCKETS FOR QUERY

1508 an EXECUTE QUERY

FIG . 15

Patent Application Publication Aug. 4 , 2022 Sheet 17 of 53 US 2022/0245156 A1

1600

1602 MAINTAIN CATALOG OF BUCKETS IN
COMMON STORAGE

16044 RECEIVE QUERY

16064 IDENTIFY BUCKETS FOR QUERY
USING CATALOG

1608 of EXECUTE QUERY

FIG . 16

Patent Application Publication Aug. 4 , 2022 Sheet 18 of 53 US 2022/0245156 A1

1700

1702 MAINTAIN CATALOG OF SEARCH
NODES

17044 RECEIVE QUERY

17064
IDENTIFY SEARCH NODES

AVAILABLE FOR QUERY USING
CATALOG

1708 INSTRUCT SEARCH NODES TO
EXECUTE QUERY

FIG . 17

Patent Application Publication Aug. 4 , 2022 Sheet 19 of 53 US 2022/0245156 A1

1800

1802 RECEIVE QUERY

18044 IDENTIFY BUCKET IDENTIFIERS OF
BUCKETS FOR QUERY

1806
HASH BUCKET IDENTIFIERS TO

IDENTIFY SEARCH NODES

1808 INSTRUCT SEARCH NODES TO
EXECUTE QUERY

FIG . 18

Patent Application Publication Aug. 4 , 2022 Sheet 20 of 53 US 2022/0245156 A1

1900

1902 RECEIVE QUERY

1902 RECEIVE QUERY INSTRUCTIONS

1904 COPY BUCKETS TO LOCAL DATA
STORE

1908 EXECUTE SEARCH ON BUCKET

FIG . 19

Patent Application Publication Aug. 4 , 2022 Sheet 21 of 53 US 2022/0245156 A1

2000

2002 RECEIVE QUERY

2004 EXECUTE QUERY

2006
STORE RESULTS IN ACCELERATED

DATA STORE

FIG . 20

Patent Application Publication Aug. 4 , 2022 Sheet 22 of 53 US 2022/0245156 A1

2102 1 RECEIVE DATA

2104 PUBLISH DATA AS MESSAGES ON
OUTPUT INGESTION BUFFER

2106 PARSE DATA INTO EVENTS of
? 21084 DETERMINE TIMESTAMPS FOR

EVENTS

ASSOCIATE TIMESTAMPS AND OTHER
21104 METADATA FIELDS WITH EVENTS

21124 TRANSFORM EVENTS

21144 IDENTIFY KEYWORDS IN EVENTS

21164 UPDATE KEYWORD INDEX

21184 of STORE EVENTS IN BUCKETS

FIG . 21A

Time Range : 3/1/17 16 : 21 : 20.000 - 16 : 28 : 17.000

Index :: _ main

2123

2125

2113A

2113B

2101

host :: hostA 1 , 3 , 4 , 7 , 9 , 12 host :: hostB 2 , 5 , 6 , 8 , 10 , 11

Patent Application Publication

IP_address :: 10.16.24.201 5,6
IP_address :: 91.205.189.15 3 , 7 , 9 IP_address : 172.18.103.3 2,8 10 , 11 IP_address : 182.236.164.11 1 , 4 , 12

2103

_main

2113

2107A

2107B

source :: sourceA 1 , 4 , 7 , 12

source :: sourceB 3,9
source :: sourceC 2 , 8 , 11 source :: sourceD 5 , 6 , 10

2105

_test

sourcetype :: sourcetypeA 2 , 3 , 7 sourcetype :: sourcetypeB 1 , 12

sourcetype :: sourcetypeC 4 , 5 , 6 , 8 , 9 , 10 , 11

Aug. 4 , 2022 Sheet 23 of 53

2109A

2109B

OFFEE

error 3 , 5 , 6 , 8 , 11 , 12
itemID 3 , 4 , 6 , 7 , 10 , 11

2111

2115

2117

2111A
2111B

1

2

3

5

6

7

8

9

10

11

12

16 : 21 : 20.000 16 : 21 : 45.000 16 : 22 : 30.000 16 : 22 : 53.020 16 : 22 : 54.815 16 : 24 : 15.100 16 : 24 : 37.610 | 16 : 26 : 01.000 16 : 27 : 50.000 | 16 : 27 : 56.470 | 16 : 28 : 08.12016 : 28 : 17.000 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17 3/1/17

Address 1

Address 2

Address3

Address 4

Address 5

Address 6

Address 7

Address 8

Address

Address 10

Address 11

Address12

ressst

US 2022/0245156 A1

2121

2119

FIG . 21B

Time 2135

Host 2136

Source 2137 Source Type 2138

Event 2139

Patent Application Publication

©

c2142

2131 10/10/2000 1:55 p.m.

WWW1

access.log
access_combined

< 2140 2141

127.0.0.1 – frank [10 / Oct / 2000 : 13 : 55 : 36-0700]

“ GET / apache.gif HTTP / 1.0 " 200 2326 0.0947

2143

2145

2132

10/10/2000 1:56 p.m.

www2

access.log
access_combined

127.0.0.1 – bob (10 / Oct / 2000 : 13 : 56 : 36-0700] " GETI mickey_mouse.gif HTTP / 1.0 " 200 2980 | 0.0899

2146

2133

10/10/2000 1:57 p.m.

WWW2

access.log
access_combined

127.0.0.1 - carlos (10 / Oct / 2000 : 13 : 57 : 36-0700]
“ GET / donald_duck.gif HTTP / 1.0 " 200 2900 0.0857

Aug. 4 , 2022 Sheet 24 of 53

2134

10/10/2000 1:58 p.m.

www2

error.log

[Sunday Oct 10 1:58:33 2010] [error] [client
127.10.1.1.015] File does not exist : / home / rebal

public_html / images / daffy_duck.gif

apache_error FIG . 210

US 2022/0245156 A1

Patent Application Publication Aug. 4 , 2022 Sheet 25 of 53 US 2022/0245156 A1

2202 SEARCH HEAD RECEIVES QUERY
FROM CLIENT

2204
SEARCH HEAD DETERMINES WHAT
PORTIONS OF THE QUERY CAN BE
DISTRIBUTED TO SEARCH NODES

SEARCH HEAD DISTRIBUTES
22064 PORTIONS OF QUERY TO SEARCH

NODES

22084
SEARCH NODES SEARCH DATA
STORE FOR QUERY - RESPONSIVE

EVENTS

SEARCH HEAD COMBINES ANY
22104 PARTIAL RESULTS OR EVENTS TO

PRODUCE FINAL RESULT

FIG . 22A

-SEARCH

COMMAND1
COMMAND2

sourcetype = sýslog ERROR | top'user / fields

present
2230

Patent Application Publication

Disk 2222

Intermediate results table 2224

Intermediate results table 2226

Final results table 2228

(4)
91041004)

104 104)

104) 9104)))
2144514) 2010

284)
(484)

3441904)

14)
104)

84)
(4)

104.14)

(4) 104)

(9

10

COM

(4)

C :

14:14)

Coc : 07

)

00:00

10

100

(4)

(: (4)

Choon

974) (404)

(10 COM

CDN

(9) 10:16
COMO

344)

(4)

149939704 HE

30414

4402

(4) !)

044)
(4)

104134

434 ?????

14

114)

11 (41)

1140

30471)
(4)

(4)

16491314
????) ?

(4) 1111

144) 514 CICC

H494

H4934
OH) 31

cinca

Aug. 4 , 2022 Sheet 26 of 53

1 GENERATE A SET OF EVENTS 2240

SEARCH THE SET OF EVENTS FOR FIELD - VALUE PAIRS OR KEYWORDS 2242

EXECUTE A FUNCTION THAT FURTHER FILTERS OR PROCESSES THE DATA , E.G. ,

AN AGGREGATE FUNCTION 2244

US 2022/0245156 A1

FIG . 22B

2304

Customer ID

2307

ORDER , 2014-10-23T01 : 12.878,1234567 98765,100.100.100.2 ,

Patent Application Publication

ORDER APP 2301

2305

Customer ID

-2308

Oct 23 01 : 12 : 990 w2.goodstuff.com 98765 failed 1234567 exception follows :

weblogic.jdbc.extensions.Connection DeadSQLException : weblogic.common.resourcepool.Resource DeadException : Could not create pool
connection ,

MIDDLEWARE 2302

Aug. 4 , 2022 Sheet 27 of 53

2306

Customer ID

-2309

support message 1234567 body : " My order failed ! Why ?? ” , 2014 : 10 : 23T02 : 20 : 50 ,

? ? SUPPORT SERVER 2303

FIG . 23A

US 2022/0245156 A1

Time

Host

Source

Source Type

Event

2312

10/10/2000 1:55 p.m.

www1

access.log
access_ combined

127.0.0.1 - frank [10 / Oct / 2000 : 13 : 55 : 36-0700]

" GET / apache.gif HTTP / 1.0 " 200 2326 0.0947

Patent Application Publication

2311
2313

10/10/2000 1:56 p.m.

WWW2

access.log
access_combined

127.0.0.1 -bob (10 / Oct / 2000 : 13 : 56 : 36-0700] " GETI
mickey mouse.gif HTTP / 1.0 " 200 2980 0.0899

2314

10/10/2000 1:57 p.m.

WWW2

access.log
access_combined

127.0.0.1 - carlos (10 / Oct / 2000 : 13 : 57 : 36-0700]
" GET / donald_duck.gif HTTP / 1.0 " 200 2900 0.0857

2315

10/10/2000 1:58 p.m.

www2

error.log

apache_error

[Sunday Oct 10 1:58:33 2010] [error] (client
127.10.1.1.015] File does not exist : / home / rebal

public_html / images / daffy_duck.gif

Keyword Search Directly in Event Data

Aug. 4 , 2022 Sheet 28 of 53

Configuration File 2316

Search bar 2310

Search Time Field Extraction

Clientip = < set of events > | < regex rule > 2317
Status_code = < set of events > | < regex rule >

Response_time = < set of events > | < regex rule >

Size_of_returned_object = < set of events > | < regex rule >

US 2022/0245156 A1

. FIG . 23B

Row

Time

Host

Source

Source Type

Event

55000 55001

Patent Application Publication

55002

2323

127.0.0.1 - frank (10 / Oct / 2016 : 13 : 55 : 36 -0700] " GET

10/10/2016 1:55 p.m. www1 access.log

www1 access.log access_combined

2331

/apache.gif HTTP / 1.0 " 200 2326 0.0947
127.0.0.2 - bob (10 / Oct / 2016 : 13 : 56 : 36 -0700] " GET

10/10/2016 1:56 p.m. www2 access.log access combined

/ mickey mouse.gif HTTP / 1.0 " 200 2980 0.0899
127.0.0.1 - carlos (10 / Oct / 2016 : 13 : 57 : 36 -0700] 2332

10/10/2016 1:57 p.m. www2 access.log

access_combined

" GET /donald_duck.gif HTTP / 1.0 " 200 2900 0.0857 (Sunday Oct 10 1:58:33 2016] [error] [client

10/10/2016 1:58 p.m. www2 error.log apache_error 127.10.1.1.015] File does not exist :

/ home / reba / public_html / images / daffy duck.gif
127.0.0.3 - Virgil (10 / Oct / 2016 : 13 : 59 : 36 -0700] " GET

10/10/2016 1:59 p.m. www1 access.log access_combined

/donald_duck.gif HTTP / 1.0 " 200 2900 0.0887 2333 127.0.0.1 - matt (10 / Oct / 2016 : 14 : 00 : 36 -0700] " GET

10/10/2016 2:00 p.m . www1 access.log access_combined

goofy.gif HTTP / 1.0 " 200 2920 0.0987
[Sunday Oct 10 2:01:33 2016] [error] [client

10/10/2016 2:01 p.m. WWW2 error.log apache_error 127.10.1.1.03] File does not exist :

/home/public_html/images/furby.gif
2334

127.0.0.1 -jack (10 / Oct / 2016 : 14 : 02 : 36 -0700] " GET

10/10/2016 2:02 p.m. www1 access.log access combined

/muppets.gif HTTP / 1.0 " 200 5000 0.0667

55003

to

55004 55005 55006

Aug. 4 , 2022 Sheet 29 of 53

55007

Event Reference Value Field Name Field Value

55000

clientip
127.0.0.1

Event Reference Value Field Name Field Value

User ID

C

55002

clientip
127.0.0.1

55000

clientip
127.0.0.1
frank

2322

55005

clientip
127.0.0.1
matt

55005

clientip
127.0.0.1

55007

clientip
127.0.0.1

US 2022/0245156 A1

2325 FIG . 23C

Patent Application Publication Aug. 4 , 2022 Sheet 30 of 53 US 2022/0245156 A1

2342 24 RECEIVE INCOMING QUERY

2344 RETRIEVE INVERTED INDEX

2354

2346
DOES QUERY

COMPRISE FURTHER
FILTERING OR PROCESSING

STEPS ?
-NO

PROVIDE
SUMMARIZATION

INFORMATION TO USER

YES

2356

2348
REQUISITE

INFORMATION AVAILABLE
IN INVERTED INDEX ?

-NO
RETRIEVE EVENT DATA

USING REFERENCE VALUES
IN INVERTED INDEX

YES
2358

2350 PERFORM FILTERING AND
PROCESSING STEPS USING
INFORMATION AVAILABLE IN

INVERTED INDEX

PERFORM FILTERING
AND PROCESSING
STEPS ON THE

RETRIEVED EVENT DATA

FIG . 23D

Search Screen 2400
Search
Pivot

Reports
Alerts
Dashboards

Search & Reporting

Q New Search

Save as menu

Save As v

Close

Patent Application Publication

buttercupgames
Search Bar 2402

Time Range Picker 2412

All time v

? 36,819 events (before 4/30/14 2 : 19 : 02.000 PM)

Job v

od 6

1 Smart Mode v

Search Results Tabs 2404

Search action buttons

Events (36,819)

Statistics

Visualization

Search mode selector

Format Timeline v

- Zoom Out

+ Zoom to Selection

1 hour per column

X Deselect

Timeline 2405 Hihihihihihihimilihmuhitimummulimhimulimlilmulunuldulin List v

Format v

20 Per Page v

< Prev

1

2 3 4 5 6 7 8 9

Next >

i

Time

< Hide Fields

= All Fields

Fields Sidebar 2406
Selected Fields

>

4/28/14 6 : 22 : 16.000 PM

Event

Events List 2408

91.205.189.15 -- [28 / Apr / 2014 : 18 : 22 : 16] " GET / oldlink ? itemld = EST - 14 & JSESSIONID = SDOSL7FF

7ADFF53113 HTTP 1.1 " 200 1665 " http : // www buttercupgames com / oldlink ? itemld = EST - 14 " " Moz

illa / 5.0 (Windwos NT 6.1 ; WOW64) AppleWebk11536.5 (KHTML , like Gecko) Chrome / 19.0.1084 .

46 Safari / 536.5 " 159

Aug. 4 , 2022 Sheet 31 of 53

a host 3 a source 3 a sourcetype 1

>

4/28/14 6 : 20 : 56.000 PM

Interesting Fields
a action 5

source =

host = www2 source = tutorialdata.zip:/www2/access.log sourcetype = access_combined_wcookie 182.236.164.11 -- [28 / Apr / 2014 : 18 : 20 : 56] " GET /cart.do?action=addtocart&itemId=EST-15&p

roductId = 85 - AG - G09 & JSESSIONID = SD6SL8FF10ADFF53101 HTTP 1.1 " 200 2252 " http : //www.butterc upgames com / oldlink ? itemID = EST - 15 " " Mozilla / 5.0 (Macintosh ; Intel Mac OS X 10_7_4) Apple
WebKit536.5 (KHTML , like Gecko) Chrome / 19.0.1084.46 Safari / 536.5 " 506

host = www1

tutorialdata.zip:/www1/access.log sourcetype = access_combined_wcookie
182.236.164.11 - - [28 / Apr / 2014 : 18 : 20 : 56] " POST / oldlink ? itemld = EST - 18 & JSESSIONID = SDOSL8

FF10ADFF53101 HTTP 1.1 " 408 893 " http : // www buttercupgames.com/product.screen?productId=
SF - BVS - G01 " " Mozilla / 5.0 (Macintosh ; Intel Mac OS X 10_7_4) AppleWebkit / 536.5 (KHTML , li

ke Gecko) Chrome / 19.0.1084.46 Safari / 536.5 " 134
host = www1 source = tutorialdata.zip:/www1/access.log sourcetype = access_combined_wcookie

>

bytes 100+ a categoryld 8 a clientip 100+ # date_hour 24 # date_mday 8 # date_minute 60

4/28/14 6 : 20 : 55.000 PM

=

US 2022/0245156 A1

FIG . 24A

Patent Application Publication

Data Summary

?

Hosts (5)

Sources (8)

Sourcetypes (3)

filter Host

ul

Count

Last Update

mailsv

9,829

4/29/14 1 : 32 : 47.000 PM

vendor_sales

30,244

4/29/14 1 : 32 : 46.000 PM

www1

24,221

4/29/14 1 : 32 : 44.000 PM

Aug. 4 , 2022 Sheet 32 of 53

www2

22,595

4/29/14 1 : 32 : 47.000 PM

www3

ulv

22,975

4/29/14 1 : 32 : 45.000 PM

FIG . 24B

US 2022/0245156 A1

Patent Application Publication Aug. 4 , 2022 Sheet 33 of 53 US 2022/0245156 A1

-2500

Select a Data Model

i 4 Data Models 2501

Buttercup Games Sales ~ -2502

Splunk's Internal Audit Logs - SAMPLE
Splunk's Internal Server Logs - SAMPLE
test

FIG . 25

2600

Select an Object
Back

i 6 Objects in Buttercup Game Sales ~ 2601
Buttercup Games Web Store Events

HTTP Success

Successful Purchases 2602

Failed Purchases

HTTP Client Error

? HTTP Server Error

FIG . 26

-2701

2700

Search
Pivot

Reports
Alerts

Search & Reporting

Select Fields

?

a New Search

Save Asv

Patent Application Publication

Close

index = _internal

All time v

Which fields would you like to use as a Data Model ?

O All Fields (97) ~ 2702

Selected Fields (3) ~ 2703

O Fields with at least 2 % coverage (49) 2704

168,850 events (before 7/22/14 9 : 27 : 35.00

at a

Smart Mode v

Events (168,850)

Patterns
0 Your search isn't generating any statisti

Cancel

OK

17

8

Aug. 4 , 2022 Sheet 34 of 53

Pivot

Quick Reports

Search Commands 2

Build tables and visualizations using multiple fields and metrics without writing searches .

Click on any field in the events tab for a list of quick reports like ' Top
Referrers ' and ' Top Referrers by time ' .

Use a transforming search
command , like timechart or stats , to summarize the data .

FIG . 27A

US 2022/0245156 A1

a New Pivot

Save As ... v

Clear

Acceleration v

-2705

512,504 of 512,504 events matched

d 6 a

onl

Documentation 2

Filters

Split Columns

Patent Application Publication

All time

+

+ ~ 2706

lo .

2708

Split Rows

Column Values

+

2707

Count of Event O ...

+ ~ 2709

Time

O time

Attribute

2711

- 2710

a bytes a clientip a component # count # date_hour # date_mday #date_minute # date_month # date_second a date_wday #date_year a date_zone a eventtype a file a group a host a ident a index

Aug. 4 , 2022 Sheet 35 of 53

8

20 per page

Format v

US 2022/0245156 A1

FIG . 27B

a New Pivot

Save As ... v

Clear

Acceleration v

-2705

812,504 of 812,504 events matched

d 6 a

onl

Filters

Documentation 2

Split Columns

Patent Application Publication

All time

+

+

?

Split Rows

Column Values

+

Count of Event O ...

+

component Label

optional

All rows

-2712

Sort

Default v

Max Rows

100

2711

Totals

Yes

No

Add To Table

Aug. 4 , 2022 Sheet 36 of 53

GO I 8 CD

20 per page

Format v

US 2022/0245156 A1

FIG . 27C

a New Pivot

Save As ... v

Clear

Acceleration v

-2705

812,504 of 812,504 events matched

d 6 a

onl

Documentation 2

Filters

Split Columns

Patent Application Publication

All time

+

+

loo

Split Rows

Column Values

component

+

Count of Event O ...

+

+2714

-2713

component

Count of Event Object

.

Bucket Mover

4 .

Database DirectoryManager

4

DateParserVerbose

420

IndexConfig

1

M

LicenseUsage

1884

Metrics

45997

Watched File

8

cached

3

42

Aug. 4 , 2022 Sheet 37 of 53

utils

1

view

4

I 8

20 per page

Format v

US 2022/0245156 A1

FIG . 27D

III

New Pivot

Save As ... ?

Clear

Successful_purchases
2800

1,966 events (before 9/22/13 5 : 19 : 02.000 PM)

Complete

? | Q

Patent Application Publication

Filters

Highest 10 product name by price

-2801 Split Columns

Documentation 2

All time

Highest 10 produ ...

-2803

Split Rows

-2802 Column Values

product name

price

+

Count of Success ..

D

Sum of price

+

product name

price

Count of Successful purchases

Sum of price

Dream Crusher

39.99

2804

227

2805

9077.73

Manganiello Bros.

39.99

199

7958.01

Orvil the Wolverine

39.99

169

6758.31
2806

Aug. 4 , 2022 Sheet 38 of 53

World of Cheese

24.99

267

6672.33

Mediocre Kingdoms

24.99

250

6247.50

SIM Cubicle

19.99

233

4657.67

Final Sequel

24.99

181

4523.19

Benign Space Debris

24.99

135

3373.6

Curling 2014

19.99

126

2518.74

Holy Blade of Gouda

5.99

179

1072.21

US 2022/0245156 A1

FIG . 28

Q New Pivot

Save As ...

Clear

Acceleration v

2902

2900

1,776,004 of 1,776,004 events matched

od 8 a

all

Patent Application Publication

Documentation 2

Filters

Split Columns

All time

+

group

14

Split Rows

Column Values

component
???

Count of Event O ... +

DO .

component

deploy
deploy

NULL conf connections server map • mpool * per host_thruput.per_index_thruputper_source_thruput per sourcetype_ thruput pipeline queue . realtime search data

BucketMover

4

0

0

0

0

0

0

0

DatabaseDirectory Manager
4

0

0

0

M

0

02901

DateParserVerbose
562

0

0

0

0

0

0

0

Disk Mon

3

0

0

0

0

0

0

0

0

0

0

IndexConfig

1

0

0

0

0

0

0

LicenseUsage

2872

0

0

0

0

0

0

Metrics

0

1

972

2916
972

972

4621

2843

9314

9306

18797
12206

972

OneShot Writer

12226

0

0

0

0

0

0

O

0

0

42

Aug. 4 , 2022 Sheet 39 of 53

Tailing Processor

2

0

0

0

0

0

0

0

0

WatchedFile

18

0

0

0

0

cached

0

0

0

O

0

0

O

0

0

decorators

2

U

0

0

0

0

0

0

0

0

0

utils

1

0

0

0

0

0

0

0

view

6

0

0

0

0

0

0

0

0

0

8

20 per page

Format

US 2022/0245156 A1

FIG . 29

u New Pivot

Save As ... v

Clear

Acceleration v

3,312,504 of 3,312,504 events matched

od 8 a

ool

Time Range

Patent Application Publication

BucketMover

Filter

10 .

X - Axis (Bars)

Database Directory Manager

ir

Y - Axis (Bar Width)

DateParserVerbose

3000

Field

Count of Event Object v

8 .

Disk Mon

Label
show

optional

IndexConfig

1

Scale
Linear
Log

???

License Usage

Intervale

i M

optional
Min Value

optional

Metrics

component

Max Value

optional

OneShotWriter

NULL conf
deploy - connections deploy - server

map mpool per_host_thruput per_index_thruput per_source_thruput per_sourcetype_thruput pipeline queue realtime_search_data search_concurrency searchscheduler subtask_seconds thruput tpool

42

Color

Tailing Processor

Aug. 4 , 2022 Sheet 40 of 53

Field

? ???????

a group v

Watched File

Max Colors

100

Group Others v

cached

I

Legend Position

Right v

decorators

Legend Truncation

A ...

A ... Z

... Z

8

utils

Stack Mode al

od

LO

General

view
0

5,000

10,000

25,000

30,000

35,000

Drilldown
Yes

15,000 20,000 Count of Event Object

No

US 2022/0245156 A1

FIG . 30

Q New Pivot

Save As ... v

Clear

Acceleration v

?81,210 events (before 9/26/14 6 : 19 : 38.000 PM)

od 6 a

nnel .

Time Range

750

Patent Application Publication

Filter

lo .

Mark X - Axis

700

D

3100

Max Value

optional

g .

Y - Axis

650

]

Field

Count of Event Object v

2

M

Label
show

optional

600

?

Value

Average v

Scale
Linear
Log

Average of time Taken
550

ua - mobile - ipod ua - mobile - blackberry ua - mobile - ipad ua - mobile - iphone ua - mobile - android

Intervale
optional

40

42

Aug. 4 , 2022 Sheet 41 of 53

Min Value

optional

500

Max Value

optional

Color

1

450

Field

a eventtype v

8

Legend Position

Right v

400

Legend Truncation

A ...

A ... Z

... Z

General

, 400

11,600

11,800

2,000

12,200

12,400

12,600

2,800

Drilldown
Yes

No

US 2022/0245156 A1

FIG . 31

Patent Application Publication

3202

Original Search :
Search " error " | stats count BY host

3204

Sent to peers :

Search " error " | prestats count BY host

3206

Executed by search head :

Aggregate the prestats results received from peers

Aug. 4 , 2022 Sheet 42 of 53

FIG . 32

US 2022/0245156 A1

KEY INDICATORS VIEW 3300

ACCESS NOTABLES

ENDPOINT NOTABLES

NETWORK NOTABLES

IDENTITY NOTABLES

AUDIT NOTABLES

Total Count

Total Count

Total Count

Total Count

Total Count

3301

45.28 61.67
?

?

? +2

?

15.7 2.2

3232
277

Patent Application Publication

3302

MALWARE INFECTIONS

VULNERABLE HOSTS

HOSTS FULLY PATCHED

VULNERABILITIES / HOST AVG
Medium Severity Or Higher

Total Count

Total Count

Percent of Total Hosts

202.2 1452. 1.6.2

78.3 % + 02

-0.2

3303

14m ago

NOTABLE EVENTS BY URGENCY

NOTABLE EVENTS BY TIME

Aug. 4 , 2022 Sheet 43 of 53

20

3304

URGENCY

EVENTS
10

unknown inf ... nal low medium high

access audit endpoint identify network threat

il
12:00 PM

12:00 PM Tue Jul 16

12:00 am Wed Jul 17

US 2022/0245156 A1

FIG . 33A

HNCIDENT REVIEW DATSHBOARD 3310

Incident Review | Actions
Status :

Owner :

Title :

Urgency : high

Security domain :

Governance :

Search :

INCIDENT ATTRIBUTE FIELDS 3311

Patent Application Publication

pci

24 hour window Last 15 minutes

TIME RANGE FIELD 3312

Last 60 minutes Last 4 hours

? 225 matching events

ile

Save -

al Create

Last 24 hours

A Hide

Q Zoom out

Q Zoom to selection

[01] Deselect

Linear scale

= 1 bar = 1 hour

Last 7 days

120

TIMELINE 3313
120

Last 30 days

60

60

Last year

6:00 AM

8:00 AM

Real - time

4:00 AM Sun Aug 26
2012

Other

225 events in a 24 hour window (real - time) (from 11:29:20 AM August 25 to 11:29:20 AM August 26 , 2012)

All time

EVENTS LIST 3314

Custom time .

Select all | Unselect all

« prev

1

2

3

4

5

6

7

9

10

next >>

| Edit selected events | Edit all 225 matching

Select

Options
Time

Security Domain

Title

Urgency

Status

Owner

Aug. 4 , 2022 Sheet 44 of 53

8/26/12 11 : 11 : 03.000 AM

Access

Insecure Or Cleartext Authentication Detected -

O High

New

unassigned
View details

8/26/12 11 : 10 : 07.000 AM

unassigned

Access

Insecure Or Cleartext Authentication Detected

O High

New .

View details

8/26/12 11 : 00 : 39.000 AM

Access

Account (blinebry) Deleted On (PROD.POS - 001) -

unassigned

O High •

New -

View details

8/26/12 11 : 00 : 39.000 AM

Access -

Account (beu) Deleted On (COREDEV.006)

O High

unassigned
New

View details

8/26/12 11 : 00 : 39.000 AM

unassigned

Access

O High

Account (combs) Deleted On (HOST - 005)

New

View details

8/28/12

unassigned

Access

Account (wisner) Deleted On (BUSDEV - 005) -

High -

New -

View details

US 2022/0245156 A1

FIG . 33B

Patent Application Publication

3331

3331

3331

3332

3333

-3332

3332

3333

(14)
104) 1914

41004)

(4) 990) (4904104
(414)

3333

USER SELECTS THIS NODE

NODE EXPANDS

3335

3335

{ (4) $ 104

-3334

Aug. 4 , 2022 Sheet 45 of 53

3334

USER SELECTS THIS NODE

: 3336

NODE EXPANDS
49114) 13744) 104) 6) !) 04)

16404)

? ttttt
3337 3338
3339

FIG . 33C

US 2022/0245156 A1

RECENT TASKS AND EVENTS

RECENT ESX / I LOG ENTRIES

< PREV 1 2 3 4 5 NEXT »

« PREV 1

2 3 4 5 6 7 8

10 11 12 13 14 15 NEXT >>

_TIME

MESSAGE

TIME

HOST

MESSAGE

1 11/20/13 1 : 45 : 21.200 PM

ALARM " HOST CPU USAGE ' ON APPS-ESX1501.SV.SPLUNK.COM CHA

1 11/20/13 13 : 50 : 14.381

APPS - ESX1501 . SV.SPLUNK.COM

| VPXLRO | --FINISH TASK - I

Patent Application Publication

2 11/20/13 1 : 44 : 37.350 PM

CHANGED RESOURCE ALLOCATION FOR LOAD - VM - 18

2 11/20/13 13 : 50 : 14.229

APPS-ESX1501.SV.SPLUNK.COM
| VPXLRO | --FINISH TASK - I

3 11/20/13 1 : 44 : 31.610 PM

MIGRATING LOAD - VM - 18 OFF HOST APPS-ESX1501.SV.SPLUNK.COM

3 11/20/13 13 : 50 : 08.325

APPS - ESX1501 . SV.SPLUNK.COM

| VPXLRO | --FINISH TASK - I

4 11/20/13 1 : 44 : 30.470 PM

MIGRATING LOAD - VM - 18 FROM APPS - ESX1501 . SV.SPLUNK.COM , ISC

4 11/20/13 13 : 50 : 08.310

APPS-ESX1501.SV.SPLUNK.COM
| VPXLRO | --FINISH TASK - I | VPXLRO | --FINISH TASK- |

5 11/20/13 1 : 44 : 29.100 PM

TASK : MIGRATE VIRTUAL MACHINE

5 11/20/13 13 : 50 : 05.310

APPS-ESX1501.SV.SPLUNK.COM

CPU

AGGREGATED

AVERAGE CPU COREUTILIZATION

AVERAGE

PULL - DOWN MENUS 3342

DISPLAY MARKERS NO
125

P_AVERAGE_CPU_ COREUTILIZATION_ PERCENT

100

Aug. 4 , 2022 Sheet 46 of 53

75)

CRITICAL

50

WARNING

25

| 11 : 00 AM

(12:00 PM

11:00 PM

110 : 00 AM
WED NOV 20

2013

TIME

US 2022/0245156 A1

FIG . 33D

3400A

Patent Application Publication

-3402

3404

- 3406

3408

3410

DATA STREAM

PROCESSING PIPELINE

USER DEFINED DATA STREAM

PROCESSING PIPELINE

DATA STREAM

Aug. 4 , 2022 Sheet 47 of 53 US 2022/0245156 A1

FIG . 34A

3400B

Patent Application Publication

3412
DATA SOURCE

3414
USER DEFINED DATA STREAM

-3416 PROCESSING PIPELINE

-3418
USER DEFINED DATA STREAM

3420
DATA SINK

Aug. 4 , 2022 Sheet 48 of 53 US 2022/0245156 A1

FIG . 34B

Patent Application Publication Aug. 4 , 2022 Sheet 49 of 53 US 2022/0245156 A1

3500

START

-3502

OBTAIN A FIRST USER INPUT DEFINING A FIRST
PROCESSING PIPELINE AND A SECOND

PROCESSING PIPELINE AND A SECOND USER INPUT
DEFINING A USER DEFINED STREAM AND ROUTING

CRITERIA

3504

RECEIVE A SET OF DATA AT A FIRST EXTERNALLY
DEFINED STREAM

3506

BASED ON THE FIRST USER INPUT , PERFORM ONE
OR MORE FIRST DATA TRANSFORMATIONS ON THE

SET OF DATA TO GENERATE A FIRST SET OF
TRANSFORMED DATA

-3508

BASED ON THE ROUTING CRITERIA AND THE FIRST
USER INPUT , POPULATE THE USER DEFINED

STREAM WITH THE FIRST SET OF TRANSFORMED
DATA

-3510
BASED ON THE ROUTING CRITERIA AND THE FIRST
USER INPUT , PERFORM ONE OR MORE SECOND
DATA TRANSFORMATIONS ON THE FIRST SET OF

TRANSFORMED DATA TO GENERATE A SECOND SET
OF TRANSFORMED DATA

3512

BASED ON THE FIRST USER INPUT , ROUTE THE
SECOND SET OF TRANSFORMED DATA TO A
SECOND EXTERNALLY DEFINED STREAM

END

FIG . 35

Patent Application Publication Aug. 4 , 2022 Sheet 50 of 53 US 2022/0245156 A1

3600

START

-3602

OBTAIN A FIRST USER INPUT DEFINING A SET OF
USER DEFINED STREAMS AND ROUTING CRITERIA

AND A SECOND USER INPUT DEFINING A
PROCESSING PIPELINE

3604

RECEIVE A SET OF DATA

-3606

BASED ON THE ROUTING CRITERIA , POPULATE A
FIRST USER DEFINED STREAM OF THE SET OF USER
DEFINED STREAMS WITH A SUBSET OF THE SET OF

DATA

-3608

} BASED ON THE SECOND USER INPUT , PERFORM
ONE OR MORE DATA TRANSFORMATIONS ON THE
SUBSET OF THE SET OF DATA TO GENERATE A SET

OF TRANSFORMED DATA
-3610

BASED ON THE SECOND USER INPUT , POPULATE A
SECOND USER DEFINED STREAM OF THE SET OF

USER DEFINED STREAMS WITH THE SET OF
TRANSFORMED DATA

END

FIG . 36

3700

X

X

f ?

Q

3704B .

3704C

3704D

?

3702

STREAM X HOME

BUILD STREAM

DATA MANAGEMENT
USER MANAGEMENT

Patent Application Publication

3704A

STREAM POLICIES

3712

3706

STREAM SCHEMA
CURRENT : STREAM SCHEMA XY UPLOAD ASTREAM SCHEMA

STORAGE QUOTA : 50 GB DATA RETENTION : 1 HOUR THROUGHPUT : 10 IOPS

3708

MODIFY STREAM CHARACTERISTICS
TIMESTAMP : TSTAMP

KIND : KIND123

SOURCE : SOURCE123

STREAM NAME : STREAM X

NANOS : YES

ID : 1234

BODY : BODY 123

HOST : HOST123

UPLOAD

ATTRIBUTES : ATTRIBUTES123 SOURCE TYPE : SOURCE TYPE123

POPULATE STREAM (OPTIONAL)

CURRENT : NONE
SEARCH : PIPELINE X

Aug. 4 , 2022 Sheet 51 of 53

3710

UPLOAD

UPLOAD

US 2022/0245156 A1

FIG . 37

3800

X

X

f ? ta

3804B

3804C

3804D

3802

PIPELINE X HOME

BUILD PIPELINE

DATA MANAGEMENT
USER MANAGEMENT

Patent Application Publication

3804A

DATA TRANSFORMATIONS

3810

3806

READ DATA FROM STREAM

CURRENT : USER DEFINED STREAMY
SEARCH :

USER DEFINED STREAM XYZ

DATATRANSFORMATION X DATATRANSFORMATION Y

PERFORMANCE STATISTICS
LATENCY : 33.6 MS

BYTES PER SECOND : 0 EVENTS PER SECOND : 0

Aug. 4 , 2022 Sheet 52 of 53

3808

WRITE DATA TO STREAM

CURRENT : USER DEFINED STREAMYX SEARCH : USER DEFINED STREAM YX

PERFORMANCE STATISTICS
LATENCY : 0.4 MS

BYTES PER SECOND : 0 EVENTS PER SECOND : 0

UPLOAD

US 2022/0245156 A1

FIG . 38

Patent Application Publication Aug. 4 , 2022 Sheet 53 of 53 US 2022/0245156 A1

3900 START

3902

CAUSE DISPLAY OF FIRST GRAPHICAL CONTROLS
THAT ENABLE A USER TO DEFINE USER DEFINED

STREAMS

3904

CAUSE DISPLAY OF SECOND GRAPHICAL CONTROLS
THAT ENABLE THE USER TO DEFINE PROCESSING

PIPELINES THAT EACH OBTAIN DATA FROM A
PARTICULAR USER DEFINED STREAM AND WRITE
TRANSFORMED DATA TO A PARTICULAR USER

DEFINED STREAM

-3906

IMPLEMENT THE USER DEFINED STREAMS AND THE
PROCESSING PIPELINES

-3908

ROUTE A SET OF DATA VIA THE USER DEFINED
STREAMS AND THE PROCESSING PIPELINES

END

FIG . 39

US 2022/0245156 A1 Aug. 4 , 2022
1

ROUTING DATA BETWEEN PROCESSING
PIPELINES VIA A USER DEFINED DATA

STREAM

RELATED APPLICATIONS
[0001] Any and all applications for which a foreign or
domestic priority claim is identified in the Application Data
Sheet as filed with the present application are incorporated
by reference under 37 CFR 1.57 and made a part of this
specification . This application claims the benefit of priority
of U.S. Provisional Patent Application No. 63 / 143,706 , filed
Jan. 29 , 2021 , entitled “ USER DEFINED STREAMS FOR
PROCESSING PIPELINES , ” which is hereby incorporated
by reference herein in its entirety and for all purposes .
[0002] This application is being filed concurrently with the
following U.S. Applications , each of which is incorporated
herein by reference in its entirety :

referred to as “ raw data ”) for later retrieval and analysis is
becoming increasingly more feasible as storage capacity
becomes more inexpensive and plentiful . In general , storing
raw data and performing analysis on that data later can
provide greater flexibility because it enables an analyst to
analyze all of the generated data instead of only a fraction of
it .
[0007] Although the availability of vastly greater amounts
of diverse data on diverse data systems provides opportu
nities to derive new insights , it also gives rise to technical
challenges to search and analyze the data . Tools exist that
allow an analyst to search data systems separately and
collect results over a network for the analyst to derive
insights in a piecemeal manner . However , UI tools that allow
analysts to quickly search and analyze large set of raw
machine data to visually identify data subsets of interest ,
particularly via straightforward and easy - to - understand sets
of tools and search functionality do not exist .

U.S. App . BRIEF DESCRIPTION OF THE DRAWINGS Attorney
Docket

Filing
Date No. Title

TBD

TBD ***

SPLK.085A1 A USER DEFINED DATA STREAM ***
FOR ROUTING DATA

SPLK.085A2 USER INTERFACE FOR
CUSTOMIZING DATA STREAMS

SPLK.085A3 ROUTING DATA BETWEEN
PROCESSING PIPELINES VIA A
USER DEFINED DATA STREAM

TBD ***

a

FIELD

[0003] At least one embodiment of the present disclosure
pertains to one or more tools for facilitating searching and
analyzing large sets of data to locate data of interest . a

BACKGROUND

[0004] Information technology (IT) environments can
include diverse types of data systems that store large
amounts of diverse data types generated by numerous
devices . For example , a big data ecosystem may include
databases such as MySQL and Oracle databases , cloud
computing services such as Amazon web services (AWS) ,
and other data systems that store passively or actively
generated data , including machine - generated data (“ ma
chine data ”) . The machine data can include performance
data , diagnostic data , or any other data that can be analyzed
to diagnose equipment performance problems , monitor user
interactions , and to derive other insights .
[0005] The large amount and diversity of data systems
containing large amounts of structured , semi - structured , and
unstructured data relevant to any search query can be
massive , and continues to grow rapidly . This technological
evolution can give rise to various challenges in relation to
managing , understanding and effectively utilizing the data .
To reduce the potentially vast amount of data that may be
generated , some data systems pre - process data based on
anticipated data analysis needs . In particular , specified data
items may be extracted from the generated data and stored
in a data system to facilitate efficient retrieval and analysis
of those data items at a later time . At least some of the
remainder of the generated data is typically discarded during
pre - processing .
[0006] However , storing massive quantities of minimally
processed or unprocessed data (collectively and individually

[0008] The present disclosure is illustrated by way of
example , and not limitation , in the figures of the accompa
nying drawings , in which like reference numerals indicate
similar elements .
[0009] FIG . 1 is a block diagram of an example networked
computer environment , in accordance with example
embodiments .
[0010] FIG . 2 is a block diagram of an example data intake
and query system , in accordance with example embodi
ments .
[0011] FIG . 3A is a block diagram of one embodiment an
intake system .
[0012] FIG . 3B is a block diagram of another embodiment
of an intake system .
[0013] FIG . 4 is a block diagram illustrating an embodi
ment of an indexing system of the data intake and query
system .
[0014] FIG . 5 is a block diagram illustrating an embodi
ment of a query system of the data intake and query system .
[0015] FIG . 6 is a flow diagram depicting illustrative
interactions for processing data through an intake system , in
accordance with example embodiments .
[0016] FIG . 7 is a flowchart depicting an illustrative
routine for processing data at an intake system , according to
example embodiments .
[0017] FIG . 8 is a data flow diagram illustrating an
embodiment of the data flow and communications between
a variety of the components of the data intake and query
system during indexing .
[0018] FIG . 9 is a flow diagram illustrative of an embodi
ment of a routine implemented by an indexing system to
store data in common storage .
[0019] FIG . 10 is a flow diagram illustrative of an embodi
ment of a routine implemented by an indexing system to
store data in common storage .
[0020] FIG . 11 is a flow diagram illustrative of an embodi
ment of a routine implemented by an indexing node to
update a location marker in an ingestion buffer .
[0021] FIG . 12 is a flow diagram illustrative of an embodi
ment of a routine implemented by an indexing node to merge
buckets .
[0022] FIG . 13 is a data flow diagram illustrating an
embodiment of the data flow and communications between

a

a

US 2022/0245156 A1 Aug. 4 , 2022
2

a

a

[0042] FIG . 32 is an example search query received from
a client and executed by search peers , in accordance with
example embodiments .
[0043] FIG . 33A is an interface diagram of an example
user interface of a key indicators view , in accordance with
example embodiments .
[0044] FIG . 33B is an interface diagram of an example
user interface of an incident review dashboard , in accor
dance with example embodiments .
(0045] FIG . 33C is a tree diagram of an example a
proactive monitoring tree , in accordance with example
embodiments .
[0046] FIG . 33D is an interface diagram of an example a
user interface displaying both log data and performance
data , in accordance with example embodiments .
[0047] FIG . 34A is a block diagram of a data structure in
which a user defined data stream can obtain data from a
processing pipeline and provide the data to another process
ing pipeline , in accordance with example embodiments
[0048] FIG . 34B is a block diagram of a data structure in
which a processing pipeline can obtain data from a user
defined data stream and provide data to another user defined
data stream , in accordance with example embodiments
[0049] FIG . 35 is an interface diagram of an example a
user interface displaying controls for defining a data stream ,
in accordance with example embodiments .
[0050] FIG . 36 is an interface diagram of an example a
user interface displaying controls for define a processing
pipeline , in accordance with example embodiments .
[0051] FIG . 37 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to route
data for data ingestion .
[0052] FIG . 38 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to route
data for data ingestion .
[0053] FIG . 39 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to route
data for data ingestion .

a

a

a variety of the components of the data intake and query
system during execution of a query .
[0023] FIG . 14 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to execute
a query .
[0024] FIG . 15 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to execute
a query .
[0025] FIG . 16 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to identify
buckets for query execution .
[0026] FIG . 17 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to identify
search nodes for query execution .
[0027] FIG . 18 is a flow diagram illustrative of an embodi
ment of a routine implemented by a query system to hash
bucket identifiers for query execution .
[0028] FIG . 19 is a flow diagram illustrative of an embodi
ment of a routine implemented by a search node to execute
search on a bucket .

[0029] FIG . 20 is a flow diagram illustrative of an embodi
ment of a routine implemented by the query system to store
search results .
[0030] FIG . 21A is a flowchart of an example method that
illustrates how indexers process , index , and store data
received from intake system , in accordance with example
embodiments .
[0031] FIG . 21B is a block diagram of a data structure in
which time - stamped event data can be stored in a data store ,
in accordance with example embodiments .
[0032] FIG . 21C provides a visual representation of the
manner in which a pipelined search language or query
operates , in accordance with example embodiments .
[0033] FIG . 22A is a flow diagram of an example method
that illustrates how a search head and indexers perform a
search query , in accordance with example embodiments .
[0034] FIG . 22B provides a visual representation of an
example manner in which a pipelined command language or
query operates , in accordance with example embodiments .
[0035] FIG . 23A is a diagram of an example scenario
where a common customer identifier is found among log
data received from three disparate data sources , in accor
dance with example embodiments .
[0036] FIG . 23B illustrates an example of processing
keyword searches and field searches , in accordance with
disclosed embodiments .
[0037] FIG . 23C illustrates an example of creating and
using an inverted index , in accordance with example
embodiments .
[0038] FIG . 23D depicts a flowchart of example use of an
inverted index in a pipelined search query , in accordance
with example embodiments .
[0039] FIG . 24A is an interface diagram of an example
user interface for a search screen , in accordance with
example embodiments .
[0040] FIG . 24B is an interface diagram of an example
user interface for a data summary dialog that enables a user
to select various data sources , in accordance with example
embodiments .
[0041] FIGS . 25 , 26 , 27A - 27D , 28 , 29 , 30 , and 31 are
interface diagrams of example report generation user inter
faces , in accordance with example embodiments .

a

a

a

DETAILED DESCRIPTION

[0054] Embodiments are described herein according to the
following outline :
[0055] 1.0 . General Overview
[0056] 2.0 . Operating Environment

[0057] 2.1 . Host Devices
[0058] 2.2 . Client Devices
[0059] 2.3 . Client Device Applications
[0060] 2.4 . Data Intake and Query System Overview

[0061] 3.0 . Data Intake and Query System Architecture
[0062] 3.1 . Intake System

[0063] 3.1.1 Forwarder
[0064] 3.1.2 Data Retrieval Subsystem
[0065] 3.1.3 Ingestion Buffer
[0066] 3.1.4 Streaming Data Processors

[0067] 3.2 . Indexing System
[0068] 3.2.1 . Indexing System Manager
[0069] 3.2.2 . Indexing Nodes

[0070] 3.2.2.1 Indexing Node Manager
[0071] 3.2.2.2 Partition Manager
[0072] 3.2.2.3 Indexer and Data Store

[0073] 3.2.3 . Bucket Manager
[0074] 3.3 Query System

[0075] 3.3.1 . Query System Manager
[0076] 3.3.2 . Search Head

a

US 2022/0245156 A1 Aug. 4 , 2022
3

[0077] 3.3.2.1 Search Master
[0078] 3.3.2.2 Search Manager

[0079] 3.3.3 . Search Nodes
[0080] 3.3.4 . Cache Manager
[0081] 3.3.5 . Search Node Monitor and Catalog

[0082] 3.4 . Common Storage
[0083] 3.5 . Data Store Catalog
[0084] 3.6 . Query Acceleration Data Store

[0085] 4.0 . Data Intake and Query System Functions
[0086] 4.1 . Ingestion

[0087] 4.1.1 Publication to Intake Topic (s)
[0088] 4.1.2 Transmission to Streaming Data Proces

sors
[0089] 4.1.3 Messages Processing
[0090] 4.1.4 Transmission to Subscribers
[0091] 4.1.5 Data Resiliency and Security
[0092] 4.1.6 Message Processing Algorithm

[0093] 4.2 . Indexing
[0094] 4.2.1 . Containerized Indexing Nodes
[0095] 4.2.2 . Moving Buckets to Common Storage
[0096] 4.2.3 . Updating Location Marker in Ingestion
Buffer

[0097] 4.2.4 . Merging Buckets
[0098] 4.3 . Querying

[0099] 4.3.1 . Containerized Search Nodes
[0100) 4.3.2 . Identifying Buckets for Query Execu

tion
[0101] 4.3.4 . Hashing Bucket Identifiers for Query
Execution

[0102] 4.3.5 . Mapping Buckets to Search Nodes
[0103] 4.3.6 . Obtaining Data for Query Execution
[0104] 4.3.7 . Caching Search Results

[0105] 4.4 . Data Ingestion , Indexing , and Storage Flow
[0106] 4.4.1 . Input
[0107] 4.4.2 . Parsing
[0108] 4.4.3 . Indexing

[0109] 4.5 . Query Processing Flow
[0110] 4.6 . Pipelined Search Language
[0111] 4.7 . Field Extraction
[0112] 4.8 . Example Search Screen
[0113] 4.9 . Data Models
[0114] 4.10 . Acceleration Techniques

[0115] 4.10.1 . Aggregation Technique
[0116] 4.10.2 . Keyword Index
[0117] 4.10.3 . High Performance Analytics Store

[0118] 4.10.3.1 Extracting Event Data Using Post
ing

[0119] 4.10.4 . Accelerating Report Generation
[0120] 4.12 . Security Features
[0121] 4.13 . Data Center Monitoring
[0122] 4.14 . IT Service Monitoring
[0123] 4.15 . Other Architectures

(0124] 5.0 . User - Defined Data Streams
[0125] 5.1 . Data Routes Using User - Defined Data

Streams and Pipelines
[0126] 5.2 Graphical Controls for Defining and Imple
menting Data Streams

ponents within these computing environments often gener
ate significant volumes of machine data . Machine data is any
data produced by a machine or component in an information
technology (IT) environment and that reflects activity in the
IT environment . For example , machine data can be raw
machine data that is generated by various components in IT
environments , such as servers , sensors , routers , mobile
devices , Internet of Things (IoT) devices , etc. Machine data
can include system logs , network packet data , sensor data ,
application program data , error logs , stack traces , system
performance data , etc. In general , machine data can also
include performance data , diagnostic information , and many
other types of data that can be analyzed to diagnose perfor
mance problems , monitor user interactions , and to derive
other insights .
[0128] A number of tools are available to analyze machine
data . In order to reduce the size of the potentially vast
amount of machine data that may be generated , many of
these tools typically pre - process the data based on antici
pated data - analysis needs . For example , pre - specified data
items may be extracted from the machine data and stored in
a database to facilitate efficient retrieval and analysis of
those data items at search time . However , the rest of the
machine data typically is not saved and is discarded during
pre - processing . As storage capacity becomes progressively
cheaper and more plentiful , there are fewer incentives to
discard these portions of machine data and many reasons to
retain more of the data .
[0129] This plentiful storage capacity is presently making
it feasible to store massive quantities of minimally processed
machine data for later retrieval and analysis . In general ,
storing minimally processed machine data and performing
analysis operations at search time can provide greater flex
ibility because it enables an analyst to search all of the
machine data , instead of searching only a pre - specified set of
data items . This may enable an analyst to investigate dif
ferent aspects of the machine data that previously were
unavailable for analysis .
[0130] However , analyzing and searching massive quan
tities of machine data presents a number of challenges . For
example , a data center , servers , or network appliances may
generate many different types and formats of machine data
(e.g. , system logs , network packet data (e.g. , wire data , etc.) ,
sensor data , application program data , error logs , stack
traces , system performance data , operating system data ,
virtualization data , etc.) from thousands of different com
ponents , which can collectively be very time - consuming to
analyze . In another example , mobile devices may generate
large amounts of information relating to data accesses ,
application performance , operating system performance ,
network performance , etc. There can be millions of mobile
devices that report these types of information .
[0131] These challenges can be addressed by using an
event - based data intake and query system , such as the
SPLUNK? ENTERPRISE system developed by Splunk
Inc. of San Francisco , Calif . The SPLUNK® ENTERPRISE
system is the leading platform for providing real - time opera
tional intelligence that enables organizations to collect ,
index , and search machine data from various websites ,
applications , servers , networks , and mobile devices that
power their businesses . The data intake and query system is
particularly useful for analyzing data which is commonly
found in system log files , network data , and other data input
sources . Although many of the techniques described herein

1.0 . General Overview
[0127] Modern data centers and other computing environ
ments can comprise anywhere from a few host computer
systems to thousands of systems configured to process data ,
service requests from remote clients , and perform numerous
other computational tasks . During operation , various com

US 2022/0245156 A1 Aug. 4 , 2022
4

are explained with reference to a data intake and query
system similar to the SPLUNK® ENTERPRISE system ,
these techniques are also applicable to other types of data
systems .
[0132] In the data intake and query system , machine data
are collected and stored as “ events . ” An event comprises a
portion of machine data and is associated with a specific
point in time . The portion of machine data may reflect
activity in an IT environment and may be produced by a
component of that IT environment , where the events may be
searched to provide insight into the IT environment , thereby
improving the performance of components in the IT envi
ronment . Events may be derived from “ time series data , "
where the time series data comprises a sequence of data
points (e.g. , performance measurements from a computer
system , etc.) that are associated with successive points in
time . In general , each event has a portion of machine data
that is associated with a timestamp that is derived from the
portion of machine data in the event . A timestamp of an
event may be determined through interpolation between
temporally proximate events having known timestamps or
may be determined based on other configurable rules for
associating timestamps with events .
[0133] In some instances , machine data can have a pre
defined format , where data items with specific data formats
are stored at predefined locations in the data . For example ,
the machine data may include data associated with fields in
a database table . In other instances , machine data may not
have a predefined format (e.g. , may not be at fixed , pre
defined locations) , but may have repeatable (e.g. , non
random) patterns . This means that some machine data can
comprise various data items of different data types that may
be stored at different locations within the data . For example ,
when the data source is an operating system log , an event
can include one or more lines from the operating system log
containing machine data that includes different types of
performance and diagnostic information associated with a
specific point in time (e.g. , a timestamp) .
[0134] Examples of components which may generate
machine data from which events can be derived include , but
are not limited to , web servers , application servers , data
bases , firewalls , routers , operating systems , and software
applications that execute on computer systems , mobile
devices , sensors , Internet of Things (IoT) devices , etc. The
machine data generated by such data sources can include , for
example and without limitation , server log files , activity log
files , configuration files , messages , network packet data ,
performance measurements , sensor measurements , etc.
[0135] The data intake and query system uses a flexible
schema to specify how to extract information from events .
A flexible schema may be developed and redefined as
needed . Note that a flexible schema may be applied to events
“ on the fly , " when it is needed (e.g. , at search time , index
time , ingestion time , etc.) . When the schema is not applied
to events until search time , the schema may be referred to as
a “ late - binding schema . ”
[0136] During operation , the data intake and query system
receives machine data from any type and number of sources
(e.g. , one or more system logs , streams of network packet
data , sensor data , application program data , error logs , stack
traces , system performance data , etc.) . The system parses the
machine data to produce events each having a portion of
machine data associated with a timestamp . The system
stores the events in a data store . The system enables users to

run queries against the stored events to , for example , retrieve
events that meet criteria specified in a query , such as criteria
indicating certain keywords or having specific values in
defined fields . As used herein , the term “ field ” refers to a
location in the machine data of an event containing one or
more values for a specific data item . A field may be
referenced by a field name associated with the field . As will
be described in more detail herein , a field is defined by an
extraction rule (e.g. , a regular expression) that derives one or
more values or a sub - portion of text from the portion of
machine data in each event to produce a value for the field
for that event . The set of values produced are semantically
related (such as IP address) , even though the machine data
in each event may be in different formats (e.g. , semantically
related values may be in different positions in the events
derived from different sources) .
[0137] As described above , the system stores the events in
a data store . The events stored in the data store are field
searchable , where field - searchable herein refers to the ability
to search the machine data (e.g. , the raw machine data) of an
event based on a field specified in search criteria . For
example , a search having criteria that specifies a field name
“ UserID ” may cause the system to field - search the machine
data of events to identify events that have the field name
“ UserID . ” In another example , a search having criteria that
specifies a field name “ UserID ” with a corresponding field
value “ 12345 ” may cause the system to field - search the
machine data of events to identify events having that field
value pair (e.g. , field name “ UserID " with a corresponding
field value of “ 12345 ”) . Events are field - searchable using
one or more configuration files associated with the events .
Each configuration file includes one or more field names ,
where each field name is associated with a corresponding
extraction rule and a set of events to which that extraction
rule applies . The set of events to which an extraction rule
applies may be identified by metadata associated with the set
of events . For example , an extraction rule may apply to a set
of events that are each associated with a particular host ,
source , or source type . When events are to be searched based
on a particular field name specified in a search , the system
uses one or more configuration files to determine whether
there is an extraction rule for that particular field name that
applies to each event that falls within the criteria of the
search . If so , the event is considered as part of the search
results (and additional processing may be performed on that
event based on criteria specified in the search) . If not , the
next event is similarly analyzed , and so on .
[0138] As noted above , the data intake and query system
utilizes a late - binding schema while performing queries on
events . One aspect of a late - binding schema is applying
extraction rules to events to extract values for specific fields
during search time . More specifically , the extraction rule for
a field can include one or more instructions that specify how
to extract a value for the field from an event . An extraction
rule can generally include any type of instruction for extract
ing values from events . In some cases , an extraction rule
comprises a regular expression , where a sequence of char
acters form a search pattern . An extraction rule comprising
a regular expression is referred to herein as a regex rule . The
system applies a regex rule to an event to extract values for
a field associated with the regex rule , where the values are
extracted by searching the event for the sequence of char
acters defined in the regex rule .

US 2022/0245156 A1 Aug. 4 , 2022
5

a

[0139] In the data intake and query system , a field extrac
tor may be configured to automatically generate extraction
rules for certain fields in the events when the events are
being created , indexed , or stored , or possibly at a later time .
Alternatively , a user may manually define extraction rules
for fields using a variety of techniques . In contrast to a
conventional schema for a database system , a late - binding
schema is not defined at data ingestion time . Instead , the
late - binding schema can be developed on an ongoing basis
until the time a query is actually executed . This means that
extraction rules for the fields specified in a query may be
provided in the query itself , or may be located during
execution of the query . Hence , as a user learns more about
the data in the events , the user can continue to refine the
late - binding schema by adding new fields , deleting fields , or
modifying the field extraction rules for use the next time the
schema is used by the system . Because the data intake and
query system maintains the underlying machine data and
uses a late - binding schema for searching the machine data ,
it enables a user to continue investigating and learn valuable
insights about the machine data .
[0140] In some embodiments , a common field name may
be used to reference two or more fields containing equiva
lent and / or similar data items , even though the fields may be
associated with different types of events that possibly have
different data formats and different extraction rules . By
enabling a common field name to be used to identify
equivalent and / or similar fields from different types of
events generated by disparate data sources , the system
facilitates use of a “ common information model ” (CIM)
across the disparate data sources (further discussed with
respect to FIG . 23A) .

may broadly include any number of computers , virtual
machine instances , and / or data centers that are configured to
host or execute one or more instances of host applications
114. In general , a host device 106 may be involved , directly
or indirectly , in processing requests received from client
devices 102. Each host device 106 may comprise , for
example , one or more of a network device , a web server , an
application server , a database server , etc. A collection of host
devices 106 may be configured to implement a network
based service . For example , a provider of a network - based
service may configure one or more host devices 106 and host
applications 114 (e.g. , one or more web servers , application
servers , database servers , etc.) to collectively implement the
network - based application .
[0145] In general , client devices 102 communicate with
one or more host applications 114 to exchange information .
The communication between a client device 102 and a host
application 114 may , for example , be based on the Hypertext
Transfer Protocol (HTTP) or any other network protocol .
Content delivered from the host application 114 to a client
device 102 may include , for example , HTML documents ,
media content , etc. The communication between a client
device 102 and host application 114 may include sending
various requests and receiving data packets . For example , in
general , a client device 102 or application running on a
client device may initiate communication with a host appli
cation 114 by making a request for a specific resource (e.g. ,
based on an HTTP request) , and the application server may
respond with the requested content stored in one or more
response packets .
[0146] In the illustrated embodiment , one or more of host
applications 114 may generate various types of performance
data during operation , including event logs , network data ,
sensor data , and other types of machine data . For example ,
a host application 114 comprising a web server may generate
one or more web server logs in which details of interactions
between the web server and any number of client devices
102 is recorded . As another example , a host device 106
comprising a router may generate one or more router logs
that record information related to network traffic managed
by the router . As yet another example , a host application 114
comprising a database server may generate one or more logs
that record information related to requests sent from other
host applications 114 (e.g. , web servers or application serv
ers) for data managed by the database server .

2.0 . Operating Environment
a

2.2 . Client Devices

[0141] FIG . 1 is a block diagram of an example networked
computer environment 100 , in accordance with example
embodiments . It will be understood that FIG . 1 represents
one example of a networked computer system and other
embodiments may use different arrangements .
[0142] The networked computer system 100 comprises
one or more computing devices . These one or more com
puting devices comprise any combination of hardware and
software configured to implement the various logical com
ponents described herein . For example , the one or more
computing devices may include one or more memories that
store instructions for implementing the various components
described herein , one or more hardware processors config
ured to execute the instructions stored in the one or more
memories , and various data repositories in the one or more
memories for storing data structures utilized and manipu
lated by the various components .
[0143] In some embodiments , one or more client devices
102 are coupled to one or more host devices 106 and a data
intake and query system 108 via one or more networks 104 .
Networks 104 broadly represent one or more LANs , WANS ,
cellular networks (e.g. , LTE , HSPA , 3G , and other cellular
technologies) , and / or networks using any of wired , wireless ,
terrestrial microwave , or satellite links , and may include the
public Internet .

a

[0147] Client devices 102 of FIG . 1 represent any com
puting device capable of interacting with one or more host
devices 106 via a network 104. Examples of client devices
102 may include , without limitation , smart phones , tablet
computers , handheld computers , wearable devices , laptop
computers , desktop computers , servers , portable media play
ers , gaming devices , and so forth . In general , a client device
102 can provide access to different content , for instance ,
content provided by one or more host devices 106 , etc. Each
client device 102 may comprise one or more client appli
cations 110 , described in more detail in a separate section
hereinafter .

.

2.1 . Host Devices

[0144] In the illustrated embodiment , a system 100
includes one or more host devices 106. Host devices 106

2.3 . Client Device Applications
[0148] In some embodiments , each client device 102 may
host or execute one or more client applications 110 that are

US 2022/0245156 A1 Aug. 4 , 2022
6

a

capable of interacting with one or more host devices 106 via
one or more networks 104. For instance , a client application
110 may be or comprise a web browser that a user may use
to navigate to one or more websites or other resources
provided by one or more host devices 106. As another
example , a client application 110 may comprise a mobile
application or “ app . ” For example , an operator of a network
based service hosted by one or more host devices 106 may
make available one or more mobile apps that enable users of
client devices 102 to access various resources of the net
work - based service . As yet another example , client applica
tions 110 may include background processes that perform
various operations without direct interaction from a user . A
client application 110 may include a “ plug - in ” or “ exten
sion ” to another application , such as a web browser plug - in
or extension .
[0149] In some embodiments , a client application 110 may
include a monitoring component 112. At a high level , the
monitoring component 112 comprises a software component
or other logic that facilitates generating performance data
related to a client device's operating state , including moni
toring network traffic sent and received from the client
device and collecting other device and / or application - spe
cific information . Monitoring component 112 may be an
integrated component of a client application 110 , a plug - in ,
an extension , or any other type of add - on component .
Monitoring component 112 may also be a stand - alone pro
cess .

a

and / or received by a client application 110. For example , the
monitoring component 112 may be configured to monitor
data packets transmitted to and / or from one or more host
applications 114. Incoming and / or outgoing data packets can
be read or examined to identify network data contained
within the packets , for example , and other aspects of data
packets can be analyzed to determine a number of network
performance statistics . Monitoring network traffic may
enable information to be gathered particular to the network
performance associated with a client application 110 or set
of applications .
[0154] In some embodiments , network performance data
refers to any type of data that indicates information about the
network and / or network performance . Network performance
data may include , for instance , a URL requested , a connec
tion type (e.g. , HTTP , HTTPS , etc.) , a connection start time ,
a connection end time , an HTTP status code , request length ,
response length , request headers , response headers , connec
tion status (e.g. , completion , response time (s) , failure , etc.) ,
and the like . Upon obtaining network performance data
indicating performance of the network , the network perfor
mance data can be transmitted to a data intake and query
system 108 for analysis .
[0155] Upon developing a client application 110 that
incorporates a monitoring component 112 , the client appli
cation 110 can be distributed to client devices 102. Appli
cations generally can be distributed to client devices 102 in
any manner , or they can be pre - loaded . In some cases , the
application may be distributed to a client device 102 via an
application marketplace or other application distribution
system . For instance , an application marketplace or other
application distribution system might distribute the applica
tion to a client device based on a request from the client
device to download the application .
[0156] Examples of functionality that enables monitoring
performance of a client device are described in U.S. patent
application Ser . No. 14 / 524,748 , entitled “ UTILIZING
PACKET HEADERS TO MONITOR NETWORK TRAF
FIC IN ASSOCIATION WITH A CLIENT DEVICE ” , filed
on 27 Oct. 2014 , and which is hereby incorporated by
reference in its entirety for all purposes .
[0157] In some embodiments , the monitoring component
112 may also monitor and collect performance data related
to one or more aspects of the operational state of a client
application 110 and / or client device 102. For example , a
monitoring component 112 may be configured to collect
device performance information by monitoring one or more
client device operations , or by making calls to an operating
system and / or one or more other applications executing on
a client device 102 for performance information . Device
performance information may include , for instance , a cur
rent wireless signal strength of the device , a current con
nection type and network carrier , current memory perfor
mance information , a geographic location of the device , a
device orientation , and any other information related to the
operational state of the client device .
[0158] In some embodiments , the monitoring component
112 may also monitor and collect other device profile
information including , for example , a type of client device ,
a manufacturer , and model of the device , versions of various
software applications installed on the device , and so forth .
[0159] In general , a monitoring component 112 may be
configured to generate performance data in response to a
monitor trigger in the code of a client application 110 or

a

[0150] In some embodiments , a monitoring component
112 may be created when a client application 110 is devel
oped , for example , by an application developer using a
software development kit (SDK) . The SDK may include
custom monitoring code that can be incorporated into the
code implementing a client application 110. When the code
is converted to an executable application , the custom code
implementing the monitoring functionality can become part
of the application itself .
[0151] In some embodiments , an SDK or other code for
implementing the monitoring functionality may be offered
by a provider of a data intake and query system , such as a
system 108. In such cases , the provider of the system 108
can implement the custom code so that performance data
generated by the monitoring functionality is sent to the
system 108 to facilitate analysis of the performance data by
a developer of the client application or other users .
[0152] In some embodiments , the custom monitoring code
may be incorporated into the code of a client application 110
in a number of different ways , such as the insertion of one
or more lines in the client application code that call or
otherwise invoke the monitoring component 112. As such , a
developer of a client application 110 can add one or more
lines of code into the client application 110 to trigger the
monitoring component 112 at desired points during execu
tion of the application . Code that triggers the monitoring
component may be referred to as a monitor trigger . For
instance , a monitor trigger may be included at or near the
beginning of the executable code of the client application
110 such that the monitoring component 112 is initiated or
triggered as the application is launched , or included at other
points in the code that correspond to various actions of the
client application , such as sending a network request or
displaying a particular interface .
[0153] In some embodiments , the monitoring component
112 may monitor one or more aspects of network traffic sent

a

a

US 2022/0245156 A1 Aug. 4 , 2022
7

a

other triggering application event , as described above , and to
store the performance data in one or more data records . Each
data record , for example , may include a collection of field
value pairs , each field - value pair storing a particular item of
performance data in association with a field for the item . For example , a data record generated by a monitoring compo
nent 112 may include a " networkLatency ” field (not shown
in the Figure) in which a value is stored . This field indicates
a network latency measurement associated with one or more
network requests . The data record may include a “ state ” field
to store a value indicating a state of a network connection ,
and so forth for any number of aspects of collected perfor
mance data .

a

2

2.4 . Data Intake and Query System Overview
[0160] The data intake and query system 108 can process
and store data received data from the data sources client
devices 102 or host devices 106 , and execute queries on the
data in response to requests received from one or more
computing devices . In some cases , the data intake and query
system 108 can generate events from the received data and
store the events in buckets in a common storage system . In
response to received queries , the data intake and query
system can assign one or more search nodes to search the
buckets in the common storage .
[0161] In certain embodiments , the data intake and query
system 108 can include various components that enable it to
provide stateless services or enable it to recover from an
unavailable or unresponsive component without data loss in
a time efficient manner . For example , the data intake and
query system 108 can store contextual information about its
various components in a distributed way such that if one of
the components becomes unresponsive or unavailable , the
data intake and query system 108 can replace the unavail
able component with a different component and provide the
replacement component with the contextual information . In
this way , the data intake and query system 108 can quickly
recover from an unresponsive or unavailable component
while reducing or eliminating the loss of data that was being
processed by the unavailable component .

software , or devices implementing the Message Queue
Telemetry Transport (MQTT) protocol , Microsoft Azure
EventHub , Google Cloud Pub Sub , devices implementing
the Java Message Service (JMS) protocol , devices imple
menting the Advanced Message Queuing Protocol
(AMQP)) , performance metrics , etc.
[0164] The client devices 204 can be implemented using
one or more computing devices in communication with the
data intake and query system 108 , and represent some of the
different ways in which computing devices can submit
queries to the data intake and query system 108. For
example , the client device 204a is illustrated as communi
cating over an Internet (Web) protocol with the data intake
and query system 108 , the client device 2045 is illustrated as
communicating with the data intake and query system 108
via a command line interface , and the client device 2045 is
illustrated as communicating with the data intake and query
system 108 via a software developer kit (SDK) . However , it
will be understood that the client devices 204 can commu
nicate with and submit queries to the data intake and query
system 108 in a variety of ways .
[0165] The data intake and query system 108 can process
and store data received data from the data sources 202 and
execute queries on the data in response to requests received
from the client devices 204. In the illustrated embodiment ,
the data intake and query system 108 includes an intake
system 210 , an indexing system 212 , a query system 214 ,
common storage 216 including one or more data stores 218 ,
a data store catalog 220 , and a query acceleration data store
222 .
[0166] As mentioned , the data intake and query system
108 can receive data from different sources 202. In some
cases , the data sources 202 can be associated with different
tenants or customers . Further , each tenant may be associated
with one or more indexes , hosts , sources , sourcetypes , or
users . For example , company ABC , Inc. can correspond to
one tenant and company XYZ , Inc. can correspond to a
different tenant . While the two companies may be unrelated ,
each company may have a main index and test index
associated with it , as well as one or more data sources or
systems (e.g. , billing system , CRM system , etc.) . The data
intake and query system 108 can concurrently receive and
process the data from the various systems and sources of
ABC , Inc. and XYZ , Inc.
[0167] In certain cases , although the data from different
tenants can be processed together or concurrently , the data
intake and query system 108 can take steps to avoid com
bining or co - mingling data from the different tenants . For
example , the data intake and query system 108 can assign a
tenant identifier for each tenant and maintain a separation
between the data using the tenant identifier . In some cases ,
the tenant identifier can be assigned to the data at the data
sources 202 , or can be assigned to the data by the data intake
and query system 108 at ingest .
[0168] As will be described in greater detail herein , at least
with reference to FIGS . 3A and 3B , the intake system 210
can receive data from the data sources 202 , perform one or
more preliminary processing operations on the data , and
communicate the data to the indexing system 212 , query
system 214 , or to other systems 262 (which may include , for
example , data processing systems , telemetry systems , real
time analytics systems , data stores , databases , etc. , any of
which may be operated by an operator of the data intake and
query system 108 or a third party) . The intake system 210

a

3.0 . Data Intake and Query System Architecture
[0162] FIG . 2 is a block diagram of an embodiment of a
data processing environment 200. In the illustrated embodi
ment , the environment 200 includes data sources 202 and
client devices 204a , 2041 , 204c (generically referred to as
client device (s) 204) in communication with a data intake
and query system 108 via networks 206 , 208 , respectively .
The networks 206 , 208 may be the same network , may
correspond to the network 104 , or may be different net
works . Further , the networks 206 , 208 may be implemented
as one or more LANs , WANs , cellular networks , intranet
works , and / or internetworks using any of wired , wireless ,
terrestrial microwave , satellite links , etc. , and may include
the Internet .
[0163] Each data source 202 broadly represents a distinct
source of data that can be consumed by the data intake and
query system 108. Examples of data sources 202 include ,
without limitation , data files , directories of files , data sent
over a network , event logs , registries , streaming data ser
vices (examples of which can include , by way of non
limiting example , Amazon's Simple Queue Service (" SQS ")
or KinesisTM services , devices executing Apache KafkaTM

US 2022/0245156 A1 Aug. 4 , 2022
8

can receive data from the data sources 202 in a variety of
formats or structures . In some embodiments , the received
data corresponds to raw machine data , structured or unstruc
tured data , correlation data , data files , directories of files ,
data sent over a network , event logs , registries , messages
published to streaming data sources , performance metrics ,
sensor data , image and video data , etc. The intake system
210 can process the data based on the form in which it is
received . In some cases , the intake system 210 can utilize
one or more rules to process data and to make the data
available to downstream systems (e.g. , the indexing system
212 , query system 214 , etc.) . Illustratively , the intake system
210 can enrich the received data . For example , the intake
system may add one or more fields to the data received from
the data sources 202 , such as fields denoting the host , source ,
sourcetype , index , or tenant associated with the incoming
data . In certain embodiments , the intake system 210 can
perform additional processing on the incoming data , such as
transforming structured data into unstructured data (or vice
versa) , identifying timestamps associated with the data ,
removing extraneous data , parsing data , indexing data , sepa
rating data , categorizing data , routing data based on criteria
relating to the data being routed , and / or performing other
data transformations , etc.
[0169] As will be described in greater detail herein , at least
with reference to FIG . 4 , the indexing system 212 can
process the data and store it , for example , in common
storage 216. As part of processing the data , the indexing
system can identify timestamps associated with the data ,
organize the data into buckets or time series buckets , convert
editable buckets to non - editable buckets , store copies of the
buckets in common storage 216 , merge buckets , generate
indexes of the data , etc. In addition , the indexing system 212
can update the data store catalog 220 with information
related to the buckets (pre - merged or merged) or data that is
stored in common storage 216 , and can communicate with
the intake system 210 about the status of the data storage .
[0170] As will be described in greater detail herein , at least
with reference to FIG . 5 , the query system 214 can receive
queries that identify a set of data to be processed and a
manner of processing the set of data from one or more client
devices 204 , process the queries to identify the set of data ,
and execute the query on the set of data . In some cases , as
part of executing the query , the query system 214 can use the
data store catalog 220 to identify the set of data to be
processed or its location in common storage 216 and / or can
retrieve data from common storage 216 or the query accel
eration data store 222. In addition , in some embodiments ,
the query system 214 can store some or all of the query
results in the query acceleration data store 222 .
[0171] As mentioned and as will be described in greater
detail below , the common storage 216 can be made up of one
or more data stores 218 storing data that has been processed
by the indexing system 212. The common storage 216 can
be configured to provide high availability , highly resilient ,
low loss data storage . In some cases , to provide the high
availability , highly resilient , low loss data storage , the com
mon storage 216 can store multiple copies of the data in the
same and different geographic locations and across different
types of data stores (e.g. , solid state , hard drive , tape , etc.) .
Further , as data is received at the common storage 216 it can
be automatically replicated multiple times according to a
replication factor to different data stores across the same
and / or different geographic locations . In some embodi

ments , the common storage 216 can correspond to cloud
storage , such as Amazon Simple Storage Service (S3) or
Elastic Block Storage (EBS) , Google Cloud Storage ,
Microsoft Azure Storage , etc.
[0172] In some embodiments , indexing system 212 can
read to and write from the common storage 216. For
example , the indexing system 212 can copy buckets of data
from its local or shared data stores to the common storage
216. In certain embodiments , the query system 214 can read
from , but cannot write to , the common storage 216. For
example , the query system 214 can read the buckets of data
stored in common storage 216 by the indexing system 212 ,
but may not be able to copy buckets or other data to the
common storage 216. In some embodiments , the intake
system 210 does not have access to the common storage 216 .
However , in some embodiments , one or more components of
the intake system 210 can write data to the common storage
216 that can be read by the indexing system 212 .
[0173] As described herein , such as with reference to
FIGS . 5B and 5C , in some embodiments , data in the data
intake and query system 108 (e.g. , in the data stores of the
indexers of the indexing system 212 , common storage 216 ,
or search nodes of the query system 214) can be stored in
one or more time series buckets . Each bucket can include
raw machine data associated with a time stamp and addi
tional information about the data or bucket , such as , but not
limited to , one or more filters , indexes (e.g. , TSIDX ,
inverted indexes , keyword indexes , etc.) , bucket summaries ,
etc. In some embodiments , the bucket data and information
about the bucket data is stored in one or more files . For
example , the raw machine data , filters , indexes , bucket
summaries , etc. can be stored in respective files in or
associated with a bucket . In certain cases , the group of files
can be associated together to form the bucket .
[0174] The data store catalog 220 can store information
about the data stored in common storage 216 , such as , but
not limited to an identifier for a set of data or buckets , a
location of the set of data , tenants or indexes associated with
the set of data , timing information about the data , etc. For
example , in embodiments where the data in common storage
216 is stored as buckets , the data store catalog 220 can
include a bucket identifier for the buckets in common
storage 216 , a location of or path to the bucket in common
storage 216 , a time range of the data in the bucket (e.g. ,
range of time between the first - in - time event of the bucket
and the last - in - time event of the bucket) , a tenant identifier
identifying a customer or computing device associated with
the bucket , and / or an index (also referred to herein as a
partition) associated with the bucket , etc. In certain embodi
ments , the data intake and query system 108 includes
multiple data store catalogs 220. For example , in some
embodiments , the data intake and query system 108 can
include a data store catalog 220 for each tenant (or group of
tenants) , each partition of each tenant (or group of indexes) ,
etc. In some cases , the data intake and query system 108 can
include a single data store catalog 220 that includes infor
mation about buckets associated with multiple or all of the
tenants associated with the data intake and query system
108 .
[0175] The indexing system 212 can update the data store
catalog 220 as the indexing system 212 stores data in
common storage 216. Furthermore , the indexing system 212
or other computing device associated with the data store
catalog 220 can update the data store catalog 220 as the

2

a

US 2022/0245156 A1 Aug. 4 , 2022
9

implemented as separate software containers or container
instances . Each container instance can have certain
resources (e.g. , memory , processor , etc.) of the underlying
host computing system assigned to it , but may share the
same operating system and may use the operating system's
system call interface . Each container may provide an iso
lated execution environment on the host system , such as by
providing a memory space of the host system that is logi
cally isolated from memory space of other containers . Fur
ther , each container may run the same or different computer
applications concurrently or separately , and may interact
with each other . Although reference is made herein to
containerization and container instances , it will be under
stood that other virtualization techniques can be used . For
example , the components can be implemented using virtual
machines using full virtualization or paravirtualization , etc.
Thus , where reference is made to " containerized ” compo
nents , it should be understood that such components may
additionally or alternatively be implemented in other iso
lated execution environments , such as a virtual machine
environment .

ho

information in the common storage 216 changes (e.g. , as
buckets in common storage 216 are merged , deleted , etc.) . In
addition , as described herein , the query system 214 can use
the data store catalog 220 to identify data to be searched or
data that satisfies at least a portion of a query . In some
embodiments , the query system 214 makes requests to and
receives data from the data store catalog 220 using an
application programming interface (" API ") .
[0176] The query acceleration data store 222 can store the
results or partial results of queries , or otherwise be used to
accelerate queries . For example , if a user submits a query
that has no end date , the system can query system 214 can
store an initial set of results in the query acceleration data
store 222. As additional query results are determined based
on additional data , the additional results can be combined
with the initial set of results , and so on . In this way , the query
system 214 can avoid re - searching all of the data that may
be responsive to the query and instead search the data that
has not already been searched .
[0177] In some environments , a user of a data intake and
query system 108 may install and configure , on computing
devices owned and operated by the user , one or more
software applications that implement some or all of these
system components . For example , a user may install a
software application on server computers owned by the user
and configure each server to operate as one or more of intake
system 210 , indexing system 212 , query system 214 , com
mon storage 216 , data store catalog 220 , or query accelera
tion data store 222 , etc. This arrangement generally may be
referred to as an “ on - premises ” solution . That is , the system
108 is installed and operates on computing devices directly
controlled by the user of the system . Some users may prefer
an on - premises solution because it may provide a greater
level of control over the configuration of certain aspects of
the system (e.g. , security , privacy , standards , controls , etc.) .
However , other users may instead prefer an arrangement in
which the user is not directly responsible for providing and
managing the computing devices upon which various com
ponents of system 108 operate .
[0178] In certain embodiments , one or more of the com
ponents of a data intake and query system 108 can be
implemented in a remote distributed computing system . In
this context , a remote distributed computing system or
cloud - based service can refer to a service hosted by one
more computing resources that are accessible to end users
over a network , for example , by using a web browser or
other application on a client device to interface with the
remote computing resources . For example , a service pro
vider may provide a data intake and query system 108 by
managing computing resources configured to implement
various aspects of the system (e.g. , intake system 210 ,
indexing system 212 , query system 214 , common storage
216 , data store catalog 220 , or query acceleration data store
222 , etc.) and by providing access to the system to end users
via a network . Typically , a user may pay a subscription or
other fee to use such a service . Each subscribing user of the
cloud - based service may be provided with an account that
enables the user to configure a customized cloud - based
system based on the user's preferences . When implemented
as a cloud - based service , various components of the system
108 can be implemented using containerization or operating
system - level virtualization , or other virtualization technique .
For example , one or more components of the intake system
210 , indexing system 212 , or query system 214 can be

3.1 . Intake System
[0179] As detailed below , data may be ingested at the data
intake and query system 108 through an intake system 210
configured to conduct preliminary processing on the data ,
and make the data available to downstream systems or
components , such as the indexing system 212 , query system
214 , third party systems , etc.
[0180] One example configuration of an intake system 210]
is shown in FIG . 3A . As shown in FIG . 3A , the intake
system 210 includes a forwarder 302 , a data retrieval sub
system 304 , an intake ingestion buffer 306 , a streaming data
processor 308 , and an output ingestion buffer 310. As
described in detail below , the components of the intake
system 210 may be configured to process data according to
a streaming data model , such that data ingested into the data
intake and query system 108 is processed rapidly (e.g. ,
within seconds or minutes of initial reception at the intake
system 210) made available to downstream systems or
components . The initial processing of the intake system 210
may include search or analysis of the data ingested into the
intake system 210. For example , the initial processing can
transform data ingested into the intake system 210 suffi
ciently , for example , for the data to be searched by a query
system 214 , thus enabling “ real - time ” searching for data on
the data intake and query system 108 (e.g. , without requiring
indexing of the data) . Various additional and alternative uses
for data processed by the intake system 210 are described
below .
[0181] Although shown as separate components , the for
warder 302 , data retrieval subsystem 304 , intake ingestion
buffer 306 , streaming data processors 308 , and output inges
tion buffer 310 , in various embodiments , may reside on the
same machine or be distributed across multiple machines in
any combination . In one embodiment , any or all of the
components of the intake system can be implemented using
one or more computing devices as distinct computing
devices or as one or more container instances or virtual
machines across one or more computing devices . It will be
appreciated by those skilled in the art that the intake system
210 may have more of fewer components than are illustrated
in FIGS . 3A and 3B . In addition , the intake system 210 could
include various web services and / or peer - to - peer network

US 2022/0245156 A1 Aug. 4 , 2022
10

a

a

data source 202. While a single forwarder 302 is illustra
tively shown in FIG . 3A , the intake system 210 may include
a number of different forwarders 302. Each forwarder 302
may illustratively be associated with a different data source
202. A forwarder 302 initially may receive the data as a raw
data stream generated by the data source 202. For example ,
a forwarder 302 may receive a data stream from a log file
generated by an application server , from a stream of network
data from a network device , or from any other source of
data . In some embodiments , a forwarder 302 receives the
raw data and may segment the data stream into “ blocks ” ,
possibly of a uniform data size , to facilitate subsequent
processing steps . The forwarder 302 may additionally or
alternatively modify data received , prior to forwarding the
data to the data retrieval subsystem 304. Illustratively , the
forwarder 302 may “ tag ” metadata for each data block , such
as by specifying a source , source type , or host associated
with the data , or by appending one or more timestamp or
time ranges to each data block .
[0185] In some embodiments , a forwarder 302 may com
prise a service accessible to data sources 202 via a network
206. For example , one type of forwarder 302 may be capable
of consuming vast amounts of real - time data from a poten
tially large number of data sources 202. The forwarder 302
may , for example , comprise a computing device which
implements multiple data pipelines or " queues ” to handle
forwarding of network data to data retrieval subsystems 304 .

2 9

configurations or inter container communication network
provided by an associated container instantiation or orches
tration platform . Thus , the intake system 210 of FIGS . 3A
and 3B should be taken as illustrative . For example , in some
embodiments , components of the intake system 210 , such as
the ingestion buffers 306 and 310 and / or the streaming data
processors 308 , may be executed by one more virtual
machines implemented in a hosted computing environment .
A hosted computing environment may include one or more
rapidly provisioned and released computing resources ,
which computing resources may include computing , net
working and / or storage devices . A hosted computing envi
ronment may also be referred to as a cloud computing
environment . Accordingly , the hosted computing environ
ment can include any proprietary or open source extensible
computing technology , such as Apache Flink or Apache
Spark , to enable fast or on - demand horizontal compute
capacity scaling of the streaming data processor 308 .
[0182] In some embodiments , some or all of the elements
of the intake system 210 (e.g. , forwarder 302 , data retrieval
subsystem 304 , intake ingestion buffer 306 , streaming data
processors 308 , and output ingestion buffer 310 , etc.) may
reside on one or more computing devices , such as servers ,
which may be communicatively coupled with each other and
with the data sources 202 , query system 214 , indexing
system 212 , or other components . In other embodiments ,
some or all of the elements of the intake system 210 may be
implemented as worker nodes as disclosed in U.S. patent
application Ser . Nos . 15 / 665,159 , 15 / 665,148 , 15 / 665,187 ,
15 / 665,248 , 15 / 665,197 , 15 / 665,279 , 15 / 665,302 , and
15 / 665,339 , each of which is incorporated by reference
herein in its entirety (hereinafter referred to as “ the Parent
Applications ") .
[0183] As noted above , the intake system 210 can function
to conduct preliminary processing of data ingested at the
data intake and query system 108. As such , the intake system
210 illustratively includes a forwarder 302 that obtains data
from a data source 202 and transmits the data to a data
retrieval subsystem 304. The data retrieval subsystem 304
may be configured to convert or otherwise format data
provided by the forwarder 302 into an appropriate format for
inclusion at the intake ingestion buffer and transmit the
message to the intake ingestion buffer 306 for processing .
Thereafter , a streaming data processor 308 may obtain data
from the intake ingestion buffer 306 , process the data
according to one or more rules , and republish the data to
either the intake ingestion buffer 306 (e.g. , for additional
processing) or to the output ingestion buffer 310 , such that
the data is made available to downstream components or
systems . In this manner , the intake system 210 may repeat
edly or iteratively process data according to any of a variety
of rules , such that the data is formatted for use on the data
intake and query system 108 or any other system . As
discussed below , the intake system 210 may be configured
to conduct such processing rapidly (e.g. , in “ real - time ” with
little or no perceptible delay) , while ensuring resiliency of
the data .

3.1.2 . Data Retrieval Subsystem
(0186] The data retrieval subsystem 304 illustratively cor
responds to a computing device which obtains data (e.g. ,
from the forwarder 302) , and transforms the data into a
format suitable for publication on the intake ingestion buffer
306. Illustratively , where the forwarder 302 segments input
data into discrete blocks , the data retrieval subsystem 304
may generate a message for each block , and publish the
message to the intake ingestion buffer 306. Generation of a
message for each block may include , for example , format
ting the data of the message in accordance with the require
ments of a streaming data system implementing the intake
ingestion buffer 306 , the requirements of which may vary
according to the streaming data system . In one embodiment ,
the intake ingestion buffer 306 formats messages according
to the protocol buffers method of serializing structured data .
Thus , the intake ingestion buffer 306 may be configured to
convert data from an input format into a protocol buffer
format . Where a forwarder 302 does not segment input data
into discrete blocks , the data retrieval subsystem 304 may
itself segment the data . Similarly , the data retrieval subsys
tem 304 may append metadata to the input data , such as a
source , source type , or host associated with the data .
[0187] Generation of the message may include “ tagging "
the message with various information , which may be
included as metadata for the data provided by the forwarder
302 , and determining a “ topic ” for the message , under which
the message should be published to the intake ingestion
buffer 306. In general , the “ topic ” of a message may reflect
a categorization of the message on a streaming data system .
Illustratively , each topic may be associated with a logically
distinct queue of messages , such that a downstream device
or system may “ subscribe ” to the topic in order to be
provided with messages published to the topic on the
streaming data system .

a

3.1.1 . Forwarder

a
[0184] The forwarder 302 can include or be executed on a
computing device configured to obtain data from a data
source 202 and transmit the data to the data retrieval
subsystem 304. In some implementations the forwarder 302
can be installed on a computing device associated with the

US 2022/0245156 A1 Aug. 4 , 2022
11

[0188] In one embodiment , the data retrieval subsystem
304 may obtain a set of topic rules (e.g. , provided by a user
of the data intake and query system 108 or based on
automatic inspection or identification of the various
upstream and downstream components of the data intake
and query system 108) that determine a topic for a message
as a function of the received data or metadata regarding the
received data . For example , the topic of a message may be
determined as a function of the data source 202 from which
the data stems . After generation of a message based on input
data , the data retrieval subsystem can publish the message to
the intake ingestion buffer 306 under the determined topic .
[0189] While the data retrieval and subsystem 304 is
depicted in FIG . 3A as obtaining data from the forwarder
302 , the data retrieval and subsystem 304 may additionally
or alternatively obtain data from other sources . In some
instances , the data retrieval and subsystem 304 may be
implemented as a plurality of intake points , each functioning
to obtain data from one or more corresponding data sources
(e.g. , the forwarder 302 , data sources 202 , or any other data
source) , generate messages corresponding to the data , deter
mine topics to which the messages should be published , and
to publish the messages to one or more topics of the intake
ingestion buffer 306 .
[0190] One illustrative set of intake points implementing
the data retrieval and subsystem 304 is shown in FIG . 3B .
Specifically , as shown in FIG . 3B , the data retrieval and
subsystem 304 of FIG . 3A may be implemented as a set of
push - based publishers 320 or a set of pull - based publishers
330. The illustrative push - based publishers 320 operate on a
" push ” model , such that messages are generated at the
push - based publishers 320 and transmitted to an intake
ingestion buffer 306 (shown in FIG . 3B as primary and
secondary intake ingestion buffers 306A and 306B , which
are discussed in more detail below) . As will be appreciated
by one skilled in the art , “ push ” data transmission models
generally correspond to models in which a data source
determines when data should be transmitted to a data target .
A variety of mechanisms exist to provide “ push ” function
ality , including “ true push ” mechanisms (e.g. , where a data
source independently initiates transmission of information)
and “ emulated push ” mechanisms , such as “ long polling ” (a
mechanism whereby a data target initiates a connection with
a data source , but allows the data source to determine within
a timeframe when data is to be transmitted to the data
source)
[0191] As shown in FIG . 3B , the push - based publishers
320 illustratively include an HTTP intake point 322 and a
data intake and query system (DIQS) intake point 324. The
HTTP intake point 322 can include a computing device
configured to obtain HTTP - based data (e.g. , as JavaScript
Object Notation , or JSON messages) to format the HTTP
based data as a message , to determine a topic for the
message (e.g. , based on fields within the HTTP - based data) ,
and to publish the message to the primary intake ingestion
buffer 306A . Similarly , the DIQS intake point 324 can be
configured to obtain data from a forwarder 302 , to format the
forwarder data as a message , to determine a topic for the
message , and to publish the message to the primary intake
ingestion buffer 306A . In this manner , the DIQS intake point
324 can function in a similar manner to the operations
described with respect to the data retrieval subsystem 304 of
FIG . 3A .

[0192] In addition to the push - based publishers 320 , one
or more pull - based publishers 330 may be used to imple
ment the data retrieval subsystem 304. The pull - based
publishers 330 may function on a “ pull ” model , whereby a
data target (e.g. , the primary intake ingestion buffer 306A)
functions to continuously or periodically (e.g. , each n sec
onds) query the pull - based publishers 330 for new messages
to be placed on the primary intake ingestion buffer 306A . In
some instances , development of pull - based systems may
require less coordination of functionality between a pull
based publisher 330 and the primary intake ingestion buffer
306A . Thus , for example , pull - based publishers 330 may be
more readily developed by third parties (e.g. , other than a
developer of the data intake a query system 108) , and enable
the data intake and query system 108 to ingest data associ
ated with third party data sources 202. Accordingly , FIG . 3B
includes a set of custom intake points 332A through 332N ,
each of which functions to obtain data from a third - party
data source 202 , format the data as a message for inclusion
in the primary intake ingestion buffer 306A , determine a
topic for the message , and make the message available to the
primary intake ingestion buffer 306A in response to a request
(a “ pull ”) for such messages .
[0193] While the pull - based publishers 330 are illustra
tively described as developed by third parties , push - based
publishers 320 may also in some instances be developed by
third parties . Additionally or alternatively , pull - based pub
lishers may be developed by the developer of the data intake
and query system 108. To facilitate integration of systems
potentially developed by disparate entities , the primary
intake ingestion buffer 306A may provide an API through
which an intake point may publish messages to the primary
intake ingestion buffer 306A . Illustratively , the API may
enable an intake point to “ push ” messages to the primary
intake ingestion buffer 306A , or request that the primary
intake ingestion buffer 306A “ pull ” messages from the
intake point . Similarly , the streaming data processors 308
may provide an API through which ingestions buffers may
register with the streaming data processors 308 to facilitate
pre - processing of messages on the ingestion buffers , and the
output ingestion buffer 310 may provide an API through
which the streaming data processors 308 may publish mes
sages or through which downstream devices or systems may
subscribe to topics on the output ingestion buffer 310 .
Furthermore , any one or more of the intake points 322
through 332N may provide an API through which data
sources 202 may submit data to the intake points . Thus , any
one or more of the components of FIGS . 3A and 3B may be
made available via APIs to enable integration of systems
potentially provided by disparate parties .
[0194] The specific configuration of publishers 320 and
330 shown in FIG . 3B is intended to be illustrative in nature .
For example , the specific number and configuration of
intake points may vary according to embodiments of the
present application . In some instances , one or more compo
nents of the intake system 210 may be omitted . For example ,
a data source 202 may in some embodiments publish mes
sages to an intake ingestion buffer 306 , and thus an intake
point 332 may be unnecessary . Other configurations of the
intake system 210 are possible .

a

a

3.1.3 . Ingestion Buffer
[0195] The intake system 210 is illustratively configured
to ensure message resiliency , such that data is persisted in

US 2022/0245156 A1 Aug. 4 , 2022
12

a

the event of failures within the intake system 210. Specifi
cally , the intake system 210 may utilize one or more
ingestion buffers , which operate to resiliently maintain data
received at the intake system 210 until the data is acknowl
edged by downstream systems or components . In one
embodiment , resiliency is provided at the intake system 210
by use of ingestion buffers that operate according to a
publish - subscribe (" pub - sub ") message model . In accor
dance with the pub - sub model , data ingested into the data
intake and query system 108 may be atomized as “ mes
sages , " each of which is categorized into one or more
“ topics . ” An ingestion buffer can maintain a queue for each
such topic , and enable devices to " subscribe ” to a given
topic . As messages are published to the topic , the ingestion
buffer can function to transmit the messages to each sub
scriber , and ensure message resiliency until at least each
subscriber has acknowledged receipt of the message (e.g. , at
which point the ingestion buffer may delete the message) . In
this manner , the ingestion buffer may function as a “ broker ”
within the pub - sub model . A variety of techniques to ensure
resiliency at a pub - sub broker are known in the art , and thus
will not be described in detail herein . In one embodiment , an
ingestion buffer is implemented by a streaming data source .
As noted above , examples of streaming data sources include
(but are not limited to) Amazon's Simple Queue Service
(“ SOS ”) or KinesisTM services , devices executing Apache
KafkaTM software , or devices implementing the Message
Queue Telemetry Transport (MQTT) protocol . Any one or
more of these example streaming data sources may be
utilized to implement an ingestion buffer in accordance with
embodiments of the present disclosure .
[0196] With reference to FIG . 3A , the intake system 210
may include at least two logical ingestion buffers : an intake
ingestion buffer 306 and an output ingestion buffer 310. As
noted above , the intake ingestion buffer 306 can be config
ured to receive messages from the data retrieval subsystem
304 and resiliently store the message . The intake ingestion
buffer 306 can further be configured to transmit the message
to the streaming data processors 308 for processing . As
further described below , the streaming data processors 308
can be configured with one or more data transformation
rules to transform the messages , and republish the messages
to one or both of the intake ingestion buffer 306 and the
output ingestion buffer 310. The output ingestion buffer 310 ,
in turn , may make the messages available to various sub
scribers to the output ingestion buffer 310 , which subscribers
may include the query system 214 , the indexing system 212 ,
or other third - party devices (e.g. , client devices 102 , host
devices 106 , etc.) .
[0197] Both the input ingestion buffer 306 and output
ingestion buffer 310 may be implemented on a streaming
data source , as noted above . In one embodiment , the intake
ingestion buffer 306 operates to maintain source - oriented
topics , such as topics for each data source 202 from which
data is obtained , while the output ingestion buffer operates
to maintain content - oriented topics , such as topics to which
the data of an individual message pertains . As discussed in
more detail below , the streaming data processors 308 can be
configured to transform messages from the intake ingestion
buffer 306 (e.g. , arranged according to source - oriented top
ics) and publish the transformed messages to the output
ingestion buffer 310 (e.g. , arranged according to content
oriented topics) . In some instances , the streaming data
processors 308 may additionally or alternatively republish

transformed messages to the intake ingestion buffer 306 ,
enabling iterative or repeated processing of the data within
the message by the streaming data processors 308 .
[0198] While shown in FIG . 3A as distinct , these ingestion
buffers 306 and 310 may be implemented as a common
ingestion buffer . However , use of distinct ingestion buffers
may be beneficial , for example , where a geographic region
in which data is received differs from a region in which the
data is desired . For example , use of distinct ingestion buffers
may beneficially allow the intake ingestion buffer 306 to
operate in a first geographic region associated with a first set
of data privacy restrictions , while the output ingestion buffer
310 operates in a second geographic region associated with
a second set of data privacy restrictions . In this manner , the
intake system 210 can be configured to comply with all
relevant data privacy restrictions , ensuring privacy of data
processed at the data intake and query system 108 .
[0199] Moreover , either or both of the ingestion buffers
306 and 310 may be implemented across multiple distinct
devices , as either a single or multiple ingestion buffers .
Illustratively , as shown in FIG . 3B , the intake system 210
may include both a primary intake ingestion buffer 306A and
a secondary intake ingestion buffer 306B . The primary
intake ingestion buffer 306A is illustratively configured to
obtain messages from the data retrieval subsystem 304 (e.g. ,
implemented as a set of intake points 322 through 332N) .
The secondary intake ingestion buffer 306B is illustratively
configured to provide an additional set of messages (e.g. ,
from other data sources 202) . In one embodiment , the
primary intake ingestion buffer 306A is provided by an
administrator or developer of the data intake and query
system 108 , while the secondary intake ingestion buffer
306B is a user - supplied ingestion buffer (e.g. , implemented
externally to the data intake and query system 108) .
[0200] As noted above , an intake ingestion buffer 306 may
in some embodiments categorize messages according to
source - oriented topics (e.g. , denoting a data source 202 from
which the message was obtained) . In other embodiments , an
intake ingestion buffer 306 may in some embodiments
categorize messages according to intake - oriented topics
(e.g. , denoting the intake point from which the message was
obtained) . The number and variety of such topics may vary ,
and thus are not shown in FIG . 3B . In one embodiment , the
intake ingestion buffer 306 maintains only a single topic
(e.g. , all data to be ingested at the data intake and query
system 108) .
[0201] The output ingestion buffer 310 may in one
embodiment categorize messages according to content - cen
tric topics (e.g. , determined based on the content of a
message) . Additionally or alternatively , the output ingestion
buffer 310 may categorize messages according to consumer
centric topics (e.g. , topics intended to store messages for
consumption by a downstream device or system) . An illus
trative number of topics are shown in FIG . 3B , as topics 342
through 352N . Each topic may correspond to a queue of
messages (e.g. , in accordance with the pub - sub model)
relevant to the corresponding topic . As described in more
detail below , the streaming data processors 308 may be
configured to process messages from the intake ingestion
buffer 306 and determine which topics of the topics 342
through 352N into which to place the messages . For
example , the index topic 342 may be intended to store
messages holding data that should be consumed and indexed
by the indexing system 212. The notable event topic 344

2

US 2022/0245156 A1 Aug. 4 , 2022
13

may be intended to store messages holding data that indi
cates a notable event at a data source 202 (e.g. , the occur
rence of an error or other notable event) . The metrics topic
346 may be intended to store messages holding metrics data
for data sources 202. The search results topic 348 may be
intended to store messages holding data responsive to a
search query . The mobile alerts topic 350 may be intended
to store messages holding data for which an end user has
requested alerts on a mobile device . A variety of custom
topics 352 through 352N may be intended to hold data
relevant to end - user - created topics .
[0202] As will be described below , by application of
message transformation rules at the streaming data proces
sors 308 , the intake system 210 may divide and categorize
messages from the intake ingestion buffer 306 , partitioning
the message into output topics relevant to a specific down
stream consumer . In this manner , specific portions of data
input to the data intake and query system 108 may be
" divided out ” and handled separately , enabling different
types of data to be handled differently , and potentially at
different speeds . Illustratively , the index topic 342 may be
configured to include all or substantially all data included in
the intake ingestion buffer 306. Given the volume of data ,
there may be a significant delay (e.g. , minutes or hours)
before a downstream consumer (e.g. , the indexing system
212) processes a message in the index topic 342. Thus , for
example , searching data processed by the indexing system
212 may incur significant delay .
[0203] Conversely , the search results topic 348 may be
configured to hold only messages corresponding to data
relevant to a current query . Illustratively , on receiving a
query from a client device 204 , the query system 214 may
transmit to the intake system 210 a rule that detects , within
messages from the intake ingestion buffer 306A , data poten
tially relevant to the query . The streaming data processors
308 may republish these messages within the search results
topic 348 , and the query system 214 may subscribe to the
search results topic 348 in order to obtain the data within the
messages . In this manner , the query system 214 can
“ bypass ” the indexing system 212 and avoid delay that may
be caused by that system , thus enabling faster (and poten
tially real time) display of search results .
[0204] While shown in FIGS . 3A and 3B as a single output
ingestion buffer 310 , the intake system 210 may in some
instances utilize multiple output ingestion buffers 310 .

detail below . For example , selection criteria may include
regular expressions that derive one or more values or a
sub - portion of text from the portion of machine data in each
message to produce a value for the field for that message .
When a message is located within the intake ingestion buffer
306 that matches the selection criteria , the streaming data
processors 308 may apply the processing rules to the mes
sage . Processing sub - rules may indicate , for example , a
topic of the output ingestion buffer 310 into which the
message should be placed . Processing sub - rules may further
indicate transformations , such as field or unit normalization
operations , to be performed on the message . Illustratively , a
transformation may include modifying data within the mes
sage , such as altering a format in which the data is conveyed
(e.g. , converting millisecond timestamps values to micro
second timestamp values , converting imperial units to met
ric units , etc.) , or supplementing the data with additional
information (e.g. , appending an error descriptor to an error
code) . In some instances , the streaming data processors 308
may be in communication with one or more external data
stores (the locations of which may be specified within a rule)
that provide information used to supplement or enrich
messages processed at the streaming data processors 308 .
For example , a specific rule may include selection criteria
identifying an error code within a message of the primary
ingestion buffer 306A , and specifying that when the error
code is detected within a message , that the streaming data
processors 308 should conduct a lookup in an external data
source (e.g. , a database) to retrieve the human - readable
descriptor for that error code , and inject the descriptor into
the message . In this manner , rules may be used to process ,
transform , or enrich messages .
[0207] The streaming data processors 308 may include a
set of computing devices configured to process messages
from the intake ingestion buffer 306 at a speed commensu
rate with a rate at which messages are placed into the intake
ingestion buffer 306. In one embodiment , the number of
streaming data processors 308 used to process messages
may vary based on a number of messages on the intake
ingestion buffer 306 awaiting processing . Thus , as additional
messages are queued into the intake ingestion buffer 306 , the
number of streaming data processors 308 may be increased
to ensure that such messages are rapidly processed . In some
instances , the streaming data processors 308 may be exten
sible on a per topic basis . Thus , individual devices imple
menting the streaming data processors 308 may subscribe to
different topics on the intake ingestion buffer 306 , and the
number of devices subscribed to an individual topic may
vary according to a rate of publication of messages to that
topic (e.g. , as measured by a backlog of messages in the
topic) . In this way , the intake system 210 can support
ingestion of massive amounts of data from numerous data
sources 202 .
[0208] In some embodiments , an intake system may com
prise a service accessible to client devices 102 and host
devices 106 via a network 104. For example , one type of
forwarder may be capable of consuming vast amounts of
real - time data from a potentially large number of client
devices 102 and / or host devices 106. The forwarder may , for
example , comprise a computing device which implements
multiple data pipelines or " queues ” to handle forwarding of
network data to indexers . A forwarder may also perform
many of the functions that are performed by an indexer . For
example , a forwarder may perform keyword extractions on

3.1.4 . Streaming Data Processors
[0205] As noted above , the streaming data processors 308
may apply one or more rules to process messages from the
intake ingestion buffer 306A into messages on the output
ingestion buffer 310. These rules may be specified , for
example , by an end user of the data intake and query system
108 or may be automatically generated by the data intake
and query system 108 (e.g. , in response to a user query) .
[0206] Illustratively , each rule may correspond to a set of
selection criteria indicating messages to which the rule
applies , as well as one or more processing sub - rules indi
cating an action to be taken by the streaming data processors
308 with respect to the message . The selection criteria may
include any number or combination of criteria based on the
data included within a message or metadata of the message
(e.g. , a topic to which the message is published) . In one
embodiment , the selection criteria are formatted in the same
manner or similarly to extraction rules , discussed in more

US 2022/0245156 A1 Aug. 4 , 2022
14

raw data or parse raw data to create events . A forwarder may
generate time stamps for events . Additionally or alterna
tively , a forwarder may perform routing of events to index
ers . Data store 212 may contain events derived from
machine data from a variety of sources all pertaining to the
same component in an IT environment , and this data may be
produced by the machine in question or by other compo
nents in the IT environment .

402. For example , an indexing system manager 402 can be
instantiated for each computing device (or group of com
puting devices) configured as a host computing device for
multiple indexing nodes 404 .
[0213] The indexing system manager 402 can handle
resource management , creation / destruction of indexing
nodes 404 , high availability , load balancing , application
upgrades / rollbacks , logging and monitoring , storage , net
working , service discovery , and performance and scalability ,
and otherwise handle containerization management of the
containers of the indexing system 212. In certain embodi
ments , the indexing system manager 402 can be imple
mented using Kubernetes or Swarm .
[0214] In some cases , the indexing system manager 402
can monitor the available resources of a host computing
device and request additional resources in a shared resource
environment , based on workload of the indexing nodes 404
or create , destroy , or reassign indexing nodes 404 based on
workload . Further , the indexing system manager 402 system
can assign indexing nodes 404 to handle data streams based
on workload , system resources , etc.

3.2 . Indexing System
[0209] FIG . 4 is a block diagram illustrating an embodi
ment of an indexing system 212 of the data intake and query
system 108. The indexing system 212 can receive , process ,
and store data from multiple data sources 202 , which may be
associated with different tenants , users , etc. Using the
received data , the indexing system can generate events that
include a portion of machine data associated with a time
stamp and store the events in buckets based on one or more
of the timestamps , tenants , indexes , etc. , associated with the
data . Moreover , the indexing system 212 can include various
components that enable it to provide a stateless indexing
service , or indexing service that is able to rapidly recover
without data loss if one or more components of the indexing
system 212 become unresponsive or unavailable .
[0210] In the illustrated embodiment , the indexing system
212 includes an indexing system manager 402 and one or
more indexing nodes 404. However , it will be understood
that the indexing system 212 can include fewer or more
components . For example , in some embodiments , the com
mon storage 216 or data store catalog 220 can form part of
the indexing system 212 , etc.
[0211] As described herein , each of the components of the
indexing system 212 can be implemented using one or more
computing devices as distinct computing devices or as one
or more container instances or virtual machines across one
or more computing devices . For example , in some embodi
ments , the indexing system manager 402 and indexing nodes
404 can be implemented as distinct computing devices with
separate hardware , memory , and processors . In certain
embodiments , the indexing system manager 402 and index
ing nodes 404 can be implemented on the same or across
different computing devices as distinct container instances ,
with each container having access to a subset of the
resources of a host computing device (e.g. , a subset of the
memory or processing time of the processors of the host
computing device) , but sharing a similar operating system .
In some cases , the components can be implemented as
distinct virtual machines across one or more computing
devices , where each virtual machine can have its own
unshared operating system but shares the underlying hard
ware with other virtual machines on the same host comput
ing device .

3.2.2 . Indexing Nodes
[0215] The indexing nodes 404 can include one or more
components to implement various functions of the indexing
system 212. In the illustrated embodiment , the indexing
node 404 includes an indexing node manager 406 , partition
manager 408 , indexer 410 , data store 412 , and bucket
manager 414. As described herein , the indexing nodes 404
can be implemented on separate computing devices or as
containers or virtual machines in a virtualization environ
ment .

[0216] In some embodiments , an indexing node 404 , and
can be implemented as a distinct computing device , virtual
machine , container , container of a pod , or a process or thread
associated with a container , or using multiple - related con
tainers . In certain embodiments , such as in a Kubernetes
deployment , each indexing node 404 can be implemented as
a separate container or pod . For example , one or more of the
components of the indexing node 404 can be implemented
as different containers of a single pod , e.g. , on a container
ization platform , such as Docker , the one or more compo
nents of the indexing node can be implemented as different
Docker containers managed by synchronization platforms
such as Kubernetes or Swarm . Accordingly , reference to a
containerized indexing node 404 can refer to the indexing
node 404 as being a single container or as one or more
components of the indexing node 404 being implemented as
different , related containers or virtual machines .

a

3.2.2.1 . Indexing Node Manager

3.2.1 Indexing System Manager
[0212] As mentioned , the indexing system manager 402
can monitor and manage the indexing nodes 404 , and can be
implemented as a distinct computing device , virtual
machine , container , container of a pod , or a process or thread
associated with a container . In certain embodiments , the
indexing system 212 can include one indexing system
manager 402 to manage all indexing nodes 404 of the
indexing system 212. In some embodiments , the indexing
system 212 can include multiple indexing system managers

[0217] The indexing node manager 406 can manage the
processing of the various streams or partitions of data by the
indexing node 404 , and can be implemented as a distinct
computing device , virtual machine , container , container of a
pod , or a process or thread associated with a container . For
example , in certain embodiments , as partitions or data
streams are assigned to the indexing node 404 , the indexing
node manager 406 can generate one or more partition
manager (s) 408 to manage each partition or data stream . In
some cases , the indexing node manager 406 generates a
separate partition manager 408 for each partition or shard
that is processed by the indexing node 404. In certain

US 2022/0245156 A1 Aug. 4 , 2022
15

embodiments , the partition can correspond to a topic of a
data stream of the ingestion buffer 310. Each topic can be
configured in a variety of ways . For example , in some
embodiments , a topic may correspond to data from a par
ticular data source 202 , tenant , index / partition , or source
type . In this way , in certain embodiments , the indexing
system 212 can discriminate between data from different
sources or associated with different tenants , or indexes /
partitions . For example , the indexing system 212 can assign
more indexing nodes 404 to process data from one topic
(associated with one tenant) than another topic (associated
with another tenant) , or store the data from one topic more
frequently to common storage 216 than the data from a
different topic , etc.
[0218] In some embodiments , the indexing node manager
406 monitors the various shards of data being processed by
the indexing node 404 and the read pointers or location
markers for those shards . In some embodiments , the index
ing node manager 406 stores the read pointers or location
marker in one or more data stores , such as but not limited to ,
common storage 216 , DynamoDB , S3 , or another type of
storage system , shared storage system , or networked storage
system , etc. As the indexing node 404 processes the data and
the markers for the shards are updated by the intake system
210 , the indexing node manager 406 can be updated to
reflect the changes to the read pointers or location markers .
In this way , if a particular partition manager 408 becomes
unresponsive or unavailable , the indexing node manager 406
can generate a new partition manager 408 to handle the data
stream without losing context of what data is to be read from
the intake system 210. Accordingly , in some embodiments ,
by using the ingestion buffer 310 and tracking the location
of the location markers in the shards of the ingestion buffer ,
the indexing system 212 can aid in providing a stateless
indexing service .
[0219] In some embodiments , the indexing node manager
406 is implemented as a background process , or daemon , on
the indexing node 404 and the partition manager (s) 408 are
implemented as threads , copies , or forks of the background
process . In some cases , an indexing node manager 406 can
copy itself , or fork , to create a partition manager 408 or
cause a template process to copy itself , or fork , to create
each new partition manager 408 , etc. This may be done for
multithreading efficiency or for other reasons related to
containerization and efficiency of managing indexers 410. In
certain embodiments , the indexing node manager 406 gen
erates a new process for each partition manager 408. In some
cases , by generating a new process for each partition man
ager 408 , the indexing node manager 408 can support
multiple language implementations and be language agnos
tic . For example , the indexing node manager 408 can
generate a process for a partition manager 408 in python and
create a second process for a partition manager 408 in
golang , etc.

[0221] In some cases , managing the processing of a par
tition or shard can include , but it not limited to , communi
cating data from a particular shard to the indexer 410 for
processing , monitoring the indexer 410 and the size of the
data being processed by the indexer 410 , instructing the
indexer 410 to move the data to common storage 216 , and
reporting the storage of the data to the intake system 210 .
For a particular shard or partition of data from the intake
system 210 , the indexing node manager 406 can assign a
particular partition manager 408. The partition manager 408
for that partition can receive the data from the intake system
210 and forward or communicate that data to the indexer 410
for processing
[0222] In some embodiments , the partition manager 408
receives data from a pub - sub messaging system , such as the
ingestion buffer 310. As described herein , the ingestion
buffer 310 can have one or more streams of data and one or
more shards or partitions associated with each stream of
data . Each stream of data can be separated into shards and / or
other partitions or types of organization of data . In certain
cases , each shard can include data from multiple tenants ,
indexes / partition , etc. In some cases , each shard can corre
spond to data associated with a particular tenant , index /
partition , source , sourcetype , etc. Accordingly , the indexing
system 212 can include a partition manager 408 for indi
vidual tenants , indexes / partitions , sources , sourcetypes , etc.
In this way , the indexing system 212 can manage and
process the data differently . For example , the indexing
system 212 can assign more indexing nodes 404 to process
data from one tenant than another tenant , or store buckets
associated with one tenant or partition / index more fre
quently to common storage 216 than buckets associated with
a different tenant or partition / index , etc.
[0223] Accordingly , in some embodiments , a partition
manager 408 receives data from one or more of the shards
or partitions of the ingestion buffer 310. The partition
manager 408 can forward the data from the shard to the
indexer 410 for processing . In some cases , the amount of
data coming into a shard may exceed the shard's throughput .
For example , 4 MB / s of data may be sent to an ingestion
buffer 310 for a particular shard , but the ingestion buffer 310
may be able to process only 2 MB / s of data per shard .
Accordingly , in some embodiments , the data in the shard can
include a reference to a location in storage where the
indexing system 212 can retrieve the data . For example , a
reference pointer to data can be placed in the ingestion buffer
310 rather than putting the data itself into the ingestion
buffer . The reference pointer can reference a chunk of data
that is larger than the throughput of the ingestion buffer 310
for that shard . In this way , the data intake and query system
108 can increase the throughput of individual shards of the
ingestion buffer 310. In such embodiments , the partition
manager 408 can obtain the reference pointer from the
ingestion buffer 310 and retrieve the data from the refer
enced storage for processing . In some cases , the referenced
storage to which reference pointers in the ingestion buffer
310 may point can correspond to the common storage 216 or
other cloud or local storage . In some implementations , the
chunks of data to which the reference pointers refer may be
directed to common storage 216 from intake system 210 ,
e.g. , streaming data processor 308 or ingestion buffer 310 .
[0224] As the indexer 410 processes the data , stores the
data in buckets , and generates indexes of the data , the
partition manager 408 can monitor the indexer 410 and the

2

3.2.2.2 . Partition Manager

[0220] As mentioned , the partition manager (s) 408 can
manage the processing of one or more of the partitions or
shards of a data stream processed by an indexing node 404
or the indexer 410 of the indexing node 404 , and can be
implemented as a distinct computing device , virtual
machine , container , container of a pod , or a process or thread
associated with a container .

US 2022/0245156 A1 Aug. 4 , 2022
16

2

a

size of the data on the indexer 410 (inclusive of the data store
412) associated with the partition . The size of the data on the
indexer 410 can correspond to the data that is actually
received from the particular partition of the intake system
210 , as well as data generated by the indexer 410 based on
the received data (e.g. , inverted indexes , summaries , etc.) ,
and may correspond to one or more buckets . For instance ,
the indexer 410 may have generated one or more buckets for
each tenant and / or partition associated with data being
processed in the indexer 410 .
[0225] Based on a bucket roll - over policy , the partition
manager 408 can instruct the indexer 410 to convert editable
groups of data or buckets to non - editable groups or buckets
and / or copy the data associated with the partition to common
storage 216. In some embodiments , the bucket roll - over
policy can indicate that the data associated with the particu
lar partition , which may have been indexed by the indexer
410 and stored in the data store 412 in various buckets , is to
be copied to common storage 216 based on a determination
that the size of the data associated with the particular
partition satisfies a threshold size . In some cases , the bucket
roll - over policy can include different threshold sizes for
different partitions . In other implementations the bucket
roll - over policy may be modified by other factors , such as an
identity of a tenant associated with indexing node 404 ,
system resource usage , which could be based on the pod or
other container that contains indexing node 404 , or one of
the physical hardware layers with which the indexing node
404 is running , or any other appropriate factor for scaling
and system performance of indexing nodes 404 or any other
system component .
[0226] In certain embodiments , the bucket roll - over policy
can indicate data is to be copied to common storage 216
based on a determination that the amount of data associated
with all partitions (or a subset thereof) of the indexing node
404 satisfies a threshold amount . Further , the bucket roll
over policy can indicate that the one or more partition
managers 408 of an indexing node 404 are to communicate
with each other or with the indexing node manager 406 to
monitor the amount of data on the indexer 410 associated
with all of the partitions (or a subset thereof) assigned to the
indexing node 404 and determine that the amount of data on
the indexer 410 (or data store 412) associated with all the
partitions (or a subset thereof) satisfies a threshold amount .
Accordingly , based on the bucket roll - over policy , one or
more of the partition managers 408 or the indexing node
manager 406 can instruct the indexer 410 to convert editable
buckets associated with the partitions (or subsets thereof) to
non - editable buckets and / or store the data associated with
the partitions (or subset thereof) in common storage 216 .
[0227] In certain embodiments , the bucket roll - over policy
can indicate that buckets are to be converted to non - editable
buckets and stored in common storage based on a collective
size of buckets satisfying a threshold size . In some cases , the
bucket roll - over policy can use different threshold sizes for
conversion and storage . For example , the bucket roll - over
policy can use a first threshold size to indicate when editable
buckets are to be converted to non - editable buckets (e.g. ,
stop writing to the buckets) and a second threshold size to
indicate when the data (or buckets) are to be stored in
common storage 216. In certain cases , the bucket roll - over
policy can indicate that the partition manager (s) 408 are to
send a single command to the indexer 410 that causes the

indexer 410 to convert editable buckets to non - editable
buckets and store the buckets in common storage 216 .
[0228] Based on an acknowledgement that the data asso
ciated with a partition (or multiple partitions as the case may
be) has been stored in common storage 216 , the partition
manager 408 can communicate to the intake system 210 ,
either directly , or through the indexing node manager 406 ,
that the data has been stored and / or that the location marker
or read pointer can be moved or updated . In some cases , the
partition manager 408 receives the acknowledgement that
the data has been stored from common storage 216 and / or
from the indexer 410. In certain embodiments , which will be
described in more detail herein , the intake system 210 does
not receive communication that the data stored in intake
system 210 has been read and processed until after that data
has been stored in common storage 216 .
[0229] The acknowledgement that the data has been stored
in common storage 216 can also include location informa
tion about the data within the common storage 216. For
example , the acknowledgement can provide a link , map , or
path to the copied data in the common storage 216. Using the
information about the data stored in common storage 216 ,
the partition manager 408 can update the data store catalog
220. For example , the partition manager 408 can update the
data store catalog 220 with an identifier of the data (e.g. ,
bucket identifier , tenant identifier , partition identifier , etc.) ,
the location of the data in common storage 216 , a time range
associated with the data , etc. In this way , the data store
catalog 220 can be kept up - to - date with the contents of the
common storage 216 .
[0230] Moreover , as additional data is received from the
intake system 210 , the partition manager 408 can continue
to communicate the data to the indexer 410 , monitor the size
or amount of data on the indexer 410 , instruct the indexer
410 to copy the data to common storage 216 , communicate
the successful storage of the data to the intake system 210 ,
and update the data store catalog 220 .
[0231] As a non - limiting example , consider the scenario in
which the intake system 210 communicates data from a
particular shard or partition to the indexing system 212. The
intake system 210 can track which data it has sent and a
location marker for the data in the intake system 210 (e.g. ,
a marker that identifies data that has been sent to the
indexing system 212 for processing) .
[0232] As described herein , the intake system 210 can
retain or persistently make available the sent data until the
intake system 210 receives an acknowledgement from the
indexing system 212 that the sent data has been processed ,
stored in persistent storage (e.g. , common storage 216) , or is
safe to be deleted . In this way , if an indexing node 404
assigned to process the sent data becomes unresponsive or is
lost , e.g. , due to a hardware failure or a crash of the indexing
node manager 406 or other component , process , or daemon ,
the data that was sent to the unresponsive indexing node 404
will not be lost . Rather , a different indexing node 404 can
obtain and process the data from the intake system 210 .
[0233] As the indexing system 212 stores the data in
common storage 216 , it can report the storage to the intake
system 210. In response , the intake system 210 can update
its marker to identify different data that has been sent to the
indexing system 212 for processing , but has not yet been
stored . By moving the marker , the intake system 210 can
indicate that the previously - identified data has been stored in

US 2022/0245156 A1 Aug. 4 , 2022
17

common storage 216 , can be deleted from the intake system
210 or , otherwise , can be allowed to be overwritten , lost , etc.
[0234] With reference to the example above , in some
embodiments , the indexing node manager 406 can track the
marker used by the ingestion buffer 310 , and the partition
manager 408 can receive the data from the ingestion buffer
310 and forward it to an indexer 410 for processing (or use
the data in the ingestion buffer to obtain data from a
referenced storage location and forward the obtained data to
the indexer) . The partition manager 408 can monitor the
amount of data being processed and instruct the indexer 410
to copy the data to common storage 216. Once the data is
stored in common storage 216 , the partition manager 408
can report the storage to the ingestion buffer 310 , so that the
ingestion buffer 310 can update its marker . In addition , the
indexing node manager 406 can update its records with the
location of the updated marker . In this way , if partition
manager 408 become unresponsive or fails , the indexing
node manager 406 can assign a different partition manager
408 to obtain the data from the data stream without losing
the location information , or if the indexer 410 becomes
unavailable or fails , the indexing node manager 406 can
assign a different indexer 410 to process and store the data .
3.2.2.3 . Indexer and Data Store

data or other temporal determination regarding the data , then
it can generate a bucket for the " old " data . In some embodi
ments , the indexer 410 can determine that data is “ old , ” if
the data is associated with a timestamp that is earlier in time
by a threshold amount than timestamps of other data in the
corresponding bucket (e.g. , depending on the bucket cre
ation policy , data from the same partition and / or tenant)
being processed by the indexer 410. For example , if the
indexer 410 is processing data for the bucket for Tenant
A : Index X having timestamps on April 23 between 16:23:56
and 16:46:32 and receives data for the Tenant A : Index X
bucket having a timestamp on April 22 or on April 23 at
08:05:32 , then it can determine that the data with the earlier
timestamps is “ old ” data and generate a new bucket for that
data . In this way , the indexer 410 can avoid placing data in
the same bucket that creates a time range that is significantly
larger than the time range of other buckets , which can
decrease the performance of the system as the bucket could
be identified as relevant for a search more often than it
otherwise would .
[0239] The threshold amount of time used to determine if
received data is “ old , ” can be predetermined or dynamically
determined based on a number of factors , such as , but not
limited to , time ranges of other buckets , amount of data
being processed , timestamps of the data being processed ,
etc. For example , the indexer 410 can determine an average
time range of buckets that it processes for different tenants
and indexes . If incoming data would cause the time range of
a bucket to be significantly larger (e.g. , 25 % , 50 % , 75 % ,
double , or other amount) than the average time range , then
the indexer 410 can determine that the data is “ old ” data , and
generate a separate bucket for it . By placing the “ old ” bucket
in a separate bucket , the indexer 410 can reduce the
instances in which the bucket is identified as storing data that
may be relevant to a query . For example , by having a smaller
time query system 214 may identify the bucket
less frequently as a relevant bucket then if the bucket had the
large time range due to the " old " data . Additionally , in a
process that will be described in more detail herein , time
restricted searches and search queries may be executed more
quickly because there may be fewer buckets to search for a
particular time range . In this manner , computational effi
ciency of searching large amounts of data can be improved .
Although described with respect detecting " old " data , the
indexer 410 can use similar techniques to determine that
“ new ” data should be placed in a new bucket or that a time
gap between data in a bucket and “ new ” data is larger than
a threshold amount such that the “ new ” data should be stored
in a separate bucket .
[0240] Once a particular bucket satisfies a size threshold ,
the indexer 410 can store the bucket in or copy the bucket
to common storage 216. In certain embodiments , the parti
tion manager 408 can monitor the size of the buckets and
instruct the indexer 410 to copy the bucket to common
storage 216. The threshold size can be predetermined or
dynamically determined .
[0241] In certain embodiments , the partition manager 408
can monitor the size of multiple , or all , buckets associated with the partition being managed by the partition manager
408 , and based on the collective size of the buckets satis
fying a threshold size , instruct the indexer 410 to copy the
buckets associated with the partition to common storage
216. In certain cases , one or more partition managers 408 or
the indexing node manager 406 can monitor the size of

[0235] As described herein , the indexer 410 can be the
primary indexing execution engine , and can be implemented
as a distinct computing device , container , container within a
pod , etc. For example , the indexer 410 can tasked with
parsing , processing , indexing , and storing the data received
from the intake system 210 via the partition manager (s) 408 .
Specifically , in some embodiments , the indexer 410 can
parse the incoming data to identify timestamps , generate
events from the incoming data , group and save events into
buckets , generate summaries or indexes (e.g. , time series
index , inverted index , keyword index , etc.) of the events in
the buckets , and store the buckets in common storage 216 .
[0236] In some cases , one indexer 410 can be assigned to
each partition manager 408 , and in certain embodiments ,
one indexer 410 can receive and process the data from
multiple (or all) partition mangers 408 on the same indexing
node 404 or from multiple indexing nodes 404 .
[0237] In some embodiments , the indexer 410 can store
the events and buckets in the data store 412 according to a
bucket creation policy . The bucket creation policy can
indicate how many buckets the indexer 410 is to generate for
the data that it processes . In some cases , based on the bucket
creation policy , the indexer 410 generates at least one bucket
for each tenant and index (also referred to as a partition)
associated with the data that it processes . For example , if the
indexer 410 receives data associated with three tenants A , B ,
C , each with two indexes X , Y , then the indexer 410 can
generate at least six buckets : at least one bucket for each of
Tenant A : Index X , Tenant A : Index Y , Tenant B : Index X ,
Tenant B : Index Y , Tenant C : Index X , and Tenant C : Index Y.
Additional buckets may be generated for a tenant / partition
pair based on the amount of data received that is associated
with the tenant / partition pair . However , it will be understood
that the indexer 410 can generate buckets using a variety of
policies . For example , the indexer 410 can generate one or
more buckets for each tenant , partition , source , sourcetype ,
etc.
[0238] In some cases , if the indexer 410 receives data that
it determines to be " old , ” e.g. , based on a timestamp of the

range , the

a

a

US 2022/0245156 A1 Aug. 4 , 2022
18

buckets across multiple , or all partitions , associated with the
indexing node 404 , and instruct the indexer to copy the
buckets to common storage 216 based on the size of the
buckets satisfying a threshold size .
[0242] As described herein , buckets in the data store 412
that are being edited by the indexer 410 can be referred to
as hot buckets or editable buckets . For example , the indexer
410 can add data , events , and indexes to editable buckets in
the data store 412 , etc. Buckets in the data store 412 that are
no longer edited by the indexer 410 can be referred to as
warm buckets or non - editable buckets . In some embodi
ments , once the indexer 410 determines that a hot bucket is
to be copied to common storage 216 , it can convert the hot
(editable) bucket to a warm (non - editable) bucket , and then
move or copy the warm bucket to the common storage 216 .
Once the warm bucket is moved or copied to common
storage 216 , the indexer 410 can notify the partition manager
408 that the data associated with the warm bucket has been
processed and stored . As mentioned , the partition manager
408 can relay the information to the intake system 210. In
addition , the indexer 410 can provide the partition manager
408 with information about the buckets stored in common
storage 216 , such as , but not limited to , location information ,
tenant identifier , index identifier , time range , etc. As
described herein , the partition manager 408 can use this
information to update the data store catalog 220 .

2

3.2.3 . Bucket Manager

can increase query times , as the opening of each bucket as
part of a query can have certain processing overhead or time
delay associated with it .
[0246] To decrease search times and reduce overhead and
storage associated with the buckets (while maintaining a
reduced delay between processing the data and making it
searchable) , the bucket manager 414 can monitor the buck
ets stored in the data store 412 and / or common storage 216
and merge buckets according to a bucket merge policy . For
example , the bucket manager 414 can monitor and merge
warm buckets stored in the data store 412 before , after , or
concurrently with the indexer copying warm buckets to
common storage 216 .
[0247] The bucket merge policy can indicate which buck
ets are candidates for a merge or which bucket to merge
(e.g. , based on time ranges , size , tenant / partition or other
identifiers) , the number of buckets to merge , size or time
range parameters for the merged buckets , and / or a frequency
for creating the merged buckets . For example , the bucket
merge policy can indicate that a certain number of buckets
are to be merged , regardless of size of the buckets . As
another non - limiting example , the bucket merge policy can
indicate that multiple buckets are to be merged until a
threshold bucket size is reached (e.g. , 750 MB , or 1 GB , or
more) . As yet another non - limiting example , the bucket
merge policy can indicate that buckets having a time range
within a set period of time (e.g. , 30 sec , 1 min . , etc.) are to
be merged , regardless of the number or size of the buckets
being merged .
[0248] In addition , the bucket merge policy can indicate
which buckets are to be merged or include additional criteria
for merging buckets . For example , the bucket merge policy
can indicate that only buckets having the same tenant
identifier and / or partition are to be merged , or set constraints
on the size of the time range for a merged bucket (e.g. , the
time range of the merged bucket is not to exceed an average
time range of buckets associated with the same source ,
tenant , partition , etc.) . In certain embodiments , the bucket
merge policy can indicate that buckets that are older than a
threshold amount (e.g. , one hour , one day , etc.) are candi
dates for a merge or that a bucket merge is to take place once
an hour , once a day , etc. In certain embodiments , the bucket
merge policy can indicate that buckets are to be merged
based on a determination that the number or size of warm
buckets in the data store 412 of the indexing node 404
satisfies a threshold number or size , or the number or size of
warm buckets associated with the same tenant identifier
and / or partition satisfies the threshold number or size . It will
be understood , that the bucket manager 414 can use any one
or any combination of the aforementioned or other criteria
for the bucket merge policy to determine when , how , and
which buckets to merge .
[0249] Once a group of buckets are merged into one or
more merged buckets , the bucket manager 414 can copy or
instruct the indexer 406 to copy the merged buckets to
common storage 216. Based on a determination that the
merged buckets are successfully copied to the common
storage 216 , the bucket manager 414 can delete the merged
buckets and the buckets used to generate the merged buckets
(also referred to herein as unmerged buckets or pre - merged
buckets) from the data store 412 .
[0250] In some cases , the bucket manager 414 can also
remove or instruct the common storage 216 to remove
corresponding pre - merged buckets from the common stor

[0243] The bucket manager 414 can manage the buckets
stored in the data store 412 , and can be implemented as a
distinct computing device , virtual machine , container , con
tainer of a pod , or a process or thread associated with a
container . In some cases , the bucket manager 414 can be
implemented as part of the indexer 410 , indexing node 404 ,
or as a separate component of the indexing system 212 .
[0244] As described herein , the indexer 410 stores data in
the data store 412 as one or more buckets associated with
different tenants , indexes , etc. In some cases , the contents of
the buckets are not searchable by the query system 214 until
they are stored in common storage 216 . or example , the
query system 214 may be unable to identify data responsive
to a query that is located in hot (editable) buckets in the data
store 412 and / or the warm (non - editable) buckets in the data
store 412 that have not been copied common storage 216 .
Thus , query results may be incomplete or inaccurate , or
slowed as the data in the buckets of the data store 412 are
copied to common storage 216 .
[0245] To decrease the delay between processing and / or
indexing the data and making that data searchable , the
indexing system 212 can use a bucket roll - over policy that
instructs the indexer 410 to convert hot buckets to warm
buckets more frequently (or convert based on a smaller
threshold size) and / or copy the warm buckets to common
storage 216. While converting hot buckets to warm buckets
more frequently or based on a smaller storage size can
decrease the lag between processing the data and making it
searchable , it can increase the storage size and overhead of
buckets in common storage 216. For example , each bucket
may have overhead associated with it , in terms of storage
space required , processor power required , or other resource
requirement . Thus , more buckets in common storage 216
can result in more storage used for overhead than for storing
data , which can lead to increased storage size and costs . In
addition , a larger number of buckets in common storage 216

a

2

US 2022/0245156 A1 Aug. 4 , 2022
19

9

manager 502) , one or more search heads 504 (collectively or
individually referred to as search head 504 or search heads
504) , one or more search nodes 506 (collectively or indi
vidually referred to as search node 506 or search nodes 506) ,
a search node monitor 508 , and a search node catalog 510 .
However , it will be understood that the query system 214
can include fewer or more components as desired . For
example , in some embodiments , the common storage 216 ,
data store catalog 220 , or query acceleration data store 222
can form part of the query system 214 , etc.
[0256] As described herein , each of the components of the
query system 214 can be implemented using one or more
computing devices as distinct computing devices or as one
or more container instances or virtual machines across one
or more computing devices . For example , in some embodi
ments , the query system manager 502 , search heads 504 , and
search nodes 506 can be implemented as distinct computing
devices with separate hardware , memory , and processors . In
certain embodiments , the query system manager 502 , search
heads 504 , and search nodes 506 can be implemented on the
same or across different computing devices as distinct
container instances , with each container having access to a
subset of the resources of a host computing device (e.g. , a
subset of the memory or processing time of the processors
of the host computing device) , but sharing a similar oper
ating system . In some cases , the components can be imple
mented as distinct virtual machines across one or more
computing devices , where each virtual machine can have its
own unshared operating system but shares the underlying
hardware with other virtual machines on the same host
computing device .

2

2

age 216 according to a bucket management policy . The
bucket management policy can indicate when the pre
merged buckets are to be deleted or designated as able to be
overwritten from common storage 216 .
[0251] In some cases , the bucket management policy can
indicate that the pre - merged buckets are to be deleted
immediately , once any queries relying on the pre - merged
buckets are completed , after a predetermined amount of
time , etc. In some cases , the pre - merged buckets may be in
use or identified for use by one or more queries . Removing
the pre - merged buckets from common storage 216 in the
middle of a query may cause one or more failures in the
query system 214 or result in query responses that are
incomplete or erroneous . Accordingly , the bucket manage
ment policy , in some cases , can indicate to the common
storage 216 that queries that arrive before a merged bucket
is stored in common storage 216 are to use the correspond
ing pre - merged buckets and queries that arrive after the
merged bucket is stored in common storage 216 are to use
the merged bucket .
[0252] Further , the bucket management policy can indi
cate that once queries using the pre - merged buckets are
completed , the buckets are to be removed from common
storage 216. However , it will be understood that the bucket
management policy can indicate removal of the buckets in a
variety of ways . For example , per the bucket management
policy , the common storage 216 can remove the buckets
after on one or more hours , one day , one week , etc. , with or
without regard to queries that may be relying on the pre
merged buckets . In some embodiments , the bucket manage
ment policy can indicate that the pre - merged buckets are to
be removed without regard to queries relying on the pre
merged buckets and that any queries relying on the pre
merged buckets are to be redirected to the merged bucket .
[0253] In addition to removing the pre - merged buckets
and merged bucket from the data store 412 and removing or
instructing common storage 216 to remove the pre - merged
buckets from the data store (s) 218 , the bucket manger 414
can update the data store catalog 220 or cause the indexer
410 or partition manager 408 to update the data store catalog
220 with the relevant changes . These changes can include
removing reference to the pre - merged buckets in the data
store catalog 220 and / or adding information about the
merged bucket , including , but not limited to , a bucket ,
tenant , and / or partition identifier associated with the merged
bucket , a time range of the merged bucket , location infor
mation of the merged bucket in common storage 216 , etc. In
this way , the data store catalog 220 can be kept up - to - date
with the contents of the common storage 216 .

2

a

3.3.1 . Query System Manager
[0257] As mentioned , the query system manager 502 can
monitor and manage the search heads 504 and search nodes
506 , and can be implemented as a distinct computing device ,
virtual machine , container , container of a pod , or a process
or thread associated with a container . For example , the query
system manager 502 can determine which search head 504
is to handle an incoming query or determine whether to
generate an additional search node 506 based on the number
of queries received by the query system 214 or based on
another search node 506 becoming unavailable or unrespon
sive . Similarly , the query system manager 502 can determine
that additional search heads 504 should be generated to
handle an influx of queries or that some search heads 504
can be de - allocated or terminated based on a reduction in the
number of queries received .
[0258] In certain embodiments , the query system 214 can
include one query system manager 502 to manage all search
heads 504 and search nodes 506 of the query system 214. In
some embodiments , the query system 214 can include
multiple query system managers 502. For example , a query
system manager 502 can be instantiated for each computing
device (or group of computing devices) configured as a host
computing device for multiple search heads 504 and / or
search nodes 506 .
[0259] Moreover , the query system manager 502 can
handle resource management , creation , assignment , or
destruction of search heads 504 and / or search nodes 506 ,
high availability , load balancing , application upgrades / roll
backs , logging and monitoring , storage , networking , service
discovery , and performance and scalability , and otherwise
handle containerization management of the containers of the

3.3 . Query System
[0254] FIG . 5 is a block diagram illustrating an embodi
ment of a query system 214 of the data intake and query
system 108. The query system 214 can receive , process , and
execute queries from multiple client devices 204 , which may
be associated with different tenants , users , etc. Moreover , the
query system 214 can include various components that
enable it to provide a stateless or state - free search service , or
search service that is able to rapidly recover without data
loss if one or more components of the query system 214
become unresponsive or unavailable .
[0255] In the illustrated embodiment , the query system
214 includes one or more query system managers 502
(collectively or individually referred to as query system

US 2022/0245156 A1 Aug. 4 , 2022
20

query system 214. In certain embodiments , the query system
manager 502 can be implemented using Kubernetes or
Swarm . For example , in certain embodiments , the query
system manager 502 may be part of a sidecar or sidecar
container , that allows communication between various
search nodes 506 , various search heads 504 , and / or combi
nations thereof .
[0260] In some cases , the query system manager 502 can
monitor the available resources of a host computing device a
and / or request additional resources in a shared resource
environment , based on workload of the search heads 504
and / or search nodes 506 or create , destroy , or reassign search
heads 504 and / or search nodes 506 based on workload .
Further , the query system manager 502 system can assign
search heads 504 to handle incoming queries and / or assign
search nodes 506 to handle query processing based on
workload , system resources , etc.

to manage the query . In some cases , the search master 512
generates a separate search manager 514 for each query that
is received by the search head 504. In addition , once a query
is completed , the search master 512 can handle the termi
nation of the corresponding search manager 514 .
[0265] In certain embodiments , the search master 512 can
track and store the queries assigned to the different search
managers 514. Accordingly , if a search manager 514
becomes unavailable or unresponsive , the search master 512
can generate a new search manager 514 and assign the query
to the new search manager 514. In this way , the search head
504 can increase the resiliency of the query system 214 ,
reduce delay caused by an unresponsive component , and can
aid in providing a stateless searching service .
[0266] In some embodiments , the search master 512 is
implemented as a background process , or daemon , on the
search head 504 and the search manager (s) 514 are imple
mented as threads , copies , or forks of the background
process . In some cases , a search master 512 can copy itself ,
or fork , to create a search manager 514 or cause a template
process to copy itself , or fork , to create each new search
manager 514 , etc. , in order to support efficient multithreaded implementations

3.3.2 . Search Head

a

[0261] As described herein , the search heads 504 can
manage the execution of queries received by the query
system 214. For example , the search heads 504 can parse the
queries to identify the set of data to be processed and the
manner of processing the set of data , identify the location of
the data , identify tasks to be performed by the search head
and tasks to be performed by the search nodes 506 , distribute
the query (or sub - queries corresponding to the query) to the
search nodes 506 , apply extraction rules to the set of data to
be processed , aggregate search results from the search nodes
506 , store the search results in the query acceleration data
store 222 , etc.
[0262] As described herein , the search heads 504 can be
implemented on separate computing devices or as containers
or virtual machines in a virtualization environment . In some
embodiments , the search heads 504 may be implemented
using multiple - related containers . In certain embodiments ,
such as in a Kubernetes deployment , each search head 504
can be implemented as a separate container or pod . For
example , one or more of the components of the search head
504 can be implemented as different containers of a single
pod , e.g. , on a containerization platform , such as Docker , the
one or more components of the indexing node can be
implemented as different Docker containers managed by
synchronization platforms such as Kubernetes or Swarm .
Accordingly , reference to a containerized search head 504
can refer to the search head 504 as being a single container
or as one or more components of the search head 504 being
implemented as different , related containers .
[0263] In the illustrated embodiment , the search head 504
includes a search master 512 and one or more search
managers 514 to carry out its various functions . However , it
will be understood that the search head 504 can include
fewer or more components as desired . For example , the
search head 504 can include multiple search masters 512 .

3.3.2.2 . Search Manager
[0267] As mentioned , the search managers 514 can man
age the processing and execution of the queries assigned to
the search head 504 , and can be implemented as a distinct
computing device , virtual machine , container , container of a
pod , or a pro ss or thread associated with a container . In
some embodiments , one search manager 514 manages the
processing and execution of one query at a time . In such
embodiments , if the search head 504 is processing one
hundred queries , the search master 512 can generate one
hundred search managers 514 to manage the one hundred
queries . Upon completing an assigned query , the search
manager 514 can await assignment to a new query or be
terminated .
[0268] As part of managing the processing and execution
of a query , and as described herein , a search manager 514
can parse the query to identify the set of data and the manner
in which the set of data is to be processed (e.g. , the
transformations that are to be applied to the set of data) ,
determine tasks to be performed by the search manager 514
and tasks to be performed by the search nodes 506 , identify
search nodes 506 that are available to execute the query , map
search nodes 506 to the set of data that is to be processed ,
instruct the search nodes 506 to execute the query and return
results , aggregate and / or transform the search results from
the various search nodes 506 , and provide the search results
to a user and / or to the query acceleration data store 222 .
[0269] In some cases , to aid in identifying the set of data
to be processed , the search manager 514 can consult the data
store catalog 220 (depicted in FIG . 2) . As described herein ,
the data store catalog 220 can include information regarding
the data stored in common storage 216. In some cases , the
data store catalog 220 can include bucket identifiers , a time
range , and a location of the buckets in common storage 216 .
In addition , the data store catalog 220 can include a tenant
identifier and partition identifier for the buckets . This infor
mation can be used to identify buckets that include data that
satisfies at least a portion of the query .
[0270] As a non - limiting example , consider a search man
ager 514 that has parsed a query to identify the following

3.3.2.1 . Search Master

a [0264] The search master 512 can manage the execution of
the various queries assigned to the search head 504 , and can
be implemented as a distinct computing device , virtual
machine , container , container of a pod , or a process or thread
associated with a container . For example , in certain embodi
ments , as the search head 504 is assigned a query , the search
master 512 can generate one or more search manager (s) 514

a

a

US 2022/0245156 A1 Aug. 4 , 2022
21

2

filter criteria that is used to identify the data to be processed :
time range : past hour , partition : _sales , tenant : ABC , Inc. ,
keyword : Error . Using the received filter criteria , the search
manager 514 can consult the data store catalog 220. Spe
cifically , the search manager 514 can use the data store
catalog 220 to identify buckets associated with the _sales
partition and the tenant ABC , Inc. and that include data from
the past hour . In some cases , the search manager 514 can
obtain bucket identifiers and location information from the
data store catalog 220 for the buckets storing data that
satisfies at least the aforementioned filter criteria . In certain
embodiments , if the data store catalog 220 includes keyword
pairs , it can use the keyword : Error to identify buckets that
have at least one event that include the keyword Error .
[0271] Using the bucket identifiers and / or the location
information , the search manager 514 can assign one or more
search nodes 506 to search the corresponding buckets .
Accordingly , the data store catalog 220 can be used to
identify relevant buckets and reduce the number of buckets
that are to be searched by the search nodes 506. In this way ,
the data store catalog 220 can decrease the query response
time of the data intake and query system 108 .
[0272] In some embodiments , the use of the data store
catalog 220 to identify buckets for searching can contribute
to the statelessness of the query system 214 and search head
504. For example , if a search head 504 or search manager
514 becomes unresponsive or unavailable , the query system
manager 502 or search master 512 , as the case may be , can
spin up or assign an additional resource (new search head
504 or new search manager 514) to execute the query . As the
bucket information is persistently stored in the data store
catalog 220 , data lost due to the unavailability or unrespon
siveness of a component of the query system 214 can be
recovered by using the bucket information in the data store
catalog 220 .
[0273] In certain embodiments , to identify search nodes
506 that are available to execute the query , the search
manager 514 can consult the search node catalog 510. As
described herein , the search node catalog 510 can include
information regarding the search nodes 506. In some cases ,
the search node catalog 510 can include an identifier for each
search node 506 , as well as utilization and availability
information . For example , the search node catalog 510 can
identify search nodes 506 that are instantiated but are
unavailable or unresponsive . In addition , the search node
catalog 510 can identify the utilization rate of the search
nodes 506. For example , the search node catalog 510 can
identify search nodes 506 that are working at maximum
capacity or at a utilization rate that satisfies utilization
threshold , such that the search node 506 should not be used
to execute additional queries for a time .
[0274] In addition , the search node catalog 510 can
include architectural information about the search nodes
506. For example , the search node catalog 510 can identify
search nodes 506 that share a data store and / or are located
on the same computing device , or on computing devices that
are co - located .
[0275] Accordingly , in some embodiments , based on the
receipt of a query , a search manager 514 can consult the
search node catalog 510 for search nodes 506 that are
available to execute the received query . Based on the con
sultation of the search node catalog 510 , the search manager
514 can determine which search nodes 506 to assign to
execute the query .

[0276] The search manager 514 can map the search nodes
506 to the data that is to be processed according to a search
node mapping policy . The search node mapping policy can
indicate how search nodes 506 are to be assigned to data
(e.g. , buckets) and when search nodes 506 are to be assigned
to (and instructed to search) the data or buckets .
[0277] In some cases , the search manager 514 can map the
search nodes 506 to buckets that include data that satisfies at
least a portion of the query . For example , in some cases , the
search manager 514 can consult the data store catalog 220 to
obtain bucket identifiers of buckets that include data that
satisfies at least a portion of the query , e.g. , as a non - limiting
example , to obtain bucket identifiers of buckets that include
data associated with a particular time range . Based on the
identified buckets and search nodes 506 , the search manager
514 can dynamically assign (or map) search nodes 506 to
individual buckets according to a search node mapping
policy .
[0278] In some embodiments , the search node mapping
policy can indicate that the search manager 514 is to assign
all buckets to search nodes 506 as a single operation . For
example , where ten buckets are to be searched by five search
nodes 506 , the search manager 514 can assign two buckets
to a first search node 506 , two buckets to a second search
node 506 , etc. In another embodiment , the search node
mapping policy can indicate that the search manager 514 is
to assign buckets iteratively . For example , where ten buckets
are to be searched by five search nodes 506 , the search
manager 514 can initially assign five buckets (e.g. , one
buckets to each search node 506) , and assign additional
buckets to each search node 506 as the respective search
nodes 506 complete the execution on the assigned buckets .
[0279] Retrieving buckets from common storage 216 to be
searched by the search nodes 506 can cause delay or may use
a relatively high amount of network bandwidth or disk
read / write bandwidth . In some cases , a local or shared data
store associated with the search nodes 506 may include a
copy of a bucket that was previously retrieved from common
storage 216. Accordingly , to reduce delay caused by retriev
ing buckets from common storage 216 , the search node
mapping policy can indicate that the search manager 514 is
to assign , preferably assign , or attempt to assign the same
search node 506 to search the same bucket over time . In this
way , the assigned search node 506 can keep a local copy of
the bucket on its data store (or a data store shared between
multiple search nodes 506) and avoid the processing delays
associated with obtaining the bucket from the common
storage 216 .
[0280] In certain embodiments , the search node mapping
policy can indicate that the search manager 514 is to use a
consistent hash function or other function to consistently
map a bucket to a particular search node 506. The search
manager 514 can perform the hash using the bucket identi
fier obtained from the data store catalog 220 , and the output
of the hash can be used to identify the search node 506
assigned to the bucket . In some cases , the consistent hash
function can be configured such that even with a different
number of search nodes 506 being assigned to execute the
query , the output will consistently identify the same search
node 506 , or have an increased probability of identifying the
same search node 506 .
[0281] In some embodiments , the query system 214 can
store a mapping of search nodes 506 to bucket identifiers .
The search node mapping policy can indicate that the search

a

>

US 2022/0245156 A1 Aug. 4 , 2022
22

a

manager 514 is to use the mapping to determine whether a
particular bucket has been assigned to a search node 506. If
the bucket has been assigned to a particular search node 506
and that search node 506 is available , then the search
manager 514 can assign the bucket to the search node 506 .
If the bucket has not been assigned to a particular search
node 506 , the search manager 514 can use a hash function
to identify a search node 506 for assignment . Once assigned ,
the search manager 514 can store the mapping for future use .
[0282] In certain cases , the search node mapping policy
can indicate that the search manager 514 is to use architec
tural information about the search nodes 506 to assign
buckets . For example , if the identified search node 506 is
unavailable or its utilization rate satisfies a threshold utili
zation rate , the search manager 514 can determine whether
an available search node 506 shares a data store with the
unavailable search node 506. If it does , the search manager
514 can assign the bucket to the available search node 506
that shares the data store with the unavailable search node
506. In this way , the search manager 514 can reduce the
likelihood that the bucket will be obtained from common
storage 216 , which can introduce additional delay to the
query while the bucket is retrieved from common storage
216 to the data store shared by the available search node 506 .
[0283] In some instances , the search node mapping policy
can indicate that the search manager 514 is to assign buckets
to search nodes 506 randomly , or in a simple sequence (e.g. ,
a first search nodes 506 is assigned a first bucket , a second
search node 506 is assigned a second bucket , etc.) . In other
instances , as discussed , the search node mapping policy can
indicate that the search manager 514 is to assign buckets to
search nodes 506 based on buckets previously assigned to a
search nodes 506 , in a prior or current search . As mentioned
above , in some embodiments each search node 506 may be
associated with a local data store or cache of information
(e.g. , in memory of the search nodes 506 , such as random
access memory [“ RAM ”] , disk - based cache , a data store , or
other form of storage) . Each search node 506 can store
copies of one or more buckets from the common storage 216
within the local cache , such that the buckets may be more
rapidly searched by search nodes 506. The search manager
514 (or cache manager 516) can maintain or retrieve from
search nodes 506 information identifying , for each relevant
search node 506 , what buckets are copied within local cache
of the respective search nodes 506. In the event that the
search manager 514 determines that a search node 506
assigned to execute a search has within its data store or local
cache a copy of an identified bucket , the search manager 514
can preferentially assign the search node 506 to search that
locally - cached bucket .
[0284] In still more embodiments , according to the search
node mapping policy , search nodes 506 may be assigned
based on overlaps of computing resources of the search
nodes 506. For example , where a containerized search node
506 is to retrieve a bucket from common storage 216 (e.g. ,
where a local cached copy of the bucket does not exist on the
search node 506) , such retrieval may use a relatively high
amount of network bandwidth or disk read / write bandwidth .
Thus , assigning a second containerized search node 506
instantiated on the same host computing device might be
expected to strain or exceed the network or disk read / write
bandwidth of the host computing device . For this reason , in
some embodiments , according to the search node mapping
policy , the search manager 514 can assign buckets to search

nodes 506 such that two containerized search nodes 506 on
a common host computing device do not both retrieve
buckets from common storage 216 at the same time .
[0285] Further , in certain embodiments , where a data store
that is shared between multiple search nodes 506 includes
two buckets identified for the search , the search manager
514 can , according to the search node mapping policy ,
assign both such buckets to the same search node 506 or to
two different search nodes 506 that share the data store , such
that both buckets can be searched in parallel by the respec
tive search nodes 506 .
[0286] The search node mapping policy can indicate that
the search manager 514 is to use any one or any combination
of the above - described mechanisms to assign buckets to
search nodes 506. Furthermore , the search node mapping
policy can indicate that the search manager 514 is to
prioritize assigning search nodes 506 to buckets based on
any one or any combination of : assigning search nodes 506
to process buckets that are in a local or shared data store of
the search nodes 506 , maximizing parallelization (e.g. ,
assigning as many different search nodes 506 to execute the
query as are available) , assigning search nodes 506 to
process buckets with overlapping timestamps , maximizing
individual search node 506 utilization (e.g. , ensuring that
each search node 506 is searching at least one bucket at any
given time , etc.) , or assigning search nodes 506 to process
buckets associated with a particular tenant , user , or other
known feature of data stored within the bucket (e.g. , buckets
holding data known to be used in time - sensitive searches
may be prioritized) . Thus , according to the search node
mapping policy , the search manager 514 can dynamically
alter the assignment of buckets to search nodes 506 to
increase the parallelization of a search , and to increase the
speed and efficiency with which the search is executed .
[0287] It will be understood that the search manager 514
can assign any search node 506 to search any bucket . This
flexibility can decrease query response time as the search
manager can dynamically determine which search nodes 506
are best suited or available to execute the query on different
buckets . Further , if one bucket is being used by multiple
queries , the search manager 515 can assign multiple search
nodes 506 to search the bucket . In addition , in the event a
search node 506 becomes unavailable or unresponsive , the
search manager 514 can assign a different search node 506
to search the buckets assigned to the unavailable search node
506 .
[0288] As part of the query execution , the search manager
514 can instruct the search nodes 506 to execute the query
(or sub - query) on the assigned buckets . As described herein ,
the search manager 514 can generate specific queries or
sub - queries for the individual search nodes 506. The search
nodes 506 can use the queries to execute the query on the
buckets assigned thereto .
[0289] In some embodiments , the search manager 514
stores the sub - queries and bucket assignments for the dif
ferent search nodes 506. Storing the sub - queries and bucket
assignments can contribute to the statelessness of the query
system 214. For example , in the event an assigned search
node 506 becomes unresponsive or unavailable during the
query execution , the search manager 514 can re - assign the
sub - query and bucket assignments of the unavailable search
node 506 to one or more available search nodes 506 or
identify a different available search node 506 from the
search node catalog 510 to execute the sub - query . In certain

a

a

a

US 2022/0245156 A1 Aug. 4 , 2022
23

results from time A to time B) , and the query can be run from
time B to time C and combined with the prior results , rather
than running the entire query from time A to time C. In this
manner , the computational efficiency of ongoing search
queries can be improved .
3.3.3 . Search Nodes

a

embodiments , the query system manager 502 can generate
an additional search node 506 to execute the sub - query of
the unavailable search node 506. Accordingly , the query
system 214 can quickly recover from an unavailable or
unresponsive component without data loss and while reduc
ing or minimizing delay .
[0290] During the query execution , the search manager
514 can monitor the status of the assigned search nodes 506 .
In some cases , the search manager 514 can ping or set up a
communication link between it and the search nodes 506
assigned to execute the query . As mentioned , the search
manager 514 can store the mapping of the buckets to the
search nodes 506. Accordingly , in the event a particular
search node 506 becomes unavailable for his unresponsive ,
the search manager 514 can assign a different search node
506 to complete the execution of the query for the buckets
assigned to the unresponsive search node 506 .
[0291] In some cases , as part of the status updates to the
search manager 514 , the search nodes 506 can provide the
search manager with partial results and information regard
ing the buckets that have been searched . In response , the
search manager 514 can store the partial results and bucket
information in persistent storage . Accordingly , if a search
node 506 partially executes the query and becomes unre
sponsive or unavailable , the search manager 514 can assign
a different search node 506 to complete the execution , as
described above . For example , the search manager 514 can
assign a search node 506 to execute the query on the buckets
that were not searched by the unavailable search node 506 .
In this way , the search manager 514 can more quickly
recover from an unavailable or unresponsive search node
506 without data loss and while reducing or minimizing
delay .
[0292] As the search manager 514 receives query results
from the different search nodes 506 , it can process the data .
In some cases , the search manager 514 processes the partial
results as it receives them . For example , if the query includes
a count , the search manager 514 can increment the count as
it receives the results from the different search nodes 506. In
certain cases , the search manager 514 waits for the complete
results from the search nodes before processing them . For
example , if the query includes a command that operates on
a result set , or a partial result set , e.g. , a stats command (e.g. ,
a command that calculates one or more aggregate statistics
over the results set , e.g. , average , count , or standard devia
tion , as examples) , the search manager 514 can wait for the
results from all the search nodes 506 before executing the
stats command .
(0293] As the search manager 514 processes the results or
completes processing the results , it can store the results in
the query acceleration data store 222 or communicate the
results to a client device 204. As described herein , results
stored in the query acceleration data store 222 can be
combined with other results over time . For example , if the
query system 212 receives an open - ended query (e.g. , no set
end time) , the search manager 515 can store the query results
over time in the query acceleration data store 222. Query
results in the query acceleration data store 222 can be
updated as additional query results are obtained . In this
manner , if an open - ended query is run at time B , query
results may be stored from initial time A to time B. If the
same open - ended query is run at time C , then the query
results from the prior open - ended query can be obtained
from the query acceleration data store 222 (which gives the

[0294] As described herein , the search nodes 506 can be
the primary query execution engines for the query system
214 , and can be implemented as distinct computing devices ,
virtual machines , containers , container of a pods , or pro
cesses or threads associated with one or more containers .
Accordingly , each search node 506 can include a processing
device and a data store , as depicted at a high level in FIG .
5. Depending on the embodiment , the processing device and
data store can be dedicated to the search node (e.g. , embodi
ments where each search node is a distinct computing
device) or can be shared with other search nodes or com
ponents of the data intake and query system 108 (e.g. ,
embodiments where the search nodes are implemented as
containers or virtual machines or where the shared data store
is a networked data store , etc.) .
[0295] In some embodiments , the search nodes 506 can
obtain and search buckets identified by the search manager
514 that include data that satisfies at least a portion of the
query , identify the set of data within the buckets that satisfies
the query , perform one or more transformations on the set of
data , and communicate the set of data to the search manager
514. Individually , a search node 506 can obtain the buckets
assigned to it by the search manager 514 for a particular
query , search the assigned buckets for a subset of the set of
data , perform one or more transformation on the subset of
data , and communicate partial search results to the search
manager 514 for additional processing and combination with
the partial results from other search nodes 506 .
[0296] In some cases , the buckets to be searched may be
located in a local data store of the search node 506 or a data
store that is shared between multiple search nodes 506. In
such cases , the search nodes 506 can identify the location of
the buckets and search the buckets for the set of data that
satisfies the query .
[0297] In certain cases , the buckets may be located in the
common storage 216. In such cases , the search nodes 506
can search the buckets in the common storage 216 and / or
copy the buckets from the common storage 216 to a local or
shared data store and search the locally stored copy for the
set of data . As described herein , the cache manager 516 can
coordinate with the search nodes 506 to identify the location
of the buckets (whether in a local or shared data store or in
common storage 216) and / or obtain buckets stored in com
mon storage 216 .
[0298] Once the relevant buckets (or relevant files of the
buckets) are obtained , the search nodes 506 can search their
contents to identify the set of data to be processed . In some
cases , upon obtaining a bucket from the common storage
216 , a search node 506 can decompress the bucket from a
compressed format , and accessing one or more files stored
within the bucket . In some cases , the search node 506
references a bucket summary or manifest to locate one or
more portions (e.g. , records or individual files) of the bucket
that potentially contain information relevant to the search .
[0299] In some cases , the search nodes 506 can use all of
the files of a bucket to identify the set of data . In certain
embodiments , the search nodes 506 use a subset of the files

a

a

US 2022/0245156 A1 Aug. 4 , 2022
24

a

of a bucket to identify the set of data . For example , in some
cases , a search node 506 can use an inverted index , bloom
filter , or bucket summary or manifest to identify a subset of
the set of data without searching the raw machine data of the
bucket . In certain cases , the search node 506 uses the
inverted index , bloom filter , bucket summary , and raw
machine data to identify the subset of the set of data that
satisfies the query .
[0300] In some embodiments , depending on the query , the
search nodes 506 can perform one or more transformations
on the data from the buckets . For example , the search nodes
506 may perform various data transformations , scripts , and
processes , e.g. , a count of the set of data , etc.
[0301] As the search nodes 506 execute the query , they
can provide the search manager 514 with search results . In
some cases , a search node 506 provides the search manager
514 results as they are identified by the search node 506 , and
updates the results over time . In certain embodiments , a
search node 506 waits until all of its partial results are
gathered before sending the results to the search manager
504 .
[0302] In some embodiments , the search nodes 506 pro
vide a status of the query to the search manager 514. For
example , an individual search node 506 can inform the
search manager 514 of which buckets it has searched and / or
provide the search manager 514 with the results from the
searched buckets . As mentioned , the search manager 514
can track or store the status and the results as they are
received from the search node 506. In the event the search
node 506 becomes unresponsive or unavailable , the tracked
information can be used to generate and assign a new search
node 506 to execute the remaining portions of the query
assigned to the unavailable search node 506 .

the common storage 216. For example , a search node 506
may request a subset of files from a particular bucket . Based
on the request and a determination that the files are located
in common storage 216 , the cache manager 516 can down
load or obtain the identified files from the common storage
216 .
[0307] In some cases , based on the information provided
from the search node 506 , the cache manager 516 may be
unable to uniquely identify a requested file or files within the
common storage 216. Accordingly , in certain embodiments ,
the cache manager 516 can retrieve a bucket summary or
manifest file from the common storage 216 and provide the
bucket summary to the search node 506. In some cases , the
cache manager 516 can provide the bucket summary to the
search node 506 while concurrently informing the search
node 506 that the requested files are not located in a local or
shared data store and are to be retrieved from common
storage 216 .
[0308] Using the bucket summary , the search node 506
can uniquely identify the files to be used to execute the
query . Using the unique identification , the cache manager
516 can request the files from the common storage 216 .
Accordingly , rather than downloading the entire contents of
the bucket from common storage 216 , the cache manager
516 can download those portions of the bucket that are to be
used by the search node 506 to execute the query . In this
way , the cache manager 516 can decrease the amount of data
sent over the network and decrease the search time .
[0309] As a non - limiting example , a search node 506 may
determine that an inverted index of a bucket is to be used to
execute a query . For example , the search node 506 may
determine that all the information that it needs to execute the
query on the bucket can be found in an inverted index
associated with the bucket . Accordingly , the search node 506
can request the file associated with the inverted index of the
bucket from the cache manager 516. Based on a determi
nation that the requested file is not located in a local or
shared data store , the cache manager 516 can determine that
the file is located in the common storage 216 .
[0310] As the bucket may have multiple inverted indexes
associated with it , the information provided by the search
node 506 may be insufficient to uniquely identify the
inverted index within the bucket . To address this issue , the
cache manager 516 can request a bucket summary or mani
fest from the common storage 216 , and forward it to the
search node 506. The search node 506 can analyze the
bucket summary to identify the particular inverted index that
is to be used to execute the query , and request the identified
particular inverted index from the cache manager 516 (e.g. ,
by name and / or location) . Using the bucket manifest and / or
the information received from the search node 506 , the
cache manager 516 can obtain the identified particular
inverted index from the common storage 216. By obtaining
the bucket manifest and downloading the requested inverted
index instead of all inverted indexes or files of the bucket ,
the cache manager 516 can reduce the amount of data
communicated over the network and reduce the search time

2

3.3.4 . Cache Manager
[0303] As mentioned , the cache manager 516 can com
municate with the search nodes 506 to obtain or identify the
location of the buckets assigned to the search nodes 506 , and
can be implemented as a distinct computing device , virtual
machine , container , container of a pod , or a process or thread
associated with a container .
[0304] In some embodiments , based on the receipt of a
bucket assignment , a search node 506 can provide the cache
manager 516 with an identifier of the bucket that it is to
search , a file associated with the bucket that it is to search ,
and / or a location of the bucket . In response , the cache
manager 516 can determine whether the identified bucket or
file is located in a local or shared data store or is to be
retrieved from the common storage 216 .
[0305] As mentioned , in some cases , multiple search
nodes 506 can share a data store . Accordingly , if the cache
manager 516 determines that the requested bucket is located
in a local or shared data store , the cache manager 516 can
provide the search node 506 with the location of the
requested bucket or file . In certain cases , if the cache
manager 516 determines that the requested bucket or file is
not located in the local or shared data store , the cache
manager 516 can request the bucket or file from the common
storage 216 , and inform the search node 506 that the
requested bucket or file is being retrieved from common
storage 216 .
[0306] In some cases , the cache manager 516 can request
one or more files associated with the requested bucket prior
to , or in place of , requesting all contents of the bucket from

a

for the query .
2 [0311] In some cases , when requesting a particular file , the

search node 506 can include a priority level for the file . For
example , the files of a bucket may be of different sizes and
may be used more or less frequently when executing queries .
For example , the bucket manifest may be a relatively small
file . However , if the bucket is searched , the bucket manifest

US 2022/0245156 A1 Aug. 4 , 2022
25

a

can be a relatively valuable file (and frequently used)
because it includes a list or index of the various files of the
bucket . Similarly , a bloom filter of a bucket may be a
relatively small file but frequently used as it can relatively
quickly identify the contents of the bucket . In addition , an
inverted index may be used more frequently than raw data
of a bucket to satisfy a query .
[0312] Accordingly , to improve retention of files that are
commonly used in a search of a bucket , the search node 506
can include a priority level for the requested file . The cache
manager 516 can use the priority level received from the
search node 506 to determine how long to keep or when to
evict the file from the local or shared data store . For
example , files identified by the search node 506 as having a
higher priority level can be stored for a greater period of
time than files identified as having a lower priority level .
[0313] Furthermore , the cache manager 516 can determine
what data and how long to retain the data in the local or
shared data stores of the search nodes 506 based on a bucket
caching policy . In some cases , the bucket caching policy can
rely on any one or any combination of the priority level
received from the search nodes 506 for a particular file , least
recently used , most recent in time , or other policies to
indicate how long to retain files in the local or shared data
store .
[0314] In some instances , according to the bucket caching
policy , the cache manager 516 or other component of the
query system 214 (e.g. , the search master 512 or search
manager 514) can instruct search nodes 506 to retrieve and
locally cache copies of various buckets from the common
storage 216 , independently of processing queries . In certain
embodiments , the query system 214 is configured , according
to the bucket caching policy , such that one or more buckets
from the common storage 216 (e.g. , buckets associated with
a tenant or partition of a tenant) or each bucket from the
common storage 216 is locally cached on at least one search
node 506 .
[0315] In some embodiments , according to the bucket
caching policy , the query system 214 is configured such that
at least one bucket from the common storage 216 is locally
cached on at least two search nodes 506. Caching a bucket
on at least two search nodes 506 may be beneficial , for
example , in instances where different queries both require
searching the bucket (e.g. , because the at least search nodes
506 may process their respective local copies in parallel) . In
still other embodiments , the query system 214 is configured ,
according to the bucket caching policy , such that one or
more buckets from the common storage 216 or all buckets
from the common storage 216 are locally cached on at least
a given number n of search nodes 506 , wherein n is defined
by a replication factor on the system 108. For example , a
replication factor of five may be established to ensure that
five copies of a bucket are locally cached across different
search nodes 506 .
[0316] In certain embodiments , the search manager 514
(or search master 512) can assign buckets to different search
nodes 506 based on time . For example , buckets that are less
than one day old can be assigned to a first group of search
nodes 506 for caching , buckets that are more than one day
but less than one week old can be assigned to a different
group of search nodes 506 for caching , and buckets that are
more than one week old can be assigned to a third group of
search nodes 506 for caching . In certain cases , the first group
can be larger than the second group , and the second group

can be larger than the third group . In this way , the query
system 214 can provide better / faster results for queries
searching data that is less than one day old , and so on , etc.
It will be understood that the search nodes can be grouped
and assigned buckets in a variety of ways . For example ,
search nodes 506 can be grouped based on a tenant identifier ,
index , etc. In this way , the query system 212 can dynami
cally provide faster results based any one or any number of
factors .
[0317] In some embodiments , when a search node 506 is
added to the query system 214 , the cache manager 516 can ,
based on the bucket caching policy , instruct the search node
506 to download one or more buckets from common storage
216 prior to receiving a query . In certain embodiments , the
cache manager 516 can instruct the search node 506 to
download specific buckets , such as most recent in time
buckets , buckets associated with a particular tenant or par
tition , etc. In some cases , the cache manager 516 can instruct
the search node 506 to download the buckets before the
search node 506 reports to the search node monitor 508 that
it is available for executing queries . It will be understood
that other components of the query system 214 can imple
ment this functionality , such as , but not limited to the query
system manager 502 , search node monitor 508 , search
manager 514 , or the search nodes 506 themselves .
[0318] In certain embodiments , when a search node 506 is
removed from the query system 214 or becomes unrespon
sive or unavailable , the cache manager 516 can identify the
buckets that the removed search node 506 was responsible
for and instruct the remaining search nodes 506 that they
will be responsible for the identified buckets . In some cases ,
the remaining search nodes 506 can download the identified
buckets from common storage 516 or retrieve them from the
data store associated with the removed search node 506 .
[0319] In some cases , the cache manager 516 can change
the bucket - search node 506 assignments , such as when a
search node 506 is removed or added . In certain embodi
ments , based on a reassignment , the cache manager 516 can
inform a particular search node 506 to remove buckets to
which it is no longer assigned , reduce the priority level of the
buckets , etc. In this way , the cache manager 516 can make
it so the reassigned bucket will be removed more quickly
from the search node 506 than it otherwise would without
the reassignment . In certain embodiments , the search node
506 that receives the new for the bucket can retrieve the
bucket from the now unassigned search node 506 and / or
retrieve the bucket from common storage 216 .

a

3.3.5 . Search Node Monitor and Catalog
[0320] The search node monitor 508 can monitor search
nodes and populate the search node catalog 510 with rel
evant information , and can be implemented as a distinct
computing device , virtual machine , container , container of a
pod , or a process or thread associated with a container .
[0321] In some cases , the search node monitor 508 can
ping the search nodes 506 over time to determine their
availability , responsiveness , and / or utilization rate . In cer
tain embodiments , each search node 506 can include a
monitoring module that provides performance metrics or
status updates about the search node 506 to the search node
monitor 508. For example , the monitoring module can
indicate the amount of processing resources in use by the
search node 506 , the utilization rate of the search node 506 ,
the amount of memory used by the search node 506 , etc. In

US 2022/0245156 A1 Aug. 4 , 2022
26

certain embodiments , the search node monitor 508 can
determine that a search node 506 is unavailable or failing
based on the data in the status update or absence of a state
update from the monitoring module of the search node 506 .
[0322] Using the information obtained from the search
nodes 506 , the search node monitor 508 can populate the
search node catalog 510 and update it over time . As
described herein , the search manager 514 can use the search
node catalog 510 to identify search nodes 506 available to
execute a query . In some embodiments , the search manager
214 can communicate with the search node catalog 510
using an API .
[0323] As the availability , responsiveness , and / or utiliza
tion change for the different search nodes 506 , the search
node monitor 508 can update the search node catalog 510 .
In this way , the search node catalog 510 can retain an
up - to - date list of search nodes 506 available to execute a
query .
[0324] Furthermore , as search nodes 506 are instantiated
(or at other times) , the search node monitor 508 can update
the search node catalog 510 with information about the
search node 506 , such as , but not limited to its computing
resources , utilization , network architecture (identification of
machine where it is instantiated , location with reference to
other search nodes 506 , computing resources shared with
other search nodes 506 , such as data stores , processors , I / O ,
etc.) , etc.

3.4 . Common Storage
[0325] Returning to FIG . 2 , the common storage 216 can
be used to store data indexed by the indexing system 212 ,
and can be implemented using one or more data stores 218 .
[0326] In some systems , the same computing devices (e.g. ,
indexers) operate both to ingest , index , store , and search
data . The use of an indexer to both ingest and search
information may be beneficial , for example , because an
indexer may have ready access to information that it has
ingested , and can quickly access that information for search
ing purposes . However , use of an indexer to both ingest and
search information may not be desirable in all instances . As
an illustrative example , consider an instance in which
ingested data is organized into buckets , and each indexer is
responsible for maintaining buckets within a data store
corresponding to the indexer . Illustratively , a set of ten
indexers may maintain 100 buckets , distributed evenly
across ten data stores (each of which is managed by a
corresponding indexer) . Information may be distributed
throughout the buckets according to a load balancing
mechanism used to distribute information to the indexers
during data ingestion . In an idealized scenario , information
responsive to a query would be spread across the 100
buckets , such that each indexer may search their correspond
ing ten buckets in parallel , and provide search results to a
search head . However , it is expected that this idealized
scenario may not always occur , and that there will be at least
some instances in which information responsive to a query
is unevenly distributed across data stores . As one example ,
consider a query in which responsive information exists
within ten buckets , all of which are included in a single data
store associated with a single indexer . In such an instance , a
bottleneck may be created at the single indexer , and the
effects of parallelized searching across the indexers may be
minimized . To increase the speed of operation of search
queries in such cases , it may therefore be desirable to store

data indexed by the indexing system 212 in common storage
216 that can be accessible to any one or multiple compo
nents of the indexing system 212 or the query system 214 .
[0327] Common storage 216 may correspond to any data
storage system accessible to the indexing system 212 and the
query system 214. For example , common storage 216 may
correspond to a storage area network (SAN) , network
attached storage (NAS) , other network - accessible storage
system (e.g. , a hosted storage system , such as Amazon S3 or
EBS provided by Amazon , Inc. , Google Cloud Storage ,
Microsoft Azure Storage , etc. , which may also be referred to
as “ cloud ” storage) , or combination thereof . The common
storage 216 may include , for example , hard disk drives
(HDDs) , solid state storage devices (SSDs) , or other sub
stantially persistent or non - transitory media . Data stores 218
within common storage 216 may correspond to physical data
storage devices (e.g. , an individual HDD) or a logical
storage device , such as a grouping of physical data storage
devices or a containerized or virtualized storage device
hosted by an underlying physical storage device . In some
embodiments , the common storage 216 may also be referred
to as a shared storage system or shared storage environment
as the data stores 218 may store data associated with
multiple customers , tenants , etc. , or across different data
intake and query systems 108 or other systems unrelated to
the data intake and query systems 108 .
[0328] The common storage 216 can be configured to
provide high availability , highly resilient , low loss data
storage . In some cases , to provide the high availability ,
highly resilient , low loss data storage , the common storage
216 can store multiple copies of the data in the same and
different geographic locations and across different types of
data stores (e.g. , solid state , hard drive , tape , etc.) . Further ,
as data is received at the common storage 216 it can be
automatically replicated multiple times according to a rep
lication factor to different data stores across the same and / or
different geographic locations .
[0329] In one embodiment , common storage 216 may be
multi - tiered , with each tier providing more rapid access to
information stored in that tier . For example , a first tier of the
common storage 216 may be physically co - located with the
indexing system 212 or the query system 214 and provide
rapid access to information of the first tier , while a second
tier may be located in a different physical location (e.g. , in
a hosted or “ cloud ” computing environment) and provide
less rapid access to information of the second tier .
[0330] Distribution of data between tiers may be con
trolled by any number of algorithms or mechanisms . In one
embodiment , a first tier may include data generated or
including timestamps within a threshold period of time (e.g. ,
the past seven days) , while a second tier or subsequent tiers
includes data older than that time period . In another embodi
ment , a first tier may include a threshold amount (e.g. , n
terabytes) or recently accessed data , while a second tier
stores the remaining less recently accessed data .
[0331] In one embodiment , data within the data stores 218
is grouped into buckets , each of which is commonly acces
sible to the indexing system 212 and query system 214. The
size of each bucket may be selected according to the
computational resources of the common storage 216 or the
data intake and query system 108 overall . For example , the
size of each bucket may be selected to enable an individual
bucket to be relatively quickly transmitted via a network ,
without introducing excessive additional data storage

US 2022/0245156 A1 Aug. 4 , 2022
27

requirements due to metadata or other overhead associated
with an individual bucket . In one embodiment , each bucket
is 750 megabytes in size . Further , as mentioned , in some
embodiments , some buckets can be merged to create larger
buckets .

9

requests is reduced or eliminated , and similarly , the impact
of data ingestion on search query result generation time also
is reduced or eliminated .
[0337] As will be appreciated in view of the above
description , the use of a common storage 216 can provide
many advantages within the data intake and query system
108. Specifically , use of a common storage 216 can enable
the system 108 to decouple functionality of data indexing by
indexing nodes 404 with functionality of searching by
search nodes 506. Moreover , because buckets containing
data are accessible by each search node 506 , a search
manager 514 can dynamically allocate search nodes 506 to
buckets at the time of a search in order to increase paral
lelization . Thus , use of a common storage 216 can substan
tially improve the speed and efficiency of operation of the
system 108 .

3.5 . Data Store Catalog

[0332] As described herein , each bucket can include one
or more files , such as , but not limited to , one or more
compressed or uncompressed raw machine data files , meta
data files , filter files , indexes files , bucket summary or
manifest files , etc. In addition , each bucket can store events
including raw machine data associated with a timestamp .
[0333] As described herein , the indexing nodes 404 can
generate buckets during indexing and communicate with
common storage 216 to store the buckets . For example , data
may be provided to the indexing nodes 404 from one or
more ingestion buffers of the intake system 210 The index
ing nodes 404 can process the information and store it as
buckets in common storage 216 , rather than in a data store
maintained by an individual indexer or indexing node . Thus ,
the common storage 216 can render information of the data
intake and query system 108 commonly accessible to ele
ments of the system 108. As described herein , the common
storage 216 can enable parallelized searching of buckets to
occur independently of the operation of indexing system
212 .

[0334] As noted above , it may be beneficial in some
instances to separate data indexing and searching . Accord
ingly , as described herein , the search nodes 506 of the query
system 214 can search for data stored within common
storage 216. The search nodes 506 may therefore be com
municatively attached (e.g. , via a communication network)
with the common storage 216 , and be enabled to access
buckets within the common storage 216 .
[0335] Further , as described herein , because the search
nodes 506 in some instances are not statically assigned to
individual data stores 218 (and thus to buckets within such
a data store 218) , the buckets searched by an individual
search node 506 may be selected dynamically , to increase
the parallelization with which the buckets can be searched .
For example , consider an instance where information is
stored within 100 buckets , and a query is received at the data
intake and query system 108 for information within ten
buckets . Unlike a scenario in which buckets are statically
assigned to an indexer , which could result in a bottleneck if
the ten relevant buckets are associated with the same
indexer , the ten buckets holding relevant information may be
dynamically distributed across multiple search nodes 506 .
Thus , if ten search nodes 506 are available to process a
query , each search node 506 may be assigned to retrieve and
search within one bucket greatly increasing parallelization
when compared to the low - parallelization scenarios (e.g. ,
where a single indexer 206 is required to search all ten
buckets) .
[0336] Moreover , because searching occurs at the search
nodes 506 rather than at the indexing system 212 , indexing
resources can be allocated independently to searching opera
tions . For example , search nodes 506 may be executed by a
separate processor or computing device than indexing nodes
404 , enabling computing resources available to search nodes
506 to scale independently of resources available to index
ing nodes 404. Additionally , the impact on data ingestion
and indexing due to above - average volumes of search query

[0338] The data store catalog 220 can store information
about the data stored in common storage 216 , and can be
implemented using one or more data stores . In some
embodiments , the data store catalog 220 can be imple
mented as a portion of the common storage 216 and / or using
similar data storage techniques (e.g. , local or cloud storage ,
multi - tiered storage , etc.) . In another implementation , the
data store catalog 22 — may utilize a database , e.g. , a rela
tional database engine , such as commercially - provided rela
tional database services , e.g. , Amazon's Aurora . In some
implementations , the data store catalog 220 may use an API
to allow access to register buckets , and to allow query
system 214 to access buckets . In other implementations , data
store catalog 220 may be implemented through other means ,
and maybe stored as part of common storage 216 , or another
type of common storage , as previously described . In various
implementations , requests for buckets may include a tenant
identifier and some form of user authentication , e.g. , a user
access token that can be authenticated by authentication
service . In various implementations , the data store catalog
220 may store one data structure , e.g. , table , per tenant , for
the buckets associated with that tenant , one data structure
per partition of each tenant , etc. In other implementations , a
single data structure , e.g. , a single table , may be used for all
tenants , and unique tenant IDs may be used to identify
buckets associated with the different tenants .
[0339] As described herein , the data store catalog 220 can
be updated by the indexing system 212 with information
about the buckets or data stored in common storage 216. For
example , the data store catalog can store an identifier for a
sets of data in common storage 216 , a location of the sets of
data in common storage 216 , tenant or indexes associated
with the sets of data , timing information about the sets of
data , etc. In embodiments where the data in common storage
216 is stored as buckets , the data store catalog 220 can
include a bucket identifier for the buckets in common
storage 216 , a location of or path to the buckets in common
storage 216 , a time range of the data in the bucket (e.g. ,
range of time between the first - in - time event of the bucket
and the last - in - time event of the bucket) , a tenant identifier
identifying a customer or computing device associated with
the bucket , and / or an index or partition associated with the
bucket , etc.
[0340] In certain embodiments , the data store catalog 220
can include an indication of a location of a copy of a bucket
found in one or more search nodes 506. For example , as

US 2022/0245156 A1 Aug. 4 , 2022
28

2 recently downloaded to a search node 506. The query system
214 for can use this information to assign search node 506
to that bucket .

3.6 . Query Acceleration Data Store

buckets are copied to search nodes 506 , the query system
214 can update the data store catalog 220 with information
about which search nodes 506 include a copy of the buckets .
This information can be used by the query system 214 to
assign search nodes 506 to buckets as part of a query .
[0341] In certain embodiments , the data store catalog 220
can function as an index or inverted index of the buckets
stored in common storage 216. For example , the data store
catalog 220 can provide location and other information
about the buckets stored in common storage 216. In some
embodiments , the data store catalog 220 can provide addi
tional information about the contents of the buckets . For
example , the data store catalog 220 can provide a list of
sources , sourcetypes , or hosts associated with the data in the
buckets .

[0342] In certain embodiments , the data store catalog 220
can include one or more keywords found within the data of
the buckets . In such embodiments , the data store catalog can
be similar to an inverted index , except rather than identify
ing specific events associated with a particular host , source ,
sourcetype , or keyword , it can identify buckets with data
associated with the particular host , source , sourcetype , or
keyword .
[0343] In some embodiments , the query system 214 (e.g. ,
search head 504 , search master 512 , search manager 514 ,
etc.) can communicate with the data store catalog 220 as part
of processing and executing a query . In certain cases , the
query system 214 communicates with the data store catalog
220 using an API . As a non - limiting example , the query
system 214 can provide the data store catalog 220 with at
least a portion of the query or one or more filter criteria
associated with the query . In response , the data store catalog
220 can provide the query system 214 with an identification
of buckets that store data that satisfies at least a portion of
the query . In addition , the data store catalog 220 can provide
the query system 214 with an indication of the location of
the identified buckets in common storage 216 and / or in one
or more local or shared data stores of the search nodes 506 .

[0344] Accordingly , using the information from the data
store catalog 220 , the query system 214 can reduce (or filter)
the amount of data or number of buckets to be searched . For
example , using tenant or partition information in the data
store catalog 220 , the query system 214 can exclude buckets
associated with a tenant or a partition , respectively , that is
not to be searched . Similarly , using time range information ,
the query system 214 can exclude buckets that do not satisfy
a time range from a search . In this way , the data store catalog
220 can reduce the amount of data to be searched and
decrease search times .

[0346] With continued reference to FIG . 2 , the query
acceleration data store 222 can be used to store query results
or datasets for accelerated access , and can be implemented
as , a distributed in - memory database system , storage sub
system , lo or networked storage (e.g. , cloud storage) , and
so on , which can maintain (e.g. , store) datasets in both
low - latency memory (e.g. , random access memory , such as
volatile or non - volatile memory) and longer - latency
memory (e.g. , solid state storage , disk drives , and so on) . In
some embodiments , to increase efficiency and response
times , the accelerated data store 222 can maintain particular
datasets in the low - latency memory , and other datasets in the
longer - latency memory . For example , in some embodi
ments , the datasets can be stored in - memory (non - limiting
examples : RAM or volatile memory) with disk spillover
(non - limiting examples : hard disks , disk drive , non - volatile
memory , etc.) . In this way , the query acceleration data store
222 can be used to serve interactive or iterative searches . In
some cases , datasets which are determined to be frequently
accessed by a user can be stored in the lower - latency
memory . Similarly , datasets of less than a threshold size can
be stored in the lower - latency memory .
[0347] In certain embodiments , the search manager 514 or
search nodes 506 can store query results in the query
acceleration data store 222. In some embodiments , the query
results can correspond to partial results from one or more
search nodes 506 or to aggregated results from all the search
nodes 506 involved in a query or the search manager 514. In
such embodiments , the results stored in the query accelera
tion data store 222 can be served at a later time to the search
head 504 , combined with additional results obtained from a
later query , transformed or further processed by the search
nodes 506 or search manager 514 , etc. For example , in some
cases , such as where a query does not include a termination
date , the search manager 514 can store initial results in the
acceleration data store 222 and update the initial results as
additional results are received . At any time , the initial
results , or iteratively updated results can be provided to a
client device 204 , transformed by the search nodes 506 or
search manager 514 , etc.
[0348] As described herein , a user can indicate in a query
that particular datasets or results are to be stored in the query
acceleration data store 222. The query can then indicate
operations to be performed on the particular datasets . For
subsequent queries directed to the particular datasets (e.g. ,
queries that indicate other operations for the datasets stored
in the acceleration data store 222) , the search nodes 506 can
obtain information directly from the query acceleration data
store 222 .
[0349] Additionally , since the query acceleration data
store 222 can be utilized to service requests from different
client devices 204 , the query acceleration data store 222 can
implement access controls (e.g. , an access control list) with
respect to the stored datasets . In this way , the stored datasets
can optionally be accessible only to users associated with
requests for the datasets . Optionally , a user who provides a
query can indicate that one or more other users are autho
rized to access particular requested datasets . In this way , the

a

[0345] As mentioned , in some cases , as buckets are copied
from common storage 216 to search nodes 506 as part of a
query , the query system 214 can update the data store
catalog 220 with the location information of the copy of the
bucket . The query system 214 can use this information to
assign search nodes 506 to buckets . For example , if the data
store catalog 220 indicates that a copy of a bucket in
common storage 216 is stored in a particular search node
506 , the query system 214 can assign the particular search
node to the bucket . In this way , the query system 214 can
reduce the likelihood that the bucket will be retrieved from
common storage 216. In certain embodiments , the data store
catalog 220 can store an indication that a bucket was

US 2022/0245156 A1 Aug. 4 , 2022
29

4.1.1 Publication to Intake Topic (s) other users can utilize the stored datasets , thus reducing
latency associated with their queries .
[0350] In some cases , data from the intake system 210
(e.g. , ingested data buffer 310 , etc.) can be stored in the
acceleration data store 222. In such embodiments , the data
from the intake system 210 can be transformed by the search
nodes 506 or combined with data in the common storage 216
[0351] Furthermore , in some cases , if the query system
214 receives a query that includes a request to process data
in the query acceleration data store 222 , as well as data in the
common storage 216 , the search manager 514 or search
nodes 506 can begin processing the data in the query
acceleration data store 222 , while also obtaining and pro
cessing the other data from the common storage 216. In this
way , the query system 214 can rapidly provide initial results
for the query , while the search nodes 506 obtain and search
the data from the common storage 216 .
[0352] It will be understood that the data intake and query
system 108 can include fewer or more components as
desired . For example , in some embodiments , the system 108
does not include an acceleration data store 222. Further , it
will be understood that in some embodiments , the function
ality described herein for one component can be performed
by another component . For example , the search master 512
and search manager 514 can be combined as one component ,
etc.

[0355] As shown in FIG . 6 , processing of data at the intake
system 210 can illustratively begin at (1) , where a data
retrieval subsystem 304 or a data source 202 publishes a
message to a topic at the intake ingestion buffer 306 .
Generally described , the data retrieval subsystem 304 may
include either or both push - based and pull - based publishers .
Push - based publishers can illustratively correspond to pub
lishers which independently initiate transmission of mes
sages to the intake ingestion buffer 306. Pull - based publishes
can illustratively correspond to publishers which await an
inquiry by the intake ingestion buffer 306 for messages to be
published to the buffer 306. The publication of a message at
(1) is intended to include publication under either push- or
pull - based models .
[0356] As discussed above , the data retrieval subsystem
304 may generate the message based on data received from
a forwarder 302 and / or from one or more data sources 202 .
In some instances , generation of a message may include
converting a form of the da into a format suitable for
publishing on the intake ingestion buffer 306. Generation of
a message may further include determining a topic for the
message . In one embodiment , the data retrieval subsystem
304 selects a topic based on a data source 202 from which
the data is received , or based on the specific publisher (e.g. ,
intake point) on which the message is generated . For
example , each data source 202 or specific publisher may be
associated with a particular topic on the intake ingestion
buffer 306 to which corresponding messages are published .
In some instances , the same source data may be used to
generate multiple messages to the intake ingestion buffer
306 (e.g. , associated with different topics) .

4.0 . Data Intake and Query System Functions
[0353] As de bed herein , the various components f the
data intake and query system 108 can perform a variety of
functions associated with the intake , indexing , storage , and
querying of data from a variety of sources . It will be
understood that any one or any combination of the functions
described herein can be combined as part of a single routine
or method . For example , a routine can include any one or
any combination of one or more data ingestion functions ,
one or more indexing functions , and / or one or more search
ing functions .

4.1 Ingestion

[0354] As discussed above , ingestion into the data intake
and query system 108 can be facilitated by an intake system
210 , which functions to process data according to a stream
ing data model , and make the data available as messages on
an output ingestion buffer 310 , categorized according to a
number of potential topics . Messages may be published to
the output ingestion buffer 310 by streaming data processors
308 , based on preliminary processing of messages published
to an intake ingestion buffer 306. The intake ingestion buffer
306 is , in turn , populated with messages by one or more
publishers , each of which may represent an intake point for
the data intake and query system 108. The publishers may
collectively implement a data retrieval subsystem 304 for
the data intake and query system 108 , which subsystem 304
functions to retrieve data from a data source 202 and publish
the data in the form of a message on the intake ingestion
buffer 306. A flow diagram depicting an illustrative embodi
ment for processing data at the intake system 210 is shown
at FIG . 6. While the flow diagram is illustratively described
with respect to a single message , the same or similar
interactions may be used to process multiple messages at the
intake system 210 .

4.1.2 Transmission to Streaming Data Processors
[0357] After receiving a message from a publisher , the
intake ingestion buffer 306 , at (2) , determines subscribers to
the topic . For the purposes of example , it will be associated
that at least one device of the streaming data processors 308
has subscribed to the topic (e.g. , by previously transmitting
to the intake ingestion buffer 306 a subscription request) . As
noted above , the streaming data processors 308 may be
implemented by a number of (logically or physically) dis
tinct devices . As such , the streaming data processors 308 , at
(2) , may operate to determine which devices of the stream
ing data processors 308 have subscribed to the topic (or
topics) to which the message was published .
[0358] Thereafter , at (3) , the intake ingestion buffer 306
publishes the message to the streaming data processors 308
in accordance with the pub - sub model . This publication may
correspond to a “ push ” model of communication , whereby
an ingestion buffer determines topic subscribers and initiates
transmission of messages within the topic to the subscribers .
While interactions of FIG . 6 are described with reference to
such a push model , in some embodiments a pull model of
transmission may additionally or alternatively be used .
Illustratively , rather than an ingestion buffer determining
topic subscribers and initiating transmission of messages for
the topic to a subscriber (e.g. , the streaming data processors
308) , an ingestion buffer may enable a subscriber to query
for unread messages for a topic , and for the subscriber to
initiate transmission of the messages from the ingestion
buffer to the subscriber . Thus , an ingestion buffer (e.g. , the
intake ingestion buffer 306) may enable subscribers to “ pull ”

a

US 2022/0245156 A1 Aug. 4 , 2022
30

messages from the buffer . As such , interactions of FIG . 6
(e.g. , including interactions (2) and (3) as well as (9) , (10) ,
(16) , and (17) described below) may be modified to include
pull - based interactions (e.g. , whereby a subscriber queries
for unread messages and retrieves the messages from an
appropriate ingestion buffer) .

a

4.1.3 Messages Processing
[0359] On receiving a message , the streaming data pro
cessors 308 , at (4) , analyze the message to determine one or
more rules applicable to the message . As noted above , rules
maintained at the streaming data processors 308 can gener
ally include selection criteria indicating messages to which
the rule applies . This selection criteria may be formatted in
the same manner or similarly to extraction rules , discussed
in more detail below , and may include any number or
combination of criteria based on the data included within a
message or metadata of the message , such as regular expres
sions based on the data or metadata .
[0360] On determining that a rule is applicable to the
message , the streaming data processors 308 can apply to the
message one or more processing sub - rules indicated within
the rule . Processing sub - rules may include modifying data or
metadata of the message . Illustratively , processing sub - rules
may edit or normalize data of the message (e.g. , to convert
a format of the data) or inject additional information into the
message (e.g. , retrieved based on the data of the message) .
For example , a processing sub - rule may specify that the data
of the message be transformed according to a transformation
algorithmically specified within the sub - rule . Thus , at (5) ,
the streaming data processors 308 applies the sub - rule to
transform the data of the message .
[0361] In addition or alternatively , processing sub - rules
can specify a destination of the message after the message is
processed at the streaming data processors 308. The desti
nation may include , for example , a specific ingestion buffer
(e.g. , intake ingestion buffer 306 , output ingestion buffer
310 , etc.) to which the message should be published , as well
as the topic on the ingestion buffer to which the message
sh I be published . For example , a particular rule may state
that messages including metrics within a first format (e.g. ,
imperial units) should have their data transformed into a
second format (e.g. , metric units) and be republished to the
intake ingestion buffer 306. At such , at (6) , the streaming
data processors 308 can determine a target ingestion buffer
and topic for the transformed message based on the rule
determined to apply to the message . Thereafter , the stream
ing data processors 308 publishes the message to the desti
nation buffer and topic .
[0362] For the purposes of illustration , the interactions of
FIG . 6 assume that , during an initial processing of a mes
sage , the streaming data processors 308 determines (e.g. ,
according to a rule of the data processor) that the message
should be republished to the intake ingestion buffer 306 , as
shown at (7) . The streaming data processors 308 further
acknowledges the initial message to the intake ingestion
buffer 306 , at (8) , thus indicating to the intake ingestion
buffer 306 that the streaming data processors 308 has
processed the initial message or published it to an intake
ingestion buffer . The intake ingestion buffer 306 may be
configured to maintain a message until all subscribers have
acknowledged receipt of the message . Thus , transmission of
the acknowledgement at (8) may enable the intake ingestion
buffer 306 to delete the initial message .

[0363] It is assumed for the purposes of these illustrative
interactions that at least one device implementing the
streaming data processors 308 has subscribed to the topic to
which the transformed message is published . Thus , the
streaming data processors 308 is expected to again receive
the message (e.g. , as previously transformed the streaming
data processors 308) , determine whether any rules apply to
the message , and process the message in accordance with
one or more applicable rules . In this manner , interactions (2)
through (8) may occur repeatedly , as designated in FIG . 6 by
the iterative processing loop 602. By use of iterative pro
cessing , the streaming data processors 308 may be config
ured to progressively transform or enrich messages obtained
at data sources 202. Moreover , because each rule may
specify only a portion of the total transformation or enrich
ment of a message , rules may be created without knowledge
of the entire transformation . For example , a first rule may be
provided by a first system to transform a message according
to the knowledge of that system (e.g. , transforming an error
code into an error descriptor) , while a second rule may
process the message according to the transformation (e.g. ,
by detecting that the error descriptor satisfies alert criteria) .
Thus , the streaming data processors 308 enable highly
granulized processing of data without requiring an indi
vidual entity (e.g. , user or system) to have knowledge of all
permutations or transformations of the data .
[0364] After completion of the iterative processing loop
602 , the interactions of FIG . 6 proceed to interaction (9) ,
where the intake ingestion buffer 306 again determines
subscribers of the message . The intake ingestion buffer 306 ,
at (10) , the transmits the message to the streaming data
processors 308 , and the streaming data processors 308 again
analyze the message for applicable rules , process the mes
sage according to the rules , determine a target ingestion
buffer and topic for the processed message , and acknowl
edge the message to the intake ingestion buffer 306 , at
interactions (11) , (12) , (13) , and (15) . These interactions are
similar to interactions (4) , (5) , (6) , and (8) discussed above ,
and therefore will not be re - described . However , in contrast
to interaction (13) , the streaming data processors 308 may
determine that a target ingestion buffer for the message is the
output ingestion buffer 310. Thus , the streaming data pro
cessors 308 , at (14) , publishes the message to the output
ingestion buffer 310 , making the data of the message avail
able to a downstream system .
[0365] FIG . 6 illustrates one processing path for data at the
streaming data processors 308. However , other processing
paths may occur according to embodiments of the present
disclosure . For example , in some instances , a rule applicable

ially published message on the intake ingestion
buffer 306 may cause the streaming data processors 308 to
publish the message out ingestion buffer 310 on first pro
cessing the data of the message , without entering the itera
tive processing loop 602. Thus , interactions (2) through (8)
may be omitted .
[0366] In other instances , a single message published to
the intake ingestion buffer 306 may spawn multiple process
ing paths at the streaming data processors 308. Illustratively ,
the streaming data processors 308 may be configured to
maintain a set of rules , and to independently apply to a
message all rules applicable to the message . Each applica
tion of a rule may spawn an independent processing path ,
and potentially a new message for publication to a relevant
ingestion buffer . In other instances , the streaming data

9

to an

a

US 2022/0245156 A1 Aug. 4 , 2022
31

querying may remove the need for the subscriber 602 to
separately “ subscribe ” to the topic .
[0370] Accordingly , at (16) , after receiving a message to a
topic , the output ingestion buffer 310 determines the sub
scribers to the topic (e.g. , based on prior subscription
requests transmitted to the output ingestion buffer 310) . At
(17) , the output ingestion buffer 310 transmits the message
to a subscriber 602. Thereafter , the subscriber may process
the message at (18) . Illustrative examples of such processing
are described below , and may include (for example) prepa
ration of search results for a client device 204 , indexing of
the data at the indexing system 212 , and the like . After
processing , the subscriber can acknowledge the message to
the output ingestion buffer 310 , thus confirming that the
message has been processed at the subscriber .

processors 308 may maintain a ranking of rules to be applied
to messages , and may be configured to process only a
highest ranked rule which applies to the message . Thus , a
single message on the intake ingestion buffer 306 may result
in a single message or multiple messages published by the
streaming data processors 308 , according to the configura
tion of the streaming data processors 308 in applying rules .
[0367] As noted above , the rules applied by the streaming
data processors 308 may vary during operation of those
processors 308. For example , the rules may be updated as
user queries are received (e.g. , to identify messages whose
data is relevant to those queries) . In some instances , rules of
the streaming data processors 308 may be altered during the
processing of a message , and thus the interactions of FIG . 6
may be altered dynamically during operation of the stream
ing data processors 308 .
[0368] While the rules above are described as making
various illustrative alterations to messages , various other
alterations are possible within the present disclosure . For
example , rules in some instances be used to remove data
from messages , or to alter the structure of the messages to
conform to the format requirements of a downstream system
or component . Removal of information may be beneficial ,
for example , where the messages include private , personal ,
or confidential information which is unneeded or should not
be made available by a downstream system . In some
instances , removal of information may include replacement
of the information with a less confidential value . For
example , a mailing address may be considered confidential
information , whereas a postal code may not be . Thus , a rule
may be implemented at the streaming data processors 308 to
replace mailing addresses with a corresponding postal code ,
to ensure confidentiality . Various other alterations will be
apparent in view of the present disclosure .

a

2

4.1.4 Transmission to Subscribers

can occur

4.1.5 Data Resiliency and Security
[0371] In accordance with embodiments of the present
disclosure , the interactions of FIG . 6 may be ordered such
that resiliency is maintained at the intake system 210 .
Specifically , as disclosed above , data streaming systems
(which may be used to implement ingestion buffers) may
implement a variety of techniques to ensure the resiliency of
messages stored at such systems , absent systematic or cata
strophic failures . Thus , the interactions of FIG . 6 may be
ordered such that data from a data source 202 is expected or
guaranteed to be included in at least one message on an
ingestion system until confirmation is received that the data
is no longer required .
[0372] For example , as shown in FIG . 6 , interaction (8)
—wherein the streaming data processors 308 acknowledges
receipt of an initial message at the intake ingestion buffer
306- can illustratively occur after interaction (7) —wherein
the streaming data processors 308 republishes the data to the
intake ingestion buffer 306. Similarly , interaction (15)
wherein the streaming data processors 308 acknowledges
receipt of an initial message at the intake ingestion buffer
306 illustratively after interaction (14)
—wherein the streaming data processors 308 republishes the
data to the intake ingestion buffer 306. This ordering of
interactions can ensure , for example , that the data being
processed by the streaming data processors 308 is , during
that processing , always stored at the ingestion buffer 306 in
at least one message . Because an ingestion buffer 306 can be
configured to maintain and potentially resend messages until
acknowledgement is received from each subscriber , this
ordering of interactions can ensure that , should a device of
the streaming data processors 308 fail during processing ,
another device implementing the streaming data processors
308 can later obtain the data and continue the processing .
[0373] Similarly , as shown in FIG . 6 , each subscriber 602
may be configured to acknowledge a message to the output
ingestion buffer 310 after processing for the message is
completed . In this manner , should a subscriber 602 fail after
receiving a message but prior to completing processing of
the message , the processing of the subscriber 602 can be
restarted to successfully process the message . Thus , the
interactions of FIG . 6 can maintain resiliency of data on the
intake system 210 commensurate with the resiliency pro
vided by an individual ingestion buffer 306 .
[0374] While message acknowledgement is described
herein as an illustrative mechanism to ensure data resiliency
at an intake system 210 , other mechanisms for ensuring data
resiliency may additionally or alternatively be used .

[0369] As discussed above , the rules applied by the
streaming data processors 308 may eventually cause a
message containing data from a data source 202 to be
published to a topic on an output ingestion buffer 310 , which
topic may be specified , for example , by the rule applied by
the streaming data processors 308. The output ingestion
buffer 310 may thereafter make the message available to
downstream systems or components . These downstream
systems or components are generally referred to herein as
“ subscribers . ” For example , the indexing system 212 may
subscribe to an indexing topic 342 , the query system 214
may subscribe to a search results topic 348 , a client device
102 may subscribe to a custom topic 352A , etc. In accor
dance with the pub - sub model , the output ingestion buffer
310 may transmit each message published to a topic to each
subscriber of that topic , and resiliently store the messages
until acknowledged by each subscriber (or potentially until
an error is logged with respect to a subscriber) . As noted
above , other models of communication are possible and
contemplated within the present disclosure . For example ,
rather than subscribing to a topic on the output ingestion
buffer 310 and allowing the output ingestion buffer 310 to
initiate transmission of messages to the subscriber 602 , the
output ingestion buffer 310 may be configured to allow a
subscriber 602 to query the buffer 310 for messages (e.g. ,
unread messages , new messages since last transmission ,
etc.) , and to initiate transmission of those messages form the
buffer 310 to the subscriber 602. In some instances , such

a

US 2022/0245156 A1 Aug. 4 , 2022
32

>

[0375] As will be appreciated in view of the present
disclosure , the configuration and operation of the intake
system 210 can further provide high amounts of security to
the messages of that system . Illustratively , the intake inges
tion buffer 306 or output ingestion buffer 310 may maintain
an authorization record indicating specific devices or sys
tems with authorization to publish or subscribe to a specific
topic on the ingestion buffer . As such , an ingestion buffer
may ensure that only authorized parties are able to access
sensitive data . In some instances , this security may enable
multiple entities to utilize the intake system 210 to manage
confidential information , with little or no risk of that infor
mation being shared between the entities . The managing of
data or processing for multiple entities is in some instances
referred to as “ multi - tenancy . "
[0376] Illustratively , a first entity may publish messages to
a first topic on the intake ingestion buffer 306 , and the intake
ingestion buffer 306 may verify that any intake point or data
source 202 publishing to that first topic be authorized by the
first entity to do so . The streaming data processors 308 may
maintain rules specific to the first entity , which the first
entity may illustrative provide through authenticated session
on an interface (e.g. , GUI , API , command line interface
(CLI) , etc.) . The rules of the first entity may specify one or
more entity - specific topics on the output ingestion buffer
310 to which messages containing data of the first entity
should be published by the streaming data processors 308 .
The output ingestion buffer 310 may maintain authorization
records for such entity - specific topics , thus restricting mes
sages of those topics to parties authorized by the first entity .
In this manner , data security for the first entity can be
ensured across the intake system 210. Similar operations
may be performed for other entities , thus allowing multiple
entities to separately and confidentially publish data to and
retrieve data from the intake system .

acknowledged the message) . In some variations of the
routine , a “ default rule ” may be applied at the intake system
210 , such that all messages are processed as least according
to the default rule . The default rule may , for example ,
forward the message to an indexing topic 342 for processing
by an indexing system 212. In such a configuration , block
706 may always evaluate as true .
[0380] In the instance that at least one rule is determined
to apply to the message , the routine continues to block 708 ,
where the intake system 210 (e.g. , via the streaming data
processors 308) transforms the message as specified by the
applicable rule . For example , a processing sub - rule of the
applicable rule may specify that data or metadata of the
message be converted from one format to another via an
algorithmic transformation . As such , the intake system 210
may apply the algorithmic transformation to the data or
metadata of the message at block 708 to transform the data
or metadata of the message . In some instances , no transfor
mation may be specified within intake system 210 , and thus
block 708 may be omitted .
[0381] At block 710 , the intake system 210 determines a
destination ingestion buffer to which to publish the (poten
tially transformed) message , as well as a topic to which the
message should be published . The destination ingestion
buffer and topic may be specified , for example , in processing
sub - rules of the rule determined to apply to the message . In
one embodiment , the destination ingestion buffer and topic
may vary according to the data or metadata of the message .
In another embodiment , the destination ingestion buffer and
topic may be fixed with respect to a particular rule .
[0382] At block 712 , the intake system 210 publishes the
(potentially transformed) message to the determined desti
nation ingestion buffer and topic . The determined destina
tion ingestion buffer may be , for example , the intake inges
tion buffer 306 or the output ingestion buffer 310. Thereafter ,
at block 714 , the intake system 210 acknowledges the initial
message on the intake ingestion buffer 306 , thus enabling the
intake ingestion buffer 306 to delete the message .
[0383] Thereafter , the routine returns to block 704 , where
the intake system 210 continues to process messages from
the intake ingestion buffer 306. Because the destination
ingestion buffer determined during a prior implementation
of the routine may be the intake ingestion buffer 306 , the
routine may continue to process the same underlying data
within multiple messages published on that buffer 306 (thus
implementing an iterative processing loop with respect to
that data) . The routine may then continue to be implemented
during operation of the intake system 210 , such that data
published to the intake ingestion buffer 306 is processed by
the intake system 210 and made available on an output
ingestion buffer 310 to downstream systems or components .
[0384] While the routine of FIG . 7 is described linearly ,
various implementations may involve concurrent or at least
partially parallel processing . For example , in one embodi
ment , the intake system 210 is configured to process a
message according to all rules determined to apply to that
message . Thus for example if at block 706 five rules are
determined to apply to the message , the intake system 210
may implement five instances of blocks 708 through 714 ,
each of which may transform the message in different ways
or publish the message to different ingestion buffers or
topics . These five instances may be implemented in serial ,
parallel , or a combination thereof . Thus , the linear descrip
tion of FIG . 7 is intended simply for illustrative purposes .

4.1.6 Message Processing Algorithm
[0377] With reference to FIG . 7 , an illustrative algorithm
or routine for processing messages at the intake system 210
will be described in the form of a flowchart . The routine
begins at block 702 , where the intake system 210 obtains
one or more rules for handling messages queued at an intake
ingestion buffer 306. As noted above , the rules may , for
example , be human - generated , or may be automatically
generated based on operation of the data intake and query
system 108 (e.g. , in response to user submission of a query
to the system 108) .
[0378] At block 704 , the intake system 210 obtains a
message at the intake ingestion buffer 306. The message
may be published to the intake ingestion buffer 306 , for
example , by the data retrieval subsystem 304 (e.g. , working
in conjunction with a forwarder 302) and reflect data
obtained from a data source 202 .
[0379] At block 706 , the intake system 210 determines
whether any obtained rule applies to the message . Illustra
tively , the intake system 210 (e.g. , via the streaming data
processors 308) may apply selection criteria of each rule to
the message to determine whether the message satisfies the
selection criteria . Thereafter , the routine varies according to
whether a rule applies to the message . If no rule applies , the
routine can continue to block 714 , where the intake system
210 transmits an acknowledgement for the message to the
intake ingestion buffer 306 , thus enabling the buffer 306 to
discard the message (e.g. , once all other subscribers have

a

US 2022/0245156 A1 Aug. 4 , 2022
33

a [0385] While the routine of FIG . 7 is described with
respect to a single message , in some embodiments streaming
data processors 308 may be configured to process multiple
messages concurrently or as a batch . Similarly , all or a
portion of the rules used by the streaming data processors
308 may apply to sets or batches of messages . Illustratively ,
the streaming data processors 308 may obtain a batch of
messages from the intake ingestion buffer 306 and process
those messages according to a set of “ batch ” rules , whose
criteria and / or processing sub - rules apply to the messages of
the batch collectively . Such rules may , for example , deter
mine aggregate attributes of the messages within the batch ,
sort messages within the batch , group subsets of messages
within the batch , and the like . In some instances , such rules
may further alter messages based on aggregate attributes ,
sorting , or groupings . For example , a rule may select the
third messages within a batch , and perform a specific
operation on that message . As another example , a rule may
determine how many messages within a batch are contained
within a specific group of messages . Various other examples
for batch - based rules will be apparent in view of the present
disclosure . Batches of messages may be determined based
on a variety of criteria . For example , the streaming data
processors 308 may batch messages based on a threshold
number of messages (e.g. , each thousand messages) , based
on timing (e.g. , all messages received over a ten minute
window) , or based on other criteria (e.g. , the lack of new
messages posted to a topic within a threshold period of
time) .

4.2 . Indexing

in a datamodel , report data , tabular data , streaming data , data
exposed in an API , data in a relational database , etc. The
buffer location can correspond to a marker in the ingestion
buffer 310 that indicates the point at which the data within
a partition has been communicated to the indexing node 404 .
For example , data before the marker can correspond to data
that has not been communicated to the indexing node 404 ,
and data after the marker can correspond to data that has
been communicated to the indexing node . In some cases , the
marker can correspond to a set of data that has been
communicated to the indexing node 404 , but for which no
indication has been received that the data has been stored .
Accordingly , based on the marker , the ingestion buffer 310
can retain a portion of its data persistently until it receives
confirmation that the data can be deleted or has been stored
in common storage 216 .
[0390] At (3) , the indexing node manager 406 tracks the
buffer location and the partition manager 408 communicates
the data to the indexer 410. As described herein , the indexing
node manager 406 can track (and / or store) the buffer loca
tion for the various partitions received from the ingestion
buffer 310. In addition , as described herein , the partition
manager 408 can forward the data received from the inges
tion buffer 310 to the indexer 410 for processing . In various
implementations , as previously described , the data from
ingestion buffer 310 that is sent to the indexer 410 may
include a path to stored data , e.g. , data stored in common
store 216 or another common store , which is then retrieved
by the indexer 410 or another component of the indexing
node 404 .
[0391] At (4) , the indexer 410 processes the data . As
described herein , the indexer 410 can perform a variety of
functions , enrichments , or transformations on the data as it
is indexed . For example , the indexer 410 can parse the data ,
identify events from the data , identify and associate time
stamps with the events , associate metadata or one or more
field values with the events , group events (e.g. , based on
time , partition , and / or tenant ID , etc.) , etc. Furthermore , the
indexer 410 can generate buckets based on a bucket creation
policy and store the events in the hot buckets , which may be
stored in data store 412 of the indexing node 404 associated
with that indexer 410 (see FIG . 4) .
[0392] At (5) , the indexer 410 reports the size of the data
being indexed to the partition manager 408. In some cases ,
the indexer 410 can routinely provide a status update to the
partition manager 408 regarding the data that is being
processed by the indexer 410 .
[0393] The status update can include , but is not limited to
the size of the data , the number of buckets being created , the
amount of time since the buckets have been created , etc. In
some embodiments , the indexer 410 can provide the status
update based on one or more thresholds being satisfied (e.g. ,
one or more threshold sizes being satisfied by the amount of
data being processed , one or more timing thresholds being
satisfied based on the amount of time the buckets have been
created , one or more bucket number thresholds based on the
number of buckets created , the number of hot or warm
buckets , number of buckets that have not been stored in
common storage 216 , etc.) .
[0394] In certain cases , the indexer 410 can provide an
update to the partition manager 408 regarding the size of the
data that is being processed by the indexer 410 in response
to one or more threshold sizes being satisfied . For example ,
each time a certain amount of data is added to the indexer

an

[0386] FIG . 8 is a data flow diagram illustrating an
embodiment of the data flow and communications between
a variety of the components of the data intake and query
system 108 during indexing . Specifically , FIG . 8 is a data
flow diagram illustrating an embodiment of the data flow
and communications between an ingestion buffer 310 ,
indexing node manager 406 or partition manager 408 , an
indexer 410 , common storage 216 , and the data store catalog
220. However , it will be understood , that in some of embodi
ments , one or more of the functions described herein with
respect to FIG . 8 can be omitted , performed in a different
order and / or performed by a different component of the data
intake and query system 108. Accordingly , the illustrated
embodiment and description should not be construed as
limiting .
[0387] At (1) , the indexing node manager 406 activates a
partition manager 408 for a partition . As described herein ,
the indexing node manager 406 can activate a partition
manager 408 for each partition or shard that is processed by
an indexing node 404. In some embodiments , the indexing
node manager 406 can activate the partition manager 408
based on an assignment of a new partition to the indexing
node 404 or a partition manager 408 becoming unresponsive
or unavailable , etc.
[0388] In some embodiments , the partition manager 408
can be a copy of the indexing node manager 406 or a copy
of a template process . In certain embodiments , the partition
manager 408 can be instantiated in a separate container from
the indexing node manager 406 .
[0389] At (2) , the ingestion buffer 310 sends data and a
buffer location to the indexing node 212. As described
herein , the data can be raw machine data , performance
metrics data , correlation data , JSON blobs , XML data , data

2

a

US 2022/0245156 A1 Aug. 4 , 2022
34

9

410 (e.g. , 5 MB , 10 MB , etc.) , the indexer 410 can report the
updated size to the partition manager 408. In some cases , the
indexer 410 can report the size of the data stored thereon to
the partition manager 408 once a threshold size is satisfied .
[0395] In certain embodiments , the indexer 410 reports the
size of the date being indexed to the partition manager 408
based on a query by the partition manager 408. In certain
embodiments , the indexer 410 and partition manager 408
maintain an open communication link such that the partition
manager 408 is persistently aware of the amount of data on
the indexer 410 .
[0396] In some cases , a partition manager 408 monitors
the data processed by the indexer 410. For example , the
partition manager 408 can track the size of the data on the
indexer 410 that is associated with the partition being
managed by the partition manager 408. In certain cases , one
or more partition managers 408 can track the amount or size
of the data on the indexer 410 that is associated with any
partition being managed by the indexing node manager 406
or that is associated with the indexing node 404 .
[0397] At (6) , the partition manager 408 instructs the
indexer 410 to copy the data to common storage 216. As
described herein , the partition manager 408 can instruct the
indexer 410 to copy the data to common storage 216 based
on a bucket roll - over policy . As described herein , in some
cases , the bucket roll - over policy can indicate that one or
more buckets are to be rolled over based on size . Accord
ingly , in some embodiments , the partition manager 408 can
instruct the indexer 410 to copy the data to common storage
216 based on a determination that the amount of data stored
on the indexer 410 satisfies a threshold amount . The thresh
old amount can correspond to the amount of data associated
with the partition that is managed by the partition manager
408 or the amount of data being processed by the indexer
410 for any partition .
[0398] In some cases , the partition manager 408 can
instruct the indexer 410 to copy the data that corresponds to
the partition being managed by the partition manager 408 to
common storage 216 based on the size of the data that
corresponds to the partition satisfying the threshold amount .
In certain embodiments , the partition manager 408 can
instruct the indexer 410 to copy the data associated with any
partition being processed by the indexer 410 to common
storage 216 based on the amount of the data from the
partitions that are being processed by the indexer 410
satisfying the threshold amount .
[0399] In some embodiments , (5) and / or (6) can be omit
ted . For example , the indexer 410 can monitor the data
stored thereon . Based on the bucket roll - over policy , the
indexer 410 can determine that the data is to be copied to
common storage 216. Accordingly , in some embodiments ,
the indexer 410 can determine that the data is to be copied
to common storage 216 without communication with the
partition manager 408 .
[0400) At (7) , the indexer 410 copies and / or stores the data
to common storage 216. As described herein , in some cases ,
as the indexer 410 processes the data , it generates events and
stores the events in hot buckets . In response to receiving the
instruction to move the data to common storage 216 , the
indexer 410 can convert the hot buckets to warm buckets ,
and copy or move the warm buckets to the common storage
216 .
[0401] As part of storing the data to common storage 216 ,
the indexer 410 can verify or obtain acknowledgements that

the data is stored successfully . In some embodiments , the
indexer 410 can determine information regarding the data
stored in the common storage 216. For example , the infor
mation can include location information regarding the data
that was stored to the common storage 216 , bucket identi
fiers of the buckets that were copied to common storage 216 ,
as well as additional information , e.g. , in implementations in
which the ingestion buffer 310 uses sequences of records as
the form for data storage , the list of record sequence
numbers that were used as part of those buckets that were
copied to common storage 216 .
[0402] At (8) , the indexer 410 reports or acknowledges to
the partition manager 408 that the data is stored in the
common storage 216. In various implementations , this can
be in response to periodic requests from the partition man
ager 408 to the indexer 410 regarding which buckets and / or
data have been stored to common storage 216. The indexer
410 can provide the partition manager 408 with information
regarding the data stored in common storage 216 similar to
the data that is provided to the indexer 410 by the common
storage 216. In some cases , (8) can be replaced with the
common storage 216 acknowledging or reporting the storage
of the data to the partition manager 408 .
[0403] At (9) , the partition manager 408 updates the data
store catalog 220. As described herein , the partition manager
408 can update the data store catalog 220 with information
regarding the data or buckets stored in common storage 216 .
For example , the partition manager 408 can update the data
store catalog 220 to include location information , a bucket
identifier , a time range , and tenant and partition information
regarding the buckets copied to common storage 216 , etc. In
this way , the data store catalog 220 can include up - to - date
information regarding the buckets stored in common storage
216 .
[0404] At (10) , the partition manager 408 reports the
completion of the storage to the ingestion buffer 310 , and at
(11) , the ingestion buffer 310 updates the buffer location or
marker . Accordingly , in some embodiments , the ingestion
buffer 310 can maintain its marker until it receives an
acknowledgement that the data that it sent to the indexing
node 404 has been indexed by the indexing node 404 and
stored to common storage 216. In addition , the updated
buffer location or marker can be communicated to and stored
by the indexing node manager 406. In this way , a data intake
and query system 108 can use the ingestion buffer 310 to
provide a stateless environment for the indexing system 212 .
For example , as described herein , if an indexing node 404 or
one of its components (e.g. , indexing node manager 486 ,
partition manager 408 , indexer) becomes unavailable or
unresponsive before data from the ingestion buffer 310 is
copied to common storage 216 , the indexing system 212 can
generate or assign a new indexing node 404 (or component) ,
to process the data that was assigned to the now unavailable
indexing node 404 (or component) while reducing , mini
mizing , or eliminating data loss .
[0405] At (12) , a bucket manager 414 , which may form
part of the indexer 410 , the indexing node 404 , or indexing
system 212 , merges multiple buckets into one or more
merged buckets . As described herein , to reduce delay
between processing data and making that data available for
searching , the indexer 410 can convert smaller hot buckets
to warm buckets and copy the warm buckets to common
storage 216. However , as smaller buckets in common stor
age 216 can result in increased overhead and storage costs ,

US 2022/0245156 A1 Aug. 4 , 2022
35

from the data store catalog 220 , the data store catalog 220
can provide the search managers 514 with the merged bucket
information .
[0411] As mentioned previously , in some of embodiments ,
one or more of the functions described herein with respect
to FIG . 8 can be omitted , performed in a variety of orders
and / or performed by a different component of the data intake
and query system 108. For example , the partition manager
408 can (9) update the data store catalog 220 before , after ,
or concurrently with the deletion of the data in the (15)
indexer 410 or (16) common storage 216. Similarly , in
certain embodiments , the indexer 410 can (12) merge buck
ets before , after , or concurrently with (7) - (11) , etc.

a

the bucket manager 414 can monitor warm buckets in the
indexer 410 and merge the warm buckets into one or more
merged buckets .
[0406] In some cases , the bucket manager 414 can merge
the buckets according to a bucket merge policy . As described
herein , the bucket merge policy can indicate which buckets
are candidates for a merge (e.g. , based on time ranges , size ,
tenant / partition or other identifiers , etc.) , the number of
buckets to merge , size or time range parameters for the
merged buckets , a frequency for creating the merged buck
ets , etc.
[0407] At (13) , the bucket manager 414 stores and / or
copies the merged data or buckets to common storage 216 ,
and obtains information about the merged buckets stored in
common storage 216. Similar to (7) , the obtained informa
tion can include information regarding the storage of the
merged buckets , such as , but not limited to , the location of
the buckets , one or more bucket identifiers , tenant or parti
tion identifiers , etc. At (14) , the bucket manager 414 reports
the storage of the merged data to the partition manager 408 ,
similar to the reporting of the data storage at (8) .
[0408] At (15) , the indexer 410 deletes data from the data
store (e.g. , data store 412) . As described herein , once the
merged buckets have been stored in common storage 216 ,
the indexer 410 can delete corresponding buckets that it has
stored locally . For example , the indexer 410 can delete the
merged buckets from the data store 412 , as well as the
pre - merged buckets (buckets used to generate the merged
buckets) . By removing the data from the data store 412 , the
indexer 410 can free up additional space for additional hot
buckets , warm buckets , and / or merged buckets .
[0409] At (16) , the common storage 216 deletes data
according to a bucket management policy . As described
herein , once the merged buckets have been stored in com
mon storage 216 , the common storage 216 can delete the
pre - merged buckets stored therein . In some cases , as
described herein , the common storage 216 can delete the
pre - merged buckets immediately , after a predetermined
amount of time , after one or more queries relying on the
pre - merged buckets have completed , or based on other
criteria in the bucket management policy , etc. In certain
embodiments , a controller at the common storage 216
handles the deletion of the data in common storage 216
according to the bucket management policy . In certain
embodiments , one or more components of the indexing node
404 delete the data from common storage 216 according to
the bucket management policy . However , for simplicity ,
reference is made to common storage 216 performing the
deletion .
[0410] At (17) , the partition manager 408 updates the data
store catalog 220 with the information about the merged
buckets . Similar to (9) , the partition manager 408 can update
the data store catalog 220 with the merged bucket informa
tion . The information can include , but is not limited to , the
time range of the merged buckets , location of the merged
buckets in common storage 216 , a bucket identifier for the
merged buckets , tenant and partition information of the
merged buckets , etc. In addition , as part of updating the data
store catalog 220 , the partition manager 408 can remove
reference to the pre - merged buckets . Accordingly , the data
store catalog 220 can be revised to include information
about the merged buckets and omit information about the
pre - merged buckets . In this way , as the search managers 514
request information about buckets in common storage 216

4.2.1 . Containerized Indexing Nodes
[0412] FIG . 9 is a flow diagram illustrative of an embodi
ment of a routine 900 implemented by the indexing system
212 to store data in common storage 216. Although
described as being implemented by the indexing system 212 ,
it will be understood that the elements outlined for routine
900 can be implemented by one or more computing devices /
components that are associated with the data intake and
query system 108 , such as , but not limited to , the indexing
manager 402 , the indexing node 404 , indexing node man
ager 406 , the partition manager 408 , the indexer 410 , the
bucket manager 414 , etc. Thus , the following illustrative
embodiment should not be construed as limiting .
[0413] At block 902 , the indexing system 212 receives
data . As described herein , the system 312 can receive data
from a variety of sources in various formats . For example ,
as described herein , the data received can be machine data ,
performance metrics , correlated data , etc.
[0414] At block 904 , the indexing system 212 stores the
data in buckets using one or more containerized indexing
nodes 404. As described herein , the indexing system 212 can
include multiple containerized indexing nodes 404 to
receive and process the data . The containerized indexing
nodes 404 can enable the indexing system 212 to provide a
highly extensible and dynamic indexing service . For
example , based on resource availability and / or workload , the
indexing system 212 can instantiate additional containerized
indexing nodes 404 or terminate containerized indexing
nodes 404. Further , multiple containerized indexing nodes
404 can be instantiated on the same computing device , and
share the resources of the computing device .
[0415] As described herein , each indexing node 404 can
be implemented using containerization or operating - system
level virtualization , or other virtualization technique . For
example , the indexing node 404 , or one or more components
of the indexing node 404 can be implemented as separate
containers or container instances . Each container instance
can have certain resources (e.g. , memory , processor , etc.) of
the underlying computing system assigned to it , but may
share the same operating system and may use the operating
system's system call interface . Further , each container may
run the same or different computer applications concurrently
or separately , and may interact with each other . It will be
understood that other virtualization techniques can be used .
For example , the containerized indexing nodes 404 can be
implemented using virtual machines using full virtualization
or paravirtualization , etc.
[0416] In some embodiments , the indexing node 404 can
be implemented as a group of related containers or a pod ,
and the various components of the indexing node 404 can be

2

US 2022/0245156 A1 Aug. 4 , 2022
36

a

implemented as related containers of a pod . Further , the
indexing node 404 can assign different containers to execute
different tasks . For example , one container of a container
ized indexing node 404 can receive the incoming data and
forward it to a second container for processing , etc. The
second container can generate buckets for the data , store the
data in buckets , and communicate the buckets to common
storage 216. A third container of the containerized indexing
node 404 can merge the buckets into merged buckets and
store the merged buckets in common storage . However , it
will be understood that the containerized indexing node 404
can be implemented in a variety of configurations . For
example , in some cases , the containerized indexing node
404 can be implemented as a single container and can
include multiple processes to implement the tasks described
above by the three containers . Any combination of contain
erization and processed can be used to implement the
containerized indexing node 404 as desired .
[0417] In some embodiments , the containerized indexing
node 404 processes the received data (or the data obtained
using the received data) and stores it in buckets . As part of
the processing , the containerized indexing node 404 can
determine information about the data (e.g. , host , source ,
sourcetype) , extract or identify timestamps , associated meta
data fields with the data , extract keywords , transform the
data , identify and organize the data into events having raw
machine data associated with a timestamp , etc. In some
embodiments , the containerized indexing node 404 uses one
or more configuration files and / or extraction rules to extract
information from the data or events .
[0418] In addition , as part of processing and storing the
data , the containerized indexing node 404 can generate
buckets for the data according to a bucket creation policy . As
described herein , the containerized indexing node 404 can
concurrently generate and fill multiple buckets with the data
that it processes . In some embodiments , the containerized
indexing node 404 generates buckets for each partition or
tenant associated with the data that is being processed . In
certain embodiments , the indexing node 404 stores the data
or events in the buckets based on the identified timestamps .
[0419] Furthermore , containerized indexing node 404 can
generate one or more indexes associated with the buckets ,
such as , but not limited to , one or more inverted indexes ,
TSIDXs , keyword indexes , etc. The data and the indexes can
be stored in one or more files of the buckets . In addition , the
indexing node 404 can generate additional files for the
buckets , such as , but not limited to , one or more filter files ,
a bucket summary , or manifest , etc.
[0420] At block 906 , the indexing node 404 stores buckets
in common storage 216. As described herein , in certain
embodiments , the indexing node 404 stores the buckets in
common storage 216 according to a bucket roll - over policy .
In some cases , the buckets are stored in common storage 216
in one or more directories based on an index / partition or
tenant associated with the buckets . Further , the buckets can
be stored in a time series manner to facilitate time series
searching as described herein . Additionally , as described
herein , the common storage 216 can replicate the buckets
across multiple tiers and data stores across one or more
geographical locations .
[0421] Fewer , more , or different blocks can be used as part
of the routine 900. In some cases , one or more blocks can be
omitted . For example , in some embodiments , the contain
erized indexing node 404 or a indexing system manager 402

can monitor the amount of data received by the indexing
system 212. Based on the amount of data received and / or a
workload or utilization of the containerized indexing node
404 , the indexing system 212 can instantiate an additional
containerized indexing node 404 to process the data .
[0422] In some cases , the containerized indexing node 404
can instantiate a container or process to manage the pro
cessing and storage of data from an additional shard or
partition of data received from the intake system . For
example , as described herein , the containerized indexing
node 404 can instantiate a partition manager 408 for each
partition or shard of data that is processed by the contain
erized indexing node 404 .
[0423] In certain embodiments , the indexing node 404 can
delete locally stored buckets . For example , once the buckets
are stored in common storage 216 , the indexing node 404
can delete the locally stored buckets . In this way , the
indexing node 404 can reduce the amount of data stored
thereon .
[0424] As described herein , the indexing node 404 can
merge buckets and store merged buckets in the common
storage 216. In some cases , as part of merging and storing
buckets in common storage 216 , the indexing node 404 can
delete locally storage pre - merged buckets (buckets used to
generate the merged buckets) and / or the merged buckets or
can instruct the common storage 216 to delete the pre
merged buckets . In this way , the indexing node 404 can
reduce the amount of data stored in the indexing node 404
and / or the amount of data stored in common storage 216 .
[0425] In some embodiments , the indexing node 404 can
update a data store catalog 220 with information about
pre - merged or merged buckets stored in common storage
216. As described herein , the information can identify the
location of the buckets in common storage 216 and other
information , such as , but not limited to , a partition or tenant
associated with the bucket , time range of the bucket , etc. As
described herein , the information stored in the data store
catalog 220 can be used by the query system 214 to identify
buckets to be searched as part of a query .
[0426] Furthermore , it will be understood that the various
blocks described herein with reference to FIG . 9 can be
implemented in a variety of orders , or can be performed
concurrently . For example , the indexing node 404 can
concurrently convert buckets and store them in common
storage 216 , or concurrently receive data from a data source
and process data from the data source , etc.

a

a

4.2.2 . Moving Buckets to Common Storage
[0427] FIG . 10 is a flow diagram illustrative of an embodi
ment of a routine 1000 implemented by the indexing node
404 to store data in common storage 216. Although
described as being implemented by the indexing node 404 ,
it will be understood that the elements outlined for routine
1000 can be implemented by one or more computing
devices / components that are associated with the data intake
and query system 108 , such as , but not limited to , the
indexing manager 402 , the indexing node manager 406 , the
partition manager 408 , the indexer 410 , the bucket manager
414 , etc. Thus , the following illustrative embodiment should
not be construed as limiting .
[0428] At block 1002 , the indexing node 404 receives
data . As described herein , the indexing node 404 can receive
data from a variety of sources in various formats . For

US 2022/0245156 A1 Aug. 4 , 2022
37

a

example , as described herein , the data received can be
machine data , performance metrics , correlated data , etc.
[0429] Further , as described herein , the indexing node 404
can receive data from one or more components of the intake
system 210 (e.g. , the ingesting buffer 310 , forwarder 302 ,
etc.) or other data sources 202. In some embodiments , the
indexing node 404 can receive data from a shard or partition
of the ingestion buffer 310. Further , in certain cases , the
indexing node 404 can generate a partition manager 408 for
each shard or partition of a data stream . In some cases , the
indexing node 404 receives data from the ingestion buffer
310 that references or points to data stored in one or more
data stores , such as a data store 218 of common storage 216 ,
or other network accessible data store or cloud storage . In
such embodiments , the indexing node 404 can obtain the
data from the referenced data store using the information
received from the ingestion buffer 310 .
[0430] At block 1004 , the indexing node 404 stores data in
buckets . In some embodiments , the indexing node 404
processes the received data (or the data obtained using the
received data) and stores it in buckets . As part of the
processing , the indexing node 404 can determine informa
tion about the data (e.g. , host , source , sourcetype) , extract or
identify timestamps , associated metadata fields with the
data , extract keywords , transform the data , identify and
organize the data into events having raw machine data
associated with a timestamp , etc. In some embodiments , the
indexing node 404 uses one or more configuration files
and / or extraction rules to extract information from the data
or events .
[0431] In addition , as part of processing and storing the
data , the indexing node 404 can generate buckets for the data
according to a bucket creation policy . As described herein ,
the indexing node 404 can concurrently generate and fill
multiple buckets with the data that it processes . In some
embodiments , the indexing node 404 generates buckets for
each partition or tenant associated with the data that is being
processed . In certain embodiments , the indexing node 404
stores the data or events in the buckets based on the
identified timestamps .
[0432] Furthermore , indexing node 404 can generate one
or more indexes associated with the buckets , such as , but not
limited to , one or more inverted indexes , TSIDXs , keyword
indexes , bloom filter files , etc. The data and the indexes can
be stored in one or more files of the buckets . In addition , the
indexing node 404 can generate additional files for the
buckets , such as , but not limited to , one or more filter files ,
buckets summary , or manifest , etc.
[0433] At block 1006 , the indexing node 404 monitors the
buckets . As described herein , the indexing node 404 can
process significant amounts of data across a multitude of
buckets , and can monitor the size or amount of data stored
in individual buckets , groups of buckets or all the buckets
that it is generating and filling . In certain embodiments , one
component of the indexing node 404 can monitor the
buckets (e.g. , partition manager 408) , while another com
ponent fills the buckets (e.g. , indexer 410) .
[0434] In some embodiments , as part of monitoring the
buckets , the indexing node 404 can compare the individual
size of the buckets or the collective size of multiple buckets
with a threshold size . Once the threshold size is satisfied , the
indexing node 404 can determine that the buckets are to be
stored in common storage 216. In certain embodiments , the
indexing node 404 can monitor the amount of time that has

passed since the buckets have been stored in common
storage 216. Based on a determination that a threshold
amount of time has passed , the indexing node 404 can
determine that the buckets are to be stored in common
storage 216. Further , it will be understood that the indexing
node 404 can use a bucket roll - over policy and / or a variety
of techniques to determine when to store buckets in common
storage 216 .
[0435] At block 1008 , the indexing node 404 converts the
buckets . In some cases , as part of preparing the buckets for
storage in common storage 216 , the indexing node 404 can
convert the buckets from editable buckets to non - editable
buckets . In some cases , the indexing node 404 convert hot
buckets to warm buckets based on the bucket roll - over
policy . The bucket roll - over policy can indicate that buckets
are to be converted from hot to warm buckets based on a
predetermined period of time , one or more buckets satisfy
ing a threshold size , the number of hot buckets , etc. In some
cases , based on the bucket roll - over policy , the indexing
node 404 converts hot buckets to warm buckets based on a
collective size of multiple hot buckets satisfying a threshold
size . The multiple hot buckets can correspond to any one or
any combination of randomly selected hot buckets , hot
buckets associated with a particular partition or shard (or
partition manager 408) , hot buckets associated with a par
ticular tenant or partition , all hot buckets in the data store
412 or being processed by the indexer 410 , etc.
[0436] At block 1010 , the indexing node 404 stores the
converted buckets in a data store . As described herein , the
indexing node 404 can store the buckets in common storage
216 or other location accessible to the query system 214. In
some cases , the indexing node 404 stores a copy of the
buckets in common storage 416 and retains the original
bucket in its data store 412. In certain embodiments , the
indexing node 404 stores a copy of the buckets in common
storage and deletes any reference to the original buckets in
its data store 412 .
[0437] Furthermore , as described herein , in some cases ,
the indexing node 404 can store the one or more buckets
based on the bucket roll - over policy . In addition to indicat
ing when buckets are to be converted from hot buckets to
warm buckets , the bucket roll - over policy can indicate when
buckets are to be stored in common storage 216. In some
cases , the bucket roll - over policy can use the same or
different policies or thresholds to indicate when hot buckets
are to be converted to warm and when buckets are to be
stored in common storage 216 .
[0438] In certain embodiments , the bucket roll - over policy
can indicate that buckets are to be stored in common storage
216 based on a collective size of buckets satisfying a
threshold size . As mentioned , the threshold size used to
determine that the buckets are to be stored in common
storage 216 can be the same as or different from the
threshold size used to determine that editable buckets should
be converted to non - editable buckets . Accordingly , in certain
embodiments , based on a determination that the size of the
one or more buckets have satisfied a threshold size , the
indexing node 404 can convert the buckets to non - editable
buckets and store the buckets in common storage 216 .
[0439] Other thresholds and / or other factors or combina
tions of thresholds and factors can be used as part of the
bucket roll - over policy . For example , the bucket roll - over
policy can indicate that buckets are to be stored in common
storage 216 based on the passage of a threshold amount of

US 2022/0245156 A1 Aug. 4 , 2022
38

an

time . As yet another example , bucket roll - over policy can
indicate that buckets are to be stored in common storage 216
based on the number of buckets satisfying a threshold
number .
[0440] It will be understood that the bucket roll - over
policy can use a variety of techniques or thresholds to
indicate when to store the buckets in common storage 216 .
For example , in some cases , the bucket roll - over policy can
use any one or any combination of a threshold time period ,
threshold number of buckets , user information , tenant or
partition information , query frequency , amount of data being
received , time of day or schedules , etc. , to indicate when
buckets are to be stored in common storage 216 (and / or
converted to non - editable buckets) . In some cases , the
bucket roll - over policy can use different priorities to deter
mine how to store the buckets , such as , but not limited to ,
minimizing or reducing time between processing and stor
age to common storage 216 , maximizing or increasing
individual bucket size , etc. Furthermore , the bucket roll - over
policy can use dynamic thresholds to indicate when buckets
are to be stored in common storage 216 .
[0441] As mentioned , in some cases , based on
increased query frequency , the bucket roll - over policy can
indicate that buckets are to be moved to common storage
216 more frequently by adjusting one more thresholds used
to determine when the buckets are to be stored to common
storage 216 (e.g. , threshold size , threshold number , thresh
old time , etc.) .
[0442] In addition , the bucket roll - over policy can indicate
that different sets of buckets are to be rolled - over differently
or at different rates or frequencies . For example , the bucket
roll - over policy can indicate that buckets associated with a
first tenant or partition are to be rolled over according to one
policy and buckets associated with a second tenant or
partition are to be rolled over according to a different policy .
The different policies may indicate that the buckets associ
ated with the first tenant or partition are to be stored more
frequently to common storage 216 than the buckets associ
ated with the second tenant or partition . Accordingly , the
bucket roll - over policy can use one set of thresholds (e.g. ,
threshold size , threshold number , and / or threshold time , etc.)
to indicate when the buckets associated with the first tenant
or partition are to be stored in common storage 216 and a
different set of thresholds for the buckets associated with the
second tenant or partition .
[0443] As another non - limiting example , consider a sce
nario in which buckets from a partition _main are being
queried more frequently than bucket from the partition _test .
The bucket roll - over policy can indicate that based on the
increased frequency of queries for buckets from partition
_main , buckets associated with partition _main should be
moved more frequently to common storage 216 , for
example , by adjusting the threshold size used to determine
when to store the buckets in common storage 216. In this
way , the query system 214 can obtain relevant search results
more quickly for data associated with the _main partition .
Further , if the frequency of queries for buckets from the
_main partition decreases , the data intake and query system
108 can adjust the threshold accordingly . In addition , the
bucket roll - over policy may indicate that the changes are
only for buckets associated with the partition _main or that
the changes are to be made for all buckets , or all buckets
associated with a particular tenant that is associated with the
partition _main , etc.

[0444] Furthermore , as mentioned , the bucket roll - over
policy can indicate that buckets are to be stored in common
storage 216 at different rates or frequencies based on time of
day . For example , the data intake and query system 108 can
adjust the thresholds so that the buckets are moved to
common storage 216 more frequently during working hours
and less frequently during non - working hours . In this way ,
the delay between processing and making the data available
for searching during working hours can be reduced , and can
decrease the amount of merging performed on buckets
generated during non - working hours . In other cases , the data
intake and query system 108 can adjust the thresholds so that
the buckets are moved to common storage 216 less fre
quently during working hours and more frequently during
non - working hours .
[0445] As mentioned , the bucket roll - over policy can
indicate that based on an increased rate at which data is
received , buckets are to be moved to common storage more
(or less) frequently . For example , if the bucket roll - over
policy initially indicates that the buckets are to be stored
every millisecond , as the rate of data received by the
indexing node 404 increases , the amount of data received
during each millisecond can increase , resulting in more data
waiting to be stored . As such , in some cases , the bucket
roll - over policy can indicate that the buckets are to be stored
more frequently in common storage 216. Further , in some
cases , such as when a collective bucket size threshold is
used , an increased rate at which data is received may
overburden the indexing node 404 due to the overhead
associated with copying each bucket to common storage
216. As such , in certain cases , the bucket roll - over policy
can use a larger collective bucket size threshold to indicate
that the buckets are to be stored in common storage 216. In
this way , the bucket roll - over policy can reduce the ratio of
overhead to data being stored .
[0446] Similarly , the bucket roll - over policy can indicate
that certain users are to be treated differently . For example ,
if a particular user is logged in , the bucket roll - over policy
can indicate that the buckets in an indexing node 404 are to
be moved to common storage 216 more or less frequently to
accommodate the user's preferences , etc. Further , as men
tioned , in some embodiments , the data intake and query
system 108 may indicate that only those buckets associated
with the user (e.g. , based on tenant information , indexing
information , user information , etc.) are to be stored more or
less frequently .
[0447] Furthermore , the bucket roll - over policy can indi
cate whether , after copying buckets to common storage 216 ,
the locally stored buckets are to be retained or discarded . In
some cases , the bucket roll - over policy can indicate that the
buckets are to be retained for merging . In certain cases , the
bucket roll - over policy can indicate that the buckets are to be
discarded .
[0448] Fewer , more , or different blocks can be used as part
of the routine 1000. In some cases , one or more blocks can
be omitted . For example , in certain embodiments , the index
ing node 404 may not convert the buckets before storing
them . As another example , the routine 1000 can include
notifying the data source , such as the intake system , that the
buckets have been uploaded to common storage , merging
buckets and uploading merged buckets to common storage ,
receiving identifying information about the buckets in com
mon storage 216 and updating a data store catalog 220 with
the received information , etc.

US 2022/0245156 A1 Aug. 4 , 2022
39

[0449] Furthermore , it will be understood that the various
blocks described herein with reference to FIG . 10 can be
implemented in a variety of orders , or can be performed
concurrently . For example , the indexing node 404 can
concurrently convert buckets and store them in common
storage 216 , or concurrently receive data from a data source
and process data from the data source , etc.

a

.

4.2.3 . Updating Location Marker in Ingestion Buffer
[0450] FIG . 11 is a flow diagram illustrative of an embodi
ment of a routine 1100 implemented by the indexing node
404 to update a location marker in an ingestion buffer , e.g. ,
ingestion buffer 310. Although described as being imple
mented by the indexing node 404 , it will be understood that
the elements outlined for routine 1100 can be implemented
by one or more computing devices / components that are
associated with the data intake and query system 108 , such
as , but not limited to , the indexing manager 402 , the
indexing node manager 406 , the partition manager 408 , the
indexer 410 , the bucket manager 414 , etc. Thus , the follow
ing illustrative embodiment should not be construed as
limiting . Moreover , although the example refers to updating
a location marker in ingestion buffer 310 , other implemen
tations can include other ingestion components with other
types of location tracking that can be updated in a similar
manner as the location marker .
[0451] At block 1102 , the indexing node 404 receives
data . As described in greater detail above with reference to
block 1002 , the indexing node 404 can receive a variety of
types of data from a variety of sources .
[0452] In some embodiments , the indexing node 404
receives data from an ingestion buffer 310. As described
herein , the ingestion buffer 310 can operate according to a
pub - sub messaging service . As such , the ingestion buffer
310 can communicate data to the indexing node 404 , and
also ensure that the data is available for additional reads until
it receives an acknowledgement from the indexing node 404
that the data can be removed .
[0453] In some cases , the ingestion buffer 310 can use one
or more read pointers or location markers to track the data
that has been communicated to the indexing node 404 but
that has not been acknowledged for removal . As the inges
tion buffer 310 receives acknowledgments from the indexing
node 404 , it can update the location markers . In some cases ,
such as where the ingestion buffer 310 uses multiple parti
tions or shards to provide the data to the indexing node 404 ,
the ingestion buffer 310 can include at least one location
marker for each partition or shard . In this way , the ingestion
buffer 310 can separately track the progress of the data reads
in the different shards .
[0454] In certain embodiments , the indexing node 404 can
receive (and / or store) the location markers in addition to or
as part of the data received from the ingestion buffer 310 .
Accordingly , the indexing node 404 can track the location of
the data in the ingestion buffer 310 that the indexing node
404 has received from the ingestion buffer 310. In this way ,
if an indexer 410 or partition manager 408 becomes unavail
able or fails , the indexing node 404 can assign a different
indexer 410 or partition manager 408 to process or manage
the data from the ingestion buffer 310 and provide the
indexer 410 or partition manager 408 with a location from
which the indexer 410 or partition manager 408 can obtain
the data .

[0455] At block 1104 , the indexing node 404 stores the
data in buckets . As described in greater detail above with
reference to block 1004 of FIG . 10 , as part of storing the data
in buckets , the indexing node 404 can parse the data ,
generate events , generate indexes of the data , compress the
data , etc. In some cases , the indexing node 404 can store the
data in hot or warm buckets and / or convert hot buckets to
warm buckets based on the bucket roll - over policy .
[0456] At block 1106 , the indexing node 404 stores buck
ets in common storage 216. As described herein , in certain
embodiments , the indexing node 404 stores the buckets in
common storage 216 according to the bucket roll - over
policy . In some cases , the buckets are stored in common
storage 216 in one or more directories based on an index /
partition or tenant associated with the buckets . Further , the
buckets can be stored in a time series manner to facilitate
time series searching as described herein . Additionally , as
described herein , the common storage 216 can replicate the
buckets across multiple tiers and data stores across one or
more geographical locations . In some cases , in response to
the storage , the indexing node 404 receives an acknowl
edgement that the data was stored . Further , the indexing
node 404 can receive information about the location of the
data in common storage , one or more identifiers of the stored
data , etc. The indexing node 404 can use this information to
update the data store catalog 220 .
[0457] At block 1108 , the indexing node 404 notifies an
ingestion buffer 310 that the data has been stored in common
storage 216. As described herein , in some cases , the inges
tion buffer 310 can retain location markers for the data that
it sends to the indexing node 404. The ingestion buffer 310
can use the location markers to indicate that the data sent to
the indexing node 404 is to be made persistently available to
the indexing system 212 until the ingestion buffer 310
receives an acknowledgement from the indexing node 404
that the data has been stored successfully . In response to the
acknowledgement , the ingestion buffer 310 can update the
location marker (s) and communicate the updated location
markers to the indexing node 404. The indexing node 404
can store updated location markers for use in the event one
or more components of the indexing node 404 (e.g. , partition
manager 408 , indexer 410) become unavailable or fail . In
this way , the ingestion buffer 310 and the location markers
can aid in providing a stateless indexing service .
[0458] Fewer , more , or different blocks can be used as part
of the routine 1100. In some cases , one or more blocks can
be omitted . For example , in certain embodiments , the index
ing node 404 can update the data store catalog 220 with
information about the buckets created by the indexing node
404 and / or stored in common storage 215 , as described
herein .
[0459] Furthermore , it will be understood that the various
blocks described herein with reference to FIG . 11 can be
implemented in a variety of orders . In some cases , the
indexing node 404 can implement some blocks concurrently
or change the order as desired . For example , the indexing
node 404 can concurrently receive data , store other data in
buckets , and store buckets in common storage .

4.2.4 . Merging Buckets
[0460] FIG . 12 is a flow diagram illustrative of an embodi
ment of a routine 1200 implemented by the indexing node
404 to merge buckets . Although described as being imple
mented by the indexing node 404 , it will be understood that

US 2022/0245156 A1 Aug. 4 , 2022
40

a

the elements outlined for routine 1200 can be implemented
by one or more computing devices / components that are
associated with the data intake and query system 108 , such
as , but not limited to , the indexing manager 402 , the
indexing node manager 406 , the partition manager 408 , the
indexer 410 , the bucket manager 414 , etc. Thus , the follow
ing illustrative embodiment should not be construed as
limiting .
[0461] At block 1202 , the indexing node 404 stores data in
buckets . As described herein , the indexing node 404 can
process various types of data from a variety of sources .
Further , the indexing node 404 can create one or more
buckets according to a bucket creation policy and store the
data in the store the data in one or more buckets . In addition ,
in certain embodiments , the indexing node 404 can convert
hot or editable buckets to warm or non - editable buckets
according to a bucket roll - over policy .
[0462] At block 1204 , the indexing node 404 stores buck
ets in common storage 216. As described herein , the index
ing node 404 can store the buckets in common storage 216
according to the bucket roll - over policy . In some cases , the
buckets are stored in common storage 216 in one or more
directories based on an index / partition or tenant associated
with the buckets . Further , the buckets can be stored in a time
series manner to facilitate time series searching as described
herein . Additionally , as described herein , the common stor
age 216 can replicate the buckets across multiple tiers and
data stores across one or more geographical locations .
[0463] At block 1206 , the indexing node 404 updates the
data store catalog 220. As described herein , in some cases ,
in response to the storage , the indexing node 404 receives an
acknowledgement that the data was stored . Further , the
indexing node 404 can receive information about the loca
tion of the data in common storage , one or more identifiers
of the stored data , etc. The received information can be used
by the indexing node 404 to update the data store catalog
220. In addition , the indexing node 404 can provide the data
store catalog 220 with any one or any combination of the
tenant or partition associated with the bucket , a time range
of the events in the bucket , one or more metadata fields of
the bucket (e.g. , host , source , sourcetype , etc.) , etc. In this
way , the data store catalog 220 can store up - to - date infor
mation about the buckets in common storage 216. Further ,
this information can be used by the query system 214 to
identify relevant buckets for a query .
[0464] In some cases , the indexing node 404 can update
the data store catalog 220 before , after , or concurrently with
storing the data to common storage 216. For example , as
buckets are created by the indexing node 404 , the indexing
node 404 can update the data store catalog 220 with infor
mation about the created buckets , such as , but not limited to ,
an partition or tenant associated with the bucket , a time
range or initial time (e.g. , time of earliest - in - time time
stamp) , etc. In addition , the indexing node 404 can include
an indication that the bucket is a hot bucket or editable
bucket and that the contents of the bucket are not (yet)
available for searching or in the common storage 216 .
[0465] As the bucket is filled with events or data , the
indexing node 404 can update the data store catalog 220 with
additional information about the bucket (e.g. , updated time
range based on additional events , size of the bucket , number
of events in the bucket , certain keywords or metadata from
the bucket , such as , but not limited to a host , source , or
sourcetype associated with different events in the bucket ,

etc.) . Further , once the bucket is uploaded to common
storage 216 , the indexing node 404 can complete the entry
for the bucket , such as , by providing a completed time range ,
location information of the bucket in common storage 216 ,
completed keyword or metadata information as desired , etc.
[046] The information in the data store catalog 220 can
be used by the query system 214 to execute queries . In some
cases , based on the information in the data store catalog 220
about buckets that are not yet available for searching , the
query system 214 can wait until the data is available for
searching before completing the query or inform a user that
some data that may be relevant has not been processed or
that the results will be updated . Further , in some cases , the
query system 214 can inform the indexing system 212 about
the bucket , and the indexing system 212 can cause the
indexing node 404 to store the bucket in common storage
216 sooner than it otherwise would without the communi
cation from the query system 214 .
[0467] In addition , the indexing node 404 can update the
data store catalog 220 with information about buckets to be
merged . For example , once one or more buckets are iden
tified for merging , the indexing node 404 can update an entry
for the buckets in the data store catalog 220 indicating that
they are part of a merge operation and / or will be replaced .
In some cases , as part of the identification , the data store
catalog 220 can provide information about the entries to the
indexing node 404 for merging . As the entries may have
summary information about the buckets , the indexing node
404 can use the summary information to generate a merged
entry for the data store catalog 220 as opposed to generating
the summary information from the merged data itself . In this
way , the information from the data store catalog 220 can
increase the efficiency of a merge operation by the indexing
node 404 .
[0468] At block 1208 , the indexing node 404 merges
buckets . In some embodiments , the indexing node 404 can
merge buckets according to a bucket merge policy . As
described herein , the bucket merge policy can indicate
which buckets to merge , when to merge buckets and one or
more parameters for the merged buckets (e.g. , time range for
the merged buckets , size of the merged buckets , etc.) . For
example , the bucket merge policy can indicate that only
buckets associated with the same tenant identifier and / or
partition can be merged . As another example , the bucket
merge policy can indicate that only buckets that satisfy a
threshold age (e.g. , have existed or been converted to warm
buckets for more than a set period of time) are eligible for
a merge . Similarly , the bucket merge policy can indicate that
each merged bucket must be at least 750 MB or no greater
than 1 GB , or cannot have a time range that exceeds a
predetermined amount or is larger than 75 % of other buck
ets . The other buckets can refer to one or more buckets in
common storage 216 or similar buckets (e.g. , buckets asso
ciated with the same tenant , partition , host , source , or
sourcetype , etc.) . In certain cases , the bucket merge policy
can indicate that buckets are to be merged based on a
schedule (e.g. , during non - working hours) or user login
(e.g. , when a particular user is not logged in) , etc. In certain
embodiments , the bucket merge policy can indicate that
bucket merges can be adjusted dynamically . For example ,
based on the rate of incoming data or queries , the bucket
merge policy can indicate that buckets are to be merged
more or less frequently , etc. In some cases , the bucket merge
policy can indicate that due to increased processing demands

2

US 2022/0245156 A1 Aug. 4 , 2022
41

by other indexing nodes 404 or other components of an
indexing node 404 , such as processing and storing buckets ,
that bucket merges are to occur less frequently so that the
computing resources used to merge buckets can be redi
rected to other tasks . It will be understood that a variety of
priorities and policies can be used as part of the bucket
merge policy .
[0469] At block 1210 , the indexing node 404 stores the
merged buckets in common storage 216. In certain embodi
ments , the indexing node 404 can store the merged buckets
based on the bucket merge policy . For example , based on the
bucket merge policy indicating that merged buckets are to
satisfy a size threshold , the indexing node 404 can store a
merged bucket once it satisfies the size threshold . Similarly ,
the indexing node 404 can store the merged buckets after a
predetermined amount of time or during non - working hours ,
etc. , per the bucket merge policy .
[0470] In response to the storage of the merged buckets in
common storage 216 , the indexing node 404 can receive an
acknowledgement that the merged buckets have been stored .
In some cases , the acknowledgement can include informa
tion about the merged buckets , including , but not limited to ,
a storage location in common storage 216 , identifier , etc.
[0471] At block 1212 , the indexing node 404 updates the
data store catalog 220. As described herein , the indexing
node 404 can store information about the merged buckets in
the data store catalog . 220. The information can be similar
to the information stored in the data store catalog 220 for the
pre - merged buckets (buckets used to create the merged
buckets) . For example , in some cases , the indexing node 404
can store any one or any combination of the following in the
data store catalog : the tenant or partition associated with the
merged buckets , a time range of the merged bucket , the
location information of the merged bucket in common
storage 216 , metadata fields associated with the bucket (e.g. ,
host , source , sourcetype) , etc. As mentioned , the information
about the merged buckets in the data store catalog 220 can
be used by the query system 214 to identify relevant buckets
for a search . Accordingly , in some embodiments , the data
store catalog 220 can be used in a similar fashion as an
inverted index , and can include similar information (e.g. ,
time ranges , field - value pairs , keyword pairs , location infor
mation , etc.) . However , instead of providing information
about individual events in a bucket , the data store catalog
220 can provide information about individual buckets in
common storage 216 .
[0472] In some cases , the indexing node 404 can retrieve
information from the data store catalog 220 about the
pre - merged buckets and use that information to generate
information about the merged bucket (s) for storage in the
data store catalog 220. For example , the indexing node 404
can use the time ranges of the pre - merged buckets to
generate a merged time range , identify metadata fields
associated with the different events in the pre - merged buck
ets , etc. In certain embodiments , the indexing node 404 can
generate the information about the merged buckets for the
data store catalog 220 from the merged data itself without
retrieving information about the pre - merged buckets from
the data store catalog 220 .
[0473] In certain embodiments , as part of updating the
data store catalog 220 with information about the merged
buckets , the indexing node 404 can delete the information in
the data store catalog 220 about the pre - merged buckets . For
example , once the merged bucket is stored in common

storage 216 , the merged bucket can be used for queries . As
such , the information about the pre - merged buckets can be
removed so that the query system 214 does not use the
pre - merged buckets to execute a query .
[0474] Fewer , more , or different blocks can be used as part
of the routine 1200. In some cases , one or more blocks can
be omitted . For example , in certain embodiments , the index
ing node 404 can delete locally stored buckets . In some
cases , the indexing node 404 deletes any buckets used to
form merged buckets and / or the merged buckets . In this way ,
the indexing node 404 can reduce the amount of data stored
in the indexing node 404 .
[0475] In certain embodiments , the indexing node 404 can
instruct the common storage 216 to delete buckets or delete
the buckets in common storage according to a bucket
management policy . For example , the indexing node 404 can
instruct the common storage 216 to delete any buckets used
to generate the merged buckets . Based on the bucket man
agement policy , the common storage 216 can remove the
buckets . As described herein , the bucket management policy
can indicate when buckets are to be removed from common
storage 216. For example , the bucket management policy
can indicate that buckets are to be removed from common
storage 216 after a predetermined amount of time , once any
queries relying on the pre - merged buckets are completed ,
etc.
[0476] By removing buckets from common storage 216 ,
the indexing node 404 can reduce the size or amount of data
stored in common storage 216 and improve search times .
For example , in some cases , large buckets can increase
search times as there are fewer buckets for the query system
214 to search . By another example , merging buckets after
indexing allows optimal or near - optimal bucket sizes for
search (e.g. , performed by query system 214) and index
(e.g. , performed by indexing system 212) to be determined
independently or near - independently .
[0477] Furthermore , it will be understood that the various
blocks described herein with reference to FIG . 12 can be
implemented in a variety of orders . In some cases , the
indexing node 404 can implement some blocks concurrently
or change the order as desired . For example , the indexing
node 404 can concurrently merge buckets while updating an
ingestion buffer 310 about the data stored in common
storage 216 or updating the data store catalog 220. As
another example , the indexing node 404 can delete data
about the pre - merged buckets locally and instruct the com
mon storage 216 to delete the data about the pre - merged
buckets while concurrently updating the data store catalog
220 about the merged buckets . In some embodiments , the
indexing node 404 deletes the pre - merged bucket data
entries in the data store catalog 220 prior to instructing the
common storage 216 to delete the buckets . In this way , the
data indexing node 404 can reduce the risk that a query relies
on information in the data store catalog 220 that does not
reflect the data stored in the common storage 216 .

4.3 . Querying
[0478] FIG . 13 is a data flow diagram illustrating an
embodiment of the data flow and communications between
a variety of the components of the data intake and query
system 108 during execution of a query . Specifically , FIG .
13 is a data flow diagram illustrating an embodiment of the
data flow and communications between the indexing system
212 , the data store catalog 220 , a search head 504 , a search

US 2022/0245156 A1 Aug. 4 , 2022
42

2

2

node monitor 508 , search node catalog 510 , search nodes
506 , common storage 216 , and the query acceleration data
store 222. However , it will be understood , that in some of
embodiments , one or more of the functions described herein
with respect to FIG . 13 can be omitted , performed in a
different order and / or performed by a different component of
the data intake and query system 108. Accordingly , the
illustrated embodiment and description should not be con
strued as limiting .
[0479] Further , it will be understood that the various
functions described herein with respect to FIG . 13 can be
performed by one or more distinct components of the data
intake and query system 108. For example , for simplicity ,
reference is made to a search head 504 performing one or
more functions . However , it will be understood that these
functions can be performed by one or more components of
the search head 504 , such as , but not limited to , the search
master 512 and / or the search manager 514. Similarly , ref
erence is made to the indexing system 212 performing one
or more functions . However , it will be understood that the
functions identified as being performed by the indexing
system 212 can be performed by one or more components of
the indexing system 212 .
[0480] At (1) and (2) , the indexing system 212 monitors
the storage of processed data and updates the data store
catalog 220 based on the monitoring . As described herein ,
one or more components of the indexing system 212 , such
as the partition manager 408 and / or the indexer 410 can
monitor the storage of data or buckets to common storage
216. As the data is stored in common storage 216 , the
indexing system 212 can obtain information about the data
stored in the common storage 216 , such as , but not limited
to , location information , bucket identifiers , tenant identifier
(e.g. , for buckets that are single tenant) etc. The indexing
system 212 can use the received information about the data
stored in common storage 216 to update the data store
catalog 220 .
[0481] Furthermore , as described herein , in some embodi
ments , the indexing system 212 can merge buckets into one
or more merged buckets , store the merged buckets in com
mon storage 216 , and update the data store catalog to 220
with the information about the merged buckets stored in
common storage 216 .
[0482] At (3) and (4) , the search node monitor 508 moni
tors the search nodes 506 and updates the search node
catalog 510. As described herein , the search node monitor
508 can monitor the availability , responsiveness , and / or
utilization rate of the search nodes 506. Based on the status
of the search nodes 506 , the search node monitor 508 can
update the search node catalog 510. In this way , the search
node catalog 510 can retain information regarding a current
status of each of the search nodes 506 in the query system
214 .
[0483] At (5) , the search head 504 receives a query and
generates a search manager 514. As described herein , in
some cases , a search master 512 can generate the search
manager 514. For example , the search master 512 can spin
up or instantiate a new process , container , or virtual
machine , or copy itself to generate the search manager 514 ,
etc. As described herein , in some embodiments , the search
manager 514 can perform one or more of functions
described herein with reference to FIG . 13 as being per
formed by the search head 504 to process and execute the
query .

[0484] The search head 504 (6A) requests data identifiers
from the data store catalog 220 and (6B) requests an
identification of available search nodes from the search node
catalog 510. As described , the data store catalog 220 can
include information regarding the data stored in common
storage 216 and the search node catalog 510 can include
information regarding the search nodes 506 of the query
system 214. Accordingly , the search head 504 can query the
respective catalogs to identify data or buckets that include
data that satisfies at least a portion of the query and search
nodes available to execute the query . In some cases , these
requests can be done concurrently or in any order .
[0485] At (7A) , the data store catalog 220 provides the
search head 504 with an identification of data that satisfies
at least a portion of the query . As described herein , in
response to the request from the search head 504 , the data
store catalog 220 can be used to identify and return identi
fiers of buckets in common storage 216 and / or location
information of data in common storage 216 that satisfy at
least a portion of the query or at least some filter criteria
(e.g. , buckets associated with an identified tenant or partition
or that satisfy an identified time range , etc.) .
[0486] In some cases , as the data store catalog 220 can
routinely receive updates by the indexing system 212 , it can
implement a read - write lock while it is being queried by the
search head 504. Furthermore , the data store catalog 220 can
store information regarding which buckets were identified
for the search . In this way , the data store catalog 220 can be
used by the indexing system 212 to determine which buckets
in common storage 216 can be removed or deleted as part of
a merge operation .
[0487] At (7B) , the search node catalog 510 provides the
search head 504 with an identification of available search
nodes 506. As described herein , in response to the request
from the search head 504 , the search node catalog 510 can
be used to identify and return identifiers for search nodes
506 that are available to execute the query .
[0488] At (8) the search head 504 maps the identified
search nodes 506 to the data according to a search node
mapping policy . In some cases , per the search node mapping
policy , the search head 504 can dynamically map search
nodes 506 to the identified data or buckets . As described
herein , the search head 504 can map the identified search
nodes 506 to the identified data or buckets at one time or
iteratively as the buckets are searched according to the
search node mapping policy . In certain embodiments , per the
search node mapping policy , the search head 504 can map
the identified search nodes 506 to the identified data based
on previous assignments , data stored in a local or shared data
store of one or more search heads 506 , network architecture
of the search nodes 506 , a hashing algorithm , etc.
[0489] In some cases , as some of the data may reside in a
local or shared data store between the search nodes 506 , the
search head 504 can attempt to map that was previously
assigned to a search node 506 to the same search node 506 .
In certain embodiments , to map the data to the search nodes
506 , the search head 504 uses the identifiers , such as bucket
identifiers , received from the data store catalog 220. In some
embodiments , the search head 504 performs a hash function
to map a bucket identifier to a search node 506. In some
cases , the search head 504 uses a consistent hash algorithm
to increase the probability of mapping a bucket identifier to
the same search node 506 .

US 2022/0245156 A1 Aug. 4 , 2022
43

2

2

[0490] In certain embodiments , the search head 504 or
query system 214 can maintain a table or list of bucket
mappings to search nodes 506. In such embodiments , per the
search node mapping policy , the search head 504 can use the
mapping to identify previous assignments between search
nodes and buckets . If a particular bucket identifier has not
been assigned to a search node 506 , the search head 504 can
use a hash algorithm to assign it to a search node 506. In
certain embodiments , prior to using the mapping for a
particular bucket , the search head 504 can confirm that the
search node 506 that was previously assigned to the par
ticular bucket is available for the query . In some embodi
ments , if the search node 506 is not available for the query ,
the search head 504 can determine whether another search
node 506 that shares a data store with the unavailable search
node 506 is available for the query . If the search head 504
determines that an available search node 506 shares a data
store with the unavailable search node 506 , the search head
504 can assign the identified available search node 506 to the
bucket identifier that was previously assigned to the now
unavailable search node 506 .
[0491] At (9) , the search head 504 instructs the search
nodes 506 to execute the query . As described herein , based
on the assignment of buckets to the search nodes 506 , the
search head 504 can generate search instructions for each of
the assigned search nodes 506. These instructions can be in
various forms , including , but not limited to , JSON , DAG ,
etc. In some cases , the search head 504 can generate
sub - queries for the search nodes 506. Each sub - query or
instructions for a particular search node 506 generated for
the search nodes 506 can identify the buckets that are to be
searched , the filter criteria to identify a subset of the set of
data to be processed , and the manner of processing the
subset of data . Accordingly , the instructions can provide the
search nodes 506 with the relevant information to execute
their particular portion of the query .
[0492] At (10) , the search nodes 506 obtain the data to be
searched . As described herein , in some cases the data to be
searched can be stored on one or more local or shared data
stores of the search nodes 506. In certain embodiments , the
data to be searched is located in the common storage 216. In
such embodiments , the search nodes 506 or a cache manager
516 can obtain the data from the common storage 216 .
[0493] In some cases , the cache manager 516 can identify
or obtain the data requested by the search nodes 506. For
example , if the requested data is stored on the local or shared
data store of the search nodes 506 , the cache manager 516
can identify the location of the data for the search nodes 506 .
If the requested data is stored in common storage 216 , the
cache manager 516 can obtain the data from the common
storage 216 .
[0494] As described herein , in some embodiments , the
cache manager 516 can obtain a subset of the files associated
with the bucket to be searched by the search nodes 506. For
example , based on the query , the search node 506 can
determine that a subset of the files of a bucket are to be used
to execute the query . Accordingly , the search node 506 can
request the subset of files , as opposed to all files of the
bucket . The cache manager 516 can download the subset of
files from common storage 216 and provide them to the
search node 506 for searching .
[0495] In some embodiments , such as when a search node
506 cannot uniquely identify the file of a bucket to be
searched , the cache manager 516 can download a bucket

summary or manifest that identifies the files associated with
the bucket . The search node 506 can use the bucket summary
or manifest to uniquely identify the file to be used in the
query . The common storage 216 can then obtain that
uniquely identified file from common storage 216 .
[0496] At (11) , the search nodes 506 search and process
the data . As described herein , the sub - queries or instructions
received from the search head 504 can instruct the search
nodes 506 to identify data within one or more buckets and
perform one or more transformations on the data . Accord
ingly , each search node 506 can identify a subset of the set
of data to be processed and process the subset of data
according to the received instructions . This can include
searching the contents of one or more inverted indexes of a
bucket or the raw machine data or events of a bucket , etc. In
some embodiments , based on the query or sub - query , a
search node 506 can perform one or more transformations
on the data received from each bucket or on aggregate data
from the different buckets that are searched by the search
node 506 .
[0497] At (12) , the search head 504 monitors the status of
the query of the search nodes 506. As described herein , the
search nodes 506 can become unresponsive or fail for a
variety of reasons (e.g. , network failure , error , high utiliza
tion rate , etc.) . Accordingly , during execution of the query ,
the search head 504 can monitor the responsiveness and
availability of the search nodes 506. In some cases , this can
be done by pinging or querying the search nodes 506 ,
establishing a persistent communication link with the search
nodes 506 , or receiving status updates from the search nodes
506. In some cases , the status can indicate the buckets that
have been searched by the search nodes 506 , the number or
percentage of remaining buckets to be searched , the per
centage of the query that has been executed by the search
node 506 , etc. In some cases , based on a determination that
a search node 506 has become unresponsive , the search head
504 can assign a different search node 506 to complete the
portion of the query assigned to the unresponsive search
node 506 .
[0498] In certain embodiments , depending on the status of
the search nodes 506 , the search manager 514 can dynami
cally assign or re - assign buckets to search nodes 506. For
example , as search nodes 506 complete their search of
buckets assigned to them , the search manager 514 can assign
additional buckets for search . As yet another example , if one
search node 506 is 95 % complete with its search while
another search node 506 is less than 50 % complete , the
query manager can dynamically assign additional buckets to
the search node 506 that is 95 % complete or re - assign
buckets from the search node 506 that is less than 50 %
complete to the search node that is 95 % complete . In this
way , the search manager 514 can improve the efficiency of
how a computing system performs searches through the
search manager 514 increasing parallelization of searching
and decreasing the search time .
[0499] At (13) , the search nodes 506 send individual query
results to the search head 504. As described herein , the
search nodes 506 can send the query results as they are
obtained from the buckets and / or send the results once they
are completed by a search node 506. In some embodiments ,
as the search head 504 receives results from individual
search nodes 506 , it can track the progress of the query . For
example , the search head 504 can track which buckets have
been searched by the search nodes 506. Accordingly , in the

a

a

US 2022/0245156 A1 Aug. 4 , 2022
44

while searching the content of one or more files of a second
bucket and sending query results for a third bucket to the
search head 504. Similarly , the search head 504 can (8) map
search nodes 506 to buckets while concurrently (9) gener
ating instructions for and instructing other search nodes 506
to begin execution of the query .
4.3.1 . Containerized Search Nodes

a
a

as ,

a

event a search node 506 becomes unresponsive or fails , the
search head 504 can assign a different search node 506 to
complete the portion of the query assigned to the unrespon
sive search node 506. By tracking the buckets that have been
searched by the search nodes and instructing different search
node 506 to continue searching where the unresponsive
search node 506 left off , the search head 504 can reduce the
delay caused by a search node 506 becoming unresponsive ,
and can aid in providing a stateless searching service .
[0500] At (14) , the search head 504 processes the results
from the search nodes 506. As described herein , the search
head 504 can perform one or more transformations on the
data received from the search nodes 506. For example , some
queries can include transformations that cannot be com
pleted until the data is aggregated from the different search
nodes 506. In some embodiments , the search head 504 can
perform these transformations .
[0501] At (15) , the search head 504 stores results in the
query acceleration data store 222. As described herein , in
some cases some , all , or a copy of the results of the query
can be stored in the query acceleration data store 222. The
results stored in the query acceleration data store 222 can be
combined with other results already stored in the query
acceleration data store 222 and / or be combined with subse
quent results . For example , in some cases , the query system
214 can receive ongoing queries , or queries that do not have
a predetermined end time . In such cases , as the search head
504 receives a first set of results , it can store the first set of
results in the query acceleration data store 222. As subse
quent results are received , the search head 504 can add them
to the first set of results , and so forth . In this way , rather than
executing the same or similar query data across increasingly
larger time ranges , the query system 214 can execute the
query across a first time range and then aggregate the results
of the query with the results of the query across the second
time range . In this way , the query system can reduce the
amount of queries and the size of queries being executed and
can provide query results in a more time efficient manner .
[0502] At (16) , the search head 504 terminates the search
manager 514. As described herein , in some embodiments
search head 504 or a search master 512 can generate a search
manager 514 for each query assigned to the search head 504 .
Accordingly , in some embodiments , upon completion of a
search , the search head 504 or search master 512 can
terminate the search manager 514. In certain embodiments ,
rather than terminating the search manager 514 upon
completion of a query , the search head 504 can assign the
search manager 514 to a new query .
[0503] As mentioned previously , in some of embodiments ,
one or more of the functions described herein with respect
to FIG . 13 can be omitted , performed in a variety of orders
and / or performed by a different component of the data intake
and query system 108. For example , the search head 504 can
monitor the status of the query throughout its execution by
the search nodes 506 (e.g. , during (10) , (11) , and (13)) .
Similarly , (1) and (2) can be performed concurrently , (3) and
(4) can be performed concurrently , and all can be performed
before , after , or concurrently with (5) . Similarly , steps (6A)
and (6B) and steps (7A) and (7B) can be performed before ,
after , or concurrently with each other . Further , (6A) and (7A)
can be performed before , after , or concurrently with (7A)
and (7B) . As yet another example , (10) , (11) , and (13) can
be performed concurrently . For example , a search node 506

currently receive one or more files for one bucket ,

[0504] FIG . 14 is a flow diagram illustrative of an embodi
ment of a routine 1400 implemented by the query system
214 to execute a query . Although described as being imple
mented by the search head 504 , it will be understood that the
elements outlined for routine 1400 can be implemented by
one or more computing devices / components that are asso
ciated with the data intake and query system 108 , such
but not limited to , the query system manager 502 , the search
head 504 , the search master 512 , the search manager 514 ,
the search nodes 506 , etc. Thus , the following illustrative
embodiment should not be construed as limiting .
[0505] At block 1402 , the search manager 514 receives a
query . As described in greater detail above , the search
manager 514 can receive the query from the search head
504 , search master 512 , etc. In some cases , the search
manager 514 can receive the query from a client device 204 .
The query can be in a query language as described in greater
detail above . In some cases , the query received by the search
manager 514 can correspond to a query received and
reviewed by the search head 504. For example , the search
head 504 can determine whether the query was submitted by
an authenticated user and / or review the query to determine
that it is in a proper format for the data intake and query
system 108 , has correct semantics and syntax , etc. In some
cases , the search head 504 can use a search master 512 to
receive search queries , and in some cases , spawn the search
manager 514 to process and execute the query .
[0506] At block 1404 , the search manager 514 identifies
one or more containerized search nodes , e.g. , search nodes
506 , to execute the query . As described herein , the query
system 214 can include multiple containerized search nodes
506 to execute queries . One or more of the containerized
search nodes 506 can be instantiated on the same computing
device , and share the resources of the computing device . In
addition , the containerized search nodes 506 can enable the
query system 214 to provide a highly extensible and
dynamic searching service . For example , based on resource
availability and / or workload , the query system 214 can
instantiate additional containerized search nodes 506 or
terminate containerized search nodes 506. Furthermore , the
query system 214 can dynamically assign containerized
search nodes 506 to execute queries on data in common
storage 216 based on a search node mapping policy .
[0507] As described herein , each search node 506 can be
implemented using containerization or operating - system
level virtualization , or other virtualization technique . For
example , the containerized search node 506 , or one or more
components of the search node 506 can be implemented as
separate containers or container instances . Each container
instance can have certain resources (e.g. , memory , proces
sor , etc.) of the underlying computing system assigned to it ,
but may share the same operating system and may use the
operating system's system call interface . Further , each con
tainer may run the same or different computer applications
concurrently or separately , and may interact with each other .
It will be understood that other virtualization techniques can can concu

US 2022/0245156 A1 Aug. 4 , 2022
45

2

a

be used . For example , the containerized search nodes 506
can be implemented using virtual machines using full vir
tualization or paravirtualization , etc.
[0508] In some embodiments , the search node 506 can be
implemented as a group of related containers or a pod , and
the various components of the search node 506 can be
implemented as related containers of a pod . Further , the
search node 506 can assign different containers to execute
different tasks . For example one container of a containerized
search node 506 can receive and query instructions , a second
container can obtain the data or buckets to be searched , and
a third container of the containerized search node 506 can
search the buckets and / or perform one or more transforma
tions on the data . However , it will be understood that the
containerized search node 506 can be implemented in a
variety of configurations . For example , in some cases , the
containerized search node 506 can be implemented as a
single container and can include multiple processes to
implement the tasks described above by the three containers .
Any combination of containerization and processed can be
used to implement the containerized search node 506 as
desired .
[0509] In some cases , the search manager 514 can identify
the search nodes 506 using the search node catalog 510. For
example , as described herein a search node monitor 508 can
monitor the status of the search nodes 506 instantiated in the
query system 514 and monitor their status . The search node
monitor can store the status of the search nodes 506 in the
search node catalog 510 .
[0510] In certain embodiments , the search manager 514
can identify search nodes 506 using a search node mapping
policy , previous mappings , previous searches , or the con
tents of a data store associated with the search nodes 506 .
For example , based on the previous assignment of a search
node 506 to search data as part of a query , the search
manager 514 can assign the search node 506 to search the
same data for a different query . As another example , as
search nodes 506 search data , it can cache the data in a local
or shared data store . Based on the data in the cache , the
search manager 514 can assign the search node 506 to search
the again as part of a different query .
[0511] In certain embodiments , the search manager 514
can identify search nodes 506 based on shared resources . For
example , if the search manager 514 determines that a search
node 506 shares a data store with a search node 506 that
previously performed a search on data and cached the data
in the shared data store , the search manager 514 can assign
the search node 506 that share the data store to search the
data stored therein as part of a different query .
[0512] In some embodiments , the search manager 514 can
identify search nodes 506 using a hashing algorithm . For
example , as described herein , the search manager 514 based
can perform a hash on a bucket identifier of a bucket that is
to be searched to identify a search node to search the bucket .
In some implementations , that hash may be a consistent
hash , to increase the chance that the same search node will
be selected to search that bucket as was previously used ,
thereby reducing the chance that the bucket must be
retrieved from common storage 216 .
[0513] It will be understood that the search manger 514
can identify search nodes 506 based on any one or any
combination of the aforementioned methods . Furthermore , it
will be understood that the search manager 514 can identify
search nodes 506 in a variety of ways .

[0514] At 1406 , the search manager 514 instructs the
search nodes 506 to execute the query . As described herein ,
the search manager 514 can process the query to determine
portions of the query that it will execute and portions of the
query to be executed by the search nodes 506. Furthermore ,
the search manager 514 can generate instructions or sub
queries for each search node 506 that is to execute a portion
of the query . In some cases , the search manager 514 gen
erates a DAG for execution by the search nodes 506. The
instructions or sub - queries can identify the data or buckets
to be searched by the search nodes 506. In addition , the
instructions or sub - queries may identify one or more trans
formations that the search nodes 506 are to perform on the
data .
[0515] Fewer , more , or different blocks can be used as part
of the routine 1400. In some cases , one or more blocks can
be omitted . For example , in certain embodiments , the search
manager 514 can receive partial results from the search
nodes 506 , process the partial results , perform one or more
transformation on the partial results or aggregated results ,
etc. Further , in some embodiments , the search manager 514
provide the results to a client device 204. In some embodi
ments , the search manager 514 can combine the results with
results stored in the accelerated data store 222 or store the
results in the accelerated data store 222 for combination with
additional search results .
[0516] In some cases , the search manager 514 can identify
the data or buckets to be searched by , for example , using the
data store catalog 220 , and map the buckets to the search
nodes 506 according to a search node mapping policy . As
described herein , the data store catalog 220 can receive
updates from the indexing system 212 about the data that is
stored in common storage 216. The information in the data
store catalog 220 can include , but is not limited to , infor
mation about the location of the buckets in common storage
216 , and other information that can be used by the search
manager 514 to identify buckets that include data that
satisfies at least a portion of the query .
[0517] In certain cases , as part of executing the query , the
search nodes 506 can obtain the data to be searched from
common storage 216 using the cache manager 516. The
obtained data can be stored on a local or shared data store
and searched as part of the query . In addition , the data can
be retained on the local or shared data store based on a
bucket caching policy as described herein .
[0518] Furthermore , it will be understood that the various
blocks described herein with reference to FIG . 14 can be
implemented in a variety of orders . In some cases , the search
manager 514 can implement some blocks concurrently or
change the order as desired . For example , the search man
ager 514 an concurrently identify search nodes 506 to
execute the query and instruct the search nodes 506 to
execute the query . As described herein , in some embodi
ments , the search manager 514 can instruct the search nodes
506 to execute the query at once . In certain embodiments ,
the search manager 514 can assign a first group of buckets
for searching , and dynamically assign additional groups of
buckets to search nodes 506 depending on which search
nodes 506 complete their searching first or based on an
updated status of the search nodes 506 , etc.

a
9

a

a

a

a

4.3.2 . Identifying Buckets and Search Nodes for Query
[0519] FIG . 15 is a flow diagram illustrative of an embodi
ment of a routine 1500 implemented by the query system

a

US 2022/0245156 A1 Aug. 4 , 2022
46

9

[0526] In addition , it will be understood that the various
blocks described herein with reference to FIG . 15 can be
implemented in a variety of orders , or implemented concur
rently . For example , the search manager 514 can identify
search nodes to execute the query and identify bucket for the
query concurrently or in any order .

9

2

214 to execute a query . Although described as being imple
mented by the search manager 514 , it will be understood that
the elements outlined for routine 1500 can be implemented
by one or more computing devices / components that are
associated with the data intake and query system 108 , such
as , but not limited to , the query system manager 502 , the
search head 504 , the search master 512 , the search manager
514 , the search nodes 506 , etc. Thus , the following illustra
tive embodiment should not be construed as limiting .
[0520] At block 1502 , the search manager 514 receives a
query , as described in greater detail herein at least with
reference to block 1402 of FIG . 14 .
[0521] At block 1504 , the search manager 514 identifies
search nodes to execute the query , as described in greater
detail herein at least with reference to block 1404 of FIG . 14 .
However , it will be noted , that in certain embodiments , the
search nodes 506 may not be containerized .
[0522] At block 1506 , the search manager 514 identifies
buckets to query . As described herein , in some cases , the
search manager 514 can consult the data store catalog 220 to
identify buckets to be searched . In certain embodiments , the
search manager 514 can use metadata of the buckets stored
in common storage 216 to identify the buckets for the query .
For example , the search manager 514 can compare a tenant
identifier and / or partition identifier associated with the query
with the tenant identifier and / or partition identifier of the
buckets . The search manager 514 can exclude buckets that
have a tenant identifier and / or partition identifier that does
not match the tenant identifier and / or partition identifier
associated with the query . Similarly , the search manager can
compare a time range associate with the query with the time
range associated with the buckets in common storage 216 .
Based on the comparison , the search manager 514 can
identify buckets that satisfy the time range associated with
the query (e.g. , at least partly overlap with the time range
from the query) .
[0523] At 1508 , the search manager 514 executes the
query . As described herein , at least with reference to 1406 of
FIG . 14 , in some embodiments , as part of executing the
query , the search manager 514 can process the search query ,
identify tasks for it to complete and tasks for the search
nodes 506 , generate instructions or sub - queries for the
search nodes 506 and instruct the search nodes 506 to
execute the query . Further , the search manager 514 can
aggregate the results from the search nodes 506 and perform
one or more transformations on the data .
[0524] Fewer , more , or different blocks can be used as part
of the routine 1500. In some cases , one or more blocks can
be omitted . For example , as described herein , the search
manager 514 can map the search nodes 506 to certain data
or buckets for the search according to a search node mapping
policy . Based on the search node mapping policy , search
manager 514 can instruct the search nodes to search the
buckets to which they are mapped . Further , as described
herein , in some cases , the search node mapping policy can
indicate that the search manager 514 is to use a hashing
algorithm , previous assignment , network architecture , cache
information , etc. , to map the search nodes 506 to the
buckets .
[0525] As another example , the routine 1500 can include
storing the search results in the accelerated data store 222 .
Furthermore , as described herein , the search nodes 506 can
store buckets from common storage 216 to a local or shared
data store for searching , etc.

4.3.3 . Identifying Buckets for Query Execution
[0527] FIG . 16 is a flow diagram illustrative of an embodi
ment of a routine 1600 implemented by the query system
214 to identify buckets for query execution . Although
described as being implemented by the search manager 514 ,
it will be understood that the elements outlined for routine
1600 can be implemented by one or more computing
devices / components that are associated with the data intake
and query system 108 , such as , but not limited to , the query
system manager 502 , the search head 504 , the search master
512 , the search manager 514 , the search nodes 506 , etc.
Thus , the following illustrative embodiment should not be
construed as limiting .
[0528] At block 1602 , the data intake and query system
108 maintains a catalog of bucket in common storage 216 .
As described herein , the catalog can also be referred to as the
data store catalog 220 , and can include information about the
buckets in common storage 216 , such as , but not limited to ,
location information , metadata fields , tenant and partition
information , time range information , etc. Further , the data
store catalog 220 can be kept up - to - date based on informa
tion received from the indexing system 212 as the indexing
system 212 processes and stores data in the common storage
216 .
[0529] At block 1604 , the search manager 514 receives a
query , as described in greater detail herein at least with
reference to block 1402 of FIG . 14 .
[0530] At block 1606 , the search manager 514 identifies
buckets to be searched as part of the query using the data
store catalog 220. As described herein , the search manager
514 can use the data store catalog 220 to filter the universe
of buckets in the common storage 216 to buckets that
include data that satisfies at least a portion of the query . For
example , if a query includes a time range of Apr. 23 , 2018
from 03:30:50 to 04:53:32 , the search manager 514 can use
the time range information in the data store catalog to
identify buckets with a time range that overlaps with the
time range provided in the query . In addition , if the query
indicates that only a _main partition is to be searched , the
search manager 514 can use the information in the data store
catalog to identify buckets that satisfy the time range
associated with the _main partition . Accordingly , depending
on the information in the query and the information stored
in the data store catalog 220 about the buckets , the search
manager 514 can reduce the number of buckets to be
searched . In this way , the data store catalog 220 can reduce
search time and the processing resources used to execute a
query .
[0531] At block 1608 , the search manager 514 executes
the query , as described in greater detail herein at least with
reference to block 1508 of FIG . 15 .
[0532] Fewer , more , or different blocks can be used as part
of the routine 1600. In some cases , one or more blocks can
be omitted . For example , as described herein , the search
manager 514 can identify and map search nodes 506 to the
buckets for searching or store the search results in the
accelerated data store 222. Furthermore , as described herein ,

and are

