US 20220245156A1

a2y Patent Application Publication o) Pub. No.: US 2022/0245156 A1

a9y United States

Kulkarni et al. 43) Pub. Date: Aug. 4, 2022
(54) ROUTING DATA BETWEEN PROCESSING (52) US.CL
PIPELINES VIA A USER DEFINED DATA CPC GOG6F 16/24568 (2019.01); GOGF 16/2428
STREAM (2019.01); GOGF 16/2291 (2019.01)
(71) Applicant: SPLUNK Inc., San Francisco, CA (US)
(72) Inventors: Sanjeev Kulkarni, Los Altos, CA (US); 67 ABSTRACT
Boyang Peng, Mountain View, CA
(SUS); Karthikeyan Bamasa.m Y Systems and methods are described for customizable data
unnyvale, CA (US); Poornima
D i T t. CA (US streams in a streaming data processing system. Routing
evaraj, Fremont, us) . :
criteria for the customizable data streams are defined by a
(21) Appl. No.: 17/243,209 user, an automated process, or any other process. The
] routing criteria can be defined using graphical controls. The
(22) Filed: Apr. 28, 2021 streaming data processing system uses the routing criteria to
Related U.S. Application Data determine data that should be.used.to Populate a partlc}llar
data stream. Further, processing pipelines are customized
(60) Provisional application No. 63/143,706, filed on Jan. such that a particular processing pipeline can obtain data
29, 2021. from a particular user defined data stream and write data to
Publication Classificati a particular user defined data stream. Data is routed through
ublication Classification the user defined data streams and customized processing
(51) Int. CL pipelines based on a data route. A data route for a set of data
GOG6F 16/2455 (2006.01) may include multiple user defined data streams and multiple
GOG6F 16/22 (2006.01) processing pipelines. The data route can include a loop of
GOG6F 16/242 (2006.01) processing pipelines and data streams.
CLIENT DEVICE CLIENT DEVICE CLIENT DEVICE
(WEB) (COMMAND LINE)] » o » (SDK) 5 200
204a 204b 204c¢
L 1 T
I
| NETWORK 208 |
DATA INTAKE AND QUERY SYSTEM 108
QUERY SYSTEM ACCELERATION
214 DATA STORE
222
DATA | . .
STCRE DATA STORE
218 CATALOG 220
COMMON STORAGE 216
OTHER
SYSTEM(S) INTAKE;;SOYSTEM |NDEXIN2(228YSTEM
262 = =
[NETWORK 206 |
| |
DATA DATA
SOQURCE 202| " ° * |SOURCE 202

Patent Application Publication Aug. 4,2022 Sheet 1 of 53 US 2022/0245156 A1

CLIENT DEVICES 102 100
HOST DEVICES 106 ,/
CLIENT
APPLICATIONS 110 HOST
ATIONS 114
MONITORING APPLICATIONS 114
COMPONENT 112
NETWORKS DATA INTAKE AND
104 QUERY SYSTEM 108

FIG. 1

Aug. 4,2022 Sheet 2 of 53 US 2022/0245156 Al

Patent Application Publication

20C 30dNOS| . . . |20C 30HUNOS
N .O_H_ viva viva
90¢ MHOMLIAN
[4%4 (] ¥4
INFLSAS ONIXZANI W3LSAS IAVLNI

02C D0VLVO
FHO1S vivd

29¢
(S)INTLSAS
Y3IHLO

f444
34OLS V1va TR
NOILVHT 1300V WILSAS AMIND
BOT WILSAS A¥3IND ANY IHVLNI V.LVd
B0C YHOMLIN
| _] 1
0T 50z EP0C
(as) * + + |(3NITANYININOD) (g3am)

30IA3A LN3O

30IA3A LN3ITO

30IA3A LN3IO

Aug. 4,2022 Sheet 3 of 53 US 2022/0245156 Al

Patent Application Publication

Ve Ol

0l€
d344n4
NOILSIONI
1Nd1no

80¢ N_m_@n_o n_mD q v0¢
d0SS300dd NOILSION] INILSASENS
V1va ONINVIELS IV INI IVAIIL13d V1vd

20¢
d3ddVMEOA

L€ INJLSAS IHMVINI

Aug. 4,2022 Sheet 4 of 53 US 2022/0245156 Al

Patent Application Publication

d¢ Ol

NcSe OldOL WOLSND

g¢a€ OldOL WOLSND

V¥¢se OldOL INOLSND

05€ OIdOL SLy3TV IGO0

8ve
O1dOL SLINSFY HOHVIS

490

d344Nd NOILSFONI
IHVLINI AHVANOOIS

Ncee INIOd
VY LINI

NOLSNO

d¢ee LNIOd
IAVLINI
WOLSNO

Vveee LNIOd
IHVAINI

NOLSNO

0€€ S¥3HsINand

a3asvg-Tind

9%€ OIdOL SOIMLAN

PPE OIdOL LNIAT I19VLION

2¥€ OIdOL X3ANI

0l¢
d344Ng NOILLSIONI LN41NO

A

80¢
(8)40SS3D0Yd

Vv90e

d344Ng9 NOILSIONI
INVINI ADVYINIEC

3

V.1vad ONINVIELS

3

0l W3LSAS IMVLINI

¥Z€ INIOd

IMVLINI SOIA

20¢e
HIAAHVYAMAHOA

\

N

IAVINI dL1H

¢Ct LNIOd

0¢¢ Sy3aHSIgNd
a3asva-Hsnd

Aug. 4,2022 Sheet S of 53 US 2022/0245156 Al

Patent Application Publication

7 Ol

(254

dIOVNVIN LIHMONE

t4%57
3401S V1vd

5% 0% 907 IAOVNVYIN
S IYEAN YIOVNYIN 3AON
NOILILYVd ONIX3IANI
1 0¥ 3AON ONIX3IANI
| 1252 1 207 ¥IOVNYIN

| 43OVYNVIA L3X0ONYF |

————— — — —

INTLSAS ONIX3IANI

¢l¢ INJLSAS ONIX3IANI

Aug. 4,2022 Sheet 6 of 53 US 2022/0245156 Al

Patent Application Publication

§ Ol

91S ¥IDVNVIN IHOVO

3401S V1vd

3JAON HOYV3S

90S S3IAON HOYV3S

3401S V1vd

3AON HOHV3S

80G YOLINOW IAON HO¥V3S

018 D0TVY.LVD
3AON HOdV3S

¥1S 4]
dIOVNVIN d31SVIN
HOdV3S HOdV3S

¥0S Av3IH HOYV3S

20S 4IDOVNVYIN
INILSAS AHIND

v1¢ NILSAS AH3INO

9 Ol

-
«
=)
v,
Y-
g} 1 !
=< FOVSSIAN MOV (61)
o
=)
N 39vSSaN
o $8300ud (81)
=)
~ -t
wn HIGAOSENS OL ADYSSAN HSNd (L1)
-]
SHILIHOSENS
OldOL BNINYALIA ©1)
ﬁ FOVSSIN TYLLING MOV (G1) >
S g
.m DIdOL 0L IDVSSIAW HSINand (v1)
> 0IdOL ONY ¥3d44n4d
m L3OWVL ANINGELAA (£1)
7o) J9YSSIN SSAD0Hd
OL (8)31NA Alddy (21)
o~ (®)3NY J1gYoddyY -t
M HOd FOVSSIN FZATYNY (L1) HIGIHOSENS OL FDYSSAN HSNd (1)
o H
- SHAGFOSENS
= O1dOL aNINE3L3a ()
ob
= 1
< ", >
| FOVYSSIN VLLINI MOV (8) o
Py
s 51d01 61 > Q
= QidOL ANV H3d4N4 FDOYSSIN QIWHOLINSYHL HSIaNd (2) O =
= 139¥vL aNIwy313a (9) m_._u m
= JOVYSSIIN WHOLSSNYHL D ¢H M
= 0L (€)31NY Alddv (5) m - P
= (S)3NA T1gY0ITddY HO oNu -
[-™ IOVSSIN FZATYNY (3) g ,.A:
= HIASHOSENS OL FDVSSIAN HSNd (€) mnu
=)
= sy¥3aI4osans mm
m OldOL ANINGSL3A (2)
oh
Sy »
=%
< 01dOL OL FOVSSIW HSITand (1)
0le dd44nd 80¢ 90¢ d3d44nd
g €09 H38IHSENS NOILS3ONI LNd.LNO SHOSSI00Ud NOILSIONI IHVLNI PO I e
- TWAIILFE V.IVd
nn..a Y.1ivad ONINYIHLS

Patent Application Publication Aug. 4,2022 Sheet 8 of 53 US 2022/0245156 A1

702 "\
OBTAIN RULES

'

704 —-\
OBTAIN MESSAGE PUBLISHED TO INTAKE INGESTION BUFFER ——

NO RULE APPLIES TO MESSAGE?

708
YES
y /
TRANSFORM MESSAGE ACCORDING TO RULE

l o

DETERMINE DESTINATION INGESTION BUFFER AND TOPIC

l /712

PUBLISH MESSAGE TO TOPIC AT DEST. BUFFER

' =

ACKNOWLEDGE MESSAGE TO INTAKE INGESTION BUFFER

FIG. 7

8 "Old

Yo
-
=)
v,
Yo
v,
-
a -
g D0VLYO IHOLS V.LVA 31vadn (L1)
o~
o
K v.va 313730 @) vAva 313730 V)
W
-]
J3"0LS VAYA QI9H3IN L8043 (F PW
ﬁ < IOVHOLS NOWNOD >
“ 0L Viva d39d3N AdOD (€1) NOILYOOT ¥344n8 3Lvadn (L)
w FANGe =R E TN rAN A >
3 ONIXIANI 40 NOILI1dINOD LHO4IY (01)
= g
2 D0TY.LYD FHOLS V.LYA 3LYAdN (6)
o~]
M OI¥OLS VIVA 18043 (9)
o~
- -
4“ FOVHOLS NOWNOD OL Viva 3HOLS ﬂ
on
= ol
< FOVHOLS NOWNOD
0L Y.L¥Ad 3A0W OL LONYLSNI (9)
m FZIS V.LVa LHOdE () >
ﬁ
x
= VLYQ X3ANI () (
=
=
A -t
= ONIXIANI "4 V.Lva ON3S
.m ANV NOILYDO1 ¥34-ng MovL ()
o
m NOILYOOT ¥a44nd ANY Y.1vd aN3s (2)
W NOILILEYd HO- ¥IOVYNYI
< NOILILMYd FLVAILOY (1)
~Na
m 0ZZ ©0TIVLYD oLz I9VHOLS NOWNOD iy d3OVNVYIN 13XO0NG 807 JIDVNVIN NOILILYVYd 0l ¥344Nng
nn..a J401S vivd / 0L¥ YXEANI / 0% JADVYNVYIN JAON DONIXZAANI NOILSIONI

Patent Application Publication Aug. 4,2022 Sheet 10 of 53 US 2022/0245156 Al

900
/_'

902 - RECEIVE DATA

l

904 | STORE DATA IN BUCKETS USING
CONTAINERIZED INDEXING NODE(S)

l

STORE BUCKETS IN COMMON
STORAGE

906 ~

FIG. 9

Patent Application Publication Aug. 4,2022 Sheet 11 of 53 US 2022/0245156 Al

1000
/_'

1002~ RECEIVE DATA
l

1004~ STORE DATA IN BUCKETS
l

1006~ MONITOR BUCKETS
l

1008~ CONVERT BUCKETS

l

STORE CONVERTED BUCKETS IN
COMMON STORAGE

1010~

FIG. 10

Patent Application Publication Aug. 4,2022 Sheet 12 of 53 US 2022/0245156 Al

1100
/_'

1102~ RECEIVE DATA
1104~ STORE DATA IN BUCKETS

l

STORE BUCKETS IN COMMON
STORAGE

l

1108~ NOTIFY INGESTION BUFFER

1106~

FIG. 11

Patent Application Publication Aug. 4,2022 Sheet 13 of 53 US 2022/0245156 Al

1200
/_'

1202 STORE DATA IN BUCKETS

l

1204~ STORE BUCKETS IN COMMON
STORAGE

;

1206~ UPDATE DATA STORE CATALOG

l

1208~ MERGE BUCKETS

l

STORE MERGED BUCKET(S) IN
COMMON STORAGE

l

UPDATE DATA STORE CATALOG
1212~WITH INFORMATION ABOUT MERGED
BUCKET(S)

1210~

FIG. 12

Yo
<« .
=)
v HADYNYIN HOMVYIS JLYNINNAL (91) m _. O _ ..I._
W
-
Q SLINSIY TYILHYd
& HO S1INS3Y THOLS (S1)
N SIAON HOYY3S WOYS
& SLINSIY SS300Yd (71) A Zc¢c d4401s viva
W NOILVHEIT1IOOV AH3IND
SLINSTY AMINO TYNAIAION] AN3S (1) >
« - >
i SNLYLS A¥IND HOLINOW (Z1)
=)
- v1vd $830004d
— ANV HOWvas (11
~N—
&
= B V1va NIVLEO (01)
~ 9l¢ A9VHOLS NOWINOD
8
Q
- w
ob AHIND FLNDIXT OL STAON HOMYIS LONHLSNI (8)
=
«
v.ivd
Q.1 SECAON HOUVYIS dVIN (8)
g
b >l
5 SIAON HOYYIS SY3IAILNIAl Y1va
.M TGV IVAY NENLIH ONY AJILNIA @2) | INVATTIEE NENLIY ANY AJILNTA (Y2
=
g P
A Sa0ON HOWVIS SHIIALNIA| VLVA 1S3IN0D3 (v9)
m FIGVIIVAY LSFNDIY (99) <
= O0V.LYO D0YLYD FHOLS Viva 3LvddN (@)
1 JAON HOYY3S ALvadn (v}
.m YIDYNVIN HOMYIS TLYHINID
=3 - » ONY AHAND 3AIFOTY (9) FOVHOLS V.L¥A HOLINOW (1)
M._ SACON HOWVYIS HOLINOW ()
~—
5 909 SIAON 015 OOTVLYO 3AON HOYVIS yu6 qygH HOWYIS 022 DOTVLYD JHOLS Y.LV ZLZ WILSAS
5 HOdV3S / 805 YOLINOI JAON HOMV3S ONIXIAN]
A

Patent Application Publication Aug. 4,2022 Sheet 15 of 53 US 2022/0245156 A1l

1400
[_

1402~ RECEIVE QUERY

l

1404 IDENTIFY CONTAINERIZED SEARCH
NODES TO EXECUTE QUERY

l

INSTRUCT CONTAINERIZED SEARCH
NODES TO EXECUTE QUERY

1406~

FIG. 14

Patent Application Publication Aug. 4,2022 Sheet 16 of 53 US 2022/0245156 Al

1500
[_

1502~ RECEIVE QUERY

'

1504 IDENTIFY SEARCH NODES TO
EXECUTE QUERY

l

1506~ IDENTIFY BUCKETS FOR QUERY

l

1508~ EXECUTE QUERY

FIG. 15

Patent Application Publication Aug. 4,2022 Sheet 17 of 53 US 2022/0245156 Al

1600
[_

MAINTAIN CATALOG OF BUCKETS IN
COMMON STORAGE

'

1604~ RECEIVE QUERY

l

IDENTIFY BUCKETS FOR QUERY

1602~

1606~ USING CATALOG
1608— EXECUTE QUERY

FIG. 16

Patent Application Publication Aug. 4,2022 Sheet 18 of 53 US 2022/0245156 A1l

1700
[_

MAINTAIN CATALOG OF SEARCH

1702 NODES
1704~ RECEIVE QUERY

l

IDENTIFY SEARCH NODES
1706~ AVAILABLE FOR QUERY USING
CATALOG

'

1708— INSTRUCT SEARCH NODES TO
EXECUTE QUERY

FIG. 17

Patent Application Publication Aug. 4,2022 Sheet 19 of 53 US 2022/0245156 A1l

1800
[_

1802~ RECEIVE QUERY

'

1804—] IDENTIFY BUCKET IDENTIFIERS OF
BUCKETS FOR QUERY

l

HASH BUCKET IDENTIFIERS TO
1806 IDENTIFY SEARCH NODES

l

1808— INSTRUCT SEARCH NODES TO
EXECUTE QUERY

FIG. 18

Patent Application Publication Aug. 4,2022 Sheet 20 of 53 US 2022/0245156 A1l

1900
[_

1902~ RECEIVE QUERY

l

1902~ RECEIVE QUERY INSTRUCTIONS

l

COPY BUCKETS TO LOCAL DATA
STORE

'

1908~ EXECUTE SEARCH ON BUCKET

1904~

FIG. 19

Patent Application Publication Aug. 4,2022 Sheet 21 of 53 US 2022/0245156 A1l

2000
[_

2002~ RECEIVE QUERY
2004~ EXECUTE QUERY

l

STORE RESULTS IN ACCELERATED
2006~ DATA STORE

FIG. 20

Patent Application Publication Aug. 4,2022 Sheet 22 of 53 US 2022/0245156 Al

2102 RECEIVE DATA

'

PUBLISH DATA AS MESSAGES ON
OUTPUT INGESTION BUFFER

'

2106~ PARSE DATA INTO EVENTS

l

DETERMINE TIMESTAMPS FOR
EVENTS

l

ASSOCIATE TIMESTAMPS AND OTHER
21101 METADATA FIELDS WITH EVENTS

2104

2108~

Y
2112 TRANSFORM EVENTS

'

2114— IDENTIFY KEYWORDS IN EVENTS

'

2116~ UPDATE KEYWORD INDEX

'

2118~ STORE EVENTS IN BUCKETS

FIG. 21A

US 2022/0245156 Al

Aug. 4,2022 Sheet 23 of 53

Patent Application Publication

dl¢ Ol

6Llc
4

Lclc
/

C1ssalppy

T1s52ppy| 0T5524ppY 6552.ppy 85531ppY £5531ppy

9ssaJppy

§Sssalppy

fSsalppy

7/ gssalppy

\ 7ssaippy

TSSaJppy

LT/T/¢€
000°£1:8T:9T

LT/T/€ LT/T/¢€ LT/T/¢€ LT/1/¢€
0L1¥'9S:£T:9T|000°0S:£T:9T|000°T0:92:9T|0T9 LEVT:9T

LT/T/¢€
0C1°80:8C:91

LT/T/¢€
00T'ST:¥Z:9T

LT/T/€
ST8¥5:TT:9T

LT/T/€
020°€5:22:9T

LT/1/€
000°0€:22:9T

VTG
000'SP1TZ:9T

LT/1/€
000°07:12:9T

[4"

1T 01 6 8 L

9

S

AN

14
ya

€

| —

4

1

chic

dallic Vilie
T Ty

“ 1L 0L L9 P ‘e Qlway

bLie: z111'8'9'g ‘e Jous

“Z Ll ‘Ol ‘6 ‘g ‘9 ‘G ‘v DadAlsainos::adA1soinos

Zl ‘1 gadAisainos::adAisoinos

/ ‘¢ ‘z yadA1sainos::adA1soinos

0l ‘9 ‘S 092In0S::82JN0S
L1 ‘g ‘Z D82Jn0s::82IN0S

6 ‘S §92IN0S::82IN0S

ZlL ‘L ‘¥ ‘1 Y92In0S::904N0S

t i'll-a:nna-:nna-a-nsna-ia..'!

ZL'v'L LL'y9l ez C8l 1ssalppe d

lL'or8C m.mor.wr.mtuwwm._vvan__
6L G1'681°GOC’L6--SSaippe_dI
9'G L0Z¥Z 9l 0l::ssalppe dI

Ll ‘0L ‘8 '9 ‘6 ‘Z gqisoy:isoy
ZL'6'L'v'e'lL Yisoyiisoy

NEIAEECIEEERERREREEE ircaxant!

..... | ?Jasl\w
daelic vellce
TATANGY Selo— ulew ::xapuj

000°L}:82:91 — 000°0Z:1.2:9) L1L/1/€ :9buey awi|

;/////\D\\\\\

Llc

-
Glic

———G0L¢C

(10] ¥4

RAT4

US 2022/0245156 Al

Aug. 4,2022 Sheet 24 of 53

Patent Application Publication

OIYARDIE

nb-yonp~Ayepysebewywuyyongnd
/eqal/aWoy;/ 11SIXa 10U Saop a4 [S10° 1L 101 LZ1 Joue eyoede Borioue ZMMM ‘wrd 861 000z/0L/0L F—VELC
wai] [1ou8] [010Z £€:85:1 01 190 Aepung]
158070 0062 00Z .0° L/dLLH N6onp~pleuop/139), POUIQUIISS8008 Bols50008 2 AN wrd /'L 0002Z/0L/0L ——EE1Z
[0020-9¢:25:€1:0002/100/01] sopeo — 100 L21L
orle
6680°0j0862]002 .0" L/dLLH Nb-asnow™ Asxo1u -)
paulquod ssed%e Bol ssedoe ZMMM ‘w-d 9g:1 0002/01/01
/139, [0020-9¢:95:€ L:0002/20/0L1 qod — L'0°0° 221 cele
Grlc mSNf
/¥60°0j02s2 002 .0 L/dLLH Wb suoede/ 39, DOUIGLIOD™SS3008 Bols50008 LA wrd 58’1 0002/0L/01 —1€12
[0020-9€:65:€1:0002/100/0 L] Muel — L'0°0°L2L
iz iz oviz”
6S1¢ Wang 8€1¢ 9dAL sounos | ZETT 90inos | 9T ISOH GSle awil

Patent Application Publication Aug. 4,2022 Sheet 25 of 53 US 2022/0245156 A1l

SEARCH HEAD RECEIVES QUERY
FROM CLIENT

l

SEARCH HEAD DETERMINES WHAT
2204~ PORTIONS OF THE QUERY CAN BE
DISTRIBUTED TO SEARCH NODES

l

SEARCH HEAD DISTRIBUTES
2206~ PORTIONS OF QUERY TO SEARCH
NODES

!

SEARCH NODES SEARCH DATA
2208~ STORE FOR QUERY-RESPONSIVE
EVENTS

!

SEARCH HEAD COMBINES ANY
2210~7 PARTIAL RESULTS OR EVENTS TO
PRODUCE FINAL RESULT

2202

FIG. 22A

d¢c Ol

US 2022/0245156 Al

Aug. 4,2022 Sheet 26 of 53

Patent Application Publication

vee
NOILONNA FLVOIHOOV NV VA T4A
'©'3 'V1va IHL SISSI00Yd SAYOMATI HO SHIVd ([744
dO Sd3LTId d3HLdNd le—— 3NTYA-Q1314 HO4 SINIAT fe— SLN3IAT
1VHL NOILONNA V 31NO3x3 4O 13S IHL HOYY3S 40 13S V 31vH3INID

8¢¢c¢ CYA44 | 444
a|gel 9|ge) sjnsal 9|ge) sjnsal r4 444
s}|nsal |euld alelpawliaiu| alelpawiaiu| 3sid

anN uqmmmmg v ﬂoﬂmﬂw_ mmms\ QOP_mommm @OHm\\mmnwg\mu@omsom

Noz<_>__>_oo\ Ez<_>__>_oo\ Iom/m_m\

US 2022/0245156 Al

Aug. 4,2022 Sheet 27 of 53

Patent Application Publication

" '0G:02:20LEZ0L:¥L0T L AUM ipalie) Japlo AN Apoq|LoGeZI]ebessaw Loddns

Ved Ol 2082

d3INA3S
140ddNS

11

X
N

60€c dl Jawoisn) MWmN

SN
S
S

<

A4
JHIVMITAdIN
" ‘UOI}OBUUOD
|ood 81819 10U P|NOY) :UoNdeIXJPLe92IN0SaY |00d92IN0Sa UOW WO D1Bo|gam
:uondeox 31O SPEagUOIDaUU0)) sUoIsUaIxa ogpl-oibojgam
smojjo} uondeoxa L9z Pelie) G9/86 WOD Ynispood zm 066:Z1:L0 £Z RO

807 A

daj Jswoisn) G0EZ

10ec
ddV d430dd0

" '2°001°001°001°G9/286(2957€Z1828°C):L0LEC-0L-7102 HIAHO

2022~ (graswoRnd) N
al Jawojsn) bocz

US 2022/0245156 Al

Aug. 4,2022 Sheet 28 of 53

Patent Application Publication

SINARSIE

<8|ni xobal> | <SJUBAS J0 198> = 108[qo0 pauINial Jo0” 9ZIS
<lnd xebal> | <SjUdA® JO 188> = s} asuodsey

<®|ns Xxabal> | <SIUBAS JO 188> = BP0~ sNje1S

/17— <8|nJ xabaJ> | <sjuans Jo j8s> = dijual|) [«

9TEC @li4 uoljednbyuo)

uonoeJIX4 pleld
awi] yolees

eleq

Olec 1eq yosess

USAT Ul Apoadi(
yoJeas plomhay

N6onp~Ayepssabewnwyoyand
/BqoI/eWOY; 2JSIXe 10U $80p aji [SL0 L L0k LZL Joua ayoede Boyioue MM ‘wd gg:1 000z/04/01L -G HEC
waip] [1ous] [010Z £€:85:1 01 190 Aepung]
16800 oomm. oo.N o LdLLH #B6>0np u_mcﬁ.su\.r.mo_. poulquioo™ssaooe | Borssaooe 7 MMM wrd /671 000Z/01/01 Y 1E€Z
[0020-9€:16:€1:0002/120/01] SolE2 — L°0°0°L2Z1
6680°0 0862 00Z .0’ L/dJLH #B ssnow™ Aexoiw - .
pauIquIos” $s8008 Bo|'sseo0e ZMMM ‘wrd 9611 0002/01/01
/139, [00,0-9€:95:€1:0002/100/01] dod = L°'0°0°LZ1 elec
1¥60°0 92€Z 002 .0° L/dL1H IiB-aysede/139, -)
psuiquIOD” $§9008 Bo|'sseaoe L MMM ‘wrd g5:1 000zZ/01L/0L ——C1EC
[0020-9€:65:€1:0002/120/0 L] duBl — 1L'0°0' L2}
Juang odA] @oinog 82In0g }SOH aun]

biee

US 2022/0245156 Al

Aug. 4,2022 Sheet 29 of 53

Patent Application Publication

Oed Dl
zee 1°00°LTT diualp £00SS
. 100°L2T dnuaip S005S
new dnuaip
1004 nual| 50055 7252
Azuely | T00LTT dnuaip 10 R 1°00°LTT dnuaip 70085
alsasn | anjep piai4 | sawen pjai4 | anjep aduaiayay Juang 100t dnuaip 000SS
V, anjep plald| swepn pia14| anjep asudiajay uan3
1} ——
\ ___, £990°00005 00C .0'T/d LLH 315's3oddnui/ paulqwod ssaxde | Soj'ssade [Tmmm | 'wrd o'z 910Z/0T/0T £00SS
139, [00£0- 9€:20:¥1:9107/P0/01] el -1°0°0°LCT . .
\ P X 13 Aquny/sa8ew/jwny orgnd/swoy/
.,.. :151X@ 30U 580p B4 [E0'TTOT LCT Joisa ayoede gofuoma | zmmm | wrd 10z 9102/0T/01 a00SS
\ 1a1p] [Jou3] [9T0T £€:T0:T 0T 120 Aepuns]
\ \ L8600 0C6 00C ,0°T/dLLH }15"AJ005/ paulqwodssaode | Bolssaode | TMmm | 'wrd 00tz 9T0Z/0T/0T S00SS
\ V| 139, [00£0- 9€:00:¥1:9T0¢/1°0/0T] New - T0°0°LCT . .
\ \|EEEC £8B00006C00Z ,0T/dLLH J13 NP’ pieuop/ paulquod ssaoe | oyssame | tmmm | ‘wrdeSiT 910Z/0T/0T P00SS
139, [00£0- 9€'65-€1:9T0Z/190/0T] 18NN - €°0°0°LTT . '
}18>pnp~Ayyep/sagew/|wiy diqnd/eqal/awoy/
1151X3 10U s80p 314 [STO'T'TOTLZT| Joa1@ aydede gojaoue [zmmm | rwrdgsit 9102/01/01 £005S
1uai] [4oua] [9TOT €€:8S°T OT 120 Aepuns]
£S80°0 0062 00T ,0°'T/dLLH }1832np pleuop/ 139, paulquos ssace | So|'ssaoe | zmmm | ‘wrd /ST 9TOZ/OT/0T 20055 LXANA
78¢e [00£0- 9€:4S:ET:9T0Z/P0/0T] S0Med - T°0°0°LTT . '
6680'0 0862 00 ,0°T/dLLH JIF"asnow A1/ paulqwod ssade | Sojssede | zmmm | "wd9giT 910z/0T/0T 10055
139,, [00£0- 9€:95:€T:910Z/P0/01] 4og - T0°0°LZT ' '
1557 {¥60°0 9ZET 002 .0'T/dLLH }13°ayoede/
aulqwol”ssaxe | Soyssadse | Tmmm | rwrd gg:
139, [00£0- 9€:6S:€T:9T0Z/PO/0T] ueIL - T°0°0°LTT patia ! ! SST STOT/OT/01 00055
JUIAZ adA] @dinog 221n0§ 1SOH awly Moy

Patent Application Publication Aug. 4,2022 Sheet 30 of 53 US 2022/0245156 A1l
2342~ RECEIVE INCOMING QUERY
2344 RETRIEVE INVERTED INDEX
2354\
DOES QUERY PROVIDE
COMPRISE FURTHER
2346 ILTERING OR PROCESSING NO—» SUMMARIZATION
STEPS? INFORMATION TO USER
YES
2356\
REQUISITE RETRIEVE EVENT DATA
2348 INFORMATION AVAILABLE NO—»| USING REFERENCE VALUES
INVERTED INDEX?2 IN INVERTED INDEX
YES
+ 2358\
2350« PERFORM FILTERING AND PERFORM FILTERING

PROCESSING STEPS USING
INFORMATION AVAILABLE IN
INVERTED INDEX

AND PROCESSING
STEPS ON THE
RETRIEVED EVENT DATA

FIG. 23D

US 2022/0245156 Al

Aug. 4,2022 Sheet 31 of 53

Patent Application Publication

V¢ Ol

I00IM™ paUIqWIOD” SSe00k = adAjeoinos

Bo| sseooe/ | mmm/ :dIZ BIED|BLIOIN} = 82IN0S

¥EL .G'9EG/LBIES 9 Y801 06 L/AWOIUD (04090 oY
QO OBIN [9)U] :UsOjuIoeN) 0'S/BIIZO., . LOD-SAG-4S

LMMM = JSOY

81S90S=0INOISSASM88 - LSI=PIWBULIUIPIO/ 1SOd. [95:02:8L:¥L0gndv/ge] - - L1 ¥l 9eg 28l

Nd 000°65-0C:9
vigeiy | <

09 Slnulw~9)ep
g Aepwsjep
¥Z Inoy sjep
+001 dpuayo
g pihiobajes »

s H OH O

I00IM™ paUIqWIOD” SSe00k = adAjeoinos

90S .G'9ES/UBIES 91 ¥80L 0°6L/AWO0IYD (000D il “TNLHM) & 9GSAMIIMN

alddy (#2701 X SO 2Bl [8)U] {YSOJUIBINY 0°G/BIIZON, G L-LST=qlWauNUNp|o/woo|sewebdn]
W/:dBU. 2522 002 uL'L dLLH L0LESH4av0L4481S9aS=AINOISSISM260D-DV-G8=P[1ONPOI
dx9G1-1S3=p|WaIgHEI0)PPE=UOIPE, 0P HEY/ 13D, [95:02:81 1 102/1dV/82] - - L1¥9L'9€Z'281

Boy'sseooe/Lmmm/ dIZ'BIEP[ELIOIN} = 82IN0S | MMM = }SOU

Nd 000°95-02:9
8Ty | <

+001 SoMq #

G uolpe v
splal4 Bunsaseiu|

| adAjeounos »

2IY000M paUIqOd” §58908 = adAjeaunos 1 Boj'ssesor/zmmmy dIZ'BIEPELIOIN} = 82IN0S § ZMMM = JSOU

w H € 983lnos v
651 .S'9ES/MIBIES OF ¢ 150y »
'¥801'0'61/0W0IND (04099 i * AMG3MRIAdY (¥9 MOM 19 LN SOMPUIM) 0"/l splal4 pa1aajeg
Nd 00091229 —
4421890S=AINOISSTS 2 |- LS I=PTIBWZNGIPIOT 139 [91:22:8)1 0214v/8Z] - - G '681-G0Z 16 vugey | < 90% ¢ J1eqaplsS spiel4
Q0¥ 1817 SJUSA] ueAg swiy | 1 spled Iy = spleld epiH »
{XsN "~ 6 8 L 9 g 4 . ASld) ~obed Jed 0z ~ JBuo A8
10919580 X uol09las 0} WO00Z 4+ IO W00Z — A BUIjoWI] JewIo

GOvc¢ sulldwiL

uwinjoo Jed unoy |

_—J0}08|9s 8pow |yoJeas ,~—SUOYNQ UOKOE ydJeas

uoneziensi /
/ EzEnsin

sonsnels / (618'9¢) siueng

[4
~ Spoy vews § 5 T ¢ H 11 Ador

Y0P sqe] slinssay co._mmw.\. (INd 000°'20:61:2 ¥1/0€/¥ ©10j20) SJUBAR §1.8'0¢ £

~

D | Aoy +/I 212 Jaxold sbuey swi |

c0yc Jeg yoless

sawebdnoisyng

80|10

~SVENS 4~_ nuow se aneg

yoieas MaN v

Buiuoday 9 yoleasg

spleogyseq

sualy suodesyd 10Ald | yolees

002 Usalios cemom\

US 2022/0245156 Al

Aug. 4,2022 Sheet 32 of 53

Patent Application Publication

dvc Ol

d 000°S¥:ZE:L ¥1/62/% §16'22 Al EMMM
d 000 L¥:ZE:L ¥1/62/% $66'2Z A Zmmm
d 000 ¥¥:Z€:L ¥1/62/% 122'vT A L MMM
Nd 000°9%:ZE:L ¥1/62/% v¥2'0g A So[es™IopusA
d 000 L¥:ZE:L ¥1/62/% 628'6 A As|iew

¢ ajepdn ise ¢noo I ¢ 1soH

C

Jeyy v

\

(¢) sedA1@ainog

(9) seaunos / () S1S0H

fAewwng ejeq

Patent Application Publication Aug. 4,2022 Sheet 33 of 53 US 2022/0245156 A1l

2500
/’

Select a Data Model

i | 4 Data Models ~2501

> (Buttercup Games Sales 3'\«2502
P | Splunk's Internal Audit Logs - SAMPLE

P | Splunk's Internal Server Logs - SAMPLE

> | test

FIG. 25

2600
/’

Select an Object

4 Back

-~

6 Objects in Buttercup Game Sales ~2601

Buttercup Games Web Store Events

HTTP Success

(Successful Purchases)'\12602

Failed Purchases

HTTP Client Error

V| v| Vv V| V|V

HTTP Server Error

FIG. 26

US 2022/0245156 Al

Aug. 4,2022 Sheet 34 of 53

Patent Application Publication

V.LC Ol

‘BJEP 28U} SZLEBWWNS
0} ‘Sjels Jo Jeyoalul syl ‘puewwod

yoJeas Bujwiojsuely e asn

Z] SpUBWIWOY yoleasg

"aw Aq siaulepey doJ, pue slsusiey
do], a1 spodal yoinb jo isi| e 40}
e} SJUSAS BU} Ul pjal Aue uo ¥oI10

suoday 3oInD

'sayoJleas Bupgum
JNOYNM SOIJBW pue spiay sjdinw
Buisn suoneziensiA pue ss|qe} ping

10Ald

|souen

0/ &~ (%) obeserco o\o!ﬁwmw_ e yum spisld @)

1snels Aue Bunessuab ,usi yoless JnoA @

3 \ swaped / (05889 1) sueag

~ opop Hews § 5 T ¢] MONN\/\ (€) sp|aid pajos|es O h0°'S€:/2:6 ¥1/22/L 91019Q) SIUSAS (G889 | »
20/2~e) spieid v O -
d ~ Uiy 212POIA Ble B SB 85N 0} a¥I| NOA PINoM SPIal} USIUAA [BUIBIUL =x8pul
8S0|D ASY 8ABS COgmmw \SQZ d
X SpIsld 10919S
@c_toaww_ 9 |oJessg L < y, [T spodey 10AId yaueas
10.2—"

d/¢ Ol

ABWIO] A obedued gz

US 2022/0245156 Al

Xopul v
juepl

1s0y 2

dnoib

ol v
adAnuens v
ouoz elep v
Jeokolep #
Kepm—oep v
puooes—olep #
yruow"eiep #

Aug. 4,2022 Sheet 35 of 53

| [=]

O —‘NN - sInuILToEp #
Lie —> oD 8
Jnoy~elep #
JUNOD
suodwod v
dnuaio o
= salkg v singuuy
.m sun @ owil
=
.m w &
= 10/~ (| s
= SON[BA UWNOD smoy Jdg
P =
m 80L¢~ - 90/¢~ '! swn Iy =
m @1 uoneswnooQg suwnjo) ydg o ===
>
.M.. ve T« mn PaydleW SIUBAS P0G LG J0 ¥0STLS
2 G0.z2—Y -
LA[— \lco:mhw_woo/.\— — JB9|D _ ATSY ®>mw_ H.o>_& \</®Z @
=
=
~N—
-]
[~™

OVAARDIE

ABWIO] A obedued gz

US 2022/0245156 Al

Aug. 4,2022 Sheet 36 of 53

LLiz—>

dlgeL ol PPY

@1 uonejuswnooQ

- ! O JUSAT JO JUNOD

SenjeA uwnjod

(]

suwnjod yidg

Zvi—"

E SOA sjejo

001 SMOY XBIA

PRI uog

SMOJ ||V

_wco_Eo_ leqe]

wauodwod

WV

(]

smoy Hids

' ! |suwin Iy

e

e T ¢ mn

payIBW SIUSAS $0S°Z18 10 #0S'CL8

G0L2—Y

— >co=m$_®8<_ —:wo_o _ ATSY o>ww_

| [=]

JOAId MaN &

Patent Application Publication

dZ¢ Ol

ABWIO] A obedued gz

US 2022/0245156 Al

MBIA

sjun

payoed

IETSEL

1665Y

e

88l

obesnesusdl

3

Byuooxapu|

Aug. 4,2022 Sheet 37 of 53

ocy

850gJoAIesIEdSIEQ

¥

Jabeuephioaiigeseqeleq

¥

JanojyIeNoNg

£ 109[40 1USAZ JO 1UN0D \

4 Jusuodwod

vi.CH

P eLie—"

@1 uonejuswnooQ

- & | "0 weng 0 wno

SenjeA uwnjod

(]

suwnjod yidg

smoy Nds

Wy

e

e T ¢ mn

payIBW SIUSAS $0S°Z18 10 #0S'CL8

G0L2—Y

— >co=m$_®8<_ —:wo_o _ ATSY o>ww_

=

JOAId MaN &

Patent Application Publication

US 2022/0245156 Al

Aug. 4,2022 Sheet 38 of 53

Patent Application Publication

8¢ Ol

12'2.01 6.1 866G epnos Jo apelg AjoH
v1'8152 ozl 6661 102 Buing
§9'€LEE el 6672 sugeq eoeds ubiusg
6L'€25Y 181 6672 lonbes |eul
191597 €€ 6661 apIaND INIS
05 2¥29 j 6642 swopbBury| 8100IPa
€€'2299 192 6672 9598UD JO PUOM
908¢ 1$95/9 691 66'6¢ BUUIBAIOM BU} INIO
10'856. 661 66'6€ 'soig ojjeluebuepy
€L°1106 .\lmowN 122 .\lvowN Jaysnio wealq
4 goud Jo E\:w 4 soseyaund _?wwmoo:w 10 JUN0Y 4 sweu pnpoud
- —\ _ aoud Jo wng :\ _ **"$$800NG JO JUN0YD sweu pnpoud
senjeA uwnjo) smoy Hids
c08z—
- - _\ _ “'npo.d 0} 1s8ybiH :\ _ awn |y _
Z] uonejusWwnoog suwnjo) Hids rowN.\‘ ooud Aq sweu ﬁkuoa 01 15046IH AL [
SEIE] ajIduiop | (Nd 000°20:61:S £1/22/6 10400) SIUBAS 996" |
0082 —Y

— a SaseyoundT|nyssanong ﬁ — NETr) _ a SY 9ABRS ﬁ

JONd MaN B

US 2022/0245156 Al

Aug. 4,2022 Sheet 39 of 53

Patent Application Publication

6¢ Ol

Aleuliod A abed sed gz

9 LETY

b sjun

4 $10}24009p

olojojo

oleojolo

g payoed

o

81 9|14PaUDIEM

2z 208880044 6uijie |

clojojojoijolo
clejojojoiojo

oclojoljojeiolo

S{ojlojo oo lo

cloeljlojojoijeio

olojeojeojeiocle

9zl JSIMAIOYSBUQD

anzel 16481 00¢6

£¥8e

L2y

>
&

0 SO

0 0

/82 obesnasuaol]

oif o

0T

o

i Byuonxapu|

€ UoANsIg

298 ssogIRAIOSIEgSIE]

1062

clojolojoljejeljoljojojoiolo

claoto

12 JabBeuepAioancaseqeleq

ERERE BERNEEEBEEEE
o

oclojole

clojoio

oclojeie

Qijojojolojoijticlolojolojolo
w©
>

oclojojelefle

ojoiojlolo o

oclojojelo o

ojlojoleolejo

0

0

oclojele

¥ JenropIeNong

6 Blepyoeas T auwnyeal | § ananb |4 sunadid ¢ indnayp"edAieoinos ied

& ndnuy1"sounosIad § 4 indnayi™xepuled

& ndnayMisoy ued

3 joodus

& dews

3lanlas
-koydap

£ SUOB LD

-koidep

$3U0d 13 T1INN

& wsuodwon

Zluoneswnood

H ! 0 JUBAT JO JUNOD

SONBA LUINOD

()]

suwinjog yidg

weuodwod

smoy Hdg

Sy

(4]

K9

Ve T ¢ . u

PRUDIBWL SIUSAS $OO'LL L 10 PO0'RLL L

006Z2—Y

—)Cozw_mﬁwoox_ _ B9 _ ATSY ®>mm—

[=1

J0AId MaN @

f
H

¢06¢

US 2022/0245156 Al

Aug. 4,2022 Sheet 40 of 53

Patent Application Publication

0t Ol

000€—

129[q0 AT JO JUN0D

000'6¢ 000°0¢ 000'62 000'0Z 00061 000°01 000'6 0
MBIA
sin
1AL
joodi O peyoed
indniyy OJ |
spuooasyseigns [
J9|npayosyouess [94 psuoIep
Kousunouoo yosess [J —
BlEp Uoseas ewneas
snanb J Jossadoldbule |
suledid J |
indniyy"adAeounosied J €
ndniyy~eounosued JBIIARIOYSBUQD §
indniyy xepur—ed J — g
indniyyTisoyied J £
joodw [J SOUISIN s
dew -
Janses-fojdep J
suolpsuuod-Aojdsp [obesnesuedl
Juoo O [-
TN O \
Byuooxapu|
\ uopsIq
\\ 4
asogieplesiedaleq
JabeuepyAioaligaseqeieq
Jonojy1aong

[EIENES)

G T[] wones

uoljeouns | pusbe

AWbl | uomsod pusbe

001 — 810|000 XEIN

— A sJoyio dnois _

10100

— |leuondo _ onjeA Xep

— _mco_ao_ anjeA Uy

— Jeuondo _ BIENEHT]

_mco_ao_ A MOYS _ |oqe

> 109[q0 1U9AT JO 1UN0D u piold

(Uipin Jeg) siXy-A

(sueg) siXY-X

Jaid

abuey swi|

e T ¢ mn

paydlewW SIUSAS $OS'ZLE'E 10 POSZIE'S

— >co=m$_®8<_ —:wo_o _ ATSY o>ww_

| [=]

JOAId MaN &

US 2022/0245156 Al

Aug. 4,2022 Sheet 41 of 53

Patent Application Publication

L€ Ol

00le—

_ ON _ SOA _ umop|ug

| 008Z| 009°Z| 00t'2| 002Z| 0002 0081 | 009'1 | 00%°1
|eloues)
00¥
E uolysod pusfe
o : o @ (Fms] e
O 0s¥
o O 10100
O d
] — |euory o_ anjeA Xep
O 005
— |euondo _ anjeA Uy
plospue-sjigow-en [O S
- - £
ocmmm".wnmuwm.wn m O w _H_Hn _m _ _mco_ao_ EEE|
Ausgyoe|g-aligowr-en [% lu 065 £
podi-ajiqow-en] O 5 EE Eljzt
-]
O g
>
<
m| 009
D|_U O |euondo _ A MOUS _ lege
O
m — A 10800 UBAT JO JUN0D # _ pield4
o 059
SIXY-A
— |euondo _ anjeA Xel
a 004 SIXy-X
Mepn
Joyi4
05.
abuey swi|

e T ¢ mn

(INd 000°8€761:9 ¥1/92/6 9J0400) SIUSAS QLT L8 A

— >co_=&o_ooo<_ —Eo_o _ >...m<®>mw_

=

JOAIld MaN B

US 2022/0245156 Al

Aug. 4,2022 Sheet 42 of 53

Patent Application Publication

¢e Ol

sJoad woJ) paaiadal synsal sjeisald ay) ayebalbby
o0ze—Y ‘peay yosess Aq paynoax3y

IS0y Ag Junod syeysald |, Jous, yoieas
yoze—Y 'sJoad 03 Juas

IS0y Ag unoo siess | Jous, yosess
z0ze—Y ‘yoJeas [eulbuQ

Vee Ol

US 2022/0245156 Al

URGENCY

AONIOAN A9 SLNIAT I19VLION

LLIDF papp gl Inreni
1LY I1) p— Wd 00:€1 e 0021 Nd 00°Z1 _ 4By D
v_\%“”%ﬁwh_ H wnpaw []
HIOADUD e .,@o_ _H_
ypne — n_w feuju []
..-w $58008 —— o = umousiun]
- — 9
M i
-
;n_lh [¢F4
-]
=
/0]
~ JINIL A9 SINIAD 379V.LION
m obe wy|
(o]
<
ob
=
«

8L

SISOH 2101 3O 1UB010d

G3aHOLYd ATIN4 S1SOH

ye¢&€ ¢¢

wnogy g0t

S4TdV.ION Lidny

1eublH 10 Aiersg wnipsy
OAV LSOH / SALLIMIGVEHINTNA

Gl+ m—‘

uned g0l

SA19Y.LON MHOMLEAN

wnoj B0l

SA19YLON ALILN=AQ]

AR XA 14!

S1SOH F1aVEaNTINA

r©+ —\o

SA19Y.LON INIOddNd

€0ee

v €0¢

unog el)

{SNOILOZINI IV TYIN .I\\l

vl 148

Wnog et

S419YLON §8400V

wnoj B0]

unod [ejo L

~y0ce

NC0Ee

~0Ee

00€€ MIIA SHOLVOIANI ATM

Patent Application Publication

US 2022/0245156 Al

Aug. 4,2022 Sheet 44 of 53

Patent Application Publication

dee Ol

[T siewp main poublsseun a MoN <uBH Q) 2 {500-A3@sng) Uo Paia|aq (Jausim) unoddy a 55300y zuszs (2]]
SIERPMIA paugysseun 4 MoN “usH @ « (500-LSOH) U Palajag (sqw0d) Junosay o ssapoy WYO00RE0O L 4] O
S|ieIep Mol vm:m_mmmzn ~ MmaN ~ Yoy @ = {900-A3a3H09) UQ PalvlaQ (nag) Junodroy a §5300¢ v ooo.mm”mmnmr\m @ O
SIBIOP MOA poupisseun “ MaN < yoiH @ 4 {(1L00-50d+A0¥d) UO PaRIad (A1g3ug) WNOIDY < ssapoy WY O00RE0O L (4] O

. WY 000°20-01: 1)
SIEIop MOIA poubissEUn a MmaN a yBiH @ & Pa199}9(UOIEINUAYINY IXAPEI|D IO 2INIISU| a $8S320Y 201928 @ O
S|IEISp MIIA um:m_mmmcm maN ~ Yoy @ a P3}22]ag UoNEIUAYINY IXBUEI|D IO 3INdasu| a 55320y v ooo.wm”&mwnmr\m @ O
urewoq
JaumQp snjeig fauafin apL funoeg awi| suondo 10919
Buyolew 6Zz Ile 1P | siueAd pelodjes 1pa | «peu QL 6 8 L 9 § ¥ € ¢ 3 Asud » e 10995UN | I|E 10919S
[r— -9 woisng
.V —‘mm |_|w_l_ m|_|Z m>m swi Iy (210Z ‘9z 1snBny NV 0Z:62:11 01 §Z 1SnNBny AV 0Z:62: | | Wol) (suin-[eal) MOPUIM INOY $2Z B Ul SJUIAD GZZ
oo z10e
awi-eay . . gz bny c:.w
WY 00:8 WY 00:9 AWV 00-¥
Jesh1se] T It T I
09 09
skep og 1587
R PENRERN oo s 1o oz

noy | =leq| o[eos.teaur]

[[

_ a opaip [P __ a oneg

sinoy g 1se
sinoy 1se7
sejnuIW 0g 1se

sejnuIw G|, 1se

pejesaq 1] uonosies ojwoozYyy Inowoozyy SPIH[E

Sweas Bulyolew gzz A

¢lee d1dl4 AONVYH JNIL

Liee Sa3id [-

31NaId11v

1N3AIONI _

MOPUIM INOY $Z | | | od | | |
yoleas 190UBUIBA0D) ‘urewop Anoeg

_ | _ ubw | _ |

el JBUMO :Rouabin ‘snjeis

asuolPY | malaey Juepiou|

olee

YvYOgHSLYA MIIATY LNIAIONF

US 2022/0245156 Al

Aug. 4,2022 Sheet 45 of 53

Patent Application Publication

................... S10313S

oee Ol

3AdON SIHL

d3sn

’
l‘l\
-

3AdON SIHL
S10313S
d3sn

dee Ol

US 2022/0245156 Al

Aug. 4,2022 Sheet 46 of 53

aniL
€102
0Z AON Q3
Wd 00:}| Wd 00:Z1 | INY 00:1 1| NV 00:0L |
sz
ONINYYM —
as
TVOILIMD - — <l
AIN30¥ad 001
“NOILYZITLNIHOD
“NdO T 39VHIAY d Gzl
E SHTIUVIN AVTdSIa
Z¥ee SNNIN NAMOA-T1Nd _ a _ m_w<mm_><= a _ NOILVZITILNIHOD NdD m_o<mm_><= a _ om_k<om_moo<: a _ :n_o_

| C | | C]|

IHMSYL HSINIZ-IOYIXdAl WO MINMIAS AS L0SIXST-SddY 0l€'G0:05:€l €1/02/1) ANIHOVIN TVNLYIA ILVEOIN MSVL INd 001 62'vv:L €1/02/1L)

IHMSYL HSINIZ-IOYIXdAl WO MNMIAS AS L0SIXST-SddY 0l€'80:05:cl €1/0¢/11 OSI ‘WO MNNTAS AS L 0GIXST-SddV WOHS 81-WA-QVOT ONILVHDIN Wd 0Ly 0S¥ L €L/0Z/LL

IHMSYL HSINIZ-IOYIXdAl WO MNMIAS AS L0SIXST-SddY G2e'80:05:cl €1/0¢/11 WOOMNNTAS'AS 10SIXST-SddV LSOH 440 81-WA-AVOT ONILVHOIN INd 019" LEvy:L €1/02/L)

N o < v
N o < v

IHMSYL HSINIZ-IOYIXdAl WO MNMIAS AS L0SIXST-SddY 62cCvl:05:cl €1/02/11 81-NA-QVO1 JOd NOILYOOTIV 30dNOS3Y AIONVHO W 0SELEv¥ L €L/02/1L)

IHMSYL HSINIZ-IOYIXdAl WO MNMIAS AS L0SIXST-SddY 18€¥1:06€l €1/0Z/LL) VHO WOOMNNTAS'AS'10GIXS3-SddVY NO . OVSN NdD LSOH. WYY INd 002 125yl €1/02/LL)

£ 39vsSSIN $ 1SOH £ 3Nl £ 3ovsSsIn £ 3Nl
«IXaN §L vl gl ZL LL 0L 8 L9 S v g Z[L]ATud» «IXaN § ¥ € Z [1] ATud»
SAIYLINT 907 1/XS3 LNFOIH SINIAT ANV SMSYL IN3O3H

Patent Application Publication

Ve Ol

US 2022/0245156 Al

INI3dld AV3IdLS V.IVQd INIT3dld
ONISSIO0dd dzaNI43aa d3sn ONISSIO0dd

olve—~ gove—~ 90ve rove— covre—~

NV3HLS VLIVA

A
A

NVIELS V1iva [«

Aug. 4,2022 Sheet 47 of 53

v/ V00ore

Patent Application Publication

dre Ol

US 2022/0245156 Al

e

v

S

)

®

<

g

7

~ MNIS NV3H1S vivd ANIT3dld < WvY3d1S v1va | 304N0OS
a V1ivd d3aNI43a d3sn ONISS300dd @3aNI43a g3sn vivd
“a ocre~ glye—~ oLye~ vive— clye~

&b

=

<

v/ doove

Patent Application Publication

Patent Application Publication Aug. 4,2022 Sheet 49 of 53 US 2022/0245156 A1l

3500
N

(START)

3502
, -

OBTAIN A FIRST USER INPUT DEFINING A FIRST
PROCESSING PIPELINE AND A SECOND
PROCESSING PIPELINE AND A SECOND USER INPUT
DEFINING A USER DEFINED STREAM AND ROUTING

CRITERIA
3504
y 4
RECEIVE A SET OF DATA AT A FIRST EXTERNALLY
DEFINED STREAM
3506
y 4

BASED ON THE FIRST USER INPUT, PERFORM ONE
OR MORE FIRST DATA TRANSFORMATIONS ON THE
SET OF DATA TO GENERATE A FIRST SET OF
TRANSFORMED DATA

3508
y -

BASED ON THE ROUTING CRITERIA AND THE FIRST
USER INPUT, POPULATE THE USER DEFINED
STREAM WITH THE FIRST SET OF TRANSFORMED
DATA

v _-3510
BASED ON THE ROUTING CRITERIA AND THE FIRST
USER INPUT, PERFORM ONE OR MORE SECOND
DATA TRANSFORMATIONS ON THE FIRST SET OF
TRANSFORMED DATA TO GENERATE A SECOND SET
OF TRANSFQRMED DATA

3512
: /4

BASED ON THE FIRST USER INPUT, ROUTE THE
SECOND SET OF TRANSFORMED DATA TO A
SECOND EXTERNALLY DEFINED STREAM

A 4
END

FIG. 35

Patent Application Publication Aug. 4,2022 Sheet 50 of 53 US 2022/0245156 A1l

3600
N

(START)

3602
, -

OBTAIN A FIRST USER INPUT DEFINING A SET OF
USER DEFINED STREAMS AND ROUTING CRITERIA
AND A SECOND USER INPUT DEFINING A

PROCESSING PIPELINE
3604
: r
RECEIVE A SET OF DATA
3606
: r

BASED ON THE ROUTING CRITERIA, POPULATE A
FIRST USER DEFINED STREAM OF THE SET OF USER
DEFINED STREAMS WITH A SUBSET OF THE SET OF

DATA

i /3608
BASED ON THE SECOND USER INPUT, PERFORM
ONE OR MORE DATA TRANSFORMATIONS ON THE
SUBSET OF THE SET OF DATA TO GENERATE A SET
OF TRANSFORMED DATA

i /3610
BASED ON THE SECOND USER INPUT, POPULATE A
SECOND USER DEFINED STREAM OF THE SET OF
USER DEFINED STREAMS WITH THE SET OF
TRANSFORMED DATA

END

FIG. 36

US 2022/0245156 Al

Aug. 4,2022 Sheet 51 of 53

Patent Application Publication

LE Ol

/T N\
avoldn (avoldn)
(_ X3NM3dld) HOWV3S
INON INIHHNO|| | oL/¢
(IYNOILJO) NVYIHLS 31VINdOd 1T e
€Z1lAdAL 3DHINOS F3dAL 304N0S
€Z1SALNGIMLLY :SILNAINLLY
€Z11SOH 'LSOH £Z1LAQ09 :AQ08g
avoidn
(avoidn) vezL S3A SONWN
X NVIHLS FNVYN AVIYLS €Z1304N0S :3249N0S
. SZLANIM :ONIM dWV1SL ‘dNVISANIL || | 80/¢
SdOI 01 “LNdHONOHHL SOILSIEILOVEVHO INVIHLS AJIAOW T
HNOH | :NOILNILIY V1ivd
g9 05 V.LOND IOVHOLS (_ VW3HOS WYI¥LS ¥V avoldn)
L AX VINFHOS WVIYLS (INIHHEND 90/
zrie I S310IN0d WVIYLS YINIHOS WY3Y1S ™N—"
INIWIOYNYIN || LNIWNIDVYNYIN Nv3YLS V0.E
¥3sn v1vd alng ANOH - TN~
N N N (_ Xmnvada1s N c0E
s aro.g OP0.LE av0.€ D) D « >
= \x \x J
/ v/loomm

8¢ Ol

(@7

US 2022/0245156 Al

0 ‘ONOO3S d3d SININT
0 ‘UNOOJS ddd S31lAd

@ SN #'0 AONILY
[
2 SOILSILVYLS IONVYINEO493d
.m (" XAWV3ILS GaNIH30 93SN) ‘HOMv3IS
g XA NYIYLS A3NIF30 935N ANIHANO || || gpee
n WVYZHELS OL vLiva FLIEM 1T ™~
(a\]
o
>
o
< 0 :ONOD3S ¥3d SINIAT
) 0 ‘ANOD3S ¥3d SILAG
Z S 9'€€ :AON3LV]
SOILSILVYLS SONVINEO493d
A NOILYIWHOASNYYLYIVA
X NOILYWHO4SNVY LY LYA ((ZAXNV3HLS @3NI43d ¥3SN) HoYv3S
it AWYIHLS AINIFIA ¥3SN -INIHEND 08e
018 |~ SNOILVINHOASNVYL V1v(a AVYIYLS NOY4 V1vad av3y nY%

INIWIOVYNVIN || INFWIOVNVYIN INIM3dId JINOH L .(\<vomm

Patent Application Publication

d3asn Y.Lvd alng A
N N N (__X3Nmadid . cose
=z avose Or08e gv08¢ 2) D <« >
\x \x N J
/ v/loowm

Patent Application Publication Aug. 4,2022 Sheet 53 of 53 US 2022/0245156 A1l

3900\ (START)

3902
y 4

CAUSE DISPLAY OF FIRST GRAPHICAL CONTROLS
THAT ENABLE A USER TO DEFINE USER DEFINED
STREAMS

3904
: 4

CAUSE DISPLAY OF SECOND GRAPHICAL CONTROLS
THAT ENABLE THE USER TO DEFINE PROCESSING
PIPELINES THAT EACH OBTAIN DATA FROM A
PARTICULAR USER DEFINED STREAM AND WRITE
TRANSFORMED DATA TO A PARTICULAR USER

DEFINED STREAM
3906
y 4
IMPLEMENT THE USER DEFINED STREAMS AND THE
PROCESSING PIPELINES
3908
y 4

ROUTE A SET OF DATA VIA THE USER DEFINED
STREAMS AND THE PROCESSING PIPELINES

END

FIG. 39

US 2022/0245156 Al

ROUTING DATA BETWEEN PROCESSING
PIPELINES VIA A USER DEFINED DATA
STREAM

RELATED APPLICATIONS

[0001] Any and all applications for which a foreign or
domestic priority claim is identified in the Application Data
Sheet as filed with the present application are incorporated
by reference under 37 CFR 1.57 and made a part of this
specification. This application claims the benefit of priority
of U.S. Provisional Patent Application No. 63/143,706, filed
Jan. 29, 2021, entitled “USER DEFINED STREAMS FOR
PROCESSING PIPELINES,” which is hereby incorporated
by reference herein in its entirety and for all purposes.
[0002] This application is being filed concurrently with the
following U.S. Applications, each of which is incorporated
herein by reference in its entirety:

U.S. App. Attorney Filing

No. Docket Title Date

TBD SPLK.085A1 A USER DEFINED DATA STREAM *#*
FOR ROUTING DATA

TBD SPLK.085A2 USER INTERFACE FOR ok
CUSTOMIZING DATA STREAMS

TBD SPLK.085A3 ROUTING DATA BETWEEN ok

PROCESSING PIPELINES VIA A
USER DEFINED DATA STREAM

FIELD

[0003] At least one embodiment of the present disclosure
pertains to one or more tools for facilitating searching and
analyzing large sets of data to locate data of interest.

BACKGROUND

[0004] Information technology (IT) environments can
include diverse types of data systems that store large
amounts of diverse data types generated by numerous
devices. For example, a big data ecosystem may include
databases such as MySQL and Oracle databases, cloud
computing services such as Amazon web services (AWS),
and other data systems that store passively or actively
generated data, including machine-generated data (“ma-
chine data”). The machine data can include performance
data, diagnostic data, or any other data that can be analyzed
to diagnose equipment performance problems, monitor user
interactions, and to derive other insights.

[0005] The large amount and diversity of data systems
containing large amounts of structured, semi-structured, and
unstructured data relevant to any search query can be
massive, and continues to grow rapidly. This technological
evolution can give rise to various challenges in relation to
managing, understanding and effectively utilizing the data.
To reduce the potentially vast amount of data that may be
generated, some data systems pre-process data based on
anticipated data analysis needs. In particular, specified data
items may be extracted from the generated data and stored
in a data system to facilitate efficient retrieval and analysis
of those data items at a later time. At least some of the
remainder of the generated data is typically discarded during
pre-processing.

[0006] However, storing massive quantities of minimally
processed or unprocessed data (collectively and individually

Aug. 4, 2022

referred to as “raw data”) for later retrieval and analysis is
becoming increasingly more feasible as storage capacity
becomes more inexpensive and plentiful. In general, storing
raw data and performing analysis on that data later can
provide greater flexibility because it enables an analyst to
analyze all of the generated data instead of only a fraction of
it.

[0007] Although the availability of vastly greater amounts
of diverse data on diverse data systems provides opportu-
nities to derive new insights, it also gives rise to technical
challenges to search and analyze the data. Tools exist that
allow an analyst to search data systems separately and
collect results over a network for the analyst to derive
insights in a piecemeal manner. However, Ul tools that allow
analysts to quickly search and analyze large set of raw
machine data to visually identify data subsets of interest,
particularly via straightforward and easy-to-understand sets
of tools and search functionality do not exist.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present disclosure is illustrated by way of
example, and not limitation, in the figures of the accompa-
nying drawings, in which like reference numerals indicate
similar elements.

[0009] FIG. 1 is a block diagram of an example networked
computer environment, in accordance with example
embodiments.

[0010] FIG. 2 is a block diagram of an example data intake
and query system, in accordance with example embodi-
ments.

[0011] FIG. 3A is a block diagram of one embodiment an
intake system.
[0012] FIG. 3B is a block diagram of another embodiment

of an intake system.

[0013] FIG. 4 is a block diagram illustrating an embodi-
ment of an indexing system of the data intake and query
system.

[0014] FIG. 5 is a block diagram illustrating an embodi-
ment of a query system of the data intake and query system.
[0015] FIG. 6 is a flow diagram depicting illustrative
interactions for processing data through an intake system, in
accordance with example embodiments.

[0016] FIG. 7 is a flowchart depicting an illustrative
routine for processing data at an intake system, according to
example embodiments.

[0017] FIG. 8 is a data flow diagram illustrating an
embodiment of the data flow and communications between
a variety of the components of the data intake and query
system during indexing.

[0018] FIG. 9 is a flow diagram illustrative of an embodi-
ment of a routine implemented by an indexing system to
store data in common storage.

[0019] FIG. 10 is a flow diagram illustrative of an embodi-
ment of a routine implemented by an indexing system to
store data in common storage.

[0020] FIG. 11 is a flow diagram illustrative of an embodi-
ment of a routine implemented by an indexing node to
update a location marker in an ingestion buffer.

[0021] FIG. 12 is a flow diagram illustrative of an embodi-
ment of a routine implemented by an indexing node to merge
buckets.

[0022] FIG. 13 is a data flow diagram illustrating an
embodiment of the data flow and communications between

US 2022/0245156 Al

a variety of the components of the data intake and query
system during execution of a query.

[0023] FIG. 14 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to execute
a query.

[0024] FIG. 15 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to execute
a query.

[0025] FIG. 16 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to identify
buckets for query execution.

[0026] FIG. 17 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to identify
search nodes for query execution.

[0027] FIG. 18 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to hash
bucket identifiers for query execution.

[0028] FIG. 19 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a search node to execute
a search on a bucket.

[0029] FIG. 20 is a flow diagram illustrative of an embodi-
ment of a routine implemented by the query system to store
search results.

[0030] FIG. 21A is a flowchart of an example method that
illustrates how indexers process, index, and store data
received from intake system, in accordance with example
embodiments.

[0031] FIG. 21B is a block diagram of a data structure in
which time-stamped event data can be stored in a data store,
in accordance with example embodiments.

[0032] FIG. 21C provides a visual representation of the
manner in which a pipelined search language or query
operates, in accordance with example embodiments.
[0033] FIG. 22A is a flow diagram of an example method
that illustrates how a search head and indexers perform a
search query, in accordance with example embodiments.
[0034] FIG. 22B provides a visual representation of an
example manner in which a pipelined command language or
query operates, in accordance with example embodiments.
[0035] FIG. 23A is a diagram of an example scenario
where a common customer identifier is found among log
data received from three disparate data sources, in accor-
dance with example embodiments.

[0036] FIG. 23B illustrates an example of processing
keyword searches and field searches, in accordance with
disclosed embodiments.

[0037] FIG. 23C illustrates an example of creating and
using an inverted index, in accordance with example
embodiments.

[0038] FIG. 23D depicts a flowchart of example use of an
inverted index in a pipelined search query, in accordance
with example embodiments.

[0039] FIG. 24A is an interface diagram of an example
user interface for a search screen, in accordance with
example embodiments.

[0040] FIG. 24B is an interface diagram of an example
user interface for a data summary dialog that enables a user
to select various data sources, in accordance with example
embodiments.

[0041] FIGS. 25, 26, 27A-27D, 28, 29, 30, and 31 are
interface diagrams of example report generation user inter-
faces, in accordance with example embodiments.

Aug. 4, 2022

[0042] FIG. 32 is an example search query received from
a client and executed by search peers, in accordance with
example embodiments.

[0043] FIG. 33A is an interface diagram of an example
user interface of a key indicators view, in accordance with
example embodiments.

[0044] FIG. 33B is an interface diagram of an example
user interface of an incident review dashboard, in accor-
dance with example embodiments.

[0045] FIG. 33C is a tree diagram of an example a
proactive monitoring tree, in accordance with example
embodiments.

[0046] FIG. 33D is an interface diagram of an example a
user interface displaying both log data and performance
data, in accordance with example embodiments.

[0047] FIG. 34A is a block diagram of a data structure in
which a user defined data stream can obtain data from a
processing pipeline and provide the data to another process-
ing pipeline, in accordance with example embodiments
[0048] FIG. 34B is a block diagram of a data structure in
which a processing pipeline can obtain data from a user
defined data stream and provide data to another user defined
data stream, in accordance with example embodiments
[0049] FIG. 35 is an interface diagram of an example a
user interface displaying controls for defining a data stream,
in accordance with example embodiments.

[0050] FIG. 36 is an interface diagram of an example a
user interface displaying controls for define a processing
pipeline, in accordance with example embodiments.

[0051] FIG. 37 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to route
data for data ingestion.

[0052] FIG. 38 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to route
data for data ingestion.

[0053] FIG. 39 is a flow diagram illustrative of an embodi-
ment of a routine implemented by a query system to route
data for data ingestion.

DETAILED DESCRIPTION

[0054] Embodiments are described herein according to the
following outline:
[0055] 1.0. General Overview
[0056] 2.0. Operating Environment
[0057] 2.1. Host Devices
[0058] 2.2. Client Devices
[0059] 2.3. Client Device Applications
[0060] 2.4. Data Intake and Query System Overview
[0061] 3.0. Data Intake and Query System Architecture
[0062] 3.1. Intake System
[0063] 3.1.1 Forwarder
[0064] 3.1.2 Data Retrieval Subsystem
[0065] 3.1.3 Ingestion Buffer
[0066] 3.1.4 Streaming Data Processors
[0067] 3.2. Indexing System
[0068] 3.2.1. Indexing System Manager
[0069] 3.2.2. Indexing Nodes
[0070] 3.2.2.1 Indexing Node Manager
[0071] 3.2.2.2 Partition Manager
[0072] 3.2.2.3 Indexer and Data Store
[0073] 3.2.3. Bucket Manager
[0074] 3.3 Query System
[0075] 3.3.1. Query System Manager
[0076] 3.3.2. Search Head

US 2022/0245156 Al

3.3.2.1 Search Master
3.3.2.2 Search Manager
3.3.3. Search Nodes
3.3.4. Cache Manager
3.3.5. Search Node Monitor and Catalog
3.4. Common Storage
3.5. Data Store Catalog
3.6. Query Acceleration Data Store
4.0. Data Intake and Query System Functions
4.1. Ingestion
4.1.1 Publication to Intake Topic(s)
4.1.2 Transmission to Streaming Data Proces-

[0077]
[0078]
[0079]
[0080]
[0081]
[0082]
[0083]
[0084]
[0085]
[0086]
[0087]
[0088]
sors
[0089]
[0090]
[0091]
[0092]
[0093]
[0094]
[0095]
[0096]
Buffer
[0097]
[0098]
[0099]
[0100]
tion
[0101] 4.3.4. Hashing Bucket Identifiers for Query
Execution
[0102] 4.3.5. Mapping Buckets to Search Nodes
[0103] 4.3.6. Obtaining Data for Query Execution
[0104] 4.3.7. Caching Search Results
[0105] 4.4. Data Ingestion, Indexing, and Storage Flow
[0106] 4.4.1. Input
[0107] 4.4.2. Parsing
[0108] 4.4.3. Indexing
[0109] 4.5. Query Processing Flow
[0110] 4.6. Pipelined Search Language
[0111] 4.7. Field Extraction
[0112] 4.8. Example Search Screen
[0113] 4.9. Data Models
[0114] 4.10. Acceleration Techniques
[0115] 4.10.1. Aggregation Technique
[0116] 4.10.2. Keyword Index
[0117] 4.10.3. High Performance Analytics Store
[0118] 4.10.3.1 Extracting Event Data Using Post-
ing
[0119]
[0120]
[0121]
[0122]
[0123]

4.1.3 Messages Processing
4.1.4 Transmission to Subscribers
4.1.5 Data Resiliency and Security
4.1.6 Message Processing Algorithm
4.2. Indexing
4.2.1. Containerized Indexing Nodes
4.2.2. Moving Buckets to Common Storage
4.2.3. Updating Location Marker in Ingestion

4.2.4. Merging Buckets
4.3. Querying
4.3.1. Containerized Search Nodes
4.3.2. Identifying Buckets for Query Execu-

4.10.4. Accelerating Report Generation
4.12. Security Features
4.13. Data Center Monitoring
4.14. IT Service Monitoring
4.15. Other Architectures
[0124] 5.0. User-Defined Data Streams
[0125] 5.1. Data Routes Using User-Defined Data
Streams and Pipelines
[0126] 5.2 Graphical Controls for Defining and Imple-
menting Data Streams

1.0. General Overview

[0127] Modern data centers and other computing environ-
ments can comprise anywhere from a few host computer
systems to thousands of systems configured to process data,
service requests from remote clients, and perform numerous
other computational tasks. During operation, various com-

Aug. 4, 2022

ponents within these computing environments often gener-
ate significant volumes of machine data. Machine data is any
data produced by a machine or component in an information
technology (IT) environment and that reflects activity in the
IT environment. For example, machine data can be raw
machine data that is generated by various components in IT
environments, such as servers, sensors, routers, mobile
devices, Internet of Things (IoT) devices, etc. Machine data
can include system logs, network packet data, sensor data,
application program data, error logs, stack traces, system
performance data, etc. In general, machine data can also
include performance data, diagnostic information, and many
other types of data that can be analyzed to diagnose perfor-
mance problems, monitor user interactions, and to derive
other insights.

[0128] A number of tools are available to analyze machine
data. In order to reduce the size of the potentially vast
amount of machine data that may be generated, many of
these tools typically pre-process the data based on antici-
pated data-analysis needs. For example, pre-specified data
items may be extracted from the machine data and stored in
a database to facilitate efficient retrieval and analysis of
those data items at search time. However, the rest of the
machine data typically is not saved and is discarded during
pre-processing. As storage capacity becomes progressively
cheaper and more plentiful, there are fewer incentives to
discard these portions of machine data and many reasons to
retain more of the data.

[0129] This plentiful storage capacity is presently making
it feasible to store massive quantities of minimally processed
machine data for later retrieval and analysis. In general,
storing minimally processed machine data and performing
analysis operations at search time can provide greater flex-
ibility because it enables an analyst to search all of the
machine data, instead of searching only a pre-specified set of
data items. This may enable an analyst to investigate dif-
ferent aspects of the machine data that previously were
unavailable for analysis.

[0130] However, analyzing and searching massive quan-
tities of machine data presents a number of challenges. For
example, a data center, servers, or network appliances may
generate many different types and formats of machine data
(e.g., system logs, network packet data (e.g., wire data, etc.),
sensor data, application program data, error logs, stack
traces, system performance data, operating system data,
virtualization data, etc.) from thousands of different com-
ponents, which can collectively be very time-consuming to
analyze. In another example, mobile devices may generate
large amounts of information relating to data accesses,
application performance, operating system performance,
network performance, etc. There can be millions of mobile
devices that report these types of information.

[0131] These challenges can be addressed by using an
event-based data intake and query system, such as the
SPLUNK® ENTERPRISE system developed by Splunk
Inc. of San Francisco, Calif. The SPLUNK® ENTERPRISE
system is the leading platform for providing real-time opera-
tional intelligence that enables organizations to collect,
index, and search machine data from various websites,
applications, servers, networks, and mobile devices that
power their businesses. The data intake and query system is
particularly useful for analyzing data which is commonly
found in system log files, network data, and other data input
sources. Although many of the techniques described herein

US 2022/0245156 Al

are explained with reference to a data intake and query
system similar to the SPLUNK® ENTERPRISE system,
these techniques are also applicable to other types of data
systems.

[0132] In the data intake and query system, machine data
are collected and stored as “events.” An event comprises a
portion of machine data and is associated with a specific
point in time. The portion of machine data may reflect
activity in an IT environment and may be produced by a
component of that IT environment, where the events may be
searched to provide insight into the IT environment, thereby
improving the performance of components in the IT envi-
ronment. Events may be derived from “time series data,”
where the time series data comprises a sequence of data
points (e.g., performance measurements from a computer
system, etc.) that are associated with successive points in
time. In general, each event has a portion of machine data
that is associated with a timestamp that is derived from the
portion of machine data in the event. A timestamp of an
event may be determined through interpolation between
temporally proximate events having known timestamps or
may be determined based on other configurable rules for
associating timestamps with events.

[0133] In some instances, machine data can have a pre-
defined format, where data items with specific data formats
are stored at predefined locations in the data. For example,
the machine data may include data associated with fields in
a database table. In other instances, machine data may not
have a predefined format (e.g., may not be at fixed, pre-
defined locations), but may have repeatable (e.g., non-
random) patterns. This means that some machine data can
comprise various data items of different data types that may
be stored at different locations within the data. For example,
when the data source is an operating system log, an event
can include one or more lines from the operating system log
containing machine data that includes different types of
performance and diagnostic information associated with a
specific point in time (e.g., a timestamp).

[0134] Examples of components which may generate
machine data from which events can be derived include, but
are not limited to, web servers, application servers, data-
bases, firewalls, routers, operating systems, and software
applications that execute on computer systems, mobile
devices, sensors, Internet of Things (IoT) devices, etc. The
machine data generated by such data sources can include, for
example and without limitation, server log files, activity log
files, configuration files, messages, network packet data,
performance measurements, sensor measurements, etc.
[0135] The data intake and query system uses a flexible
schema to specify how to extract information from events.
A flexible schema may be developed and redefined as
needed. Note that a flexible schema may be applied to events
“on the fly,” when it is needed (e.g., at search time, index
time, ingestion time, etc.). When the schema is not applied
to events until search time, the schema may be referred to as
a “late-binding schema.”

[0136] During operation, the data intake and query system
receives machine data from any type and number of sources
(e.g., one or more system logs, streams of network packet
data, sensor data, application program data, error logs, stack
traces, system performance data, etc.). The system parses the
machine data to produce events each having a portion of
machine data associated with a timestamp. The system
stores the events in a data store. The system enables users to

Aug. 4, 2022

run queries against the stored events to, for example, retrieve
events that meet criteria specified in a query, such as criteria
indicating certain keywords or having specific values in
defined fields. As used herein, the term “field” refers to a
location in the machine data of an event containing one or
more values for a specific data item. A field may be
referenced by a field name associated with the field. As will
be described in more detail herein, a field is defined by an
extraction rule (e.g., a regular expression) that derives one or
more values or a sub-portion of text from the portion of
machine data in each event to produce a value for the field
for that event. The set of values produced are semantically-
related (such as IP address), even though the machine data
in each event may be in different formats (e.g., semantically-
related values may be in different positions in the events
derived from different sources).

[0137] As described above, the system stores the events in
a data store. The events stored in the data store are field-
searchable, where field-searchable herein refers to the ability
to search the machine data (e.g., the raw machine data) of an
event based on a field specified in search criteria. For
example, a search having criteria that specifies a field name
“UserlD” may cause the system to field-search the machine
data of events to identify events that have the field name
“UserID.” In another example, a search having criteria that
specifies a field name “UserID” with a corresponding field
value “12345” may cause the system to field-search the
machine data of events to identify events having that field-
value pair (e.g., field name “UserlD” with a corresponding
field value of “12345”). Events are field-searchable using
one or more configuration files associated with the events.
Each configuration file includes one or more field names,
where each field name is associated with a corresponding
extraction rule and a set of events to which that extraction
rule applies. The set of events to which an extraction rule
applies may be identified by metadata associated with the set
of'events. For example, an extraction rule may apply to a set
of events that are each associated with a particular host,
source, or source type. When events are to be searched based
on a particular field name specified in a search, the system
uses one or more configuration files to determine whether
there is an extraction rule for that particular field name that
applies to each event that falls within the criteria of the
search. If so, the event is considered as part of the search
results (and additional processing may be performed on that
event based on criteria specified in the search). If not, the
next event is similarly analyzed, and so on.

[0138] As noted above, the data intake and query system
utilizes a late-binding schema while performing queries on
events. One aspect of a late-binding schema is applying
extraction rules to events to extract values for specific fields
during search time. More specifically, the extraction rule for
a field can include one or more instructions that specify how
to extract a value for the field from an event. An extraction
rule can generally include any type of instruction for extract-
ing values from events. In some cases, an extraction rule
comprises a regular expression, where a sequence of char-
acters form a search pattern. An extraction rule comprising
a regular expression is referred to herein as a regex rule. The
system applies a regex rule to an event to extract values for
a field associated with the regex rule, where the values are
extracted by searching the event for the sequence of char-
acters defined in the regex rule.

US 2022/0245156 Al

[0139] In the data intake and query system, a field extrac-
tor may be configured to automatically generate extraction
rules for certain fields in the events when the events are
being created, indexed, or stored, or possibly at a later time.
Alternatively, a user may manually define extraction rules
for fields using a variety of techniques. In contrast to a
conventional schema for a database system, a late-binding
schema is not defined at data ingestion time. Instead, the
late-binding schema can be developed on an ongoing basis
until the time a query is actually executed. This means that
extraction rules for the fields specified in a query may be
provided in the query itself, or may be located during
execution of the query. Hence, as a user learns more about
the data in the events, the user can continue to refine the
late-binding schema by adding new fields, deleting fields, or
modifying the field extraction rules for use the next time the
schema is used by the system. Because the data intake and
query system maintains the underlying machine data and
uses a late-binding schema for searching the machine data,
it enables a user to continue investigating and learn valuable
insights about the machine data.

[0140] In some embodiments, a common field name may
be used to reference two or more fields containing equiva-
lent and/or similar data items, even though the fields may be
associated with different types of events that possibly have
different data formats and different extraction rules. By
enabling a common field name to be used to identify
equivalent and/or similar fields from different types of
events generated by disparate data sources, the system
facilitates use of a “common information model” (CIM)
across the disparate data sources (further discussed with
respect to FIG. 23A).

2.0. Operating Environment

[0141] FIG.1 is a block diagram of an example networked
computer environment 100, in accordance with example
embodiments. It will be understood that FIG. 1 represents
one example of a networked computer system and other
embodiments may use different arrangements.

[0142] The networked computer system 100 comprises
one or more computing devices. These one or more com-
puting devices comprise any combination of hardware and
software configured to implement the various logical com-
ponents described herein. For example, the one or more
computing devices may include one or more memories that
store instructions for implementing the various components
described herein, one or more hardware processors config-
ured to execute the instructions stored in the one or more
memories, and various data repositories in the one or more
memories for storing data structures utilized and manipu-
lated by the various components.

[0143] In some embodiments, one or more client devices
102 are coupled to one or more host devices 106 and a data
intake and query system 108 via one or more networks 104.
Networks 104 broadly represent one or more LANs, WANSs,
cellular networks (e.g., LTE, HSPA, 3G, and other cellular
technologies), and/or networks using any of wired, wireless,
terrestrial microwave, or satellite links, and may include the
public Internet.

2.1. Host Devices

[0144] In the illustrated embodiment, a system 100
includes one or more host devices 106. Host devices 106

Aug. 4, 2022

may broadly include any number of computers, virtual
machine instances, and/or data centers that are configured to
host or execute one or more instances of host applications
114. In general, a host device 106 may be involved, directly
or indirectly, in processing requests received from client
devices 102. Each host device 106 may comprise, for
example, one or more of a network device, a web server, an
application server, a database server, etc. A collection of host
devices 106 may be configured to implement a network-
based service. For example, a provider of a network-based
service may configure one or more host devices 106 and host
applications 114 (e.g., one or more web servers, application
servers, database servers, etc.) to collectively implement the
network-based application.

[0145] In general, client devices 102 communicate with
one or more host applications 114 to exchange information.
The communication between a client device 102 and a host
application 114 may, for example, be based on the Hypertext
Transfer Protocol (HTTP) or any other network protocol.
Content delivered from the host application 114 to a client
device 102 may include, for example, HTML documents,
media content, etc. The communication between a client
device 102 and host application 114 may include sending
various requests and receiving data packets. For example, in
general, a client device 102 or application running on a
client device may initiate communication with a host appli-
cation 114 by making a request for a specific resource (e.g.,
based on an HTTP request), and the application server may
respond with the requested content stored in one or more
response packets.

[0146] In the illustrated embodiment, one or more of host
applications 114 may generate various types of performance
data during operation, including event logs, network data,
sensor data, and other types of machine data. For example,
ahost application 114 comprising a web server may generate
one or more web server logs in which details of interactions
between the web server and any number of client devices
102 is recorded. As another example, a host device 106
comprising a router may generate one or more router logs
that record information related to network traffic managed
by the router. As yet another example, a host application 114
comprising a database server may generate one or more logs
that record information related to requests sent from other
host applications 114 (e.g., web servers or application serv-
ers) for data managed by the database server.

2.2. Client Devices

[0147] Client devices 102 of FIG. 1 represent any com-
puting device capable of interacting with one or more host
devices 106 via a network 104. Examples of client devices
102 may include, without limitation, smart phones, tablet
computers, handheld computers, wearable devices, laptop
computers, desktop computers, servers, portable media play-
ers, gaming devices, and so forth. In general, a client device
102 can provide access to different content, for instance,
content provided by one or more host devices 106, etc. Each
client device 102 may comprise one or more client appli-
cations 110, described in more detail in a separate section
hereinafter.

2.3. Client Device Applications

[0148] In some embodiments, each client device 102 may
host or execute one or more client applications 110 that are

US 2022/0245156 Al

capable of interacting with one or more host devices 106 via
one or more networks 104. For instance, a client application
110 may be or comprise a web browser that a user may use
to navigate to one or more websites or other resources
provided by one or more host devices 106. As another
example, a client application 110 may comprise a mobile
application or “app.” For example, an operator of a network-
based service hosted by one or more host devices 106 may
make available one or more mobile apps that enable users of
client devices 102 to access various resources of the net-
work-based service. As yet another example, client applica-
tions 110 may include background processes that perform
various operations without direct interaction from a user. A
client application 110 may include a “plug-in” or “exten-
sion” to another application, such as a web browser plug-in
or extension.

[0149] Insome embodiments, a client application 110 may
include a monitoring component 112. At a high level, the
monitoring component 112 comprises a software component
or other logic that facilitates generating performance data
related to a client device’s operating state, including moni-
toring network traffic sent and received from the client
device and collecting other device and/or application-spe-
cific information. Monitoring component 112 may be an
integrated component of a client application 110, a plug-in,
an extension, or any other type of add-on component.
Monitoring component 112 may also be a stand-alone pro-
cess.

[0150] In some embodiments, a monitoring component
112 may be created when a client application 110 is devel-
oped, for example, by an application developer using a
software development kit (SDK). The SDK may include
custom monitoring code that can be incorporated into the
code implementing a client application 110. When the code
is converted to an executable application, the custom code
implementing the monitoring functionality can become part
of the application itself.

[0151] In some embodiments, an SDK or other code for
implementing the monitoring functionality may be offered
by a provider of a data intake and query system, such as a
system 108. In such cases, the provider of the system 108
can implement the custom code so that performance data
generated by the monitoring functionality is sent to the
system 108 to facilitate analysis of the performance data by
a developer of the client application or other users.

[0152] Insome embodiments, the custom monitoring code
may be incorporated into the code of a client application 110
in a number of different ways, such as the insertion of one
or more lines in the client application code that call or
otherwise invoke the monitoring component 112. As such, a
developer of a client application 110 can add one or more
lines of code into the client application 110 to trigger the
monitoring component 112 at desired points during execu-
tion of the application. Code that triggers the monitoring
component may be referred to as a monitor trigger. For
instance, a monitor trigger may be included at or near the
beginning of the executable code of the client application
110 such that the monitoring component 112 is initiated or
triggered as the application is launched, or included at other
points in the code that correspond to various actions of the
client application, such as sending a network request or
displaying a particular interface.

[0153] In some embodiments, the monitoring component
112 may monitor one or more aspects of network traffic sent

Aug. 4, 2022

and/or received by a client application 110. For example, the
monitoring component 112 may be configured to monitor
data packets transmitted to and/or from one or more host
applications 114. Incoming and/or outgoing data packets can
be read or examined to identify network data contained
within the packets, for example, and other aspects of data
packets can be analyzed to determine a number of network
performance statistics. Monitoring network traffic may
enable information to be gathered particular to the network
performance associated with a client application 110 or set
of applications.

[0154] In some embodiments, network performance data
refers to any type of data that indicates information about the
network and/or network performance. Network performance
data may include, for instance, a URL requested, a connec-
tion type (e.g., HTTP, HTTPS, etc.), a connection start time,
a connection end time, an HTTP status code, request length,
response length, request headers, response headers, connec-
tion status (e.g., completion, response time(s), failure, etc.),
and the like. Upon obtaining network performance data
indicating performance of the network, the network perfor-
mance data can be transmitted to a data intake and query
system 108 for analysis.

[0155] Upon developing a client application 110 that
incorporates a monitoring component 112, the client appli-
cation 110 can be distributed to client devices 102. Appli-
cations generally can be distributed to client devices 102 in
any manner, or they can be pre-loaded. In some cases, the
application may be distributed to a client device 102 via an
application marketplace or other application distribution
system. For instance, an application marketplace or other
application distribution system might distribute the applica-
tion to a client device based on a request from the client
device to download the application.

[0156] Examples of functionality that enables monitoring
performance of a client device are described in U.S. patent
application Ser. No. 14/524,748, entitled “UTILIZING
PACKET HEADERS TO MONITOR NETWORK TRAF-
FIC IN ASSOCIATION WITH A CLIENT DEVICE”, filed
on 27 Oct. 2014, and which is hereby incorporated by
reference in its entirety for all purposes.

[0157] In some embodiments, the monitoring component
112 may also monitor and collect performance data related
to one or more aspects of the operational state of a client
application 110 and/or client device 102. For example, a
monitoring component 112 may be configured to collect
device performance information by monitoring one or more
client device operations, or by making calls to an operating
system and/or one or more other applications executing on
a client device 102 for performance information. Device
performance information may include, for instance, a cur-
rent wireless signal strength of the device, a current con-
nection type and network carrier, current memory perfor-
mance information, a geographic location of the device, a
device orientation, and any other information related to the
operational state of the client device.

[0158] In some embodiments, the monitoring component
112 may also monitor and collect other device profile
information including, for example, a type of client device,
a manufacturer, and model of the device, versions of various
software applications installed on the device, and so forth.
[0159] In general, a monitoring component 112 may be
configured to generate performance data in response to a
monitor trigger in the code of a client application 110 or

US 2022/0245156 Al

other triggering application event, as described above, and to
store the performance data in one or more data records. Each
data record, for example, may include a collection of field-
value pairs, each field-value pair storing a particular item of
performance data in association with a field for the item. For
example, a data record generated by a monitoring compo-
nent 112 may include a “networklatency” field (not shown
in the Figure) in which a value is stored. This field indicates
a network latency measurement associated with one or more
network requests. The data record may include a “state” field
to store a value indicating a state of a network connection,
and so forth for any number of aspects of collected perfor-
mance data.

2.4. Data Intake and Query System Overview

[0160] The data intake and query system 108 can process
and store data received data from the data sources client
devices 102 or host devices 106, and execute queries on the
data in response to requests received from one or more
computing devices. In some cases, the data intake and query
system 108 can generate events from the received data and
store the events in buckets in a common storage system. In
response to received queries, the data intake and query
system can assign one or more search nodes to search the
buckets in the common storage.

[0161] In certain embodiments, the data intake and query
system 108 can include various components that enable it to
provide stateless services or enable it to recover from an
unavailable or unresponsive component without data loss in
a time efficient manner. For example, the data intake and
query system 108 can store contextual information about its
various components in a distributed way such that if one of
the components becomes unresponsive or unavailable, the
data intake and query system 108 can replace the unavail-
able component with a different component and provide the
replacement component with the contextual information. In
this way, the data intake and query system 108 can quickly
recover from an unresponsive or unavailable component
while reducing or eliminating the loss of data that was being
processed by the unavailable component.

3.0. Data Intake and Query System Architecture

[0162] FIG. 2 is a block diagram of an embodiment of a
data processing environment 200. In the illustrated embodi-
ment, the environment 200 includes data sources 202 and
client devices 204a, 204b, 204¢ (generically referred to as
client device(s) 204) in communication with a data intake
and query system 108 via networks 206, 208, respectively.
The networks 206, 208 may be the same network, may
correspond to the network 104, or may be different net-
works. Further, the networks 206, 208 may be implemented
as one or more LANs, WANSs, cellular networks, intranet-
works, and/or internetworks using any of wired, wireless,
terrestrial microwave, satellite links, etc., and may include
the Internet.

[0163] Each data source 202 broadly represents a distinct
source of data that can be consumed by the data intake and
query system 108. Examples of data sources 202 include,
without limitation, data files, directories of files, data sent
over a network, event logs, registries, streaming data ser-
vices (examples of which can include, by way of non-
limiting example, Amazon’s Simple Queue Service (“SQS”)
or Kinesis™ services, devices executing Apache Kafka™

Aug. 4, 2022

software, or devices implementing the Message Queue
Telemetry Transport (MQTT) protocol, Microsoft Azure
EventHub, Google Cloud Pub Sub, devices implementing
the Java Message Service (JMS) protocol, devices imple-
menting the Advanced Message Queuing Protocol
(AMQP)), performance metrics, etc.

[0164] The client devices 204 can be implemented using
one or more computing devices in communication with the
data intake and query system 108, and represent some of the
different ways in which computing devices can submit
queries to the data intake and query system 108. For
example, the client device 204q is illustrated as communi-
cating over an Internet (Web) protocol with the data intake
and query system 108, the client device 2045 is illustrated as
communicating with the data intake and query system 108
via a command line interface, and the client device 2045 is
illustrated as communicating with the data intake and query
system 108 via a software developer kit (SDK). However, it
will be understood that the client devices 204 can commu-
nicate with and submit queries to the data intake and query
system 108 in a variety of ways.

[0165] The data intake and query system 108 can process
and store data received data from the data sources 202 and
execute queries on the data in response to requests received
from the client devices 204. In the illustrated embodiment,
the data intake and query system 108 includes an intake
system 210, an indexing system 212, a query system 214,
common storage 216 including one or more data stores 218,
a data store catalog 220, and a query acceleration data store
222.

[0166] As mentioned, the data intake and query system
108 can receive data from different sources 202. In some
cases, the data sources 202 can be associated with different
tenants or customers. Further, each tenant may be associated
with one or more indexes, hosts, sources, sourcetypes, or
users. For example, company ABC, Inc. can correspond to
one tenant and company XYZ, Inc. can correspond to a
different tenant. While the two companies may be unrelated,
each company may have a main index and test index
associated with it, as well as one or more data sources or
systems (e.g., billing system, CRM system, etc.). The data
intake and query system 108 can concurrently receive and
process the data from the various systems and sources of
ABC, Inc. and XYZ, Inc.

[0167] In certain cases, although the data from different
tenants can be processed together or concurrently, the data
intake and query system 108 can take steps to avoid com-
bining or co-mingling data from the different tenants. For
example, the data intake and query system 108 can assign a
tenant identifier for each tenant and maintain a separation
between the data using the tenant identifier. In some cases,
the tenant identifier can be assigned to the data at the data
sources 202, or can be assigned to the data by the data intake
and query system 108 at ingest.

[0168] As will be described in greater detail herein, at least
with reference to FIGS. 3A and 3B, the intake system 210
can receive data from the data sources 202, perform one or
more preliminary processing operations on the data, and
communicate the data to the indexing system 212, query
system 214, or to other systems 262 (which may include, for
example, data processing systems, telemetry systems, real-
time analytics systems, data stores, databases, etc., any of
which may be operated by an operator of the data intake and
query system 108 or a third party). The intake system 210

US 2022/0245156 Al

can receive data from the data sources 202 in a variety of
formats or structures. In some embodiments, the received
data corresponds to raw machine data, structured or unstruc-
tured data, correlation data, data files, directories of files,
data sent over a network, event logs, registries, messages
published to streaming data sources, performance metrics,
sensor data, image and video data, etc. The intake system
210 can process the data based on the form in which it is
received. In some cases, the intake system 210 can utilize
one or more rules to process data and to make the data
available to downstream systems (e.g., the indexing system
212, query system 214, etc.). [llustratively, the intake system
210 can enrich the received data. For example, the intake
system may add one or more fields to the data received from
the data sources 202, such as fields denoting the host, source,
sourcetype, index, or tenant associated with the incoming
data. In certain embodiments, the intake system 210 can
perform additional processing on the incoming data, such as
transforming structured data into unstructured data (or vice
versa), identifying timestamps associated with the data,
removing extraneous data, parsing data, indexing data, sepa-
rating data, categorizing data, routing data based on criteria
relating to the data being routed, and/or performing other
data transformations, etc.

[0169] As will be described in greater detail herein, at least
with reference to FIG. 4, the indexing system 212 can
process the data and store it, for example, in common
storage 216. As part of processing the data, the indexing
system can identify timestamps associated with the data,
organize the data into buckets or time series buckets, convert
editable buckets to non-editable buckets, store copies of the
buckets in common storage 216, merge buckets, generate
indexes of the data, etc. In addition, the indexing system 212
can update the data store catalog 220 with information
related to the buckets (pre-merged or merged) or data that is
stored in common storage 216, and can communicate with
the intake system 210 about the status of the data storage.

[0170] As will be described in greater detail herein, at least
with reference to FIG. 5, the query system 214 can receive
queries that identify a set of data to be processed and a
manner of processing the set of data from one or more client
devices 204, process the queries to identify the set of data,
and execute the query on the set of data. In some cases, as
part of executing the query, the query system 214 can use the
data store catalog 220 to identify the set of data to be
processed or its location in common storage 216 and/or can
retrieve data from common storage 216 or the query accel-
eration data store 222. In addition, in some embodiments,
the query system 214 can store some or all of the query
results in the query acceleration data store 222.

[0171] As mentioned and as will be described in greater
detail below, the common storage 216 can be made up of one
or more data stores 218 storing data that has been processed
by the indexing system 212. The common storage 216 can
be configured to provide high availability, highly resilient,
low loss data storage. In some cases, to provide the high
availability, highly resilient, low loss data storage, the com-
mon storage 216 can store multiple copies of the data in the
same and different geographic locations and across different
types of data stores (e.g., solid state, hard drive, tape, etc.).
Further, as data is received at the common storage 216 it can
be automatically replicated multiple times according to a
replication factor to different data stores across the same
and/or different geographic locations. In some embodi-

Aug. 4, 2022

ments, the common storage 216 can correspond to cloud
storage, such as Amazon Simple Storage Service (S3) or
Elastic Block Storage (EBS), Google Cloud Storage,
Microsoft Azure Storage, etc.

[0172] In some embodiments, indexing system 212 can
read to and write from the common storage 216. For
example, the indexing system 212 can copy buckets of data
from its local or shared data stores to the common storage
216. In certain embodiments, the query system 214 can read
from, but cannot write to, the common storage 216. For
example, the query system 214 can read the buckets of data
stored in common storage 216 by the indexing system 212,
but may not be able to copy buckets or other data to the
common storage 216. In some embodiments, the intake
system 210 does not have access to the common storage 216.
However, in some embodiments, one or more components of
the intake system 210 can write data to the common storage
216 that can be read by the indexing system 212.

[0173] As described herein, such as with reference to
FIGS. 5B and 5C, in some embodiments, data in the data
intake and query system 108 (e.g., in the data stores of the
indexers of the indexing system 212, common storage 216,
or search nodes of the query system 214) can be stored in
one or more time series buckets. Each bucket can include
raw machine data associated with a time stamp and addi-
tional information about the data or bucket, such as, but not
limited to, one or more filters, indexes (e.g., TSIDX,
inverted indexes, keyword indexes, etc.), bucket summaries,
etc. In some embodiments, the bucket data and information
about the bucket data is stored in one or more files. For
example, the raw machine data, filters, indexes, bucket
summaries, etc. can be stored in respective files in or
associated with a bucket. In certain cases, the group of files
can be associated together to form the bucket.

[0174] The data store catalog 220 can store information
about the data stored in common storage 216, such as, but
not limited to an identifier for a set of data or buckets, a
location of the set of data, tenants or indexes associated with
the set of data, timing information about the data, etc. For
example, in embodiments where the data in common storage
216 is stored as buckets, the data store catalog 220 can
include a bucket identifier for the buckets in common
storage 216, a location of or path to the bucket in common
storage 216, a time range of the data in the bucket (e.g.,
range of time between the first-in-time event of the bucket
and the last-in-time event of the bucket), a tenant identifier
identifying a customer or computing device associated with
the bucket, and/or an index (also referred to herein as a
partition) associated with the bucket, etc. In certain embodi-
ments, the data intake and query system 108 includes
multiple data store catalogs 220. For example, in some
embodiments, the data intake and query system 108 can
include a data store catalog 220 for each tenant (or group of
tenants), each partition of each tenant (or group of indexes),
etc. In some cases, the data intake and query system 108 can
include a single data store catalog 220 that includes infor-
mation about buckets associated with multiple or all of the
tenants associated with the data intake and query system
108.

[0175] The indexing system 212 can update the data store
catalog 220 as the indexing system 212 stores data in
common storage 216. Furthermore, the indexing system 212
or other computing device associated with the data store
catalog 220 can update the data store catalog 220 as the

US 2022/0245156 Al

information in the common storage 216 changes (e.g., as
buckets in common storage 216 are merged, deleted, etc.). In
addition, as described herein, the query system 214 can use
the data store catalog 220 to identify data to be searched or
data that satisfies at least a portion of a query. In some
embodiments, the query system 214 makes requests to and
receives data from the data store catalog 220 using an
application programming interface (“API”).

[0176] The query acceleration data store 222 can store the
results or partial results of queries, or otherwise be used to
accelerate queries. For example, if a user submits a query
that has no end date, the system can query system 214 can
store an initial set of results in the query acceleration data
store 222. As additional query results are determined based
on additional data, the additional results can be combined
with the initial set of results, and so on. In this way, the query
system 214 can avoid re-searching all of the data that may
be responsive to the query and instead search the data that
has not already been searched.

[0177] In some environments, a user of a data intake and
query system 108 may install and configure, on computing
devices owned and operated by the user, one or more
software applications that implement some or all of these
system components. For example, a user may install a
software application on server computers owned by the user
and configure each server to operate as one or more of intake
system 210, indexing system 212, query system 214, com-
mon storage 216, data store catalog 220, or query accelera-
tion data store 222, etc. This arrangement generally may be
referred to as an “on-premises” solution. That is, the system
108 is installed and operates on computing devices directly
controlled by the user of the system. Some users may prefer
an on-premises solution because it may provide a greater
level of control over the configuration of certain aspects of
the system (e.g., security, privacy, standards, controls, etc.).
However, other users may instead prefer an arrangement in
which the user is not directly responsible for providing and
managing the computing devices upon which various com-
ponents of system 108 operate.

[0178] In certain embodiments, one or more of the com-
ponents of a data intake and query system 108 can be
implemented in a remote distributed computing system. In
this context, a remote distributed computing system or
cloud-based service can refer to a service hosted by one
more computing resources that are accessible to end users
over a network, for example, by using a web browser or
other application on a client device to interface with the
remote computing resources. For example, a service pro-
vider may provide a data intake and query system 108 by
managing computing resources configured to implement
various aspects of the system (e.g., intake system 210,
indexing system 212, query system 214, common storage
216, data store catalog 220, or query acceleration data store
222, etc.) and by providing access to the system to end users
via a network. Typically, a user may pay a subscription or
other fee to use such a service. Each subscribing user of the
cloud-based service may be provided with an account that
enables the user to configure a customized cloud-based
system based on the user’s preferences. When implemented
as a cloud-based service, various components of the system
108 can be implemented using containerization or operating-
system-level virtualization, or other virtualization technique.
For example, one or more components of the intake system
210, indexing system 212, or query system 214 can be

Aug. 4, 2022

implemented as separate software containers or container
instances. FEach container instance can have certain
resources (e.g., memory, processor, etc.) of the underlying
host computing system assigned to it, but may share the
same operating system and may use the operating system’s
system call interface. Each container may provide an iso-
lated execution environment on the host system, such as by
providing a memory space of the host system that is logi-
cally isolated from memory space of other containers. Fur-
ther, each container may run the same or different computer
applications concurrently or separately, and may interact
with each other. Although reference is made herein to
containerization and container instances, it will be under-
stood that other virtualization techniques can be used. For
example, the components can be implemented using virtual
machines using full virtualization or paravirtualization, etc.
Thus, where reference is made to “containerized” compo-
nents, it should be understood that such components may
additionally or alternatively be implemented in other iso-
lated execution environments, such as a virtual machine
environment.

3.1. Intake System

[0179] As detailed below, data may be ingested at the data
intake and query system 108 through an intake system 210
configured to conduct preliminary processing on the data,
and make the data available to downstream systems or
components, such as the indexing system 212, query system
214, third party systems, etc.

[0180] One example configuration of an intake system 210
is shown in FIG. 3A. As shown in FIG. 3A, the intake
system 210 includes a forwarder 302, a data retrieval sub-
system 304, an intake ingestion buffer 306, a streaming data
processor 308, and an output ingestion buffer 310. As
described in detail below, the components of the intake
system 210 may be configured to process data according to
a streaming data model, such that data ingested into the data
intake and query system 108 is processed rapidly (e.g.,
within seconds or minutes of initial reception at the intake
system 210) and made available to downstream systems or
components. The initial processing of the intake system 210
may include search or analysis of the data ingested into the
intake system 210. For example, the initial processing can
transform data ingested into the intake system 210 suffi-
ciently, for example, for the data to be searched by a query
system 214, thus enabling “real-time” searching for data on
the data intake and query system 108 (e.g., without requiring
indexing of the data). Various additional and alternative uses
for data processed by the intake system 210 are described
below.

[0181] Although shown as separate components, the for-
warder 302, data retrieval subsystem 304, intake ingestion
buffer 306, streaming data processors 308, and output inges-
tion buffer 310, in various embodiments, may reside on the
same machine or be distributed across multiple machines in
any combination. In one embodiment, any or all of the
components of the intake system can be implemented using
one or more computing devices as distinct computing
devices or as one or more container instances or virtual
machines across one or more computing devices. It will be
appreciated by those skilled in the art that the intake system
210 may have more of fewer components than are illustrated
in FIGS. 3A and 3B. In addition, the intake system 210 could
include various web services and/or peer-to-peer network

US 2022/0245156 Al

configurations or inter container communication network
provided by an associated container instantiation or orches-
tration platform. Thus, the intake system 210 of FIGS. 3A
and 3B should be taken as illustrative. For example, in some
embodiments, components of the intake system 210, such as
the ingestion buffers 306 and 310 and/or the streaming data
processors 308, may be executed by one more virtual
machines implemented in a hosted computing environment.
A hosted computing environment may include one or more
rapidly provisioned and released computing resources,
which computing resources may include computing, net-
working and/or storage devices. A hosted computing envi-
ronment may also be referred to as a cloud computing
environment. Accordingly, the hosted computing environ-
ment can include any proprietary or open source extensible
computing technology, such as Apache Flink or Apache
Spark, to enable fast or on-demand horizontal compute
capacity scaling of the streaming data processor 308.
[0182] In some embodiments, some or all of the elements
of the intake system 210 (e.g., forwarder 302, data retrieval
subsystem 304, intake ingestion buffer 306, streaming data
processors 308, and output ingestion buffer 310, etc.) may
reside on one or more computing devices, such as servers,
which may be communicatively coupled with each other and
with the data sources 202, query system 214, indexing
system 212, or other components. In other embodiments,
some or all of the elements of the intake system 210 may be
implemented as worker nodes as disclosed in U.S. patent
application Ser. Nos. 15/665,159, 15/665,148, 15/665,187,
15/665,248, 15/665,197, 15/665,279, 15/665,302, and
15/665,339, each of which is incorporated by reference
herein in its entirety (hereinafter referred to as “the Parent
Applications™).

[0183] As noted above, the intake system 210 can function
to conduct preliminary processing of data ingested at the
data intake and query system 108. As such, the intake system
210 illustratively includes a forwarder 302 that obtains data
from a data source 202 and transmits the data to a data
retrieval subsystem 304. The data retrieval subsystem 304
may be configured to convert or otherwise format data
provided by the forwarder 302 into an appropriate format for
inclusion at the intake ingestion buffer and transmit the
message to the intake ingestion buffer 306 for processing.
Thereafter, a streaming data processor 308 may obtain data
from the intake ingestion buffer 306, process the data
according to one or more rules, and republish the data to
either the intake ingestion buffer 306 (e.g., for additional
processing) or to the output ingestion buffer 310, such that
the data is made available to downstream components or
systems. In this manner, the intake system 210 may repeat-
edly or iteratively process data according to any of a variety
of rules, such that the data is formatted for use on the data
intake and query system 108 or any other system. As
discussed below, the intake system 210 may be configured
to conduct such processing rapidly (e.g., in “real-time” with
little or no perceptible delay), while ensuring resiliency of
the data.

3.1.1. Forwarder

[0184] The forwarder 302 can include or be executed on a
computing device configured to obtain data from a data
source 202 and transmit the data to the data retrieval
subsystem 304. In some implementations the forwarder 302
can be installed on a computing device associated with the

Aug. 4, 2022

data source 202. While a single forwarder 302 is illustra-
tively shown in FIG. 3A, the intake system 210 may include
a number of different forwarders 302. Each forwarder 302
may illustratively be associated with a different data source
202. A forwarder 302 initially may receive the data as a raw
data stream generated by the data source 202. For example,
a forwarder 302 may receive a data stream from a log file
generated by an application server, from a stream of network
data from a network device, or from any other source of
data. In some embodiments, a forwarder 302 receives the
raw data and may segment the data stream into “blocks”,
possibly of a uniform data size, to facilitate subsequent
processing steps. The forwarder 302 may additionally or
alternatively modify data received, prior to forwarding the
data to the data retrieval subsystem 304. Illustratively, the
forwarder 302 may “tag” metadata for each data block, such
as by specifying a source, source type, or host associated
with the data, or by appending one or more timestamp or
time ranges to each data block.

[0185] In some embodiments, a forwarder 302 may com-
prise a service accessible to data sources 202 via a network
206. For example, one type of forwarder 302 may be capable
of consuming vast amounts of real-time data from a poten-
tially large number of data sources 202. The forwarder 302
may, for example, comprise a computing device which
implements multiple data pipelines or “queues” to handle
forwarding of network data to data retrieval subsystems 304.

3.1.2. Data Retrieval Subsystem

[0186] The data retrieval subsystem 304 illustratively cor-
responds to a computing device which obtains data (e.g.,
from the forwarder 302), and transforms the data into a
format suitable for publication on the intake ingestion buffer
306. Illustratively, where the forwarder 302 segments input
data into discrete blocks, the data retrieval subsystem 304
may generate a message for each block, and publish the
message to the intake ingestion buffer 306. Generation of a
message for each block may include, for example, format-
ting the data of the message in accordance with the require-
ments of a streaming data system implementing the intake
ingestion buffer 306, the requirements of which may vary
according to the streaming data system. In one embodiment,
the intake ingestion buffer 306 formats messages according
to the protocol buffers method of serializing structured data.
Thus, the intake ingestion buffer 306 may be configured to
convert data from an input format into a protocol buffer
format. Where a forwarder 302 does not segment input data
into discrete blocks, the data retrieval subsystem 304 may
itself segment the data. Similarly, the data retrieval subsys-
tem 304 may append metadata to the input data, such as a
source, source type, or host associated with the data.

[0187] Generation of the message may include “tagging”
the message with various information, which may be
included as metadata for the data provided by the forwarder
302, and determining a “topic” for the message, under which
the message should be published to the intake ingestion
buffer 306. In general, the “topic” of a message may reflect
a categorization of the message on a streaming data system.
Tlustratively, each topic may be associated with a logically
distinct queue of messages, such that a downstream device
or system may “subscribe” to the topic in order to be
provided with messages published to the topic on the
streaming data system.

US 2022/0245156 Al

[0188] In one embodiment, the data retrieval subsystem
304 may obtain a set of topic rules (e.g., provided by a user
of the data intake and query system 108 or based on
automatic inspection or identification of the various
upstream and downstream components of the data intake
and query system 108) that determine a topic for a message
as a function of the received data or metadata regarding the
received data. For example, the topic of a message may be
determined as a function of the data source 202 from which
the data stems. After generation of a message based on input
data, the data retrieval subsystem can publish the message to
the intake ingestion buffer 306 under the determined topic.

[0189] While the data retrieval and subsystem 304 is
depicted in FIG. 3A as obtaining data from the forwarder
302, the data retrieval and subsystem 304 may additionally
or alternatively obtain data from other sources. In some
instances, the data retrieval and subsystem 304 may be
implemented as a plurality of intake points, each functioning
to obtain data from one or more corresponding data sources
(e.g., the forwarder 302, data sources 202, or any other data
source), generate messages corresponding to the data, deter-
mine topics to which the messages should be published, and
to publish the messages to one or more topics of the intake
ingestion buffer 306.

[0190] One illustrative set of intake points implementing
the data retrieval and subsystem 304 is shown in FIG. 3B.
Specifically, as shown in FIG. 3B, the data retrieval and
subsystem 304 of FIG. 3A may be implemented as a set of
push-based publishers 320 or a set of pull-based publishers
330. The illustrative push-based publishers 320 operate on a
“push” model, such that messages are generated at the
push-based publishers 320 and transmitted to an intake
ingestion buffer 306 (shown in FIG. 3B as primary and
secondary intake ingestion buffers 306 A and 3068, which
are discussed in more detail below). As will be appreciated
by one skilled in the art, “push” data transmission models
generally correspond to models in which a data source
determines when data should be transmitted to a data target.
A variety of mechanisms exist to provide “push” function-
ality, including “true push” mechanisms (e.g., where a data
source independently initiates transmission of information)
and “emulated push” mechanisms, such as “long polling” (a
mechanism whereby a data target initiates a connection with
a data source, but allows the data source to determine within
a timeframe when data is to be transmitted to the data
source).

[0191] As shown in FIG. 3B, the push-based publishers
320 illustratively include an HTTP intake point 322 and a
data intake and query system (DIQS) intake point 324. The
HTTP intake point 322 can include a computing device
configured to obtain HTTP-based data (e.g., as JavaScript
Object Notation, or JSON messages) to format the HTTP-
based data as a message, to determine a topic for the
message (e.g., based on fields within the HTTP-based data),
and to publish the message to the primary intake ingestion
buffer 306A. Similarly, the DIQS intake point 324 can be
configured to obtain data from a forwarder 302, to format the
forwarder data as a message, to determine a topic for the
message, and to publish the message to the primary intake
ingestion buffer 306 A. In this manner, the DIQS intake point
324 can function in a similar manner to the operations
described with respect to the data retrieval subsystem 304 of
FIG. 3A.

Aug. 4, 2022

[0192] In addition to the push-based publishers 320, one
or more pull-based publishers 330 may be used to imple-
ment the data retrieval subsystem 304. The pull-based
publishers 330 may function on a “pull” model, whereby a
data target (e.g., the primary intake ingestion buffer 306A)
functions to continuously or periodically (e.g., each n sec-
onds) query the pull-based publishers 330 for new messages
to be placed on the primary intake ingestion buffer 306A. In
some instances, development of pull-based systems may
require less coordination of functionality between a pull-
based publisher 330 and the primary intake ingestion buffer
306A. Thus, for example, pull-based publishers 330 may be
more readily developed by third parties (e.g., other than a
developer of the data intake a query system 108), and enable
the data intake and query system 108 to ingest data associ-
ated with third party data sources 202. Accordingly, FIG. 3B
includes a set of custom intake points 332A through 332N,
each of which functions to obtain data from a third-party
data source 202, format the data as a message for inclusion
in the primary intake ingestion buffer 306A, determine a
topic for the message, and make the message available to the
primary intake ingestion buffer 306 A in response to a request
(a “pull”) for such messages.

[0193] While the pull-based publishers 330 are illustra-
tively described as developed by third parties, push-based
publishers 320 may also in some instances be developed by
third parties. Additionally or alternatively, pull-based pub-
lishers may be developed by the developer of the data intake
and query system 108. To facilitate integration of systems
potentially developed by disparate entities, the primary
intake ingestion buffer 306A may provide an API through
which an intake point may publish messages to the primary
intake ingestion buffer 306A. Illustratively, the API may
enable an intake point to “push” messages to the primary
intake ingestion buffer 306A, or request that the primary
intake ingestion buffer 306A “pull” messages from the
intake point. Similarly, the streaming data processors 308
may provide an API through which ingestions buffers may
register with the streaming data processors 308 to facilitate
pre-processing of messages on the ingestion buffers, and the
output ingestion buffer 310 may provide an API through
which the streaming data processors 308 may publish mes-
sages or through which downstream devices or systems may
subscribe to topics on the output ingestion buffer 310.
Furthermore, any one or more of the intake points 322
through 332N may provide an API through which data
sources 202 may submit data to the intake points. Thus, any
one or more of the components of FIGS. 3A and 3B may be
made available via APIs to enable integration of systems
potentially provided by disparate parties.

[0194] The specific configuration of publishers 320 and
330 shown in FIG. 3B is intended to be illustrative in nature.
For example, the specific number and configuration of
intake points may vary according to embodiments of the
present application. In some instances, one or more compo-
nents of the intake system 210 may be omitted. For example,
a data source 202 may in some embodiments publish mes-
sages to an intake ingestion buffer 306, and thus an intake
point 332 may be unnecessary. Other configurations of the
intake system 210 are possible.

3.1.3. Ingestion Buffer

[0195] The intake system 210 is illustratively configured
to ensure message resiliency, such that data is persisted in

US 2022/0245156 Al

the event of failures within the intake system 210. Specifi-
cally, the intake system 210 may utilize one or more
ingestion buffers, which operate to resiliently maintain data
received at the intake system 210 until the data is acknowl-
edged by downstream systems or components. In one
embodiment, resiliency is provided at the intake system 210
by use of ingestion buffers that operate according to a
publish-subscribe (“pub-sub”) message model. In accor-
dance with the pub-sub model, data ingested into the data
intake and query system 108 may be atomized as “mes-
sages,” each of which is categorized into one or more
“topics.” An ingestion buffer can maintain a queue for each
such topic, and enable devices to “subscribe” to a given
topic. As messages are published to the topic, the ingestion
buffer can function to transmit the messages to each sub-
scriber, and ensure message resiliency until at least each
subscriber has acknowledged receipt of the message (e.g., at
which point the ingestion buffer may delete the message). In
this manner, the ingestion buffer may function as a “broker”
within the pub-sub model. A variety of techniques to ensure
resiliency at a pub-sub broker are known in the art, and thus
will not be described in detail herein. In one embodiment, an
ingestion buffer is implemented by a streaming data source.
As noted above, examples of streaming data sources include
(but are not limited to) Amazon’s Simple Queue Service
(“SQS”) or Kinesis™ services, devices executing Apache
Kafka™ software, or devices implementing the Message
Queue Telemetry Transport (MQTT) protocol. Any one or
more of these example streaming data sources may be
utilized to implement an ingestion buffer in accordance with
embodiments of the present disclosure.

[0196] With reference to FIG. 3A, the intake system 210
may include at least two logical ingestion buffers: an intake
ingestion buffer 306 and an output ingestion buffer 310. As
noted above, the intake ingestion buffer 306 can be config-
ured to receive messages from the data retrieval subsystem
304 and resiliently store the message. The intake ingestion
buffer 306 can further be configured to transmit the message
to the streaming data processors 308 for processing. As
further described below, the streaming data processors 308
can be configured with one or more data transformation
rules to transform the messages, and republish the messages
to one or both of the intake ingestion buffer 306 and the
output ingestion buffer 310. The output ingestion buffer 310,
in turn, may make the messages available to various sub-
scribers to the output ingestion buffer 310, which subscribers
may include the query system 214, the indexing system 212,
or other third-party devices (e.g., client devices 102, host
devices 106, etc.).

[0197] Both the input ingestion buffer 306 and output
ingestion buffer 310 may be implemented on a streaming
data source, as noted above. In one embodiment, the intake
ingestion buffer 306 operates to maintain source-oriented
topics, such as topics for each data source 202 from which
data is obtained, while the output ingestion buffer operates
to maintain content-oriented topics, such as topics to which
the data of an individual message pertains. As discussed in
more detail below, the streaming data processors 308 can be
configured to transform messages from the intake ingestion
buffer 306 (e.g., arranged according to source-oriented top-
ics) and publish the transformed messages to the output
ingestion buffer 310 (e.g., arranged according to content-
oriented topics). In some instances, the streaming data
processors 308 may additionally or alternatively republish

Aug. 4, 2022

transformed messages to the intake ingestion buffer 306,
enabling iterative or repeated processing of the data within
the message by the streaming data processors 308.

[0198] While shown in FIG. 3 A as distinct, these ingestion
buffers 306 and 310 may be implemented as a common
ingestion buffer. However, use of distinct ingestion buffers
may be beneficial, for example, where a geographic region
in which data is received differs from a region in which the
data is desired. For example, use of distinct ingestion buffers
may beneficially allow the intake ingestion buffer 306 to
operate in a first geographic region associated with a first set
of data privacy restrictions, while the output ingestion buffer
310 operates in a second geographic region associated with
a second set of data privacy restrictions. In this manner, the
intake system 210 can be configured to comply with all
relevant data privacy restrictions, ensuring privacy of data
processed at the data intake and query system 108.

[0199] Moreover, either or both of the ingestion buffers
306 and 310 may be implemented across multiple distinct
devices, as either a single or multiple ingestion buffers.
Tlustratively, as shown in FIG. 3B, the intake system 210
may include both a primary intake ingestion buffer 306A and
a secondary intake ingestion buffer 306B. The primary
intake ingestion buffer 306A is illustratively configured to
obtain messages from the data retrieval subsystem 304 (e.g.,
implemented as a set of intake points 322 through 332N).
The secondary intake ingestion buffer 306B is illustratively
configured to provide an additional set of messages (e.g.,
from other data sources 202). In one embodiment, the
primary intake ingestion buffer 306A is provided by an
administrator or developer of the data intake and query
system 108, while the secondary intake ingestion buffer
306B is a user-supplied ingestion buffer (e.g., implemented
externally to the data intake and query system 108).
[0200] As noted above, an intake ingestion buffer 306 may
in some embodiments categorize messages according to
source-oriented topics (e.g., denoting a data source 202 from
which the message was obtained). In other embodiments, an
intake ingestion buffer 306 may in some embodiments
categorize messages according to intake-oriented topics
(e.g., denoting the intake point from which the message was
obtained). The number and variety of such topics may vary,
and thus are not shown in FIG. 3B. In one embodiment, the
intake ingestion buffer 306 maintains only a single topic
(e.g., all data to be ingested at the data intake and query
system 108).

[0201] The output ingestion buffer 310 may in one
embodiment categorize messages according to content-cen-
tric topics (e.g., determined based on the content of a
message). Additionally or alternatively, the output ingestion
buffer 310 may categorize messages according to consumer-
centric topics (e.g., topics intended to store messages for
consumption by a downstream device or system). An illus-
trative number of topics are shown in FIG. 3B, as topics 342
through 352N. Each topic may correspond to a queue of
messages (e.g., in accordance with the pub-sub model)
relevant to the corresponding topic. As described in more
detail below, the streaming data processors 308 may be
configured to process messages from the intake ingestion
buffer 306 and determine which topics of the topics 342
through 352N into which to place the messages. For
example, the index topic 342 may be intended to store
messages holding data that should be consumed and indexed
by the indexing system 212. The notable event topic 344

US 2022/0245156 Al

may be intended to store messages holding data that indi-
cates a notable event at a data source 202 (e.g., the occur-
rence of an error or other notable event). The metrics topic
346 may be intended to store messages holding metrics data
for data sources 202. The search results topic 348 may be
intended to store messages holding data responsive to a
search query. The mobile alerts topic 350 may be intended
to store messages holding data for which an end user has
requested alerts on a mobile device. A variety of custom
topics 352A through 352N may be intended to hold data
relevant to end-user-created topics.

[0202] As will be described below, by application of
message transformation rules at the streaming data proces-
sors 308, the intake system 210 may divide and categorize
messages from the intake ingestion buffer 306, partitioning
the message into output topics relevant to a specific down-
stream consumer. In this manner, specific portions of data
input to the data intake and query system 108 may be
“divided out” and handled separately, enabling different
types of data to be handled differently, and potentially at
different speeds. Illustratively, the index topic 342 may be
configured to include all or substantially all data included in
the intake ingestion buffer 306. Given the volume of data,
there may be a significant delay (e.g., minutes or hours)
before a downstream consumer (e.g., the indexing system
212) processes a message in the index topic 342. Thus, for
example, searching data processed by the indexing system
212 may incur significant delay.

[0203] Conversely, the search results topic 348 may be
configured to hold only messages corresponding to data
relevant to a current query. Illustratively, on receiving a
query from a client device 204, the query system 214 may
transmit to the intake system 210 a rule that detects, within
messages from the intake ingestion buffer 306A, data poten-
tially relevant to the query. The streaming data processors
308 may republish these messages within the search results
topic 348, and the query system 214 may subscribe to the
search results topic 348 in order to obtain the data within the
messages. In this manner, the query system 214 can
“bypass” the indexing system 212 and avoid delay that may
be caused by that system, thus enabling faster (and poten-
tially real time) display of search results.

[0204] While shown in FIGS. 3A and 3B as a single output
ingestion buffer 310, the intake system 210 may in some
instances utilize multiple output ingestion buffers 310.

3.1.4. Streaming Data Processors

[0205] As noted above, the streaming data processors 308
may apply one or more rules to process messages from the
intake ingestion buffer 306A into messages on the output
ingestion buffer 310. These rules may be specified, for
example, by an end user of the data intake and query system
108 or may be automatically generated by the data intake
and query system 108 (e.g., in response to a user query).

[0206] Illustratively, each rule may correspond to a set of
selection criteria indicating messages to which the rule
applies, as well as one or more processing sub-rules indi-
cating an action to be taken by the streaming data processors
308 with respect to the message. The selection criteria may
include any number or combination of criteria based on the
data included within a message or metadata of the message
(e.g., a topic to which the message is published). In one
embodiment, the selection criteria are formatted in the same
manner or similarly to extraction rules, discussed in more

Aug. 4, 2022

detail below. For example, selection criteria may include
regular expressions that derive one or more values or a
sub-portion of text from the portion of machine data in each
message to produce a value for the field for that message.
When a message is located within the intake ingestion buffer
306 that matches the selection criteria, the streaming data
processors 308 may apply the processing rules to the mes-
sage. Processing sub-rules may indicate, for example, a
topic of the output ingestion buffer 310 into which the
message should be placed. Processing sub-rules may further
indicate transformations, such as field or unit normalization
operations, to be performed on the message. Illustratively, a
transformation may include modifying data within the mes-
sage, such as altering a format in which the data is conveyed
(e.g., converting millisecond timestamps values to micro-
second timestamp values, converting imperial units to met-
ric units, etc.), or supplementing the data with additional
information (e.g., appending an error descriptor to an error
code). In some instances, the streaming data processors 308
may be in communication with one or more external data
stores (the locations of which may be specified within a rule)
that provide information used to supplement or enrich
messages processed at the streaming data processors 308.
For example, a specific rule may include selection criteria
identifying an error code within a message of the primary
ingestion buffer 306A, and specifying that when the error
code is detected within a message, that the streaming data
processors 308 should conduct a lookup in an external data
source (e.g., a database) to retrieve the human-readable
descriptor for that error code, and inject the descriptor into
the message. In this manner, rules may be used to process,
transform, or enrich messages.

[0207] The streaming data processors 308 may include a
set of computing devices configured to process messages
from the intake ingestion buffer 306 at a speed commensu-
rate with a rate at which messages are placed into the intake
ingestion buffer 306. In one embodiment, the number of
streaming data processors 308 used to process messages
may vary based on a number of messages on the intake
ingestion buffer 306 awaiting processing. Thus, as additional
messages are queued into the intake ingestion buffer 306, the
number of streaming data processors 308 may be increased
to ensure that such messages are rapidly processed. In some
instances, the streaming data processors 308 may be exten-
sible on a per topic basis. Thus, individual devices imple-
menting the streaming data processors 308 may subscribe to
different topics on the intake ingestion buffer 306, and the
number of devices subscribed to an individual topic may
vary according to a rate of publication of messages to that
topic (e.g., as measured by a backlog of messages in the
topic). In this way, the intake system 210 can support
ingestion of massive amounts of data from numerous data
sources 202.

[0208] In some embodiments, an intake system may com-
prise a service accessible to client devices 102 and host
devices 106 via a network 104. For example, one type of
forwarder may be capable of consuming vast amounts of
real-time data from a potentially large number of client
devices 102 and/or host devices 106. The forwarder may, for
example, comprise a computing device which implements
multiple data pipelines or “queues” to handle forwarding of
network data to indexers. A forwarder may also perform
many of the functions that are performed by an indexer. For
example, a forwarder may perform keyword extractions on

US 2022/0245156 Al

raw data or parse raw data to create events. A forwarder may
generate time stamps for events. Additionally or alterna-
tively, a forwarder may perform routing of events to index-
ers. Data store 212 may contain events derived from
machine data from a variety of sources all pertaining to the
same component in an I'T environment, and this data may be
produced by the machine in question or by other compo-
nents in the IT environment.

3.2. Indexing System

[0209] FIG. 4 is a block diagram illustrating an embodi-
ment of an indexing system 212 of the data intake and query
system 108. The indexing system 212 can receive, process,
and store data from multiple data sources 202, which may be
associated with different tenants, users, etc. Using the
received data, the indexing system can generate events that
include a portion of machine data associated with a time-
stamp and store the events in buckets based on one or more
of the timestamps, tenants, indexes, etc., associated with the
data. Moreover, the indexing system 212 can include various
components that enable it to provide a stateless indexing
service, or indexing service that is able to rapidly recover
without data loss if one or more components of the indexing
system 212 become unresponsive or unavailable.

[0210] In the illustrated embodiment, the indexing system
212 includes an indexing system manager 402 and one or
more indexing nodes 404. However, it will be understood
that the indexing system 212 can include fewer or more
components. For example, in some embodiments, the com-
mon storage 216 or data store catalog 220 can form part of
the indexing system 212, etc.

[0211] As described herein, each of the components of the
indexing system 212 can be implemented using one or more
computing devices as distinct computing devices or as one
or more container instances or virtual machines across one
or more computing devices. For example, in some embodi-
ments, the indexing system manager 402 and indexing nodes
404 can be implemented as distinct computing devices with
separate hardware, memory, and processors. In certain
embodiments, the indexing system manager 402 and index-
ing nodes 404 can be implemented on the same or across
different computing devices as distinct container instances,
with each container having access to a subset of the
resources of a host computing device (e.g., a subset of the
memory or processing time of the processors of the host
computing device), but sharing a similar operating system.
In some cases, the components can be implemented as
distinct virtual machines across one or more computing
devices, where each virtual machine can have its own
unshared operating system but shares the underlying hard-
ware with other virtual machines on the same host comput-
ing device.

3.2.1 Indexing System Manager

[0212] As mentioned, the indexing system manager 402
can monitor and manage the indexing nodes 404, and can be
implemented as a distinct computing device, virtual
machine, container, container of a pod, or a process or thread
associated with a container. In certain embodiments, the
indexing system 212 can include one indexing system
manager 402 to manage all indexing nodes 404 of the
indexing system 212. In some embodiments, the indexing
system 212 can include multiple indexing system managers

Aug. 4, 2022

402. For example, an indexing system manager 402 can be
instantiated for each computing device (or group of com-
puting devices) configured as a host computing device for
multiple indexing nodes 404.

[0213] The indexing system manager 402 can handle
resource management, creation/destruction of indexing
nodes 404, high availability, load balancing, application
upgrades/rollbacks, logging and monitoring, storage, net-
working, service discovery, and performance and scalability,
and otherwise handle containerization management of the
containers of the indexing system 212. In certain embodi-
ments, the indexing system manager 402 can be imple-
mented using Kubernetes or Swarm.

[0214] In some cases, the indexing system manager 402
can monitor the available resources of a host computing
device and request additional resources in a shared resource
environment, based on workload of the indexing nodes 404
or create, destroy, or reassign indexing nodes 404 based on
workload. Further, the indexing system manager 402 system
can assign indexing nodes 404 to handle data streams based
on workload, system resources, etc.

3.2.2. Indexing Nodes

[0215] The indexing nodes 404 can include one or more
components to implement various functions of the indexing
system 212. In the illustrated embodiment, the indexing
node 404 includes an indexing node manager 406, partition
manager 408, indexer 410, data store 412, and bucket
manager 414. As described herein, the indexing nodes 404
can be implemented on separate computing devices or as
containers or virtual machines in a virtualization environ-
ment.

[0216] In some embodiments, an indexing node 404, and
can be implemented as a distinct computing device, virtual
machine, container, container of a pod, or a process or thread
associated with a container, or using multiple-related con-
tainers. In certain embodiments, such as in a Kubernetes
deployment, each indexing node 404 can be implemented as
a separate container or pod. For example, one or more of the
components of the indexing node 404 can be implemented
as different containers of a single pod, e.g., on a container-
ization platform, such as Docker, the one or more compo-
nents of the indexing node can be implemented as different
Docker containers managed by synchronization platforms
such as Kubernetes or Swarm. Accordingly, reference to a
containerized indexing node 404 can refer to the indexing
node 404 as being a single container or as one or more
components of the indexing node 404 being implemented as
different, related containers or virtual machines.

3.2.2.1. Indexing Node Manager

[0217] The indexing node manager 406 can manage the
processing of the various streams or partitions of data by the
indexing node 404, and can be implemented as a distinct
computing device, virtual machine, container, container of a
pod, or a process or thread associated with a container. For
example, in certain embodiments, as partitions or data
streams are assigned to the indexing node 404, the indexing
node manager 406 can generate one or more partition
manager(s) 408 to manage each partition or data stream. In
some cases, the indexing node manager 406 generates a
separate partition manager 408 for each partition or shard
that is processed by the indexing node 404. In certain

US 2022/0245156 Al

embodiments, the partition can correspond to a topic of a
data stream of the ingestion buffer 310. Each topic can be
configured in a variety of ways. For example, in some
embodiments, a topic may correspond to data from a par-
ticular data source 202, tenant, index/partition, or source-
type. In this way, in certain embodiments, the indexing
system 212 can discriminate between data from different
sources or associated with different tenants, or indexes/
partitions. For example, the indexing system 212 can assign
more indexing nodes 404 to process data from one topic
(associated with one tenant) than another topic (associated
with another tenant), or store the data from one topic more
frequently to common storage 216 than the data from a
different topic, etc.

[0218] In some embodiments, the indexing node manager
406 monitors the various shards of data being processed by
the indexing node 404 and the read pointers or location
markers for those shards. In some embodiments, the index-
ing node manager 406 stores the read pointers or location
marker in one or more data stores, such as but not limited to,
common storage 216, DynamoDB, S3, or another type of
storage system, shared storage system, or networked storage
system, etc. As the indexing node 404 processes the data and
the markers for the shards are updated by the intake system
210, the indexing node manager 406 can be updated to
reflect the changes to the read pointers or location markers.
In this way, if a particular partition manager 408 becomes
unresponsive or unavailable, the indexing node manager 406
can generate a new partition manager 408 to handle the data
stream without losing context of what data is to be read from
the intake system 210. Accordingly, in some embodiments,
by using the ingestion buffer 310 and tracking the location
of the location markers in the shards of the ingestion buffer,
the indexing system 212 can aid in providing a stateless
indexing service.

[0219] In some embodiments, the indexing node manager
406 is implemented as a background process, or daemon, on
the indexing node 404 and the partition manager(s) 408 are
implemented as threads, copies, or forks of the background
process. In some cases, an indexing node manager 406 can
copy itself, or fork, to create a partition manager 408 or
cause a template process to copy itself, or fork, to create
each new partition manager 408, etc. This may be done for
multithreading efficiency or for other reasons related to
containerization and efficiency of managing indexers 410. In
certain embodiments, the indexing node manager 406 gen-
erates a new process for each partition manager 408. In some
cases, by generating a new process for each partition man-
ager 408, the indexing node manager 408 can support
multiple language implementations and be language agnos-
tic. For example, the indexing node manager 408 can
generate a process for a partition manager 408 in python and
create a second process for a partition manager 408 in
golang, etc.

3.2.2.2. Partition Manager

[0220] As mentioned, the partition manager(s) 408 can
manage the processing of one or more of the partitions or
shards of a data stream processed by an indexing node 404
or the indexer 410 of the indexing node 404, and can be
implemented as a distinct computing device, virtual
machine, container, container of a pod, or a process or thread
associated with a container.

Aug. 4, 2022

[0221] In some cases, managing the processing of a par-
tition or shard can include, but it not limited to, communi-
cating data from a particular shard to the indexer 410 for
processing, monitoring the indexer 410 and the size of the
data being processed by the indexer 410, instructing the
indexer 410 to move the data to common storage 216, and
reporting the storage of the data to the intake system 210.
For a particular shard or partition of data from the intake
system 210, the indexing node manager 406 can assign a
particular partition manager 408. The partition manager 408
for that partition can receive the data from the intake system
210 and forward or communicate that data to the indexer 410
for processing.

[0222] In some embodiments, the partition manager 408
receives data from a pub-sub messaging system, such as the
ingestion buffer 310. As described herein, the ingestion
buffer 310 can have one or more streams of data and one or
more shards or partitions associated with each stream of
data. Each stream of data can be separated into shards and/or
other partitions or types of organization of data. In certain
cases, each shard can include data from multiple tenants,
indexes/partition, etc. In some cases, each shard can corre-
spond to data associated with a particular tenant, index/
partition, source, sourcetype, etc. Accordingly, the indexing
system 212 can include a partition manager 408 for indi-
vidual tenants, indexes/partitions, sources, sourcetypes, etc.
In this way, the indexing system 212 can manage and
process the data differently. For example, the indexing
system 212 can assign more indexing nodes 404 to process
data from one tenant than another tenant, or store buckets
associated with one tenant or partition/index more fre-
quently to common storage 216 than buckets associated with
a different tenant or partition/index, etc.

[0223] Accordingly, in some embodiments, a partition
manager 408 receives data from one or more of the shards
or partitions of the ingestion buffer 310. The partition
manager 408 can forward the data from the shard to the
indexer 410 for processing. In some cases, the amount of
data coming into a shard may exceed the shard’s throughput.
For example, 4 MB/s of data may be sent to an ingestion
buffer 310 for a particular shard, but the ingestion buffer 310
may be able to process only 2 MB/s of data per shard.
Accordingly, in some embodiments, the data in the shard can
include a reference to a location in storage where the
indexing system 212 can retrieve the data. For example, a
reference pointer to data can be placed in the ingestion buffer
310 rather than putting the data itself into the ingestion
buffer. The reference pointer can reference a chunk of data
that is larger than the throughput of the ingestion buffer 310
for that shard. In this way, the data intake and query system
108 can increase the throughput of individual shards of the
ingestion buffer 310. In such embodiments, the partition
manager 408 can obtain the reference pointer from the
ingestion buffer 310 and retrieve the data from the refer-
enced storage for processing. In some cases, the referenced
storage to which reference pointers in the ingestion buffer
310 may point can correspond to the common storage 216 or
other cloud or local storage. In some implementations, the
chunks of data to which the reference pointers refer may be
directed to common storage 216 from intake system 210,
e.g., streaming data processor 308 or ingestion buffer 310.
[0224] As the indexer 410 processes the data, stores the
data in buckets, and generates indexes of the data, the
partition manager 408 can monitor the indexer 410 and the

US 2022/0245156 Al

size of the data on the indexer 410 (inclusive of the data store
412) associated with the partition. The size of the data on the
indexer 410 can correspond to the data that is actually
received from the particular partition of the intake system
210, as well as data generated by the indexer 410 based on
the received data (e.g., inverted indexes, summaries, etc.),
and may correspond to one or more buckets. For instance,
the indexer 410 may have generated one or more buckets for
each tenant and/or partition associated with data being
processed in the indexer 410.

[0225] Based on a bucket roll-over policy, the partition
manager 408 can instruct the indexer 410 to convert editable
groups of data or buckets to non-editable groups or buckets
and/or copy the data associated with the partition to common
storage 216. In some embodiments, the bucket roll-over
policy can indicate that the data associated with the particu-
lar partition, which may have been indexed by the indexer
410 and stored in the data store 412 in various buckets, is to
be copied to common storage 216 based on a determination
that the size of the data associated with the particular
partition satisfies a threshold size. In some cases, the bucket
roll-over policy can include different threshold sizes for
different partitions. In other implementations the bucket
roll-over policy may be modified by other factors, such as an
identity of a tenant associated with indexing node 404,
system resource usage, which could be based on the pod or
other container that contains indexing node 404, or one of
the physical hardware layers with which the indexing node
404 is running, or any other appropriate factor for scaling
and system performance of indexing nodes 404 or any other
system component.

[0226] In certain embodiments, the bucket roll-over policy
can indicate data is to be copied to common storage 216
based on a determination that the amount of data associated
with all partitions (or a subset thereof) of the indexing node
404 satisfies a threshold amount. Further, the bucket roll-
over policy can indicate that the one or more partition
managers 408 of an indexing node 404 are to communicate
with each other or with the indexing node manager 406 to
monitor the amount of data on the indexer 410 associated
with all of the partitions (or a subset thereof) assigned to the
indexing node 404 and determine that the amount of data on
the indexer 410 (or data store 412) associated with all the
partitions (or a subset thereof) satisfies a threshold amount.
Accordingly, based on the bucket roll-over policy, one or
more of the partition managers 408 or the indexing node
manager 406 can instruct the indexer 410 to convert editable
buckets associated with the partitions (or subsets thereof) to
non-editable buckets and/or store the data associated with
the partitions (or subset thereof) in common storage 216.

[0227] Incertain embodiments, the bucket roll-over policy
can indicate that buckets are to be converted to non-editable
buckets and stored in common storage based on a collective
size of buckets satisfying a threshold size. In some cases, the
bucket roll-over policy can use different threshold sizes for
conversion and storage. For example, the bucket roll-over
policy can use a first threshold size to indicate when editable
buckets are to be converted to non-editable buckets (e.g.,
stop writing to the buckets) and a second threshold size to
indicate when the data (or buckets) are to be stored in
common storage 216. In certain cases, the bucket roll-over
policy can indicate that the partition manager(s) 408 are to
send a single command to the indexer 410 that causes the

Aug. 4, 2022

indexer 410 to convert editable buckets to non-editable
buckets and store the buckets in common storage 216.

[0228] Based on an acknowledgement that the data asso-
ciated with a partition (or multiple partitions as the case may
be) has been stored in common storage 216, the partition
manager 408 can communicate to the intake system 210,
either directly, or through the indexing node manager 406,
that the data has been stored and/or that the location marker
or read pointer can be moved or updated. In some cases, the
partition manager 408 receives the acknowledgement that
the data has been stored from common storage 216 and/or
from the indexer 410. In certain embodiments, which will be
described in more detail herein, the intake system 210 does
not receive communication that the data stored in intake
system 210 has been read and processed until after that data
has been stored in common storage 216.

[0229] The acknowledgement that the data has been stored
in common storage 216 can also include location informa-
tion about the data within the common storage 216. For
example, the acknowledgement can provide a link, map, or
path to the copied data in the common storage 216. Using the
information about the data stored in common storage 216,
the partition manager 408 can update the data store catalog
220. For example, the partition manager 408 can update the
data store catalog 220 with an identifier of the data (e.g.,
bucket identifier, tenant identifier, partition identifier, etc.),
the location of the data in common storage 216, a time range
associated with the data, etc. In this way, the data store
catalog 220 can be kept up-to-date with the contents of the
common storage 216.

[0230] Moreover, as additional data is received from the
intake system 210, the partition manager 408 can continue
to communicate the data to the indexer 410, monitor the size
or amount of data on the indexer 410, instruct the indexer
410 to copy the data to common storage 216, communicate
the successful storage of the data to the intake system 210,
and update the data store catalog 220.

[0231] As a non-limiting example, consider the scenario in
which the intake system 210 communicates data from a
particular shard or partition to the indexing system 212. The
intake system 210 can track which data it has sent and a
location marker for the data in the intake system 210 (e.g.,
a marker that identifies data that has been sent to the
indexing system 212 for processing).

[0232] As described herein, the intake system 210 can
retain or persistently make available the sent data until the
intake system 210 receives an acknowledgement from the
indexing system 212 that the sent data has been processed,
stored in persistent storage (e.g., common storage 216), or is
safe to be deleted. In this way, if an indexing node 404
assigned to process the sent data becomes unresponsive or is
lost, e.g., due to a hardware failure or a crash of the indexing
node manager 406 or other component, process, or daemon,
the data that was sent to the unresponsive indexing node 404
will not be lost. Rather, a different indexing node 404 can
obtain and process the data from the intake system 210.

[0233] As the indexing system 212 stores the data in
common storage 216, it can report the storage to the intake
system 210. In response, the intake system 210 can update
its marker to identify different data that has been sent to the
indexing system 212 for processing, but has not yet been
stored. By moving the marker, the intake system 210 can
indicate that the previously-identified data has been stored in

US 2022/0245156 Al

common storage 216, can be deleted from the intake system
210 or, otherwise, can be allowed to be overwritten, lost, etc.
[0234] With reference to the example above, in some
embodiments, the indexing node manager 406 can track the
marker used by the ingestion buffer 310, and the partition
manager 408 can receive the data from the ingestion buffer
310 and forward it to an indexer 410 for processing (or use
the data in the ingestion buffer to obtain data from a
referenced storage location and forward the obtained data to
the indexer). The partition manager 408 can monitor the
amount of data being processed and instruct the indexer 410
to copy the data to common storage 216. Once the data is
stored in common storage 216, the partition manager 408
can report the storage to the ingestion buffer 310, so that the
ingestion buffer 310 can update its marker. In addition, the
indexing node manager 406 can update its records with the
location of the updated marker. In this way, if partition
manager 408 become unresponsive or fails, the indexing
node manager 406 can assign a different partition manager
408 to obtain the data from the data stream without losing
the location information, or if the indexer 410 becomes
unavailable or fails, the indexing node manager 406 can
assign a different indexer 410 to process and store the data.

3.2.2.3. Indexer and Data Store

[0235] As described herein, the indexer 410 can be the
primary indexing execution engine, and can be implemented
as a distinct computing device, container, container within a
pod, etc. For example, the indexer 410 can tasked with
parsing, processing, indexing, and storing the data received
from the intake system 210 via the partition manager(s) 408.
Specifically, in some embodiments, the indexer 410 can
parse the incoming data to identify timestamps, generate
events from the incoming data, group and save events into
buckets, generate summaries or indexes (e.g., time series
index, inverted index, keyword index, etc.) of the events in
the buckets, and store the buckets in common storage 216.
[0236] In some cases, one indexer 410 can be assigned to
each partition manager 408, and in certain embodiments,
one indexer 410 can receive and process the data from
multiple (or all) partition mangers 408 on the same indexing
node 404 or from multiple indexing nodes 404.

[0237] In some embodiments, the indexer 410 can store
the events and buckets in the data store 412 according to a
bucket creation policy. The bucket creation policy can
indicate how many buckets the indexer 410 is to generate for
the data that it processes. In some cases, based on the bucket
creation policy, the indexer 410 generates at least one bucket
for each tenant and index (also referred to as a partition)
associated with the data that it processes. For example, if the
indexer 410 receives data associated with three tenants A, B,
C, each with two indexes X, Y, then the indexer 410 can
generate at least six buckets: at least one bucket for each of
Tenant A:Index X, Tenant A:Index Y, Tenant B:Index X,
Tenant B:Index Y, Tenant C:Index X, and Tenant C:Index Y.
Additional buckets may be generated for a tenant/partition
pair based on the amount of data received that is associated
with the tenant/partition pair. However, it will be understood
that the indexer 410 can generate buckets using a variety of
policies. For example, the indexer 410 can generate one or
more buckets for each tenant, partition, source, sourcetype,
etc.

[0238] In some cases, if the indexer 410 receives data that
it determines to be “old,” e.g., based on a timestamp of the

Aug. 4, 2022

data or other temporal determination regarding the data, then
it can generate a bucket for the “old” data. In some embodi-
ments, the indexer 410 can determine that data is “old,” if
the data is associated with a timestamp that is earlier in time
by a threshold amount than timestamps of other data in the
corresponding bucket (e.g., depending on the bucket cre-
ation policy, data from the same partition and/or tenant)
being processed by the indexer 410. For example, if the
indexer 410 is processing data for the bucket for Tenant
A:Index X having timestamps on April 23 between 16:23:56
and 16:46:32 and receives data for the Tenant A:Index X
bucket having a timestamp on April 22 or on April 23 at
08:05:32, then it can determine that the data with the earlier
timestamps is “old” data and generate a new bucket for that
data. In this way, the indexer 410 can avoid placing data in
the same bucket that creates a time range that is significantly
larger than the time range of other buckets, which can
decrease the performance of the system as the bucket could
be identified as relevant for a search more often than it
otherwise would.

[0239] The threshold amount of time used to determine if
received data is “old,” can be predetermined or dynamically
determined based on a number of factors, such as, but not
limited to, time ranges of other buckets, amount of data
being processed, timestamps of the data being processed,
etc. For example, the indexer 410 can determine an average
time range of buckets that it processes for different tenants
and indexes. If incoming data would cause the time range of
a bucket to be significantly larger (e.g., 25%, 50%, 75%,
double, or other amount) than the average time range, then
the indexer 410 can determine that the data is “old” data, and
generate a separate bucket for it. By placing the “old” bucket
in a separate bucket, the indexer 410 can reduce the
instances in which the bucket is identified as storing data that
may be relevant to a query. For example, by having a smaller
time range, the query system 214 may identify the bucket
less frequently as a relevant bucket then if the bucket had the
large time range due to the “old” data. Additionally, in a
process that will be described in more detail herein, time-
restricted searches and search queries may be executed more
quickly because there may be fewer buckets to search for a
particular time range. In this manner, computational effi-
ciency of searching large amounts of data can be improved.
Although described with respect detecting “old” data, the
indexer 410 can use similar techniques to determine that
“new” data should be placed in a new bucket or that a time
gap between data in a bucket and “new” data is larger than
a threshold amount such that the “new” data should be stored
in a separate bucket.

[0240] Once a particular bucket satisfies a size threshold,
the indexer 410 can store the bucket in or copy the bucket
to common storage 216. In certain embodiments, the parti-
tion manager 408 can monitor the size of the buckets and
instruct the indexer 410 to copy the bucket to common
storage 216. The threshold size can be predetermined or
dynamically determined.

[0241] In certain embodiments, the partition manager 408
can monitor the size of multiple, or all, buckets associated
with the partition being managed by the partition manager
408, and based on the collective size of the buckets satis-
fying a threshold size, instruct the indexer 410 to copy the
buckets associated with the partition to common storage
216. In certain cases, one or more partition managers 408 or
the indexing node manager 406 can monitor the size of

US 2022/0245156 Al

buckets across multiple, or all partitions, associated with the
indexing node 404, and instruct the indexer to copy the
buckets to common storage 216 based on the size of the
buckets satistying a threshold size.

[0242] As described herein, buckets in the data store 412
that are being edited by the indexer 410 can be referred to
as hot buckets or editable buckets. For example, the indexer
410 can add data, events, and indexes to editable buckets in
the data store 412, etc. Buckets in the data store 412 that are
no longer edited by the indexer 410 can be referred to as
warm buckets or non-editable buckets. In some embodi-
ments, once the indexer 410 determines that a hot bucket is
to be copied to common storage 216, it can convert the hot
(editable) bucket to a warm (non-editable) bucket, and then
move or copy the warm bucket to the common storage 216.
Once the warm bucket is moved or copied to common
storage 216, the indexer 410 can notify the partition manager
408 that the data associated with the warm bucket has been
processed and stored. As mentioned, the partition manager
408 can relay the information to the intake system 210. In
addition, the indexer 410 can provide the partition manager
408 with information about the buckets stored in common
storage 216, such as, but not limited to, location information,
tenant identifier, index identifier, time range, etc. As
described herein, the partition manager 408 can use this
information to update the data store catalog 220.

3.2.3. Bucket Manager

[0243] The bucket manager 414 can manage the buckets
stored in the data store 412, and can be implemented as a
distinct computing device, virtual machine, container, con-
tainer of a pod, or a process or thread associated with a
container. In some cases, the bucket manager 414 can be
implemented as part of the indexer 410, indexing node 404,
or as a separate component of the indexing system 212.
[0244] As described herein, the indexer 410 stores data in
the data store 412 as one or more buckets associated with
different tenants, indexes, etc. In some cases, the contents of
the buckets are not searchable by the query system 214 until
they are stored in common storage 216. For example, the
query system 214 may be unable to identify data responsive
to a query that is located in hot (editable) buckets in the data
store 412 and/or the warm (non-editable) buckets in the data
store 412 that have not been copied to common storage 216.
Thus, query results may be incomplete or inaccurate, or
slowed as the data in the buckets of the data store 412 are
copied to common storage 216.

[0245] To decrease the delay between processing and/or
indexing the data and making that data searchable, the
indexing system 212 can use a bucket roll-over policy that
instructs the indexer 410 to convert hot buckets to warm
buckets more frequently (or convert based on a smaller
threshold size) and/or copy the warm buckets to common
storage 216. While converting hot buckets to warm buckets
more frequently or based on a smaller storage size can
decrease the lag between processing the data and making it
searchable, it can increase the storage size and overhead of
buckets in common storage 216. For example, each bucket
may have overhead associated with it, in terms of storage
space required, processor power required, or other resource
requirement. Thus, more buckets in common storage 216
can result in more storage used for overhead than for storing
data, which can lead to increased storage size and costs. In
addition, a larger number of buckets in common storage 216

Aug. 4, 2022

can increase query times, as the opening of each bucket as
part of a query can have certain processing overhead or time
delay associated with it.

[0246] To decrease search times and reduce overhead and
storage associated with the buckets (while maintaining a
reduced delay between processing the data and making it
searchable), the bucket manager 414 can monitor the buck-
ets stored in the data store 412 and/or common storage 216
and merge buckets according to a bucket merge policy. For
example, the bucket manager 414 can monitor and merge
warm buckets stored in the data store 412 before, after, or
concurrently with the indexer copying warm buckets to
common storage 216.

[0247] The bucket merge policy can indicate which buck-
ets are candidates for a merge or which bucket to merge
(e.g., based on time ranges, size, tenant/partition or other
identifiers), the number of buckets to merge, size or time
range parameters for the merged buckets, and/or a frequency
for creating the merged buckets. For example, the bucket
merge policy can indicate that a certain number of buckets
are to be merged, regardless of size of the buckets. As
another non-limiting example, the bucket merge policy can
indicate that multiple buckets are to be merged until a
threshold bucket size is reached (e.g., 750 MB, or 1 GB, or
more). As yet another non-limiting example, the bucket
merge policy can indicate that buckets having a time range
within a set period of time (e.g., 30 sec, 1 min., etc.) are to
be merged, regardless of the number or size of the buckets
being merged.

[0248] In addition, the bucket merge policy can indicate
which buckets are to be merged or include additional criteria
for merging buckets. For example, the bucket merge policy
can indicate that only buckets having the same tenant
identifier and/or partition are to be merged, or set constraints
on the size of the time range for a merged bucket (e.g., the
time range of the merged bucket is not to exceed an average
time range of buckets associated with the same source,
tenant, partition, etc.). In certain embodiments, the bucket
merge policy can indicate that buckets that are older than a
threshold amount (e.g., one hour, one day, etc.) are candi-
dates for a merge or that a bucket merge is to take place once
an hour, once a day, etc. In certain embodiments, the bucket
merge policy can indicate that buckets are to be merged
based on a determination that the number or size of warm
buckets in the data store 412 of the indexing node 404
satisfies a threshold number or size, or the number or size of
warm buckets associated with the same tenant identifier
and/or partition satisfies the threshold number or size. It will
be understood, that the bucket manager 414 can use any one
or any combination of the aforementioned or other criteria
for the bucket merge policy to determine when, how, and
which buckets to merge.

[0249] Once a group of buckets are merged into one or
more merged buckets, the bucket manager 414 can copy or
instruct the indexer 406 to copy the merged buckets to
common storage 216. Based on a determination that the
merged buckets are successfully copied to the common
storage 216, the bucket manager 414 can delete the merged
buckets and the buckets used to generate the merged buckets
(also referred to herein as unmerged buckets or pre-merged
buckets) from the data store 412.

[0250] In some cases, the bucket manager 414 can also
remove or instruct the common storage 216 to remove
corresponding pre-merged buckets from the common stor-

US 2022/0245156 Al

age 216 according to a bucket management policy. The
bucket management policy can indicate when the pre-
merged buckets are to be deleted or designated as able to be
overwritten from common storage 216.

[0251] In some cases, the bucket management policy can
indicate that the pre-merged buckets are to be deleted
immediately, once any queries relying on the pre-merged
buckets are completed, after a predetermined amount of
time, etc. In some cases, the pre-merged buckets may be in
use or identified for use by one or more queries. Removing
the pre-merged buckets from common storage 216 in the
middle of a query may cause one or more failures in the
query system 214 or result in query responses that are
incomplete or erroneous. Accordingly, the bucket manage-
ment policy, in some cases, can indicate to the common
storage 216 that queries that arrive before a merged bucket
is stored in common storage 216 are to use the correspond-
ing pre-merged buckets and queries that arrive after the
merged bucket is stored in common storage 216 are to use
the merged bucket.

[0252] Further, the bucket management policy can indi-
cate that once queries using the pre-merged buckets are
completed, the buckets are to be removed from common
storage 216. However, it will be understood that the bucket
management policy can indicate removal of the buckets in a
variety of ways. For example, per the bucket management
policy, the common storage 216 can remove the buckets
after on one or more hours, one day, one week, etc., with or
without regard to queries that may be relying on the pre-
merged buckets. In some embodiments, the bucket manage-
ment policy can indicate that the pre-merged buckets are to
be removed without regard to queries relying on the pre-
merged buckets and that any queries relying on the pre-
merged buckets are to be redirected to the merged bucket.
[0253] In addition to removing the pre-merged buckets
and merged bucket from the data store 412 and removing or
instructing common storage 216 to remove the pre-merged
buckets from the data store(s) 218, the bucket manger 414
can update the data store catalog 220 or cause the indexer
410 or partition manager 408 to update the data store catalog
220 with the relevant changes. These changes can include
removing reference to the pre-merged buckets in the data
store catalog 220 and/or adding information about the
merged bucket, including, but not limited to, a bucket,
tenant, and/or partition identifier associated with the merged
bucket, a time range of the merged bucket, location infor-
mation of the merged bucket in common storage 216, etc. In
this way, the data store catalog 220 can be kept up-to-date
with the contents of the common storage 216.

3.3. Query System

[0254] FIG. 5 is a block diagram illustrating an embodi-
ment of a query system 214 of the data intake and query
system 108. The query system 214 can receive, process, and
execute queries from multiple client devices 204, which may
be associated with different tenants, users, etc. Moreover, the
query system 214 can include various components that
enable it to provide a stateless or state-free search service, or
search service that is able to rapidly recover without data
loss if one or more components of the query system 214
become unresponsive or unavailable.

[0255] In the illustrated embodiment, the query system
214 includes one or more query system managers 502
(collectively or individually referred to as query system

Aug. 4, 2022

manager 502), one or more search heads 504 (collectively or
individually referred to as search head 504 or search heads
504), one or more search nodes 506 (collectively or indi-
vidually referred to as search node 506 or search nodes 506),
a search node monitor 508, and a search node catalog 510.
However, it will be understood that the query system 214
can include fewer or more components as desired. For
example, in some embodiments, the common storage 216,
data store catalog 220, or query acceleration data store 222
can form part of the query system 214, etc.

[0256] As described herein, each of the components of the
query system 214 can be implemented using one or more
computing devices as distinct computing devices or as one
or more container instances or virtual machines across one
or more computing devices. For example, in some embodi-
ments, the query system manager 502, search heads 504, and
search nodes 506 can be implemented as distinct computing
devices with separate hardware, memory, and processors. In
certain embodiments, the query system manager 502, search
heads 504, and search nodes 506 can be implemented on the
same or across different computing devices as distinct
container instances, with each container having access to a
subset of the resources of a host computing device (e.g., a
subset of the memory or processing time of the processors
of the host computing device), but sharing a similar oper-
ating system. In some cases, the components can be imple-
mented as distinct virtual machines across one or more
computing devices, where each virtual machine can have its
own unshared operating system but shares the underlying
hardware with other virtual machines on the same host
computing device.

3.3.1. Query System Manager

[0257] As mentioned, the query system manager 502 can
monitor and manage the search heads 504 and search nodes
506, and can be implemented as a distinct computing device,
virtual machine, container, container of a pod, or a process
or thread associated with a container. For example, the query
system manager 502 can determine which search head 504
is to handle an incoming query or determine whether to
generate an additional search node 506 based on the number
of queries received by the query system 214 or based on
another search node 506 becoming unavailable or unrespon-
sive. Similarly, the query system manager 502 can determine
that additional search heads 504 should be generated to
handle an influx of queries or that some search heads 504
can be de-allocated or terminated based on a reduction in the
number of queries received.

[0258] In certain embodiments, the query system 214 can
include one query system manager 502 to manage all search
heads 504 and search nodes 506 of the query system 214. In
some embodiments, the query system 214 can include
multiple query system managers 502. For example, a query
system manager 502 can be instantiated for each computing
device (or group of computing devices) configured as a host
computing device for multiple search heads 504 and/or
search nodes 506.

[0259] Moreover, the query system manager 502 can
handle resource management, creation, assignment, or
destruction of search heads 504 and/or search nodes 506,
high availability, load balancing, application upgrades/roll-
backs, logging and monitoring, storage, networking, service
discovery, and performance and scalability, and otherwise
handle containerization management of the containers of the

US 2022/0245156 Al

query system 214. In certain embodiments, the query system
manager 502 can be implemented using Kubernetes or
Swarm. For example, in certain embodiments, the query
system manager 502 may be part of a sidecar or sidecar
container, that allows communication between various
search nodes 506, various search heads 504, and/or combi-
nations thereof.

[0260] In some cases, the query system manager 502 can
monitor the available resources of a host computing device
and/or request additional resources in a shared resource
environment, based on workload of the search heads 504
and/or search nodes 506 or create, destroy, or reassign search
heads 504 and/or search nodes 506 based on workload.
Further, the query system manager 502 system can assign
search heads 504 to handle incoming queries and/or assign
search nodes 506 to handle query processing based on
workload, system resources, etc.

3.3.2. Search Head

[0261] As described herein, the search heads 504 can
manage the execution of queries received by the query
system 214. For example, the search heads 504 can parse the
queries to identify the set of data to be processed and the
manner of processing the set of data, identify the location of
the data, identify tasks to be performed by the search head
and tasks to be performed by the search nodes 506, distribute
the query (or sub-queries corresponding to the query) to the
search nodes 506, apply extraction rules to the set of data to
be processed, aggregate search results from the search nodes
506, store the search results in the query acceleration data
store 222, etc.

[0262] As described herein, the search heads 504 can be
implemented on separate computing devices or as containers
or virtual machines in a virtualization environment. In some
embodiments, the search heads 504 may be implemented
using multiple-related containers. In certain embodiments,
such as in a Kubernetes deployment, each search head 504
can be implemented as a separate container or pod. For
example, one or more of the components of the search head
504 can be implemented as different containers of a single
pod, e.g., on a containerization platform, such as Docker, the
one or more components of the indexing node can be
implemented as different Docker containers managed by
synchronization platforms such as Kubernetes or Swarm.
Accordingly, reference to a containerized search head 504
can refer to the search head 504 as being a single container
or as one or more components of the search head 504 being
implemented as different, related containers.

[0263] In the illustrated embodiment, the search head 504
includes a search master 512 and one or more search
managers 514 to carry out its various functions. However, it
will be understood that the search head 504 can include
fewer or more components as desired. For example, the
search head 504 can include multiple search masters 512.

3.3.2.1. Search Master

[0264] The search master 512 can manage the execution of
the various queries assigned to the search head 504, and can
be implemented as a distinct computing device, virtual
machine, container, container of a pod, or a process or thread
associated with a container. For example, in certain embodi-
ments, as the search head 504 is assigned a query, the search
master 512 can generate one or more search manager(s) 514

Aug. 4, 2022

to manage the query. In some cases, the search master 512
generates a separate search manager 514 for each query that
is received by the search head 504. In addition, once a query
is completed, the search master 512 can handle the termi-
nation of the corresponding search manager 514.

[0265] In certain embodiments, the search master 512 can
track and store the queries assigned to the different search
managers 514. Accordingly, if a search manager 514
becomes unavailable or unresponsive, the search master 512
can generate a new search manager 514 and assign the query
to the new search manager 514. In this way, the search head
504 can increase the resiliency of the query system 214,
reduce delay caused by an unresponsive component, and can
aid in providing a stateless searching service.

[0266] In some embodiments, the search master 512 is
implemented as a background process, or daemon, on the
search head 504 and the search manager(s) 514 are imple-
mented as threads, copies, or forks of the background
process. In some cases, a search master 512 can copy itself,
or fork, to create a search manager 514 or cause a template
process to copy itself, or fork, to create each new search
manager 514, etc., in order to support efficient multithreaded
implementations

3.3.2.2. Search Manager

[0267] As mentioned, the search managers 514 can man-
age the processing and execution of the queries assigned to
the search head 504, and can be implemented as a distinct
computing device, virtual machine, container, container of a
pod, or a process or thread associated with a container. In
some embodiments, one search manager 514 manages the
processing and execution of one query at a time. In such
embodiments, if the search head 504 is processing one
hundred queries, the search master 512 can generate one
hundred search managers 514 to manage the one hundred
queries. Upon completing an assigned query, the search
manager 514 can await assignment to a new query or be
terminated.

[0268] As part of managing the processing and execution
of a query, and as described herein, a search manager 514
can parse the query to identify the set of data and the manner
in which the set of data is to be processed (e.g., the
transformations that are to be applied to the set of data),
determine tasks to be performed by the search manager 514
and tasks to be performed by the search nodes 506, identify
search nodes 506 that are available to execute the query, map
search nodes 506 to the set of data that is to be processed,
instruct the search nodes 506 to execute the query and return
results, aggregate and/or transform the search results from
the various search nodes 506, and provide the search results
to a user and/or to the query acceleration data store 222.
[0269] In some cases, to aid in identifying the set of data
to be processed, the search manager 514 can consult the data
store catalog 220 (depicted in FIG. 2). As described herein,
the data store catalog 220 can include information regarding
the data stored in common storage 216. In some cases, the
data store catalog 220 can include bucket identifiers, a time
range, and a location of the buckets in common storage 216.
In addition, the data store catalog 220 can include a tenant
identifier and partition identifier for the buckets. This infor-
mation can be used to identify buckets that include data that
satisfies at least a portion of the query.

[0270] As a non-limiting example, consider a search man-
ager 514 that has parsed a query to identify the following

US 2022/0245156 Al

filter criteria that is used to identify the data to be processed:
time range: past hour, partition: _sales, tenant: ABC, Inc.,
keyword: Error. Using the received filter criteria, the search
manager 514 can consult the data store catalog 220. Spe-
cifically, the search manager 514 can use the data store
catalog 220 to identify buckets associated with the _sales
partition and the tenant ABC, Inc. and that include data from
the past hour. In some cases, the search manager 514 can
obtain bucket identifiers and location information from the
data store catalog 220 for the buckets storing data that
satisfies at least the aforementioned filter criteria. In certain
embodiments, if the data store catalog 220 includes keyword
pairs, it can use the keyword: Error to identify buckets that
have at least one event that include the keyword Error.
[0271] Using the bucket identifiers and/or the location
information, the search manager 514 can assign one or more
search nodes 506 to search the corresponding buckets.
Accordingly, the data store catalog 220 can be used to
identify relevant buckets and reduce the number of buckets
that are to be searched by the search nodes 506. In this way,
the data store catalog 220 can decrease the query response
time of the data intake and query system 108.

[0272] In some embodiments, the use of the data store
catalog 220 to identify buckets for searching can contribute
to the statelessness of the query system 214 and search head
504. For example, if a search head 504 or search manager
514 becomes unresponsive or unavailable, the query system
manager 502 or search master 512, as the case may be, can
spin up or assign an additional resource (new search head
504 or new search manager 514) to execute the query. As the
bucket information is persistently stored in the data store
catalog 220, data lost due to the unavailability or unrespon-
siveness of a component of the query system 214 can be
recovered by using the bucket information in the data store
catalog 220.

[0273] In certain embodiments, to identify search nodes
506 that are available to execute the query, the search
manager 514 can consult the search node catalog 510. As
described herein, the search node catalog 510 can include
information regarding the search nodes 506. In some cases,
the search node catalog 510 can include an identifier for each
search node 506, as well as utilization and availability
information. For example, the search node catalog 510 can
identify search nodes 506 that are instantiated but are
unavailable or unresponsive. In addition, the search node
catalog 510 can identify the utilization rate of the search
nodes 506. For example, the search node catalog 510 can
identify search nodes 506 that are working at maximum
capacity or at a utilization rate that satisfies utilization
threshold, such that the search node 506 should not be used
to execute additional queries for a time.

[0274] In addition, the search node catalog 510 can
include architectural information about the search nodes
506. For example, the search node catalog 510 can identify
search nodes 506 that share a data store and/or are located
on the same computing device, or on computing devices that
are co-located.

[0275] Accordingly, in some embodiments, based on the
receipt of a query, a search manager 514 can consult the
search node catalog 510 for search nodes 506 that are
available to execute the received query. Based on the con-
sultation of the search node catalog 510, the search manager
514 can determine which search nodes 506 to assign to
execute the query.

Aug. 4, 2022

[0276] The search manager 514 can map the search nodes
506 to the data that is to be processed according to a search
node mapping policy. The search node mapping policy can
indicate how search nodes 506 are to be assigned to data
(e.g., buckets) and when search nodes 506 are to be assigned
to (and instructed to search) the data or buckets.

[0277] Insome cases, the search manager 514 can map the
search nodes 506 to buckets that include data that satisfies at
least a portion of the query. For example, in some cases, the
search manager 514 can consult the data store catalog 220 to
obtain bucket identifiers of buckets that include data that
satisfies at least a portion of the query, e.g., as a non-limiting
example, to obtain bucket identifiers of buckets that include
data associated with a particular time range. Based on the
identified buckets and search nodes 506, the search manager
514 can dynamically assign (or map) search nodes 506 to
individual buckets according to a search node mapping
policy.

[0278] In some embodiments, the search node mapping
policy can indicate that the search manager 514 is to assign
all buckets to search nodes 506 as a single operation. For
example, where ten buckets are to be searched by five search
nodes 506, the search manager 514 can assign two buckets
to a first search node 506, two buckets to a second search
node 506, etc. In another embodiment, the search node
mapping policy can indicate that the search manager 514 is
to assign buckets iteratively. For example, where ten buckets
are to be searched by five search nodes 506, the search
manager 514 can initially assign five buckets (e.g., one
buckets to each search node 506), and assign additional
buckets to each search node 506 as the respective search
nodes 506 complete the execution on the assigned buckets.
[0279] Retrieving buckets from common storage 216 to be
searched by the search nodes 506 can cause delay or may use
a relatively high amount of network bandwidth or disk
read/write bandwidth. In some cases, a local or shared data
store associated with the search nodes 506 may include a
copy of a bucket that was previously retrieved from common
storage 216. Accordingly, to reduce delay caused by retriev-
ing buckets from common storage 216, the search node
mapping policy can indicate that the search manager 514 is
to assign, preferably assign, or attempt to assign the same
search node 506 to search the same bucket over time. In this
way, the assigned search node 506 can keep a local copy of
the bucket on its data store (or a data store shared between
multiple search nodes 506) and avoid the processing delays
associated with obtaining the bucket from the common
storage 216.

[0280] In certain embodiments, the search node mapping
policy can indicate that the search manager 514 is to use a
consistent hash function or other function to consistently
map a bucket to a particular search node 506. The search
manager 514 can perform the hash using the bucket identi-
fier obtained from the data store catalog 220, and the output
of the hash can be used to identify the search node 506
assigned to the bucket. In some cases, the consistent hash
function can be configured such that even with a different
number of search nodes 506 being assigned to execute the
query, the output will consistently identify the same search
node 506, or have an increased probability of identifying the
same search node 506.

[0281] In some embodiments, the query system 214 can
store a mapping of search nodes 506 to bucket identifiers.
The search node mapping policy can indicate that the search

US 2022/0245156 Al

manager 514 is to use the mapping to determine whether a
particular bucket has been assigned to a search node 506. If
the bucket has been assigned to a particular search node 506
and that search node 506 is available, then the search
manager 514 can assign the bucket to the search node 506.
If the bucket has not been assigned to a particular search
node 506, the search manager 514 can use a hash function
to identify a search node 506 for assignment. Once assigned,
the search manager 514 can store the mapping for future use.

[0282] In certain cases, the search node mapping policy
can indicate that the search manager 514 is to use architec-
tural information about the search nodes 506 to assign
buckets. For example, if the identified search node 506 is
unavailable or its utilization rate satisfies a threshold utili-
zation rate, the search manager 514 can determine whether
an available search node 506 shares a data store with the
unavailable search node 506. If it does, the search manager
514 can assign the bucket to the available search node 506
that shares the data store with the unavailable search node
506. In this way, the search manager 514 can reduce the
likelihood that the bucket will be obtained from common
storage 216, which can introduce additional delay to the
query while the bucket is retrieved from common storage
216 to the data store shared by the available search node 506.

[0283] In some instances, the search node mapping policy
can indicate that the search manager 514 is to assign buckets
to search nodes 506 randomly, or in a simple sequence (e.g.,
a first search nodes 506 is assigned a first bucket, a second
search node 506 is assigned a second bucket, etc.). In other
instances, as discussed, the search node mapping policy can
indicate that the search manager 514 is to assign buckets to
search nodes 506 based on buckets previously assigned to a
search nodes 506, in a prior or current search. As mentioned
above, in some embodiments each search node 506 may be
associated with a local data store or cache of information
(e.g., in memory of the search nodes 506, such as random
access memory [“RAM”], disk-based cache, a data store, or
other form of storage). Each search node 506 can store
copies of one or more buckets from the common storage 216
within the local cache, such that the buckets may be more
rapidly searched by search nodes 506. The search manager
514 (or cache manager 516) can maintain or retrieve from
search nodes 506 information identifying, for each relevant
search node 506, what buckets are copied within local cache
of the respective search nodes 506. In the event that the
search manager 514 determines that a search node 506
assigned to execute a search has within its data store or local
cache a copy of an identified bucket, the search manager 514
can preferentially assign the search node 506 to search that
locally-cached bucket.

[0284] In still more embodiments, according to the search
node mapping policy, search nodes 506 may be assigned
based on overlaps of computing resources of the search
nodes 506. For example, where a containerized search node
506 is to retrieve a bucket from common storage 216 (e.g.,
where a local cached copy of the bucket does not exist on the
search node 506), such retrieval may use a relatively high
amount of network bandwidth or disk read/write bandwidth.
Thus, assigning a second containerized search node 506
instantiated on the same host computing device might be
expected to strain or exceed the network or disk read/write
bandwidth of the host computing device. For this reason, in
some embodiments, according to the search node mapping
policy, the search manager 514 can assign buckets to search

Aug. 4, 2022

nodes 506 such that two containerized search nodes 506 on
a common host computing device do not both retrieve
buckets from common storage 216 at the same time.
[0285] Further, in certain embodiments, where a data store
that is shared between multiple search nodes 506 includes
two buckets identified for the search, the search manager
514 can, according to the search node mapping policy,
assign both such buckets to the same search node 506 or to
two different search nodes 506 that share the data store, such
that both buckets can be searched in parallel by the respec-
tive search nodes 506.

[0286] The search node mapping policy can indicate that
the search manager 514 is to use any one or any combination
of the above-described mechanisms to assign buckets to
search nodes 506. Furthermore, the search node mapping
policy can indicate that the search manager 514 is to
prioritize assigning search nodes 506 to buckets based on
any one or any combination of: assigning search nodes 506
to process buckets that are in a local or shared data store of
the search nodes 506, maximizing parallelization (e.g.,
assigning as many different search nodes 506 to execute the
query as are available), assigning search nodes 506 to
process buckets with overlapping timestamps, maximizing
individual search node 506 utilization (e.g., ensuring that
each search node 506 is searching at least one bucket at any
given time, etc.), or assigning search nodes 506 to process
buckets associated with a particular tenant, user, or other
known feature of data stored within the bucket (e.g., buckets
holding data known to be used in time-sensitive searches
may be prioritized). Thus, according to the search node
mapping policy, the search manager 514 can dynamically
alter the assignment of buckets to search nodes 506 to
increase the parallelization of a search, and to increase the
speed and efficiency with which the search is executed.
[0287] It will be understood that the search manager 514
can assign any search node 506 to search any bucket. This
flexibility can decrease query response time as the search
manager can dynamically determine which search nodes 506
are best suited or available to execute the query on different
buckets. Further, if one bucket is being used by multiple
queries, the search manager 515 can assign multiple search
nodes 506 to search the bucket. In addition, in the event a
search node 506 becomes unavailable or unresponsive, the
search manager 514 can assign a different search node 506
to search the buckets assigned to the unavailable search node
506.

[0288] As part of the query execution, the search manager
514 can instruct the search nodes 506 to execute the query
(or sub-query) on the assigned buckets. As described herein,
the search manager 514 can generate specific queries or
sub-queries for the individual search nodes 506. The search
nodes 506 can use the queries to execute the query on the
buckets assigned thereto.

[0289] In some embodiments, the search manager 514
stores the sub-queries and bucket assignments for the dif-
ferent search nodes 506. Storing the sub-queries and bucket
assignments can contribute to the statelessness of the query
system 214. For example, in the event an assigned search
node 506 becomes unresponsive or unavailable during the
query execution, the search manager 514 can re-assign the
sub-query and bucket assignments of the unavailable search
node 506 to one or more available search nodes 506 or
identify a different available search node 506 from the
search node catalog 510 to execute the sub-query. In certain

US 2022/0245156 Al

embodiments, the query system manager 502 can generate
an additional search node 506 to execute the sub-query of
the unavailable search node 506. Accordingly, the query
system 214 can quickly recover from an unavailable or
unresponsive component without data loss and while reduc-
ing or minimizing delay.

[0290] During the query execution, the search manager
514 can monitor the status of the assigned search nodes 506.
In some cases, the search manager 514 can ping or set up a
communication link between it and the search nodes 506
assigned to execute the query. As mentioned, the search
manager 514 can store the mapping of the buckets to the
search nodes 506. Accordingly, in the event a particular
search node 506 becomes unavailable for his unresponsive,
the search manager 514 can assign a different search node
506 to complete the execution of the query for the buckets
assigned to the unresponsive search node 506.

[0291] In some cases, as part of the status updates to the
search manager 514, the search nodes 506 can provide the
search manager with partial results and information regard-
ing the buckets that have been searched. In response, the
search manager 514 can store the partial results and bucket
information in persistent storage. Accordingly, if a search
node 506 partially executes the query and becomes unre-
sponsive or unavailable, the search manager 514 can assign
a different search node 506 to complete the execution, as
described above. For example, the search manager 514 can
assign a search node 506 to execute the query on the buckets
that were not searched by the unavailable search node 506.
In this way, the search manager 514 can more quickly
recover from an unavailable or unresponsive search node
506 without data loss and while reducing or minimizing
delay.

[0292] As the search manager 514 receives query results
from the different search nodes 506, it can process the data.
In some cases, the search manager 514 processes the partial
results as it receives them. For example, if the query includes
a count, the search manager 514 can increment the count as
it receives the results from the different search nodes 506. In
certain cases, the search manager 514 waits for the complete
results from the search nodes before processing them. For
example, if the query includes a command that operates on
a result set, or a partial result set, e.g., a stats command (e.g.,
a command that calculates one or more aggregate statistics
over the results set, e.g., average, count, or standard devia-
tion, as examples), the search manager 514 can wait for the
results from all the search nodes 506 before executing the
stats command.

[0293] As the search manager 514 processes the results or
completes processing the results, it can store the results in
the query acceleration data store 222 or communicate the
results to a client device 204. As described herein, results
stored in the query acceleration data store 222 can be
combined with other results over time. For example, if the
query system 212 receives an open-ended query (e.g., no set
end time), the search manager 515 can store the query results
over time in the query acceleration data store 222. Query
results in the query acceleration data store 222 can be
updated as additional query results are obtained. In this
manner, if an open-ended query is run at time B, query
results may be stored from initial time A to time B. If the
same open-ended query is run at time C, then the query
results from the prior open-ended query can be obtained
from the query acceleration data store 222 (which gives the

Aug. 4, 2022

results from time A to time B), and the query can be run from
time B to time C and combined with the prior results, rather
than running the entire query from time A to time C. In this
manner, the computational efficiency of ongoing search
queries can be improved.

3.3.3. Search Nodes

[0294] As described herein, the search nodes 506 can be
the primary query execution engines for the query system
214, and can be implemented as distinct computing devices,
virtual machines, containers, container of a pods, or pro-
cesses or threads associated with one or more containers.
Accordingly, each search node 506 can include a processing
device and a data store, as depicted at a high level in FIG.
5. Depending on the embodiment, the processing device and
data store can be dedicated to the search node (e.g., embodi-
ments where each search node is a distinct computing
device) or can be shared with other search nodes or com-
ponents of the data intake and query system 108 (e.g.,
embodiments where the search nodes are implemented as
containers or virtual machines or where the shared data store
is a networked data store, etc.).

[0295] In some embodiments, the search nodes 506 can
obtain and search buckets identified by the search manager
514 that include data that satisfies at least a portion of the
query, identify the set of data within the buckets that satisfies
the query, perform one or more transformations on the set of
data, and communicate the set of data to the search manager
514. Individually, a search node 506 can obtain the buckets
assigned to it by the search manager 514 for a particular
query, search the assigned buckets for a subset of the set of
data, perform one or more transformation on the subset of
data, and communicate partial search results to the search
manager 514 for additional processing and combination with
the partial results from other search nodes 506.

[0296] In some cases, the buckets to be searched may be
located in a local data store of the search node 506 or a data
store that is shared between multiple search nodes 506. In
such cases, the search nodes 506 can identify the location of
the buckets and search the buckets for the set of data that
satisfies the query.

[0297] In certain cases, the buckets may be located in the
common storage 216. In such cases, the search nodes 506
can search the buckets in the common storage 216 and/or
copy the buckets from the common storage 216 to a local or
shared data store and search the locally stored copy for the
set of data. As described herein, the cache manager 516 can
coordinate with the search nodes 506 to identify the location
of the buckets (whether in a local or shared data store or in
common storage 216) and/or obtain buckets stored in com-
mon storage 216.

[0298] Once the relevant buckets (or relevant files of the
buckets) are obtained, the search nodes 506 can search their
contents to identify the set of data to be processed. In some
cases, upon obtaining a bucket from the common storage
216, a search node 506 can decompress the bucket from a
compressed format, and accessing one or more files stored
within the bucket. In some cases, the search node 506
references a bucket summary or manifest to locate one or
more portions (e.g., records or individual files) of the bucket
that potentially contain information relevant to the search.

[0299] In some cases, the search nodes 506 can use all of
the files of a bucket to identify the set of data. In certain
embodiments, the search nodes 506 use a subset of the files

US 2022/0245156 Al

of a bucket to identify the set of data. For example, in some
cases, a search node 506 can use an inverted index, bloom
filter, or bucket summary or manifest to identify a subset of
the set of data without searching the raw machine data of the
bucket. In certain cases, the search node 506 uses the
inverted index, bloom filter, bucket summary, and raw
machine data to identify the subset of the set of data that
satisfies the query.

[0300] Insome embodiments, depending on the query, the
search nodes 506 can perform one or more transformations
on the data from the buckets. For example, the search nodes
506 may perform various data transformations, scripts, and
processes, e.g., a count of the set of data, etc.

[0301] As the search nodes 506 execute the query, they
can provide the search manager 514 with search results. In
some cases, a search node 506 provides the search manager
514 results as they are identified by the search node 506, and
updates the results over time. In certain embodiments, a
search node 506 waits until all of its partial results are
gathered before sending the results to the search manager
504.

[0302] In some embodiments, the search nodes 506 pro-
vide a status of the query to the search manager 514. For
example, an individual search node 506 can inform the
search manager 514 of which buckets it has searched and/or
provide the search manager 514 with the results from the
searched buckets. As mentioned, the search manager 514
can track or store the status and the results as they are
received from the search node 506. In the event the search
node 506 becomes unresponsive or unavailable, the tracked
information can be used to generate and assign a new search
node 506 to execute the remaining portions of the query
assigned to the unavailable search node 506.

3.3.4. Cache Manager

[0303] As mentioned, the cache manager 516 can com-
municate with the search nodes 506 to obtain or identify the
location of the buckets assigned to the search nodes 506, and
can be implemented as a distinct computing device, virtual
machine, container, container of a pod, or a process or thread
associated with a container.

[0304] In some embodiments, based on the receipt of a
bucket assignment, a search node 506 can provide the cache
manager 516 with an identifier of the bucket that it is to
search, a file associated with the bucket that it is to search,
and/or a location of the bucket. In response, the cache
manager 516 can determine whether the identified bucket or
file is located in a local or shared data store or is to be
retrieved from the common storage 216.

[0305] As mentioned, in some cases, multiple search
nodes 506 can share a data store. Accordingly, if the cache
manager 516 determines that the requested bucket is located
in a local or shared data store, the cache manager 516 can
provide the search node 506 with the location of the
requested bucket or file. In certain cases, if the cache
manager 516 determines that the requested bucket or file is
not located in the local or shared data store, the cache
manager 516 can request the bucket or file from the common
storage 216, and inform the search node 506 that the
requested bucket or file is being retrieved from common
storage 216.

[0306] In some cases, the cache manager 516 can request
one or more files associated with the requested bucket prior
to, or in place of, requesting all contents of the bucket from

Aug. 4, 2022

the common storage 216. For example, a search node 506
may request a subset of files from a particular bucket. Based
on the request and a determination that the files are located
in common storage 216, the cache manager 516 can down-
load or obtain the identified files from the common storage
216.

[0307] In some cases, based on the information provided
from the search node 506, the cache manager 516 may be
unable to uniquely identify a requested file or files within the
common storage 216. Accordingly, in certain embodiments,
the cache manager 516 can retrieve a bucket summary or
manifest file from the common storage 216 and provide the
bucket summary to the search node 506. In some cases, the
cache manager 516 can provide the bucket summary to the
search node 506 while concurrently informing the search
node 506 that the requested files are not located in a local or
shared data store and are to be retrieved from common
storage 216.

[0308] Using the bucket summary, the search node 506
can uniquely identify the files to be used to execute the
query. Using the unique identification, the cache manager
516 can request the files from the common storage 216.
Accordingly, rather than downloading the entire contents of
the bucket from common storage 216, the cache manager
516 can download those portions of the bucket that are to be
used by the search node 506 to execute the query. In this
way, the cache manager 516 can decrease the amount of data
sent over the network and decrease the search time.

[0309] As a non-limiting example, a search node 506 may
determine that an inverted index of a bucket is to be used to
execute a query. For example, the search node 506 may
determine that all the information that it needs to execute the
query on the bucket can be found in an inverted index
associated with the bucket. Accordingly, the search node 506
can request the file associated with the inverted index of the
bucket from the cache manager 516. Based on a determi-
nation that the requested file is not located in a local or
shared data store, the cache manager 516 can determine that
the file is located in the common storage 216.

[0310] As the bucket may have multiple inverted indexes
associated with it, the information provided by the search
node 506 may be insufficient to uniquely identify the
inverted index within the bucket. To address this issue, the
cache manager 516 can request a bucket summary or mani-
fest from the common storage 216, and forward it to the
search node 506. The search node 506 can analyze the
bucket summary to identify the particular inverted index that
is to be used to execute the query, and request the identified
particular inverted index from the cache manager 516 (e.g.,
by name and/or location). Using the bucket manifest and/or
the information received from the search node 506, the
cache manager 516 can obtain the identified particular
inverted index from the common storage 216. By obtaining
the bucket manifest and downloading the requested inverted
index instead of all inverted indexes or files of the bucket,
the cache manager 516 can reduce the amount of data
communicated over the network and reduce the search time
for the query.

[0311] Insome cases, when requesting a particular file, the
search node 506 can include a priority level for the file. For
example, the files of a bucket may be of different sizes and
may be used more or less frequently when executing queries.
For example, the bucket manifest may be a relatively small
file. However, if the bucket is searched, the bucket manifest

US 2022/0245156 Al

can be a relatively valuable file (and frequently used)
because it includes a list or index of the various files of the
bucket. Similarly, a bloom filter of a bucket may be a
relatively small file but frequently used as it can relatively
quickly identify the contents of the bucket. In addition, an
inverted index may be used more frequently than raw data
of a bucket to satisfy a query.

[0312] Accordingly, to improve retention of files that are
commonly used in a search of a bucket, the search node 506
can include a priority level for the requested file. The cache
manager 516 can use the priority level received from the
search node 506 to determine how long to keep or when to
evict the file from the local or shared data store. For
example, files identified by the search node 506 as having a
higher priority level can be stored for a greater period of
time than files identified as having a lower priority level.
[0313] Furthermore, the cache manager 516 can determine
what data and how long to retain the data in the local or
shared data stores of the search nodes 506 based on a bucket
caching policy. In some cases, the bucket caching policy can
rely on any one or any combination of the priority level
received from the search nodes 506 for a particular file, least
recently used, most recent in time, or other policies to
indicate how long to retain files in the local or shared data
store.

[0314] In some instances, according to the bucket caching
policy, the cache manager 516 or other component of the
query system 214 (e.g., the search master 512 or search
manager 514) can instruct search nodes 506 to retrieve and
locally cache copies of various buckets from the common
storage 216, independently of processing queries. In certain
embodiments, the query system 214 is configured, according
to the bucket caching policy, such that one or more buckets
from the common storage 216 (e.g., buckets associated with
a tenant or partition of a tenant) or each bucket from the
common storage 216 is locally cached on at least one search
node 506.

[0315] In some embodiments, according to the bucket
caching policy, the query system 214 is configured such that
at least one bucket from the common storage 216 is locally
cached on at least two search nodes 506. Caching a bucket
on at least two search nodes 506 may be beneficial, for
example, in instances where different queries both require
searching the bucket (e.g., because the at least search nodes
506 may process their respective local copies in parallel). In
still other embodiments, the query system 214 is configured,
according to the bucket caching policy, such that one or
more buckets from the common storage 216 or all buckets
from the common storage 216 are locally cached on at least
a given number n of search nodes 506, wherein n is defined
by a replication factor on the system 108. For example, a
replication factor of five may be established to ensure that
five copies of a bucket are locally cached across different
search nodes 506.

[0316] In certain embodiments, the search manager 514
(or search master 512) can assign buckets to different search
nodes 506 based on time. For example, buckets that are less
than one day old can be assigned to a first group of search
nodes 506 for caching, buckets that are more than one day
but less than one week old can be assigned to a different
group of search nodes 506 for caching, and buckets that are
more than one week old can be assigned to a third group of
search nodes 506 for caching. In certain cases, the first group
can be larger than the second group, and the second group

Aug. 4, 2022

can be larger than the third group. In this way, the query
system 214 can provide better/faster results for queries
searching data that is less than one day old, and so on, etc.
It will be understood that the search nodes can be grouped
and assigned buckets in a variety of ways. For example,
search nodes 506 can be grouped based on a tenant identifier,
index, etc. In this way, the query system 212 can dynami-
cally provide faster results based any one or any number of
factors.

[0317] In some embodiments, when a search node 506 is
added to the query system 214, the cache manager 516 can,
based on the bucket caching policy, instruct the search node
506 to download one or more buckets from common storage
216 prior to receiving a query. In certain embodiments, the
cache manager 516 can instruct the search node 506 to
download specific buckets, such as most recent in time
buckets, buckets associated with a particular tenant or par-
tition, etc. In some cases, the cache manager 516 can instruct
the search node 506 to download the buckets before the
search node 506 reports to the search node monitor 508 that
it is available for executing queries. It will be understood
that other components of the query system 214 can imple-
ment this functionality, such as, but not limited to the query
system manager 502, search node monitor 508, search
manager 514, or the search nodes 506 themselves.

[0318] In certain embodiments, when a search node 506 is
removed from the query system 214 or becomes unrespon-
sive or unavailable, the cache manager 516 can identify the
buckets that the removed search node 506 was responsible
for and instruct the remaining search nodes 506 that they
will be responsible for the identified buckets. In some cases,
the remaining search nodes 506 can download the identified
buckets from common storage 516 or retrieve them from the
data store associated with the removed search node 506.
[0319] In some cases, the cache manager 516 can change
the bucket-search node 506 assignments, such as when a
search node 506 is removed or added. In certain embodi-
ments, based on a reassignment, the cache manager 516 can
inform a particular search node 506 to remove buckets to
which it is no longer assigned, reduce the priority level of the
buckets, etc. In this way, the cache manager 516 can make
it so the reassigned bucket will be removed more quickly
from the search node 506 than it otherwise would without
the reassignment. In certain embodiments, the search node
506 that receives the new for the bucket can retrieve the
bucket from the now unassigned search node 506 and/or
retrieve the bucket from common storage 216.

3.3.5. Search Node Monitor and Catalog

[0320] The search node monitor 508 can monitor search
nodes and populate the search node catalog 510 with rel-
evant information, and can be implemented as a distinct
computing device, virtual machine, container, container of a
pod, or a process or thread associated with a container.

[0321] In some cases, the search node monitor 508 can
ping the search nodes 506 over time to determine their
availability, responsiveness, and/or utilization rate. In cer-
tain embodiments, each search node 506 can include a
monitoring module that provides performance metrics or
status updates about the search node 506 to the search node
monitor 508. For example, the monitoring module can
indicate the amount of processing resources in use by the
search node 506, the utilization rate of the search node 506,
the amount of memory used by the search node 506, etc. In

US 2022/0245156 Al

certain embodiments, the search node monitor 508 can
determine that a search node 506 is unavailable or failing
based on the data in the status update or absence of a state
update from the monitoring module of the search node 506.
[0322] Using the information obtained from the search
nodes 506, the search node monitor 508 can populate the
search node catalog 510 and update it over time. As
described herein, the search manager 514 can use the search
node catalog 510 to identify search nodes 506 available to
execute a query. In some embodiments, the search manager
214 can communicate with the search node catalog 510
using an API.

[0323] As the availability, responsiveness, and/or utiliza-
tion change for the different search nodes 506, the search
node monitor 508 can update the search node catalog 510.
In this way, the search node catalog 510 can retain an
up-to-date list of search nodes 506 available to execute a
query.

[0324] Furthermore, as search nodes 506 are instantiated
(or at other times), the search node monitor 508 can update
the search node catalog 510 with information about the
search node 506, such as, but not limited to its computing
resources, utilization, network architecture (identification of
machine where it is instantiated, location with reference to
other search nodes 506, computing resources shared with
other search nodes 506, such as data stores, processors, 1/O,
etc.), etc.

3.4. Common Storage

[0325] Returning to FIG. 2, the common storage 216 can
be used to store data indexed by the indexing system 212,
and can be implemented using one or more data stores 218.
[0326] Insome systems, the same computing devices (e.g.,
indexers) operate both to ingest, index, store, and search
data. The use of an indexer to both ingest and search
information may be beneficial, for example, because an
indexer may have ready access to information that it has
ingested, and can quickly access that information for search-
ing purposes. However, use of an indexer to both ingest and
search information may not be desirable in all instances. As
an illustrative example, consider an instance in which
ingested data is organized into buckets, and each indexer is
responsible for maintaining buckets within a data store
corresponding to the indexer. Illustratively, a set of ten
indexers may maintain 100 buckets, distributed evenly
across ten data stores (each of which is managed by a
corresponding indexer). Information may be distributed
throughout the buckets according to a load-balancing
mechanism used to distribute information to the indexers
during data ingestion. In an idealized scenario, information
responsive to a query would be spread across the 100
buckets, such that each indexer may search their correspond-
ing ten buckets in parallel, and provide search results to a
search head. However, it is expected that this idealized
scenario may not always occur, and that there will be at least
some instances in which information responsive to a query
is unevenly distributed across data stores. As one example,
consider a query in which responsive information exists
within ten buckets, all of which are included in a single data
store associated with a single indexer. In such an instance, a
bottleneck may be created at the single indexer, and the
effects of parallelized searching across the indexers may be
minimized. To increase the speed of operation of search
queries in such cases, it may therefore be desirable to store

Aug. 4, 2022

data indexed by the indexing system 212 in common storage
216 that can be accessible to any one or multiple compo-
nents of the indexing system 212 or the query system 214.
[0327] Common storage 216 may correspond to any data
storage system accessible to the indexing system 212 and the
query system 214. For example, common storage 216 may
correspond to a storage area network (SAN), network
attached storage (NAS), other network-accessible storage
system (e.g., a hosted storage system, such as Amazon S3 or
EBS provided by Amazon, Inc., Google Cloud Storage,
Microsoft Azure Storage, etc., which may also be referred to
as “cloud” storage), or combination thereof. The common
storage 216 may include, for example, hard disk drives
(HDDs), solid state storage devices (SSDs), or other sub-
stantially persistent or non-transitory media. Data stores 218
within common storage 216 may correspond to physical data
storage devices (e.g., an individual HDD) or a logical
storage device, such as a grouping of physical data storage
devices or a containerized or virtualized storage device
hosted by an underlying physical storage device. In some
embodiments, the common storage 216 may also be referred
to as a shared storage system or shared storage environment
as the data stores 218 may store data associated with
multiple customers, tenants, etc., or across different data
intake and query systems 108 or other systems unrelated to
the data intake and query systems 108.

[0328] The common storage 216 can be configured to
provide high availability, highly resilient, low loss data
storage. In some cases, to provide the high availability,
highly resilient, low loss data storage, the common storage
216 can store multiple copies of the data in the same and
different geographic locations and across different types of
data stores (e.g., solid state, hard drive, tape, etc.). Further,
as data is received at the common storage 216 it can be
automatically replicated multiple times according to a rep-
lication factor to different data stores across the same and/or
different geographic locations.

[0329] In one embodiment, common storage 216 may be
multi-tiered, with each tier providing more rapid access to
information stored in that tier. For example, a first tier of the
common storage 216 may be physically co-located with the
indexing system 212 or the query system 214 and provide
rapid access to information of the first tier, while a second
tier may be located in a different physical location (e.g., in
a hosted or “cloud” computing environment) and provide
less rapid access to information of the second tier.

[0330] Distribution of data between tiers may be con-
trolled by any number of algorithms or mechanisms. In one
embodiment, a first tier may include data generated or
including timestamps within a threshold period of time (e.g.,
the past seven days), while a second tier or subsequent tiers
includes data older than that time period. In another embodi-
ment, a first tier may include a threshold amount (e.g., n
terabytes) or recently accessed data, while a second tier
stores the remaining less recently accessed data.

[0331] In one embodiment, data within the data stores 218
is grouped into buckets, each of which is commonly acces-
sible to the indexing system 212 and query system 214. The
size of each bucket may be selected according to the
computational resources of the common storage 216 or the
data intake and query system 108 overall. For example, the
size of each bucket may be selected to enable an individual
bucket to be relatively quickly transmitted via a network,
without introducing excessive additional data storage

US 2022/0245156 Al

requirements due to metadata or other overhead associated
with an individual bucket. In one embodiment, each bucket
is 750 megabytes in size. Further, as mentioned, in some
embodiments, some buckets can be merged to create larger
buckets.

[0332] As described herein, each bucket can include one
or more files, such as, but not limited to, one or more
compressed or uncompressed raw machine data files, meta-
data files, filter files, indexes files, bucket summary or
manifest files, etc. In addition, each bucket can store events
including raw machine data associated with a timestamp.

[0333] As described herein, the indexing nodes 404 can
generate buckets during indexing and communicate with
common storage 216 to store the buckets. For example, data
may be provided to the indexing nodes 404 from one or
more ingestion buffers of the intake system 210 The index-
ing nodes 404 can process the information and store it as
buckets in common storage 216, rather than in a data store
maintained by an individual indexer or indexing node. Thus,
the common storage 216 can render information of the data
intake and query system 108 commonly accessible to ele-
ments of the system 108. As described herein, the common
storage 216 can enable parallelized searching of buckets to
occur independently of the operation of indexing system
212.

[0334] As noted above, it may be beneficial in some
instances to separate data indexing and searching. Accord-
ingly, as described herein, the search nodes 506 of the query
system 214 can search for data stored within common
storage 216. The search nodes 506 may therefore be com-
municatively attached (e.g., via a communication network)
with the common storage 216, and be enabled to access
buckets within the common storage 216.

[0335] Further, as described herein, because the search
nodes 506 in some instances are not statically assigned to
individual data stores 218 (and thus to buckets within such
a data store 218), the buckets searched by an individual
search node 506 may be selected dynamically, to increase
the parallelization with which the buckets can be searched.
For example, consider an instance where information is
stored within 100 buckets, and a query is received at the data
intake and query system 108 for information within ten
buckets. Unlike a scenario in which buckets are statically
assigned to an indexer, which could result in a bottleneck if
the ten relevant buckets are associated with the same
indexer, the ten buckets holding relevant information may be
dynamically distributed across multiple search nodes 506.
Thus, if ten search nodes 506 are available to process a
query, each search node 506 may be assigned to retrieve and
search within one bucket greatly increasing parallelization
when compared to the low-parallelization scenarios (e.g.,
where a single indexer 206 is required to search all ten
buckets).

[0336] Moreover, because searching occurs at the search
nodes 506 rather than at the indexing system 212, indexing
resources can be allocated independently to searching opera-
tions. For example, search nodes 506 may be executed by a
separate processor or computing device than indexing nodes
404, enabling computing resources available to search nodes
506 to scale independently of resources available to index-
ing nodes 404. Additionally, the impact on data ingestion
and indexing due to above-average volumes of search query

Aug. 4, 2022

requests is reduced or eliminated, and similarly, the impact
of data ingestion on search query result generation time also
is reduced or eliminated.

[0337] As will be appreciated in view of the above
description, the use of a common storage 216 can provide
many advantages within the data intake and query system
108. Specifically, use of a common storage 216 can enable
the system 108 to decouple functionality of data indexing by
indexing nodes 404 with functionality of searching by
search nodes 506. Moreover, because buckets containing
data are accessible by each search node 506, a search
manager 514 can dynamically allocate search nodes 506 to
buckets at the time of a search in order to increase paral-
lelization. Thus, use of a common storage 216 can substan-
tially improve the speed and efficiency of operation of the
system 108.

3.5. Data Store Catalog

[0338] The data store catalog 220 can store information
about the data stored in common storage 216, and can be
implemented using one or more data stores. In some
embodiments, the data store catalog 220 can be imple-
mented as a portion of the common storage 216 and/or using
similar data storage techniques (e.g., local or cloud storage,
multi-tiered storage, etc.). In another implementation, the
data store catalog 22—may utilize a database, e.g., a rela-
tional database engine, such as commercially-provided rela-
tional database services, e.g., Amazon’s Aurora. In some
implementations, the data store catalog 220 may use an API
to allow access to register buckets, and to allow query
system 214 to access buckets. In other implementations, data
store catalog 220 may be implemented through other means,
and maybe stored as part of common storage 216, or another
type of common storage, as previously described. In various
implementations, requests for buckets may include a tenant
identifier and some form of user authentication, e.g., a user
access token that can be authenticated by authentication
service. In various implementations, the data store catalog
220 may store one data structure, e.g., table, per tenant, for
the buckets associated with that tenant, one data structure
per partition of each tenant, etc. In other implementations, a
single data structure, e.g., a single table, may be used for all
tenants, and unique tenant IDs may be used to identify
buckets associated with the different tenants.

[0339] As described herein, the data store catalog 220 can
be updated by the indexing system 212 with information
about the buckets or data stored in common storage 216. For
example, the data store catalog can store an identifier for a
sets of data in common storage 216, a location of the sets of
data in common storage 216, tenant or indexes associated
with the sets of data, timing information about the sets of
data, etc. In embodiments where the data in common storage
216 is stored as buckets, the data store catalog 220 can
include a bucket identifier for the buckets in common
storage 216, a location of or path to the buckets in common
storage 216, a time range of the data in the bucket (e.g.,
range of time between the first-in-time event of the bucket
and the last-in-time event of the bucket), a tenant identifier
identifying a customer or computing device associated with
the bucket, and/or an index or partition associated with the
bucket, etc.

[0340] In certain embodiments, the data store catalog 220
can include an indication of a location of a copy of a bucket
found in one or more search nodes 506. For example, as

US 2022/0245156 Al

buckets are copied to search nodes 506, the query system
214 can update the data store catalog 220 with information
about which search nodes 506 include a copy of the buckets.
This information can be used by the query system 214 to
assign search nodes 506 to buckets as part of a query.

[0341] In certain embodiments, the data store catalog 220
can function as an index or inverted index of the buckets
stored in common storage 216. For example, the data store
catalog 220 can provide location and other information
about the buckets stored in common storage 216. In some
embodiments, the data store catalog 220 can provide addi-
tional information about the contents of the buckets. For
example, the data store catalog 220 can provide a list of
sources, sourcetypes, or hosts associated with the data in the
buckets.

[0342] In certain embodiments, the data store catalog 220
can include one or more keywords found within the data of
the buckets. In such embodiments, the data store catalog can
be similar to an inverted index, except rather than identify-
ing specific events associated with a particular host, source,
sourcetype, or keyword, it can identify buckets with data
associated with the particular host, source, sourcetype, or
keyword.

[0343] In some embodiments, the query system 214 (e.g.,
search head 504, search master 512, search manager 514,
etc.) can communicate with the data store catalog 220 as part
of processing and executing a query. In certain cases, the
query system 214 communicates with the data store catalog
220 using an API. As a non-limiting example, the query
system 214 can provide the data store catalog 220 with at
least a portion of the query or one or more filter criteria
associated with the query. In response, the data store catalog
220 can provide the query system 214 with an identification
of buckets that store data that satisfies at least a portion of
the query. In addition, the data store catalog 220 can provide
the query system 214 with an indication of the location of
the identified buckets in common storage 216 and/or in one
or more local or shared data stores of the search nodes 506.

[0344] Accordingly, using the information from the data
store catalog 220, the query system 214 can reduce (or filter)
the amount of data or number of buckets to be searched. For
example, using tenant or partition information in the data
store catalog 220, the query system 214 can exclude buckets
associated with a tenant or a partition, respectively, that is
not to be searched. Similarly, using time range information,
the query system 214 can exclude buckets that do not satisfy
a time range from a search. In this way, the data store catalog
220 can reduce the amount of data to be searched and
decrease search times.

[0345] As mentioned, in some cases, as buckets are copied
from common storage 216 to search nodes 506 as part of a
query, the query system 214 can update the data store
catalog 220 with the location information of the copy of the
bucket. The query system 214 can use this information to
assign search nodes 506 to buckets. For example, if the data
store catalog 220 indicates that a copy of a bucket in
common storage 216 is stored in a particular search node
506, the query system 214 can assign the particular search
node to the bucket. In this way, the query system 214 can
reduce the likelihood that the bucket will be retrieved from
common storage 216. In certain embodiments, the data store
catalog 220 can store an indication that a bucket was

Aug. 4, 2022

recently downloaded to a search node 506. The query system
214 for can use this information to assign search node 506
to that bucket.

3.6. Query Acceleration Data Store

[0346] With continued reference to FIG. 2, the query
acceleration data store 222 can be used to store query results
or datasets for accelerated access, and can be implemented
as, a distributed in-memory database system, storage sub-
system, local or networked storage (e.g., cloud storage), and
so on, which can maintain (e.g., store) datasets in both
low-latency memory (e.g., random access memory, such as
volatile or non-volatile memory) and longer-latency
memory (e.g., solid state storage, disk drives, and so on). In
some embodiments, to increase efficiency and response
times, the accelerated data store 222 can maintain particular
datasets in the low-latency memory, and other datasets in the
longer-latency memory. For example, in some embodi-
ments, the datasets can be stored in-memory (non-limiting
examples: RAM or volatile memory) with disk spillover
(non-limiting examples: hard disks, disk drive, non-volatile
memory, etc.). In this way, the query acceleration data store
222 can be used to serve interactive or iterative searches. In
some cases, datasets which are determined to be frequently
accessed by a user can be stored in the lower-latency
memory. Similarly, datasets of less than a threshold size can
be stored in the lower-latency memory.

[0347] In certain embodiments, the search manager 514 or
search nodes 506 can store query results in the query
acceleration data store 222. In some embodiments, the query
results can correspond to partial results from one or more
search nodes 506 or to aggregated results from all the search
nodes 506 involved in a query or the search manager 514. In
such embodiments, the results stored in the query accelera-
tion data store 222 can be served at a later time to the search
head 504, combined with additional results obtained from a
later query, transformed or further processed by the search
nodes 506 or search manager 514, etc. For example, in some
cases, such as where a query does not include a termination
date, the search manager 514 can store initial results in the
acceleration data store 222 and update the initial results as
additional results are received. At any time, the initial
results, or iteratively updated results can be provided to a
client device 204, transformed by the search nodes 506 or
search manager 514, etc.

[0348] As described herein, a user can indicate in a query
that particular datasets or results are to be stored in the query
acceleration data store 222. The query can then indicate
operations to be performed on the particular datasets. For
subsequent queries directed to the particular datasets (e.g.,
queries that indicate other operations for the datasets stored
in the acceleration data store 222), the search nodes 506 can
obtain information directly from the query acceleration data
store 222.

[0349] Additionally, since the query acceleration data
store 222 can be utilized to service requests from different
client devices 204, the query acceleration data store 222 can
implement access controls (e.g., an access control list) with
respect to the stored datasets. In this way, the stored datasets
can optionally be accessible only to users associated with
requests for the datasets. Optionally, a user who provides a
query can indicate that one or more other users are autho-
rized to access particular requested datasets. In this way, the

US 2022/0245156 Al

other users can utilize the stored datasets, thus reducing
latency associated with their queries.

[0350] In some cases, data from the intake system 210
(e.g., ingested data buffer 310, etc.) can be stored in the
acceleration data store 222. In such embodiments, the data
from the intake system 210 can be transformed by the search
nodes 506 or combined with data in the common storage 216

[0351] Furthermore, in some cases, if the query system
214 receives a query that includes a request to process data
in the query acceleration data store 222, as well as data in the
common storage 216, the search manager 514 or search
nodes 506 can begin processing the data in the query
acceleration data store 222, while also obtaining and pro-
cessing the other data from the common storage 216. In this
way, the query system 214 can rapidly provide initial results
for the query, while the search nodes 506 obtain and search
the data from the common storage 216.

[0352] It will be understood that the data intake and query
system 108 can include fewer or more components as
desired. For example, in some embodiments, the system 108
does not include an acceleration data store 222. Further, it
will be understood that in some embodiments, the function-
ality described herein for one component can be performed
by another component. For example, the search master 512
and search manager 514 can be combined as one component,
etc.

4.0. Data Intake and Query System Functions

[0353] As described herein, the various components of the
data intake and query system 108 can perform a variety of
functions associated with the intake, indexing, storage, and
querying of data from a variety of sources. It will be
understood that any one or any combination of the functions
described herein can be combined as part of a single routine
or method. For example, a routine can include any one or
any combination of one or more data ingestion functions,
one or more indexing functions, and/or one or more search-
ing functions.

4.1 Ingestion

[0354] As discussed above, ingestion into the data intake
and query system 108 can be facilitated by an intake system
210, which functions to process data according to a stream-
ing data model, and make the data available as messages on
an output ingestion buffer 310, categorized according to a
number of potential topics. Messages may be published to
the output ingestion buffer 310 by streaming data processors
308, based on preliminary processing of messages published
to an intake ingestion buffer 306. The intake ingestion buffer
306 is, in turn, populated with messages by one or more
publishers, each of which may represent an intake point for
the data intake and query system 108. The publishers may
collectively implement a data retrieval subsystem 304 for
the data intake and query system 108, which subsystem 304
functions to retrieve data from a data source 202 and publish
the data in the form of a message on the intake ingestion
buffer 306. A flow diagram depicting an illustrative embodi-
ment for processing data at the intake system 210 is shown
at FIG. 6. While the flow diagram is illustratively described
with respect to a single message, the same or similar
interactions may be used to process multiple messages at the
intake system 210.

Aug. 4, 2022

4.1.1 Publication to Intake Topic(s)

[0355] Asshown in FIG. 6, processing of data at the intake
system 210 can illustratively begin at (1), where a data
retrieval subsystem 304 or a data source 202 publishes a
message to a topic at the intake ingestion buffer 306.
Generally described, the data retrieval subsystem 304 may
include either or both push-based and pull-based publishers.
Push-based publishers can illustratively correspond to pub-
lishers which independently initiate transmission of mes-
sages to the intake ingestion buffer 306. Pull-based publishes
can illustratively correspond to publishers which await an
inquiry by the intake ingestion buffer 306 for messages to be
published to the buffer 306. The publication of a message at
(1) is intended to include publication under either push- or
pull-based models.

[0356] As discussed above, the data retrieval subsystem
304 may generate the message based on data received from
a forwarder 302 and/or from one or more data sources 202.
In some instances, generation of a message may include
converting a format of the data into a format suitable for
publishing on the intake ingestion buffer 306. Generation of
a message may further include determining a topic for the
message. In one embodiment, the data retrieval subsystem
304 selects a topic based on a data source 202 from which
the data is received, or based on the specific publisher (e.g.,
intake point) on which the message is generated. For
example, each data source 202 or specific publisher may be
associated with a particular topic on the intake ingestion
buffer 306 to which corresponding messages are published.
In some instances, the same source data may be used to
generate multiple messages to the intake ingestion buffer
306 (e.g., associated with different topics).

4.1.2 Transmission to Streaming Data Processors

[0357] After receiving a message from a publisher, the
intake ingestion buffer 306, at (2), determines subscribers to
the topic. For the purposes of example, it will be associated
that at least one device of the streaming data processors 308
has subscribed to the topic (e.g., by previously transmitting
to the intake ingestion buffer 306 a subscription request). As
noted above, the streaming data processors 308 may be
implemented by a number of (logically or physically) dis-
tinct devices. As such, the streaming data processors 308, at
(2), may operate to determine which devices of the stream-
ing data processors 308 have subscribed to the topic (or
topics) to which the message was published.

[0358] Thereafter, at (3), the intake ingestion buffer 306
publishes the message to the streaming data processors 308
in accordance with the pub-sub model. This publication may
correspond to a “push” model of communication, whereby
an ingestion buffer determines topic subscribers and initiates
transmission of messages within the topic to the subscribers.
While interactions of FIG. 6 are described with reference to
such a push model, in some embodiments a pull model of
transmission may additionally or alternatively be used.
Ilustratively, rather than an ingestion buffer determining
topic subscribers and initiating transmission of messages for
the topic to a subscriber (e.g., the streaming data processors
308), an ingestion buffer may enable a subscriber to query
for unread messages for a topic, and for the subscriber to
initiate transmission of the messages from the ingestion
buffer to the subscriber. Thus, an ingestion buffer (e.g., the
intake ingestion buffer 306) may enable subscribers to “pull”

US 2022/0245156 Al

messages from the buffer. As such, interactions of FIG. 6
(e.g., including interactions (2) and (3) as well as (9), (10),
(16), and (17) described below) may be modified to include
pull-based interactions (e.g., whereby a subscriber queries
for unread messages and retrieves the messages from an
appropriate ingestion buffer).

4.1.3 Messages Processing

[0359] On receiving a message, the streaming data pro-
cessors 308, at (4), analyze the message to determine one or
more rules applicable to the message. As noted above, rules
maintained at the streaming data processors 308 can gener-
ally include selection criteria indicating messages to which
the rule applies. This selection criteria may be formatted in
the same manner or similarly to extraction rules, discussed
in more detail below, and may include any number or
combination of criteria based on the data included within a
message or metadata of the message, such as regular expres-
sions based on the data or metadata.

[0360] On determining that a rule is applicable to the
message, the streaming data processors 308 can apply to the
message one or more processing sub-rules indicated within
the rule. Processing sub-rules may include modifying data or
metadata of the message. [llustratively, processing sub-rules
may edit or normalize data of the message (e.g., to convert
a format of the data) or inject additional information into the
message (e.g., retrieved based on the data of the message).
For example, a processing sub-rule may specify that the data
of'the message be transformed according to a transformation
algorithmically specified within the sub-rule. Thus, at (5),
the streaming data processors 308 applies the sub-rule to
transform the data of the message.

[0361] In addition or alternatively, processing sub-rules
can specify a destination of the message after the message is
processed at the streaming data processors 308. The desti-
nation may include, for example, a specific ingestion buffer
(e.g., intake ingestion buffer 306, output ingestion buffer
310, etc.) to which the message should be published, as well
as the topic on the ingestion buffer to which the message
should be published. For example, a particular rule may state
that messages including metrics within a first format (e.g.,
imperial units) should have their data transformed into a
second format (e.g., metric units) and be republished to the
intake ingestion buffer 306. At such, at (6), the streaming
data processors 308 can determine a target ingestion buffer
and topic for the transformed message based on the rule
determined to apply to the message. Thereafter, the stream-
ing data processors 308 publishes the message to the desti-
nation buffer and topic.

[0362] For the purposes of illustration, the interactions of
FIG. 6 assume that, during an initial processing of a mes-
sage, the streaming data processors 308 determines (e.g.,
according to a rule of the data processor) that the message
should be republished to the intake ingestion buffer 306, as
shown at (7). The streaming data processors 308 further
acknowledges the initial message to the intake ingestion
buffer 306, at (8), thus indicating to the intake ingestion
buffer 306 that the streaming data processors 308 has
processed the initial message or published it to an intake
ingestion buffer. The intake ingestion buffer 306 may be
configured to maintain a message until all subscribers have
acknowledged receipt of the message. Thus, transmission of
the acknowledgement at (8) may enable the intake ingestion
buffer 306 to delete the initial message.

Aug. 4, 2022

[0363] It is assumed for the purposes of these illustrative
interactions that at least one device implementing the
streaming data processors 308 has subscribed to the topic to
which the transformed message is published. Thus, the
streaming data processors 308 is expected to again receive
the message (e.g., as previously transformed the streaming
data processors 308), determine whether any rules apply to
the message, and process the message in accordance with
one or more applicable rules. In this manner, interactions (2)
through (8) may occur repeatedly, as designated in FIG. 6 by
the iterative processing loop 602. By use of iterative pro-
cessing, the streaming data processors 308 may be config-
ured to progressively transform or enrich messages obtained
at data sources 202. Moreover, because each rule may
specify only a portion of the total transformation or enrich-
ment of a message, rules may be created without knowledge
of' the entire transformation. For example, a first rule may be
provided by a first system to transform a message according
to the knowledge of that system (e.g., transforming an error
code into an error descriptor), while a second rule may
process the message according to the transformation (e.g.,
by detecting that the error descriptor satisfies alert criteria).
Thus, the streaming data processors 308 enable highly
granulized processing of data without requiring an indi-
vidual entity (e.g., user or system) to have knowledge of all
permutations or transformations of the data.

[0364] After completion of the iterative processing loop
602, the interactions of FIG. 6 proceed to interaction (9),
where the intake ingestion buffer 306 again determines
subscribers of the message. The intake ingestion buffer 306,
at (10), the transmits the message to the streaming data
processors 308, and the streaming data processors 308 again
analyze the message for applicable rules, process the mes-
sage according to the rules, determine a target ingestion
buffer and topic for the processed message, and acknowl-
edge the message to the intake ingestion buffer 306, at
interactions (11), (12), (13), and (15). These interactions are
similar to interactions (4), (5), (6), and (8) discussed above,
and therefore will not be re-described. However, in contrast
to interaction (13), the streaming data processors 308 may
determine that a target ingestion buffer for the message is the
output ingestion buffer 310. Thus, the streaming data pro-
cessors 308, at (14), publishes the message to the output
ingestion buffer 310, making the data of the message avail-
able to a downstream system.

[0365] FIG. 6 illustrates one processing path for data at the
streaming data processors 308. However, other processing
paths may occur according to embodiments of the present
disclosure. For example, in some instances, a rule applicable
to an initially published message on the intake ingestion
buffer 306 may cause the streaming data processors 308 to
publish the message out ingestion buffer 310 on first pro-
cessing the data of the message, without entering the itera-
tive processing loop 602. Thus, interactions (2) through (8)
may be omitted.

[0366] In other instances, a single message published to
the intake ingestion buffer 306 may spawn multiple process-
ing paths at the streaming data processors 308. Illustratively,
the streaming data processors 308 may be configured to
maintain a set of rules, and to independently apply to a
message all rules applicable to the message. Each applica-
tion of a rule may spawn an independent processing path,
and potentially a new message for publication to a relevant
ingestion buffer. In other instances, the streaming data

US 2022/0245156 Al

processors 308 may maintain a ranking of rules to be applied
to messages, and may be configured to process only a
highest ranked rule which applies to the message. Thus, a
single message on the intake ingestion buffer 306 may result
in a single message or multiple messages published by the
streaming data processors 308, according to the configura-
tion of the streaming data processors 308 in applying rules.
[0367] As noted above, the rules applied by the streaming
data processors 308 may vary during operation of those
processors 308. For example, the rules may be updated as
user queries are received (e.g., to identify messages whose
data is relevant to those queries). In some instances, rules of
the streaming data processors 308 may be altered during the
processing of a message, and thus the interactions of FIG. 6
may be altered dynamically during operation of the stream-
ing data processors 308.

[0368] While the rules above are described as making
various illustrative alterations to messages, various other
alterations are possible within the present disclosure. For
example, rules in some instances be used to remove data
from messages, or to alter the structure of the messages to
conform to the format requirements of a downstream system
or component. Removal of information may be beneficial,
for example, where the messages include private, personal,
or confidential information which is unneeded or should not
be made available by a downstream system. In some
instances, removal of information may include replacement
of the information with a less confidential value. For
example, a mailing address may be considered confidential
information, whereas a postal code may not be. Thus, a rule
may be implemented at the streaming data processors 308 to
replace mailing addresses with a corresponding postal code,
to ensure confidentiality. Various other alterations will be
apparent in view of the present disclosure.

4.1.4 Transmission to Subscribers

[0369] As discussed above, the rules applied by the
streaming data processors 308 may eventually cause a
message containing data from a data source 202 to be
published to a topic on an output ingestion buffer 310, which
topic may be specified, for example, by the rule applied by
the streaming data processors 308. The output ingestion
buffer 310 may thereafter make the message available to
downstream systems or components. These downstream
systems or components are generally referred to herein as
“subscribers.” For example, the indexing system 212 may
subscribe to an indexing topic 342, the query system 214
may subscribe to a search results topic 348, a client device
102 may subscribe to a custom topic 352A, etc. In accor-
dance with the pub-sub model, the output ingestion buffer
310 may transmit each message published to a topic to each
subscriber of that topic, and resiliently store the messages
until acknowledged by each subscriber (or potentially until
an error is logged with respect to a subscriber). As noted
above, other models of communication are possible and
contemplated within the present disclosure. For example,
rather than subscribing to a topic on the output ingestion
buffer 310 and allowing the output ingestion buffer 310 to
initiate transmission of messages to the subscriber 602, the
output ingestion buffer 310 may be configured to allow a
subscriber 602 to query the buffer 310 for messages (e.g.,
unread messages, new messages since last transmission,
etc.), and to initiate transmission of those messages form the
buffer 310 to the subscriber 602. In some instances, such

Aug. 4, 2022

querying may remove the need for the subscriber 602 to
separately “subscribe” to the topic.

[0370] Accordingly, at (16), after receiving a message to a
topic, the output ingestion buffer 310 determines the sub-
scribers to the topic (e.g., based on prior subscription
requests transmitted to the output ingestion buffer 310). At
(17), the output ingestion buffer 310 transmits the message
to a subscriber 602. Thereafter, the subscriber may process
the message at (18). [llustrative examples of such processing
are described below, and may include (for example) prepa-
ration of search results for a client device 204, indexing of
the data at the indexing system 212, and the like. After
processing, the subscriber can acknowledge the message to
the output ingestion buffer 310, thus confirming that the
message has been processed at the subscriber.

4.1.5 Data Resiliency and Security

[0371] In accordance with embodiments of the present
disclosure, the interactions of FIG. 6 may be ordered such
that resiliency is maintained at the intake system 210.
Specifically, as disclosed above, data streaming systems
(which may be used to implement ingestion buffers) may
implement a variety of techniques to ensure the resiliency of
messages stored at such systems, absent systematic or cata-
strophic failures. Thus, the interactions of FIG. 6 may be
ordered such that data from a data source 202 is expected or
guaranteed to be included in at least one message on an
ingestion system until confirmation is received that the data
is no longer required.

[0372] For example, as shown in FIG. 6, interaction (8)
—wherein the streaming data processors 308 acknowledges
receipt of an initial message at the intake ingestion buffer
306—can illustratively occur after interaction (7) —wherein
the streaming data processors 308 republishes the data to the
intake ingestion buffer 306. Similarly, interaction (15)
—wherein the streaming data processors 308 acknowledges
receipt of an initial message at the intake ingestion buffer
306—can illustratively occur after interaction (14)
—wherein the streaming data processors 308 republishes the
data to the intake ingestion buffer 306. This ordering of
interactions can ensure, for example, that the data being
processed by the streaming data processors 308 is, during
that processing, always stored at the ingestion buffer 306 in
at least one message. Because an ingestion buffer 306 can be
configured to maintain and potentially resend messages until
acknowledgement is received from each subscriber, this
ordering of interactions can ensure that, should a device of
the streaming data processors 308 fail during processing,
another device implementing the streaming data processors
308 can later obtain the data and continue the processing.
[0373] Similarly, as shown in FIG. 6, each subscriber 602
may be configured to acknowledge a message to the output
ingestion buffer 310 after processing for the message is
completed. In this manner, should a subscriber 602 fail after
receiving a message but prior to completing processing of
the message, the processing of the subscriber 602 can be
restarted to successfully process the message. Thus, the
interactions of FIG. 6 can maintain resiliency of data on the
intake system 210 commensurate with the resiliency pro-
vided by an individual ingestion buffer 306.

[0374] While message acknowledgement is described
herein as an illustrative mechanism to ensure data resiliency
at an intake system 210, other mechanisms for ensuring data
resiliency may additionally or alternatively be used.

US 2022/0245156 Al

[0375] As will be appreciated in view of the present
disclosure, the configuration and operation of the intake
system 210 can further provide high amounts of security to
the messages of that system. Illustratively, the intake inges-
tion buffer 306 or output ingestion buffer 310 may maintain
an authorization record indicating specific devices or sys-
tems with authorization to publish or subscribe to a specific
topic on the ingestion buffer. As such, an ingestion buffer
may ensure that only authorized parties are able to access
sensitive data. In some instances, this security may enable
multiple entities to utilize the intake system 210 to manage
confidential information, with little or no risk of that infor-
mation being shared between the entities. The managing of
data or processing for multiple entities is in some instances
referred to as “multi-tenancy.”

[0376] Illustratively, a first entity may publish messages to
a first topic on the intake ingestion buffer 306, and the intake
ingestion buffer 306 may verify that any intake point or data
source 202 publishing to that first topic be authorized by the
first entity to do so. The streaming data processors 308 may
maintain rules specific to the first entity, which the first
entity may illustrative provide through authenticated session
on an interface (e.g., GUIL, API, command line interface
(CLI), etc.). The rules of the first entity may specify one or
more entity-specific topics on the output ingestion buffer
310 to which messages containing data of the first entity
should be published by the streaming data processors 308.
The output ingestion buffer 310 may maintain authorization
records for such entity-specific topics, thus restricting mes-
sages of those topics to parties authorized by the first entity.
In this manner, data security for the first entity can be
ensured across the intake system 210. Similar operations
may be performed for other entities, thus allowing multiple
entities to separately and confidentially publish data to and
retrieve data from the intake system.

4.1.6 Message Processing Algorithm

[0377] With reference to FIG. 7, an illustrative algorithm
or routine for processing messages at the intake system 210
will be described in the form of a flowchart. The routine
begins at block 702, where the intake system 210 obtains
one or more rules for handling messages queued at an intake
ingestion buffer 306. As noted above, the rules may, for
example, be human-generated, or may be automatically
generated based on operation of the data intake and query
system 108 (e.g., in response to user submission of a query
to the system 108).

[0378] At block 704, the intake system 210 obtains a
message at the intake ingestion buffer 306. The message
may be published to the intake ingestion buffer 306, for
example, by the data retrieval subsystem 304 (e.g., working
in conjunction with a forwarder 302) and reflect data
obtained from a data source 202.

[0379] At block 706, the intake system 210 determines
whether any obtained rule applies to the message. [llustra-
tively, the intake system 210 (e.g., via the streaming data
processors 308) may apply selection criteria of each rule to
the message to determine whether the message satisfies the
selection criteria. Thereafter, the routine varies according to
whether a rule applies to the message. If no rule applies, the
routine can continue to block 714, where the intake system
210 transmits an acknowledgement for the message to the
intake ingestion buffer 306, thus enabling the buffer 306 to
discard the message (e.g., once all other subscribers have

Aug. 4, 2022

acknowledged the message). In some variations of the
routine, a “default rule” may be applied at the intake system
210, such that all messages are processed as least according
to the default rule. The default rule may, for example,
forward the message to an indexing topic 342 for processing
by an indexing system 212. In such a configuration, block
706 may always evaluate as true.

[0380] In the instance that at least one rule is determined
to apply to the message, the routine continues to block 708,
where the intake system 210 (e.g., via the streaming data
processors 308) transforms the message as specified by the
applicable rule. For example, a processing sub-rule of the
applicable rule may specify that data or metadata of the
message be converted from one format to another via an
algorithmic transformation. As such, the intake system 210
may apply the algorithmic transformation to the data or
metadata of the message at block 708 to transform the data
or metadata of the message. In some instances, no transfor-
mation may be specified within intake system 210, and thus
block 708 may be omitted.

[0381] At block 710, the intake system 210 determines a
destination ingestion buffer to which to publish the (poten-
tially transformed) message, as well as a topic to which the
message should be published. The destination ingestion
buffer and topic may be specified, for example, in processing
sub-rules of the rule determined to apply to the message. In
one embodiment, the destination ingestion buffer and topic
may vary according to the data or metadata of the message.
In another embodiment, the destination ingestion buffer and
topic may be fixed with respect to a particular rule.

[0382] At block 712, the intake system 210 publishes the
(potentially transformed) message to the determined desti-
nation ingestion buffer and topic. The determined destina-
tion ingestion buffer may be, for example, the intake inges-
tion buffer 306 or the output ingestion buffer 310. Thereafter,
at block 714, the intake system 210 acknowledges the initial
message on the intake ingestion buffer 306, thus enabling the
intake ingestion buffer 306 to delete the message.

[0383] Thereafter, the routine returns to block 704, where
the intake system 210 continues to process messages from
the intake ingestion buffer 306. Because the destination
ingestion buffer determined during a prior implementation
of the routine may be the intake ingestion buffer 306, the
routine may continue to process the same underlying data
within multiple messages published on that buffer 306 (thus
implementing an iterative processing loop with respect to
that data). The routine may then continue to be implemented
during operation of the intake system 210, such that data
published to the intake ingestion buffer 306 is processed by
the intake system 210 and made available on an output
ingestion buffer 310 to downstream systems or components.
[0384] While the routine of FIG. 7 is described linearly,
various implementations may involve concurrent or at least
partially parallel processing. For example, in one embodi-
ment, the intake system 210 is configured to process a
message according to all rules determined to apply to that
message. Thus for example if at block 706 five rules are
determined to apply to the message, the intake system 210
may implement five instances of blocks 708 through 714,
each of which may transform the message in different ways
or publish the message to different ingestion buffers or
topics. These five instances may be implemented in serial,
parallel, or a combination thereof. Thus, the linear descrip-
tion of FIG. 7 is intended simply for illustrative purposes.

US 2022/0245156 Al

[0385] While the routine of FIG. 7 is described with
respect to a single message, in some embodiments streaming
data processors 308 may be configured to process multiple
messages concurrently or as a batch. Similarly, all or a
portion of the rules used by the streaming data processors
308 may apply to sets or batches of messages. Illustratively,
the streaming data processors 308 may obtain a batch of
messages from the intake ingestion buffer 306 and process
those messages according to a set of “batch” rules, whose
criteria and/or processing sub-rules apply to the messages of
the batch collectively. Such rules may, for example, deter-
mine aggregate attributes of the messages within the batch,
sort messages within the batch, group subsets of messages
within the batch, and the like. In some instances, such rules
may further alter messages based on aggregate attributes,
sorting, or groupings. For example, a rule may select the
third messages within a batch, and perform a specific
operation on that message. As another example, a rule may
determine how many messages within a batch are contained
within a specific group of messages. Various other examples
for batch-based rules will be apparent in view of the present
disclosure. Batches of messages may be determined based
on a variety of criteria. For example, the streaming data
processors 308 may batch messages based on a threshold
number of messages (e.g., each thousand messages), based
on timing (e.g., all messages received over a ten minute
window), or based on other criteria (e.g., the lack of new
messages posted to a topic within a threshold period of
time).

4.2. Indexing

[0386] FIG. 8 is a data flow diagram illustrating an
embodiment of the data flow and communications between
a variety of the components of the data intake and query
system 108 during indexing. Specifically, FIG. 8 is a data
flow diagram illustrating an embodiment of the data flow
and communications between an ingestion buffer 310, an
indexing node manager 406 or partition manager 408, an
indexer 410, common storage 216, and the data store catalog
220. However, it will be understood, that in some of embodi-
ments, one or more of the functions described herein with
respect to FIG. 8 can be omitted, performed in a different
order and/or performed by a different component of the data
intake and query system 108. Accordingly, the illustrated
embodiment and description should not be construed as
limiting.

[0387] At (1), the indexing node manager 406 activates a
partition manager 408 for a partition. As described herein,
the indexing node manager 406 can activate a partition
manager 408 for each partition or shard that is processed by
an indexing node 404. In some embodiments, the indexing
node manager 406 can activate the partition manager 408
based on an assignment of a new partition to the indexing
node 404 or a partition manager 408 becoming unresponsive
or unavailable, etc.

[0388] In some embodiments, the partition manager 408
can be a copy of the indexing node manager 406 or a copy
of a template process. In certain embodiments, the partition
manager 408 can be instantiated in a separate container from
the indexing node manager 406.

[0389] At (2), the ingestion buffer 310 sends data and a
buffer location to the indexing node 212. As described
herein, the data can be raw machine data, performance
metrics data, correlation data, JSON blobs, XML data, data

Aug. 4, 2022

in a datamodel, report data, tabular data, streaming data, data
exposed in an API, data in a relational database, etc. The
buffer location can correspond to a marker in the ingestion
buffer 310 that indicates the point at which the data within
apartition has been communicated to the indexing node 404.
For example, data before the marker can correspond to data
that has not been communicated to the indexing node 404,
and data after the marker can correspond to data that has
been communicated to the indexing node. In some cases, the
marker can correspond to a set of data that has been
communicated to the indexing node 404, but for which no
indication has been received that the data has been stored.
Accordingly, based on the marker, the ingestion buffer 310
can retain a portion of its data persistently until it receives
confirmation that the data can be deleted or has been stored
in common storage 216.

[0390] At (3), the indexing node manager 406 tracks the
buffer location and the partition manager 408 communicates
the data to the indexer 410. As described herein, the indexing
node manager 406 can track (and/or store) the buffer loca-
tion for the various partitions received from the ingestion
buffer 310. In addition, as described herein, the partition
manager 408 can forward the data received from the inges-
tion buffer 310 to the indexer 410 for processing. In various
implementations, as previously described, the data from
ingestion buffer 310 that is sent to the indexer 410 may
include a path to stored data, e.g., data stored in common
store 216 or another common store, which is then retrieved
by the indexer 410 or another component of the indexing
node 404.

[0391] At (4), the indexer 410 processes the data. As
described herein, the indexer 410 can perform a variety of
functions, enrichments, or transformations on the data as it
is indexed. For example, the indexer 410 can parse the data,
identify events from the data, identify and associate time-
stamps with the events, associate metadata or one or more
field values with the events, group events (e.g., based on
time, partition, and/or tenant ID, etc.), etc. Furthermore, the
indexer 410 can generate buckets based on a bucket creation
policy and store the events in the hot buckets, which may be
stored in data store 412 of the indexing node 404 associated
with that indexer 410 (see FIG. 4).

[0392] At (5), the indexer 410 reports the size of the data
being indexed to the partition manager 408. In some cases,
the indexer 410 can routinely provide a status update to the
partition manager 408 regarding the data that is being
processed by the indexer 410.

[0393] The status update can include, but is not limited to
the size of the data, the number of buckets being created, the
amount of time since the buckets have been created, etc. In
some embodiments, the indexer 410 can provide the status
update based on one or more thresholds being satisfied (e.g.,
one or more threshold sizes being satisfied by the amount of
data being processed, one or more timing thresholds being
satisfied based on the amount of time the buckets have been
created, one or more bucket number thresholds based on the
number of buckets created, the number of hot or warm
buckets, number of buckets that have not been stored in
common storage 216, etc.).

[0394] In certain cases, the indexer 410 can provide an
update to the partition manager 408 regarding the size of the
data that is being processed by the indexer 410 in response
to one or more threshold sizes being satisfied. For example,
each time a certain amount of data is added to the indexer

US 2022/0245156 Al

410 (e.g., 5 MB, 10 MB, etc.), the indexer 410 can report the
updated size to the partition manager 408. In some cases, the
indexer 410 can report the size of the data stored thereon to
the partition manager 408 once a threshold size is satisfied.
[0395] Incertain embodiments, the indexer 410 reports the
size of the date being indexed to the partition manager 408
based on a query by the partition manager 408. In certain
embodiments, the indexer 410 and partition manager 408
maintain an open communication link such that the partition
manager 408 is persistently aware of the amount of data on
the indexer 410.

[0396] In some cases, a partition manager 408 monitors
the data processed by the indexer 410. For example, the
partition manager 408 can track the size of the data on the
indexer 410 that is associated with the partition being
managed by the partition manager 408. In certain cases, one
or more partition managers 408 can track the amount or size
of the data on the indexer 410 that is associated with any
partition being managed by the indexing node manager 406
or that is associated with the indexing node 404.

[0397] At (6), the partition manager 408 instructs the
indexer 410 to copy the data to common storage 216. As
described herein, the partition manager 408 can instruct the
indexer 410 to copy the data to common storage 216 based
on a bucket roll-over policy. As described herein, in some
cases, the bucket roll-over policy can indicate that one or
more buckets are to be rolled over based on size. Accord-
ingly, in some embodiments, the partition manager 408 can
instruct the indexer 410 to copy the data to common storage
216 based on a determination that the amount of data stored
on the indexer 410 satisfies a threshold amount. The thresh-
old amount can correspond to the amount of data associated
with the partition that is managed by the partition manager
408 or the amount of data being processed by the indexer
410 for any partition.

[0398] In some cases, the partition manager 408 can
instruct the indexer 410 to copy the data that corresponds to
the partition being managed by the partition manager 408 to
common storage 216 based on the size of the data that
corresponds to the partition satisfying the threshold amount.
In certain embodiments, the partition manager 408 can
instruct the indexer 410 to copy the data associated with any
partition being processed by the indexer 410 to common
storage 216 based on the amount of the data from the
partitions that are being processed by the indexer 410
satisfying the threshold amount.

[0399] In some embodiments, (5) and/or (6) can be omit-
ted. For example, the indexer 410 can monitor the data
stored thereon. Based on the bucket roll-over policy, the
indexer 410 can determine that the data is to be copied to
common storage 216. Accordingly, in some embodiments,
the indexer 410 can determine that the data is to be copied
to common storage 216 without communication with the
partition manager 408.

[0400] At (7), the indexer 410 copies and/or stores the data
to common storage 216. As described herein, in some cases,
as the indexer 410 processes the data, it generates events and
stores the events in hot buckets. In response to receiving the
instruction to move the data to common storage 216, the
indexer 410 can convert the hot buckets to warm buckets,
and copy or move the warm buckets to the common storage
216.

[0401] As part of storing the data to common storage 216,
the indexer 410 can verify or obtain acknowledgements that

Aug. 4, 2022

the data is stored successfully. In some embodiments, the
indexer 410 can determine information regarding the data
stored in the common storage 216. For example, the infor-
mation can include location information regarding the data
that was stored to the common storage 216, bucket identi-
fiers of the buckets that were copied to common storage 216,
as well as additional information, e.g., in implementations in
which the ingestion buffer 310 uses sequences of records as
the form for data storage, the list of record sequence
numbers that were used as part of those buckets that were
copied to common storage 216.

[0402] At (), the indexer 410 reports or acknowledges to
the partition manager 408 that the data is stored in the
common storage 216. In various implementations, this can
be in response to periodic requests from the partition man-
ager 408 to the indexer 410 regarding which buckets and/or
data have been stored to common storage 216. The indexer
410 can provide the partition manager 408 with information
regarding the data stored in common storage 216 similar to
the data that is provided to the indexer 410 by the common
storage 216. In some cases, (8) can be replaced with the
common storage 216 acknowledging or reporting the storage
of the data to the partition manager 408.

[0403] At (9), the partition manager 408 updates the data
store catalog 220. As described herein, the partition manager
408 can update the data store catalog 220 with information
regarding the data or buckets stored in common storage 216.
For example, the partition manager 408 can update the data
store catalog 220 to include location information, a bucket
identifier, a time range, and tenant and partition information
regarding the buckets copied to common storage 216, etc. In
this way, the data store catalog 220 can include up-to-date
information regarding the buckets stored in common storage
216.

[0404] At (10), the partition manager 408 reports the
completion of the storage to the ingestion buffer 310, and at
(11), the ingestion buffer 310 updates the buffer location or
marker. Accordingly, in some embodiments, the ingestion
buffer 310 can maintain its marker until it receives an
acknowledgement that the data that it sent to the indexing
node 404 has been indexed by the indexing node 404 and
stored to common storage 216. In addition, the updated
buffer location or marker can be communicated to and stored
by the indexing node manager 406. In this way, a data intake
and query system 108 can use the ingestion buffer 310 to
provide a stateless environment for the indexing system 212.
For example, as described herein, if an indexing node 404 or
one of its components (e.g., indexing node manager 486,
partition manager 408, indexer) becomes unavailable or
unresponsive before data from the ingestion buffer 310 is
copied to common storage 216, the indexing system 212 can
generate or assign a new indexing node 404 (or component),
to process the data that was assigned to the now unavailable
indexing node 404 (or component) while reducing, mini-
mizing, or eliminating data loss.

[0405] At (12), a bucket manager 414, which may form
part of the indexer 410, the indexing node 404, or indexing
system 212, merges multiple buckets into one or more
merged buckets. As described herein, to reduce delay
between processing data and making that data available for
searching, the indexer 410 can convert smaller hot buckets
to warm buckets and copy the warm buckets to common
storage 216. However, as smaller buckets in common stor-
age 216 can result in increased overhead and storage costs,

US 2022/0245156 Al

the bucket manager 414 can monitor warm buckets in the
indexer 410 and merge the warm buckets into one or more
merged buckets.

[0406] In some cases, the bucket manager 414 can merge
the buckets according to a bucket merge policy. As described
herein, the bucket merge policy can indicate which buckets
are candidates for a merge (e.g., based on time ranges, size,
tenant/partition or other identifiers, etc.), the number of
buckets to merge, size or time range parameters for the
merged buckets, a frequency for creating the merged buck-
ets, etc.

[0407] At (13), the bucket manager 414 stores and/or
copies the merged data or buckets to common storage 216,
and obtains information about the merged buckets stored in
common storage 216. Similar to (7), the obtained informa-
tion can include information regarding the storage of the
merged buckets, such as, but not limited to, the location of
the buckets, one or more bucket identifiers, tenant or parti-
tion identifiers, etc. At (14), the bucket manager 414 reports
the storage of the merged data to the partition manager 408,
similar to the reporting of the data storage at (8).

[0408] At (15), the indexer 410 deletes data from the data
store (e.g., data store 412). As described herein, once the
merged buckets have been stored in common storage 216,
the indexer 410 can delete corresponding buckets that it has
stored locally. For example, the indexer 410 can delete the
merged buckets from the data store 412, as well as the
pre-merged buckets (buckets used to generate the merged
buckets). By removing the data from the data store 412, the
indexer 410 can free up additional space for additional hot
buckets, warm buckets, and/or merged buckets.

[0409] At (16), the common storage 216 deletes data
according to a bucket management policy. As described
herein, once the merged buckets have been stored in com-
mon storage 216, the common storage 216 can delete the
pre-merged buckets stored therein. In some cases, as
described herein, the common storage 216 can delete the
pre-merged buckets immediately, after a predetermined
amount of time, after one or more queries relying on the
pre-merged buckets have completed, or based on other
criteria in the bucket management policy, etc. In certain
embodiments, a controller at the common storage 216
handles the deletion of the data in common storage 216
according to the bucket management policy. In certain
embodiments, one or more components of the indexing node
404 delete the data from common storage 216 according to
the bucket management policy. However, for simplicity,
reference is made to common storage 216 performing the
deletion.

[0410] At (17), the partition manager 408 updates the data
store catalog 220 with the information about the merged
buckets. Similar to (9), the partition manager 408 can update
the data store catalog 220 with the merged bucket informa-
tion. The information can include, but is not limited to, the
time range of the merged buckets, location of the merged
buckets in common storage 216, a bucket identifier for the
merged buckets, tenant and partition information of the
merged buckets, etc. In addition, as part of updating the data
store catalog 220, the partition manager 408 can remove
reference to the pre-merged buckets. Accordingly, the data
store catalog 220 can be revised to include information
about the merged buckets and omit information about the
pre-merged buckets. In this way, as the search managers 514
request information about buckets in common storage 216

Aug. 4, 2022

from the data store catalog 220, the data store catalog 220
can provide the search managers 514 with the merged bucket
information.

[0411] As mentioned previously, in some of embodiments,
one or more of the functions described herein with respect
to FIG. 8 can be omitted, performed in a variety of orders
and/or performed by a different component of the data intake
and query system 108. For example, the partition manager
408 can (9) update the data store catalog 220 before, after,
or concurrently with the deletion of the data in the (15)
indexer 410 or (16) common storage 216. Similarly, in
certain embodiments, the indexer 410 can (12) merge buck-
ets before, after, or concurrently with (7)-(11), etc.

4.2.1. Containerized Indexing Nodes

[0412] FIG. 9 is a flow diagram illustrative of an embodi-
ment of a routine 900 implemented by the indexing system
212 to store data in common storage 216. Although
described as being implemented by the indexing system 212,
it will be understood that the elements outlined for routine
900 can be implemented by one or more computing devices/
components that are associated with the data intake and
query system 108, such as, but not limited to, the indexing
manager 402, the indexing node 404, indexing node man-
ager 406, the partition manager 408, the indexer 410, the
bucket manager 414, etc. Thus, the following illustrative
embodiment should not be construed as limiting.

[0413] At block 902, the indexing system 212 receives
data. As described herein, the system 312 can receive data
from a variety of sources in various formats. For example,
as described herein, the data received can be machine data,
performance metrics, correlated data, etc.

[0414] At block 904, the indexing system 212 stores the
data in buckets using one or more containerized indexing
nodes 404. As described herein, the indexing system 212 can
include multiple containerized indexing nodes 404 to
receive and process the data. The containerized indexing
nodes 404 can enable the indexing system 212 to provide a
highly extensible and dynamic indexing service. For
example, based on resource availability and/or workload, the
indexing system 212 can instantiate additional containerized
indexing nodes 404 or terminate containerized indexing
nodes 404. Further, multiple containerized indexing nodes
404 can be instantiated on the same computing device, and
share the resources of the computing device.

[0415] As described herein, each indexing node 404 can
be implemented using containerization or operating-system-
level virtualization, or other virtualization technique. For
example, the indexing node 404, or one or more components
of the indexing node 404 can be implemented as separate
containers or container instances. Each container instance
can have certain resources (e.g., memory, processor, etc.) of
the underlying computing system assigned to it, but may
share the same operating system and may use the operating
system’s system call interface. Further, each container may
run the same or different computer applications concurrently
or separately, and may interact with each other. It will be
understood that other virtualization techniques can be used.
For example, the containerized indexing nodes 404 can be
implemented using virtual machines using full virtualization
or paravirtualization, etc.

[0416] In some embodiments, the indexing node 404 can
be implemented as a group of related containers or a pod,
and the various components of the indexing node 404 can be

US 2022/0245156 Al

implemented as related containers of a pod. Further, the
indexing node 404 can assign different containers to execute
different tasks. For example, one container of a container-
ized indexing node 404 can receive the incoming data and
forward it to a second container for processing, etc. The
second container can generate buckets for the data, store the
data in buckets, and communicate the buckets to common
storage 216. A third container of the containerized indexing
node 404 can merge the buckets into merged buckets and
store the merged buckets in common storage. However, it
will be understood that the containerized indexing node 404
can be implemented in a variety of configurations. For
example, in some cases, the containerized indexing node
404 can be implemented as a single container and can
include multiple processes to implement the tasks described
above by the three containers. Any combination of contain-
erization and processed can be used to implement the
containerized indexing node 404 as desired.

[0417] In some embodiments, the containerized indexing
node 404 processes the received data (or the data obtained
using the received data) and stores it in buckets. As part of
the processing, the containerized indexing node 404 can
determine information about the data (e.g., host, source,
sourcetype), extract or identify timestamps, associated meta-
data fields with the data, extract keywords, transform the
data, identify and organize the data into events having raw
machine data associated with a timestamp, etc. In some
embodiments, the containerized indexing node 404 uses one
or more configuration files and/or extraction rules to extract
information from the data or events.

[0418] In addition, as part of processing and storing the
data, the containerized indexing node 404 can generate
buckets for the data according to a bucket creation policy. As
described herein, the containerized indexing node 404 can
concurrently generate and fill multiple buckets with the data
that it processes. In some embodiments, the containerized
indexing node 404 generates buckets for each partition or
tenant associated with the data that is being processed. In
certain embodiments, the indexing node 404 stores the data
or events in the buckets based on the identified timestamps.
[0419] Furthermore, containerized indexing node 404 can
generate one or more indexes associated with the buckets,
such as, but not limited to, one or more inverted indexes,
TSIDXs, keyword indexes, etc. The data and the indexes can
be stored in one or more files of the buckets. In addition, the
indexing node 404 can generate additional files for the
buckets, such as, but not limited to, one or more filter files,
a bucket summary, or manifest, etc.

[0420] At block 906, the indexing node 404 stores buckets
in common storage 216. As described herein, in certain
embodiments, the indexing node 404 stores the buckets in
common storage 216 according to a bucket roll-over policy.
In some cases, the buckets are stored in common storage 216
in one or more directories based on an index/partition or
tenant associated with the buckets. Further, the buckets can
be stored in a time series manner to facilitate time series
searching as described herein. Additionally, as described
herein, the common storage 216 can replicate the buckets
across multiple tiers and data stores across one or more
geographical locations.

[0421] Fewer, more, or different blocks can be used as part
of the routine 900. In some cases, one or more blocks can be
omitted. For example, in some embodiments, the contain-
erized indexing node 404 or a indexing system manager 402

Aug. 4, 2022

can monitor the amount of data received by the indexing
system 212. Based on the amount of data received and/or a
workload or utilization of the containerized indexing node
404, the indexing system 212 can instantiate an additional
containerized indexing node 404 to process the data.
[0422] Insome cases, the containerized indexing node 404
can instantiate a container or process to manage the pro-
cessing and storage of data from an additional shard or
partition of data received from the intake system. For
example, as described herein, the containerized indexing
node 404 can instantiate a partition manager 408 for each
partition or shard of data that is processed by the contain-
erized indexing node 404.

[0423] In certain embodiments, the indexing node 404 can
delete locally stored buckets. For example, once the buckets
are stored in common storage 216, the indexing node 404
can delete the locally stored buckets. In this way, the
indexing node 404 can reduce the amount of data stored
thereon.

[0424] As described herein, the indexing node 404 can
merge buckets and store merged buckets in the common
storage 216. In some cases, as part of merging and storing
buckets in common storage 216, the indexing node 404 can
delete locally storage pre-merged buckets (buckets used to
generate the merged buckets) and/or the merged buckets or
can instruct the common storage 216 to delete the pre-
merged buckets. In this way, the indexing node 404 can
reduce the amount of data stored in the indexing node 404
and/or the amount of data stored in common storage 216.
[0425] In some embodiments, the indexing node 404 can
update a data store catalog 220 with information about
pre-merged or merged buckets stored in common storage
216. As described herein, the information can identify the
location of the buckets in common storage 216 and other
information, such as, but not limited to, a partition or tenant
associated with the bucket, time range of the bucket, etc. As
described herein, the information stored in the data store
catalog 220 can be used by the query system 214 to identify
buckets to be searched as part of a query.

[0426] Furthermore, it will be understood that the various
blocks described herein with reference to FIG. 9 can be
implemented in a variety of orders, or can be performed
concurrently. For example, the indexing node 404 can
concurrently convert buckets and store them in common
storage 216, or concurrently receive data from a data source
and process data from the data source, etc.

4.2.2. Moving Buckets to Common Storage

[0427] FIG. 10 is a flow diagram illustrative of an embodi-
ment of a routine 1000 implemented by the indexing node
404 to store data in common storage 216. Although
described as being implemented by the indexing node 404,
it will be understood that the elements outlined for routine
1000 can be implemented by one or more computing
devices/components that are associated with the data intake
and query system 108, such as, but not limited to, the
indexing manager 402, the indexing node manager 406, the
partition manager 408, the indexer 410, the bucket manager
414, etc. Thus, the following illustrative embodiment should
not be construed as limiting.

[0428] At block 1002, the indexing node 404 receives
data. As described herein, the indexing node 404 can receive
data from a variety of sources in various formats. For

US 2022/0245156 Al

example, as described herein, the data received can be
machine data, performance metrics, correlated data, etc.
[0429] Further, as described herein, the indexing node 404
can receive data from one or more components of the intake
system 210 (e.g., the ingesting buffer 310, forwarder 302,
etc.) or other data sources 202. In some embodiments, the
indexing node 404 can receive data from a shard or partition
of the ingestion buffer 310. Further, in certain cases, the
indexing node 404 can generate a partition manager 408 for
each shard or partition of a data stream. In some cases, the
indexing node 404 receives data from the ingestion buffer
310 that references or points to data stored in one or more
data stores, such as a data store 218 of common storage 216,
or other network accessible data store or cloud storage. In
such embodiments, the indexing node 404 can obtain the
data from the referenced data store using the information
received from the ingestion buffer 310.

[0430] At block 1004, the indexing node 404 stores data in
buckets. In some embodiments, the indexing node 404
processes the received data (or the data obtained using the
received data) and stores it in buckets. As part of the
processing, the indexing node 404 can determine informa-
tion about the data (e.g., host, source, sourcetype), extract or
identify timestamps, associated metadata fields with the
data, extract keywords, transform the data, identify and
organize the data into events having raw machine data
associated with a timestamp, etc. In some embodiments, the
indexing node 404 uses one or more configuration files
and/or extraction rules to extract information from the data
or events.

[0431] In addition, as part of processing and storing the
data, the indexing node 404 can generate buckets for the data
according to a bucket creation policy. As described herein,
the indexing node 404 can concurrently generate and fill
multiple buckets with the data that it processes. In some
embodiments, the indexing node 404 generates buckets for
each partition or tenant associated with the data that is being
processed. In certain embodiments, the indexing node 404
stores the data or events in the buckets based on the
identified timestamps.

[0432] Furthermore, indexing node 404 can generate one
or more indexes associated with the buckets, such as, but not
limited to, one or more inverted indexes, TSIDXs, keyword
indexes, bloom filter files, etc. The data and the indexes can
be stored in one or more files of the buckets. In addition, the
indexing node 404 can generate additional files for the
buckets, such as, but not limited to, one or more filter files,
buckets summary, or manifest, etc.

[0433] At block 1006, the indexing node 404 monitors the
buckets. As described herein, the indexing node 404 can
process significant amounts of data across a multitude of
buckets, and can monitor the size or amount of data stored
in individual buckets, groups of buckets or all the buckets
that it is generating and filling. In certain embodiments, one
component of the indexing node 404 can monitor the
buckets (e.g., partition manager 408), while another com-
ponent fills the buckets (e.g., indexer 410).

[0434] In some embodiments, as part of monitoring the
buckets, the indexing node 404 can compare the individual
size of the buckets or the collective size of multiple buckets
with a threshold size. Once the threshold size is satisfied, the
indexing node 404 can determine that the buckets are to be
stored in common storage 216. In certain embodiments, the
indexing node 404 can monitor the amount of time that has

Aug. 4, 2022

passed since the buckets have been stored in common
storage 216. Based on a determination that a threshold
amount of time has passed, the indexing node 404 can
determine that the buckets are to be stored in common
storage 216. Further, it will be understood that the indexing
node 404 can use a bucket roll-over policy and/or a variety
of techniques to determine when to store buckets in common
storage 216.

[0435] At block 1008, the indexing node 404 converts the
buckets. In some cases, as part of preparing the buckets for
storage in common storage 216, the indexing node 404 can
convert the buckets from editable buckets to non-editable
buckets. In some cases, the indexing node 404 convert hot
buckets to warm buckets based on the bucket roll-over
policy. The bucket roll-over policy can indicate that buckets
are to be converted from hot to warm buckets based on a
predetermined period of time, one or more buckets satisfy-
ing a threshold size, the number of hot buckets, etc. In some
cases, based on the bucket roll-over policy, the indexing
node 404 converts hot buckets to warm buckets based on a
collective size of multiple hot buckets satisfying a threshold
size. The multiple hot buckets can correspond to any one or
any combination of randomly selected hot buckets, hot
buckets associated with a particular partition or shard (or
partition manager 408), hot buckets associated with a par-
ticular tenant or partition, all hot buckets in the data store
412 or being processed by the indexer 410, etc.

[0436] At block 1010, the indexing node 404 stores the
converted buckets in a data store. As described herein, the
indexing node 404 can store the buckets in common storage
216 or other location accessible to the query system 214. In
some cases, the indexing node 404 stores a copy of the
buckets in common storage 416 and retains the original
bucket in its data store 412. In certain embodiments, the
indexing node 404 stores a copy of the buckets in common
storage and deletes any reference to the original buckets in
its data store 412.

[0437] Furthermore, as described herein, in some cases,
the indexing node 404 can store the one or more buckets
based on the bucket roll-over policy. In addition to indicat-
ing when buckets are to be converted from hot buckets to
warm buckets, the bucket roll-over policy can indicate when
buckets are to be stored in common storage 216. In some
cases, the bucket roll-over policy can use the same or
different policies or thresholds to indicate when hot buckets
are to be converted to warm and when buckets are to be
stored in common storage 216.

[0438] In certain embodiments, the bucket roll-over policy
can indicate that buckets are to be stored in common storage
216 based on a collective size of buckets satisfying a
threshold size. As mentioned, the threshold size used to
determine that the buckets are to be stored in common
storage 216 can be the same as or different from the
threshold size used to determine that editable buckets should
be converted to non-editable buckets. Accordingly, in certain
embodiments, based on a determination that the size of the
one or more buckets have satisfied a threshold size, the
indexing node 404 can convert the buckets to non-editable
buckets and store the buckets in common storage 216.
[0439] Other thresholds and/or other factors or combina-
tions of thresholds and factors can be used as part of the
bucket roll-over policy. For example, the bucket roll-over
policy can indicate that buckets are to be stored in common
storage 216 based on the passage of a threshold amount of

US 2022/0245156 Al

time. As yet another example, bucket roll-over policy can
indicate that buckets are to be stored in common storage 216
based on the number of buckets satisfying a threshold
number.

[0440] It will be understood that the bucket roll-over
policy can use a variety of techniques or thresholds to
indicate when to store the buckets in common storage 216.
For example, in some cases, the bucket roll-over policy can
use any one or any combination of a threshold time period,
threshold number of buckets, user information, tenant or
partition information, query frequency, amount of data being
received, time of day or schedules, etc., to indicate when
buckets are to be stored in common storage 216 (and/or
converted to non-editable buckets). In some cases, the
bucket roll-over policy can use different priorities to deter-
mine how to store the buckets, such as, but not limited to,
minimizing or reducing time between processing and stor-
age to common storage 216, maximizing or increasing
individual bucket size, etc. Furthermore, the bucket roll-over
policy can use dynamic thresholds to indicate when buckets
are to be stored in common storage 216.

[0441] As mentioned, in some cases, based on an
increased query frequency, the bucket roll-over policy can
indicate that buckets are to be moved to common storage
216 more frequently by adjusting one more thresholds used
to determine when the buckets are to be stored to common
storage 216 (e.g., threshold size, threshold number, thresh-
old time, etc.).

[0442] In addition, the bucket roll-over policy can indicate
that different sets of buckets are to be rolled-over differently
or at different rates or frequencies. For example, the bucket
roll-over policy can indicate that buckets associated with a
first tenant or partition are to be rolled over according to one
policy and buckets associated with a second tenant or
partition are to be rolled over according to a different policy.
The different policies may indicate that the buckets associ-
ated with the first tenant or partition are to be stored more
frequently to common storage 216 than the buckets associ-
ated with the second tenant or partition. Accordingly, the
bucket roll-over policy can use one set of thresholds (e.g.,
threshold size, threshold number, and/or threshold time, etc.)
to indicate when the buckets associated with the first tenant
or partition are to be stored in common storage 216 and a
different set of thresholds for the buckets associated with the
second tenant or partition.

[0443] As another non-limiting example, consider a sce-
nario in which buckets from a partition _main are being
queried more frequently than bucket from the partition _test.
The bucket roll-over policy can indicate that based on the
increased frequency of queries for buckets from partition
_main, buckets associated with partition _main should be
moved more frequently to common storage 216, for
example, by adjusting the threshold size used to determine
when to store the buckets in common storage 216. In this
way, the query system 214 can obtain relevant search results
more quickly for data associated with the _main partition.
Further, if the frequency of queries for buckets from the
_main partition decreases, the data intake and query system
108 can adjust the threshold accordingly. In addition, the
bucket roll-over policy may indicate that the changes are
only for buckets associated with the partition _main or that
the changes are to be made for all buckets, or all buckets
associated with a particular tenant that is associated with the
partition _main, etc.

Aug. 4, 2022

[0444] Furthermore, as mentioned, the bucket roll-over
policy can indicate that buckets are to be stored in common
storage 216 at different rates or frequencies based on time of
day. For example, the data intake and query system 108 can
adjust the thresholds so that the buckets are moved to
common storage 216 more frequently during working hours
and less frequently during non-working hours. In this way,
the delay between processing and making the data available
for searching during working hours can be reduced, and can
decrease the amount of merging performed on buckets
generated during non-working hours. In other cases, the data
intake and query system 108 can adjust the thresholds so that
the buckets are moved to common storage 216 less fre-
quently during working hours and more frequently during
non-working hours.

[0445] As mentioned, the bucket roll-over policy can
indicate that based on an increased rate at which data is
received, buckets are to be moved to common storage more
(or less) frequently. For example, if the bucket roll-over
policy initially indicates that the buckets are to be stored
every millisecond, as the rate of data received by the
indexing node 404 increases, the amount of data received
during each millisecond can increase, resulting in more data
waiting to be stored. As such, in some cases, the bucket
roll-over policy can indicate that the buckets are to be stored
more frequently in common storage 216. Further, in some
cases, such as when a collective bucket size threshold is
used, an increased rate at which data is received may
overburden the indexing node 404 due to the overhead
associated with copying each bucket to common storage
216. As such, in certain cases, the bucket roll-over policy
can use a larger collective bucket size threshold to indicate
that the buckets are to be stored in common storage 216. In
this way, the bucket roll-over policy can reduce the ratio of
overhead to data being stored.

[0446] Similarly, the bucket roll-over policy can indicate
that certain users are to be treated differently. For example,
if a particular user is logged in, the bucket roll-over policy
can indicate that the buckets in an indexing node 404 are to
be moved to common storage 216 more or less frequently to
accommodate the user’s preferences, etc. Further, as men-
tioned, in some embodiments, the data intake and query
system 108 may indicate that only those buckets associated
with the user (e.g., based on tenant information, indexing
information, user information, etc.) are to be stored more or
less frequently.

[0447] Furthermore, the bucket roll-over policy can indi-
cate whether, after copying buckets to common storage 216,
the locally stored buckets are to be retained or discarded. In
some cases, the bucket roll-over policy can indicate that the
buckets are to be retained for merging. In certain cases, the
bucket roll-over policy can indicate that the buckets are to be
discarded.

[0448] Fewer, more, or different blocks can be used as part
of the routine 1000. In some cases, one or more blocks can
be omitted. For example, in certain embodiments, the index-
ing node 404 may not convert the buckets before storing
them. As another example, the routine 1000 can include
notifying the data source, such as the intake system, that the
buckets have been uploaded to common storage, merging
buckets and uploading merged buckets to common storage,
receiving identifying information about the buckets in com-
mon storage 216 and updating a data store catalog 220 with
the received information, etc.

US 2022/0245156 Al

[0449] Furthermore, it will be understood that the various
blocks described herein with reference to FIG. 10 can be
implemented in a variety of orders, or can be performed
concurrently. For example, the indexing node 404 can
concurrently convert buckets and store them in common
storage 216, or concurrently receive data from a data source
and process data from the data source, etc.

4.2.3. Updating Location Marker in Ingestion Buffer

[0450] FIG. 11 is a flow diagram illustrative of an embodi-
ment of a routine 1100 implemented by the indexing node
404 to update a location marker in an ingestion buffer, e.g.,
ingestion buffer 310. Although described as being imple-
mented by the indexing node 404, it will be understood that
the elements outlined for routine 1100 can be implemented
by one or more computing devices/components that are
associated with the data intake and query system 108, such
as, but not limited to, the indexing manager 402, the
indexing node manager 406, the partition manager 408, the
indexer 410, the bucket manager 414, etc. Thus, the follow-
ing illustrative embodiment should not be construed as
limiting. Moreover, although the example refers to updating
a location marker in ingestion buffer 310, other implemen-
tations can include other ingestion components with other
types of location tracking that can be updated in a similar
manner as the location marker.

[0451] At block 1102, the indexing node 404 receives
data. As described in greater detail above with reference to
block 1002, the indexing node 404 can receive a variety of
types of data from a variety of sources.

[0452] In some embodiments, the indexing node 404
receives data from an ingestion buffer 310. As described
herein, the ingestion buffer 310 can operate according to a
pub-sub messaging service. As such, the ingestion buffer
310 can communicate data to the indexing node 404, and
also ensure that the data is available for additional reads until
it receives an acknowledgement from the indexing node 404
that the data can be removed.

[0453] Insome cases, the ingestion buffer 310 can use one
or more read pointers or location markers to track the data
that has been communicated to the indexing node 404 but
that has not been acknowledged for removal. As the inges-
tion buffer 310 receives acknowledgments from the indexing
node 404, it can update the location markers. In some cases,
such as where the ingestion buffer 310 uses multiple parti-
tions or shards to provide the data to the indexing node 404,
the ingestion buffer 310 can include at least one location
marker for each partition or shard. In this way, the ingestion
buffer 310 can separately track the progress of the data reads
in the different shards.

[0454] In certain embodiments, the indexing node 404 can
receive (and/or store) the location markers in addition to or
as part of the data received from the ingestion buffer 310.
Accordingly, the indexing node 404 can track the location of
the data in the ingestion buffer 310 that the indexing node
404 has received from the ingestion buffer 310. In this way,
if an indexer 410 or partition manager 408 becomes unavail-
able or fails, the indexing node 404 can assign a different
indexer 410 or partition manager 408 to process or manage
the data from the ingestion buffer 310 and provide the
indexer 410 or partition manager 408 with a location from
which the indexer 410 or partition manager 408 can obtain
the data.

Aug. 4, 2022

[0455] At block 1104, the indexing node 404 stores the
data in buckets. As described in greater detail above with
reference to block 1004 of FIG. 10, as part of storing the data
in buckets, the indexing node 404 can parse the data,
generate events, generate indexes of the data, compress the
data, etc. In some cases, the indexing node 404 can store the
data in hot or warm buckets and/or convert hot buckets to
warm buckets based on the bucket roll-over policy.

[0456] At block 1106, the indexing node 404 stores buck-
ets in common storage 216. As described herein, in certain
embodiments, the indexing node 404 stores the buckets in
common storage 216 according to the bucket roll-over
policy. In some cases, the buckets are stored in common
storage 216 in one or more directories based on an index/
partition or tenant associated with the buckets. Further, the
buckets can be stored in a time series manner to facilitate
time series searching as described herein. Additionally, as
described herein, the common storage 216 can replicate the
buckets across multiple tiers and data stores across one or
more geographical locations. In some cases, in response to
the storage, the indexing node 404 receives an acknowl-
edgement that the data was stored. Further, the indexing
node 404 can receive information about the location of the
data in common storage, one or more identifiers of the stored
data, etc. The indexing node 404 can use this information to
update the data store catalog 220.

[0457] At block 1108, the indexing node 404 notifies an
ingestion buffer 310 that the data has been stored in common
storage 216. As described herein, in some cases, the inges-
tion buffer 310 can retain location markers for the data that
it sends to the indexing node 404. The ingestion buffer 310
can use the location markers to indicate that the data sent to
the indexing node 404 is to be made persistently available to
the indexing system 212 until the ingestion buffer 310
receives an acknowledgement from the indexing node 404
that the data has been stored successfully. In response to the
acknowledgement, the ingestion buffer 310 can update the
location marker(s) and communicate the updated location
markers to the indexing node 404. The indexing node 404
can store updated location markers for use in the event one
or more components of the indexing node 404 (e.g., partition
manager 408, indexer 410) become unavailable or fail. In
this way, the ingestion buffer 310 and the location markers
can aid in providing a stateless indexing service.

[0458] Fewer, more, or different blocks can be used as part
of the routine 1100. In some cases, one or more blocks can
be omitted. For example, in certain embodiments, the index-
ing node 404 can update the data store catalog 220 with
information about the buckets created by the indexing node
404 and/or stored in common storage 215, as described
herein.

[0459] Furthermore, it will be understood that the various
blocks described herein with reference to FIG. 11 can be
implemented in a variety of orders. In some cases, the
indexing node 404 can implement some blocks concurrently
or change the order as desired. For example, the indexing
node 404 can concurrently receive data, store other data in
buckets, and store buckets in common storage.

4.2.4. Merging Buckets

[0460] FIG. 12 is a flow diagram illustrative of an embodi-
ment of a routine 1200 implemented by the indexing node
404 to merge buckets. Although described as being imple-
mented by the indexing node 404, it will be understood that

US 2022/0245156 Al

the elements outlined for routine 1200 can be implemented
by one or more computing devices/components that are
associated with the data intake and query system 108, such
as, but not limited to, the indexing manager 402, the
indexing node manager 406, the partition manager 408, the
indexer 410, the bucket manager 414, etc. Thus, the follow-
ing illustrative embodiment should not be construed as
limiting.

[0461] At block 1202, the indexing node 404 stores data in
buckets. As described herein, the indexing node 404 can
process various types of data from a variety of sources.
Further, the indexing node 404 can create one or more
buckets according to a bucket creation policy and store the
data in the store the data in one or more buckets. In addition,
in certain embodiments, the indexing node 404 can convert
hot or editable buckets to warm or non-editable buckets
according to a bucket roll-over policy.

[0462] At block 1204, the indexing node 404 stores buck-
ets in common storage 216. As described herein, the index-
ing node 404 can store the buckets in common storage 216
according to the bucket roll-over policy. In some cases, the
buckets are stored in common storage 216 in one or more
directories based on an index/partition or tenant associated
with the buckets. Further, the buckets can be stored in a time
series manner to facilitate time series searching as described
herein. Additionally, as described herein, the common stor-
age 216 can replicate the buckets across multiple tiers and
data stores across one or more geographical locations.
[0463] At block 1206, the indexing node 404 updates the
data store catalog 220. As described herein, in some cases,
in response to the storage, the indexing node 404 receives an
acknowledgement that the data was stored. Further, the
indexing node 404 can receive information about the loca-
tion of the data in common storage, one or more identifiers
of the stored data, etc. The received information can be used
by the indexing node 404 to update the data store catalog
220. In addition, the indexing node 404 can provide the data
store catalog 220 with any one or any combination of the
tenant or partition associated with the bucket, a time range
of the events in the bucket, one or more metadata fields of
the bucket (e.g., host, source, sourcetype, etc.), etc. In this
way, the data store catalog 220 can store up-to-date infor-
mation about the buckets in common storage 216. Further,
this information can be used by the query system 214 to
identify relevant buckets for a query.

[0464] In some cases, the indexing node 404 can update
the data store catalog 220 before, after, or concurrently with
storing the data to common storage 216. For example, as
buckets are created by the indexing node 404, the indexing
node 404 can update the data store catalog 220 with infor-
mation about the created buckets, such as, but not limited to,
an partition or tenant associated with the bucket, a time
range or initial time (e.g., time of earliest-in-time time-
stamp), etc. In addition, the indexing node 404 can include
an indication that the bucket is a hot bucket or editable
bucket and that the contents of the bucket are not (yet)
available for searching or in the common storage 216.
[0465] As the bucket is filled with events or data, the
indexing node 404 can update the data store catalog 220 with
additional information about the bucket (e.g., updated time
range based on additional events, size of the bucket, number
of events in the bucket, certain keywords or metadata from
the bucket, such as, but not limited to a host, source, or
sourcetype associated with different events in the bucket,

Aug. 4, 2022

etc.). Further, once the bucket is uploaded to common
storage 216, the indexing node 404 can complete the entry
for the bucket, such as, by providing a completed time range,
location information of the bucket in common storage 216,
completed keyword or metadata information as desired, etc.

[0466] The information in the data store catalog 220 can
be used by the query system 214 to execute queries. In some
cases, based on the information in the data store catalog 220
about buckets that are not yet available for searching, the
query system 214 can wait until the data is available for
searching before completing the query or inform a user that
some data that may be relevant has not been processed or
that the results will be updated. Further, in some cases, the
query system 214 can inform the indexing system 212 about
the bucket, and the indexing system 212 can cause the
indexing node 404 to store the bucket in common storage
216 sooner than it otherwise would without the communi-
cation from the query system 214.

[0467] In addition, the indexing node 404 can update the
data store catalog 220 with information about buckets to be
merged. For example, once one or more buckets are iden-
tified for merging, the indexing node 404 can update an entry
for the buckets in the data store catalog 220 indicating that
they are part of a merge operation and/or will be replaced.
In some cases, as part of the identification, the data store
catalog 220 can provide information about the entries to the
indexing node 404 for merging. As the entries may have
summary information about the buckets, the indexing node
404 can use the summary information to generate a merged
entry for the data store catalog 220 as opposed to generating
the summary information from the merged data itself. In this
way, the information from the data store catalog 220 can
increase the efficiency of a merge operation by the indexing
node 404.

[0468] At block 1208, the indexing node 404 merges
buckets. In some embodiments, the indexing node 404 can
merge buckets according to a bucket merge policy. As
described herein, the bucket merge policy can indicate
which buckets to merge, when to merge buckets and one or
more parameters for the merged buckets (e.g., time range for
the merged buckets, size of the merged buckets, etc.). For
example, the bucket merge policy can indicate that only
buckets associated with the same tenant identifier and/or
partition can be merged. As another example, the bucket
merge policy can indicate that only buckets that satisfy a
threshold age (e.g., have existed or been converted to warm
buckets for more than a set period of time) are eligible for
a merge. Similarly, the bucket merge policy can indicate that
each merged bucket must be at least 750 MB or no greater
than 1 GB, or cannot have a time range that exceeds a
predetermined amount or is larger than 75% of other buck-
ets. The other buckets can refer to one or more buckets in
common storage 216 or similar buckets (e.g., buckets asso-
ciated with the same tenant, partition, host, source, or
sourcetype, etc.). In certain cases, the bucket merge policy
can indicate that buckets are to be merged based on a
schedule (e.g., during non-working hours) or user login
(e.g., when a particular user is not logged in), etc. In certain
embodiments, the bucket merge policy can indicate that
bucket merges can be adjusted dynamically. For example,
based on the rate of incoming data or queries, the bucket
merge policy can indicate that buckets are to be merged
more or less frequently, etc. In some cases, the bucket merge
policy can indicate that due to increased processing demands

US 2022/0245156 Al

by other indexing nodes 404 or other components of an
indexing node 404, such as processing and storing buckets,
that bucket merges are to occur less frequently so that the
computing resources used to merge buckets can be redi-
rected to other tasks. It will be understood that a variety of
priorities and policies can be used as part of the bucket
merge policy.

[0469] At block 1210, the indexing node 404 stores the
merged buckets in common storage 216. In certain embodi-
ments, the indexing node 404 can store the merged buckets
based on the bucket merge policy. For example, based on the
bucket merge policy indicating that merged buckets are to
satisfy a size threshold, the indexing node 404 can store a
merged bucket once it satisfies the size threshold. Similarly,
the indexing node 404 can store the merged buckets after a
predetermined amount of time or during non-working hours,
etc., per the bucket merge policy.

[0470] In response to the storage of the merged buckets in
common storage 216, the indexing node 404 can receive an
acknowledgement that the merged buckets have been stored.
In some cases, the acknowledgement can include informa-
tion about the merged buckets, including, but not limited to,
a storage location in common storage 216, identifier, etc.
[0471] At block 1212, the indexing node 404 updates the
data store catalog 220. As described herein, the indexing
node 404 can store information about the merged buckets in
the data store catalog. 220. The information can be similar
to the information stored in the data store catalog 220 for the
pre-merged buckets (buckets used to create the merged
buckets). For example, in some cases, the indexing node 404
can store any one or any combination of the following in the
data store catalog: the tenant or partition associated with the
merged buckets, a time range of the merged bucket, the
location information of the merged bucket in common
storage 216, metadata fields associated with the bucket (e.g.,
host, source, sourcetype), etc. As mentioned, the information
about the merged buckets in the data store catalog 220 can
be used by the query system 214 to identify relevant buckets
for a search. Accordingly, in some embodiments, the data
store catalog 220 can be used in a similar fashion as an
inverted index, and can include similar information (e.g.,
time ranges, field-value pairs, keyword pairs, location infor-
mation, etc.). However, instead of providing information
about individual events in a bucket, the data store catalog
220 can provide information about individual buckets in
common storage 216.

[0472] In some cases, the indexing node 404 can retrieve
information from the data store catalog 220 about the
pre-merged buckets and use that information to generate
information about the merged bucket(s) for storage in the
data store catalog 220. For example, the indexing node 404
can use the time ranges of the pre-merged buckets to
generate a merged time range, identify metadata fields
associated with the different events in the pre-merged buck-
ets, etc. In certain embodiments, the indexing node 404 can
generate the information about the merged buckets for the
data store catalog 220 from the merged data itself without
retrieving information about the pre-merged buckets from
the data store catalog 220.

[0473] In certain embodiments, as part of updating the
data store catalog 220 with information about the merged
buckets, the indexing node 404 can delete the information in
the data store catalog 220 about the pre-merged buckets. For
example, once the merged bucket is stored in common

Aug. 4, 2022

storage 216, the merged bucket can be used for queries. As
such, the information about the pre-merged buckets can be
removed so that the query system 214 does not use the
pre-merged buckets to execute a query.

[0474] Fewer, more, or different blocks can be used as part
of the routine 1200. In some cases, one or more blocks can
be omitted. For example, in certain embodiments, the index-
ing node 404 can delete locally stored buckets. In some
cases, the indexing node 404 deletes any buckets used to
form merged buckets and/or the merged buckets. In this way,
the indexing node 404 can reduce the amount of data stored
in the indexing node 404.

[0475] In certain embodiments, the indexing node 404 can
instruct the common storage 216 to delete buckets or delete
the buckets in common storage according to a bucket
management policy. For example, the indexing node 404 can
instruct the common storage 216 to delete any buckets used
to generate the merged buckets. Based on the bucket man-
agement policy, the common storage 216 can remove the
buckets. As described herein, the bucket management policy
can indicate when buckets are to be removed from common
storage 216. For example, the bucket management policy
can indicate that buckets are to be removed from common
storage 216 after a predetermined amount of time, once any
queries relying on the pre-merged buckets are completed,
etc.

[0476] By removing buckets from common storage 216,
the indexing node 404 can reduce the size or amount of data
stored in common storage 216 and improve search times.
For example, in some cases, large buckets can increase
search times as there are fewer buckets for the query system
214 to search. By another example, merging buckets after
indexing allows optimal or near-optimal bucket sizes for
search (e.g., performed by query system 214) and index
(e.g., performed by indexing system 212) to be determined
independently or near-independently.

[0477] Furthermore, it will be understood that the various
blocks described herein with reference to FIG. 12 can be
implemented in a variety of orders. In some cases, the
indexing node 404 can implement some blocks concurrently
or change the order as desired. For example, the indexing
node 404 can concurrently merge buckets while updating an
ingestion buffer 310 about the data stored in common
storage 216 or updating the data store catalog 220. As
another example, the indexing node 404 can delete data
about the pre-merged buckets locally and instruct the com-
mon storage 216 to delete the data about the pre-merged
buckets while concurrently updating the data store catalog
220 about the merged buckets. In some embodiments, the
indexing node 404 deletes the pre-merged bucket data
entries in the data store catalog 220 prior to instructing the
common storage 216 to delete the buckets. In this way, the
data indexing node 404 can reduce the risk that a query relies
on information in the data store catalog 220 that does not
reflect the data stored in the common storage 216.

4.3. Querying

[0478] FIG. 13 is a data flow diagram illustrating an
embodiment of the data flow and communications between
a variety of the components of the data intake and query
system 108 during execution of a query. Specifically, FIG.
13 is a data flow diagram illustrating an embodiment of the
data flow and communications between the indexing system
212, the data store catalog 220, a search head 504, a search

US 2022/0245156 Al

node monitor 508, search node catalog 510, search nodes
506, common storage 216, and the query acceleration data
store 222. However, it will be understood, that in some of
embodiments, one or more of the functions described herein
with respect to FIG. 13 can be omitted, performed in a
different order and/or performed by a different component of
the data intake and query system 108. Accordingly, the
illustrated embodiment and description should not be con-
strued as limiting.

[0479] Further, it will be understood that the various
functions described herein with respect to FIG. 13 can be
performed by one or more distinct components of the data
intake and query system 108. For example, for simplicity,
reference is made to a search head 504 performing one or
more functions. However, it will be understood that these
functions can be performed by one or more components of
the search head 504, such as, but not limited to, the search
master 512 and/or the search manager 514. Similarly, ref-
erence is made to the indexing system 212 performing one
or more functions. However, it will be understood that the
functions identified as being performed by the indexing
system 212 can be performed by one or more components of
the indexing system 212.

[0480] At (1) and (2), the indexing system 212 monitors
the storage of processed data and updates the data store
catalog 220 based on the monitoring. As described herein,
one or more components of the indexing system 212, such
as the partition manager 408 and/or the indexer 410 can
monitor the storage of data or buckets to common storage
216. As the data is stored in common storage 216, the
indexing system 212 can obtain information about the data
stored in the common storage 216, such as, but not limited
to, location information, bucket identifiers, tenant identifier
(e.g., for buckets that are single tenant) etc. The indexing
system 212 can use the received information about the data
stored in common storage 216 to update the data store
catalog 220.

[0481] Furthermore, as described herein, in some embodi-
ments, the indexing system 212 can merge buckets into one
or more merged buckets, store the merged buckets in com-
mon storage 216, and update the data store catalog to 220
with the information about the merged buckets stored in
common storage 216.

[0482] At (3) and (4), the search node monitor 508 moni-
tors the search nodes 506 and updates the search node
catalog 510. As described herein, the search node monitor
508 can monitor the availability, responsiveness, and/or
utilization rate of the search nodes 506. Based on the status
of the search nodes 506, the search node monitor 508 can
update the search node catalog 510. In this way, the search
node catalog 510 can retain information regarding a current
status of each of the search nodes 506 in the query system
214.

[0483] At (5), the search head 504 receives a query and
generates a search manager 514. As described herein, in
some cases, a search master 512 can generate the search
manager 514. For example, the search master 512 can spin
up or instantiate a new process, container, or virtual
machine, or copy itself to generate the search manager 514,
etc. As described herein, in some embodiments, the search
manager 514 can perform one or more of functions
described herein with reference to FIG. 13 as being per-
formed by the search head 504 to process and execute the

query.

Aug. 4, 2022

[0484] The search head 504 (6A) requests data identifiers
from the data store catalog 220 and (6B) requests an
identification of available search nodes from the search node
catalog 510. As described, the data store catalog 220 can
include information regarding the data stored in common
storage 216 and the search node catalog 510 can include
information regarding the search nodes 506 of the query
system 214. Accordingly, the search head 504 can query the
respective catalogs to identify data or buckets that include
data that satisfies at least a portion of the query and search
nodes available to execute the query. In some cases, these
requests can be done concurrently or in any order.

[0485] At (7A), the data store catalog 220 provides the
search head 504 with an identification of data that satisfies
at least a portion of the query. As described herein, in
response to the request from the search head 504, the data
store catalog 220 can be used to identify and return identi-
fiers of buckets in common storage 216 and/or location
information of data in common storage 216 that satisfy at
least a portion of the query or at least some filter criteria
(e.g., buckets associated with an identified tenant or partition
or that satisfy an identified time range, etc.).

[0486] In some cases, as the data store catalog 220 can
routinely receive updates by the indexing system 212, it can
implement a read-write lock while it is being queried by the
search head 504. Furthermore, the data store catalog 220 can
store information regarding which buckets were identified
for the search. In this way, the data store catalog 220 can be
used by the indexing system 212 to determine which buckets
in common storage 216 can be removed or deleted as part of
a merge operation.

[0487] At (7B), the search node catalog 510 provides the
search head 504 with an identification of available search
nodes 506. As described herein, in response to the request
from the search head 504, the search node catalog 510 can
be used to identify and return identifiers for search nodes
506 that are available to execute the query.

[0488] At (8) the search head 504 maps the identified
search nodes 506 to the data according to a search node
mapping policy. In some cases, per the search node mapping
policy, the search head 504 can dynamically map search
nodes 506 to the identified data or buckets. As described
herein, the search head 504 can map the identified search
nodes 506 to the identified data or buckets at one time or
iteratively as the buckets are searched according to the
search node mapping policy. In certain embodiments, per the
search node mapping policy, the search head 504 can map
the identified search nodes 506 to the identified data based
on previous assignments, data stored in a local or shared data
store of one or more search heads 506, network architecture
of the search nodes 506, a hashing algorithm, etc.

[0489] In some cases, as some of the data may reside in a
local or shared data store between the search nodes 506, the
search head 504 can attempt to map that was previously
assigned to a search node 506 to the same search node 506.
In certain embodiments, to map the data to the search nodes
506, the search head 504 uses the identifiers, such as bucket
identifiers, received from the data store catalog 220. In some
embodiments, the search head 504 performs a hash function
to map a bucket identifier to a search node 506. In some
cases, the search head 504 uses a consistent hash algorithm
to increase the probability of mapping a bucket identifier to
the same search node 506.

US 2022/0245156 Al

[0490] In certain embodiments, the search head 504 or
query system 214 can maintain a table or list of bucket
mappings to search nodes 506. In such embodiments, per the
search node mapping policy, the search head 504 can use the
mapping to identify previous assignments between search
nodes and buckets. If a particular bucket identifier has not
been assigned to a search node 506, the search head 504 can
use a hash algorithm to assign it to a search node 506. In
certain embodiments, prior to using the mapping for a
particular bucket, the search head 504 can confirm that the
search node 506 that was previously assigned to the par-
ticular bucket is available for the query. In some embodi-
ments, if the search node 506 is not available for the query,
the search head 504 can determine whether another search
node 506 that shares a data store with the unavailable search
node 506 is available for the query. If the search head 504
determines that an available search node 506 shares a data
store with the unavailable search node 506, the search head
504 can assign the identified available search node 506 to the
bucket identifier that was previously assigned to the now
unavailable search node 506.

[0491] At (9), the search head 504 instructs the search
nodes 506 to execute the query. As described herein, based
on the assignment of buckets to the search nodes 506, the
search head 504 can generate search instructions for each of
the assigned search nodes 506. These instructions can be in
various forms, including, but not limited to, JSON, DAG,
etc. In some cases, the search head 504 can generate
sub-queries for the search nodes 506. Each sub-query or
instructions for a particular search node 506 generated for
the search nodes 506 can identify the buckets that are to be
searched, the filter criteria to identify a subset of the set of
data to be processed, and the manner of processing the
subset of data. Accordingly, the instructions can provide the
search nodes 506 with the relevant information to execute
their particular portion of the query.

[0492] At (10), the search nodes 506 obtain the data to be
searched. As described herein, in some cases the data to be
searched can be stored on one or more local or shared data
stores of the search nodes 506. In certain embodiments, the
data to be searched is located in the common storage 216. In
such embodiments, the search nodes 506 or a cache manager
516 can obtain the data from the common storage 216.
[0493] In some cases, the cache manager 516 can identify
or obtain the data requested by the search nodes 506. For
example, if the requested data is stored on the local or shared
data store of the search nodes 506, the cache manager 516
can identify the location of the data for the search nodes 506.
If the requested data is stored in common storage 216, the
cache manager 516 can obtain the data from the common
storage 216.

[0494] As described herein, in some embodiments, the
cache manager 516 can obtain a subset of the files associated
with the bucket to be searched by the search nodes 506. For
example, based on the query, the search node 506 can
determine that a subset of the files of a bucket are to be used
to execute the query. Accordingly, the search node 506 can
request the subset of files, as opposed to all files of the
bucket. The cache manager 516 can download the subset of
files from common storage 216 and provide them to the
search node 506 for searching.

[0495] In some embodiments, such as when a search node
506 cannot uniquely identify the file of a bucket to be
searched, the cache manager 516 can download a bucket

Aug. 4, 2022

summary or manifest that identifies the files associated with
the bucket. The search node 506 can use the bucket summary
or manifest to uniquely identify the file to be used in the
query. The common storage 216 can then obtain that
uniquely identified file from common storage 216.

[0496] At (11), the search nodes 506 search and process
the data. As described herein, the sub-queries or instructions
received from the search head 504 can instruct the search
nodes 506 to identify data within one or more buckets and
perform one or more transformations on the data. Accord-
ingly, each search node 506 can identify a subset of the set
of data to be processed and process the subset of data
according to the received instructions. This can include
searching the contents of one or more inverted indexes of a
bucket or the raw machine data or events of a bucket, etc. In
some embodiments, based on the query or sub-query, a
search node 506 can perform one or more transformations
on the data received from each bucket or on aggregate data
from the different buckets that are searched by the search
node 506.

[0497] At (12), the search head 504 monitors the status of
the query of the search nodes 506. As described herein, the
search nodes 506 can become unresponsive or fail for a
variety of reasons (e.g., network failure, error, high utiliza-
tion rate, etc.). Accordingly, during execution of the query,
the search head 504 can monitor the responsiveness and
availability of the search nodes 506. In some cases, this can
be done by pinging or querying the search nodes 506,
establishing a persistent communication link with the search
nodes 506, or receiving status updates from the search nodes
506. In some cases, the status can indicate the buckets that
have been searched by the search nodes 506, the number or
percentage of remaining buckets to be searched, the per-
centage of the query that has been executed by the search
node 506, etc. In some cases, based on a determination that
a search node 506 has become unresponsive, the search head
504 can assign a different search node 506 to complete the
portion of the query assigned to the unresponsive search
node 506.

[0498] In certain embodiments, depending on the status of
the search nodes 506, the search manager 514 can dynami-
cally assign or re-assign buckets to search nodes 506. For
example, as search nodes 506 complete their search of
buckets assigned to them, the search manager 514 can assign
additional buckets for search. As yet another example, if one
search node 506 is 95% complete with its search while
another search node 506 is less than 50% complete, the
query manager can dynamically assign additional buckets to
the search node 506 that is 95% complete or re-assign
buckets from the search node 506 that is less than 50%
complete to the search node that is 95% complete. In this
way, the search manager 514 can improve the efficiency of
how a computing system performs searches through the
search manager 514 increasing parallelization of searching
and decreasing the search time.

[0499] At (13), the search nodes 506 send individual query
results to the search head 504. As described herein, the
search nodes 506 can send the query results as they are
obtained from the buckets and/or send the results once they
are completed by a search node 506. In some embodiments,
as the search head 504 receives results from individual
search nodes 506, it can track the progress of the query. For
example, the search head 504 can track which buckets have
been searched by the search nodes 506. Accordingly, in the

US 2022/0245156 Al

event a search node 506 becomes unresponsive or fails, the
search head 504 can assign a different search node 506 to
complete the portion of the query assigned to the unrespon-
sive search node 506. By tracking the buckets that have been
searched by the search nodes and instructing different search
node 506 to continue searching where the unresponsive
search node 506 left off, the search head 504 can reduce the
delay caused by a search node 506 becoming unresponsive,
and can aid in providing a stateless searching service.
[0500] At (14), the search head 504 processes the results
from the search nodes 506. As described herein, the search
head 504 can perform one or more transformations on the
data received from the search nodes 506. For example, some
queries can include transformations that cannot be com-
pleted until the data is aggregated from the different search
nodes 506. In some embodiments, the search head 504 can
perform these transformations.

[0501] At (15), the search head 504 stores results in the
query acceleration data store 222. As described herein, in
some cases some, all, or a copy of the results of the query
can be stored in the query acceleration data store 222. The
results stored in the query acceleration data store 222 can be
combined with other results already stored in the query
acceleration data store 222 and/or be combined with subse-
quent results. For example, in some cases, the query system
214 can receive ongoing queries, or queries that do not have
a predetermined end time. In such cases, as the search head
504 receives a first set of results, it can store the first set of
results in the query acceleration data store 222. As subse-
quent results are received, the search head 504 can add them
to the first set of results, and so forth. In this way, rather than
executing the same or similar query data across increasingly
larger time ranges, the query system 214 can execute the
query across a first time range and then aggregate the results
of the query with the results of the query across the second
time range. In this way, the query system can reduce the
amount of queries and the size of queries being executed and
can provide query results in a more time efficient manner.
[0502] At (16), the search head 504 terminates the search
manager 514. As described herein, in some embodiments a
search head 504 or a search master 512 can generate a search
manager 514 for each query assigned to the search head 504.
Accordingly, in some embodiments, upon completion of a
search, the search head 504 or search master 512 can
terminate the search manager 514. In certain embodiments,
rather than terminating the search manager 514 upon
completion of a query, the search head 504 can assign the
search manager 514 to a new query.

[0503] As mentioned previously, in some of embodiments,
one or more of the functions described herein with respect
to FIG. 13 can be omitted, performed in a variety of orders
and/or performed by a different component of the data intake
and query system 108. For example, the search head 504 can
monitor the status of the query throughout its execution by
the search nodes 506 (e.g., during (10), (11), and (13)).
Similarly, (1) and (2) can be performed concurrently, (3) and
(4) can be performed concurrently, and all can be performed
before, after, or concurrently with (5). Similarly, steps (6A)
and (6B) and steps (7A) and (7B) can be performed before,
after, or concurrently with each other. Further, (6A) and (7A)
can be performed before, after, or concurrently with (7A)
and (7B). As yet another example, (10), (11), and (13) can
be performed concurrently. For example, a search node 506
can concurrently receive one or more files for one bucket,

Aug. 4, 2022

while searching the content of one or more files of a second
bucket and sending query results for a third bucket to the
search head 504. Similarly, the search head 504 can (8) map
search nodes 506 to buckets while concurrently (9) gener-
ating instructions for and instructing other search nodes 506
to begin execution of the query.

4.3.1. Containerized Search Nodes

[0504] FIG. 14 is a flow diagram illustrative of an embodi-
ment of a routine 1400 implemented by the query system
214 to execute a query. Although described as being imple-
mented by the search head 504, it will be understood that the
elements outlined for routine 1400 can be implemented by
one or more computing devices/components that are asso-
ciated with the data intake and query system 108, such as,
but not limited to, the query system manager 502, the search
head 504, the search master 512, the search manager 514,
the search nodes 506, etc. Thus, the following illustrative
embodiment should not be construed as limiting.

[0505] At block 1402, the search manager 514 receives a
query. As described in greater detail above, the search
manager 514 can receive the query from the search head
504, search master 512, etc. In some cases, the search
manager 514 can receive the query from a client device 204.
The query can be in a query language as described in greater
detail above. In some cases, the query received by the search
manager 514 can correspond to a query received and
reviewed by the search head 504. For example, the search
head 504 can determine whether the query was submitted by
an authenticated user and/or review the query to determine
that it is in a proper format for the data intake and query
system 108, has correct semantics and syntax, etc. In some
cases, the search head 504 can use a search master 512 to
receive search queries, and in some cases, spawn the search
manager 514 to process and execute the query.

[0506] At block 1404, the search manager 514 identifies
one or more containerized search nodes, e.g., search nodes
506, to execute the query. As described herein, the query
system 214 can include multiple containerized search nodes
506 to execute queries. One or more of the containerized
search nodes 506 can be instantiated on the same computing
device, and share the resources of the computing device. In
addition, the containerized search nodes 506 can enable the
query system 214 to provide a highly extensible and
dynamic searching service. For example, based on resource
availability and/or workload, the query system 214 can
instantiate additional containerized search nodes 506 or
terminate containerized search nodes 506. Furthermore, the
query system 214 can dynamically assign containerized
search nodes 506 to execute queries on data in common
storage 216 based on a search node mapping policy.
[0507] As described herein, each search node 506 can be
implemented using containerization or operating-system-
level virtualization, or other virtualization technique. For
example, the containerized search node 506, or one or more
components of the search node 506 can be implemented as
separate containers or container instances. Each container
instance can have certain resources (e.g., memory, proces-
sor, etc.) of the underlying computing system assigned to it,
but may share the same operating system and may use the
operating system’s system call interface. Further, each con-
tainer may run the same or different computer applications
concurrently or separately, and may interact with each other.
It will be understood that other virtualization techniques can

US 2022/0245156 Al

be used. For example, the containerized search nodes 506
can be implemented using virtual machines using full vir-
tualization or paravirtualization, etc.

[0508] In some embodiments, the search node 506 can be
implemented as a group of related containers or a pod, and
the various components of the search node 506 can be
implemented as related containers of a pod. Further, the
search node 506 can assign different containers to execute
different tasks. For example one container of a containerized
search node 506 can receive and query instructions, a second
container can obtain the data or buckets to be searched, and
a third container of the containerized search node 506 can
search the buckets and/or perform one or more transforma-
tions on the data. However, it will be understood that the
containerized search node 506 can be implemented in a
variety of configurations. For example, in some cases, the
containerized search node 506 can be implemented as a
single container and can include multiple processes to
implement the tasks described above by the three containers.
Any combination of containerization and processed can be
used to implement the containerized search node 506 as
desired.

[0509] In some cases, the search manager 514 can identify
the search nodes 506 using the search node catalog 510. For
example, as described herein a search node monitor 508 can
monitor the status of the search nodes 506 instantiated in the
query system 514 and monitor their status. The search node
monitor can store the status of the search nodes 506 in the
search node catalog 510.

[0510] In certain embodiments, the search manager 514
can identify search nodes 506 using a search node mapping
policy, previous mappings, previous searches, or the con-
tents of a data store associated with the search nodes 506.
For example, based on the previous assignment of a search
node 506 to search data as part of a query, the search
manager 514 can assign the search node 506 to search the
same data for a different query. As another example, as
search nodes 506 search data, it can cache the data in a local
or shared data store. Based on the data in the cache, the
search manager 514 can assign the search node 506 to search
the again as part of a different query.

[0511] In certain embodiments, the search manager 514
can identify search nodes 506 based on shared resources. For
example, if the search manager 514 determines that a search
node 506 shares a data store with a search node 506 that
previously performed a search on data and cached the data
in the shared data store, the search manager 514 can assign
the search node 506 that share the data store to search the
data stored therein as part of a different query.

[0512] Insome embodiments, the search manager 514 can
identify search nodes 506 using a hashing algorithm. For
example, as described herein, the search manager 514 based
can perform a hash on a bucket identifier of a bucket that is
to be searched to identify a search node to search the bucket.
In some implementations, that hash may be a consistent
hash, to increase the chance that the same search node will
be selected to search that bucket as was previously used,
thereby reducing the chance that the bucket must be
retrieved from common storage 216.

[0513] It will be understood that the search manger 514
can identify search nodes 506 based on any one or any
combination of the aforementioned methods. Furthermore, it
will be understood that the search manager 514 can identify
search nodes 506 in a variety of ways.

Aug. 4, 2022

[0514] At 1406, the search manager 514 instructs the
search nodes 506 to execute the query. As described herein,
the search manager 514 can process the query to determine
portions of the query that it will execute and portions of the
query to be executed by the search nodes 506. Furthermore,
the search manager 514 can generate instructions or sub-
queries for each search node 506 that is to execute a portion
of the query. In some cases, the search manager 514 gen-
erates a DAG for execution by the search nodes 506. The
instructions or sub-queries can identify the data or buckets
to be searched by the search nodes 506. In addition, the
instructions or sub-queries may identify one or more trans-
formations that the search nodes 506 are to perform on the
data.

[0515] Fewer, more, or different blocks can be used as part
of the routine 1400. In some cases, one or more blocks can
be omitted. For example, in certain embodiments, the search
manager 514 can receive partial results from the search
nodes 506, process the partial results, perform one or more
transformation on the partial results or aggregated results,
etc. Further, in some embodiments, the search manager 514
provide the results to a client device 204. In some embodi-
ments, the search manager 514 can combine the results with
results stored in the accelerated data store 222 or store the
results in the accelerated data store 222 for combination with
additional search results.

[0516] Insome cases, the search manager 514 can identify
the data or buckets to be searched by, for example, using the
data store catalog 220, and map the buckets to the search
nodes 506 according to a search node mapping policy. As
described herein, the data store catalog 220 can receive
updates from the indexing system 212 about the data that is
stored in common storage 216. The information in the data
store catalog 220 can include, but is not limited to, infor-
mation about the location of the buckets in common storage
216, and other information that can be used by the search
manager 514 to identify buckets that include data that
satisfies at least a portion of the query.

[0517] In certain cases, as part of executing the query, the
search nodes 506 can obtain the data to be searched from
common storage 216 using the cache manager 516. The
obtained data can be stored on a local or shared data store
and searched as part of the query. In addition, the data can
be retained on the local or shared data store based on a
bucket caching policy as described herein.

[0518] Furthermore, it will be understood that the various
blocks described herein with reference to FIG. 14 can be
implemented in a variety of orders. In some cases, the search
manager 514 can implement some blocks concurrently or
change the order as desired. For example, the search man-
ager 514 an concurrently identify search nodes 506 to
execute the query and instruct the search nodes 506 to
execute the query. As described herein, in some embodi-
ments, the search manager 514 can instruct the search nodes
506 to execute the query at once. In certain embodiments,
the search manager 514 can assign a first group of buckets
for searching, and dynamically assign additional groups of
buckets to search nodes 506 depending on which search
nodes 506 complete their searching first or based on an
updated status of the search nodes 506, etc.

4.3.2. Identifying Buckets and Search Nodes for Query

[0519] FIG. 15 is a flow diagram illustrative of an embodi-
ment of a routine 1500 implemented by the query system

US 2022/0245156 Al

214 to execute a query. Although described as being imple-
mented by the search manager 514, it will be understood that
the elements outlined for routine 1500 can be implemented
by one or more computing devices/components that are
associated with the data intake and query system 108, such
as, but not limited to, the query system manager 502, the
search head 504, the search master 512, the search manager
514, the search nodes 506, etc. Thus, the following illustra-
tive embodiment should not be construed as limiting.
[0520] At block 1502, the search manager 514 receives a
query, as described in greater detail herein at least with
reference to block 1402 of FIG. 14.

[0521] At block 1504, the search manager 514 identifies
search nodes to execute the query, as described in greater
detail herein at least with reference to block 1404 of FIG. 14.
However, it will be noted, that in certain embodiments, the
search nodes 506 may not be containerized.

[0522] At block 1506, the search manager 514 identifies
buckets to query. As described herein, in some cases, the
search manager 514 can consult the data store catalog 220 to
identify buckets to be searched. In certain embodiments, the
search manager 514 can use metadata of the buckets stored
in common storage 216 to identify the buckets for the query.
For example, the search manager 514 can compare a tenant
identifier and/or partition identifier associated with the query
with the tenant identifier and/or partition identifier of the
buckets. The search manager 514 can exclude buckets that
have a tenant identifier and/or partition identifier that does
not match the tenant identifier and/or partition identifier
associated with the query. Similarly, the search manager can
compare a time range associate with the query with the time
range associated with the buckets in common storage 216.
Based on the comparison, the search manager 514 can
identify buckets that satisty the time range associated with
the query (e.g., at least partly overlap with the time range
from the query).

[0523] At 1508, the search manager 514 executes the
query. As described herein, at least with reference to 1406 of
FIG. 14, in some embodiments, as part of executing the
query, the search manager 514 can process the search query,
identify tasks for it to complete and tasks for the search
nodes 506, generate instructions or sub-queries for the
search nodes 506 and instruct the search nodes 506 to
execute the query. Further, the search manager 514 can
aggregate the results from the search nodes 506 and perform
one or more transformations on the data.

[0524] Fewer, more, or different blocks can be used as part
of the routine 1500. In some cases, one or more blocks can
be omitted. For example, as described herein, the search
manager 514 can map the search nodes 506 to certain data
or buckets for the search according to a search node mapping
policy. Based on the search node mapping policy, search
manager 514 can instruct the search nodes to search the
buckets to which they are mapped. Further, as described
herein, in some cases, the search node mapping policy can
indicate that the search manager 514 is to use a hashing
algorithm, previous assignment, network architecture, cache
information, etc., to map the search nodes 506 to the
buckets.

[0525] As another example, the routine 1500 can include
storing the search results in the accelerated data store 222.
Furthermore, as described herein, the search nodes 506 can
store buckets from common storage 216 to a local or shared
data store for searching, etc.

Aug. 4, 2022

[0526] In addition, it will be understood that the various
blocks described herein with reference to FIG. 15 can be
implemented in a variety of orders, or implemented concur-
rently. For example, the search manager 514 can identify
search nodes to execute the query and identify bucket for the
query concurrently or in any order.

4.3.3. Identifying Buckets for Query Execution

[0527] FIG. 16 is a flow diagram illustrative of an embodi-
ment of a routine 1600 implemented by the query system
214 to identify buckets for query execution. Although
described as being implemented by the search manager 514,
it will be understood that the elements outlined for routine
1600 can be implemented by one or more computing
devices/components that are associated with the data intake
and query system 108, such as, but not limited to, the query
system manager 502, the search head 504, the search master
512, the search manager 514, the search nodes 506, etc.
Thus, the following illustrative embodiment should not be
construed as limiting.

[0528] At block 1602, the data intake and query system
108 maintains a catalog of bucket in common storage 216.
As described herein, the catalog can also be referred to as the
data store catalog 220, and can include information about the
buckets in common storage 216, such as, but not limited to,
location information, metadata fields, tenant and partition
information, time range information, etc. Further, the data
store catalog 220 can be kept up-to-date based on informa-
tion received from the indexing system 212 as the indexing
system 212 processes and stores data in the common storage
216.

[0529] At block 1604, the search manager 514 receives a
query, as described in greater detail herein at least with
reference to block 1402 of FIG. 14.

[0530] At block 1606, the search manager 514 identifies
buckets to be searched as part of the query using the data
store catalog 220. As described herein, the search manager
514 can use the data store catalog 220 to filter the universe
of buckets in the common storage 216 to buckets that
include data that satisfies at least a portion of the query. For
example, if a query includes a time range of Apr. 23, 2018
from 03:30:50 to 04:53:32, the search manager 514 can use
the time range information in the data store catalog to
identify buckets with a time range that overlaps with the
time range provided in the query. In addition, if the query
indicates that only a _main partition is to be searched, the
search manager 514 can use the information in the data store
catalog to identify buckets that satisfy the time range and are
associated with the _main partition. Accordingly, depending
on the information in the query and the information stored
in the data store catalog 220 about the buckets, the search
manager 514 can reduce the number of buckets to be
searched. In this way, the data store catalog 220 can reduce
search time and the processing resources used to execute a
query.

[0531] At block 1608, the search manager 514 executes
the query, as described in greater detail herein at least with
reference to block 1508 of FIG. 15.

[0532] Fewer, more, or different blocks can be used as part
of the routine 1600. In some cases, one or more blocks can
be omitted. For example, as described herein, the search
manager 514 can identify and map search nodes 506 to the
buckets for searching or store the search results in the
accelerated data store 222. Furthermore, as described herein,

US 2022/0245156 Al

the search nodes 506 can store buckets from common
storage 216 to a local or shared data store for searching, etc.
In addition, it will be understood that the various blocks
described herein with reference to FIG. 15 can be imple-
mented in a variety of orders, or implemented concurrently.

4.3 .4. Identifying Search Nodes for Query Execution

[0533] FIG. 17 is a flow diagram illustrative of an embodi-
ment of a routine 1700 implemented by the query system
214 to identify search nodes for query execution. Although
described as being implemented by the search manager 514,
it will be understood that the elements outlined for routine
1700 can be implemented by one or more computing
devices/components that are associated with the data intake
and query system 108, such as, but not limited to, the query
system manager 502, the search head 504, the search master
512, the search manager 514, the search nodes 506, etc.
Thus, the following illustrative embodiment should not be
construed as limiting.

[0534] At block 1702, the query system 214 maintains a
catalog of instantiated search nodes 506. As described
herein, the catalog can also be referred to as the search node
catalog 510, and can include information about the search
nodes 506, such as, but not limited to, availability, utiliza-
tion, responsiveness, network architecture, etc. Further, the
search node catalog 510 can be kept up-to-date based on
information received by the search node monitor 508 from
the search nodes 506.

[0535] At block 1704, the search manager 514 receives a
query, as described in greater detail herein at least with
reference to block 1402 of FIG. 14. At block 1706, the
search manager 514 identifies available search nodes using
the search node catalog 220.

[0536] At block 1708, the search manager 514 instructs
the search nodes 506 to execute the query, as described in

greater detail herein at least with reference to block 1406 of
FIG. 14 and block 1508 of FIG. 15.

[0537] Fewer, more, or different blocks can be used as part
of the routine 1700. In some cases, one or more blocks can
be omitted. For example, in certain embodiments, the search
manager can identify buckets in common storage 216 for
searching. In addition, it will be understood that the various
blocks described herein with reference to FIG. 17 can be
implemented in a variety of orders, or implemented concur-
rently.

4.3.5. Hashing Bucket Identifiers for Query Execution

[0538] FIG. 18 is a flow diagram illustrative of an embodi-
ment of a routine 1800 implemented by the query system
214 to hash bucket identifiers for query execution. Although
described as being implemented by the search manager 514,
it will be understood that the elements outlined for routine
1800 can be implemented by one or more computing
devices/components that are associated with the data intake
and query system 108, such as, but not limited to, the query
system manager 502, the search head 504, the search master
512, the search manager 514, the search nodes 506, etc.
Thus, the following illustrative embodiment should not be
construed as limiting.

[0539] At block 1802, the search manager 514 receives a
query, as described in greater detail herein at least with
reference to block 1402 of FIG. 14.

Aug. 4, 2022

[0540] At block 1804, the search manager 514 identifies
bucket identifiers associated with buckets to be searched as
part of the query. The bucket identifiers can correspond to an
alphanumeric identifier or other identifier that can be used to
uniquely identify the bucket from other buckets stored in
common storage 216. In some embodiments, the unique
identifier may incorporate one or more portions of a tenant
identifier, partition identifier, or time range of the bucket or
a random or sequential (e.g., based on time of storage,
creation, etc.) alphanumeric string, etc. As described herein,
the search manager 514 can parse the query to identify
buckets to be searched. In some cases, the search manager
514 can identify buckets to be searched and an associated
bucket identifier based on metadata of the buckets and/or
using a data store catalog 220. However, it will be under-
stood that the search manager 514 can use a variety of
techniques to identify buckets to be searched.

[0541] At block 1806, the search manager 514 performs a
hash function on the bucket identifiers. The search manager
can, in some embodiments, use the output of the hash
function to identify a search node 506 to search the bucket.
For example, as a non-limiting example, consider a scenario
in which a bucket identifier is 4149 and the search manager
514 identified ten search nodes to process the query. The
search manager 514 could perform a modulo ten operation
on the bucket identifier to determine which search node 506
is to search the bucket. Based on this example, the search
manager 514 would assign the ninth search node 506 to
search the bucket, e.g., because the value 4149 modulo ten
is 9, so the bucket having the identifier 4149 is assigned to
the ninth search node. In some cases, the search manager can
use a consistent hash to increase the likelihood that the same
search node 506 is repeatedly assigned to the same bucket
for searching. In this way, the search manager 514 can
increase the likelihood that the bucket to be searched is
already located in a local or shared data store of the search
node 506, and reduce the likelihood that the bucket will be
downloaded from common storage 216. It will be under-
stood that the search manager can use a variety of techniques
to map the bucket to a search node 506 according to a search
node mapping policy. For example, the search manager 514
can use previous assignments, network architecture, etc., to
assign buckets to search nodes 506 according to the search
node mapping policy.

[0542] At block 1808, the search manager 514 instructs
the search nodes 506 to execute the query, as described in
greater detail herein at least with reference to block 1508 of
FIG. 15.

[0543] Fewer, more, or different blocks can be used as part
of the routine 1800. In some cases, one or more blocks can
be omitted. In addition, it will be understood that the various
blocks described herein with reference to FIG. 18 can be
implemented in a variety of orders, or implemented concur-
rently.

4.3.6. Obtaining Data for Query Execution

[0544] FIG. 19 is a flow diagram illustrative of an embodi-
ment of a routine 1900 implemented by a search node 506
to execute a search on a bucket. Although reference is made
to downloading and searching a bucket, it will be understood
that this can refer to downloading and searching one or more
files associated within a bucket and does not necessarily
refer to downloading all files associated with the bucket.

US 2022/0245156 Al

[0545] Further, although described as being implemented
by the search node 506, it will be understood that the
elements outlined for routine 1900 can be implemented by
one or more computing devices/components that are asso-
ciated with the data intake and query system 108, such as,
but not limited to, the query system manager 502, the search
head 504, the search master 512, search manager 514, cache
manager 516, etc. Thus, the following illustrative embodi-
ment should not be construed as limiting.

[0546] At block 1902, the search node 506 receives
instructions for a query or sub-query. As described herein, a
search manager 514 can receive and parse a query to
determine the tasks to be assigned to the search nodes 506,
such as, but not limited to, the searching of one or more
buckets in common storage 216, etc. The search node 506
can parse the instructions and identify the buckets that are to
be searched. In some cases, the search node 506 can deter-
mine that a bucket that is to be searched is not located in the
search nodes local or shared data store.

[0547] At block 1904, the search node 506 obtains the
bucket from common storage 216. As described herein, in
some embodiments, the search node 506 obtains the bucket
from common storage 216 in conjunction with a cache
manager 516. For example, the search node 506 can request
the cache manager 516 to identify the location of the bucket.
The cache manager 516 can review the data stored in the
local or shared data store for the bucket. If the cache
manager 516 cannot locate the bucket in the local or shared
data store, it can inform the search node 506 that the bucket
is not stored locally and that it will be retrieved from
common storage 216. As described herein, in some cases,
the cache manager 516 can download a portion of the bucket
(e.g., one or more files) and provide the portion of the bucket
to the search node 506 as part of informing the search node
506 that the bucket is not found locally. The search node 506
can use the downloaded portion of the bucket to identify any
other portions of the bucket that are to be retrieved from
common storage 216.

[0548] Accordingly, as described herein, the search node
506 can retrieve all or portions of the bucket from common
storage 216 and store the retrieved portions to a local or
shared data store.

[0549] At block 1906, the search node 506 executes the
search on the portions of the bucket stored in the local data
store. As described herein, the search node 506 can review
one or more files of the bucket to identify data that satisfies
the query. In some cases, the search nodes 506 searches an
inverted index to identify the data. In certain embodiments,
the search node 506 searches the raw machine data, uses one
or more configuration files, regex rules, and/or late binding
schema to identify data in the bucket that satisfies the query.

[0550] Fewer, more, or different blocks can be used as part
of the routine 1900. For example, in certain embodiments,
the routine 1900 includes blocks for requesting a cache
manager 516 to search for the bucket in the local or shared
storage, and a block for informing the search node 506 that
the requested bucket is not available in the local or shared
data store. As another example, the routine 1900 can include
performing one or more transformations on the data, and
providing partial search results to a search manager 514, etc.
In addition, it will be understood that the various blocks
described herein with reference to FIG. 19 can be imple-
mented in a variety of orders, or implemented concurrently.

Aug. 4, 2022

4.3.7. Caching Search Results

[0551] FIG. 20 is a flow diagram illustrative of an embodi-
ment of a routine 2000 implemented by the query system
212 to store search results. Although described as being
implemented by the search manager 514, it will be under-
stood that the elements outlined for routine 2000 can be
implemented by one or more computing devices/compo-
nents that are associated with the data intake and query
system 108, such as, but not limited to, the query system
manager 502, the search head 504, the search master 512,
the search nodes 506, etc. Thus, the following illustrative
embodiment should not be construed as limiting.

[0552] At block 2002, the search manager 514 receives a
query, and at block 2004, the search manager 514 executes
the query, as described in greater detail herein at least with
reference to block 1508 of FIG. 15. For example, as
described herein, the search manager 514 can identify buck-
ets for searching assign the buckets to search nodes 506, and
instruct the search nodes 506 to search the buckets. Further-
more, the search manager can receive partial results from
each of the buckets, and perform one or more transforma-
tions on the received data.

[0553] At block 2006, the search manager 514 stores the
results in the accelerated data store 222. As described herein,
the results can be combined with results previously stored in
the accelerated data store 222 and/or can be stored for
combination with results to be obtained later in time. In
some cases, the search manager 514 can receive queries and
determine that at least a portion of the results are stored in
the accelerated data store 222. Based on the identification,
the search manager 514 can generate instructions for the
search nodes 506 to obtain results to the query that are not
stored in the accelerated data store 222, combine the results
in the accelerated data store 222 with results obtained by the
search nodes 506, and provide the aggregated search results
to the client device 204, or store the aggregated search
results in the accelerated data store 222 for further aggre-
gation. By storing results in the accelerated data store 222,
the search manager 514 can reduce the search time and
computing resources used for future searches that rely on the
query results.

[0554] Fewer, more, or different blocks can be used as part
of the routine 2000. In some cases, one or more blocks can
be omitted. For example, in certain embodiments, the search
manager 514 can consult a data store catalog 220 to identify
buckets, consult a search node catalog 510 to identify
available search nodes, map buckets to search nodes 506,
etc. Further, in some cases, the search nodes 506 can retrieve
buckets from common storage 216. In addition, it will be
understood that the various blocks described herein with
reference to FIG. 20 can be implemented in a variety of
orders, or implemented concurrently.

4.4. Data Ingestion, Indexing, and Storage Flow

[0555] FIG. 21A is a flow diagram of an example method
that illustrates how a data intake and query system 108
processes, indexes, and stores data received from data
sources 202, in accordance with example embodiments. The
data flow illustrated in FIG. 21A is provided for illustrative
purposes only; it will be understood that one or more of the
steps of the processes illustrated in FIG. 21A may be
removed or that the ordering of the steps may be changed.
Furthermore, for the purposes of illustrating a clear example,

US 2022/0245156 Al

one or more particular system components are described in
the context of performing various operations during each of
the data flow stages. For example, the intake system 210 is
described as receiving and processing machine data during
an input phase; the indexing system 212 is described as
parsing and indexing machine data during parsing and
indexing phases; and a query system 214 is described as
performing a search query during a search phase. However,
other system arrangements and distributions of the process-
ing steps across system components may be used.

4.4.1. Input

[0556] At block 2102, the intake system 210 receives data
from an input source, such as a data source 202 shown in
FIG. 2. The intake system 210 initially may receive the data
as a raw data stream generated by the input source. For
example, the intake system 210 may receive a data stream
from a log file generated by an application server, from a
stream of network data from a network device, or from any
other source of data. In some embodiments, the intake
system 210 receives the raw data and may segment the data
stream into messages, possibly of a uniform data size, to
facilitate subsequent processing steps. The intake system
210 may thereafter process the messages in accordance with
one or more rules, as discussed above for example with
reference to FIGS. 6 and 7, to conduct preliminary process-
ing of the data. In one embodiment, the processing con-
ducted by the intake system 210 may be used to indicate one
or more metadata fields applicable to each message. For
example, the intake system 210 may include metadata fields
within the messages, or publish the messages to topics
indicative of a metadata field. These metadata fields may, for
example, provide information related to a message as a
whole and may apply to each event that is subsequently
derived from the data in the message. For example, the
metadata fields may include separate fields specifying each
of'a host, a source, and a source type related to the message.
A host field may contain a value identifying a host name or
1P address of a device that generated the data. A source field
may contain a value identifying a source of the data, such as
a pathname of a file or a protocol and port related to received
network data. A source type field may contain a value
specifying a particular source type label for the data. Addi-
tional metadata fields may also be included during the input
phase, such as a character encoding of the data, if known,
and possibly other values that provide information relevant
to later processing steps.

[0557] At block 504, the intake system 210 publishes the
data as messages on an output ingestion buffer 310. Illus-
tratively, other components of the data intake and query
system 108 may be configured to subscribe to various topics
on the output ingestion buffer 310, thus receiving the data of
the messages when published to the buffer 310.

4.4.2. Parsing

[0558] At block 2106, the indexing system 212 receives
messages from the intake system 210 (e.g., by obtaining the
messages from the output ingestion buffer 310) and parses
the data of the message to organize the data into events. In
some embodiments, to organize the data into events, the
indexing system 212 may determine a source type associated
with each message (e.g., by extracting a source type label
from the metadata fields associated with the message, etc.)

Aug. 4, 2022

and refer to a source type configuration corresponding to the
identified source type. The source type definition may
include one or more properties that indicate to the indexing
system 212 to automatically determine the boundaries
within the received data that indicate the portions of
machine data for events. In general, these properties may
include regular expression-based rules or delimiter rules
where, for example, event boundaries may be indicated by
predefined characters or character strings. These predefined
characters may include punctuation marks or other special
characters including, for example, carriage returns, tabs,
spaces, line breaks, etc. If a source type for the data is
unknown to the indexing system 212, the indexing system
212 may infer a source type for the data by examining the
structure of the data. Then, the indexing system 212 can
apply an inferred source type definition to the data to create
the events.

[0559] Atblock 2108, the indexing system 212 determines
a timestamp for each event. Similar to the process for
parsing machine data, an indexing system 212 may again
refer to a source type definition associated with the data to
locate one or more properties that indicate instructions for
determining a timestamp for each event. The properties may,
for example, instruct the indexing system 212 to extract a
time value from a portion of data for the event, to interpolate
time values based on timestamps associated with temporally
proximate events, to create a timestamp based on a time the
portion of machine data was received or generated, to use
the timestamp of a previous event, or use any other rules for
determining timestamps.

[0560] At block 2110, the indexing system 212 associates
with each event one or more metadata fields including a field
containing the timestamp determined for the event. In some
embodiments, a timestamp may be included in the metadata
fields. These metadata fields may include any number of
“default fields” that are associated with all events, and may
also include one more custom fields as defined by a user.
Similar to the metadata fields associated with the data blocks
at block 2104, the default metadata fields associated with
each event may include a host, source, and source type field
including or in addition to a field storing the timestamp.
[0561] At block 2112, the indexing system 212 may
optionally apply one or more transformations to data
included in the events created at block 2106. For example,
such transformations can include removing a portion of an
event (e.g., a portion used to define event boundaries,
extraneous characters from the event, other extraneous text,
etc.), masking a portion of an event (e.g., masking a credit
card number), removing redundant portions of an event, etc.
The transformations applied to events may, for example, be
specified in one or more configuration files and referenced
by one or more source type definitions.

[0562] FIG. 21C illustrates an illustrative example of how
machine data can be stored in a data store in accordance with
various disclosed embodiments. In other embodiments,
machine data can be stored in a flat file in a corresponding
bucket with an associated index file, such as a time series
index or “TSIDX.” As such, the depiction of machine data
and associated metadata as rows and columns in the table of
FIG. 21C is merely illustrative and is not intended to limit
the data format in which the machine data and metadata is
stored in various embodiments described herein. In one
particular embodiment, machine data can be stored in a
compressed or encrypted formatted. In such embodiments,

US 2022/0245156 Al

the machine data can be stored with or be associated with
data that describes the compression or encryption scheme
with which the machine data is stored. The information
about the compression or encryption scheme can be used to
decompress or decrypt the machine data, and any metadata
with which it is stored, at search time.

[0563] As mentioned above, certain metadata, e.g., host
2136, source 2137, source type 2138 and timestamps 2135
can be generated for each event, and associated with a
corresponding portion of machine data 2139 when storing
the event data in a data store, e.g., data store 212. Any of the
metadata can be extracted from the corresponding machine
data, or supplied or defined by an entity, such as a user or
computer system. The metadata fields can become part of or
stored with the event. Note that while the time-stamp
metadata field can be extracted from the raw data of each
event, the values for the other metadata fields may be
determined by the indexing system 212 or indexing node
404 based on information it receives pertaining to the source
of the data separate from the machine data.

[0564] While certain default or user-defined metadata
fields can be extracted from the machine data for indexing
purposes, all the machine data within an event can be
maintained in its original condition. As such, in embodi-
ments in which the portion of machine data included in an
event is unprocessed or otherwise unaltered, it is referred to
herein as a portion of raw machine data. In other embodi-
ments, the port of machine data in an event can be processed
or otherwise altered. As such, unless certain information
needs to be removed for some reasons (e.g. extraneous
information, confidential information), all the raw machine
data contained in an event can be preserved and saved in its
original form. Accordingly, the data store in which the event
records are stored is sometimes referred to as a “raw record
data store.” The raw record data store contains a record of
the raw event data tagged with the various default fields.
[0565] In FIG. 21C, the first three rows of the table
represent events 2131, 2132, and 2133 and are related to a
server access log that records requests from multiple clients
processed by a server, as indicated by entry of “access.log”
in the source column 2136.

[0566] In the example shown in FIG. 21C, each of the
events 2131-2133 is associated with a discrete request made
from a client device. The raw machine data generated by the
server and extracted from a server access log can include the
IP address of the client 2140, the user id of the person
requesting the document 2141, the time the server finished
processing the request 2142, the request line from the client
2143, the status code returned by the server to the client
2145, the size of the object returned to the client (in this case,
the gif file requested by the client) 2146 and the time spent
to serve the request in microseconds 2144. As seen in FIG.
21C, all the raw machine data retrieved from the server
access log is retained and stored as part of the corresponding
events, 2131-2133 in the data store.

[0567] Event 2134 is associated with an entry in a server
error log, as indicated by “error.log” in the source column
2137 that records errors that the server encountered when
processing a client request. Similar to the events related to
the server access log, all the raw machine data in the error
log file pertaining to event 2134 can be preserved and stored
as part of the event 2134.

[0568] Saving minimally processed or unprocessed
machine data in a data store associated with metadata fields

Aug. 4, 2022

in the manner similar to that shown in FIG. 21C is advan-
tageous because it allows search of all the machine data at
search time instead of searching only previously specified
and identified fields or field-value pairs. As mentioned
above, because data structures used by various embodiments
of the present disclosure maintain the underlying raw
machine data and use a late-binding schema for searching
the raw machines data, it enables a user to continue inves-
tigating and learn valuable insights about the raw data. In
other words, the user is not compelled to know about all the
fields of information that will be needed at data ingestion
time. As a user learns more about the data in the events, the
user can continue to refine the late-binding schema by
defining new extraction rules, or modifying or deleting
existing extraction rules used by the system.

4.4.3. Indexing

[0569] At blocks 2114 and 2116, the indexing system 212
can optionally generate a keyword index to facilitate fast
keyword searching for events. To build a keyword index, at
block 2114, the indexing system 212 identifies a set of
keywords in each event. At block 2116, the indexing system
212 includes the identified keywords in an index, which
associates each stored keyword with reference pointers to
events containing that keyword (or to locations within
events where that keyword is located, other location iden-
tifiers, etc.). When the data intake and query system 108
subsequently receives a keyword-based query, the query
system 214 can access the keyword index to quickly identify
events containing the keyword.

[0570] In some embodiments, the keyword index may
include entries for field name-value pairs found in events,
where a field name-value pair can include a pair of keywords
connected by a symbol, such as an equals sign or colon. This
way, events containing these field name-value pairs can be
quickly located. In some embodiments, fields can automati-
cally be generated for some or all of the field names of the
field name-value pairs at the time of indexing. For example,
if the string “dest=10.0.1.2” is found in an event, a field
named “dest” may be created for the event, and assigned a
value of “10.0.1.2”.

[0571] At block 2118, the indexing system 212 stores the
events with an associated timestamp in a local data store 212
and/or common storage 216. Timestamps enable a user to
search for events based on a time range. In some embodi-
ments, the stored events are organized into “buckets,” where
each bucket stores events associated with a specific time
range based on the timestamps associated with each event.
This improves time-based searching, as well as allows for
events with recent timestamps, which may have a higher
likelihood of being accessed, to be stored in a faster memory
to facilitate faster retrieval. For example, buckets containing
the most recent events can be stored in flash memory rather
than on a hard disk. In some embodiments, each bucket may
be associated with an identifier, a time range, and a size
constraint.

[0572] The indexing system 212 may be responsible for
storing the events contained in various data stores 218 of
common storage 216. By distributing events among the data
stores in common storage 216, the query system 214 can
analyze events for a query in parallel. For example, using
map-reduce techniques, each search node 506 can return
partial responses for a subset of events to a search head that
combines the results to produce an answer for the query. By

US 2022/0245156 Al

storing events in buckets for specific time ranges, the
indexing system 212 may further optimize the data retrieval
process by enabling search nodes 506 to search buckets
corresponding to time ranges that are relevant to a query.
[0573] In some embodiments, each indexing node 404
(e.g., the indexer 410 or data store 412) of the indexing
system 212 has a home directory and a cold directory. The
home directory stores hot buckets and warm buckets, and the
cold directory stores cold buckets. A hot bucket is a bucket
that is capable of receiving and storing events. A warm
bucket is a bucket that can no longer receive events for
storage but has not yet been moved to the cold directory. A
cold bucket is a bucket that can no longer receive events and
may be a bucket that was previously stored in the home
directory. The home directory may be stored in faster
memory, such as flash memory, as events may be actively
written to the home directory, and the home directory may
typically store events that are more frequently searched and
thus are accessed more frequently. The cold directory may
be stored in slower and/or larger memory, such as a hard
disk, as events are no longer being written to the cold
directory, and the cold directory may typically store events
that are not as frequently searched and thus are accessed less
frequently. In some embodiments, an indexing node 404
may also have a quarantine bucket that contains events
having potentially inaccurate information, such as an incor-
rect time stamp associated with the event or a time stamp
that appears to be an unreasonable time stamp for the
corresponding event. The quarantine bucket may have
events from any time range; as such, the quarantine bucket
may always be searched at search time. Additionally, an
indexing node 404 may store old, archived data in a frozen
bucket that is not capable of being searched at search time.
In some embodiments, a frozen bucket may be stored in
slower and/or larger memory, such as a hard disk, and may
be stored in offline and/or remote storage.

[0574] In some embodiments, an indexing node 404 may
not include a cold directory and/or cold or frozen buckets.
For example, as warm buckets and/or merged buckets are
copied to common storage 216, they can be deleted from the
indexing node 404. In certain embodiments, one or more
data stores 218 of the common storage 216 can include a
home directory that includes warm buckets copied from the
indexing nodes 404 and a cold directory of cold or frozen
buckets as described above.

[0575] Moreover, events and buckets can also be repli-
cated across different indexing nodes 404 and data stores
218 of the common storage 216.

[0576] FIG. 21B is a block diagram of an example data
store 2101 that includes a directory for each index (or
partition) that contains a portion of data stored in the data
store 2101. FIG. 21B further illustrates details of an embodi-
ment of an inverted index 2107B and an event reference
array 2115 associated with inverted index 2107B.

[0577] The data store 2101 can correspond to a data store
218 that stores events in common storage 216, a data store
412 associated with an indexing node 404, or a data store
associated with a search peer 506. In the illustrated embodi-
ment, the data store 2101 includes a _main directory 2103
associated with a _main partition and a _test directory 2105
associated with a _test partition. However, the data store
2101 can include fewer or more directories. In some
embodiments, multiple indexes can share a single directory
or all indexes can share a common directory. Additionally,

Aug. 4, 2022

although illustrated as a single data store 2101, it will be
understood that the data store 2101 can be implemented as
multiple data stores storing different portions of the infor-
mation shown in FIG. 21B. For example, a single index or
partition can span multiple directories or multiple data
stores, and can be indexed or searched by multiple search
nodes 506.

[0578] Furthermore, although not illustrated in FIG. 21B,
it will be understood that, in some embodiments, the data
store 2101 can include directories for each tenant and
sub-directories for each partition of each tenant, or vice
versa. Accordingly, the directories 2101 and 2103 illustrated
in FIG. 21B can, in certain embodiments, correspond to
sub-directories of a tenant or include sub-directories for
different tenants.

[0579] In the illustrated embodiment of FIG. 21B, the
partition-specific directories 2103 and 2105 include inverted
indexes 2107 A, 2107B and 2109A, 2109B, respectively. The
inverted indexes 2107A . . . 2107B, and 2109A . . . 2109B
can be keyword indexes or field-value pair indexes
described herein and can include less or more information
than depicted in FIG. 21B.

[0580] In some embodiments, the inverted index 2107A .
..2107B, and 2109A . . . 2109B can correspond to a distinct
time-series bucket stored in common storage 216, a search
node 506, or an indexing node 404 and that contains events
corresponding to the relevant partition (e.g., _main partition,
_test partition). As such, each inverted index can correspond
to a particular range of time for a partition. Additional files,
such as high performance indexes for each time-series
bucket of a partition, can also be stored in the same directory
as the inverted indexes 2107A . . . 2107B, and 2109A . . .
2109B. In some embodiments inverted index 2107A . . .
2107B, and 2109A . . . 2109B can correspond to multiple
time-series buckets or inverted indexes 2107A . . . 21078,
and 2109A . . . 2109B can correspond to a single time-series
bucket.

[0581] Each inverted index 2107A . . . 2107B, and 2109A
... 2109B can include one or more entries, such as keyword
(or token) entries or field-value pair entries. Furthermore, in
certain embodiments, the inverted indexes 2107A . . .
2107B, and 2109A . . . 2109B can include additional
information, such as a time range 2123 associated with the
inverted index or an partition identifier 2125 identifying the
partition associated with the inverted index 2107A . . .
2107B, and 2109A. . . . 2109B. However, each inverted index
2107A . . . 2107B, and 2109A . . . 2109B can include less
or more information than depicted.

[0582] Token entries, such as token entries 2111 illustrated
in inverted index 2107B, can include a token 2111A (e.g.,
“error,” “itemID,” etc.) and event references 2111B indica-
tive of events that include the token. For example, for the
token “error,” the corresponding token entry includes the
token “error” and an event reference, or unique identifier, for
each event stored in the corresponding time-series bucket
that includes the token “error.” In the illustrated embodiment
of FIG. 21B, the error token entry includes the identifiers 3,
5, 6, 8, 11, and 12 corresponding to events located in the
time-series bucket associated with the inverted index 2107B
that is stored in common storage 216, a search node 506, or
an indexing node 404 and is associated with the partition
_main 2103.

[0583] In some cases, some token entries can be default
entries, automatically determined entries, or user specified

US 2022/0245156 Al

entries. In some embodiments, the indexing system 212 can
identify each word or string in an event as a distinct token
and generate a token entry for the identified word or string.
In some cases, the indexing system 212 can identify the
beginning and ending of tokens based on punctuation,
spaces, as described in greater detail herein. In certain cases,
the indexing system 212 can rely on user input or a con-
figuration file to identify tokens for token entries 2111, etc.
It will be understood that any combination of token entries
can be included as a default, automatically determined, or
included based on user-specified criteria.

[0584] Similarly, field-value pair entries, such as field-
value pair entries 2113 shown in inverted index 2107B, can
include a field-value pair 2113 A and event references 2113B
indicative of events that include a field value that corre-
sponds to the field-value pair. For example, for a field-value
pair sourcetype:sendmail, a field-value pair entry can
include the field-value pair sourcetype:sendmail and a
unique identifier, or event reference, for each event stored in
the corresponding time-series bucket that includes a send-
mail sourcetype.

[0585] In some cases, the field-value pair entries 2113 can
be default entries, automatically determined entries, or user
specified entries. As a non-limiting example, the field-value
pair entries for the fields host, source, sourcetype can be
included in the inverted indexes 2107A . . . 2107B, and
2109A . . . 2109B as a default. As such, all of the inverted
indexes 2107A .. .2107B, and 2109A . . . 2109B can include
field-value pair entries for the fields host, source, source-
type. As yet another non-limiting example, the field-value
pair entries for the IP_address field can be user specified and
may only appear in the inverted index 2107B based on
user-specified criteria. As another non-limiting example, as
the indexing system 212 indexes the events, it can automati-
cally identify field-value pairs and create field-value pair
entries. For example, based on the indexing system’s 212
review of events, it can identify IP_address as a field in each
event and add the IP_address field-value pair entries to the
inverted index 2107B. It will be understood that any com-
bination of field-value pair entries can be included as a
default, automatically determined, or included based on
user-specified criteria.

[0586] Each unique identifier 2117, or event reference, can
correspond to a unique event located in the time series
bucket. However, the same event reference can be located in
multiple entries. For example if an event has a sourcetype
splunkd, host www1 and token “warning,” then the unique
identifier for the event will appear in the field-value pair
entries sourcetype:splunkd and host:www1, as well as the
token entry “warning.” With reference to the illustrated
embodiment of FIG. 21B and the event that corresponds to
the event reference 3, the event reference 3 is found in the
field-value pair entries 2113 host:hostA, source:sourceB,
sourcetype:sourcetypeA, and IP_address:91.205.189.15
indicating that the event corresponding to the event refer-
ences is from hostA, sourceB, of sourcetypeA, and includes
91.205.189.15 in the event data.

[0587] For some fields, the unique identifier is located in
only one field-value pair entry for a particular field. For
example, the inverted index may include four sourcetype
field-value pair entries corresponding to four different
sourcetypes of the events stored in a bucket (e.g., source-
types: sendmail, splunkd, web_access, and web_service).
Within those four sourcetype field-value pair entries, an

Aug. 4, 2022

identifier for a particular event may appear in only one of the
field-value pair entries. With continued reference to the
example illustrated embodiment of FIG. 21B, since the
event reference 7 appears in the field-value pair entry
sourcetype:sourcetypeA, then it does not appear in the other
field-value pair entries for the sourcetype field, including
sourcetype:sourcetypeB, sourcetype:sourcetypeC, and
sourcetype:sourcetypeD.

[0588] The event references 2117 can be used to locate the
events in the corresponding bucket. For example, the
inverted index can include, or be associated with, an event
reference array 2115. The event reference array 2115 can
include an array entry 2117 for each event reference in the
inverted index 2107B. Each array entry 2117 can include
location information 2119 of the event corresponding to the
unique identifier (non-limiting example: seek address of the
event), a timestamp 2121 associated with the event, or
additional information regarding the event associated with
the event reference, etc.

[0589] For each token entry 2111 or field-value pair entry
2113, the event reference 2101B or unique identifiers can be
listed in chronological order or the value of the event
reference can be assigned based on chronological data, such
as a timestamp associated with the event referenced by the
event reference. For example, the event reference 1 in the
illustrated embodiment of FIG. 21B can correspond to the
first-in-time event for the bucket, and the event reference 12
can correspond to the last-in-time event for the bucket.
However, the event references can be listed in any order,
such as reverse chronological order, ascending order,
descending order, or some other order, etc. Further, the
entries can be sorted. For example, the entries can be sorted
alphabetically (collectively or within a particular group), by
entry origin (e.g., default, automatically generated, user-
specified, etc.), by entry type (e.g., field-value pair entry,
token entry, etc.), or chronologically by when added to the
inverted index, etc. In the illustrated embodiment of FIG.
21B, the entries are sorted first by entry type and then
alphabetically.

[0590] As a non-limiting example of how the inverted
indexes 2107A . ..2107B, and 2109A . . . 2109B can be used
during a data categorization request command, the query
system 214 can receive filter criteria indicating data that is
to be categorized and categorization criteria indicating how
the data is to be categorized. Example filter criteria can
include, but is not limited to, indexes (or partitions), hosts,
sources, sourcetypes, time ranges, field identifier, tenant
and/or user identifiers, keywords, etc.

[0591] Using the filter criteria, the query system 214
identifies relevant inverted indexes to be searched. For
example, if the filter criteria includes a set of partitions (also
referred to as indexes), the query system 214 can identify the
inverted indexes stored in the directory corresponding to the
particular partition as relevant inverted indexes. Other
means can be used to identify inverted indexes associated
with a partition of interest. For example, in some embodi-
ments, the query system 214 can review an entry in the
inverted indexes, such as a partition-value pair entry 2113 to
determine if a particular inverted index is relevant. If the
filter criteria does not identify any partition, then the query
system 214 can identify all inverted indexes managed by the
query system 214 as relevant inverted indexes.

[0592] Similarly, if the filter criteria includes a time range,
the query system 214 can identify inverted indexes corre-

US 2022/0245156 Al

sponding to buckets that satisty at least a portion of the time
range as relevant inverted indexes. For example, if the time
range is last hour then the query system 214 can identify all
inverted indexes that correspond to buckets storing events
associated with timestamps within the last hour as relevant
inverted indexes.

[0593] When used in combination, an index filter criterion
specifying one or more partitions and a time range filter
criterion specifying a particular time range can be used to
identify a subset of inverted indexes within a particular
directory (or otherwise associated with a particular partition)
as relevant inverted indexes. As such, the query system 214
can focus the processing to only a subset of the total number
of inverted indexes in the data intake and query system 108.
[0594] Once the relevant inverted indexes are identified,
the query system 214 can review them using any additional
filter criteria to identify events that satisfy the filter criteria.
In some cases, using the known location of the directory in
which the relevant inverted indexes are located, the query
system 214 can determine that any events identified using
the relevant inverted indexes satisfy an index filter criterion.
For example, if the filter criteria includes a partition main,
then the query system 214 can determine that any events
identified using inverted indexes within the partition main
directory (or otherwise associated with the partition main)
satisfy the index filter criterion.

[0595] Furthermore, based on the time range associated
with each inverted index, the query system 214 can deter-
mine that that any events identified using a particular
inverted index satisfies a time range filter criterion. For
example, if a time range filter criterion is for the last hour
and a particular inverted index corresponds to events within
a time range of 50 minutes ago to 35 minutes ago, the query
system 214 can determine that any events identified using
the particular inverted index satisfy the time range filter
criterion. Conversely, if the particular inverted index corre-
sponds to events within a time range of 59 minutes ago to 62
minutes ago, the query system 214 can determine that some
events identified using the particular inverted index may not
satisfy the time range filter criterion.

[0596] Using the inverted indexes, the query system 214
can identify event references (and therefore events) that
satisfy the filter criteria. For example, if the token “error” is
a filter criterion, the query system 214 can track all event
references within the token entry “error.” Similarly, the
query system 214 can identify other event references located
in other token entries or field-value pair entries that match
the filter criteria. The system can identify event references
located in all of the entries identified by the filter criteria. For
example, if the filter criteria include the token “error” and
field-value pair sourcetype:web_ui, the query system 214
can track the event references found in both the token entry
“error” and the field-value pair entry sourcetype:web_ui. As
mentioned previously, in some cases, such as when multiple
values are identified for a particular filter criterion (e.g.,
multiple sources for a source filter criterion), the system can
identify event references located in at least one of the entries
corresponding to the multiple values and in all other entries
identified by the filter criteria. The query system 214 can
determine that the events associated with the identified event
references satisfy the filter criteria.

[0597] In some cases, the query system 214 can further
consult a timestamp associated with the event reference to
determine whether an event satisfies the filter criteria. For

Aug. 4, 2022

example, if an inverted index corresponds to a time range
that is partially outside of a time range filter criterion, then
the query system 214 can consult a timestamp associated
with the event reference to determine whether the corre-
sponding event satisfies the time range criterion. In some
embodiments, to identify events that satisty a time range, the
query system 214 can review an array, such as the event
reference array 2115 that identifies the time associated with
the events. Furthermore, as mentioned above using the
known location of the directory in which the relevant
inverted indexes are located (or other partition identifier),
the query system 214 can determine that any events identi-
fied using the relevant inverted indexes satisty the index
filter criterion.

[0598] In some cases, based on the filter criteria, the query
system 214 reviews an extraction rule. In certain embodi-
ments, if the filter criteria includes a field name that does not
correspond to a field-value pair entry in an inverted index,
the query system 214 can review an extraction rule, which
may be located in a configuration file, to identify a field that
corresponds to a field-value pair entry in the inverted index.
[0599] For example, the filter criteria includes a field name
“sessionlD” and the query system 214 determines that at
least one relevant inverted index does not include a field-
value pair entry corresponding to the field name sessionlD,
the query system 214 can review an extraction rule that
identifies how the sessionlD field is to be extracted from a
particular host, source, or sourcetype (implicitly identifying
the particular host, source, or sourcetype that includes a
sessionlD field). The query system 214 can replace the field
name “sessionID” in the filter criteria with the identified
host, source, or sourcetype. In some cases, the field name
“sessionlD” may be associated with multiples hosts,
sources, or sourcetypes, in which case, all identified hosts,
sources, and sourcetypes can be added as filter criteria. In
some cases, the identified host, source, or sourcetype can
replace or be appended to a filter criterion, or be excluded.
For example, if the filter criteria includes a criterion for
source S1 and the “sessionlD” field is found in source S2,
the source S2 can replace S1 in the filter criteria, be
appended such that the filter criteria includes source S1 and
source S2, or be excluded based on the presence of the filter
criterion source S1. If the identified host, source, or source-
type is included in the filter criteria, the query system 214
can then identitfy a field-value pair entry in the inverted
index that includes a field value corresponding to the iden-
tity of the particular host, source, or sourcetype identified
using the extraction rule.

[0600] Once the events that satisty the filter criteria are
identified, the query system 214 can categorize the results
based on the categorization criteria. The categorization
criteria can include categories for grouping the results, such
as any combination of partition, source, sourcetype, or host,
or other categories or fields as desired.

[0601] The query system 214 can use the categorization
criteria to identify categorization criteria-value pairs or
categorization criteria values by which to categorize or
group the results. The categorization criteria-value pairs can
correspond to one or more field-value pair entries stored in
a relevant inverted index, one or more partition-value pairs
based on a directory in which the inverted index is located
or an entry in the inverted index (or other means by which
an inverted index can be associated with a partition), or other
criteria-value pair that identifies a general category and a

US 2022/0245156 Al

particular value for that category. The categorization criteria
values can correspond to the value portion of the categori-
zation criteria-value pair.

[0602] As mentioned, in some cases, the categorization
criteria-value pairs can correspond to one or more field-
value pair entries stored in the relevant inverted indexes. For
example, the categorization criteria-value pairs can corre-
spond to field-value pair entries of host, source, and source-
type (or other field-value pair entry as desired). For instance,
if there are ten different hosts, four different sources, and five
different sourcetypes for an inverted index, then the inverted
index can include ten host field-value pair entries, four
source field-value pair entries, and five sourcetype field-
value pair entries. The query system 214 can use the
nineteen distinct field-value pair entries as categorization
criteria-value pairs to group the results.

[0603] Specifically, the query system 214 can identify the
location of the event references associated with the events
that satisfy the filter criteria within the field-value pairs, and
group the event references based on their location. As such,
the query system 214 can identify the particular field value
associated with the event corresponding to the event refer-
ence. For example, if the categorization criteria include host
and sourcetype, the host field-value pair entries and source-
type field-value pair entries can be used as categorization
criteria-value pairs to identify the specific host and source-
type associated with the events that satisfy the filter criteria.
[0604] In addition, as mentioned, categorization criteria-
value pairs can correspond to data other than the field-value
pair entries in the relevant inverted indexes. For example, if
partition or index is used as a categorization criterion, the
inverted indexes may not include partition field-value pair
entries. Rather, the query system 214 can identify the
categorization criteria-value pair associated with the parti-
tion based on the directory in which an inverted index is
located, information in the inverted index, or other infor-
mation that associates the inverted index with the partition,
etc. As such a variety of methods can be used to identify the
categorization criteria-value pairs from the categorization
criteria.

[0605] Accordingly based on the categorization criteria
(and categorization criteria-value pairs), the query system
214 can generate groupings based on the events that satisfy
the filter criteria. As a non-limiting example, if the catego-
rization criteria includes a partition and sourcetype, then the
groupings can correspond to events that are associated with
each unique combination of partition and sourcetype. For
instance, if there are three different partitions and two
different sourcetypes associated with the identified events,
then the six different groups can be formed, each with a
unique partition value-sourcetype value combination. Simi-
larly, if the categorization criteria includes partition, source-
type, and host and there are two different partitions, three
sourcetypes, and five hosts associated with the identified
events, then the query system 214 can generate up to thirty
groups for the results that satisfy the filter criteria. Each
group can be associated with a unique combination of
categorization criteria-value pairs (e.g., unique combina-
tions of partition value sourcetype value, and host value).
[0606] In addition, the query system 214 can count the
number of events associated with each group based on the
number of events that meet the unique combination of
categorization criteria for a particular group (or match the
categorization criteria-value pairs for the particular group).

Aug. 4, 2022

With continued reference to the example above, the query
system 214 can count the number of events that meet the
unique combination of partition, sourcetype, and host for a
particular group.

[0607] The query system 214, such as the search head 504
can aggregate the groupings from the buckets, or search
nodes 506, and provide the groupings for display. In some
cases, the groups are displayed based on at least one of the
host, source, sourcetype, or partition associated with the
groupings. In some embodiments, the query system 214 can
further display the groups based on display criteria, such as
a display order or a sort order as described in greater detail
above.

[0608] As a non-limiting example and with reference to
FIG. 21B, consider a request received by the query system
214 that includes the following filter criteria:
keyword=error, partition=_main, time range=Mar. 1, 2017
16:22.00.000-16:28.00.000, sourcetype=sourcetypeC,
host=hostB, and the following categorization criteria:
source.

[0609] Based on the above criteria, a search node 506 of
the query system 214 that is associated with the data store
2101 identifies _main directory 2103 and can ignore _test
directory 2105 and any other partition-specific directories.
The search node 506 determines that inverted index 2107B
is a relevant index based on its location within the _main
directory 2103 and the time range associated with it. For
sake of simplicity in this example, the search node 506
determines that no other inverted indexes in the _main
directory 2103, such as inverted index 2107A satisfy the
time range criterion.

[0610] Having identified the relevant inverted index
2107B, the search node 506 reviews the token entries 2111
and the field-value pair entries 2113 to identify event refer-
ences, or events, that satisfy all of the filter criteria.

[0611] With respect to the token entries 2111, the search
node 506 can review the error token entry and identify event
references 3, 5, 6, 8, 11, 12, indicating that the term “error”
is found in the corresponding events. Similarly, the search
node 506 can identify event references 4, 5, 6, 8§, 9, 10, 11
in the field-value pair entry sourcetype:sourcetypeC and
event references 2, 5, 6, 8, 10, 11 in the field-value pair entry
host:hostB. As the filter criteria did not include a source or
an IP_address field-value pair, the search node 506 can
ignore those field-value pair entries.

[0612] In addition to identifying event references found in
at least one token entry or field-value pair entry (e.g., event
references 3, 4, 5, 6, 8, 9, 10, 11, 12), the search node 506
can identify events (and corresponding event references)
that satisfy the time range criterion using the event reference
array 2115 (e.g., event references 2, 3, 4, 5, 6, 7, 8, 9, 10).
Using the information obtained from the inverted index
2107B (including the event reference array 2115), the search
node 506 can identify the event references that satisfy all of
the filter criteria (e.g., event references 5, 6, 8).

[0613] Having identified the events (and event references)
that satisfy all of the filter criteria, the search node 506 can
group the event references using the received categorization
criteria (source). In doing so, the search node 506 can
determine that event references 5 and 6 are located in the
field-value pair entry source:sourceD (or have matching
categorization criteria-value pairs) and event reference 8 is
located in the field-value pair entry source:sourceC. Accord-
ingly, the search node 506 can generate a sourceC group

US 2022/0245156 Al

having a count of one corresponding to reference 8 and a
sourceD group having a count of two corresponding to
references 5 and 6. This information can be communicated
to the search head 504. In turn the search head 504 can
aggregate the results from the various search nodes 506 and
display the groupings. As mentioned above, in some
embodiments, the groupings can be displayed based at least
in part on the categorization criteria, including at least one
of host, source, sourcetype, or partition.

[0614] It will be understood that a change to any of the
filter criteria or categorization criteria can result in different
groupings. As a one non-limiting example, consider a
request received by a search node 506 that includes the
following filter criteria: partition=_main, time range=Mar. 1,
2017 Mar. 1, 2017 16:21:20.000-16:28:17.000, and the
following categorization criteria: host, source, sourcetype
can result in the search node 506 identifying event refer-
ences 1-12 as satisfying the filter criteria. The search node
506 can generate up to 24 groupings corresponding to the 24
different combinations of the categorization criteria-value
pairs, including host (hostA, hostB), source (sourceA,
sourceB, sourceC, sourceD), and sourcetype (sourcetypeA,
sourcetypeB, sourcetypeC). However, as there are only
twelve events identifiers in the illustrated embodiment and
some fall into the same grouping, the search node 506
generates eight groups and counts as follows:

[0615] Group 1 (hostA, sourceA, sourcetypeA): 1 (event
reference 7)
[0616] Group 2 (hostA, sourceA, sourcetypeB): 2 (event

references 1, 12)

[0617] Group 3 (hostA, sourceA, sourcetypeC): 1 (event
reference 4)
[0618] Group 4 (hostA, sourceB, sourcetypeA): 1 (event
reference 3)
[0619] Group 5 (hostA, sourceB, sourcetypeC): 1 (event
reference 9)
[0620] Group 6 (hostB, sourceC, sourcetypeA): 1 (event
reference 2)
[0621] Group 7 (hostB, sourceC, sourcetypeC): 2 (event

references 8, 11)

[0622] Group 8 (hostB, sourceD, sourcetypeC): 3 (event
references 5, 6, 10)

[0623] As noted, each group has a unique combination of
categorization criteria-value pairs or categorization criteria
values. The search node 506 communicates the groups to the
search head 504 for aggregation with results received from
other search nodes 506. In communicating the groups to the
search head 504, the search node 506 can include the
categorization criteria-value pairs for each group and the
count. In some embodiments, the search node 506 can
include more or less information. For example, the search
node 506 can include the event references associated with
each group and other identifying information, such as the
search node 506 or inverted index used to identify the
groups.

[0624] As another non-limiting example, consider a
request received by an search node 506 that includes the
following filter criteria: partition=_main, time range=Mar. 1,
2017 Mar. 1, 2017 16:21:20.000-16:28:17.000,
source=sourceA, sourceD, and keyword=itemID and the
following categorization criteria: host, source, sourcetype
can result in the search node identifying event references 4,
7, and 10 as satisfying the filter criteria, and generate the
following groups:

Aug. 4, 2022

[0625] Group 1 (hostA, sourceA, sourcetypeC): 1 (event
reference 4)

[0626] Group 2 (hostA, sourceA, sourcetypeA): 1 (event
reference 7)

[0627] Group 3 (hostB, sourceD, sourcetypeC): 1 (event
references 10)

[0628] The search node 506 communicates the groups to

the search head 504 for aggregation with results received
from other search nodes 506. As will be understand there are
myriad ways for filtering and categorizing the events and
event references. For example, the search node 506 can
review multiple inverted indexes associated with a partition
or review the inverted indexes of multiple partitions, and
categorize the data using any one or any combination of
partition, host, source, sourcetype, or other category, as
desired.

[0629] Further, if a user interacts with a particular group,
the search node 506 can provide additional information
regarding the group. For example, the search node 506 can
perform a targeted search or sampling of the events that
satisfy the filter criteria and the categorization criteria for the
selected group, also referred to as the filter criteria corre-
sponding to the group or filter criteria associated with the
group.

[0630] In some cases, to provide the additional informa-
tion, the search node 506 relies on the inverted index. For
example, the search node 506 can identify the event refer-
ences associated with the events that satisfy the filter criteria
and the categorization criteria for the selected group and
then use the event reference array 2115 to access some or all
of the identified events. In some cases, the categorization
criteria values or categorization criteria-value pairs associ-
ated with the group become part of the filter criteria for the
review.

[0631] With reference to FIG. 21B for instance, suppose a
group is displayed with a count of six corresponding to event
references 4, 5, 6, 8, 10, 11 (i.e., event references 4, 5, 6, 8,
10, 11 satisfy the filter criteria and are associated with
matching categorization criteria values or categorization
criteria-value pairs) and a user interacts with the group (e.g.,
selecting the group, clicking on the group, etc.). In response,
the search head 504 communicates with the search node 506
to provide additional information regarding the group.
[0632] In some embodiments, the search node 506 iden-
tifies the event references associated with the group using
the filter criteria and the categorization criteria for the group
(e.g., categorization criteria values or categorization criteria-
value pairs unique to the group). Together, the filter criteria
and the categorization criteria for the group can be referred
to as the filter criteria associated with the group. Using the
filter criteria associated with the group, the search node 506
identifies event references 4, 5, 6, 8, 10, 11.

[0633] Based on a sampling criteria, discussed in greater
detail above, the search node 506 can determine that it will
analyze a sample of the events associated with the event
references 4, 5, 6, 8, 10, 11. For example, the sample can
include analyzing event data associated with the event
references 5, 8, 10. In some embodiments, the search node
506 can use the event reference array 2115 to access the
event data associated with the event references 5, 8, 10.
Once accessed, the search node 506 can compile the relevant
information and provide it to the search head 504 for
aggregation with results from other search nodes. By iden-
tifying events and sampling event data using the inverted

US 2022/0245156 Al

indexes, the search node can reduce the amount of actual
data this is analyzed and the number of events that are
accessed in order to generate the summary of the group and
provide a response in less time.

4.5. Query Processing Flow

[0634] FIG. 22A is a flow diagram illustrating an embodi-
ment of a routine implemented by the query system 214 for
executing a query. At block 2202, a search head 504 receives
a search query. At block 2204, the search head 504 analyzes
the search query to determine what portion(s) of the query
to delegate to search nodes 506 and what portions of the
query to execute locally by the search head 504. At block
2206, the search head distributes the determined portions of
the query to the appropriate search nodes 506. In some
embodiments, a search head cluster may take the place of an
independent search head 504 where each search head 504 in
the search head cluster coordinates with peer search heads
504 in the search head cluster to schedule jobs, replicate
search results, update configurations, fulfill search requests,
etc. In some embodiments, the search head 504 (or each
search head) consults with a search node catalog 510 that
provides the search head with a list of search nodes 506 to
which the search head can distribute the determined portions
of the query. A search head 504 may communicate with the
search node catalog 510 to discover the addresses of active
search nodes 506.

[0635] At block 2208, the search nodes 506 to which the
query was distributed, search data stores associated with
them for events that are responsive to the query. To deter-
mine which events are responsive to the query, the search
node 506 searches for events that match the criteria specified
in the query. These criteria can include matching keywords
or specific values for certain fields. The searching operations
at block 2208 may use the late-binding schema to extract
values for specified fields from events at the time the query
is processed. In some embodiments, one or more rules for
extracting field values may be specified as part of a source
type definition in a configuration file. The search nodes 506
may then either send the relevant events back to the search
head 504, or use the events to determine a partial result, and
send the partial result back to the search head 504.

[0636] At block 2210, the search head 504 combines the
partial results and/or events received from the search nodes
506 to produce a final result for the query. In some examples,
the results of the query are indicative of performance or
security of the IT environment and may help improve the
performance of components in the IT environment. This
final result may comprise different types of data depending
on what the query requested. For example, the results can
include a listing of matching events returned by the query,
or some type of visualization of the data from the returned
events. In another example, the final result can include one
or more calculated values derived from the matching events.
[0637] The results generated by the system 108 can be
returned to a client using different techniques. For example,
one technique streams results or relevant events back to a
client in real-time as they are identified. Another technique
waits to report the results to the client until a complete set
of results (which may include a set of relevant events or a
result based on relevant events) is ready to return to the
client. Yet another technique streams interim results or
relevant events back to the client in real-time until a com-
plete set of results is ready, and then returns the complete set

Aug. 4, 2022

of results to the client. In another technique, certain results
are stored as “search jobs™” and the client may retrieve the
results by referring the search jobs.

[0638] The search head 504 can also perform various
operations to make the search more efficient. For example,
before the search head 504 begins execution of a query, the
search head 504 can determine a time range for the query
and a set of common keywords that all matching events
include. The search head 504 may then use these parameters
to query the search nodes 506 to obtain a superset of the
eventual results. Then, during a filtering stage, the search
head 504 can perform field-extraction operations on the
superset to produce a reduced set of search results. This
speeds up queries, which may be particularly helpful for
queries that are performed on a periodic basis.

4.6. Pipelined Search Language

[0639] Various embodiments of the present disclosure can
be implemented using, or in conjunction with, a pipelined
command language. A pipelined command language is a
language in which a set of inputs or data is operated on by
a first command in a sequence of commands, and then
subsequent commands in the order they are arranged in the
sequence. Such commands can include any type of func-
tionality for operating on data, such as retrieving, searching,
filtering, aggregating, processing, transmitting, and the like.
As described herein, a query can thus be formulated in a
pipelined command language and include any number of
ordered or unordered commands for operating on data.

[0640] Splunk Processing Language (SPL) is an example
of a pipelined command language in which a set of inputs or
data is operated on by any number of commands in a
particular sequence. A sequence of commands, or command
sequence, can be formulated such that the order in which the
commands are arranged defines the order in which the
commands are applied to a set of data or the results of an
earlier executed command. For example, a first command in
a command sequence can operate to search or filter for
specific data in particular set of data. The results of the first
command can then be passed to another command listed
later in the command sequence for further processing.

[0641] Invarious embodiments, a query can be formulated
as a command sequence defined in a command line of a
search Ul. In some embodiments, a query can be formulated
as a sequence of SPL commands. Some or all of the SPL.
commands in the sequence of SPL. commands can be sepa-
rated from one another by a pipe symbol “I”. In such
embodiments, a set of data, such as a set of events, can be
operated on by a first SPL. command in the sequence, and
then a subsequent SPL. command following a pipe symbol
“I” after the first SPL command operates on the results
produced by the first SPL. command or other set of data, and
so on for any additional SPL. commands in the sequence. As
such, a query formulated using SPL. comprises a series of
consecutive commands that are delimited by pipe “I” char-
acters. The pipe character indicates to the system that the
output or result of one command (to the left of the pipe)
should be used as the input for one of the subsequent
commands (to the right of the pipe). This enables formula-
tion of queries defined by a pipeline of sequenced com-
mands that refines or enhances the data at each step along the
pipeline until the desired results are attained. Accordingly,
various embodiments described herein can be implemented

US 2022/0245156 Al

with Splunk Processing Language (SPL) used in conjunc-
tion with the SPLUNK® ENTERPRISE system.

[0642] While a query can be formulated in many ways, a
query can start with a search command and one or more
corresponding search terms at the beginning of the pipeline.
Such search terms can include any combination of key-
words, phrases, times, dates, Boolean expressions, field-
name-field value pairs, etc. that specify which results should
be obtained from an index. The results can then be passed as
inputs into subsequent commands in a sequence of com-
mands by using, for example, a pipe character. The subse-
quent commands in a sequence can include directives for
additional processing of the results once it has been obtained
from one or more indexes. For example, commands may be
used to filter unwanted information out of the results, extract
more information, evaluate field values, calculate statistics,
reorder the results, create an alert, create summary of the
results, or perform some type of aggregation function. In
some embodiments, the summary can include a graph, chart,
metric, or other visualization of the data. An aggregation
function can include analysis or calculations to return an
aggregate value, such as an average value, a sum, a maxi-
mum value, a root mean square, statistical values, and the
like.

[0643] Due to its flexible nature, use of a pipelined com-
mand language in various embodiments is advantageous
because it can perform “filtering” as well as “processing”
functions. In other words, a single query can include a search
command and search term expressions, as well as data-
analysis expressions. For example, a command at the begin-
ning of a query can perform a “filtering” step by retrieving
a set of data based on a condition (e.g., records associated
with server response times of less than 1 microsecond). The
results of the filtering step can then be passed to a subse-
quent command in the pipeline that performs a “processing”
step (e.g. calculation of an aggregate value related to the
filtered events such as the average response time of servers
with response times of less than 1 microsecond). Further-
more, the search command can allow events to be filtered by
keyword as well as field value criteria. For example, a search
command can filter out all events containing the word
“warning” or filter out all events where a field value asso-
ciated with a field “clientip” is “10.0.1.2.”

[0644] The results obtained or generated in response to a
command in a query can be considered a set of results data.
The set of results data can be passed from one command to
another in any data format. In one embodiment, the set of
result data can be in the form of a dynamically created table.
Each command in a particular query can redefine the shape
of the table. In some implementations, an event retrieved
from an index in response to a query can be considered a row
with a column for each field value. Columns contain basic
information about the data and also may contain data that
has been dynamically extracted at search time.

[0645] FIG. 22B provides a visual representation of the
manner in which a pipelined command language or query
operates in accordance with the disclosed embodiments. The
query 2230 can be inputted by the user into a search. The
query comprises a search, the results of which are piped to
two commands (namely, command 1 and command 2) that
follow the search step.

[0646] Disk 2222 represents the event data in the raw
record data store.

Aug. 4, 2022

[0647] When a user query is processed, a search step will
precede other queries in the pipeline in order to generate a
set of events at block 2240. For example, the query can
comprise search terms “sourcetype=syslog ERROR” at the
front of the pipeline as shown in FIG. 22B. Intermediate
results table 2224 shows fewer rows because it represents
the subset of events retrieved from the index that matched
the search terms “sourcetype=syslog ERROR” from search
command 2230. By way of further example, instead of a
search step, the set of events at the head of the pipeline may
be generating by a call to a pre-existing inverted index (as
will be explained later).

[0648] At block 2242, the set of events generated in the
first part of the query may be piped to a query that searches
the set of events for field-value pairs or for keywords. For
example, the second intermediate results table 2226 shows
fewer columns, representing the result of the top command,
“top user” which summarizes the events into a list of the top
10 users and displays the user, count, and percentage.

[0649] Finally, at block 2244, the results of the prior stage
can be pipelined to another stage where further filtering or
processing of the data can be performed, e.g., preparing the
data for display purposes, filtering the data based on a
condition, performing a mathematical calculation with the
data, etc. As shown in FIG. 22B, the “fields-percent” part of
command 2230 removes the column that shows the percent-
age, thereby, leaving a final results table 2228 without a
percentage column. In different embodiments, other query
languages, such as the Structured Query Language (“SQL”),
can be used to create a query.

4.7. Field Extraction

[0650] The query system 214 allows users to search and
visualize events generated from machine data received from
homogenous data sources. The query system 214 also allows
users to search and visualize events generated from machine
data received from heterogeneous data sources. The query
system 214 includes various components for processing a
query, such as, but not limited to a query system manager
502, one or more search heads 504 having one or more
search masters 512 and search managers 514, and one or
more search nodes 506. A query language may be used to
create a query, such as any suitable pipelined query lan-
guage. For example, Splunk Processing Language (SPL) can
be utilized to make a query. SPL is a pipelined search
language in which a set of inputs is operated on by a first
command in a command line, and then a subsequent com-
mand following the pipe symbol “I” operates on the results
produced by the first command, and so on for additional
commands. Other query languages, such as the Structured
Query Language (“SQL”), can be used to create a query.

[0651] In response to receiving the search query, a search
head 504 (e.g., a search master 512 or search manager 514)
can use extraction rules to extract values for fields in the
events being searched. The search head 504 can obtain
extraction rules that specify how to extract a value for fields
from an event. Extraction rules can comprise regex rules that
specify how to extract values for the fields corresponding to
the extraction rules. In addition to specifying how to extract
field values, the extraction rules may also include instruc-
tions for deriving a field value by performing a function on
a character string or value retrieved by the extraction rule.
For example, an extraction rule may truncate a character

US 2022/0245156 Al

string or convert the character string into a different data
format. In some cases, the query itself can specify one or
more extraction rules.

[0652] The search head 504 can apply the extraction rules
to events that it receives from search nodes 506. The search
nodes 506 may apply the extraction rules to events in an
associated data store or common storage 216. Extraction
rules can be applied to all the events in a data store or
common storage 216 or to a subset of the events that have
been filtered based on some criteria (e.g., event time stamp
values, etc.). Extraction rules can be used to extract one or
more values for a field from events by parsing the portions
of machine data in the events and examining the data for one
or more patterns of characters, numbers, delimiters, etc., that
indicate where the field begins and, optionally, ends.
[0653] FIG. 23A is a diagram of an example scenario
where a common customer identifier is found among log
data received from three disparate data sources, in accor-
dance with example embodiments. In this example, a user
submits an order for merchandise using a vendor’s shopping
application program 2301 running on the user’s system. In
this example, the order was not delivered to the vendor’s
server due to a resource exception at the destination server
that is detected by the middleware code 2302. The user then
sends a message to the customer support server 2303 to
complain about the order failing to complete. The three
systems 2301, 2302, and 2303 are disparate systems that do
not have a common logging format. The order application
2301 sends log data 2304 to the data intake and query system
108 in one format, the middleware code 2302 sends error log
data 2305 in a second format, and the support server 2303
sends log data 2306 in a third format.

[0654] Using the log data received at the data intake and
query system 108 from the three systems, the vendor can
uniquely obtain an insight into user activity, user experience,
and system behavior. The query system 214 allows the
vendor’s administrator to search the log data from the three
systems, thereby obtaining correlated information, such as
the order number and corresponding customer ID number of
the person placing the order. The system also allows the
administrator to see a visualization of related events via a
user interface. The administrator can query the query system
214 for customer ID field value matches across the log data
from the three systems that are stored in common storage
216. The customer 1D field value exists in the data gathered
from the three systems, but the customer ID field value may
be located in different areas of the data given differences in
the architecture of the systems. There is a semantic rela-
tionship between the customer 1D field values generated by
the three systems. The query system 214 requests events
from the one or more data stores 218 to gather relevant
events from the three systems. The search head 504 then
applies extraction rules to the events in order to extract field
values that it can correlate. The search head 504 may apply
a different extraction rule to each set of events from each
system when the event format differs among systems. In this
example, the user interface can display to the administrator
the events corresponding to the common customer ID field
values 2307, 2308, and 2309, thereby providing the admin-
istrator with insight into a customer’s experience.

[0655] Note that query results can be returned to a client,
a search head 504, or any other system component for
further processing. In general, query results may include a
set of one or more events, a set of one or more values

Aug. 4, 2022

obtained from the events, a subset of the values, statistics
calculated based on the values, a report containing the
values, a visualization (e.g., a graph or chart) generated from
the values, and the like.

[0656] The query system 214 enables users to run queries
against the stored data to retrieve events that meet criteria
specified in a query, such as containing certain keywords or
having specific values in defined fields. FIG. 23B illustrates
the manner in which keyword searches and field searches are
processed in accordance with disclosed embodiments.
[0657] If a user inputs a search query into search bar 2310
that includes only keywords (also known as “tokens™), e.g.,
the keyword “error” or “warning”, the query system 214 of
the data intake and query system 108 can search for those
keywords directly in the event data 2311 stored in the raw
record data store. Note that while FIG. 23B only illustrates
four events 2312, 2313, 2314, 2315, the raw record data
store (corresponding to data store 212 in FIG. 2) may
contain records for millions of events.

[0658] As disclosed above, the indexing system 212 can
optionally generate a keyword index to facilitate fast key-
word searching for event data. The indexing system 212 can
include the identified keywords in an index, which associ-
ates each stored keyword with reference pointers to events
containing that keyword (or to locations within events where
that keyword is located, other location identifiers, etc.).
When the query system 214 subsequently receives a key-
word-based query, the query system 214 can access the
keyword index to quickly identify events containing the
keyword. For example, if the keyword “HTTP” was indexed
by the indexing system 212 at index time, and the user
searches for the keyword “HTTP,” the events 2312, 2313,
and 2314, will be identified based on the results returned
from the keyword index. As noted above, the index contains
reference pointers to the events containing the keyword,
which allows for efficient retrieval of the relevant events
from the raw record data store.

[0659] If a user searches for a keyword that has not been
indexed by the indexing system 212, the data intake and
query system 108 may nevertheless be able to retrieve the
events by searching the event data for the keyword in the
raw record data store directly as shown in FIG. 23B. For
example, if a user searches for the keyword “frank,” and the
name “frank” has not been indexed at search time, the query
system 214 can search the event data directly and return the
first event 2312. Note that whether the keyword has been
indexed at index time or search time or not, in both cases the
raw data with the events 2311 is accessed from the raw data
record store to service the keyword search. In the case where
the keyword has been indexed, the index will contain a
reference pointer that will allow for a more efficient retrieval
of the event data from the data store. If the keyword has not
been indexed, the query system 214 can search through the
records in the data store to service the search.

[0660] In most cases, however, in addition to keywords, a
user’s search will also include fields. The term “field” refers
to a location in the event data containing one or more values
for a specific data item. Often, a field is a value with a fixed,
delimited position on a line, or a name and value pair, where
there is a single value to each field name. A field can also be
multivalued, that is, it can appear more than once in an event
and have a different value for each appearance, e.g., email
address fields. Fields are searchable by the field name or
field name-value pairs. Some examples of fields are “clien-

US 2022/0245156 Al

tip” for IP addresses accessing a web server, or the “From”
and “To” fields in email addresses.

[0661] By way of further example, consider the search,
“status=404". This search query finds events with “status”
fields that have a value of “404.” When the search is run, the
query system 214 does not look for events with any other
“status” value. It also does not look for events containing
other fields that share “404” as a value. As a result, the
search returns a set of results that are more focused than if
“404” had been used in the search string as part of a keyword
search. Note also that fields can appear in events as
“key=value” pairs such as “user_name=Bob.” But in most
cases, field values appear in fixed, delimited positions with-
out identifying keys. For example, the data store may
contain events where the “user_name” value always appears
by itself after the timestamp as illustrated by the following
string: “November 15 09:33:22 johnmedlock.”

[0662] The data intake and query system 108 advanta-
geously allows for search time field extraction. In other
words, fields can be extracted from the event data at search
time using late-binding schema as opposed to at data inges-
tion time, which was a major limitation of the prior art
systems.

[0663] In response to receiving the search query, a search
head 504 of the query system 214 can use extraction rules to
extract values for the fields associated with a field or fields
in the event data being searched. The search head 504 can
obtain extraction rules that specify how to extract a value for
certain fields from an event. Extraction rules can comprise
regex rules that specity how to extract values for the relevant
fields. In addition to specifying how to extract field values,
the extraction rules may also include instructions for deriv-
ing a field value by performing a function on a character
string or value retrieved by the extraction rule. For example,
a transformation rule may truncate a character string, or
convert the character string into a different data format. In
some cases, the query itself can specify one or more extrac-
tion rules.

[0664] FIG. 23B illustrates the manner in which configu-
ration files may be used to configure custom fields at search
time in accordance with the disclosed embodiments. In
response to receiving a search query, the data intake and
query system 108 determines if the query references a
“field.” For example, a query may request a list of events
where the “clientip” field equals “127.0.0.1.” If the query
itself does not specitfy an extraction rule and if the field is not
a metadata field, e.g., time, host, source, source type, etc.,
then in order to determine an extraction rule, the query
system 214 may, in one or more embodiments, need to locate
configuration file 2316 during the execution of the search as
shown in FIG. 23B.

[0665] Configuration file 2316 may contain extraction
rules for all the various fields that are not metadata fields,
e.g., the “clientip” field. The extraction rules may be inserted
into the configuration file in a variety of ways. In some
embodiments, the extraction rules can comprise regular
expression rules that are manually entered in by the user.
Regular expressions match patterns of characters in text and
are used for extracting custom fields in text.

[0666] In one or more embodiments, as noted above, a
field extractor may be configured to automatically generate
extraction rules for certain field values in the events when
the events are being created, indexed, or stored, or possibly
at a later time. In one embodiment, a user may be able to

59

Aug. 4, 2022

dynamically create custom fields by highlighting portions of
a sample event that should be extracted as fields using a
graphical user interface. The system can then generate a
regular expression that extracts those fields from similar
events and store the regular expression as an extraction rule
for the associated field in the configuration file 2316.
[0667] In some embodiments, the indexing system 212
can automatically discover certain custom fields at index
time and the regular expressions for those fields will be
automatically generated at index time and stored as part of
extraction rules in configuration file 2316. For example,
fields that appear in the event data as “key=value” pairs may
be automatically extracted as part of an automatic field
discovery process. Note that there may be several other ways
of adding field definitions to configuration files in addition
to the methods discussed herein.

[0668] The search head 504 can apply the extraction rules
derived from configuration file 2316 to event data that it
receives from search nodes 506. The search nodes 506 may
apply the extraction rules from the configuration file to
events in an associated data store or common storage 216.
Extraction rules can be applied to all the events in a data
store, or to a subset of the events that have been filtered
based on some criteria (e.g., event time stamp values, etc.).
Extraction rules can be used to extract one or more values
for a field from events by parsing the event data and
examining the event data for one or more patterns of
characters, numbers, delimiters, etc., that indicate where the
field begins and, optionally, ends.

[0669] In one more embodiments, the extraction rule in
configuration file 2316 will also need to define the type or set
of'events that the rule applies to. Because the raw record data
store will contain events from multiple heterogeneous
sources, multiple events may contain the same fields in
different locations because of discrepancies in the format of
the data generated by the various sources. Furthermore,
certain events may not contain a particular field at all. For
example, event 2315 also contains “clientip” field, however,
the “clientip” field is in a different format from events 2312,
2313, and 2314. To address the discrepancies in the format
and content of the different types of events, the configuration
file will also need to specify the set of events that an
extraction rule applies to, e.g., extraction rule 2317 specifies
a rule for filtering by the type of event and contains a regular
expression for parsing out the field value. Accordingly, each
extraction rule can pertain to only a particular type of event.
If a particular field, e.g., “clientip” occurs in multiple types
of events, each of those types of events can have its own
corresponding extraction rule in the configuration file 2316
and each of the extraction rules would comprise a different
regular expression to parse out the associated field value.
The most common way to categorize events is by source
type because events generated by a particular source can
have the same format.

[0670] The field extraction rules stored in configuration
file 2316 perform search-time field extractions. For example,
for a query that requests a list of events with source type
“access_combined” where the “clientip” field equals “127.
0.0.1,” the query system 214 can first locate the configura-
tion file 2316 to retrieve extraction rule 2317 that allows it
to extract values associated with the “clientip” field from the
event data 2320 “where the source type is “access_com-
bined. After the “clientip” field has been extracted from all
the events comprising the “clientip” field where the source

US 2022/0245156 Al

type is “access_combined,” the query system 214 can then
execute the field criteria by performing the compare opera-
tion to filter out the events where the “clientip” field equals
“127.0.0.1.” In the example shown in FIG. 23B, the events
2312, 2313, and 2314 would be returned in response to the
user query. In this manner, the query system 214 can service
queries containing field criteria in addition to queries con-
taining keyword criteria (as explained above).

[0671] In some embodiments, the configuration file 2316
can be created during indexing. It may either be manually
created by the user or automatically generated with certain
predetermined field extraction rules. As discussed above, the
events may be distributed across several data stores in
common storage 216, wherein various indexing nodes 404
may be responsible for storing the events in the common
storage 216 and various search nodes 506 may be respon-
sible for searching the events contained in common storage
216.

[0672] The ability to add schema to the configuration file
at search time results in increased efficiency. A user can
create new fields at search time and simply add field
definitions to the configuration file. As a user learns more
about the data in the events, the user can continue to refine
the late-binding schema by adding new fields, deleting
fields, or modifying the field extraction rules in the configu-
ration file for use the next time the schema is used by the
system. Because the data intake and query system 108
maintains the underlying raw data and uses late-binding
schema for searching the raw data, it enables a user to
continue investigating and learn valuable insights about the
raw data long after data ingestion time.

[0673] The ability to add multiple field definitions to the
configuration file at search time also results in increased
flexibility. For example, multiple field definitions can be
added to the configuration file to capture the same field
across events generated by different source types. This
allows the data intake and query system 108 to search and
correlate data across heterogenecous sources flexibly and
efficiently.

[0674] Further, by providing the field definitions for the
queried fields at search time, the configuration file 2316
allows the record data store to be field searchable. In other
words, the raw record data store can be searched using
keywords as well as fields, wherein the fields are searchable
name/value pairings that distinguish one event from another
and can be defined in configuration file 2316 using extrac-
tion rules. In comparison to a search containing field names,
a keyword search does not need the configuration file and
can search the event data directly as shown in FIG. 23B.
[0675] It should also be noted that any events filtered out
by performing a search-time field extraction using a con-
figuration file 2316 can be further processed by directing the
results of the filtering step to a processing step using a
pipelined search language. Using the prior example, a user
can pipeline the results of the compare step to an aggregate
function by asking the query system 214 to count the number
of events where the “clientip” field equals “127.0.0.1.”

4.8. Example Search Screen

[0676] FIG. 24A is an interface diagram of an example
user interface for a search screen 2400, in accordance with
example embodiments. Search screen 2400 includes a
search bar 2402 that accepts user input in the form of a
search string. It also includes a time range picker 2412 that

Aug. 4, 2022

enables the user to specify a time range for the search. For
historical searches (e.g., searches based on a particular
historical time range), the user can select a specific time
range, or alternatively a relative time range, such as “today,”
“yesterday” or “last week.” For real-time searches (e.g.,
searches whose results are based on data received in real-
time), the user can select the size of a preceding time
window to search for real-time events. Search screen 2400
also initially displays a “data summary” dialog as is illus-
trated in FIG. 24B that enables the user to select different
sources for the events, such as by selecting specific hosts and
log files.

[0677] After the search is executed, the search screen 2400
in FIG. 24A can display the results through search results
tabs 2404, wherein search results tabs 2404 includes: an
“events tab” that displays various information about events
returned by the search; a “statistics tab” that displays sta-
tistics about the search results; and a “visualization tab” that
displays various visualizations of the search results. The
events tab illustrated in FIG. 24 A displays a timeline graph
2405 that graphically illustrates the number of events that
occurred in one-hour intervals over the selected time range.
The events tab also displays an events list 2408 that enables
a user to view the machine data in each of the returned
events.

[0678] The events tab additionally displays a sidebar that
is an interactive field picker 2406. The field picker 2406 may
be displayed to a user in response to the search being
executed and allows the user to further analyze the search
results based on the fields in the events of the search results.
The field picker 2406 includes field names that reference
fields present in the events in the search results. The field
picker may display any Selected Fields 2420 that a user has
pre-selected for display (e.g., host, source, sourcetype) and
may also display any Interesting Fields 2422 that the system
determines may be interesting to the user based on pre-
specified criteria (e.g., action, bytes, categoryid, clientip,
date_hour, date_mday, date_minute, etc.). The field picker
also provides an option to display field names for all the
fields present in the events of the search results using the All
Fields control 2424.

[0679] Each field name in the field picker 2406 has a value
type identifier to the left of the field name, such as value type
identifier 2426. A value type identifier identifies the type of
value for the respective field, such as an “a” for fields that
include literal values or a “#” for fields that include numeri-
cal values.

[0680] Each field name in the field picker also has a unique
value count to the right of the field name, such as unique
value count 2428. The unique value count indicates the
number of unique values for the respective field in the events
of the search results.

[0681] Each field name is selectable to view the events in
the search results that have the field referenced by that field
name. For example, a user can select the “host” field name,
and the events shown in the events list 2408 will be updated
with events in the search results that have the field that is
reference by the field name “host.”

4.9. Data Models

[0682] A data model is a hierarchically structured search-
time mapping of semantic knowledge about one or more
datasets. It encodes the domain knowledge used to build a

US 2022/0245156 Al

variety of specialized searches of those datasets. Those
searches, in turn, can be used to generate reports.

[0683] A data model is composed of one or more “objects”
(or “data model objects”) that define or otherwise corre-
spond to a specific set of data. An object is defined by
constraints and attributes. An object’s constraints are search
criteria that define the set of events to be operated on by
running a search having that search criteria at the time the
data model is selected. An object’s attributes are the set of
fields to be exposed for operating on that set of events
generated by the search criteria.

[0684] Objects in data models can be arranged hierarchi-
cally in parent/child relationships. Each child object repre-
sents a subset of the dataset covered by its parent object. The
top-level objects in data models are collectively referred to
as “root objects.”

[0685] Child objects have inheritance. Child objects
inherit constraints and attributes from their parent objects
and may have additional constraints and attributes of their
own. Child objects provide a way of filtering events from
parent objects. Because a child object may provide an
additional constraint in addition to the constraints it has
inherited from its parent object, the dataset it represents may
be a subset of the dataset that its parent represents. For
example, a first data model object may define a broad set of
data pertaining to e-mail activity generally, and another data
model object may define specific datasets within the broad
dataset, such as a subset of the e-mail data pertaining
specifically to e-mails sent. For example, a user can simply
select an “e-mail activity” data model object to access a
dataset relating to e-mails generally (e.g., sent or received),
or select an “e-mails sent” data model object (or data
sub-model object) to access a dataset relating to e-mails sent.
[0686] Because a data model object is defined by its
constraints (e.g., a set of search criteria) and attributes (e.g.,
a set of fields), a data model object can be used to quickly
search data to identify a set of events and to identify a set of
fields to be associated with the set of events. For example,
an “e-mails sent” data model object may specify a search for
events relating to e-mails that have been sent, and specify a
set of fields that are associated with the events. Thus, a user
can retrieve and use the “e-mails sent” data model object to
quickly search source data for events relating to sent e-mails,
and may be provided with a listing of the set of fields
relevant to the events in a user interface screen.

[0687] Examples of data models can include electronic
mail, authentication, databases, intrusion detection, mal-
ware, application state, alerts, compute inventory, network
sessions, network traffic, performance, audits, updates, vul-
nerabilities, etc. Data models and their objects can be
designed by knowledge managers in an organization, and
they can enable downstream users to quickly focus on a
specific set of data. A user iteratively applies a model
development tool (not shown in FIG. 24A) to prepare a
query that defines a subset of events and assigns an object
name to that subset. A child subset is created by further
limiting a query that generated a parent subset.

[0688] Data definitions in associated schemas can be taken
from the common information model (CIM) or can be
devised for a particular schema and optionally added to the
CIM. Child objects inherit fields from parents and can
include fields not present in parents. A model developer can
select fewer extraction rules than are available for the
sources returned by the query that defines events belonging

Aug. 4, 2022

to a model. Selecting a limited set of extraction rules can be
a tool for simplifying and focusing the data model, while
allowing a user flexibility to explore the data subset. Devel-
opment of a data model is further explained in U.S. Pat. Nos.
8,788,525 and 8,788,526, both entitled “DATA MODEL
FOR MACHINE DATA FOR SEMANTIC SEARCH”, both
issued on 22 Jul. 2014, U.S. Pat. No. 8,983,994, entitled
“GENERATION OF A DATA MODEL FOR SEARCHING
MACHINE DATA”, issued on 17 Mar. 2015, U.S. Pat. No.
9,128,980, entitled “GENERATION OF A DATA MODEL
APPLIED TO QUERIES”, issued on 8 Sep. 2015, and U.S.
Pat. No. 9,589,012, entitled “GENERATION OF A DATA
MODEL APPLIED TO OBJECT QUERIES”, issued on 7
Mar. 2017, each of which is hereby incorporated by refer-
ence in its entirety for all purposes.

[0689] A data model can also include reports. One or more
report formats can be associated with a particular data model
and be made available to run against the data model. A user
can use child objects to design reports with object datasets
that already have extraneous data pre-filtered out. In some
embodiments, the data intake and query system 108 pro-
vides the user with the ability to produce reports (e.g., a
table, chart, visualization, etc.) without having to enter SPL,
SQL, or other query language terms into a search screen.
Data models are used as the basis for the search feature.

[0690] Data models may be selected in a report generation
interface. The report generator supports drag-and-drop orga-
nization of fields to be summarized in a report. When a
model is selected, the fields with available extraction rules
are made available for use in the report. The user may refine
and/or filter search results to produce more precise reports.
The user may select some fields for organizing the report and
select other fields for providing detail according to the report
organization. For example, “region” and “salesperson” are
fields used for organizing the report and sales data can be
summarized (subtotaled and totaled) within this organiza-
tion. The report generator allows the user to specify one or
more fields within events and apply statistical analysis on
values extracted from the specified one or more fields. The
report generator may aggregate search results across sets of
events and generate statistics based on aggregated search
results. Building reports using the report generation inter-
face is further explained in U.S. patent application Ser. No.
14/503,335, entitled “GENERATING REPORTS FROM
UNSTRUCTURED DATA”, filed on 30 Sep. 2014, and
which is hereby incorporated by reference in its entirety for
all purposes. Data visualizations also can be generated in a
variety of formats, by reference to the data model. Reports,
data visualizations, and data model objects can be saved and
associated with the data model for future use. The data
model object may be used to perform searches of other data.

[0691] FIGS. 25-31 are interface diagrams of example
report generation user interfaces, in accordance with
example embodiments. The report generation process may
be driven by a predefined data model object, such as a data
model object defined and/or saved via a reporting applica-
tion or a data model object obtained from another source. A
user can load a saved data model object using a report editor.
For example, the initial search query and fields used to drive
the report editor may be obtained from a data model object.
The data model object that is used to drive a report genera-
tion process may define a search and a set of fields. Upon
loading of the data model object, the report generation
process may enable a user to use the fields (e.g., the fields

US 2022/0245156 Al

defined by the data model object) to define criteria for a
report (e.g., filters, split rows/columns, aggregates, etc.) and
the search may be used to identify events (e.g., to identify
events responsive to the search) used to generate the report.
That is, for example, if a data model object is selected to
drive a report editor, the graphical user interface of the report
editor may enable a user to define reporting criteria for the
report using the fields associated with the selected data
model object, and the events used to generate the report may
be constrained to the events that match, or otherwise satisfy,
the search constraints of the selected data model object.

[0692] The selection of a data model object for use in
driving a report generation may be facilitated by a data
model object selection interface. FIG. 25 illustrates an
example interactive data model selection graphical user
interface 2500 of a report editor that displays a listing of
available data models 2501. The user may select one of the
data models 2502.

[0693] FIG. 26 illustrates an example data model object
selection graphical user interface 2600 that displays avail-
able data objects 2601 for the selected data object model
2502. The user may select one of the displayed data model
objects 2602 for use in driving the report generation process.

[0694] Once a data model object is selected by the user, a
user interface screen 2700 shown in FIG. 27A may display
an interactive listing of automatic field identification options
2701 based on the selected data model object. For example,
auser may select one of the three illustrated options (e.g., the
“All Fields” option 2702, the “Selected Fields” option 2703,
or the “Coverage” option (e.g., fields with at least a specified
% of coverage) 2704). If the user selects the “All Fields”
option 2702, all of the fields identified from the events that
were returned in response to an initial search query may be
selected. That is, for example, all of the fields of the
identified data model object fields may be selected. If the
user selects the “Selected Fields” option 2703, only the
fields from the fields of the identified data model object
fields that are selected by the user may be used. If the user
selects the “Coverage” option 2704, only the fields of the
identified data model object fields meeting a specified cov-
erage criteria may be selected. A percent coverage may refer
to the percentage of events returned by the initial search
query that a given field appears in. Thus, for example, if an
object dataset includes 10,000 events returned in response to
an initial search query, and the “avg_age” field appears in
854 of those 10,000 events, then the “avg_age” field would
have a coverage of 8.54% for that object dataset. If, for
example, the user selects the “Coverage” option and speci-
fies a coverage value of 2%, only fields having a coverage
value equal to or greater than 2% may be selected. The
number of fields corresponding to each selectable option
may be displayed in association with each option. For
example, “97” displayed next to the “All Fields” option
2702 indicates that 97 fields will be selected if the “All
Fields” option is selected. The “3” displayed next to the
“Selected Fields” option 2703 indicates that 3 of the 97
fields will be selected if the “Selected Fields” option is
selected. The “49” displayed next to the “Coverage” option
2704 indicates that 49 of the 97 fields (e.g., the 49 fields
having a coverage of 2% or greater) will be selected if the
“Coverage” option is selected. The number of fields corre-
sponding to the “Coverage” option may be dynamically
updated based on the specified percent of coverage.

Aug. 4, 2022

[0695] FIG. 27B illustrates an example graphical user
interface screen 2705 displaying the reporting application’s
“Report Editor” page. The screen may display interactive
elements for defining various elements of a report. For
example, the page includes a “Filters” element 2706, a “Split
Rows” element 2707, a “Split Columns” element 2708, and
a “Column Values” element 2709. The page may include a
list of search results 2711. In this example, the Split Rows
element 2707 is expanded, revealing a listing of fields 2710
that can be used to define additional criteria (e.g., reporting
criteria). The listing of fields 2710 may correspond to the
selected fields. That is, the listing of fields 2710 may list
only the fields previously selected, either automatically
and/or manually by a user. FIG. 27C illustrates a formatting
dialogue 2712 that may be displayed upon selecting a field
from the listing of fields 2710. The dialogue can be used to
format the display of the results of the selection (e.g., label
the column for the selected field to be displayed as “com-
ponent™).

[0696] FIG. 27D illustrates an example graphical user
interface screen 2705 including a table of results 2713 based
on the selected criteria including splitting the rows by the
“component” field. A column 2714 having an associated
count for each component listed in the table may be dis-
played that indicates an aggregate count of the number of
times that the particular field-value pair (e.g., the value in a
row for a particular field, such as the value “BucketMover”
for the field “component”) occurs in the set of events
responsive to the initial search query.

[0697] FIG. 28 illustrates an example graphical user inter-
face screen 2800 that allows the user to filter search results
and to perform statistical analysis on values extracted from
specific fields in the set of events. In this example, the top
ten product names ranked by price are selected as a filter
2801 that causes the display of the ten most popular products
sorted by price. Each row is displayed by product name and
price 2802. This results in each product displayed in a
column labeled “product name” along with an associated
price in a column labeled “price” 2806. Statistical analysis
of other fields in the events associated with the ten most
popular products have been specified as column values
2803. A count of the number of successful purchases for
each product is displayed in column 2804. These statistics
may be produced by filtering the search results by the
product name, finding all occurrences of a successtul pur-
chase in a field within the events and generating a total of the
number of occurrences. A sum of the total sales is displayed
in column 2805, which is a result of the multiplication of the
price and the number of successful purchases for each
product.

[0698] The reporting application allows the user to create
graphical visualizations of the statistics generated for a
report. For example, FIG. 29 illustrates an example graphi-
cal user interface 2900 that displays a set of components and
associated statistics 2901. The reporting application allows
the user to select a visualization of the statistics in a graph
(e.g., bar chart, scatter plot, area chart, line chart, pie chart,
radial gauge, marker gauge, filler gauge, etc.), where the
format of the graph may be selected using the user interface
controls 2902 along the left panel of the user interface 2900.
FIG. 30 illustrates an example of a bar chart visualization
3000 of an aspect of the statistical data 2901. FIG. 31
illustrates a scatter plot visualization 3100 of an aspect of the
statistical data 2901.

US 2022/0245156 Al

4.10. Acceleration Techniques

[0699] The above-described system provides significant
flexibility by enabling a user to analyze massive quantities
of minimally-processed data “on the fly” at search time
using a late-binding schema, instead of storing pre-specified
portions of the data in a database at ingestion time. This
flexibility enables a user to see valuable insights, correlate
data, and perform subsequent queries to examine interesting
aspects of the data that may not have been apparent at
ingestion time.

[0700] However, performing extraction and analysis
operations at search time can involve a large amount of data
and require a large number of computational operations,
which can cause delays in processing the queries. Advanta-
geously, the data intake and query system 108 also employs
a number of unique acceleration techniques that have been
developed to speed up analysis operations performed at
search time. These techniques include: (1) performing
search operations in parallel using multiple search nodes
506; (2) using a keyword index; (3) using a high perfor-
mance analytics store; and (4) accelerating the process of
generating reports. These novel techniques are described in
more detail below.

4.10.1. Aggregation Technique

[0701] To facilitate faster query processing, a query can be
structured such that multiple search nodes 506 perform the
query in parallel, while aggregation of search results from
the multiple search nodes 506 is performed at the search
head 504. For example, FIG. 32 is an example search query
received from a client and executed by search nodes 506, in
accordance with example embodiments. FIG. 32 illustrates
how a search query 3202 received from a client at a search
head 504 can split into two phases, including: (1) subtasks
3204 (e.g., data retrieval or simple filtering) that may be
performed in parallel by search nodes 506 for execution, and
(2) a search results aggregation operation 3206 to be
executed by the search head 504 when the results are
ultimately collected from the search nodes 506.

[0702] During operation, upon receiving search query
3202, a search head 504 determines that a portion of the
operations involved with the search query may be performed
locally by the search head 504. The search head 504 modi-
fies search query 3202 by substituting “stats” (create aggre-
gate statistics over results sets received from the search
nodes 506 at the search head 504) with “prestats” (create
statistics by the search node 506 from local results set) to
produce search query 3204, and then distributes search
query 3204 to distributed search nodes 506, which are also
referred to as “search peers” or “peer search nodes.” Note
that search queries may generally specify search criteria or
operations to be performed on events that meet the search
criteria. Search queries may also specify field names, as well
as search criteria for the values in the fields or operations to
be performed on the values in the fields. Moreover, the
search head 504 may distribute the full search query to the
search peers as illustrated in FIG. 6A, or may alternatively
distribute a modified version (e.g., a more restricted version)
of the search query to the search peers. In this example, the
search nodes 506 are responsible for producing the results
and sending them to the search head 504. After the search
nodes 506 return the results to the search head 504, the
search head 504 aggregates the received results 3206 to form

Aug. 4, 2022

a single search result set. By executing the query in this
manner, the system effectively distributes the computational
operations across the search nodes 506 while minimizing
data transfers.

4.10.2. Keyword Index

[0703] As described above with reference to the flow
charts in FIG. 5A and FIG. 6A, data intake and query system
108 can construct and maintain one or more keyword
indexes to quickly identify events containing specific key-
words. This technique can greatly speed up the processing of
queries involving specific keywords. As mentioned above,
to build a keyword index, an indexing node 404 first
identifies a set of keywords. Then, the indexing node 404
includes the identified keywords in an index, which associ-
ates each stored keyword with references to events contain-
ing that keyword, or to locations within events where that
keyword is located. When the query system 214 subse-
quently receives a keyword-based query, the indexer can
access the keyword index to quickly identify events con-
taining the keyword.

4.10.3. High Performance Analytics Store

[0704] To speed up certain types of queries, some embodi-
ments of data intake and query system 108 create a high
performance analytics store, which is referred to as a “sum-
marization table,” that contains entries for specific field-
value pairs. Each of these entries keeps track of instances of
a specific value in a specific field in the events and includes
references to events containing the specific value in the
specific field. For example, an example entry in a summa-
rization table can keep track of occurrences of the value
“04107” in a “ZIP code” field of a set of events and the entry
includes references to all of the events that contain the value
“94107” in the ZIP code field. This optimization technique
enables the system to quickly process queries that seek to
determine how many events have a particular value for a
particular field. To this end, the system can examine the
entry in the summarization table to count instances of the
specific value in the field without having to go through the
individual events or perform data extractions at search time.
Also, if the system needs to process all events that have a
specific field-value combination, the system can use the
references in the summarization table entry to directly
access the events to extract further information without
having to search all of the events to find the specific
field-value combination at search time.

[0705] In some embodiments, the system maintains a
separate summarization table for each of the above-de-
scribed time-specific buckets that stores events for a specific
time range. A bucket-specific summarization table includes
entries for specific field-value combinations that occur in
events in the specific bucket. Alternatively, the system can
maintain a summarization table for the common storage 216,
one or more data stores 218 of the common storage 216,
buckets cached on a search node 506, etc. The different
summarization tables can include entries for the events in
the common storage 216, certain data stores 218 in the
common storage 216, or data stores associated with a
particular search node 506, etc.

[0706] The summarization table can be populated by run-
ning a periodic query that scans a set of events to find
instances of a specific field-value combination, or alterna-

US 2022/0245156 Al

tively instances of all field-value combinations for a specific
field. A periodic query can be initiated by a user, or can be
scheduled to occur automatically at specific time intervals.
A periodic query can also be automatically launched in
response to a query that asks for a specific field-value
combination.

[0707] Insome cases, when the summarization tables may
not cover all of the events that are relevant to a query, the
system can use the summarization tables to obtain partial
results for the events that are covered by summarization
tables, but may also have to search through other events that
are not covered by the summarization tables to produce
additional results. These additional results can then be
combined with the partial results to produce a final set of
results for the query. The summarization table and associ-
ated techniques are described in more detail in U.S. Pat. No.
8,682,925, entitled “DISTRIBUTED HIGH PERFOR-
MANCE ANALYTICS STORE”, issued on 25 Mar. 2014,
U.S. Pat. No. 9,128,985, entitled “SUPPLEMENTING A
HIGH PERFORMANCE ANALYTICS STORE WITH
EVALUATION OF INDIVIDUAL EVENTS TO
RESPOND TO AN EVENT QUERY™, issued on 8 Sep.
2015, and U.S. patent application Ser. No. 14/815,973,
entitled “GENERATING AND STORING SUMMARIZA-
TION TABLES FOR SETS OF SEARCHABLE EVENTS”,
filed on 1 Aug. 2015, each of which is hereby incorporated
by reference in its entirety for all purposes.

[0708] To speed up certain types of queries, e.g., fre-
quently encountered queries or computationally intensive
queries, some embodiments of data intake and query system
108 create a high performance analytics store, which is
referred to as a “summarization table,” (also referred to as a
“lexicon” or “inverted index”) that contains entries for
specific field-value pairs. Each of these entries keeps track
of instances of a specific value in a specific field in the event
data and includes references to events containing the specific
value in the specific field. For example, an example entry in
an inverted index can keep track of occurrences of the value
“94107” in a “ZIP code” field of a set of events and the entry
includes references to all of the events that contain the value
“94107” in the ZIP code field. Creating the inverted index
data structure avoids needing to incur the computational
overhead each time a statistical query needs to be run on a
frequently encountered field-value pair. In order to expedite
queries, in certain embodiments, the query system 214 can
employ the inverted index separate from the raw record data
store to generate responses to the received queries.

[0709] Note that the term ‘“summarization table” or
“inverted index” as used herein is a data structure that may
be generated by the indexing system 212 that includes at
least field names and field values that have been extracted
and/or indexed from event records. An inverted index may
also include reference values that point to the location(s) in
the field searchable data store where the event records that
include the field may be found. Also, an inverted index may
be stored using various compression techniques to reduce its
storage size.

[0710] Further, note that the term “reference value” (also
referred to as a “posting value”) as used herein is a value that
references the location of a source record in the field
searchable data store. In some embodiments, the reference
value may include additional information about each record,
such as timestamps, record size, meta-data, or the like. Each
reference value may be a unique identifier which may be

Aug. 4, 2022

used to access the event data directly in the field searchable
data store. In some embodiments, the reference values may
be ordered based on each event record’s timestamp. For
example, if numbers are used as identifiers, they may be
sorted so event records having a later timestamp always
have a lower valued identifier than event records with an
earlier timestamp, or vice-versa. Reference values are often
included in inverted indexes for retrieving and/or identifying
event records.

[0711] In one or more embodiments, an inverted index is
generated in response to a user-initiated collection query.
The term “collection query” as used herein refers to queries
that include commands that generate summarization infor-
mation and inverted indexes (or summarization tables) from
event records stored in the field searchable data store.
[0712] Note that a collection query is a special type of
query that can be user-generated and is used to create an
inverted index. A collection query is not the same as a query
that is used to call up or invoke a pre-existing inverted index.
In one or more embodiments, a query can comprise an initial
step that calls up a pre-generated inverted index on which
further filtering and processing can be performed. For
example, referring back to FIG. 22B, a set of events can be
generated at block 2240 by either using a “collection” query
to create a new inverted index or by calling up a pre-
generated inverted index. A query with several pipelined
steps will start with a pre-generated index to accelerate the
query.

[0713] FIG. 23C illustrates the manner in which an
inverted index is created and used in accordance with the
disclosed embodiments. As shown in FIG. 23C, an inverted
index 2322 can be created in response to a user-initiated
collection query using the event data 2323 stored in the raw
record data store. For example, a non-limiting example of a
collection query may include “collect clientip=127.0.0.1”
which may result in an inverted index 2322 being generated
from the event data 2323 as shown in FIG. 23C. Each entry
in inverted index 2322 includes an event reference value that
references the location of a source record in the field
searchable data store. The reference value may be used to
access the original event record directly from the field
searchable data store.

[0714] In one or more embodiments, if one or more of the
queries is a collection query, the one or more search nodes
506 may generate summarization information based on the
fields of the event records located in the field searchable data
store. In at least one of the various embodiments, one or
more of the fields used in the summarization information
may be listed in the collection query and/or they may be
determined based on terms included in the collection query.
For example, a collection query may include an explicit list
of fields to summarize. Or, in at least one of the various
embodiments, a collection query may include terms or
expressions that explicitly define the fields, e.g., using regex
rules. In FIG. 23C, prior to running the collection query that
generates the inverted index 2322, the field name “clientip”
may need to be defined in a configuration file by specifying
the “access_combined” source type and a regular expression
rule to parse out the client IP address. Alternatively, the
collection query may contain an explicit definition for the
field name “clientip” which may obviate the need to refer-
ence the configuration file at search time.

[0715] In one or more embodiments, collection queries
may be saved and scheduled to run periodically. These

US 2022/0245156 Al

scheduled collection queries may periodically update the
summarization information corresponding to the query. For
example, if the collection query that generates inverted
index 2322 is scheduled to run periodically, one or more
search nodes 506 can periodically search through the rel-
evant buckets to update inverted index 2322 with event data
for any new events with the “clientip” value of “127.0.0.1.”
[0716] In some embodiments, the inverted indexes that
include fields, values, and reference value (e.g., inverted
index 2322) for event records may be included in the
summarization information provided to the user. In other
embodiments, a user may not be interested in specific fields
and values contained in the inverted index, but may need to
perform a statistical query on the data in the inverted index.
For example, referencing the example of FIG. 23C rather
than viewing the fields within the inverted index 2322, a user
may want to generate a count of all client requests from IP
address “127.0.0.1.” In this case, the query system 214 can
simply return a result of “4” rather than including details
about the inverted index 2322 in the information provided to
the user.

[0717] The pipelined search language, e.g., SPL of the
SPLUNK® ENTERPRISE system can be used to pipe the
contents of an inverted index to a statistical query using the
“stats” command for example. A “stats” query refers to
queries that generate result sets that may produce aggregate
and statistical results from event records, e.g., average,
mean, max, min, rms, etc. Where sufficient information is
available in an inverted index, a “stats” query may generate
their result sets rapidly from the summarization information
available in the inverted index rather than directly scanning
event records. For example, the contents of inverted index
2322 can be pipelined to a stats query, e.g., a “count”
function that counts the number of entries in the inverted
index and returns a value of “4.” In this way, inverted
indexes may enable various stats queries to be performed
absent scanning or search the event records. Accordingly,
this optimization technique enables the system to quickly
process queries that seek to determine how many events
have a particular value for a particular field. To this end, the
system can examine the entry in the inverted index to count
instances of the specific value in the field without having to
go through the individual events or perform data extractions
at search time.

[0718] In some embodiments, the system maintains a
separate inverted index for each of the above-described
time-specific buckets that stores events for a specific time
range. A bucket-specific inverted index includes entries for
specific field-value combinations that occur in events in the
specific bucket. Alternatively, the system can maintain a
separate inverted index for one or more data stores 218 of
common storage 216, an indexing node 404, or a search
node 506. The specific inverted indexes can include entries
for the events in the one or more data stores 218 or data store
associated with the indexing nodes 404 or search node 506.
In some embodiments, if one or more of the queries is a stats
query, a search node 506 can generate a partial result set
from previously generated summarization information. The
partial result sets may be returned to the search head 504 that
received the query and combined into a single result set for
the query

[0719] As mentioned above, the inverted index can be
populated by running a periodic query that scans a set of
events to find instances of a specific field-value combina-

Aug. 4, 2022

tion, or alternatively instances of all field-value combina-
tions for a specific field. A periodic query can be initiated by
a user, or can be scheduled to occur automatically at specific
time intervals. A periodic query can also be automatically
launched in response to a query that asks for a specific
field-value combination. In some embodiments, if summa-
rization information is absent from a search node 506 that
includes responsive event records, further actions may be
taken, such as, the summarization information may gener-
ated on the fly, warnings may be provided the user, the
collection query operation may be halted, the absence of
summarization information may be ignored, or the like, or
combination thereof.

[0720] In one or more embodiments, an inverted index
may be set up to update continually. For example, the query
may ask for the inverted index to update its result periodi-
cally, e.g., every hour. In such instances, the inverted index
may be a dynamic data structure that is regularly updated to
include information regarding incoming events.

4.10.3.1. Extracting Event Data Using Posting

[0721] In one or more embodiments, if the system needs
to process all events that have a specific field-value combi-
nation, the system can use the references in the inverted
index entry to directly access the events to extract further
information without having to search all of the events to find
the specific field-value combination at search time. In other
words, the system can use the reference values to locate the
associated event data in the field searchable data store and
extract further information from those events, e.g., extract
further field values from the events for purposes of filtering
or processing or both.

[0722] The information extracted from the event data
using the reference values can be directed for further filter-
ing or processing in a query using the pipeline search
language. The pipelined search language will, in one
embodiment, include syntax that can direct the initial filter-
ing step in a query to an inverted index. In one embodiment,
a user would include syntax in the query that explicitly
directs the initial searching or filtering step to the inverted
index.

[0723] Referencing the example in FIG. 31, if the user
determines that she needs the user id fields associated with
the client requests from IP address “127.0.0.1,” instead of
incurring the computational overhead of performing a brand
new search or re-generating the inverted index with an
additional field, the user can generate a query that explicitly
directs or pipes the contents of the already generated
inverted index 2322 to another filtering step requesting the
user ids for the entries in inverted index 2322 where the
server response time is greater than “0.0900” microseconds.
The query system 214 can use the reference values stored in
inverted index 2322 to retrieve the event data from the field
searchable data store, filter the results based on the
“response time” field values and, further, extract the user id
field from the resulting event data to return to the user. In the
present instance, the user ids “frank” and “carlos” would be
returned to the user from the generated results table 2325.
[0724] In one embodiment, the same methodology can be
used to pipe the contents of the inverted index to a process-
ing step. In other words, the user is able to use the inverted
index to efficiently and quickly perform aggregate functions
on field values that were not part of the initially generated
inverted index. For example, a user may want to determine

US 2022/0245156 Al

an average object size (size of the requested gif) requested
by clients from IP address “127.0.0.1.” In this case, the
query system 214 can again use the reference values stored
in inverted index 2322 to retrieve the event data from the
field searchable data store and, further, extract the object size
field values from the associated events 2331, 2332, 2333 and
2334. Once, the corresponding object sizes have been
extracted (i.e. 2326, 2900, 2920, and 5000), the average can
be computed and returned to the user.

[0725] In one embodiment, instead of explicitly invoking
the inverted index in a user-generated query, e.g., by the use
of special commands or syntax, the SPLUNK® ENTER-
PRISE system can be configured to automatically determine
if any prior-generated inverted index can be used to expedite
a user query. For example, the user’s query may request the
average object size (size of the requested gif) requested by
clients from IP address “127.0.0.1.” without any reference to
or use of inverted index 2322. The query system 214, in this
case, can automatically determine that an inverted index
2322 already exists in the system that could expedite this
query. In one embodiment, prior to running any search
comprising a field-value pair, for example, a query system
214 can search though all the existing inverted indexes to
determine if a pre-generated inverted index could be used to
expedite the search comprising the field-value pair. Accord-
ingly, the query system 214 can automatically use the
pre-generated inverted index, e.g., index 2322 to generate
the results without any user-involvement that directs the use
of the index.

[0726] Using the reference values in an inverted index to
be able to directly access the event data in the field search-
able data store and extract further information from the
associated event data for further filtering and processing is
highly advantageous because it avoids incurring the com-
putation overhead of regenerating the inverted index with
additional fields or performing a new search.

[0727] The data intake and query system 108 includes an
intake system 210 that receives data from a variety of input
data sources, and an indexing system 212 that processes and
stores the data in one or more data stores or common storage
216. By distributing events among the data stores 218 of
common storage 213, the query system 214 can analyze
events for a query in parallel. In some embodiments, the data
intake and query system 108 can maintain a separate and
respective inverted index for each of the above-described
time-specific buckets that stores events for a specific time
range. A bucket-specific inverted index includes entries for
specific field-value combinations that occur in events in the
specific bucket. As explained above, a search head 504 can
correlate and synthesize data from across the various buck-
ets and search nodes 506.

[0728] This feature advantageously expedites searches
because instead of performing a computationally intensive
search in a centrally located inverted index that catalogues
all the relevant events, a search node 506 is able to directly
search an inverted index stored in a bucket associated with
the time-range specified in the query. This allows the search
to be performed in parallel across the various search nodes
506. Further, if the query requests further filtering or pro-
cessing to be conducted on the event data referenced by the
locally stored bucket-specific inverted index, the search
node 506 is able to simply access the event records stored in
the associated bucket for further filtering and processing

Aug. 4, 2022

instead of needing to access a central repository of event
records, which would dramatically add to the computational
overhead.

[0729] In one embodiment, there may be multiple buckets
associated with the time-range specified in a query. If the
query is directed to an inverted index, or if the query system
214 automatically determines that using an inverted index
can expedite the processing of the query, the search nodes
506 can search through each of the inverted indexes asso-
ciated with the buckets for the specified time-range. This
feature allows the High Performance Analytics Store to be
scaled easily.

[0730] FIG. 23D is a flow diagram illustrating an embodi-
ment of a routine implemented by one or more computing
devices of the data intake and query system for using an
inverted index in a pipelined search query to determine a set
of event data that can be further limited by filtering or
processing. For example, the routine can be implemented by
any one or any combination of the search head 504, search
node 506, search master 512, or search manager 514, etc.
However, for simplicity, reference below is made to the
query system 214 performing the various steps of the
routine.

[0731] At block 2342, a query is received by a data intake
and query system 108. In some embodiments, the query can
be received as a user generated query entered into search bar
of'a graphical user search interface. The search interface also
includes a time range control element that enables specifi-
cation of a time range for the query.

[0732] Atblock 2344, an inverted index is retrieved. Note,
that the inverted index can be retrieved in response to an
explicit user search command inputted as part of the user
generated query. Alternatively, a query system 215 can be
configured to automatically use an inverted index if it
determines that using the inverted index would expedite the
servicing of the user generated query. Each of the entries in
an inverted index keeps track of instances of a specific value
in a specific field in the event data and includes references
to events containing the specific value in the specific field.
In order to expedite queries, in some embodiments, the
query system 214 employs the inverted index separate from
the raw record data store to generate responses to the
received queries.

[0733] At block 2346, the query system 214 determines if
the query contains further filtering and processing steps. If
the query contains no further commands, then, in one
embodiment, summarization information can be provided to
the user at block 2354.

[0734] If, however, the query does contain further filtering
and processing commands, then at block 2348, the query
system 214 determines if the commands relate to further
filtering or processing of the data extracted as part of the
inverted index or whether the commands are directed to
using the inverted index as an initial filtering step to further
filter and process event data referenced by the entries in the
inverted index. If the query can be completed using data
already in the generated inverted index, then the further
filtering or processing steps, e.g., a “count” number of
records function, “average” number of records per hour etc.
are performed and the results are provided to the user at
block 2350.

[0735] If, however, the query references fields that are not
extracted in the inverted index, the query system 214 can
access event data pointed to by the reference values in the

US 2022/0245156 Al

inverted index to retrieve any further information required at
block 2356. Subsequently, any further filtering or processing
steps are performed on the fields extracted directly from the
event data and the results are provided to the user at step
2358.

4.10.4. Accelerating Report Generation

[0736] Insome embodiments, a data server system such as
the data intake and query system 108 can accelerate the
process of periodically generating updated reports based on
query results. To accelerate this process, a summarization
engine can automatically examine the query to determine
whether generation of updated reports can be accelerated by
creating intermediate summaries. If reports can be acceler-
ated, the summarization engine periodically generates a
summary covering data obtained during a latest non-over-
lapping time period. For example, where the query seeks
events meeting a specified criteria, a summary for the time
period includes may only events within the time period that
meet the specified criteria. Similarly, if the query seeks
statistics calculated from the events, such as the number of
events that match the specified criteria, then the summary for
the time period includes the number of events in the period
that match the specified criteria.

[0737] In addition to the creation of the summaries, the
summarization engine schedules the periodic updating of the
report associated with the query. During each scheduled
report update, the query system 214 determines whether
intermediate summaries have been generated covering por-
tions of the time period covered by the report update. If so,
then the report is generated based on the information con-
tained in the summaries. Also, if additional event data has
been received and has not yet been summarized, and is
required to generate the complete report, the query can be
run on these additional events. Then, the results returned by
this query on the additional events, along with the partial
results obtained from the intermediate summaries, can be
combined to generate the updated report. This process is
repeated each time the report is updated. Alternatively, if the
system stores events in buckets covering specific time
ranges, then the summaries can be generated on a bucket-
by-bucket basis. Note that producing intermediate summa-
ries can save the work involved in re-running the query for
previous time periods, so advantageously only the newer
events needs to be processed while generating an updated
report. These report acceleration techniques are described in
more detail in U.S. Pat. No. 8,589,403, entitled “COM-
PRESSED JOURNALING IN EVENT TRACKING FILES
FOR METADATA RECOVERY AND REPLICATION”,
issued on 19 Nov. 2013, U.S. Pat. No. 8,412,696, entitled
“REAL TIME SEARCHING AND REPORTING”, issued
on 2 Apr. 2011, and U.S. Pat. Nos. 8,589,375 and 8,589,432,
both also entitled “REAL TIME SEARCHING AND
REPORTING?”, both issued on 19 Nov. 2013, each of which
is hereby incorporated by reference in its entirety for all
purposes.

4.12. Security Features

[0738] The data intake and query system 108 provides
various schemas, dashboards, and visualizations that sim-
plify developers’ tasks to create applications with additional
capabilities. One such application is the an enterprise secu-
rity application, such as SPLUNK® ENTERPRISE SECU-

Aug. 4, 2022

RITY, which performs monitoring and alerting operations
and includes analytics to facilitate identifying both known
and unknown security threats based on large volumes of data
stored by the data intake and query system 108. The enter-
prise security application provides the security practitioner
with visibility into security-relevant threats found in the
enterprise infrastructure by capturing, monitoring, and
reporting on data from enterprise security devices, systems,
and applications. Through the use of the data intake and
query system 108 searching and reporting capabilities, the
enterprise security application provides a top-down and
bottom-up view of an organization’s security posture.
[0739] The enterprise security application leverages the
data intake and query system 108 search-time normalization
techniques, saved searches, and correlation searches to pro-
vide visibility into security-relevant threats and activity and
generate notable events for tracking. The enterprise security
application enables the security practitioner to investigate
and explore the data to find new or unknown threats that do
not follow signature-based patterns.

[0740] Conventional Security Information and Event
Management (SIEM) systems lack the infrastructure to
effectively store and analyze large volumes of security-
related data. Traditional SIEM systems typically use fixed
schemas to extract data from pre-defined security-related
fields at data ingestion time and store the extracted data in
a relational database. This traditional data extraction process
(and associated reduction in data size) that occurs at data
ingestion time inevitably hampers future incident investiga-
tions that may need original data to determine the root cause
of a security issue, or to detect the onset of an impending
security threat.

[0741] In contrast, the enterprise security application sys-
tem stores large volumes of minimally-processed security-
related data at ingestion time for later retrieval and analysis
at search time when a live security threat is being investi-
gated. To facilitate this data retrieval process, the enterprise
security application provides pre-specified schemas for
extracting relevant values from the different types of secu-
rity-related events and enables a user to define such sche-
mas.

[0742] The enterprise security application can process
many types of security-related information. In general, this
security-related information can include any information
that can be used to identify security threats. For example, the
security-related information can include network-related
information, such as IP addresses, domain names, asset
identifiers, network traffic volume, uniform resource locator
strings, and source addresses. The process of detecting
security threats for network-related information is further
described in U.S. Pat. No. 8,826,434, entitled “SECURITY
THREAT DETECTION BASED ON INDICATIONS IN
BIG DATA OF ACCESS TO NEWLY REGISTERED
DOMAINS”, issued on 2 Sep. 2014, U.S. Pat. No. 9,215,
240, entitled “INVESTIGATIVE AND DYNAMIC
DETECTION OF POTENTIAL SECURITY-THREAT
INDICATORS FROM EVENTS IN BIG DATA”, issued on
15 Dec. 2015, U.S. Pat. No. 9,173,801, entitled “GRAPHIC
DISPLAY OF SECURITY THREATS BASED ON INDI-
CATIONS OF ACCESS TO NEWLY REGISTERED
DOMAINS”, issued on 3 Nov. 2015, U.S. Pat. No. 9,248,
068, entitled “SECURITY THREAT DETECTION OF
NEWLY REGISTERED DOMAINS”, issued on 2 Feb.
2016, U.S. Pat. No. 9,426,172, entitled “SECURITY

US 2022/0245156 Al

THREAT DETECTION USING DOMAIN NAME
ACCESSES”, issued on 23 Aug. 2016, and U.S. Pat. No.
9,432,396, entitled “SECURITY THREAT DETECTION
USING DOMAIN NAME REGISTRATIONS”, issued on
30 Aug. 2016, each of which is hereby incorporated by
reference in its entirety for all purposes. Security-related
information can also include malware infection data and
system configuration information, as well as access control
information, such as login/logout information and access
failure notifications. The security-related information can
originate from various sources within a data center, such as
hosts, virtual machines, storage devices and sensors. The
security-related information can also originate from various
sources in a network, such as routers, switches, email
servers, proxy servers, gateways, firewalls and intrusion-
detection systems.

[0743] During operation, the enterprise security applica-
tion facilitates detecting “notable events™ that are likely to
indicate a security threat. A notable event represents one or
more anomalous incidents, the occurrence of which can be
identified based on one or more events (e.g., time stamped
portions of raw machine data) fulfilling pre-specified and/or
dynamically-determined (e.g., based on machine-learning)
criteria defined for that notable event. Examples of notable
events include the repeated occurrence of an abnormal spike
in network usage over a period of time, a single occurrence
of unauthorized access to system, a host communicating
with a server on a known threat list, and the like. These
notable events can be detected in a number of ways, such as:
(1) a user can notice a correlation in events and can manually
identify that a corresponding group of one or more events
amounts to a notable event; or (2) a user can define a
“correlation search” specifying criteria for a notable event,
and every time one or more events satisty the criteria, the
application can indicate that the one or more events corre-
spond to a notable event; and the like. A user can alterna-
tively select a pre-defined correlation search provided by the
application. Note that correlation searches can be run con-
tinuously or at regular intervals (e.g., every hour) to search
for notable events. Upon detection, notable events can be
stored in a dedicated “notable events index,” which can be
subsequently accessed to generate various visualizations
containing security-related information. Also, alerts can be
generated to notify system operators when important notable
events are discovered.

[0744] The enterprise security application provides vari-
ous visualizations to aid in discovering security threats, such
as a “key indicators view” that enables a user to view
security metrics, such as counts of different types of notable
events. It can also display a change in a metric value, which
indicates that the number of malware infections increased by
63 during the preceding interval. Key indicators view addi-
tionally displays a histogram panel that displays a histogram
of notable events organized by urgency values, and a his-
togram of notable events organized by time intervals. This
key indicators view is described in further detail in pending
U.S. patent application Ser. No. 13/956,338, entitled “KEY
INDICATORS VIEW™, filed on 31 Jul. 2013, and which is
hereby incorporated by reference in its entirety for all
purposes.

[0745] These visualizations can also include an “incident
review dashboard” that enables a user to view and act on
“notable events.” These notable events can include: (1) a
single event of high importance, such as any activity from a

Aug. 4, 2022

known web attacker; or (2) multiple events that collectively
warrant review, such as a large number of authentication
failures on a host followed by a successful authentication. It
also includes a timeline that graphically illustrates the num-
ber of incidents that occurred in time intervals over the
selected time range. It additionally displays an events list
that enables a user to view a list of all of the notable events
that match the criteria in the incident attributes fields. To
facilitate identifying patterns among the notable events, each
notable event can be associated with an urgency value (e.g.,
low, medium, high, critical), which is indicated in the
incident review dashboard. The urgency value for a detected
event can be determined based on the severity of the event
and the priority of the system component associated with the
event.

4.13. Data Center Monitoring

[0746] As mentioned above, the data intake and query
platform provides various features that simplify the devel-
oper’s task to create various applications. One such appli-
cation is a virtual machine monitoring application, such as
SPLUNK® APP FOR VMWARE® that provides opera-
tional visibility into granular performance metrics, logs,
tasks and events, and topology from hosts, virtual machines
and virtual centers. It empowers administrators with an
accurate real-time picture of the health of the environment,
proactively identifying performance and capacity bottle-
necks.

[0747] Conventional data-center-monitoring systems lack
the infrastructure to effectively store and analyze large
volumes of machine-generated data, such as performance
information and log data obtained from the data center. In
conventional data-center-monitoring systems, machine-gen-
erated data is typically pre-processed prior to being stored,
for example, by extracting pre-specified data items and
storing them in a database to facilitate subsequent retrieval
and analysis at search time. However, the rest of the data is
not saved and discarded during pre-processing.

[0748] In contrast, the virtual machine monitoring appli-
cation stores large volumes of minimally processed machine
data, such as performance information and log data, at
ingestion time for later retrieval and analysis at search time
when a live performance issue is being investigated. In
addition to data obtained from various log files, this perfor-
mance-related information can include values for perfor-
mance metrics obtained through an application program-
ming interface (API) provided as part of the vSphere
Hypervisor™ system distributed by VMware, Inc. of Palo
Alto, Calif. For example, these performance metrics can
include: (1) CPU-related performance metrics; (2) disk-
related performance metrics; (3) memory-related perfor-
mance metrics; (4) network-related performance metrics; (5)
energy-usage statistics; (6) data-traffic-related performance
metrics; (7) overall system availability performance metrics;
(8) cluster-related performance metrics; and (9) virtual
machine performance statistics. Such performance metrics
are described in U.S. patent application Ser. No. 14/167,316,
entitled “CORRELATION FOR USER-SELECTED TIME
RANGES OF VALUES FOR PERFORMANCE METRICS
OF COMPONENTS IN AN INFORMATION-TECHNOL-
OGY ENVIRONMENT WITH LOG DATA FROM THAT
INFORMATION-TECHNOLOGY ENVIRONMENT?”,
filed on 29 Jan. 2014, and which is hereby incorporated by
reference in its entirety for all purposes.

US 2022/0245156 Al

[0749] To facilitate retrieving information of interest from
performance data and log files, the virtual machine moni-
toring application provides pre-specified schemas for
extracting relevant values from different types of perfor-
mance-related events, and also enables a user to define such
schemas.

[0750] The virtual machine monitoring application addi-
tionally provides various visualizations to facilitate detect-
ing and diagnosing the root cause of performance problems.
For example, one such visualization is a “proactive moni-
toring tree” that enables a user to easily view and understand
relationships among various factors that affect the perfor-
mance of a hierarchically structured computing system. This
proactive monitoring tree enables a user to easily navigate
the hierarchy by selectively expanding nodes representing
various entities (e.g., virtual centers or computing clusters)
to view performance information for lower-level nodes
associated with lower-level entities (e.g., virtual machines or
host systems). The ease of navigation provided by selective
expansion in combination with the associated performance-
state information enables a user to quickly diagnose the root
cause of a performance problem. The proactive monitoring
tree is described in further detail in U.S. Pat. No. 9,185,007,
entitted “PROACTIVE MONITORING TREE WITH
SEVERITY STATE SORTING,” issued on 10 Nov. 2015,
and U.S. Pat. No. 9,426,045, also entitled “PROACTIVE
MONITORING TREE WITH SEVERITY STATE SORT-
ING,” issued on 23 Aug. 2016, each of which is hereby
incorporated by reference in its entirety for all purposes.
[0751] The virtual machine monitoring application also
provides a user interface that enables a user to select a
specific time range and then view heterogeneous data com-
prising events, log data, and associated performance metrics
for the selected time range. This enables the user to correlate
trends in the performance-metric graph with corresponding
event and log data to quickly determine the root cause of a
performance problem. This user interface is described in
more detail in U.S. patent application Ser. No. 14/167,316,
entitled “CORRELATION FOR USER-SELECTED TIME
RANGES OF VALUES FOR PERFORMANCE METRICS
OF COMPONENTS IN AN INFORMATION-TECHNOL-
OGY ENVIRONMENT WITH LOG DATA FROM THAT
INFORMATION-TECHNOLOGY ENVIRONMENT?”,
filed on 29 Jan. 2014, and which is hereby incorporated by
reference in its entirety for all purposes.

4.14. IT Service Monitoring

[0752] As previously mentioned, the data intake and query
platform provides various schemas, dashboards and visual-
izations that make it easy for developers to create applica-
tions to provide additional capabilities. One such application
is an IT monitoring application, such as SPLUNK® IT
SERVICE INTELLIGENCE™, which performs monitoring
and alerting operations. The IT monitoring application also
includes analytics to help an analyst diagnose the root cause
of performance problems based on large volumes of data
stored by the data intake and query system 108 as correlated
to the various services an IT organization provides (a
service-centric view). This differs significantly from con-
ventional IT monitoring systems that lack the infrastructure
to effectively store and analyze large volumes of service-
related events. Traditional service monitoring systems typi-
cally use fixed schemas to extract data from pre-defined
fields at data ingestion time, wherein the extracted data is

Aug. 4, 2022

typically stored in a relational database. This data extraction
process and associated reduction in data content that occurs
at data ingestion time inevitably hampers future investiga-
tions, when all of the original data may be needed to
determine the root cause of or contributing factors to a
service issue.

[0753] In contrast, an IT monitoring application system
stores large volumes of minimally-processed service-related
data at ingestion time for later retrieval and analysis at
search time, to perform regular monitoring, or to investigate
a service issue. To facilitate this data retrieval process, the IT
monitoring application enables a user to define an IT opera-
tions infrastructure from the perspective of the services it
provides. In this service-centric approach, a service such as
corporate e-mail may be defined in terms of the entities
employed to provide the service, such as host machines and
network devices. Each entity is defined to include informa-
tion for identifying all of the events that pertains to the
entity, whether produced by the entity itself or by another
machine, and considering the many various ways the entity
may be identified in machine data (such as by a URL, an IP
address, or machine name). The service and entity defini-
tions can organize events around a service so that all of the
events pertaining to that service can be easily identified. This
capability provides a foundation for the implementation of
Key Performance Indicators.

[0754] One or more Key Performance Indicators (KPI’s)
are defined for a service within the I'T monitoring applica-
tion. Each KPI measures an aspect of service performance at
a point in time or over a period of time (aspect KPI’s). Each
KPI is defined by a search query that derives a KPI value
from the machine data of events associated with the entities
that provide the service. Information in the entity definitions
may be used to identify the appropriate events at the time a
KPI is defined or whenever a KPI value is being determined.
The KPI values derived over time may be stored to build a
valuable repository of current and historical performance
information for the service, and the repository, itself, may be
subject to search query processing. Aggregate KPIs may be
defined to provide a measure of service performance calcu-
lated from a set of service aspect KPI values; this aggregate
may even be taken across defined timeframes and/or across
multiple services. A particular service may have an aggre-
gate KPI derived from substantially all of the aspect KPI's
of the service to indicate an overall health score for the
service.

[0755] The IT monitoring application facilitates the pro-
duction of meaningful aggregate KPI’s through a system of
KPI thresholds and state values. Different KPI definitions
may produce values in different ranges, and so the same
value may mean something very different from one KPI
definition to another. To address this, the IT monitoring
application implements a translation of individual KPI val-
ues to a common domain of “state” values. For example, a
KPI range of values may be 1-100, or 50-275, while values
in the state domain may be ‘critical,” ‘warning,” ‘normal,’
and ‘informational’. Thresholds associated with a particular
KPI definition determine ranges of values for that KPI that
correspond to the various state values. In one case, KPI
values 95-100 may be set to correspond to ‘critical” in the
state domain. KPI values from disparate KPI’s can be
processed uniformly once they are translated into the com-
mon state values using the thresholds. For example, “normal
80% of the time” can be applied across various KPI’s. To

US 2022/0245156 Al

provide meaningful aggregate KPI’s, a weighting value can
be assigned to each KPI so that its influence on the calcu-
lated aggregate KPI value is increased or decreased relative
to the other KPI’s.

[0756] One service in an I'T environment often impacts, or
is impacted by, another service. The IT monitoring applica-
tion can reflect these dependencies. For example, a depen-
dency relationship between a corporate e-mail service and a
centralized authentication service can be reflected by record-
ing an association between their respective service defini-
tions. The recorded associations establish a service depen-
dency topology that informs the data or selection options
presented in a GUI, for example. (The service dependency
topology is like a “map” showing how services are con-
nected based on their dependencies.) The service topology
may itself be depicted in a GUI and may be interactive to
allow navigation among related services.

[0757] Entity definitions in the IT monitoring application
can include informational fields that can serve as metadata,
implied data fields, or attributed data fields for the events
identified by other aspects of the entity definition. Entity
definitions in the IT monitoring application can also be
created and updated by an import of tabular data (as repre-
sented in a CSV, another delimited file, or a search query
result set). The import may be GUI-mediated or processed
using import parameters from a GUI-based import definition
process. Entity definitions in the IT monitoring application
can also be associated with a service by means of a service
definition rule. Processing the rule results in the matching
entity definitions being associated with the service defini-
tion. The rule can be processed at creation time, and there-
after on a scheduled or on-demand basis. This allows
dynamic, rule-based updates to the service definition.

[0758] During operation, the IT monitoring application
can recognize notable events that may indicate a service
performance problem or other situation of interest. These
notable events can be recognized by a “correlation search”
specifying trigger criteria for a notable event: every time
KPI values satisfy the criteria, the application indicates a
notable event. A severity level for the notable event may also
be specified. Furthermore, when trigger criteria are satisfied,
the correlation search may additionally or alternatively
cause a service ticket to be created in an IT service man-
agement (ITSM) system, such as systems available from
ServiceNow, Inc., of Santa Clara, Calif.

[0759] SPLUNK® IT SERVICE INTELLIGENCE™ pro-
vides various visualizations built on its service-centric orga-
nization of events and the KPI values generated and col-
lected. Visualizations can be particularly useful for
monitoring or investigating service performance. The IT
monitoring application provides a service monitoring inter-
face suitable as the home page for ongoing IT service
monitoring. The interface is appropriate for settings such as
desktop use or for a wall-mounted display in a network
operations center (NOC). The interface may prominently
display a services health section with tiles for the aggregate
KPI’s indicating overall health for defined services and a
general KPI section with tiles for KPI’s related to individual
service aspects. These tiles may display KPI information in
a variety of ways, such as by being colored and ordered
according to factors like the KPI state value. They also can
be interactive and navigate to visualizations of more detailed
KPI information.

Aug. 4, 2022

[0760] The IT monitoring application provides a service-
monitoring dashboard visualization based on a user-defined
template. The template can include user-selectable widgets
of varying types and styles to display KPI information. The
content and the appearance of widgets can respond dynami-
cally to changing KPI information. The KPI widgets can
appear in conjunction with a background image, user draw-
ing objects, or other visual elements, that depict the IT
operations environment, for example. The KPI widgets or
other GUI elements can be interactive so as to provide
navigation to visualizations of more detailed KPI informa-
tion.

[0761] The IT monitoring application provides a visual-
ization showing detailed time-series information for mul-
tiple KPI’s in parallel graph lanes. The length of each lane
can correspond to a uniform time range, while the width of
each lane may be automatically adjusted to fit the displayed
KPI data. Data within each lane may be displayed in a user
selectable style, such as a line, area, or bar chart. During
operation a user may select a position in the time range of
the graph lanes to activate lane inspection at that point in
time. Lane inspection may display an indicator for the
selected time across the graph lanes and display the KPI
value associated with that point in time for each of the graph
lanes. The visualization may also provide navigation to an
interface for defining a correlation search, using information
from the visualization to pre-populate the definition.
[0762] The IT monitoring application provides a visual-
ization for incident review showing detailed information for
notable events. The incident review visualization may also
show summary information for the notable events over a
time frame, such as an indication of the number of notable
events at each of a number of severity levels. The severity
level display may be presented as a rainbow chart with the
warmest color associated with the highest severity classifi-
cation. The incident review visualization may also show
summary information for the notable events over a time
frame, such as the number of notable events occurring
within segments of the time frame. The incident review
visualization may display a list of notable events within the
time frame ordered by any number of factors, such as time
or severity. The selection of a particular notable event from
the list may display detailed information about that notable
event, including an identification of the correlation search
that generated the notable event.

[0763] The IT monitoring application provides pre-speci-
fied schemas for extracting relevant values from the different
types of service-related events. It also enables a user to
define such schemas.

4.15. Other Architectures

[0764] In view of the description above, it will be appre-
ciate that the architecture disclosed herein, or elements of
that architecture, may be implemented independently from,
or in conjunction with, other architectures. For example, the
Parent Applications disclose a variety of architectures
wholly or partially compatible with the architecture of the
present disclosure.

[0765] Generally speaking one or more components of the
data intake and query system 108 of the present disclosure
can be used in combination with or to replace one or more
components of the data intake and query system 108 of the
Parent Applications. For example, depending on the embodi-
ment, the operations of the forwarder 204 and the ingestion

US 2022/0245156 Al

buffer 4802 of the Parent Applications can be performed by
or replaced with the intake system 210 of the present
disclosure. The parsing, indexing, and storing operations (or
other non-searching operations) of the indexers 206, 230 and
indexing cache components 254 of the Parent Applications
can be performed by or replaced with the indexing nodes
404 of the present disclosure. The storage operations of the
data stores 208 of the Parent Applications can be performed
using the data stores 412 of the present disclosure (in some
cases with the data not being moved to common storage
216). The storage operations of the common storage 4602,
cloud storage 256, or global index 258 can be performed by
the common storage 216 of the present disclosure. The
storage operations of the query acceleration data store 3308
can be performed by the query acceleration data store 222 of
the present disclosure.

[0766] As continuing examples, the search operations of
the indexers 206, 230 and indexing cache components 254
of the Parent Applications can be performed by or replaced
with the indexing nodes 404 in some embodiments or by the
search nodes 506 in certain embodiments. For example, in
some embodiments of certain architectures of the Parent
Applications (e.g., one or more embodiments related to
FIGS. 2,3, 4, 18, 25, 27), the indexers 206, 230 and indexing
cache components 254 of the Parent Applications may
perform parsing, indexing, storing, and at least some search-
ing operations, and in embodiments of some architectures of
the Parent Applications, indexers 206, 230 and indexing
cache components 254 of the Parent Applications perform
parsing, indexing, and storing operations, but do not perform
searching operations. Accordingly, in some embodiments,
some or all of the searching operations described as being
performed by the indexers 206, 230 and indexing cache
components 254 of the Parent Applications can be per-
formed by the search nodes 506. For example, in embodi-
ments described in the Parent Applications in which worker
nodes 214, 236, 246, 3306 perform searching operations in
place of the indexers 206, 230 or indexing cache compo-
nents 254, the search nodes 506 can perform those opera-
tions. In certain embodiments, some or all of the searching
operations described as being performed by the indexers
206, 230 and indexing cache components 254 of the Parent
Applications can be performed by the indexing nodes 404.
For example, in embodiments described in the Parent Appli-
cations in which the indexers 206, 230 and indexing cache
components 254 perform searching operations, the indexing
nodes 404 can perform those operations.

[0767] As a further example, the query operations per-
formed by the search heads 210, 226, 244, daecmons 210,
232, 252, search master 212, 234, 250, search process master
3302, search service provider 216, and query coordinator
3304 of the Parent Applications, can be performed by or
replaced with any one or any combination of the query
system manager 502, search head 504, search master 512,
search manager 514, search node monitor 508, and/or the
search node catalog 510. For example, these components
can handle and coordinate the intake of queries, query
processing, identification of available nodes and resources,
resource allocation, query execution plan generation, assign-
ment of query operations, combining query results, and
providing query results to a user or a data store.

[0768] In certain embodiments, the query operations per-
formed by the worker nodes 214, 236, 246, 3306 of the
Parent Applications can be performed by or replaced with

Aug. 4, 2022

the search nodes 506 of the present disclosure. In some
embodiments, the intake or ingestion operations performed
by the worker nodes 214, 236, 246, 3306 of the Parent
Applications can be performed by or replaced with one or
more components of the intake system 210.

[0769] Furthermore, it will be understood that some or all
of the components of the architectures of the Parent Appli-
cations can be replaced with components of the present
disclosure. For example, in certain embodiments, the intake
system 210 can be used in place of the forwarders 204 and/or
ingestion buffer 4802 of one or more architectures of the
Parent Applications, with all other components of the one or
more architecture of the Parent Applications remaining the
same. As another example, in some embodiments the index-
ing nodes 404 can replace the indexer 206 of one or more
architectures of the Parent Applications with all other com-
ponents of the one or more architectures of the Parent
Applications remaining the same. Accordingly, it will be
understood that a variety of architectures can be designed
using one or more components of the data intake and query
system 108 of the present disclosure in combination with
one or more components of the data intake and query system
108 of the Parent Applications.

[0770] Illustratively, the architecture depicted at FIG. 2 of
the Parent Applications may be modified to replace the
forwarder 204 of that architecture with the intake system
210 of the present disclosure. In addition, in some cases, the
indexers 206 of the Parent Applications can be replaced with
the indexing nodes 404 of the present disclosure. In such
embodiments, the indexing nodes 404 can retain the buckets
in the data stores 412 that they create rather than store the
buckets in common storage 216. Further, in the architecture
depicted at FIG. 2 of the Parent Applications, the indexing
nodes 404 of the present disclosure can be used to execute
searches on the buckets stored in the data stores 412. In some
embodiments, in the architecture depicted at FIG. 2 of the
Parent Applications, the partition manager 408 can receive
data from one or more forwarders 204 of the Parent Appli-
cations. As additional forwarders 204 are added or as
additional data is supplied to the architecture depicted at
FIG. 2 of the Parent Applications, the indexing node 406 can
spawn additional partition manager 408 and/or the indexing
manager system 402 can spawn additional indexing nodes
404. In addition, in certain embodiments, the bucket man-
ager 414 may merge buckets in the data store 414 or be
omitted from the architecture depicted at FIG. 2 of the
Parent Applications.

[0771] Furthermore, in certain embodiments, the search
head 210 of the Parent Applications can be replaced with the
search head 504 of the present disclosure. In some cases, as
described herein, the search head 504 can use the search
master 512 and search manager 514 to process and manager
the queries. However, rather than communicating with
search nodes 506 to execute a query, the search head 504
can, depending on the embodiment, communicate with the
indexers 206 of the Parent Applications or the search nodes
404 to execute the query.

[0772] Similarly the architecture of FIG. 3 of the Parent
Applications may be modified in a variety of ways to include
one or more components of the data intake and query system
108 described herein. For example, the architecture of FIG.
3 of the Parent Applications may be modified to include an
intake system 210 in accordance with the present disclosure
within the cloud-based data intake and query system 1006 of

US 2022/0245156 Al

the Parent Applications, which intake system 210 may
logically include or communicate with the forwarders 204 of
the Parent Applications. In addition, the indexing nodes 404
described herein may be utilized in place of or to implement
functionality similar to the indexers described with reference
to FIG. 3 of the Parent Applications. In addition, the
architecture of FIG. 3 of the Parent Applications may be
modified to include common storage 216 and/or search
nodes 506.

[0773] With respect to the architecture of FIG. 4 of the
Parent Applications, the intake system 210 described herein
may be utilized in place of or to implement functionality
similar to either or both the forwarders 204 or the ERP
processes 410 through 412 of the Parent Applications.
Similarly, the indexing nodes 506 and the search head 504
described herein may be utilized in place of or to implement
functionality similar to the indexer 206 and search head 210,
respectively. In some cases, the search manager 514
described herein can manage the communications and inter-
facing between the indexer 210 and the ERP processes 410
through 412.

[0774] With respect to the flow diagrams and functionality
described in FIGS. 5A-5C, 6A, 6B, 7A-7D, 8A, 8B, 9, 10,
11A-11D, 12-16, and 17A-17D of the Parent Applications, it
will be understood that the processing and indexing opera-
tions described as being performed by the indexers 206 can
be performed by the indexing nodes 404, the search opera-
tions described as being performed by the indexers 206 can
be performed by the indexing nodes 404 or search nodes 506
(depending on the embodiment), and/or the searching opera-
tions described as being performed by the search head 210,
can be performed by the search head 504 or other component
of the query system 214.

[0775] With reference to FIG. 18 of the Parent Applica-
tions, the indexing nodes 404 and search heads 504
described herein may be utilized in place of or to implement
functionality similar to the indexers 206 and search head
210, respectively. Similarly, the search master 512 and
search manager 514 described herein may be utilized in
place of or to implement functionality similar to the master
212 and the search service provider 216, respectively,
described with respect to FIG. 18 of the Parent Applications.
Further, the intake system 210 described herein may be
utilized in place of or to implement ingestion functionality
similar to the ingestion functionality of the worker nodes
214 of the Parent Applications. Similarly, the search nodes
506 described herein may be utilized in place of or to
implement search functionality similar to the search func-
tionality of the worker nodes 214 of the Parent Applications.
[0776] With reference to FIG. 25 of the Parent Applica-
tions, the indexing nodes 404 and search heads 504
described herein may be utilized in place of or to implement
functionality similar to the indexers 236 and search heads
226, respectively. In addition, the search head 504 described
herein may be utilized in place of or to implement function-
ality similar to the daemon 232 and the master 234 described
with respect to FIG. 25 of the Parent Applications. The
intake system 210 described herein may be utilized in place
of or to implement ingestion functionality similar to the
ingestion functionality of the worker nodes 214 of the Parent
Applications. Similarly, the search nodes 506 described
herein may be utilized in place of or to implement search
functionality similar to the search functionality of the
worker nodes 234 of the Parent Applications.

Aug. 4, 2022

[0777] With reference to FIG. 27 of the Parent Applica-
tions, the indexing nodes 404 or search nodes 506 described
herein may be utilized in place of or to implement function-
ality similar to the index cache components 254. For
example, the indexing nodes 404 may be utilized in place of
or to implement parsing, indexing, storing functionality of
the index cache components 254, and the search nodes 506
described herein may be utilized in place of or to implement
searching or caching functionality similar to the index cache
components 254. In addition, the search head 504 described
herein may be utilized in place of or to implement function-
ality similar to the search heads 244, daemon 252, and/or the
master 250 described with respect to FIG. 27 of the Parent
Applications. The intake system 210 described herein may
be utilized in place of or to implement ingestion function-
ality similar to the ingestion functionality of the worker
nodes 246 described with respect to FIG. 27 of the Parent
Applications. Similarly, the search nodes 506 described
herein may be utilized in place of or to implement search
functionality similar to the search functionality of the
worker nodes 234 described with respect to FIG. 27 of the
Parent Applications. In addition, the common storage 216
described herein may be utilized in place of or to implement
functionality similar to the functionality of the cloud storage
256 and/or global index 258 described with respect to FIG.
27 of the Parent Applications.

5.0 User-Defined Data Streams

[0778] As previously mentioned, the intake system 210
can ingest data from a data stream, process the data (e.g.,
perform various transformations or manipulations of the
data), and output the data. For example, the intake system
210 can output the data for storage and use in executing
queries. However, the intake system 210 may be limited to
ingesting data from a specific set of data streams (e.g.,
externally defined data streams such as data streams from
another system such as Amazon’s SQS or Kinesis™ services
or a general system defined data stream). For example, each
ingestion buffer, as discussed in FIG. 3B, may define a single
data stream, such that all data, regardless of the manner of
receipt of the data, the characteristics of the data, or the data
source, is grouped within the same data stream. In order to
artificially partition the data stream, a user of the intake
system 210 may need to specify a data source and apply a
corresponding system filter from the stream. A system
without user defined data streams may further view data
sources and data sinks separately. For example, such a
system may view data sources differently from data sinks
such that a processing pipeline reads from a data source and
writes to a data sink. However, such a system, may prove
unsatisfactory when a user wishes to daisy chain processing
pipelines (to perform a series of separated data transforma-
tions). Therefore, in such a system, it may not be possible to
obtain data from a data stink or write data to a data source
in order to daisy chain processing pipelines.

[0779] To address these issues, embodiments of present
disclosure can enable a user to define user defined data
streams, which streams may be created and managed by the
intake system 108. Each user defined data stream can be
populated with data from an intake point or a pipeline.
Further, each user defined data stream can be mirrored to a
topic on the output buffer or act as an input for a processing
pipeline. In order to obviate the need for a system filter, a
user may define user defined (e.g., customized) data streams

US 2022/0245156 Al

that are each linked to a specific intake point (e.g., data
source). Further, the use of user defined data streams can
enable data from multiple intake points to be combined.
Further, in order to enable daisy chained processing pipe-
lines, a user can define user defined data streams such that
a first processing pipeline can obtain data from a data source
and write data to an intermediary user defined data stream
and a second processing pipeline can obtain data from the
intermediary user defined data stream and write data to a
data sink. Therefore, the use of user defined data streams can
enable a plurality of processing pipelines to be daisy chained
together.

[0780] Various embodiments of the present disclosure
relate to a streaming data processor that enables the custom
definition of data streams. A data stream can be a continuous
flow of data from a data source or a processing pipeline to
a data destination or another processing pipeline. In order to
define a user defined data stream, a user and/or a system can
define routing criteria (e.g., data boundaries) to manage the
data stream. It will be understood that the user defined data
stream may be data stream defined by a user, a data stream
defined by a system, or any other customized data stream.
The routing criteria may define the data that will be written
to the data stream and the data that will be read from the data
stream. Therefore, based on the defined routing criteria, the
source and destination of a particular data stream can be
customized and/or defined. For example, a data stream can
be populated with a portion of data based on defined routing
criteria for the data stream. Further, based on defined routing
criteria, the data stream can route data to a data source or a
processing pipeline. For example, the routing criteria may
define a particular data source that the data stream obtains
data from and a particular processing pipeline that the data
stream writes data to. These data streams can be defined by
a user or can be defined in an automated manner by a system
(e.g., a system can define a data stream for a given set of data
based on certain observed characteristics). A system can
define data streams based on certain observed characteristics
of a set of data. For example, a computing system can
determine that the set of data includes a large amount of data
and, therefore, define a first data stream and populate the first
data stream with a first subset of the set of data and define
a second data stream and populate the second data stream
with a second subset of the set of data. This can enable the
computing system to manage the set of data and balance the
set of data among multiple data streams. By defining data
streams in this manner, the system and/or the user can
modify how data is obtained, managed, and used.

[0781] The user defined data stream can write data to a
processing pipeline. As discussed above, the processing
pipeline can perform one or more data transformations on
the data. Further, the processing pipeline can write the data
to a subsequent user defined data stream. Therefore, the
processing pipeline can be a transformation of a first data
stream to a second data stream where the first data stream
routes data from a source of the data and the second data
stream routes transformed data to a destination of the data.
Such a use of user defined data streams enables a user to
daisy chain multiple processing pipelines together. For
example, a first processing pipeline can obtain data and
provide the data to a user defined data stream and a second
processing pipeline can obtain data via the user defined data
stream. By daisy chaining multiple processing pipelines
together, the data transformations performed by one pro-

Aug. 4, 2022

cessing pipeline can be balanced among multiple processing
pipelines. This can increase the speed, efficiency, and/or
reliability of the intake system 210. For example, in the
event of an anomaly, the loss of data can be mitigated as a
particular processing pipeline is only performing a subset of
the data transformations. In this manner, data transforma-
tions can be linked and/or daisy chained together. Further,
data can be looped through a processing pipeline and/or a
series of processing pipelines such that the same data
transformation or group of data transformations is iteratively
performed on the same data.

[0782] Therefore, the use of user defined data streams by
a streaming data processor enables data partitioning, data
sharing, and pipeline chaining. For example, the streaming
data processor can separate, both logically and physically,
portions of data such that a first subset of the data and a
second subset of the data organized and stored separately.
Such a logical separation of the data can be based on the type
of data, the data source, or any other data characteristics.
Further, the use of user defined data streams enables data to
be shared between multiple components or parties. For
example, a first party may be responsible for and/or manage
a first user defined data stream and a second party may be
responsible for and/or manage a second user defined data
stream, where the same data is routed through the first user
defined data stream and the second user defined data stream.
Further, the use of user defined data streams enables larger
processing pipelines to be separated into smaller processing
pipelines that are separated by user defined data streams. For
example, a first processing pipeline may be linked to a
second processing pipeline via a user defined data stream.

5.1 Data Routes Using User Defined Data Streams and
Pipelines

[0783] Users may want to define user defined data streams
and route data to and from a processing pipeline using the
user defined data streams in order to enable data partitioning,
data sharing, and pipeline chaining. The techniques
described below can enable a user to manage a flow of data
through a processing pipeline. The techniques solves chal-
lenges of existing data ingestion systems, in that these
systems route data to processing pipelines via a general data
stream, but the user is unable to customize how the data is
streamed to a processing pipeline. This can affect the ability
of a user to logically or physically partition data within a
processor. This can cause performance and cost issues as the
processor routes all data through the same data stream.
Further, this can lead to inefficiencies as the data stream
cannot be broken into more manageable chunks. Further,
this can cause processing pipelines to become unwieldy as
a failure in any stage of the processing pipeline can cause the
processing pipeline to fail and, as the size of the processing
pipeline increases, the processing pipeline can slow down
performance of the processor. In the presently disclosed
interface, a user can partition data into multiple user defined
data streams based on characteristics of the data. Further, the
user can break a large pipeline into more manageable chunks
with a particular tenant responsible for each chunk. Further,
the user can chain multiple pipelines together. The customi-
zation process provides viability in how the data streams and
the processing pipelines are interacting with data and
enables a user to provide user defined data streams and
customized processing pipelines.

US 2022/0245156 Al

[0784] A streaming data processor may route data via user
defined data streams and the customized processing pipe-
lines that are linked together in a data route (e.g., a route of
data through one or more user defined data streams and one
or more customized processing pipelines). As noted above,
such a data route that includes the user defined data streams
can enable data partitioning, data sharing, and pipeline
chaining as previously discussed. In accordance with aspects
of'the present disclosure, in order to enable data partitioning,
data sharing, and pipeline chaining, the data route may
include a user defined data stream that links a first process-
ing pipeline and a second processing pipeline. For example,
by linking the first processing pipeline and the second
processing pipeline, the transformations performed by a
processing pipeline can be balanced among the two process-
ing pipelines. FIG. 34A is a block diagram of one embodi-
ment of a data route 3400A of a streaming data processor
308. The data route 3400A is an illustrative route that data
may take as the data is processed by the streaming data
processor 308. The data route 3400A includes a user defined
data stream, in accordance with example embodiments. The
data route 3400A can include data flowing from a data
stream 3402 to a processing pipeline 3404. Further, the data
route 3400A can include data flowing from the processing
pipeline 3404 to a processing pipeline 3408 via a user
defined data stream 3406. Further, the data route 3400A can
include data flowing from the processing pipeline 3408 to a
data stream 3410. It will be understood that the data route
3400A may include more, less, or different elements. There-
fore, the data route 3400A includes data flowing through a
pair of daisy chained processing pipelines 3404, 3408.

[0785] As discussed above, the streaming data processor
308 and the data route 3400A may be built according to a
publish-subscribe (“pub-sub”) message model. In accor-
dance with the pub-sub model, data is ingested into the
streaming data processor 308 and the data route 3400A
(including the data streams) may be atomized as “mes-
sages,” each of which is categorized into one or more
“topics.” The data streams can be user or system defined data
streams that can be populated by and/or write to a pipeline
or an external data source. Each data stream may therefore
be a topic on the underlying pub-sub system. The data
streams 3402, 3410 can be externally defined data streams
and/or general system defined data streams. The data
streams 3402, 3410 can be populated with data from a
particular source external to the streaming data processor
308 or write data to a particular source external to the
streaming data processor 308. For example, the data streams
3402, 3410 may be external streams of data from a stream-
ing data service. For example, the streaming data services
can include Amazon’s SQS or Kinesis™ services, devices
executing Apache Kafka™ software, or devices implement-
ing the MQTT protocol, Microsoft Azure EventHub, Google
Cloud Pub Sub, devices implementing the JMS protocol,
devices implementing the AMQP), performance metrics,
etc. The streaming data services may write data from data
storage (e.g., a bucket of data) to a data stream. The
streaming data services may implement, manage, and/or
configure the routing criteria (e.g., data boundaries) of the
data streams 3402, 3410. In some embodiments, one or more
of the data streams 3402, 3410 may be a system defined data
stream. For example, the system defined data stream may

Aug. 4, 2022

represent a stream from a particular intake point. Therefore,
data streams 3402, 3410 can be defined through which the
data is routed.

[0786] The user defined data stream 3406 is a user defined
data stream that enables the processing pipeline 3404 to be
linked to the processing pipeline 3408. The user defined data
stream 3406 and the data streams 3402, 3410 are each
streams of data, however, the user defined data stream 3406
is customizable such that a user and/or a system can define
how the user defined data stream 3406 is populated.
Whereas, the data streams 3402, 3410 are populated with
data from a particular source, the user defined data stream
3406 can be populated with any user defined or system
defined set of data. The use of such a user defined data
stream 3406 enables two processing pipelines to be con-
nected together. In traditional systems, such a connection of
multiple processing pipelines may not be possible as a
stream may be connected to a fixed input and a fixed output.
By linking the processing pipeline 3404 and the processing
pipeline 3408, multiple data transformations can be per-
formed on data received via the data stream 3402. It will be
understood that the data route 3400A can include more, less,
or different processing pipelines or user defined data
streams. For example, the data route 3400A can include
three processing pipelines with each processing pipeline
separated from a subsequent processing pipeline by a user
defined data stream. Further, the data route 3400A can
include a loop such that the processing pipeline 3404 obtains
a subset of the transformed data from the processing pipeline
3408 via a second user defined data stream. The use of a loop
within the data route 3400A can enable the same data
transformations to be iteratively performed on a set of data.
In some embodiments, a machine learning model, a neural
network, etc. can be implemented via the looped pipeline.
For example, the machine learning model can iteratively
infer and/or reason rules for a given set of data by passing
a set of data repeatedly through the looped pipeline. There-
fore, the machine learning model can be trained on historical
data in order to identify and/or predict subsequently received
data. Further, the user defined data stream 3406 can be
generated in an automated manner. For example, the user
defined data stream 3406 can be updated in a periodic
manner in response to observed system characteristics. Fur-
ther, the user defined data stream 3406 can be updated to
account for changes in data traffic or in response to issues/
anomalies detected by the streaming data processor 308. In
some embodiments, the user and/or the system can populate
the user defined data stream 3406 with a given set of data.
For example, the user and/or the system can populate the
user defined data streams 3414, 3418 with a portion of data
from a particular processing pipeline. Therefore, the user
defined data stream 3406 enables multiple processing pipe-
lines to be linked in order to perform multiple sets of data
transformations in a data route.

[0787] The processing pipelines 3404, 3408 can obtain a
set of data from a data stream (e.g., a customized data
stream, a user defined data stream, a system defined data
stream, or an externally defined data stream) and transform
the set of data. In order to transform the set of data, the
processing pipelines 3404, 3408 can perform one or more
data transformations on the set of data. For example, the
processing pipelines 3404, 3408 can perform an initial
query, an initial segmentation, or any other manipulation of
the set of data. The processing pipelines 3404, 3408 can

US 2022/0245156 Al

further route the data via another data stream (e.g., a
customized data stream, a user defined data stream, a system
defined data stream, or an externally defined data stream)
The processing pipelines 3404, 3408 can obtain data via a
first data stream and route transformed data via a second data
stream based on defined routing criteria (e.g., a source, a
destination, and data transformations) for the corresponding
processing pipeline. For example, a user can, by defining the
routing criteria, define a processing pipeline as reading data
from a particular data stream and routing data to a particular
data stream. Further, the processing pipelines 3404, 3408
can perform the one or more data transformations based on
the routing criteria. For example, the user can define the
transformations that the processing pipelines 3404, 3408
perform. Therefore, the processing pipelines 3404, 3408 can
perform data transformations on received data.

[0788] The user defined data stream 3406 can be a flow
(e.g., a path) of data from a data source or a processing
pipeline to another data source or a processing pipeline. For
example, the user defined data stream 3406 can be a flow of
data from a first processing pipeline to a second processing
pipeline. The user defined data stream 3406 can be defined
based on routing criteria and implemented by the streaming
data processor 308. For example, the routing criteria may
indicate how the data is to be routed via the user defined data
stream (e.g., from a particular source to a particular desti-
nation). The routing criteria can further define how a user
defined data stream 3406 performs in routing data.

[0789] The user defined data stream 3406 may also be
associated with stream characteristics, stream policies, and/
or a stream schema. The stream characteristics may indicate
current characteristics of how the user defined data stream is
performing. For example, the stream characteristics can
include a timestamp characteristic, a source characteristic, a
nanosecond characteristic, a body characteristic, a set of
attributes characteristic, a source type characteristic, a kind
characteristic, a stream name characteristic, an identification
characteristic, a host characteristic, or any other stream
characteristics. Each stream characteristics may be associ-
ated with a corresponding value indicating how the user
defined data stream 3406 is performing. For example, the
host characteristic may indicate a current host of the user
defined data stream 3406 (e.g., Server X) and the source
characteristic may indicate a source of the user defined data
stream 3406 (e.g., Processing Pipeline Y). It will be under-
stood that the stream characteristics can include any char-
acteristics that illustrate how the user defined data stream is
routing data. In some embodiments, the user defined data
stream 3406 may be associated with a stream schema that
defines the particular characteristics that are to be reported
as stream characteristics. For example, the stream schema
may indicate that a body characteristic and a timestamp
characteristic are the stream characteristics for a given user
defined data stream 3406. The stream policies may define
how the user defined data stream 3406 routes the data and
retains the data. For example, the stream policies can include
a storage quota, a data retention policy, a throughput, or any
other stream policies. Therefore, the user defined data
stream 3406 can be associated with stream characteristics,
stream policies, and/or a stream schema.

[0790] A streaming data processor 308 implementing the
data route 3400A can obtain (e.g., read) data from a data
stream 3402. In order to read the data from the data stream
3402, the user and/or the system can define a processing

Aug. 4, 2022

pipeline 3404 that obtains data from a data stream 3402. For
example, the user may define the processing pipeline 3404
to read the data from Amazon’s Kinesis™ service. The user
and/or the system can define what data is read from Ama-
zon’s Kinesis™ service based on defined routing criteria.
For example, the user can define a processing pipeline that
obtains data based on the routing criteria. The user and/or the
system can further define one or more data transformations
that the processing pipeline 3404 performs. For example, the
user can define a data manipulation that the processing
pipeline 3404 performs on data received at the processing
pipeline 3404. Based on the one or more data transforma-
tions, the processing pipeline 3404 can generate transformed
data. The user and/or the system can further define the
processing pipeline 3404 as writing transformed data to the
user defined data stream 3406. Based on this definition, the
processing pipeline writes the transformed data to the user
defined data stream 3406. Therefore, the processing pipeline
3404 can perform data transformations and write the trans-
formed data to the user defined data stream 3406.

[0791] The user defined data stream 3406 can flow (e.g.,
route) data from the processing pipeline 3404 to the pro-
cessing pipeline 3408. The user can define the user defined
data stream 3406 as a destination of the processing pipeline
3404 and a source of the processing pipeline 3408. In order
to determine how the data is routed by the user defined data
stream 3406, a user and/or system can define routing criteria
for the user defined data stream 3406 that indicates the
processing pipeline 3404 as a source of the user defined data
stream 3406 and the processing pipeline 3408 as a destina-
tion of the user defined data stream 3408. The user and/or the
system can further define stream policies for the user defined
data stream 3406. The user defined data stream 3406 may be
associated with a stream schema and stream characteristics.
Therefore, based on the routing criteria, the user defined data
stream 3406 routes the transformed data from the processing
pipeline 3404 to the processing pipeline 3408.

[0792] The processing pipeline 3408 can obtain the trans-
formed data from the processing pipeline 3404 via the user
defined data stream 3406. In order to read the data from the
user defined data stream 3406, the user and/or the system
can define a processing pipeline 3408 that obtains the
transformed data from the user defined data stream 3406.
The user and/or the system can further define additional data
transformations that the processing pipeline 3408 performs.
In some embodiments, the processing pipeline 3404 and the
processing pipeline 3408 can perform different data trans-
formations. In other embodiments, the processing pipeline
3404 and the processing pipeline 3408 can perform the same
data transformations. Based on the additional data transfor-
mations, the processing pipeline 3408 can manipulate the
transformed data from the processing pipeline 3404 to
generate further transformed data. The user and/or the
system can further define the processing pipeline 3408 as
writing the further transformed data to a data stream 3410.
Based on this definition, the processing pipeline 3408 writes
the further transformed data to the data stream 3410. For
example, the streaming data processor 308 can write the
further transformed data to Amazon’s Kinesis™ service.
Therefore, the processing pipeline 3408 can perform addi-
tional data transformations and write the transformed data to
the data stream 3410.

[0793] As noted above, a data route may include a user
defined data stream that routes data between processing

US 2022/0245156 Al

pipelines to enable data partitioning, data sharing, and
pipeline chaining as previously discussed. In accordance
with aspects of the present disclosure, in order to enable data
portioning, data sharing, and pipeline chaining, the data
route may also include user defined data streams that route
data to a data sink from a processing pipeline or from a data
source to a processing pipeline. For example, by linking a
data source or data sink to a processing pipeline via the user
defined data stream, the data being routed through the data
route can be partitioned. FIG. 34B is a block diagram of one
embodiment of a data route 3400B of a streaming data
processor 308. As discussed with FIG. 34A and data route
3400A, the data route 3400B is an illustrative route that data
may take as the data is processed by the streaming data
processor 308. The data route 3400B includes user defined
data streams 3414, 3418, in accordance with example
embodiments. The data route 3400B can include data flow-
ing from a data source 3412 to a processing pipeline 3416
via a user defined data stream 3414. Further, the data route
34008 can include data flowing from the processing pipeline
3416 to a data sink 3420 via a user defined data stream 3418.
As discussed in further detail above, the user defined data
streams 3414, 3418 are user defined data streams that enable
data to be routed from a data source 3412 through a
processing pipeline 3416 and to a data sink 3420. In some
embodiments, a user can define the user defined data streams
3414, 3418. In other embodiments, a system can define the
user defined data streams 3414, 3418. It will be understood
that the data route 3400B can include more, less, or different
processing pipelines or user defined data streams.

[0794] The data source 3412 can be a source of data that
is read into a streaming data processor 308. The data source
3412 can initiate the data route 3400B through the streaming
data processor 308. The data source 3412 can be a bucket of
data managed by a bucket storage service (e.g., a bucket of
data stored and managed by EBS), an object managed by an
object storage service, a data stream, or any other source of
data. Further, the data source 3412 can be a batch source or
a streaming source. A batch source can provide data to the
streaming data processor 308 at rest (e.g., a batch source can
be an object stored in S3 that provides data at rest) and a
streaming source can provide data to the streaming data
processor 308 in motion (e.g., a streaming source can be a
data stream stored in Kinesis that provides data in motion).
Examples of data sources 3412 include, without limitation,
data files, directories of files, data sent over a network, event
logs, registries, performance metrics, etc. The data source
3412 can write the data to a user defined data stream. In
some embodiments, the data source 3412 can write the data
to multiple user defined data streams. Therefore, the data
source 3412 can be an origination of data read into the data
route 3400B.

[0795] The user defined data streams 3414, 3418 can
obtain data from a data source or a processing pipeline and
write data to a data sink or a processing pipeline. The user
defined data streams 3414, 3418 can be defined or custom-
ized to obtain data from a particular data source or a
processing pipeline and write data to a particular data sink
or a processing pipeline. Therefore, the user defined data
streams 3414, 3418 enable a user to provide custom defi-
nitions of a stream of data.

[0796] As previously discussed with reference to FIG.
34A, the processing pipeline 3416 can obtain data from and
write data to user defined data streams 3414, 3418. The user

Aug. 4, 2022

and/or the system can define, via the routing criteria, how the
processing pipeline 3416 transforms data from a first data
stream to a second data stream. Therefore, the processing
pipeline 3416 can perform data transformations on received
data.

[0797] The data sink 3420 can be a data endpoint, a data
store, a data reservoir, etc. The data sink 3420 can receive
data and terminate the data route 3400B through the stream-
ing data processor 308. The data sink 3420 can be a bucket
of data managed by a bucket storage service (e.g., a bucket
of data stored and managed by EBS), an object managed by
an object storage service, a data stream, or any other sink
that data can be written to. Examples of data sinks 3420
include, without limitation, data files, directories of files,
data sent over a network, event logs, registries, performance
metrics, etc. In some embodiments, the data sink 3420 can
act as a data sink for a first data route and a data source for
a second data route thereby allowing the streaming data
processor 308 to loop multiple processing pipelines within a
data route. Therefore, the data sink 3420 can be an endpoint
for the data route 3400B.

[0798] A streaming data processor 308 implementing the
data route 3400B can obtain (e.g., read) data from the data
source 3412. In order to read the data from the data source
3412, the user and/or the system can define a user defined
data stream 3414 that is populated with data from the data
source 3412. For example, the user and/or the system can
define the user defined data stream 3414 with particular
routing criteria such that the user defined data stream 3414
is populated with data from the data source. Based on the
defined routing criteria, the user defined data stream 3414
can route data from the data source 3412 into the data route
3400B. For example, the user may define the user defined
data stream 3414 such that the user defined data stream 3414
is populated with data from an object stored in Amazon’s S3
service. In some embodiments, the user and/or the system
can define the user defined data stream 3414 such that the
user defined data stream routes a portion of the data pro-
duced by the data source 3412 into the data route 3400B. For
example, the user may define the user defined data stream
3414 such that the user defined data stream 3414 is peri-
odically populated with data from the data source 3412 (e.g.,
every second, every three seconds, etc.). Further, the user
can define the user defined data stream 3414 such that the
user defined data stream 3414 is populated with data from
the data source 3412 based on the occurrence of a particular
event. For example, when a particular subset of data (e.g.,
data indicating an anomalous event), the user defined data
stream 3414 can be populated with the corresponding data.
The user and/or the system can further define the user
defined data stream 3414 to customize how the user defined
data streams 3414 routes the data. For example, the user
and/or the system can define a stream schema, stream
characteristics, and/or stream policies. Therefore, the user
defined data stream 3414 can route data between the data
source 3412 and the processing pipeline.

[0799] The processing pipeline 3416 can obtain data from
the data source 3412 via the user defined data stream 3414.
Based on the customized definitions of the user defined data
stream 3414 and the processing pipeline 3416, the user
defined data stream 3414 acts as a link to route data between
the data source 3412 and the processing pipeline 3416. The
user and/or the system can further define data transforma-
tions to be performed by the processing pipeline 3416. For

US 2022/0245156 Al

example, the user can define manipulations (e.g., segmen-
tations, enrichment, etc.) that are to be performed on the data
to generate transformed data. The user and/or the system can
further define the processing pipeline 3416 such that the
processing pipeline 3416 writes the transformed data to the
user defined data stream 3418. Therefore, the processing
pipeline can be defined to obtain data from the user defined
data stream 3414, transform the data based on defined data
transformations, and route the transformed data to the user
defined data stream 3418.

[0800] Based on the defined processing pipeline 3416, the
user defined data stream 3418 can be populated with the
transformed data. The user and/or the system can define user
defined data stream 3418 in order to customize how the user
defined data stream 3418 routes data. In order to define the
user defined data stream 3418, the user and/or the system,
can further define routing criteria. Based on the defined
routing criteria, the user defined data stream 3418 can route
data from the processing pipeline 3416 to the data sink 3420.
Therefore, the user defined data stream 3418 can be a link
from the processing pipeline 3416 to the data sink 3420 in
order to route data out of the data route 3400B. For example,
the user may define the user defined data stream 3418 such
that the user defined data stream 3418 populates an object
stored in Amazon’s S3 service with the transformed data. In
some embodiments, the user and/or the system can define
the user defined data stream 3418 such that the user defined
data stream 3418 routes a portion of the data transformed by
the processing pipeline 3416 into the data sink. For example,
the user may route a first portion of the transformed data to
the data sink 3420 via a first user defined data stream and a
second portion of the transformed data to a processing
pipeline (e.g., the processing pipeline 3416 or a different
processing pipeline). Therefore, the data route 3400B can
route the data from the data source 3412 to the data sink
3420 via the user defined data streams 3414, 3418 and the
processing pipeline 3416 such that data transformations are
performed on the data prior to the transformed data being
stored in the data sink 3420.

[0801] As discussed above, a streaming data processor
may route data via user defined data streams and the
customized processing pipelines that are linked together in
a data route. By including a user defined data stream in the
data route, multiple processing pipelines can be linked
together. Linking the processing pipeline enables modularity
of the data route as the first processing pipeline can perform
a first portion of the data transformations for the data route
and the second processing pipeline can perform a second
portion of the data transformations for the data route.
Further, such a modularity can be beneficial where one of the
processing pipelines performs common operations and mul-
tiple processing pipelines can be linked to the processing
pipeline performing the common operation. For example, a
first processing pipeline and a second processing pipeline
can route data via corresponding user defined data streams
to a third processing pipeline that is performing a common
data transformation. With reference to FIG. 35, an illustra-
tive algorithm or routine 3500 will be described for gener-
ating and implementing a user defined data stream within a
data route 3400A. The routine 3500 may be implemented,
for example, by the streaming data processor 308 described
above with reference to FIGS. 3A and 3B. The routine 3500
begins at block 3502, where, in order to enable a user
defined data stream that can daisy chain processing pipe-

Aug. 4, 2022

lines, the streaming data processor 308 obtains a first user
input defining a first processing pipeline and a second
processing pipeline and a second user input defining a user
defined data stream and routing criteria for the user defined
data stream. The streaming data processor 308 can obtain the
first user input and the second user input from a user via a
device (e.g., a graphical user interface) in communication
with and/or associated with the streaming data processor
308. The first user input can define a source and a destination
of'the first processing pipeline and a source and a source and
a destination of the second processing pipeline. Further, the
first user input can define a first externally defined data
stream as the source and the user defined data stream as the
destination of the first processing pipeline. The first user
input can define the user defined data stream as the source
and a second externally defined data stream as the destina-
tion of the second processing pipeline. In some embodi-
ments, the first input can define a first system defined data
stream as the source of the first processing pipeline and a
second system defined data stream as the destination of the
second processing pipeline. The first user input can further
define data transformations to be performed by the first
processing pipeline and/or the second processing pipeline.
In some embodiments, the first user input can define the
same data transformations for the first processing pipeline
and the second processing pipeline. In other embodiments,
the first input can define different data transformations for
the first processing pipeline and the second processing
pipeline. The second user input can define routing criteria
that indicates how the user defined data stream routes data.
For example, the second user input can define a source and
a destination of the user defined data stream. In some
embodiments, the second user input comprises one or more
of a stream name, a storage quota, a data retention policy, or
a read/write throughput rate. The user defined data stream
can be a customizable stream of data. In some embodiments,
the user defined data stream corresponds to a topic. Further,
the user defined data stream may correspond to an ingestion
buffer. The user defined data stream can be associated with
buffer criteria that indicate a source and/or a sourcetype of
the user defined data stream. One or more of the first
externally defined data stream or the second externally
defined data stream may be a stream of data from a block
storage service. Therefore, the streaming data processor 308
can obtain inputs defining a first processing pipeline, a
second processing pipeline, and a user defined data stream
for a data route 3400A.

[0802] Inordertoimplement a data route based on the first
input and the second input that includes the user defined data
stream and the first and second processing pipelines, at block
3504, the streaming data processor 308 receives a set of data
at the first externally defined data stream. The streaming data
processor 308 can receive the set of data to be passed
through the data route such that the set of data is iteratively
transformed. The first externally defined data stream can
read the set of data into the streaming data processor 308
from an external data service such as S3. The streaming data
processor 308 can define the set of data received from the
first externally defined data stream as corresponding to a
data route 3400A. In some embodiments, the streaming data
processor 308 can obtain data from a plurality of externally
defined data streams. Therefore, the streaming data proces-
sor 308 can receive the set of data from the first externally
defined data stream for the data route 3400A.

US 2022/0245156 Al

[0803] Based at least in part on the first input, in order to
perform a first modular set of data transformations, at block
3506, the streaming data processor 308 performs one or
more first data transformations on the set of data to generate
a first set of transformed data. The streaming data processor
308 can perform the one or more first data transformations
using the first processing pipeline. The first user input can
define the first processing pipeline as obtaining data from the
first externally defined data stream. The first user input can
further define the first processing pipeline as performing the
one or more first data transformations on the set of data.
Based on the one or more first data transformations, the first
processing pipeline can generate a first set of transformed
data. Therefore, based on the first user input, the streaming
data processor 308 performs one or more first data trans-
formations to generate a first set of transformed data.

[0804] In order to route data between the first processing
pipeline and the second processing pipeline and enable the
modularity of the processing pipelines, at block 3508, the
streaming data processor 308 populates the user defined data
stream with the first set of transformed data based on the
routing criteria and the first user input. The user can define,
by the first user input, the destination of the processing
pipeline as the user defined data stream. Therefore, based on
the first user input, the streaming data processor 308 can
populate the user defined data stream with the first set of
transformed data.

[0805] Based at least in part on the routing criteria and the
first user input, in order to perform a second modular set of
transformations, at block 3510, the streaming data processor
308 performs one or more second data transformations on
the first set of transformed data to generate a second set of
transformed data. The first user input can perform the one or
more second data transformations using the second process-
ing pipeline. The first user input can define the second
processing pipeline as obtaining data from the user defined
data stream. The first user input can further define the second
processing pipeline as performing the one or more second
data transformations on the first set of transformed data.
Based on the one or more second data transformations, the
second processing pipeline can generate a second set of
transformed data. In some embodiments, the second set of
transformed data may be routed to a third processing pipe-
line via a second user defined data stream. For example, the
data may be routed through any number of processing
pipelines and user defined data streams. In some embodi-
ments, a subsequent set of data may be received by the
streaming data processor 308 from a third externally defined
data stream. The streaming data processor 308 can route the
subsequent set of data through a third processing pipeline, a
second user defined data stream, and a fourth processing
pipeline based on user input. Subsequent sets of data may
correspond to different data transformations based on the
user input. Therefore, based on the first user input, the
streaming data processor 308 performs one or more second
data transformations to generate a second set of transformed
data.

[0806] In order to output the second set of transformed
data after the performance of the modular transformations,
at block 3512, based on the first user input, the streaming
data processor 308 routes the second set of transformed data
to a second externally defined data stream. The first user
input can define the second externally defined data stream as
the destination of the second processing pipeline. In some

Aug. 4, 2022

embodiments, the streaming data processor 308 can write
data to a plurality of externally defined data streams. There-
fore, the streaming data processor 308 can route the data
from the second processing pipeline to the second externally
defined data stream.

[0807] As discussed above, a streaming data processor
may route data via user defined data streams and the
customized processing pipelines that are linked together in
a data route. By including a user defined data stream in the
data route, the external data source and the external data sink
that the processing pipeline obtains data from and writes
data to can be modified. Obtaining data from and writing
data to user defined data streams enables flexibility of the
streaming data processor by enabling a user to have the
flexibility to choose a stream that data is written to. The
flexibility of the streaming data processor enables the
streaming data processor to avoid aggregating disparate data
with different processing requirements into the same stream.
For example, a first user defined data stream can obtain data
from a set of sensors and a second user defined data stream
can obtain data from a set of application logs. With reference
to FIG. 36, an illustrative algorithm or routine 3600 will be
described for generating and implementing a user defined
data stream within a data route 3400A. The routine 3500
may be implemented, for example, by the streaming data
processor 308 described above with reference to FIGS. 3A
and 3B. The routine 3600 begins at block 3602, where, in
order to manage which user defined data streams receive
which set of data, the streaming data processor 308 obtains
a first user input defining a set of user defined data streams
and routing criteria and a second user input defining a
processing pipeline. The streaming data processor 308 can
obtain the first user input and the second user input from a
user via a device (e.g., a graphical user interface) in com-
munication with and/or associated with the streaming data
processor 308. In some embodiments, the streaming data
processor 308 can obtain the first user input and the second
user input from a computing system. For explain, the
streaming data processor 308 can obtain the first user input
and the second user input from an automated system. It will
be understood that while the data streams are referred to as
a set of user defined data streams, the data streams may be
system defined data streams or otherwise user defined data
streams. In some embodiments, the streaming data processor
308 obtains an input defining the set of user defined data
streams, the routing criteria, and the processing pipeline.
The second user input can define routing criteria that indi-
cates how each user defined data stream routes data. For
example, the second user input can define a source and a
destination for each user defined data stream that indicate
how the user defined data stream routes data. The first user
input can define a source and a destination of the processing
pipeline. The first user input can define a first user defined
data stream as the source and a second user defined data
stream as the destination of the processing pipeline. The first
user input can further define data transformations to be
performed by the processing pipeline. Therefore, the stream-
ing data processor 308 can obtain inputs defining a process-
ing pipeline, a set of user defined data streams, and routing
criteria for a data route 3400B.

[0808] In order to implement a data route based at least in
part on the first user input and the second user input, at block
3604, the streaming data processor 308 receives a set of data.
The streaming data processor 308 can receive the set of data

US 2022/0245156 Al

from a data source such as a block storage service. The data
source may be a batch source or a streaming source. There-
fore, the streaming data processor 308 can receive the set of
data from a data source for the data route 3400B.

[0809] Based at least in part on the routing criteria, in
order to route a set of data via the first user defined data
stream, where additional data can be routed by different data
streams, at block 3606, the streaming data processor 308
populates the first user defined data stream of the set of user
defined data streams with a subset of the set of data. The
routing criteria can indicate that the subset of the set of data
that populates the first user defined data stream. Based on the
routing criteria, the streaming data processor 308 can route
the subset of the set of data via the user defined data stream.
In some embodiments, the streaming data processor 308 can
populate the first user defined data stream with the entire set
of data. Therefore, the streaming data processor 308 popu-
lates the first user defined data stream with a subset of the set
of data. Further, based on the second user input, the stream-
ing data processor 308 can route the subset of the set of data
to the processing pipeline via the first user defined data
stream. The second user input can define the first user
defined data stream as the source of the processing pipeline,
the one or more data transformations of the processing
pipeline, and the second user defined data stream as the
destination of the processing pipeline. In some embodi-
ments, the processing pipeline can obtain data from a
plurality of user defined data streams. Therefore, the stream-
ing data processor 308 populates the first user defined data
stream with the subset of the set of data and routes the subset
of the set of data from the data source to the processing
pipeline via the first user defined data stream.

[0810] In order to perform a set of data transformations
particular to the set of data received by the first user defined
data stream and thereby allowing the processing pipeline to
perform transformations specific to a set of data, at block
3608, based on the second user input, the streaming data
processor 308 performs one or more data transformations on
the subset of the set of data to generate a set of transformed
data. The streaming data processor 308, based on the second
user input and the routing criteria, can route the subset of the
set of data from the data source to the processing pipeline via
the first user defined data stream. Based on receiving the
subset of the set of data at the processing pipeline, the
streaming data processor 308 can perform one or more data
transformations on the subset of the set of data. The second
user input may define the one or more data transformations
to be performed by the streaming data processor 308 via the
processing pipeline. The streaming data processor 308 can
transform the subset of the set of data using the one or more
data transformations to generate the set of transformed data.
Therefore, the streaming data processor 308 can perform the
one or more data transformations, based on the second user
input, on the subset of the set of data to generate a set of
transformed data.

[0811] In order to route data to a specific data source
associated with the data route, based at least in part on the
second user input, at block 3610, the streaming data pro-
cessor 308 populates a second user defined data stream of
the set of user defined data streams with the set of trans-
formed data. The second user input can indicate that the set
of transformed data populates the second user defined data
stream. Based on the second user input, the streaming data
processor 308 can route the set of transformed data via the

Aug. 4, 2022

second user defined data stream. Therefore, the streaming
data processor 308 populates the second user defined data
stream with the set of transformed data. Further, based on the
routing criteria, the streaming data processor 308 can route
the set of transformed data from the processing pipeline to
a data sink via the second user defined data stream. In some
embodiments, the processing pipeline can write data to a
plurality of user defined data streams. The routing criteria
can define the data sink as a destination of the second user
defined data stream. In some embodiments, the streaming
data processor 308 can obtain a third input defining an
additional processing pipeline and route a second set of data
from a data source to a second processing pipeline via a third
user defined data stream and from the second processing
pipeline to a data sink via a fourth user defined data stream.
Therefore, the streaming data processor 308 populates the
second user defined data stream with the set of transformed
data and routes the set of transformed data from the pro-
cessing pipeline to the data sink via the second user defined
data stream.

5.2 Graphical Controls for Defining and Implementing Data
Streams

[0812] A system can be provided to enable the creation of
user defined data streams and processing pipelines that can
be linked to the user defined data streams. The system can
enable the creation of the user defined data streams and
processing pipelines based on received user input that iden-
tify routing criteria. Based on the received user input, a data
route that includes the user defined data streams and the
processing pipelines can be implemented. The received user
input may be received through any method of receiving user
input. For example, as described in FIG. 37, the user input
may be received through a graphical user interface (“GUI”).
The GUI described below can enable a user to interact with
(e.g., toggle, select, etc.) graphical controls to modify how
a data stream and/or a processing pipeline acts. This cus-
tomization interface solves challenges of existing data inges-
tion systems, in that these systems group all data into the
same stream. While a user can customize how data is
streamed to a pipeline, the user has to configure a filter to
filter the data received from the single stream. In order to
obviate the need for such a filter, a user may define user
defined data streams that are each linked to a specific intake
point. Further, the use of user defined data streams can
enable a plurality of processing pipelines to be daisy chained
together. The streaming data processor can aggregate only a
portion of a set of data into a user defined data stream based
on routing criteria to avoid the need for a filter. In the
presently disclosed interface, a user can define a given data
stream to customize how the data stream routes data. Fur-
ther, the user can define a processing pipeline by defining a
particular data stream that the processing pipeline obtains
data from and a particular data stream that the processing
pipeline writes data. The customization process provides
viability in how the data streams and the processing pipe-
lines are interacting with data and enables a user to monitor
the performance of the data streams and the processing
pipelines. Beneficially, the interface is able to provide this
visibility using real time streaming data from the streaming
data processor 308.

[0813] As discussed above, a streaming data processor
may route data via user defined data streams. By including
a user defined data stream in the data route, multiple

US 2022/0245156 Al

processing pipelines can be linked together enabling modu-
larity of the data route. By interacting with a GUI, a user can
define the user defined data stream to define how the user
defined data streams handles data. Further, the user can
identify data that should populate the user defined data
stream. Identifying the data that should populate the user
defined data stream can be beneficial as the user can partition
a subset of data into a particular user defined data stream
without requiring the use of a filter. For example, a first user
defined data stream can be populated with particular data
and a second user defined data stream can be populated with
different data. FIG. 37 illustrates an example interface 3700
showing various exemplary features in accordance with one
or more embodiments. In the illustrated embodiment of FIG.
37, the interface 3700 includes a stream schema element
3706, a stream characteristics element 3708, a stream popu-
lation element 3710, and a stream policies element 3712.
The interface 3700 can further include a stream identifier
3702 a set of pages 3704A, 3704B, 3704C, and 3704D. The
example interface 3700 is illustrative of an interface that a
computing system (e.g., a server in communication with the
streaming data processor 308) generates and presents to a
user associated with a given data route being implemented
by the streaming data processor 308. In the example of FIG.
37, the interface 3700 includes a particular user defined data
stream that the user is defining (e.g., customizing). In some
embodiments, the user defined data stream is a previously
implemented data stream that the user is customizing (e.g.,
a stream that the user previously customized or a general
stream that the streaming data processor 308 has imple-
mented). In other embodiments, the user defined data stream
is a data stream that is not yet implemented. Further, the
stream may be implemented based on an interaction by the
user with the interface 3700. It will be understood that FIG.
37 is illustrative only, and a computing system may offer any
type or number of streams for customization by a user. It will
further be understood that the interface 3700 can include
more, less or different elements. For example, the interface
3700 may include an element for implementing the stream.

[0814] Via the interface 3700, the user can define the
stream based on elements provided in the interface. In some
embodiments, the user can define the stream based on stream
policies that indicate how the user defined data stream routes
data. The streaming data processor 308 may use the stream
policies in order to generate the user defined data stream.

[0815] In some embodiments, the interface 3700 can iden-
tify multiple data streams for a particular streaming data
processor 308. For example, the interface 3700 can identify
multiple data streams within a data route. In some embodi-
ments, the interface 3700 can identify one or more data
streams of a first data route and one or more data streams of
a second data route where each data route is associated with
the streaming data processor 308. The data streams shown
and/or identified by the interface 3700 can be based on data
streams selected by a user. For example, a user can select a
particular data stream for modification via an interaction
with the interface 3700.

[0816] The client interface 3700 may include a data stream
identifier 3702. The data stream identifier 3702 may identify
a particular data stream and provide information about the
particular data stream. The user may toggle between various
data streams using the data stream identifier 3702. For
example, the user can toggle between multiple data streams
corresponding to the same data route. The data stream

Aug. 4, 2022

identifier 3702 may correspond to any numerical, alphabeti-
cal, alphanumerical, or symbolical string. For example, the
data stream identifier 3702 may correspond to the order of
generation of the corresponding data stream. The data
stream identifier 3702 may identify a data stream and
corresponding characteristics, policies, or schemas of the
data stream may be identified within the interface 3700. For
example, a data stream implemented by the streaming data
processor 308 may correspond to “Stream X.”

[0817] The interface 3700 may further include a first page
3704 A, a second page 3704B, a third page 3704C, and a
fourth page 3704D. The interface 3700 may include a home
page 3704A. The home page 3704A may, based on an
interaction between a user and the home page 3704A,
illustrate a home page 3704A for a data route corresponding
to the data stream. Further, the home page 3704A may
correspond to a number of selectable data streams. For
example, the home page 3704A may illustrate a number of
data streams within the data route. As will be further
discussed, the home page 3704A may further include a
plurality of selectable elements that the user can interact
with to further customize the data route and define how data
is routed by the streaming data processor 308. The interface
3700 may further include a stream page 3704B. The stream
page 3704B identifies a particular data stream and one or
more user configurable settings and/or elements for the
particular data stream. The user can interact with the one or
more user configurable settings and/or elements with to
modify the data stream. For example, the settings of the
stream page 3704B can correspond to stream policies or a
stream schema that are selectable and customizable by a
user. The interface 3700 may further include a data man-
agement page 3704C identifying how data is managed
within the data route. For example, the data management
page 3704C can identify how the data is read from an
externally defined data stream, a system defined data stream,
or a data source and/or identify how data is stored in an
externally defined data stream, a system defined data stream,
or a data sink. The interface 3700 may further include a user
management page 3704D identitying the user. The user can
interact with the user management page 3704D to customize
the role of the user, permissions associated with the user, or
other customizable features associated with the user.

[0818] The stream page 3704B of the interface 3700 can
further include various elements within the stream page
3704B. The stream page 37048 can include a stream schema
element 3706, a stream characteristics element 3708, a
stream population element 3710, and a stream policies
element 3712. The stream schema element 3706 can illus-
trate a current stream schema associated with the data
stream. In the example of FIG. 37, the stream schema
element 3706 identifies stream schema XY as the current
stream schema for the Stream X. The stream schema can be
a collection of selected stream characteristics for the Stream
X. The stream schema element 3706 can further include an
element that enables a user to update the stream schema
and/or upload a new stream schema. For example, a user via
the stream schema element 3706 can define an updated
stream schema for the stream by selecting a previously
defined data stream schema, uploading a new stream
schema, or otherwise uploading a stream schema for the
stream. In some embodiments, the stream schema element
3706 enables a user to customize the stream schema within
the stream schema. In some embodiments, the user can

US 2022/0245156 Al

select, via an interaction with the stream schema element
3706, to not implement a stream schema for the data stream.
Therefore, the stream schema element 3706 enables the user
to define a stream schema for the data stream.

[0819] The stream page 3704B can further include a
stream characteristics element 3708. The stream character-
istics element 3708 can illustrate current stream character-
istics associated with a data stream. The stream character-
istics can define statistics indicating how data is routed by
the data stream. For example, the stream characteristics can
include a timestamp characteristic, a source characteristic, a
nanosecond characteristic, a body characteristic, a set of
attributes characteristic, a source type characteristic, a kind
characteristic, a stream name characteristic, an identification
characteristic, and/or a host characteristic. It will be under-
stood that the stream characteristics element 3708 may
identify more, less, or different stream characteristics. The
stream characteristics element 3708 can identify a current
value for each stream characteristics. In the example of FIG.
37, the stream characteristics element 3708 identifies the
value “TSTAMP” for the field “TIMESTAMP,” the value
“SOURCE123” for the field “SOURCE,” the value “XYZ”
for the field “NANOS,” the value “BODY123” for the field
“BODY,” the value “ATTRIBUTES123” for the field
“ATTRIBUTES,” the value “SOURCE_TYPE123” for the
field “SOURCE_TYPE,” the value “KIND123” for the field
“KIND,” the value “STREAM X for the field “STREAM
NAME,” the value “1234” for the field “ID,” and the value
“HOST123” for the field “HOST.” Therefore, the stream
characteristics element 3708 enables the user to observe
stream characteristics for the data stream.

[0820] In some embodiments, the stream page 3704B can
further include a stream population element 3710. The
stream population element 3710 can enable a user to define
routing criteria (e.g., a set of data that populates the data
stream). For example, via the stream population element
3710, the user can modify the data stream such that the data
stream is populated with data from a particular data source.
In some embodiments, the stream page 3704B may not
include the stream population element 3710. In other
embodiments, the stream page 3704B may include the
stream population element 3710 and the user may not elect
to populate the data stream with a particular set of data. For
example, while the user may not populate the data stream
with a given set of data, as will be discussed, the user may
populate the data stream by defining a processing pipeline
that obtains data via the data stream. In some embodiments,
the stream population element 3710 may include an element
to search for a particular set of data to populate the particular
data stream. Therefore, the stream page 37048 can include
a stream population element that enables a user to define a
set of data that will populate the data stream.

[0821] The stream page 3704B can further include a
stream policies element 3712. The stream policies element
3712 can illustrate current stream policies associated with a
data stream. The stream policies can define how the data
stream is configured. For example, the stream policies can
include a storage quota, a data retention policy, or a through-
put for the data stream. It will be understood that the stream
policies element 3712 may identify more, less, or different
stream policies. The stream policies element 3712 can
identify a current value for each stream policy. In the
example of FIG. 37, the stream policies element 3712
identifies the value “50 GB” for the field “Storage Quota,”

Aug. 4, 2022

the value “1 Hour” for the field “Data Retention,” and the
value “10 IOPS” for the field “Throughput.” The streaming
data processor 308 can implement the data stream based on
the stream policies from the stream policies element 3712.
The stream policies element 3712 can further include an
element that enables a user to update the stream policies
and/or upload a new stream policy. For example, a user via
the stream policies element 3712 can define an updated
stream policy for the stream by selecting a previously
defined data stream policy, uploading a new stream policy,
or otherwise uploading a stream policy for the data stream.
In some embodiments, the stream policies element 3712
enables a user to customize the stream policy for the data
stream. Therefore, the stream policies element 3712 enables
the user to define stream policies for the data stream.

[0822] As discussed above, a streaming data processor
may route data via user defined data streams that links
processing pipelines. By including a user defined data
stream in the data route, multiple processing pipelines can be
modified to route data to and from the user defined data
stream. By interacting with a GUI, a user can define the
processing pipeline to define how the processing pipeline
routes data to and from a user defined data stream. Linking
a user defined data stream to a processing pipeline can be
beneficial as the user can link specific user defined data
streams to the processing pipeline without requiring the use
of a filter. For example, a first user defined data stream can
write data to a first processing pipeline and a second user
defined data stream can write data to a second processing
pipeline. FIG. 38 illustrates an example interface 3800
showing various exemplary features in accordance with one
or more embodiments. In the illustrated embodiment of FIG.
38, the interface 3800 includes a source element 3806, a
destination element 3808, and a data transformations ele-
ment 3810. The interface 3800 can further include a pipeline
identifier 3802 and a set of pages 3804 A, 3804B, 3804C, and
3804D. The example interface 3800 is illustrative of an
interface that a computing system (e.g., a server in commu-
nication with the streaming data processor 308) generates
and presents to a user associated with a given data route
being implemented by the streaming data processor 308. In
the example of FIG. 38, the interface 3800 includes a
particular customized pipeline that the user is defining (e.g.,
customizing). In some embodiments, the customized pipe-
line is a previously implemented pipeline that the user is
customizing (e.g., a pipeline that the user previously cus-
tomized or a general pipeline that the streaming data pro-
cessor 308 has implemented). In other embodiments, the
customized pipeline is an unimplemented pipeline. Further,
the pipeline may be implemented based on an interaction by
the user with the interface 3800. It will be understood that
FIG. 38 is illustrative only, and a computing system may
offer any type or number of pipelines for customization by
a user. It will further be understood that the interface 3800
can include more, less or different elements. For example,
the interface 3800 may include an element for implementing
the pipeline.

[0823] Via the interface 3800, the user can define the
pipeline based on elements provided in the interface. In
some embodiments, the user can define the pipeline based on
custom elements. For example, the user can define how the
processing pipeline obtains data and writes transformed
data. The streaming data processor 308 may use the pipeline
definition to generate the processing pipeline. For example,

US 2022/0245156 Al

the pipeline definition can include a source, a destination,
and one or more data transformations for the processing
pipeline.

[0824] In some embodiments, the interface 3800 can iden-
tify multiple processing pipelines for a particular streaming
data processor 308. For example, the interface 3800 can
identify multiple processing pipelines within a data route. In
some embodiments, the interface 3800 can identify one or
more processing pipelines of a first data route and one or
more processing pipelines of a second data route where each
data route is associated with the streaming data processor
308. The data streams shown and/or identified by the inter-
face 3800 can be based on processing pipelines selected by
a user. For example, a user can select a particular processing
pipeline for modification via an interaction with the interface
3800.

[0825] The client interface 3800 may include a processing
pipeline identifier 3802. The processing pipeline identifier
3802 may identify a particular processing pipeline and
provide information about the particular processing pipeline.
The user may toggle between various processing pipelines
using the processing pipeline identifier 3802. For example,
the user can toggle between multiple processing pipelines
corresponding to the same data route. The processing pipe-
line identifier 3802 may correspond to any numerical, alpha-
betical, alphanumerical, or symbolical string. For example,
the processing pipeline identifier 3802 may correspond to
the order of generation of the corresponding processing
pipeline. The processing pipeline identifier 3802 may iden-
tify a processing pipeline and corresponding characteristics
of the processing pipeline may be identified within the
interface 3800. For example, a processing pipeline imple-
mented by the streaming data processor 308 may correspond
to “Pipeline X.”

[0826] The interface 3800 may further include a first page
3804 A, a second page 3804B, a third page 3804C, and a
fourth page 3804D. The interface 3800 may include a home
page 3804A. The home page 3804A may, based on an
interaction between a user and the home page 3804A,
illustrate a home page 3804A for a data route corresponding
to the processing pipeline. Further, the home page 3804A
may correspond to a number of selectable processing pipe-
lines. The interface 3800 may further include a pipeline page
3804B. The pipeline page 3804B identifies a particular
processing pipeline and one or more user configurable
characteristics for the particular processing pipeline. The
user can interact with the one or more user configurable
settings and/or elements with to modify the processing
pipeline. The interface 3800 may further include a data
management page 3804C identifying how data is managed
within the data route. For example, the data management
page 3804C can identify how the data is read from an
externally defined data stream, a system defined data stream,
or data source and/or identify how data is stored in an
externally defined data stream, a system defined data stream,
or data sink. The interface 3800 may further include a user
management page 3804D identifying the user. The user can
interact with the user management page 3804D to customize
the role of the user, permissions associated with the user, or
other customizable features associated with the user.
[0827] The pipeline page 3804B of the interface 3800 can
further include various elements within the pipeline page
3804B to identify the routing criteria. The pipeline page
3804B can include a source element 3806, a destination

Aug. 4, 2022

element 3808, and a data transformations element 3810 that
each identify routing criteria for the processing pipeline. The
source element 3806 can identify a current source of the
processing pipeline. In the example of FIG. 38, the source
element 3806 identifies user defined data stream Y as the
source of the Pipeline X. The source element 3806 can
further include an element that enables a user to customize
the source of the Pipeline X. For example, the user may be
able to select a different source for the Pipeline X, a newly
generated source for the Pipeline X, or otherwise define how
the Pipeline X obtains data. Therefore, the source element
3806 can enable the processing pipeline to be linked to
particular user defined data stream. The source element 3806
may further identify various performance statistics. The
performance statistics may identify how data is being read
into the Pipeline X. For example, the performance statistics
may include a latency, bytes per second, and/or events per
second. In the example of FIG. 38, the Pipeline X is reading
data from the User defined data stream Y with “Latency” of
“33.6 MS,” “Bytes per Second” of “0,” and “Events per
Second” of “0.” It will be understood that the performance
statistics may include more, less, or different statistics.
Therefore, the source element 3806 enables the user to
define how the processing pipeline reads data and enables
the user to obtain statistics associated with how the process-
ing pipeline reads data.

[0828] The pipeline page 3804B of the interface 3800 can
further include a destination element 3808. The destination
element 3808 can identify a current destination of the
processing pipeline. In the example of FIG. 38, the desti-
nation element 3808 identifies user defined data stream YX
as the destination of the Pipeline X. The destination element
3808 can further include an element that enables a user to
customize the destination of the Pipeline X. For example,
the user may be able to select a different destination for the
Pipeline X, a newly generated destination for the Pipeline X,
or otherwise define how the Pipeline X writes data. There-
fore, the destination element 3808 can enable the processing
pipeline to be linked to particular user defined data stream.
The destination element 3808 may further identify various
performance statistics. The performance statistics may iden-
tify how data is being written by the Pipeline X. For
example, the performance statistics may include a latency,
bytes per second, and/or events per second. In the example
of FIG. 38, the Pipeline X is writing data to the User defined
data stream YX with “Latency” of “0.4 MS,” “Bytes per
Second” of “0,” and “Events per Second” of “0.” It will be
understood that the performance statistics may include
more, less, or different statistics. Therefore, the destination
element 3808 enables the user to define how the processing
pipeline writes data and enables the user to obtain statistics
associated with how the processing pipeline writes data.

[0829] The stream page 3804B can further include a data
transformations element 3810. The data transformations
element 3810 can illustrate data transformations that are
being performed by Pipeline X. The data transformations
element 3810 can further enable the user to modify the data
transformations that are being performed by Pipeline X. The
user can upload new data transformations, update the current
data transformations, or otherwise manipulate the data trans-
formations. In the example of FIG. 38, the data transforma-
tions element 3810 identifies the data transformation “Data
Transformation X and the data transformation “Data Trans-
formation Y” as being performed by Pipeline X. It will be

US 2022/0245156 Al

understood that the data transformations element 3810 may
identify more, less, or different data transformations. There-
fore, the destination element 3808 can enable the user to
define the transformations that a processing pipeline per-
forms thereby enabling different data transformations to be
performed on different subsets of data received via different
user defined data streams.

[0830] As discussed above, a streaming data processor
may route data via user defined data streams that link
processing pipelines. By interacting with a GUI, a user can
define the user defined data streams and the processing
pipelines to define how the user defined data streams link the
processing pipelines. Further, the user can identify data that
should populate the user defined data streams and be routed
through the user defined data streams and the processing
pipelines. The user can further identify routing criteria in
order to manage the subset of data that is transmitted through
each user defined data stream. For example, a first user
defined data stream linked to a first processing pipeline can
be populated with particular data and a second user defined
data stream linked to a second processing pipeline can be
populated with different data. With reference to FIG. 39, an
illustrative algorithm or routine 3900 will be described for
generating and implementing a user defined data stream
within a data route 3400A, 3400B. The routine 3500 may be
implemented, for example, by the streaming data processor
308 described above with reference to FIGS. 3A and 3B. The
routine 3900 begins at block 3902, where the streaming data
processor 308 causes display of first graphical controls that
enable a user to define user defined data streams. The first
graphical controls can include an input to define routing
criteria for a user defined data stream described previously
with respect to FIG. 37. The first graphical controls enable
the user to define how the user defined data streams route
data.

[0831] In order to define processing pipelines that write
data and read data from user defined data streams, at block
3904, the streaming data processor 308 causes display of
second graphical controls that enable the user to define
processing pipelines that each obtain data from a particular
user defined data stream and write transformed data to a
particular user defined data stream. The second graphical
controls can enable a user to define a source, a destination,
and/or data transformations for the processing pipeline as
described previously with respect to FIG. 38. In some
embodiments, third graphical controls may comprise the
first graphical controls and the second graphical controls.
Therefore, the second graphical controls enable the user to
define the behavior of the processing pipelines.

[0832] Based at least in part on the input received via the
first graphical controls and the second graphical controls, at
block 3906, the streaming data processor 308 implements
the user defined data streams and the processing pipelines.
The streaming data processor 308 can implement the user
defined data streams and the processing pipelines based on
the custom definitions provided by the user via the first
graphical controls and the second graphical controls. In
some embodiments, a pub-sub message model associated
with the streaming data processor 308 can implement the
user defined data streams and the processing pipelines.
[0833] In order to implement the data route, at block 3908,
the streaming data processor 308 routes a set of data via the
user defined data streams and the processing pipelines. The
streaming data processor 308 may route a set of data from

Aug. 4, 2022

a data source, an externally defined data stream, or a system
defined data stream through the user defined data streams
and the processing pipelines to a data sink, an externally
defined data stream, or a system defined data stream.

6.0 Terminology

[0834] Computer programs typically comprise one or
more instructions set at various times in various memory
devices of a computing device, which, when read and
executed by at least one processor, will cause a computing
device to execute functions involving the disclosed tech-
niques. In some embodiments, a carrier containing the
aforementioned computer program product is provided. The
carrier is one of an electronic signal, an optical signal, a
radio signal, or a non-transitory computer-readable storage
medium.

[0835] Any or all of the features and functions described
above can be combined with each other, except to the extent
it may be otherwise stated above or to the extent that any
such embodiments may be incompatible by virtue of their
function or structure, as will be apparent to persons of
ordinary skill in the art. Unless contrary to physical possi-
bility, it is envisioned that (i) the methods/steps described
herein may be performed in any sequence and/or in any
combination, and (ii) the components of respective embodi-
ments may be combined in any manner.

[0836] Although the subject matter has been described in
language specific to structural features and/or acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as examples of implementing
the claims, and other equivalent features and acts are
intended to be within the scope of the claims.

[0837] Conditional language, such as, among others,
“can,” “could,” “might,” or “may,” unless specifically stated
otherwise, or otherwise understood within the context as
used, is generally intended to convey that certain embodi-
ments include, while other embodiments do not include,
certain features, elements and/or steps. Thus, such condi-
tional language is not generally intended to imply that
features, elements and/or steps are in any way required for
one or more embodiments or that one or more embodiments
necessarily include logic for deciding, with or without user
input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular
embodiment.

[0838] Unless the context clearly requires otherwise,
throughout the description and the claims, the words “com-
prise,” “comprising,” and the like are to be construed in an
inclusive sense, as opposed to an exclusive or exhaustive
sense, i.e., in the sense of “including, but not limited to.” As
used herein, the terms “connected,” “coupled,” or any vari-
ant thereof means any connection or coupling, either direct
or indirect, between two or more elements; the coupling or
connection between the elements can be physical, logical, or
a combination thereof. Additionally, the words “herein,”
“above,” “below,” and words of similar import, when used
in this application, refer to this application as a whole and
not to any particular portions of this application. Where the
context permits, words using the singular or plural number
may also include the plural or singular number respectively.
The word “or” in reference to a list of two or more items,
covers all of the following interpretations of the word: any

US 2022/0245156 Al

one of the items in the list, all of the items in the list, and any
combination of the items in the list. Likewise the term
“and/or” in reference to a list of two or more items, covers
all of the following interpretations of the word: any one of
the items in the list, all of the items in the list, and any
combination of the items in the list.

[0839] Conjunctive language such as the phrase “at least
one of X, Y and Z,” unless specifically stated otherwise, is
otherwise understood with the context as used in general to
convey that an item, term, etc. may be either X, Y or Z, or
any combination thereof. Thus, such conjunctive language is
not generally intended to imply that certain embodiments
require at least one of X, at least one of Y and at least one
of Z to each be present. Further, use of the phrase “at least
one of X, Y or Z” as used in general is to convey that an item,
term, etc. may be either X, Y or Z, or any combination
thereof.

[0840] In some embodiments, certain operations, acts,
events, or functions of any of the algorithms described
herein can be performed in a different sequence, can be
added, merged, or left out altogether (e.g., not all are
necessary for the practice of the algorithms). In certain
embodiments, operations, acts, functions, or events can be
performed concurrently, e.g., through multi-threaded pro-
cessing, interrupt processing, or multiple processors or pro-
cessor cores or on other parallel architectures, rather than
sequentially.

[0841] Systems and modules described herein may com-
prise software, firmware, hardware, or any combination(s)
of software, firmware, or hardware suitable for the purposes
described. Software and other modules may reside and
execute on servers, workstations, personal computers, com-
puterized tablets, PDAs, and other computing devices suit-
able for the purposes described herein. Software and other
modules may be accessible via local computer memory, via
a network, via a browser, or via other means suitable for the
purposes described herein. Data structures described herein
may comprise computer files, variables, programming
arrays, programming structures, or any electronic informa-
tion storage schemes or methods, or any combinations
thereof, suitable for the purposes described herein. User
interface elements described herein may comprise elements
from graphical user interfaces, interactive voice response,
command line interfaces, and other suitable interfaces.

[0842] Further, processing of the various components of
the illustrated systems can be distributed across multiple
machines, networks, and other computing resources. Two or
more components of a system can be combined into fewer
components. Various components of the illustrated systems
can be implemented in one or more virtual machines or an
isolated execution environment, rather than in dedicated
computer hardware systems and/or computing devices.
Likewise, the data repositories shown can represent physical
and/or logical data storage, including, e.g., storage area
networks or other distributed storage systems. Moreover, in
some embodiments the connections between the compo-
nents shown represent possible paths of data flow, rather
than actual connections between hardware. While some
examples of possible connections are shown, any of the
subset of the components shown can communicate with any
other subset of components in various implementations.

[0843] Embodiments are also described above with refer-
ence to flow chart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-

Aug. 4, 2022

ucts. Each block of the flow chart illustrations and/or block
diagrams, and combinations of blocks in the flow chart
illustrations and/or block diagrams, may be implemented by
computer program instructions. Such instructions may be
provided to a processor of a general purpose computer,
special purpose computer, specially-equipped computer
(e.g., comprising a high-performance database server, a
graphics subsystem, etc.) or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor(s) of the com-
puter or other programmable data processing apparatus,
create means for implementing the acts specified in the flow
chart and/or block diagram block or blocks. These computer
program instructions may also be stored in a non-transitory
computer-readable memory that can direct a computer or
other programmable data processing apparatus to operate in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the acts
specified in the flow chart and/or block diagram block or
blocks. The computer program instructions may also be
loaded to a computing device or other programmable data
processing apparatus to cause operations to be performed on
the computing device or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computing device or other
programmable apparatus provide steps for implementing the
acts specified in the flow chart and/or block diagram block
or blocks.

[0844] Any patents and applications and other references
noted above, including any that may be listed in accompa-
nying filing papers, are incorporated herein by reference.
Aspects of the invention can be modified, if necessary, to
employ the systems, functions, and concepts of the various
references described above to provide yet further implemen-
tations of the invention. These and other changes can be
made to the invention in light of the above Detailed Descrip-
tion. While the above description describes certain examples
of the invention, and describes the best mode contemplated,
no matter how detailed the above appears in text, the
invention can be practiced in many ways. Details of the
system may vary considerably in its specific implementa-
tion, while still being encompassed by the invention dis-
closed herein. As noted above, particular terminology used
when describing certain features or aspects of the invention
should not be taken to imply that the terminology is being
redefined herein to be restricted to any specific characteris-
tics, features, or aspects of the invention with which that
terminology is associated. In general, the terms used in the
following claims should not be construed to limit the inven-
tion to the specific examples disclosed in the specification,
unless the above Detailed Description section explicitly
defines such terms. Accordingly, the actual scope of the
invention encompasses not only the disclosed examples, but
also all equivalent ways of practicing or implementing the
invention under the claims.

[0845] To reduce the number of claims, certain aspects of
the invention are presented below in certain claim forms, but
the applicant contemplates other aspects of the invention in
any number of claim forms. For example, while only one
aspect of the invention is recited as a means-plus-function
claim under 35 U.S.C sec. 112(f) (AIA), other aspects may
likewise be embodied as a means-plus-function claim, or in
other forms, such as being embodied in a computer-readable

US 2022/0245156 Al

medium. Any claims intended to be treated under 35 U.S.C.
§ 112(f) will begin with the words “means for,” but use of
the term “for” in any other context is not intended to invoke
treatment under 35 U.S.C. § 112(f). Accordingly, the appli-
cant reserves the right to pursue additional claims after filing
this application, in either this application or in a continuing
application.

7.0 Example Embodiments

[0846] Various example embodiments of methods, sys-
tems, and non-transitory computer-readable media relating
to features described herein can be found in the following
clauses:

[0847] Clause 1. A method, comprising:

[0848] obtaining, by a streaming data processing system,
a first input defining a set of data streams and a set of stream
schemas, wherein each stream schema of the set of stream
schemas defines how a corresponding data stream routes
data, wherein a first data stream of the set of data streams
obtains data from a data source and a second data stream of
the set of data streams writes data to a data sink;

[0849] obtaining, by the streaming data processing sys-
tem, a second input defining a processing pipeline, wherein
the processing pipeline performs one or more data transfor-
mations, wherein the processing pipeline obtains data from
the first data stream and writes data to the second data
stream;

[0850] receiving, by the streaming data processing system,
a set of data from the data source;

[0851] based at least in part on the first input, routing, by
the streaming data processing system, the set of data from
the data source to the processing pipeline via the first data
stream, wherein the set of data is compatible with a first
stream schema of the set of stream schemas associated with
the first data stream;

[0852] based at least in part on the second input, perform-
ing, by the streaming data processing system, the one or
more data transformations on the set of data to generate a set
of transformed data; and

[0853] based at least in part on the first input, routing, by
the streaming data processing system, the set of transformed
data from the processing pipeline to the data sink via the
second data stream.

[0854] Clause 2. The method of Clause 1, wherein the first
data stream comprises a first user defined data stream and the
second data stream comprises a second user defined data
stream.

[0855] Clause 3. The method of Clause 1, wherein the data
source comprises a batch source or a streaming source.
[0856] Clause 4. The method of Clause 1, wherein the data
source comprises a first data source and the data sink
comprises a second data sink, wherein a third data stream of
the set of data streams obtains data from a second data
source and a fourth data stream of the set of data streams
writes data to a second data sink, wherein the processing
pipeline comprises a first pipeline, wherein the one or more
data transformations comprise one or more first data trans-
formations, wherein the set of data comprises a first set of
data, wherein the set of transformed data comprises a first set
of transformed data, the method further comprising:
[0857] obtaining, by the streaming data processing sys-
tem, a third input defining a second processing pipeline,
wherein the second processing pipeline performs one or
more second data transformations, wherein the second pro-

Aug. 4, 2022

cessing pipeline obtains data from the third data stream and
writes data to the fourth data stream;

[0858] receiving, by the streaming data processing system,
a second set of data from the second data source;

[0859] routing, by the streaming data processing system,
the second set of data from the second data source to the
second processing pipeline via the third data stream;
[0860] based at least in part on the third input, performing,
by the streaming data processing system, the one or more
second data transformations on the second set of data to
generate a second set of transformed data; and routing, by
the streaming data processing system, the second set of
transformed data from the second processing pipeline to the
second data sink via the fourth data stream.

[0861] Clause 5. The method of Clause 1, wherein the
second input indicates that the processing pipeline obtains
data from the first data stream and writes data to the second
data stream.

[0862] Clause 6. The method of Clause 1, wherein the
processing pipeline obtains data from a plurality of data
streams, the plurality of data streams comprising the first
data stream.

[0863] Clause 7. The method of Clause 1, wherein the
processing pipeline writes data to a plurality of data streams,
the plurality of data streams comprising the second data
stream.

[0864] Clause 8. The method of Clause 1, wherein the first
input comprises one or more of a stream name, a storage
quota, a data retention policy, or a read/write throughput
rate.

[0865] Clause 9. The method of Clause 1, wherein the set
of data comprises a first set of data, the method further
comprising:

[0866] obtaining, by the streaming data processing sys-
tem, a third input defining an updated first data stream,
wherein the updated first data stream comprises an update to
the first data stream, wherein the updated first data stream
obtains data from an updated data source;

[0867] receiving, by the streaming data processing system,
a second set of data from the updated data source; and

[0868] based at least in part on the third input, routing, by
the streaming data processing system, the second set of data
from the updated data source to the processing pipeline via
the updated first data stream.

[0869] Clause 10. The method of Clause 1, wherein one or
more of the first data stream or the second data stream is
associated with a topic.

[0870] Clause 11. The method of Clause 1, wherein the
first input is defined by a graphical control.

[0871] Clause 12. The method of Clause 1, wherein the
second input is defined by a graphical control.

[0872] Clause 13. The method of Clause 1, wherein one or
more of the first data stream or the second data stream
comprises an ingestion buffer.

[0873] Clause 14. The method of Clause 1, wherein one or
more of the first data stream or the second data stream
comprises an ingestion buffer, wherein one or more of the
first data stream or second data stream is associated with
buffer criteria, wherein the buffer criteria indicates one or
more of source or sourcetype of one or more of the first data
stream or the second data stream.

US 2022/0245156 Al

[0874] Clause 15. A computing system of a data ingestion
system, the computing system comprising:
[0875] a streaming data processing system configured to:

[0876] obtain a first input defining a set of data streams
and a set of stream schemas, wherein each stream
schema of the set of stream schemas defines how a
corresponding data stream routes data, wherein a first
data stream of the set of data streams obtains data from
a data source and a second data stream of the set of data
streams writes data to a data sink;

[0877] obtain a second input defining a processing
pipeline, wherein the processing pipeline performs one
or more data transformations, wherein the processing
pipeline obtains data from the first data stream and
writes data to the second data stream;

[0878] receive a set of data from the data source;

[0879] based at least in part on the first input, route the
set of data from the data source to the processing
pipeline via the first data stream, wherein the set of data
is compatible with a first stream schema of the set of
stream schemas associated with the first data stream;

[0880] based at least in part on the second input, per-
form the one or more data transformations on the set of
data to generate a set of transformed data; and

[0881] based at least in part on the first input, route the
set of transformed data from the processing pipeline to
the data sink via the second data stream.

[0882] Clause 16. The computing system of Clause 15,
wherein the first data stream comprises a first user defined
data stream and the second data stream comprises a second
user defined data stream.

[0883] Clause 17. The computing system of Clause 15,
wherein the processing pipeline comprises an ingestion
buffer.

[0884] Clause 18. Non-transitory computer readable
media comprising computer-executable instructions that,
when executed by a computing system of a streaming data
processing system, cause the computing system to:

[0885] obtain a first input defining a set of data streams
and a set of stream schemas, wherein each stream schema of
the set of stream schemas defines how a corresponding data
stream routes data, wherein a first data stream of the set of
data streams obtains data from a data source and a second
data stream of the set of data streams writes data to a data
sink;

[0886] obtain a second input defining a processing pipe-
line, wherein the processing pipeline performs one or more
data transformations, wherein the processing pipeline
obtains data from the first data stream and writes data to the
second data stream;

[0887] receive a set of data from the data source;

[0888] based at least in part on the first input, route the set
of data from the data source to the processing pipeline via
the first data stream, wherein the set of data is compatible
with a first stream schema of the set of stream schemas
associated with the first data stream;

[0889] based at least in part on the second input, perform
the one or more data transformations on the set of data to
generate a set of transformed data; and

[0890] based at least in part on the first input, route the set
of transformed data from the processing pipeline to the data
sink via the second data stream.

Aug. 4, 2022

[0891] Clause 19. The non-transitory computer readable
media of Clause 18, wherein the first input is defined by a
graphical control.

[0892] Clause 20. The non-transitory computer readable
media of Clause 18, wherein the second input is defined by
a graphical control.

[0893] Clause 21. A method, comprising:

[0894] causing display of a first graphical control of a
graphical user interface on a display device, the first graphi-
cal control enabling a user to define one or more data
streams;

[0895] causing display of a second graphical control of the
graphical user interface on the display device, the second
graphical control enabling the user to define one or more
processing pipelines, the second graphical control further
enabling the user to specify a data route that comprises the
one or more data streams and the one or more processing
pipelines;

[0896] implementing the one or more data streams and the
one or more processing pipelines based on the data route,
wherein each processing pipeline of the one or more pro-
cessing pipelines performs one or more corresponding data
transformations, wherein each data stream of the one or
more data streams obtains data from one or more of a first
processing pipeline of the one or more processing pipelines
or a data source and writes the data to one or more of a
second processing pipeline of the one or more processing
pipelines or a data sink; and

[0897] routing a set of data based at least in part on the
data route specified by the second graphical control.
[0898] Clause 22. The method of Clause 21, wherein a
data stream of the one or more data streams obtains the data
from the first processing pipeline and writes the data to the
second processing pipeline.

[0899] Clause 23. The method of Clause 21, wherein a
data stream of the one or more data streams obtains the data
from the data source and writes the data to the data sink.
[0900] Clause 24. The method of Clause 21, wherein the
processing pipeline obtains data from a first externally
defined data stream and writes data to a second externally
defined data stream.

[0901] Clause 25. The method of Clause 21, wherein the
processing pipeline obtains data from a first data stream of
the one or more data streams and writes data to a second data
stream of the one or more data streams.

[0902] Clause 26. The method of Clause 21, wherein the
data route indicates a relationship between the one or more
data streams and the one or more processing pipelines.
[0903] Clause 27. The method of Clause 21, wherein a
processing pipeline of the one or more processing pipelines
obtains data from a plurality of data streams of the one or
more data streams.

[0904] Clause 28. The method of Clause 21, wherein a
processing pipeline of the one or more processing pipelines
writes data to a plurality of data streams of the one or more
data streams.

[0905] Clause 29. The method of Clause 21, wherein the
first graphical control enables the user to define one or more
of a stream name, a storage quota, a data retention policy, or
a read/write throughput rate.

[0906] Clause 30. The method of Clause 21, wherein the
one or more data streams are associated with a topic.

US 2022/0245156 Al

[0907] Clause 31. The method of Clause 21, wherein the
one or more data streams comprise one or more ingestion
buffers.

[0908] Clause 32. The method of Clause 21, wherein the
one or more data streams comprise one or more ingestion
buffers, wherein the one or more data streams are associated
with buffer criteria, wherein the buffer criteria indicates one
or more of source or sourcetype of the one or more data
streams.

[0909] Clause 33. A computing system comprising:
[0910] memory;

[0911] a display device; and

[0912] one or more processing devices coupled to the

memory and configured to:

[0913] cause display of a first graphical control of a first
graphical user interface on the display device, the first
graphical control enabling a user to define one or more
data streams;

[0914] cause display of a second graphical control of a
second graphical user interface on the display device,
the second graphical control enabling the user to define
one or more processing pipelines, the second graphical
control further enabling the user to specify a data route
that comprises the one or more data streams and the one
or more processing pipelines;

[0915] implement the one or more data streams and the
one or more processing pipelines based on the data
route, wherein each processing pipeline of the one or
more processing pipelines performs one or more cor-
responding data transformations, wherein each data
stream of the one or more data streams obtains data
from one or more of a first processing pipeline of the
one or more processing pipelines or a data source and
writes the data to one or more of a second processing
pipeline of the one or more processing pipelines or a
data sink; and

[0916] route a set of data based at least in part on the
data route specified by the second graphical control.

[0917] Clause 34. The computing system of Clause 33,
wherein the data route indicates a relationship between the
one or more data streams and the one or more processing
pipelines.

[0918] Clause 35. The computing system of Clause 33,
wherein a data stream of the one or more data streams
obtains the data from the first processing pipeline and writes
the data to the second processing pipeline.

[0919] Clause 36. The computing system of Clause 33,
wherein a data stream of the one or more data streams
obtains the data from the data source and writes the data to
the data sink.

[0920] Clause 37. Non-transitory computer readable
media comprising computer-executable instructions that,
when executed by a computing system of a streaming data
processing system, cause the computing system to:

[0921] cause display of a first graphical control of a first
graphical user interface on a display device, the first graphi-
cal control enabling a user to define one or more data
streams;

[0922] cause display of a second graphical control of a
second graphical user interface on the display device, the
second graphical control enabling the user to define one or
more processing pipelines, the second graphical control

Aug. 4, 2022

further enabling the user to specify a data route that com-
prises the one or more data streams and the one or more
processing pipelines;

[0923] implement the one or more data streams and the
one or more processing pipelines based on the data route,
wherein each processing pipeline of the one or more pro-
cessing pipelines performs one or more corresponding data
transformations, wherein each data stream of the one or
more data streams obtains data from one or more of a first
processing pipeline of the one or more processing pipelines
or a data source and writes the data to one or more of a
second processing pipeline of the one or more processing
pipelines or a data sink; and

[0924] route a set of data based at least in part on the data
route specified by the second graphical control.

[0925] Clause 38. The non-transitory computer readable
media of Clause 37, wherein the data route indicates a
relationship between the one or more data streams and the
one or more processing pipelines.

[0926] Clause 39. The non-transitory computer readable
media of Clause 37, wherein a data stream of the one or
more data streams obtains the data from the first processing
pipeline and writes the data to the second processing pipe-
line.

[0927] Clause 40. The non-transitory computer readable
media of Clause 37, wherein a data stream of the one or
more data streams obtains the data from the data source and
writes the data to the data sink.

[0928] Clause 41. A method comprising:

[0929] obtaining, by a streaming data processing system,
a first input defining a first processing pipeline and a second
processing pipeline, wherein the first processing pipeline
performs one or more first data transformations and the
second processing pipeline performs one or more second
data transformations, wherein the first processing pipeline
obtains a set of data from a first externally defined data
stream and writes a first set of transformed data to a user
defined data stream, wherein the second processing pipeline
obtains the first set of transformed data from the user defined
data stream and writes a second set of transformed data to a
second externally defined data stream;

[0930] obtaining, by the streaming data processing sys-
tem, a second input defining the user defined data stream that
obtains the first set of transformed data from the first
processing pipeline and writes the first set of transformed
data to the second processing pipeline;

[0931] receiving, by the streaming data processing system,
the set of data from the first externally defined data stream;
[0932] based at least in part on the first input, performing,
by the streaming data processing system, the one or more
first data transformations on the set of data to generate the
first set of transformed data; and

[0933] based at least in part on the second input, routing,
by the streaming data processing system, the first set of
transformed data from the first processing pipeline to the
second processing pipeline via the user defined data stream;
[0934] based at least in part on the first input, performing,
by the streaming data processing system, the one or more
second data transformations on the first set of transformed
data to generate the second set of transformed data; and
[0935] based at least in part on the first input, routing, by
the streaming data processing system, the second set of
transformed data to the second externally defined data
stream via the second processing pipeline.

US 2022/0245156 Al

[0936] Clause 42. The method of Clause 41, wherein one
or more of the first externally defined data stream or the
second externally defined data stream comprises a stream of
data from a block storage service.
[0937] Clause 43. The method of Clause 41, wherein the
user defined data stream comprises a first user defined data
stream, wherein a second user defined data stream obtains a
third set of transformed data from a third processing pipeline
and writes the third set of transformed data to a fourth
processing pipeline, wherein the set of data comprises a first
set of data, the method further comprising:
[0938] receiving, by the streaming data processing system,
a second set of data from a third externally defined data
stream;
[0939] performing, by the streaming data processing sys-
tem, one or more second data transformations on the second
set of data to generate the third set of transformed data; and
[0940] routing, by the streaming data processing system,
the third set of transformed data from the third processing
pipeline to the fourth processing pipeline via the second user
defined data stream.
[0941] Clause 44. The method of Clause 41, wherein the
first input indicates that the first processing pipeline obtains
a set of data from a first externally defined data stream and
writes a first set of transformed data to a user defined data
stream and the second processing pipeline obtains the first
set of transformed data from the user defined data stream and
writes the second set of transformed data to the second
externally defined data stream.
[0942] Clause 45. The method of Clause 41, wherein the
first processing pipeline obtains data from a plurality of
externally defined data streams, the plurality of externally
defined data streams comprising the first externally defined
data stream.
[0943] Clause 46. The method of Clause 41, wherein the
second processing pipeline writes data to a plurality of
externally defined data streams, the plurality of externally
defined data streams comprising the second externally
defined data stream.
[0944] Clause 47. The method of Clause 41, wherein the
second input comprises one or more of a stream name, a
storage quota, a data retention policy, or a read/write
throughput rate.
[0945] Clause 48. The method of Clause 41, wherein the
user defined data stream is customizable.
[0946] Clause 49. The method of Clause 41, wherein the
user defined data stream is associated with a topic.
[0947] Clause 50. The method of Clause 41, wherein the
first input is defined by a graphical control.
[0948] Clause 51. The method of Clause 41, wherein the
second input is defined by a graphical control.
[0949] Clause 52. The method of Clause 41, wherein the
user defined data stream comprises an ingestion buffer.
[0950] Clause 53. The method of Clause 41, wherein the
user defined data stream comprises an ingestion buffer,
wherein the user defined data stream is associated with
buffer criteria, wherein the buffer criteria indicates one or
more of source or sourcetype for the user defined data
stream.
[0951] Clause 54. A computing system of a data ingestion
system, the computing system comprising:
[0952] a streaming data processing system configured to:
[0953] obtain a first input defining a first processing
pipeline and a second processing pipeline, wherein the

Aug. 4, 2022

first processing pipeline performs one or more first data
transformations and the second processing pipeline
performs one or more second data transformations,
wherein the first processing pipeline obtains a set of
data from a first externally defined data stream and
writes a first set of transformed data to a user defined
data stream, wherein the second processing pipeline
obtains the first set of transformed data from the user
defined data stream and writes a second set of trans-
formed data to a second externally defined data stream;

[0954] obtain a second input defining the user defined
data stream that obtains the first set of transformed data
from the first processing pipeline and writes the first set
of transformed data to the second processing pipeline;

[0955] receive the set of data from the first externally
defined data stream:;

[0956] Dased at least in part on the first input, perform
the one or more first data transformations on the set of
data to generate the first set of transformed data; and

[0957] Dased at least in part on the second input, route
the first set of transformed data from the first process-
ing pipeline to the second processing pipeline via the
user defined data stream;

[0958] Dased at least in part on the first input, perform
the one or more second data transformations on the first
set of transformed data to generate the second set of
transformed data; and

[0959] Dased at least in part on the first input, route the
second set of transformed data to the second externally
defined data stream via the second processing pipeline.

[0960] Clause 55. The computing system of Clause 54,
wherein the first processing pipeline obtains data from a
plurality of externally defined data streams, the plurality of
externally defined data streams comprising the first exter-
nally defined data stream.

[0961] Clause 56. The computing system of Clause 54,
wherein the second processing pipeline writes data to a
plurality of externally defined data streams, the plurality of
externally defined data streams comprising the second exter-
nally defined data stream.

[0962] Clause 57. The computing system of Clause 54,
wherein the user defined data stream is customizable.

[0963] Clause 58. Non-transitory computer readable
media comprising computer-executable instructions that,
when executed by a computing system of a streaming data
processing system, cause the computing system to:

[0964] obtain a first input defining a first processing pipe-
line and a second processing pipeline, wherein the first
processing pipeline performs one or more first data trans-
formations and the second processing pipeline performs one
or more second data transformations, wherein the first
processing pipeline obtains a set of data from a first exter-
nally defined data stream and writes a first set of transformed
data to a user defined data stream, wherein the second
processing pipeline obtains the first set of transformed data
from the user defined data stream and writes a second set of
transformed data to a second externally defined data stream;
[0965] obtain a second input defining the user defined data
stream that obtains the first set of transformed data from the
first processing pipeline and writes the first set of trans-
formed data to the second processing pipeline;

[0966] receive the set of data from the first externally
defined data stream;

US 2022/0245156 Al

[0967] based at least in part on the first input, perform the
one or more first data transformations on the set of data to
generate the first set of transformed data; and

[0968] based at least in part on the second input, route the
first set of transformed data from the first processing pipe-
line to the second processing pipeline via the user defined
data stream;

[0969] based at least in part on the first input, perform the
one or more second data transformations on the first set of
transformed data to generate the second set of transformed
data; and

[0970] based at least in part on the first input, route the
second set of transformed data to the second externally
defined data stream via the second processing pipeline.
[0971] Clause 59. The non-transitory computer readable
media of Clause 58, wherein the user defined data stream is
customizable.

[0972] Clause 60. The non-transitory computer readable
media of Clause 58, wherein the second input comprises one
or more of a stream name, a storage quota, a data retention
policy, or a read/write throughput rate.

[0973] Any of the above methods may be embodied within
computer-executable instructions which may be stored
within a data store or non-transitory computer-readable
media and executed by a computing system (e.g., a proces-
sor of such system) to implement the respective methods.

1. A method comprising:

obtaining, by a streaming data processing system, a first
input defining a first processing pipeline and a second
processing pipeline, wherein the first processing pipe-
line performs one or more first data transformations and
the second processing pipeline performs one or more
second data transformations, wherein the first process-
ing pipeline obtains a set of data from a first externally
defined data stream and writes a first set of transformed
data to a user defined data stream, wherein the second
processing pipeline obtains the first set of transformed
data from the user defined data stream and writes a
second set of transformed data to a second externally
defined data stream;

obtaining, by the streaming data processing system, a
second input defining the user defined data stream that
obtains the first set of transformed data from the first
processing pipeline and writes the first set of trans-
formed data to the second processing pipeline;

receiving, by the streaming data processing system, the
set of data from the first externally defined data stream;

based at least in part on the first input, performing, by the
streaming data processing system, the one or more first
data transformations on the set of data to generate the
first set of transformed data; and

based at least in part on the second input, routing, by the
streaming data processing system, the first set of trans-
formed data from the first processing pipeline to the
second processing pipeline via the user defined data
stream;

based at least in part on the first input, performing, by the
streaming data processing system, the one or more
second data transformations on the first set of trans-
formed data to generate the second set of transformed
data; and

based at least in part on the first input, routing, by the
streaming data processing system, the second set of

Aug. 4, 2022

transformed data to the second externally defined data
stream via the second processing pipeline.

2. The method of claim 1, wherein one or more of the first
externally defined data stream or the second externally
defined data stream comprises a stream of data from a block
storage service.

3. The method of claim 1, wherein the user defined data
stream comprises a first user defined data stream, wherein a
second user defined data stream obtains a third set of
transformed data from a third processing pipeline and writes
the third set of transformed data to a fourth processing
pipeline, wherein the set of data comprises a first set of data,
the method further comprising:

receiving, by the streaming data processing system, a

second set of data from a third externally defined data
stream;
performing, by the streaming data processing system, one
or more second data transformations on the second set
of data to generate the third set of transformed data; and

routing, by the streaming data processing system, the third
set of transformed data from the third processing pipe-
line to the fourth processing pipeline via the second
user defined data stream.

4. The method of claim 1, wherein the first input indicates
that the first processing pipeline obtains a set of data from a
first externally defined data stream and writes a first set of
transformed data to a user defined data stream and the
second processing pipeline obtains the first set of trans-
formed data from the user defined data stream and writes the
second set of transformed data to the second externally
defined data stream.

5. The method of claim 1, wherein the first processing
pipeline obtains data from a plurality of externally defined
data streams, the plurality of externally defined data streams
comprising the first externally defined data stream.

6. The method of claim 1, wherein the second processing
pipeline writes data to a plurality of externally defined data
streams, the plurality of externally defined data streams
comprising the second externally defined data stream.

7. The method of claim 1, wherein the second input
comprises one or more of a stream name, a storage quota, a
data retention policy, or a read/write throughput rate.

8. The method of claim 1, wherein the user defined data
stream is customizable.

9. The method of claim 1, wherein the user defined data
stream is associated with a topic.

10. The method of claim 1, wherein the first input is
defined by a graphical control.

11. The method of claim 1, wherein the second input is
defined by a graphical control.

12. The method of claim 1, wherein the user defined data
stream comprises an ingestion buffer.

13. The method of claim 1, wherein the user defined data
stream comprises an ingestion buffer, wherein the user
defined data stream is associated with buffer criteria,
wherein the buffer criteria indicates one or more of source or
sourcetype for the user defined data stream.

14. A computing system of a data ingestion system, the
computing system comprising:

a streaming data processing system configured to:

obtain a first input defining a first processing pipeline
and a second processing pipeline, wherein the first
processing pipeline performs one or more first data
transformations and the second processing pipeline

US 2022/0245156 Al

performs one or more second data transformations,
wherein the first processing pipeline obtains a set of
data from a first externally defined data stream and
writes a first set of transformed data to a user defined
data stream, wherein the second processing pipeline
obtains the first set of transformed data from the user
defined data stream and writes a second set of
transformed data to a second externally defined data
stream;

obtain a second input defining the user defined data
stream that obtains the first set of transformed data
from the first processing pipeline and writes the first
set of transformed data to the second processing
pipeline;

receive the set of data from the first externally defined
data stream;

based at least in part on the first input, perform the one
or more first data transformations on the set of data
to generate the first set of transformed data; and

based at least in part on the second input, route the first
set of transformed data from the first processing
pipeline to the second processing pipeline via the
user defined data stream,;

based at least in part on the first input, perform the one
or more second data transformations on the first set
of transformed data to generate the second set of
transformed data; and

based at least in part on the first input, route the second
set of transformed data to the second externally
defined data stream via the second processing pipe-
line.

15. The computing system of claim 14, wherein the first
processing pipeline obtains data from a plurality of exter-
nally defined data streams, the plurality of externally defined
data streams comprising the first externally defined data
stream.

16. The computing system of claim 14, wherein the
second processing pipeline writes data to a plurality of
externally defined data streams, the plurality of externally
defined data streams comprising the second externally
defined data stream.

17. The computing system of claim 14, wherein the user
defined data stream is customizable.

Aug. 4, 2022

18. Non-transitory computer readable media comprising
computer-executable instructions that, when executed by a
computing system of a streaming data processing system,
cause the computing system to:
obtain a first input defining a first processing pipeline and
a second processing pipeline, wherein the first process-
ing pipeline performs one or more first data transfor-
mations and the second processing pipeline performs
one or more second data transformations, wherein the
first processing pipeline obtains a set of data from a first
externally defined data stream and writes a first set of
transformed data to a user defined data stream, wherein
the second processing pipeline obtains the first set of
transformed data from the user defined data stream and
writes a second set of transformed data to a second
externally defined data stream;
obtain a second input defining the user defined data
stream that obtains the first set of transformed data
from the first processing pipeline and writes the first set
of transformed data to the second processing pipeline;

receive the set of data from the first externally defined
data stream;

based at least in part on the first input, perform the one or

more first data transformations on the set of data to
generate the first set of transformed data; and

based at least in part on the second input, route the first set

of transformed data from the first processing pipeline to
the second processing pipeline via the user defined data
stream;

based at least in part on the first input, perform the one or

more second data transformations on the first set of
transformed data to generate the second set of trans-
formed data; and

based at least in part on the first input, route the second set

of transformed data to the second externally defined
data stream via the second processing pipeline.

19. The non-transitory computer readable media of claim
18, wherein the user defined data stream is customizable.

20. The non-transitory computer readable media of claim
18, wherein the second input comprises one or more of a
stream name, a storage quota, a data retention policy, or a
read/write throughput rate.

#* #* #* #* #*

