| (12) S <sup>-</sup><br>(19) A | CANDARD PATENT(11) Application No. AU 2007211861 B2JSTRALIAN PATENT OFFICE                                                                                                                                    |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (54)                          | Title<br>Methods of Constructing Display Libraries of Genetic Packages for Members of a<br>Diverse Family of Peptides                                                                                         |
| (51)                          | International Patent Classification(s)         C12N 15/09 (2006.01)       C12N 15/10 (2006.01)         C07K 14/47 (2006.01)       C12N 15/66 (2006.01)         C07K 16/18 (2006.01)       C12Q 1/68 (2006.01) |
| (21)                          | Application No: <b>2007211861</b> (22) Date of Filing: <b>2007.08.21</b>                                                                                                                                      |
| (43)<br>(43)<br>(44)          | Publication Date:2007.09.06Publication Journal Date:2007.09.06Accepted Journal Date:2009.06.11                                                                                                                |
| (62)                          | Divisional of:<br>2001253589                                                                                                                                                                                  |
| (71)                          | Applicant(s)<br><b>Dyax Corp.</b>                                                                                                                                                                             |
| (72)                          | Inventor(s)<br>Nastri, Horacio Gabriel;Ladner, Robert Charles;Rookey, Kristin L.;Cohen, Edward<br>Hirsch;Hoet, Rene                                                                                           |
| (74)                          | Agent / Attorney<br>Cullen & Co, Level 26 239 George Street, Brisbane, QLD, 4000                                                                                                                              |

# ABSTRACT

Methods useful in constructing libraries that collectively display members of diverse families of peptides, polypeptides or proteins and the libraries produced using those methods. Methods of screening those libraries and the peptides, polypeptides or proteins identified by such screens.

AUSTRALIA Patents Act 1990

# COMPLETE SPECIFICATION FOR A STANDARD PATENT

Name of Applicant:

Dyax Corp.

Level 26

CULLEN & CO.

239 George Street Brisbane Qld 4000

Address for Service:

Invention Title:

Method of Constructing Display Libraries of Genetic Packages for Members of a Diverse Family of Peptides

The following statement is a full description of the invention, including the best method of performing it, known to us:

The present invention relates to constructing libraries of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family. In a preferred embodiment, the displayed polypeptides are human Fabs.

More specifically, the invention is directed to the methods of cleaving single-stranded nucleic acids at chosen locations, the cleaved nucleic acids encoding, at least in part, the peptides, polypeptides or proteins displayed on the genetic packages of the libraries of the invention. In a preferred embodiment, the genetic packages are filamentous phage or phagemids.

The present invention further relates to methods of screening the libraries of genetic packages that display useful peptides, polypeptides and proteins and to the peptides, polypeptides and proteins identified by such screening.

# **BACKGROUND OF THE INVENTION**

It is now common practice in the art to prepare libraries of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family. In many common libraries, the displayed peptides, polypeptides or proteins are related to antibodies. Often, they are Fabs or single chain antibodies.

In general, the DNAs that encode members of the families to be displayed must be amplified before they are cloned and used to display the desired member on the surface of a genetic package. Such amplification typically makes use of forward and backward primers.

Such primers can be complementary to sequences native to the DNA to be amplified or complementary to oligonucleotides attached at the 5' or 3' ends of that DNA. Primers that are complementary to sequences native to the DNA to be amplified are disadvantaged in that they bias the members of the families to be displayed. Only those members that contain a sequence in the native DNA that is substantially complementary to the primer will be amplified. Those that do not will be absent from the family. For those members that are amplified, any diversity within the primer region will be suppressed.

For example, in European patent 368,684 Bl, the primer that is used is at the 5' end of the  $V_H$  region of an antibody gene. It anneals to a sequence region in the native DNA that is said to be "sufficiently well conserved" within a single species. Such primer will bias the members amplified to those having this "conserved" region. Any diversity within this region is extinguished.

25

30

15

It is generally accepted that human antibody genes arise through a process that involves a combinatorial selection of V and J or V, D, and J followed by somatic mutations. Although most diversity occurs in the Complementary Determining Regions (CDRs), diversity also occurs in the more conserved Framework Regions (FRs) and at least some of this diversity confers or enhances specific binding to antigens (Ag). As a consequence, libraries should contain as much of the CDR and FR diversity as possible.

To clone the amplified DNAs for display on a genetic package of the peptides, polypeptides or proteins that they encode, the DNAs must be cleaved to produce appropriate ends for ligation to a vector. Such cleavage is generally effected using restriction endonuclease recognition sites carried on the primers. When the primers are at the 5' end of DNA produced from reverse transcription of RNA, such restriction leaves deleterious 5' untranslated regions in the amplified DNA. These regions interfere with expression of the cloned genes and thus the display of the peptides, polypeptides and proteins coded for by them.

## SUMMARY OF THE INVENTION

15 It is an object of this invention to provide novel methods for constructing libraries of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family. These methods are not biased toward DNAs that contain native sequences that are complementary to the primers used for amplification. They also enable any sequences that may be deleterious to expression to be removed from the amplified DNA before cloning and displaying.

20

25

It is another object of this invention to provide a method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:

- (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
- (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
- 30 the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate

such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

4

It is a further object of this invention to provide an alternative method for cleaving singlestranded nucleic acid sequences at a desired location, the method comprising the steps of:

(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II-S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site; and cleaving the nucleic acid solely at the cleavage site formed by the complementation of

the nucleic acid and the single-stranded region of the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage

being carried out using a restriction endonuclease that is active at the chosen temperature.

It is another objective of the present invention to provide a method of capturing DNA molecules that comprise a member of a diverse family of DNAs and collectively comprise at least a portion of the diversity of the family. These DNA molecules in single-stranded form have been cleaved by one of the methods of this invention. This method involves ligating the individual single-stranded DNA members of the family to a partially duplex DNA complex. The method comprises the steps of:

(i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper reading frame for expression and containing a restriction endonuclease recognition site 5' of those sequences; and

 (ii) cleaving the partially double-stranded oligonucleotide sequence solely at the restriction endonuclease recognition site contained within the double-stranded region of the partially double-stranded oligonucleotide.

15

20

25

It is another object of this invention to prepare libraries, that display a diverse family of peptides, polypeptides or proteins and collectively display at least part of the diversity of the family, using the methods and DNAs described above.

5

It is an object of this invention to screen those libraries to identify useful peptides, polypeptides and proteins and to use those substances in human therapy.

A definition of the specific embodiment of the invention as claimed herein follows.

In a broad embodiment of the invention, there is provided a library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family, the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising sequences encoding

- (a) a CDR1 having an amino acid sequence according to the formula -X<sub>1</sub>-Y-X<sub>2</sub>-M-X<sub>3</sub>-, wherein X<sub>1</sub>, X<sub>2</sub>, and X<sub>3</sub> are independently selected from the group consisting of A, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y, and
- (b) a CDR2 having an amino acid sequence according to the formula X<sub>4</sub>-I-X<sub>5</sub>-X<sub>6</sub>-S-G-G-X<sub>7</sub>-T-X<sub>8</sub>-Y-A-D-S-V-K-G-, wherein X<sub>4</sub> and X<sub>5</sub> are independently selected from the group consisting of Y, R, W, V, G, and S, X<sub>6</sub> is selected from the group consisting of P and S, and X<sub>7</sub> and X<sub>8</sub> are independently selected from the group consisting of A, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y.

# BRIEF DESCRIPTION OF THE DRAWINGS

20 FIG. 1 is a schematic of various methods that may be employed to amplify VH genes without using primers specific for VH sequences.

FIG. 2 is a schematic of various methods that may be employed to amplify VL genes without using VL sequences.

FIG. 3 depicts gel analysis of cleaved kappa DNA from Example 2.

FIG. 4 depicts gel analysis of cleaved kappa DNA from Example 2.

FIG. 5 depicts gel analysis of amplified kappa DNA from Example 2.

FIG. 6 depicts gel purified amplified kappa DNA from Example 2.

15

Sense strand

# 5'-ATG-3' codes for Met. 5 Antisense strand The lower strand of ds DNA as usually written. In the antisense strand, 3'-TAC-5' would correspond to a Met codon in the sense strand. Forward primer: A "forward" primer is complementary to a part of the sense strand and primes for synthesis of a new antisense-strand molecule. "Forward primer" and "lower-strand primer" are equivalent. 10 Backward primer: A "backward" primer is complementary to a part of the antisense strand and primes for synthesis of a new sense-strand molecule. "Backward primer" and "top-strand primer" are equivalent. Bases Bases are specified either by their position in a vector or gene as their position within a gene by codon and base. For example, "89.1" is the 15 first base of codon 89, 89.2 is the second base of codon 89. Sv Streptavidin Ampicillin Ap a A gene conferring ampicillin resistance 20 RË Restriction endonuclease URE Universal restriction endonuclease Functionally Complementary Two sequences are sufficiently complementary so as to anneal under the chosen conditions. RERS 25 Restriction endonuclease recognition site AA Amino acid PCR Polymerization chain reaction GLGs Germline genes

# TERMS

The upper strand of ds DNA as usually written. In the sense strand,

In this application, the following terms and abbreviations are used:

| 21 Aug 2007 | 5  | Ab   | Antibody: an immunoglobin. The term also covers any protein having<br>a binding domain which is homologous to an immunoglobin binding<br>domain. A few examples of antibodies within this definition are, <i>inter</i><br><i>alia</i> , immunoglobin isotypes and the Fab, $F(ab^1)_2$ , scfv, Fv, dAb and Fd<br>fragments. |
|-------------|----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1861        |    | Fab  | Two chain molecule comprising an Ab light chain and part of a heavy-chain.                                                                                                                                                                                                                                                  |
| 00721       |    | scFv | A single-chain Ab comprising either VH::linker::VL or VL::linker::VH                                                                                                                                                                                                                                                        |
| õ,          | 10 | w.t. | Wild type                                                                                                                                                                                                                                                                                                                   |
|             |    | НС   | Heavy chain                                                                                                                                                                                                                                                                                                                 |
|             |    | LC   | Light chain                                                                                                                                                                                                                                                                                                                 |
|             |    | VK   | A variable domain of a Kappa light chain.                                                                                                                                                                                                                                                                                   |
|             |    | VH   | A variable domain of a heavy chain.                                                                                                                                                                                                                                                                                         |
| I           | 15 | VL   | A variable domain of a lambda light chain.                                                                                                                                                                                                                                                                                  |
|             |    |      |                                                                                                                                                                                                                                                                                                                             |

In this application, all references referred to are specifically incorporated by reference.

# DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The nucleic acid sequences that are useful in the methods of this invention, i.e., those that encode at least in part the individual peptides, polypeptides and proteins displayed on the genetic packages of this invention, may be naturally occurring, synthetic or a combination thereof. They may be mRNA, DNA or cDNA. In the preferred embodiment, the nucleic acids encode antibodies. Most preferably, they encode Fabs.

The nucleic acids useful in this invention may be naturally diverse, synthetic diversity may be introduced into those naturally diverse members, or the diversity may be entirely synthetic. For example, synthetic diversity can be introduced into one or more CDRs of antibody genes.

Synthetic diversity may be created, for example, through the use of TRIM technology (U.S. 5,869,644). TRIM technology allows control over exactly which amino-acid types are allowed at variegated positions and in what proportions. In TRIM technology, codons to be diversified are

7

20

15

synthesized using mixtures of trinucleotides. This allows any set of amino acid types to be included in any proportion.

Another alternative that may be used to generate diversified DNA is mixed oligonucleotide synthesis. With TRIM technology, one could allow Ala and Trp. With mixed oligonucleotide synthesis, a mixture that included Ala and Trp would also necessarily include Ser and Gly. The amino-acid types allowed at the variegated positions are picked with reference to the structure of antibodies, or other peptides, polypeptides or proteins of the family, the observed diversity in germline genes, the observed somatic mutations frequently observed, and the desired areas and types of variegation.

In a preferred embodiment of this invention, the nucleic acid sequences for at least one CDR or other region of the peptides, polypeptides or proteins of the family are cDNAs produced by reverse transcription from mRNA. More preferably, the mRNAs are obtained from peripheral blood cells, bone marrow cells, spleen cells or lymph node cells (such as B-lymphocytes or plasma cells) that express members of naturally diverse sets of related genes. More preferable, the mRNAs encode a diverse family of antibodies. Most preferably, the mRNAs are obtained from patients suffering from at least one autoimmune disorder or cancer. Preferably, mRNAs containing a high diversity of autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, antiphospholipid syndrome and vasculitis are used.

In a preferred embodiment of this invention, the cDNAs are produced from the mRNAs using reverse transcription. In this preferred embodiment, the mRNAs are separated from the cell and degraded using standard methods, such that only the full length (i.e., capped) mRNAs remain. The cap is then removed and reverse transcription used to produce the cDNAs.

The reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, *e.g.*, HJ de Haard et al., *Journal of Biological Chemistry*, 274 (26) :18218-30

25 (1999). In the preferred embodiment of this invention where the mRNAs encode antibodies, primers that are complementary to the constant regions of antibody genes may be used. Those primers are useful because they do not generate bias toward subclasses of antibodies. In another embodiment, poly-dT primers may be used (and may be preferred for the heavy-chain genes).

Alternatively, sequences complementary to the primer may be attached to the termini of the 30 antisense strand.

In one preferred embodiment of this invention, the reverse transcriptase primer may be biotinylated, thus allowing the cDNA product to be immobilized *on* streptavidin (Sv) beads.

Immobilization can also be effected using a primer labeled at the 5' end with one of a) free amine group, b) thiol, c) carboxylic acid, or d) another group not found in DNA that can react to form a strong bond to a known partner on an insoluble medium. If, for example, a free amine (preferably primary amine) is provided at the 5' end of -a DNA primer, this amine can be reacted with carboxylic acid groups on a polymer bead using standard amide-forming chemistry. If such preferred immobilization is used during reverse transcription, the top strand RNA is degraded using well-known enzymes, such as a combination of RNAseH and RNAseA, either before or after immobilization.

The nucleic acid sequences useful in the methods of this invention are generally amplified before being used to display the peptides, polypeptides or proteins that they encode. Prior to amplification, the single-stranded DNAs may be cleaved using either of the methods described before. Alternatively, the single-stranded DNAs may be amplified and then cleaved using one of those methods.

Any of the well known methods for amplifying nucleic acid sequences may be used for such amplification. Methods that maximize, and do not bias, diversity are preferred. In a preferred embodiment of this invention where the nucleic acid sequences are derived from antibody genes, the present invention preferably utilizes primers in the constant regions of the heavy and light chain genes and primers to a synthetic sequence that are attached at the 5' end of the sense strand. Priming at such synthetic sequence avoids the use of sequences within the variable regions of the

20 antibody genes. Those variable region priming sites generate bias against V genes that are either of rare subclasses or that have been mutated at the priming sites. This bias is partly due to suppression of diversity within the primer region and partly due to lack of priming when many mutations are present in the region complementary to the primer. The methods disclosed in this invention have the advantage of not biasing the population of amplified antibody genes for particular V gene types.

25 The synthetic sequences may be attached to the 5' end of the DNA strand by various methods well known for ligating DNA sequences together. RT CapExtention is one preferred method.

In RT CapExtention (derived from Smart PCR<sup>TM</sup>) a short overlap (5<sup>1</sup> -...GGG-3' in the upperstrand primer (USP-GGG) complements 3'-CCC....5' in the lower strand) and reverse transcriptases are used so that the reverse complement of the upper-strand primer is attached to the lower strand.

30

In a preferred embodiment of this invention, the upper strand or lower strand primer may be also biotinylated or labeled at the 5' end with *one* of a) free amino group, b) thiol, c) carboxylic acid and d) another group not found in DNA that can react to form a strong bond to a known partner as an

insoluble medium. These can then be used to immobilize the labeled strand after amplification. The immobilized DNA can be either single or double-stranded.

FIG. 1 shows a schematic of the amplification of VH genes. FIG. 1, Panel A shows a primer specific to the poly-dT region of the 3' UTR priming synthesis of the first, lower strand. Primers that bind in the constant region are also suitable. Panel B shows the lower strand extended at its 3' end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3' terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5' biotinylated synthetic top-strand primer that replicates the 5' end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. Panel E shows immobilized double-stranded (ds) cDNA obtained by using a 5'-biotinylated top-strand primer.

FIG. 2 shows a similar schematic for amplification of VL genes. FIG. 2, Panel A shows a primer specific to the constant region at or near the 3' end priming synthesis of the first, lower strand.
Primers that bind in the poly-dT region are also suitable. Panel B shows the lower strand extended at its 3' end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3' terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5'
biotinylated synthetic top-strand primer that replicates the 5' end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. The bottom-strand primer also contains a useful restriction endonuclease site, such as *AscI*. Panel E shows immobilized ds cDNA obtained by using a 5'-biotinylated top-strand primer.

In FIGs. 1 and 2, each V gene consists of a 5' untranslated region (UTR) and a secretion signal, followed by the variable region, followed by a constant region, followed by a 3' untranslated region (which typically ends in poly-A). An initial primer for reverse transcription may be complementary to the constant region or to the poly A segment of the 3'-UTR. For human heavychain genes, a primer of 15 T is preferred. Reverse transcriptases attach several C residues to the 3' end of the newly synthesized DNA. RT CapExtention exploits this feature. The reverse

30 transcription reaction is first run with only a lower-strand primer. After about 1 hour, a primer ending in GGG (USP-GGG) and more RTase are added. This causes the lower-strand cDNA to be extended by the reverse complement of the USP-GGG up to the final GGG. Using one primer

15

20

25

diversity.

identical to part of the attached synthetic sequence and a second primer complementary to a region of known sequence at the 3' end of the sense strand, all the V genes are amplified irrespective of their V gene subclass.

After amplification, the DNAs of this invention are rendered single-stranded. For example, the strands can be separated by using a biotinylated primer, capturing the biotinylated product on streptavidin beads, denaturing the DNA, and washing away the complementary strand. Depending on which end of the captured DNA is wanted, one will choose to immobilize either the upper (sense) strand or the lower (antisense) strand.

To prepare the single-stranded amplified DNAs for cloning into genetic packages so as to effect display of the peptides, polypeptides or proteins encoded, at least in part, by those DNAs, they must be manipulated to provide ends suitable for cloning and expression. In particular, any 5' untranslated regions and mammalian signal sequences must be removed and replaced, in frame, by a suitable signal sequence that functions in the display host. Additionally, parts of the variable domains (in antibody genes) may be removed and replaced by synthetic segments containing synthetic diversity. The diversity of other gene families may likewise be expanded with synthetic

According to the methods of this invention, there are two ways to manipulate the singlestranded amplified DNAs for cloning. The first method comprises the steps of:

(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and

 (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage

30 being carried out using a restriction endonuclease that is active at the chosen temperature. In this first method, short oligonucleotides are annealed to the single-stranded DNA so that restriction endonuclease recognition sites formed within the now locally double-stranded regions of the DNA

can be cleaved. In particular, a recognition site that occurs at the same position in a substantial fraction of the single-stranded DNAs is identical.

For antibody genes, this can be done using a catalog of germline sequences. See, e.g., "http://www.mrc-cpc.cam.ac.uk/imt-doc/restricted/ok.htm 1." Updates can be obtained from this site under the heading "Amino acid and nucleotide sequence alignments." For other families, similar comparisons exist and may be used to select appropriate regions for cleavage and to maintain diversity.

For example, Table 195 depicts the DNA sequences of the FR3 regions of the 51 known human VH germline genes. In this region, the genes contain restriction endonuclease recognition sites shown in Table 200. Restriction endonucleases that cleave a large fraction of germline genes at the same site are preferred over endonucleases that cut at a variety of sites. Furthermore, it is preferred that there be only one site for the restriction endonucleases within the region to which the short oligonucleotide binds on the single-stranded DNA, *e.g.*, about 10 bases *on* either side of the restriction endonuclease recognition site.

An enzyme that cleaves downstream in FR3 is also more preferable because it captures fewer mutations in the framework. This may be advantageous is some *cases*. However, it is well known that framework mutations exist and confer and enhance antibody binding. The present invention, by choice of appropriate restriction site, allows all or part of FR3 diversity to be captured. Hence, the method also allows extensive diversity to be captured.

Finally, in the methods of this invention restriction endonucleases that are active between about 45° and about 75°C are used. Preferably enzymes that are active above 50°C, and more preferably active about 55°C, are used. Such temperatures maintain the nucleic acid sequence to be cleaved in substantially single-stranded form.

Enzymes shown in Table 200 that cut many of the heavy chain FR3 germline genes at a single
position include: *Mae*III(24@4), *Tsp*45I(21@4), *Hph*I(44@5), *Bsa*JI(23@65), *Alu*I(23@47), *Blp*I(21@48), *Dde*I(29@58), *Bg*/II(10@61), *Ms*II(44@72), *Bsi*EI(23@74), *Eae*I(23@74), *Eag*I(23@74), *Hae*III(25@75), *Bst*4CI(51@86), *Hpy*CH4III(51@86), *Hin*fI(38@2), *Mly*I(18@2), *Ple*I(18@2), *Mnl*I(31@67), *Hpy*CE4V(21@44), *Bsm*AI(16@11), *Bpm*I(19@12), *Xmn*I(12@30), and *Sac*I(11@51). (The notation used means, for example, that *Bsm*AI cuts 16 of the FR3 germline genes
with a restriction endonuclease recognition site beginning at base 11 of FR3.)

For cleavage of human heavy chains in FR3, the preferred restriction endonucleases are: *Bst*4CI (or *Taa*I or *Hpy*CH4III), *Blp*I, *Hpy*CH4V, and *MsI*I. Because ACNGT (the restriction

endonuclease recognition site for Bst4CI, Taal, and HpyCH4III) is found at a consistent site in all the human FR3 germline genes, one of those enzymes is the most preferred for capture of heavy chain CDR3 diversity. BlpI and HpyCH4V are complementary. BlpI cuts most members of the VH1 and VH4 families while *Hpy*CH4V cuts most members of the VH3, VH5, VH6, and VH7 families. Neither enzyme cuts VH2s, but this is a very small family, containing only three members. Thus, these enzymes may also be used in preferred embodiments of the methods of this invention.

The restriction endonucleases HpyCH4III, Bst4CI, and Taal all recognize 5'-ACnGT-3' and cut upper strand DNA after n and lower strand DNA before the base complementary to n. This is the most preferred restriction endonuclease recognition site for this method on human heavy chains because it is found in all germline genes. Furthermore, the restriction endonuclease recognition region (ACnGT) matches the second and third bases of a tyrosine codon (tay.) and the following cysteine codon (tgy) as shown in Table 206. These codons are highly conserved, especially the cysteine in mature antibody genes.

Table 250 E shows the distinct oligonucleotides of length 22 (except the last one which is of 15 length 20) bases. Table 255 C shows the analysis of 1617 actual heavy chain antibody genes. Of these, 1511 have the site and match one of the candidate oligonucleotides to within 4 mismatches. Eight oligonucleotides account for most of the matches and are given in Table 250 F.I. The 8 oligonucleotides are very similar so that it is likely that satisfactory cleavage will be achieved with only one oligonucleotide (such as H43.77.97.1-02#l) by adjusting temperature, pH, salinity, and the

20 like. One or two oligonucleotides may likewise suffice whenever the germline gene sequences differ very little and especially if they differ very little close to the restriction endonuclease recognition region to be cleaved. Table 255 D shows a repeat analysis of 1617 actual heavy chain antibody genes using only the 8 chosen oligonucleotides. This shows that 1463 of the sequences match at least one of the oligonucleotides to within 4 mismatches and have the site as expected. Only 7 sequences have 25 a second *Fpy*CH4III restriction endonuclease recognition region in this region.

Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human heavy chains. Cleavage in FR1 allows capture of the entire CDR diversity of the heavy chain.

The germline genes for human heavy chain FR1 are shown in Table 217. Table 220 shows the restriction endonuclease recognition sites found in human germline genes FRIs. The preferred sites 30 are Bsgl(GTGCAG;39@4), BsoFl(GCngc;43@6, 11@9, 2@3, 1@12), Tsel(Gcwgc;43@6, 11@9, 2@3, 1@12), MspAll(CMGckg;46@7, 2@1), Pvull(CAGctg;46@7, 2@1), Alul(AGct;48@8, 2@2),

*Dde*I(Ctnag;22@52, 9@48), *Hph*I(tcacc;22@80), *Bss*KI(Nccngg;35@39, 2@40), *Bsa*JI(Ccnngg;32@40, 2@41), *Bst*NI(CCwgg; 33@40), *Scr*FI(CCngg;35@40, 2@41), *Eco*O109I(RGgnccy;22@46, 11@43), *Sau*96I(Ggncc;23@47, 11@44), *Ava*II(Ggwcc;23@47, 4@44), *Ppu*MI(RGgwccy;22@46, 4@43), *Bsm*FI(gtccc;20@48), *Hin*fI(Gantc;34@16, 21@56, 21@77), *Tfi*I (21@77), *Mly*I (GAGTC;34@16), *Mly*I(gactc;21@56), and *Alw*NI(CAGnnnctg;22@68). The more preferred sites are *Msp*AI and *Pvu*II. *Msp*AI and *Pvu*II have 46 sites at 7-12 and 2 at 1-6. To avoid cleavage at both sites, oligonucleotides

are used that do not fully cover the site at 1-6. Thus, the DNA will not be cleaved at that site. We have shown that DNA that extends 3, 4, or 5 bases beyond a *PvulI*-site can be cleaved efficiently.

Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FRI of human kappa light chains. Table 300 shows the human kappa FRI germline genes and Table 302 shows restriction endonuclease recognition sites that are found in a substantial number of human kappa FR1 germline genes at consistent locations. Of the restriction endonuclease recognition sites listed, *Bsm*AI and *PfI*FI are the most preferred enzymes. *Bsm*AI sites are found at base 18 in 35 of 40 germline genes. *PfI*FI sites are found in 35 of 40 germline genes at base 12.

Another example of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of the human lambda light chain. Table 400 shows the 31 known human lambda FR1 germline gene sequences. Table 405 shows restriction endonuclease recognition sites found in human lambda FR1 germline genes. *Hin*f1 and *Dde*1 are the most preferred restriction endonucleases for cutting human lambda chains in FR1.

After the appropriate site or sites for cleavage are chosen, one or more short oligonucleotides are prepared so as to functionally complement, alone or in combination, the chosen recognition site. The oligonucleotides also include sequences that flank the recognition site in the majority of the amplified genes. This flanking region allows the sequence to anneal to the single-stranded DNA sufficiently to allow cleavage by the restriction endonuclease specific for the site chosen.

The actual length and sequence of the oligonucleotide depends on the recognition site and the conditions to be used for contacting and cleavage. The length must be sufficient so that the oligonucleotide is functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and solely at the desired location.

14

20

25

15

Typically, the oligonucleotides of this preferred method of the invention are about 17 to about 30 nucleotides in length. Below about 17 bases, annealing is too weak and above 30 bases there can be a loss of specificity. A preferred length is 18 to 24 bases.

15

Oligonucleotides of this length need not be identical complements of the germline genes. Rather, a few mismatches taken may be tolerated. Preferably, however, no more than 1-3 mismatches are allowed. Such mismatches do not adversely affect annealing of the oligonucleotide to the single-stranded DNA. Hence, the 15 two DNAs are said to be functionally complementary.

The second method to manipulate the amplified single-stranded DNAs of this invention for cloning comprises the steps of:

(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a Type II-S restriction endonuclease recognition site, whose cleavage site is located at a known distance from the recognition site; and

(ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage

being carried out using a restriction endonuclease that is active at the chosen temperature.

This second method employs Universal Restriction Endonucleases ("URE"). UREs are partially double-stranded oligonucleotides. The single-stranded portion or overlap of the URE consists of a DNA adapter that is functionally complementary to the sequence to be cleaved in the

25 single-stranded DNA. The double-stranded portion consists of a type II-S restriction endonuclease recognition site.

The URE method of this invention is specific and precise and can tolerate some (e.g., 1-3) mismatches in the complementary regions, i.e., it is functionally complementary to that region. Further, conditions under which the URE is used can be adjusted so that most of the genes that are amplified can be cut, reducing bias in the library produced from those genes.

The sequence of the single-stranded DNA adapter or overlap portion of the URE typically consists of about 14-22 bases. However, longer or shorter adapters may be used. The size depends

15

20

on the ability of the adapter to associate with its functional complement in the single-stranded DNA and the temperature used for contacting the URE and the single-stranded DNA at the temperature used for cleaving the DNA with the type II-S enzyme. The adapter must be functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that the cleavage may occur at the chosen temperature and at the desired location. We prefer single-stranded or overlap portions of 14-17 bases in length, and more preferably 18-20 bases in length.

The site chosen for cleavage using the URE is preferably one that is substantially conserved in the family of amplified DNAs. As compared to the first cleavage method of this invention, these sites do not need to be endonuclease recognition sites. However, like the first method, the sites chosen can be synthetic rather than existing in the native DNA. Such sites may be chosen by references to the sequences of known antibodies or other families of genes. For example, the sequences of many germline genes are reported at <u>http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html</u>. For example, one preferred site occurs near the end of FR3 -- codon 89 through the second base of codon 93. CDR3 begins at codon 95.

The sequences of 79 human heavy-chain genes are also available at <u>http://www.ncbi.nlm.nih.gov/entre2/nucleotide.html</u>. This site can be used to identify appropriate sequences for URE cleavage according to the methods of this invention. See, e.g., Table 8B.

Most preferably, one or more sequences are identified using these sites or other available sequence information. These sequences together are present in a substantial fraction of the amplified DNAs. For example, multiple sequences could be used to allow for known diversity in germline genes or for frequent somatic mutations. Synthetic degenerate sequences could also be used. Preferably, a sequence(s) that occurs in at least 65% of genes examined with no more than 2-3 mismatches is chosen URE single-stranded adapters or overlaps are then made to be complementary to the chosen regions. Conditions for using the UREs are determined empirically. These conditions

should allow cleavage of DNA that contains the functionally complementary sequences with no more than 2 or 3 mismatches but that do not allow cleavage of DNA lacking such sequences.

As described above, the double-stranded portion of the URE includes a Type II-S endonuclease recognition site. Any Type II-S enzyme that is active at a temperature necessary to

30 maintain the single-stranded DNA substantially in that form and to allow the single-stranded DNA adapter portion of the URE to anneal long enough to the single-stranded DNA to permit cleavage at the desired site may be used.

The preferred Type II-S enzymes for use in the URE methods of this invention provide asymmetrical cleavage of the single-stranded DNA. Among these are the enzymes listed in Table 800. The most preferred Type II-S enzyme is FokI.

17

When the preferred FokI containing URE is used, several conditions are preferably used to effect cleavage:

- (i) Excess of the URE over target DNA should be present to activate the enzyme. URE present only in equimolar amounts to the target DNA would yield poor cleavage of ssDNA because the amount of active enzyme available would be limiting.
- (ii) An activator may be used to activate part of the FokI enzyme to dimerize without causing cleavage. Examples of appropriate activators are shown in Table 510.
- (iii) The cleavage reaction is performed at a temperature between 45°-75°C, preferably above 50°C and most preferably above 55°C.

The UREs used in the prior art contained a 14-base single-stranded segment, a 10-base stem (containing a *Fok*I site), followed by the palindrome of the 10-base stem. While such UREs may be used in the methods of this invention, the preferred UREs of this invention also include a segment of three to eight bases (a loop) between the *Fok*I restriction endonuclease recognition site containing segments. In the preferred embodiment, the stem (containing the *Fok*I site) and its palindrome are also longer than 10 bases. Preferably, they are 10-14 bases in length. Examples of these "lollipop" URE adapters are shown in Table 5.

20 One example of using a URE to cleave an single-stranded DNA involves the FR3 region of human heavy chain. Table 508 shows an analysis of 840 full-length mature human heavy chains with the URE recognition sequences shown. The vast majority (718/840=0.85) will be recognized with 2 or fewer mismatches using five UREs (VHS881-1.1, VHS881-1.2, VHS881-2.1, VHS881-4.1, and VHS881-9.1). Each has a 2 0-base adaptor sequence to complement the germline gene, a

25 ten-base stem segment containing a *Fok*I site, a five base loop, and the reverse complement of the first stem segment. Annealing those adapters, alone or in combination, to single-stranded antisense heavy chain DNA and treating with *Fok*I in the presence of, *e.g.*, the activator FOKIact, will lead to cleavage of the antisense strand at the position indicated.

Another example of using a URE(s) to cleave a single-stranded DNA involves the FR1
 30 region of the human Kappa light chains. Table 512 shows an analysis of 182 full-length human kappa chains for matching by the four 19-base probe sequences shown. Ninety-six percent of the sequences match one of the probes with 2 or fewer mismatches. The URE adapters shown in Table

512 are for cleavage of the sense strand of kappa chains. Thus, the adaptor sequences are the reverse complement of the germline gene sequences. The URE consists of a ten-base stem, a five base loop, the reverse complement of the stem and the complementation sequence. The loop shown here is TTGTT, but other sequences could be used. Its function is to interrupt the palindrome of the stems so that formation of a lollypop monomer is favored over dimerization. Table 512 also shows where the sense strand is cleaved.

Another example of using a URE to cleave a single-stranded DNA involves the human lambda light chain. Table 515 shows analysis of 128 human lambda light chains for matching the four 19-base probes shown. With three or fewer mismatches, 88 of 128 (69%) of the chains match one of the probes. Table 515 also shows URE adapters corresponding to these probes.

Annealing these adapters to upper-strand ssDNA of lambda chains and treatment with *FokI* in the presence of FOKIact at a temperature at or above 45°C will lead to specific and precise cleavage of the chains. The conditions under which the short oligonucleotide sequences of the first method and the UREs of the second method are contacted with the single-stranded DNAs may be empirically determined. The conditions must be such that the single-stranded DNA remains in substantially single-stranded form.

More particularly, the conditions must be such that the single-stranded DNA does not form loops that may interfere with its association with the oligonucleotide sequence or the URE or that may themselves provide sites for cleavage by the chosen restriction endonuclease.

20 The effectiveness and specificity of short oligonucleotides (first method) and UREs (second method) can be adjusted by controlling the concentrations of the URE adapters/oligonucleotides and substrate DNA, the temperature, the pH, the concentration of metal ions, the ionic strength, the concentration of chaotropes (such as urea and formamide), the concentration of the restriction endonuclease (e.g., *Fokl*), and the time of the digestion. These conditions can be optimized with synthetic oligonucleotides having:

synthetic ongonacieonaes naving.

- 1) target germline gene sequences,
- 2) mutated target gene sequences, or
- 3) somewhat related non-target sequences.

The goal is to cleave most of the target sequences and minimal amounts of non-targets.

In the preferred embodiment of this invention, the single-stranded DNA is maintained in substantially that form using a temperature between 45°C to 75°C. More preferably, a temperature between 50°C and 60°C, most preferably between 55°C and 60°C is used. These temperatures are

15

employed both when contacting the DNA with the oligonucleotide or URE and when cleaving the DNA using the methods of this invention.

The two cleavage methods of this invention have several advantages. The first method allows the individual members of the family of single-stranded DNAs to be cleaved solely at one substantially conserved endonuclease recognition site. The method also does not require an endonuclease recognition site to be built in to the reverse transcription or amplification primers. Any native or synthetic site in the family can be used.

The second method has both of these advantages. In addition, the URE method allows the single-stranded DNAs to be cleaved at positions where no endonuclease recognition site naturally occurs or has been synthetically constructed.

Most importantly, both cleavage methods permit the use of 5' and 3' primers so as to maximize diversity and then cleavage to remove unwanted or deleterious sequences before cloning and display.

After cleavage of the amplified DNAs using one of the methods of this invention, the DNA is prepared for cloning. This is done by using a partially duplexed synthetic DNA adapter, whose terminal sequence is based on the specific cleavage site at which the amplified DNA has been cleaved.

The synthetic DNA is designed such that when it is ligated to the cleaved single-stranded DNA, it allows that DNA to be expressed in the correct reading frame so as to display the desired peptide, polypeptide or protein on the surface of the genetic package.

20 Preferably, the double-stranded portion of the adapter comprises the sequence of several codons that encode the amino acid sequence characteristic of the family of peptides, polypeptides or proteins up to the cleavage site. For human heavy chains, the amino acids of the 3-23 framework are preferably used to provide the sequences required for expression of the cleaved DNA. Preferably, the double-stranded portion of the adapter is about 12 to 100 bases in length. More preferably, about 20

- 25 to 100 bases are used. The double-standard region of the adapter also preferably contains at least one endonuclease recognition site useful for cloning the DNA into a suitable display vector (or a recipient vector used to archive the diversity). This endonuclease restriction site may be native to the germline gene sequences used to extend the DNA sequence. It may be also constructed using degenerate sequences to the native germline gene sequences. Or, it may be wholly synthetic.
- 30 The single-stranded portion of the adapter is complementary to the region of the cleavage in the single-stranded DNA. The overlap can be from about 2 bases up to about 15 bases. The longer

the overlap, the more efficient the ligation is likely to be. A preferred length for the overlap is 7 to 10. This allows some mismatches in the region so that diversity in this region may be captured.

20

The single-stranded region or overlap of the partially duplexed adapter is advantageous because it allows DNA cleaved at the chosen site, but not other fragments to be captured. Such fragments would contaminate the library with genes encoding sequences that will not fold into proper antibodies and are likely to be non-specifically sticky.

One illustration of the use of a partially duplexed adaptor in the methods of this invention involves ligating such adaptor to a human FR3 region that has been cleaved, as described above, at 5'-ACnGT- 3' using *Hpy*CH4III, *Bs*t4CI or *Taa*I.

Table 250 F.2 shows the bottom strand of the double-stranded portion of the adaptor for ligation to the cleaved bottom-strand DNA. Since the *Hpy*CH4III-site is so far to the right (as shown in Table 206), a sequence that includes the *AfI*II-site as well as the *Xba*I site can be added. This bottom strand portion of the partially-duplexed adaptor, H43.XAExt, incorporates both *Xba*I and *AfI*II-sites. The top strand of the double-stranded portion of the adaptor has neither site (due to planned mismatches in the segments opposite the *Xba*I and *AfI*II-sites of H43.XAExt), but will anneal very tightly to H43.XAExt. H43AExt contains only the *AfI*II-site and is to be used with the top strands H43.ABr1 and H43.ABr2 (which have intentional alterations to destroy the *AfI*II-site).

After ligation, the desired, captured DNA can be PCR amplified again, if desired, using in the preferred embodiment a primer to the downstream constant region of the antibody gene and a primer to part of the double-standard region of the adapter. The primers may also carry restriction endonuclease sites for use in cloning the amplified DNA.

After ligation, and perhaps amplification, of the partially double-stranded adapter to the single-stranded amplified DNA, the composite DNA is cleaved at chosen 5' and 3' endonuclease recognition sites.

The cleavage sites useful for cloning depend on the phage or phagemid into which the cassette will be inserted and the available sites in the antibody genes. Table 1 provides restriction endonuclease data for 75 human light chains. Table 2 shows corresponding data for 79 human heavy chains. In each Table, the endonucleases are ordered by increasing frequency of cutting. In these Tables, Nch is the number of chains cut by the enzyme and Ns is the number of sites (some chains

30 have more than one site).

20

From this analysis, *SfI*, *Not*, *AfII*, *ApaLI*, and *AscI* are very suitable. *SfiI* and *NotI* are preferably used in pCESI to insert the heavy-chain display segment. *ApaLI* and AscI are preferably used in pCESI to insert the light-chain display segment.

21

*Bst*EII-sites occur in 97% of germ-line JH genes. In rearranged V genes, only 54/79 (68%) of heavy-chain genes contain a J3stEII-Site and 7/61 of these contain two sites. Thus, 47/79 (59%) contain a single *Bst*EII-Site. An alternative to using *Bst*EII is to cleave *via* UREs at the end of JH and ligate to a synthetic oligonucleotide that encodes part of CHI.

One example of preparing a family of DNA sequences using the methods of this invention involves 15 capturing human CDR 3 diversity. As described above, mRNAs from various autoimmune patients is reverse transcribed into lower strand cDNA. After the top strand RNA is degraded, the lower strand is immobilized and a short oligonucleotide used to cleave the cDNA upstream of CDR3. A partially duplexed synthetic DNA adapter is then annealed to the DNA and the DNA is amplified using a primer to the adapter and a primer to the constant region (after FR4). The DNA is then cleaved using BstEII (in FR4) and a restriction endonuclease appropriate to the partially double-stranded adapter (e.g., *XbaI* and *AfI*II (in FR3)). The DNA is then ligated into a synthetic VH skeleton such as 3-23.

One example of preparing a single-stranded DNA that was cleaved using the URE method involves the human Kappa chain. The cleavage site in the sense strand of this chain is depicted in Table 512. The oligonucleotide kapextURE is annealed to the oligonucleotides (kaBROIUR, kaBR02UR, kaBR03UR, and kaBR04UR) to form a partially duplex DNA. This DNA is then ligated to the cleaved soluble kappa chains. The ligation product is then amplified using primers kapextUREPCR and CKForeAsc (which inserts a *Asc*I site after the end of C kappa). This product is then cleaved with *Apa*LI and *Asc*I and ligated to similarly cut recipient vector.

Another example involves the cleavageillustrated in Table 515. After cleavage, an extender
(0N\_LamExi33) and four bridge oligonucleotides (oN\_LamBi-133, ON\_LamB2-133, ON\_LamB3-133, and ON\_LamB4-133) are annealed to form a partially duplex DNA. That DNA is ligated to the cleaved lambda-chain sense strands. After ligation, the DNA is amplified with ON\_Lami33PCR and a forward primer specific to the lambda constant domain, such as CL2ForeAsc or CL7ForeAsc (Table 130). In human heavy chains, one can cleave almost all genes in FR4 (downstream, i.e. toward the 3' end of the sense strand, of CDR3) at a *Bst*EII-Site that occurs at a constant position in a very large

fraction of human heavy-chain V genes. One then needs a site in FR3, if only CDR3 diversity is to

be captured, in FR2, if CDR2 and CDR3 diversity is wanted, or in FR1, if all the CDR diversity is wanted. These sites are preferably inserted as part of the partially double-stranded adaptor.

22

The preferred process of this invention is to provide recipient vectors having sites that allow cloning of either light or heavy chains. Such vectors are well known and widely used in the art. A preferred phage display vector in accordance with this invention is phage MALIA3. This displays in gene III. The sequence of the phage MALIA3 is shown in Table 120A (annotated) and Table 12OB (condensed).

The DNA encoding the selected regions of the light or heavy chains can be transferred to the vectors using endonucleases that cut either light or heavy chains only very rarely. For example, light chains may be captured with ApaLI and AscI. Heavy-chain genes are preferably cloned into a recipient vector having Sfil, Ncol, Xbal, AfIll, BstEll, Apal, and Notl sites. The light chains are preferably moved into the library as ApaLI-AscI fragments. The heavy chains are preferably moved into the library as Sfil-Notl fragments.

Most preferably, the display is had on the surface of a derivative of M13 phage. The most 15 preferred vector contains all the genes of M13, an antibiotic resistance gene, and the display cassette. The preferred vector is provided with restriction sites that allow introduction and excision of members of the diverse family of genes, as cassettes. The preferred vector is stable against rearrangement under the growth conditions used to amplify phage.

In another embodiment of this invention, the diversity captured by the methods of the 20 present invention may be displayed in a phagemid vector (e.g., pCESI) that displays the peptide, polypeptide or protein on the III protein. Such vectors may also be used to store the diversity for subsequent display using other vectors or phage.

In another embodiment, the mode of display may be through a short linker to three possible anchor domains. One anchor domain being the final portion of M13 III ("IIIstump"), a second anchor being the full length III mature protein, and the third being the M13 VIII mature protein.

The IIIstump fragment contains enough of M13 III to assemble into phage but not the domains involved in mediating infectivity. Because the w.t. III and VIII proteins are present, the phage is unlikely to delete the antibody genes and phage that do delete these segments receive only a very small growth advantage. For each of the anchor domains, the DNA encodes the w.t. AA

30 sequence, but differs from the w.t. DNA sequence to a very high extent. This will greatly reduce the potential for homologous recombination between the display anchor and the w.t. gene that is also present.

20

Most preferably, the present invention uses a complete phage carrying an antibioticresistance gene (such as an ampicillin-resistance gene) and the display cassette. Because the w.t. iii and viii genes are present, the w.t. proteins are also present. The display cassette is transcribed from a regulatable promoter (e.g., PLac'z) • Use of a regulatable promoter allows control of the ratio of the fusion display gene to the corresponding w.t. coat protein. This ratio determines the average number of copies of the display fusion per phage (or phagemid) particle.

Another aspect of the invention is a method of displaying peptides, polypeptides or proteins (and particularly Fabs) on filamentous phage. In the most preferred embodiment this method displays FABs and comprises:

a)

obtaining a cassette capturing a diversity of segments of DNA encoding the elements:

Preg::RBS1::SSI::VL::CL::stop::RBS2::SS2::VH::CHI::linker::anchor::stop::, where Preg is a regulatable promoter, RBS1 is a first ribosome binding site, SSI is a signal sequence operable in the host strain, VL is a member of a diverse set of lightchain variable regions, CL is a light-chain constant region, stop is one or more stop codons, RBS2 is a second ribosome binding site, SS2 is a second signal\_sequence operable in the host strain, VH is a member of a diverse set of heavy-chain variable regions, CHI is an antibody heavy-chain first constant domain, linker is a sequence of amino acids of one to about 50 residues, anchor is a protein that will assemble into the filamentous phage particle and stop is a second example of one or more stop codons; and

b) positioning that cassette within the phagegenome to maximize the viability of the phage and to minimize the potential for deletion of the cassette or parts thereof.

The DNA encoding the anchor protein in the above preferred cassette should be designed to encode the same (or a closely related) amino acid sequence as is found in one of the coat proteins of the phage, but with a distinct DNA sequence. This is to prevent unwanted homologous recombination with the w.t. gene. In addition, the cassette should be placed in the intergenic region. The positioning and orientation of the display cassette can influence the behavior of the phage.

In one embodiment of the invention, a transcription terminator may be placed after the second stop of the display cassette above (e.g., Trp). This, will reduce interaction between the display cassette and other genes in the phage antibody display vector (PADV).

15

In another embodiment of the methods of this, invention, the phage or phagemid can display proteins other than Fab, by replacing the Fab portions indicated above, with other protein genes.

Various hosts can be used for growth of the display phage or phagemids of this invention. Such hosts are well known in the art. In the preferred embodiment, where Fabs are being displayed, the preferred host should grow at 30°C and be RecA- (to reduce unwanted genetic recombination) and EndA- (to make recovery of RF DNA easier). It is also preferred that the host strain be easily transformed by electroporation.

XLI-Blue MRF' satisfies most of these preferences, but does not grow well at 30°C. XLI-Blue MRF' does grow slowly at 38°C and thus is an acceptable host. TG-1 is also an acceptable host although it is RecA+ and EndA+. XLI-Blue MRF' is more preferred for the intermediate host used to accumulate diversity prior to final construction of the library.

After display, the libraries of this invention may be screened using well known and conventionally used techniques. The selected peptides, polypeptides or proteins may then be used to treat disease. Generally, the peptides, polypeptides or proteins for use in therapy or in pharmaceutical compositions are produced by isolating the DNA encoding the desired peptide, polypeptide or protein from the member of the library selected. That DNA is then used in conventional methods to produce the peptide, polypeptides or protein it encodes in appropriate host cells, preferably mammalian host cells, e.g., CHO cells. After isolation, the peptide, polypeptide or protein is used alone or with pharmaceutically acceptable compositions in therapy to treat disease.

20

# **EXAMPLES**

### Example 1: Capturing kappa chains with BsmAI:

A repertoire of human-kappa chain mRNAs was prepared by treating total or poly(A+)RNA isolated from a collection of patients having various autoimmune diseases with calf intestinal 25 phosphatase to remove the 5'-phosphate from all molecules that have them, such as ribosomal RNA, fragmented mRNA, tRNA and genomic DNA. Full length mRNA (containing a protective 7-methyl cap structure) is unaffected. The RNA is then treated with tobacco acid pyrophosphatase to remove the cap structure from full length mRNAs leaving a 5'-monophosphate group.

Full length mRNA's were modified with an adaptor at the 5' end and then reversed 30 transcribed and amplified using the GeneRACE<sup>™</sup> method and kit (Invitrogen). A 5' biotinylated

15

20

primer complementary to the adaptor and a 3' primer complementary to a portion of the construct region were used.

Approximately 2 micrograms (ug) of human kappa-chain (Igkappa) gene RACE material with biotin attached to 5'-end of upper strand was immobilized on 200 microliters (uL) of Seradyn magnetic beads. The lower strand was removed by washing the DNA with 2 aliquots 200 uL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 200 uL of 10 mM Tris (pH 7.5) 100 mM NaCl. The short oligonucleotides shown in Table 525 were added in 40 fold molar excess in 100 uL of NEB buffer 2 (50 mM NaCl, 10 inM Tris-HCl, 10 mM MgCl<sub>2</sub>, 1 mM dithiothreitol pH 7.9) to the dry beads. The mixture was incubated at 95°C for 5 minutes then cooled down to 55°C over 30 minutes. Excess oligonucleotide was washed away with 2 washes of NEB buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl<sub>2</sub>, 1 mM dithiothreitol pH 7.9). Ten units of BsmAI (NEB) were added in NEB buffer 3 and incubated for 1 h at 55°C. The cleaved downstream DNA was collected and purified over a Qiagen PCR purification column (FIGs. 3 and 4).

A partially double-stranded adaptor was prepared using the oligonucleotide shown in Table 525. The adaptor was added to the single-stranded DNA in 100 fold molar excess along with 1000 units of T4 DNA ligase (NEB) and incubated overnight at 16°C. The excess oligonucleotide was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using the primers kapPCRtl and kapfor shown in Table 525 for 10 cycles with the program shown in Table 530.

The soluble PCR product was run on a gel and showed a band of approximately 7 00 n, as expected (FIGs. 5 and 6). The DNA was cleaved with enzymes *Apa*LI and Ascl, gel purified, and ligated to similarly cleaved vector pCESI. The presence of the correct size insert was checked by PCR in several clones as shown in FIG. 15.

Table 500 shows the DNA sequence of a kappa light chain captured by this procedure. Table 501 shows a second sequence captured by this procedure. The closest bridge sequence was complementary to the sequence 5'-agccacc-3', but the sequence captured reads 5'-Tgccacc-3', showing that some mismatch in the overlapped region is tolerated.

Example 2: Construction of Synthetic CDR1 and CDR2 Diversity in V-3-23 VH 30 Framework

5

15

20

A synthetic Complementary Determinant Region (CDR) 1 and 2 diversity was constructed in the 3-23 VH framework in a two step process: first, a vector containing the 3-23 VH framework was constructed, and then, a synthetic CDR 1 and 2 was assembled and cloned into this vector.

For construction of the V3-23 framework, 8 oligos and two PCR primers (long oligonucleotides: TOPFR1A, BOTFR1B, BOTFR2, BOTFR3, F06, BOTFR4, ON-vgCl, and ON-vgC2 and primers: SFPRMET and BOTPCRPRIM, shown in Table 600) that overlap were designed based on the Genebank sequence of V323 VH. The design incorporated at least one useful restriction site in each framework region, as shown in Table 600. In Table 600, the segments that were synthesized are shown as bold, the overlapping regions are underscored, and the PCR priming regions at each end are underscored. A mixture of these 8 oligos was combined at a final concentration of 2.5uM in a 20ul Polymerase Chain Reaction (PCR) reaction. The PCR mixture contained 200uM dNTPs, 2.5mM MgCl<sub>2</sub>, 0.02U Pfu Turbo<sup>™</sup> DNA Polymerase, 1U Qiagen HotStart Taq DNA Polymerase, and IX Qiagen PCR buffer. The PCR program consisted of 10 cycles of 94°C for 30s, 55°C for 30s, and 72°C for 30s. The assembled V3-23 DNA sequence was then amplified, using 2.5ul of a 10fold dilution from the initial PCR in IOOul PCR reaction. The PCR reaction contained 200uM dNTPs, 2.5mM MgCl<sub>2</sub>, 0.02U Pfu Turbo™ DNA Polymerase, 1U Qiagen HotStart Taq DNA Polymerase, IX Qiagen PCR Buffer and 2 outside primers (SFPRMET and BOTPCRPRIM) at a concentration of luM. The PCR program consisted of 23 cycles at 94°C for 30s, 55°C for 30s, and 72°C for 60s. The V3-23 VH DNA sequence was digested and cloned into pCESI (phagemid vector) using the Sfil and BstEII restriction endonuclease sites (All restriction enzymes mentioned herein were supplied by New England BioLabs, Beverly, MA and used as per manufacturer's instructions).

Stuffer sequences (shown in Table 610 and Table 620) were introduced into pCESI to replace CDR1/CDR2 sequences (900 bases between *Bsp*EI and *Xba*I RE sites) and CDR3 sequences (358 bases between *Afl*II and *Bst*EII), prior to cloning the CDR1/CDR2 diversity. The new vector is pCES5 and its sequence is given in Table 620. Having stuffers in place of the CDRs avoids the risk that a parental sequence would be over-represented in the library. The CDR1-2 stuffer contains restriction sites for *Bgl*II, *Bsu*36I, *Bcl*I, *Xcm*I, *Mlu*I, *Pvu*II, *Hpa*I, and *Hin*cII, the underscored sites being unique within the vector pCES5. The stuffer that replaces CDR3 contains the unique

30 restriction endonuclease site *Rsr*II. The stuffer sequences are fragments from the penicillase gene of *E. coli*.

For the construction of the CDR1 and CDR2 diversity, 4 overlapping oligonucleotides (ON-vgCl, 0N\_Brl2, ON\_CD2Xba, and ON-vgC2, shown in Table 600 and Table 630) encoding CDR1/2, plus flanking regions, were designed. A mix of these 4 oligos was combined at a final concentration of 2.5uM in a 40ul PCR reaction. Two of the 4 oligos contained variegated sequences positioned at the CDR1 and the CDR2. The PCR mixture contained 200uM dNTPs, 2. 5U Pwo DNA Polymerase (Roche), and IX Pwo PCR buffer with 2mM MgSO<sub>4</sub>. The PCR program consisted of 10 cycles at 94°C for 30s, 60°C for 30s, and 72°C for 60s. This assembled CDR1/2 DNA sequence was amplified, using 2.5ul of the mixture in l00ul PCR reaction. The PCR reaction contained 200uM dNTPs, 2.5U Pwo DNA Polymerase, IX Pwo PCR Buffer with 2mM MgSO<sub>4</sub> and 2 outside primers at a concentration of luM. The PCR program consisted of 10 cycles at 94°C for 30s, 60°C for 60s. These variegated sequences were digested and cloned into the V3-23 framework in place of the CDR1/2 stuffer.

27

We obtained approximately  $7 \times 10^7$  independent transformants. Into this diversity, we can clone CDR3 diversity either from donor populations or from synthetic DNA.

It will be understood that the foregoing is only illustrative of the principles of this invention and that various modifications can be made by those skilled in the art without departing from the scope of and sprit of the invention.

The term "comprise" and variants of the term such as "comprises" or "comprising" are used herein to denote the inclusion of a stated integer or stated integers but not to exclude any other integer or any other integers, unless in the context or usage an exclusive interpretation of the term is required.

Any reference to publications cited in this specification is not an admission that the disclosures constitute common general knowledge in Australia.

20

The claims defining the invention are as follows:

1. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family, the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising sequences encoding

(a) (b) (c) (c)

- (a) a CDR1 having an amino acid sequence according to the formula -X<sub>1</sub>-Y-X<sub>2</sub>-M-X<sub>3</sub>-, wherein X<sub>1</sub>, X<sub>2</sub>, and X<sub>3</sub> are independently selected from the group consisting of A, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y, and
- (b) a CDR2 having an amino acid sequence according to the formula X<sub>4</sub>-I-X<sub>5</sub>-X<sub>6</sub>-S-G-G-X<sub>7</sub>-T-X<sub>8</sub>-Y-A-D-S-V-K-G-, wherein X<sub>4</sub> and X<sub>5</sub> are independently selected from the group consisting of Y, R, W, V, G, and S, X<sub>6</sub> is selected from the group consisting of P and S, and X<sub>7</sub> and X<sub>8</sub> are independently selected from the group consisting of A, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y.

The library according to claim 1, wherein said DNA sequences further comprise
 sequences encoding the framework regions of VH 3-23.

3. The library according to claim 1 or claim 2, wherein said genetic packages are M13 phage.

4. The library according to claim 2, wherein said DNA sequences are in a phage vector.

The library according to claim 2, wherein said DNA sequences are in a phagemid
 vector.

6. The library according to any one of claims 1 to 5, wherein said displayed peptides, polypeptides, or proteins are displayed through a short linker to the final portion of M13 gene III.

A library as defined in claim 1 and substantially as hereinbefore described with
 reference to the examples.

Date: 22 August 2007





FIG /

1/128



# AMPLIFY VL GENES WITHOUT USING VL SEQUENCES



2/128

|                                         |                      |            | ·····   | •••••••••• | • • • • • •        |                                          |
|-----------------------------------------|----------------------|------------|---------|------------|--------------------|------------------------------------------|
|                                         |                      | •          | • . •   | ••         |                    |                                          |
|                                         |                      | • •        | ,       |            |                    |                                          |
|                                         | · · ·                |            | • •     |            | •                  |                                          |
|                                         |                      | •          | •       | ••••       |                    | •                                        |
|                                         | • •                  | <b>,</b> · | • •     | •          | •                  |                                          |
|                                         | •                    | . •        | _       | •          | • •                | • •                                      |
|                                         |                      |            | • • •   | •          | • •                |                                          |
|                                         | ·· · .               | •          | •       | • • .      | • • •              |                                          |
| Same and                                | • • •                | • •        | • .     | •          | • • • • •          |                                          |
|                                         |                      |            |         | •          |                    |                                          |
|                                         | Same a surged of the | •          | •       | •          |                    | 2121.221                                 |
|                                         |                      |            |         | •          |                    |                                          |
|                                         |                      | • •        | • • •   |            | Prochestical State | >                                        |
| Section.                                |                      | • .        |         | • • •      | • . •              | 1,243                                    |
| ginneric.                               | 22470,4940;          | <b>-</b> • |         |            |                    |                                          |
|                                         |                      | .*         |         | 1          |                    | A Strander.                              |
| Sectores -                              | • •                  | 40-56-     | •• •    |            | •                  |                                          |
|                                         |                      | *****      |         | . • ·      | • •                | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|                                         | • •                  | · · ·      | •       |            | •                  |                                          |
| See. 4                                  | ۰.                   |            | · . ' ' | · · · .    | •                  |                                          |
|                                         | •                    | • •        | ·       |            | • • •              |                                          |
|                                         | •                    | ••••       |         |            |                    |                                          |
| • • • •                                 | ••••                 | ·          |         |            | •                  |                                          |
| and the second                          |                      |            |         | . · ·      | 、                  | •• • •                                   |
|                                         |                      |            |         |            | a stat hade        | *****                                    |
| • • •                                   | •                    |            |         | • • •      | ~~~~~              | ••••                                     |
|                                         | · · ·                |            |         | • •        |                    |                                          |
| •                                       | · . · .              |            |         |            |                    | •                                        |
|                                         | •                    |            |         |            |                    | ·· ·                                     |
| · . •                                   | • •                  |            |         | · ·        |                    | •                                        |
| أترجره تست                              | • •                  |            |         | ,          |                    |                                          |
| · • • • • • • • • • • • • • • • • • • • | •                    |            |         | •          |                    | ·                                        |
| • • •                                   |                      |            |         |            |                    |                                          |
| -                                       | •                    |            |         |            |                    | • ,                                      |
| • • •                                   |                      |            |         |            |                    | • •                                      |
| · · · ·                                 | •                    |            |         |            |                    |                                          |
| • . •                                   | • •                  |            |         |            |                    |                                          |
|                                         | •                    |            |         |            |                    | •                                        |
| • _ •                                   | <i>.</i>             |            |         |            |                    | · . ·                                    |
| • • •                                   | · ·                  |            |         |            |                    | •                                        |
| •••                                     | . •                  |            |         |            |                    | • .                                      |
| • •                                     | • •                  |            |         |            |                    | . •                                      |
| • • •                                   | • • •                |            |         |            |                    |                                          |
| • • •                                   | • • •                |            |         |            |                    | •                                        |
|                                         | •• •• • • • • • •    |            |         |            |                    | • • •                                    |
|                                         |                      |            |         |            |                    | المستعيد وأوفر                           |
|                                         |                      |            |         |            |                    |                                          |

3/128

FIG. 3

|                    | <u>يەرەرد. دە</u> | ويو وي تحمد الم           | منه و روارو رو محقظ | in a second vige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-------------------|---------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | • • •             | •                         |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • •                | • • •             |                           | •                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                   | •                         | •                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                  |                   |                           |                     | • . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | -                 |                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ··· ·· ···         |                   |                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                   |                           |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | •                 |                           |                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                   | •                         |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                   |                           |                     | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | ÷                 |                           | •                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                   |                           | •                   | Constanting the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | in a state        | • • •                     | · • •               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                   |                           | •                   | "in a series of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | -                 | •••••                     | • _ • •             | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | ÷                 | • • •                     | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Line in the second |                   | •••••                     |                     | · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ·1 · · ·           | • • •             |                           |                     | Sel outer and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | -                 | بنوا وبطعه متعامو فرهنواه | • • •               | . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                   |                           | here been in        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | •                 |                           |                     | · · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | • •               |                           |                     | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                   | , -                       | • • •               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • • •.             | •                 |                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                  | 5                 |                           | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                  | E                 |                           | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | ••••              |                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5-13 1 (P.2-       | الي و مساحظ ب     |                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • •                |                   |                           |                     | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$ |

•

FIG. 4



FIG. 5



FIG. 6
| 7 | / | 1 | 28 |  |
|---|---|---|----|--|
|   |   |   |    |  |

| Table 1:      | Cleavage of 75        | human lig | ght | chains.                         |
|---------------|-----------------------|-----------|-----|---------------------------------|
| <u> </u>      | <u>e Recognition*</u> | Nch       | Ns  | <u>Planned</u> location of site |
| Afel          | I AGCgct              | 0         | 0   |                                 |
| Aflij         | [ Cttaag              | 0         | 0   | HC FR3                          |
| Agel          | I Accggt              | 0         | 0   |                                 |
| Ascl          | GGegegee              | ō         | ŏ   | After IC                        |
| Balli         | [ Agatet              | 0         | ň   |                                 |
| BsiWi         | - Ingueoc<br>Cataca   | 0         | 0   |                                 |
| BspDI         | ATcast                | 0         | 0   |                                 |
| RecHTI        | Googgo                | 0         | 0   |                                 |
| BetBI         | TTCCCC                | 0         | 0   |                                 |
| Dretti        | CACININATA            | 0         | 0   |                                 |
| Faci          | Creaning Ly           | 0         | 0   |                                 |
| Eag J         |                       | U         | 0   |                                 |
| Feni          |                       | 0         | 0   |                                 |
| Labi<br>Labi  | CTTLess               | 0         | 0   |                                 |
| npa:<br>Meat  |                       | 0         | 0   |                                 |
| MLei          | Caattg                | 0         | 0   | HC FR1                          |
| MIUI          | Acgogt                | 0         | 0   |                                 |
| NC01          | Ccatgg                | 0         | 0   | Heavy chain signal              |
| Nhel          | Getage                | 0         | 0   | HC/anchor linker                |
| Noti          | GCggccgc              | 0         | 0   | In linker after HC              |
| NruI          | TCGcga                | 0         | 0   |                                 |
| PacI          | TTAATtaa              | Ō         | ō   |                                 |
| Pme I         | GTTTaaac              | Ō         | õ   |                                 |
| PmlI          | CACgtg                | Ō         | õ   |                                 |
| PvuI          | CGATcg                | õ         | õ   |                                 |
| SacII         | CCGCqq                | Ő         | õ   |                                 |
| SalI          | Gtcgac                | õ         | ŏ   |                                 |
| SfiI          | GGCCNNNNnggee         | õ         | ŏ   | Heaver Chain cimel              |
| SqfI          | GCGATcac              | 0         | ň   | neavy chain signal              |
| SnaBI         | TACota                | Ő         | ň   |                                 |
| StuI          | AGGcct                | 0         | ő   |                                 |
| XbaI          | Tetaga                | Õ         | ň   | No 502                          |
| AatII         | GACGTC                | 1         | 1   |                                 |
| Aclī          | AAcatt                | 1         | 1   |                                 |
| Aset          | ATtaat                | 1         | 1   |                                 |
| BSmT          | GAATCON               | 1         | 1   |                                 |
| BSDET         | TCOCCA                | 1         | 4   |                                 |
| BetYT         | CCANADDIA             | 1         | 1   | HC FR1                          |
| DrdT          | CLANNNNNEgg           | 1         | 1   | HC FR2                          |
| HindIII       | GACNNNNNNGEC          | 1         | 1   |                                 |
|               | Aagett                | 1         | 1   |                                 |
| FCII          | Acatgt                | 1         | 1   |                                 |
| Sapi          | gaagagc               | 1         | 1   |                                 |
| SCAL<br>Soult | AGTACT                | 1         | 1   |                                 |
| SexAl         | ACCWggt               | 1         | 1   |                                 |
| Spei          | Actagt                | 1         | 1   |                                 |
|               | Ctcgag                | 1         | 1   |                                 |
| TOUY          | Ctegag                | 1         | 1   |                                 |
| Igoa          | cgannnnntgc           | 2         | 2   |                                 |
| BIDI          | GCTnage               | 2         | 2   |                                 |
| DSSSI         | Utcgtg                | 2         | 2   |                                 |
| BSTAPI        | GCANNNNntgc           | 2         | 2   |                                 |
| EspI          | GCtnage               | 2         | 2   |                                 |
| Kasī          | Ggegee                | 2         | 2   |                                 |
| PILMI         | CCANNNNntgg           | 2         | 2   |                                 |
| XmnI          | GAANNnnttc            | 2         | 2   |                                 |

|          |                 |    |      | 0,720     |     |
|----------|-----------------|----|------|-----------|-----|
| · ApalI  | Gtgcac          | 3  | 3    | LC signal | seq |
| NaeI     | GCCggc          | 3  | 3    | •         | -   |
| NgoMI    | Gccggc          | 3  | 3    |           |     |
| PvuII    | CAGetg          | 3  | 3    |           |     |
| RsrII    | CGgwccg         | 3  | 3    |           |     |
| BsrBI    | GAGcgg          | 4  | 4    |           |     |
| BsrDI    | GCAATGNNn       | 4  | 4    |           |     |
| BstZ17I  | GTAtac          | 4  | 4    |           |     |
| EcoRI    | Gaattc          | 4  | 4    |           |     |
| SphI     | GCATGC          | 4  | 4    |           |     |
| SspI     | AATatt          | 4  | 4    |           |     |
| AccI     | GTmkac          | 5  | 5    |           |     |
| BclI     | Tgatca          | 5  | 5    |           |     |
| BsmBI    | Nnnnngagacg     | 5  | 5    |           |     |
| BsrGI    | Tgtaca          | 5  | 5    |           |     |
| DraI     | TTTaaa          | 6  | 6    |           |     |
| Ndel     | CAtatg          | 6  | 6    | HC FR4    |     |
| SwaI     | ATTTaaat        | 6  | 6    |           |     |
| BamHI    | Ggatcc          | 7  | 7    |           |     |
| SacI     | GAGCTC          | 7  | 7    |           |     |
| BciVI    | GTATCCNNNNNN    | 6  | 8    |           |     |
| BsaBI    | GATNNnnatc      | 8  | 8    |           |     |
| NsiI     | ATGCAt          | 8  | 8    |           |     |
| Bsp120I  | Gggace          | 9  | 9    | CH1       |     |
| Apal     | GGGCCc          | 9  | 9    | CH1       |     |
| PspOOMI  | Gggccc          | 9  | 9    |           |     |
| BspHI    | Tcatga          | 9  | 11   |           |     |
| EcoRV    | GATatc          | 9  | 9    |           |     |
| AhdI     | GACNNNnngtc     | 11 | 11   |           |     |
| BbsI     | GAAGAC          | 11 | 14   |           |     |
| PsiI     | TTAtaa          | 12 | 12   |           |     |
| BsaI     | GGTCTCNnnnn     | 13 | 15   |           |     |
| XmaI     | Cccggg          | 13 | 14   |           |     |
| AvaI     | Cycgrg          | 14 | 16   |           |     |
| BglI     | GCCNNNNnggc     | 14 | 17   |           |     |
| AlwNI    | CAGNNNctg       | 16 | 16   |           |     |
| BspMI    | ACCTGC          | 17 | 19   |           |     |
| XcmI     | CCANNNNNnnntgg  | 17 | 26   |           |     |
| BstEII   | Ggtnacc         | 19 | 22   | HC FR4    |     |
| Sse8387I | CCTGCAgg        | 20 | 20   |           |     |
| AvrII    | Cctagg          | 22 | 22   |           |     |
| HincII   | GTYrac          | 22 | 22   |           |     |
| BsgI     | GTGCAG          | 27 | 29   |           |     |
| MscI     | TGGcca          | 30 | 34   |           |     |
| BseRI    | NNnnnnnnnctcctc | 32 | 35   |           |     |
| Bsu36I   | CCtnagg         | 35 | 37   |           |     |
| PstI     | CTGCAg          | 35 | 40   |           |     |
| EciI     | nnnnnnntccgcc   | 38 | 40   | ·         |     |
| PpuMI    | RGgwccy         | 41 | 50   |           |     |
| StyI     | Ccwwgg          | 44 | 73   |           |     |
| EC001091 | RGgnccy         | 46 | 70   |           |     |
| ACC65I   | Ggtacc          | 50 | 51   |           |     |
| KpnI     | GGTACC          | 50 | 51   |           |     |
| BpmI     | ctccag          | 53 | 82   |           |     |
| AvaII    | Ggwcc           | 71 | 124, |           |     |

\* cleavage occurs in the top strand after the last upper-case base. For REs

that cut palindromic sequences, the lower strand is cut at the symmetrical site.

Table 2: Cleavage of 79 human heavy chains

| Farme            | Deserved to the second |            |    | _ • · · ·                       |
|------------------|------------------------|------------|----|---------------------------------|
|                  | Recognition            | <u>Nch</u> | Ns | <u>Planned location of site</u> |
| ALUL<br>ASITT    | AGUGCT                 | 0          | 0  |                                 |
| WETTI            | Cttaag                 | 0          | 0  | HC FR3                          |
| ASCI             | GGcgcgcc               | 0          | 0  | After LC                        |
| BsiWI            | Cgtacg                 | 0          | 0  |                                 |
| BspDI            | ATcgat                 | 0          | 0  |                                 |
| BssHII           | Gcgcgc                 | 0          | 0  |                                 |
| Fsel             | GGCCGGcc               | 0          | 0  |                                 |
| Hpal             | GTTaac                 | 0          | 0  |                                 |
| NheI             | Gctage                 | 0          | 0  | HC Linker                       |
| NotI             | GCggccgc               | 0          | 0  | In linker, HC/anchor            |
| NruI             | TCGcga                 | 0          | Ō  |                                 |
| NsiI             | ATGCAL                 | õ          | ŏ  |                                 |
| PacI             | TTAATtaa               | õ          | ŏ  |                                 |
| PciI             | Acatot                 | Ō          | ŏ  |                                 |
| Pme I            | GTTTaaac               | õ          | ñ  |                                 |
| PvuI             | CGATCO                 | ñ          | ñ  |                                 |
| RsrII            | CGawcca                | ñ          | õ  |                                 |
| SapI             | gaagagg                | õ          | ň  |                                 |
| SfiI             | GGCCNNNNDGGCC          | ő          | ň  |                                 |
| Safi             | GCGATege               | 0          | õ  | ne signal sed                   |
| Swal             | ATTTaaat               | 0          | 0  |                                 |
| AclI             | AAcatt                 | 1          | 1  |                                 |
| Agel             | Accast                 | 1          | 1  |                                 |
| AseT             | ATteat                 | 1          | -  |                                 |
| AvrTT            | Cctagg                 | 1          | 1  |                                 |
| BsmT             | GAATGON                | 1          | 7  |                                 |
| BSTRI            | GAGCAA                 | 1          | 1  |                                 |
| BsrDI            | GCAATCNND              | 1          | 1  |                                 |
| Dral             | TTT a a a              | 1          | 1  |                                 |
| FenI             | TECCO                  | 1          | 1  |                                 |
| HindITT          | locyca<br>Dagott       | 4          | Ţ  |                                 |
| MfoT             |                        | 1          | 1  |                                 |
| Nact             | Carty                  | 1          | 1  | HC FR1                          |
| Nael             | Guuggo                 | 1          | 1  |                                 |
| NGOMI            |                        | 1          | 1  |                                 |
| Joséfi           | Actage                 | 1          | 1  |                                 |
| ACCOSI<br>Bet DT | Ggtacc                 | 2          | 2  |                                 |
| Vent             | 1TCgaa                 | 2          | 2  |                                 |
| Kpni<br>Mlut     | GGTACC                 | 2          | 2  |                                 |
| MIGI             | Acgegt                 | 2          | 2  |                                 |
| NCOT             | Ccatgg                 | 2          | 2  | In HC signal seq                |
| Ndel             | CAtatg                 | 2          | 2  | HC FR4                          |
| Pmli             | CACgtg                 | 2          | 2  |                                 |
| XcmI             | CCANNNNNnnntgg         | 2          | 2  |                                 |
| BCGI             | cgannnnntgc            | 3          | 3  |                                 |
| BclI             | Tgatca                 | 3          | 3  |                                 |
| BglI             | GCCNNNNnggc            | 3          | 3  |                                 |
| BsaBI            | GATNNnnatc             | 3          | 3  |                                 |
| BsrGI            | Tgtaca                 | 3          | 3  |                                 |
| SnaBI            | TACgta                 | 3          | 3  |                                 |
| Sse8387I         | CCTGCAgg               | 3          | 3  |                                 |

# 2007211861 21 Aug 2007

| | |

| Apall          | Gtgcac          |    | 4    | 4      | LC  | Si  | gnal/F | R1   |     |
|----------------|-----------------|----|------|--------|-----|-----|--------|------|-----|
| BspHI          | Tcatga          |    | 4    | 4      |     |     | J      |      |     |
| BssSI          | Ctcgtg          |    | 4    | 4      |     |     |        |      |     |
| PsiI           | TTAtaa          |    | 4    | 5      |     |     |        |      |     |
| SphI           | GCATGC          |    | 4    | 4      |     |     |        |      |     |
| AhdI           | GACNNNnngtc     | ļ  | 5.   | 5      |     |     |        |      |     |
| BspEI          | Teegga          | !  | 5    | 5      | HC  | FR  | 1      |      |     |
| MscI           | TGGcca          |    | 5    | 5      |     |     | -      |      |     |
| SacI           | GAGCTC          |    | 5 1  | ς<br>ς |     |     |        |      |     |
| Scal           | AGTact          |    | 5 0  | 5      |     |     |        |      |     |
| SexAI          | Accwagt         |    | 5    | ĥ      |     |     |        |      |     |
| SspI           | AATatt          |    | 5 9  | 5      |     |     |        |      |     |
| TliI           | Ctcgag          | ç  | 5    | 5      |     |     |        |      |     |
| XhoI           | Ctcgag          | 5  | 5 9  | 5      |     |     |        |      |     |
| BbsI           | GAAGAC          | 7  | 1 8  | 3      |     |     |        |      |     |
| BstAPI         | GCANNNNntgc     | 7  | 1 8  | 3      |     |     |        |      |     |
| BstZ17I        | GTAtac          | 7  |      | 7      |     |     |        |      |     |
| EcoRV          | GATatc          | 7  |      | 7      |     |     |        |      |     |
| ECORI          | Gaattc          | 8  | 8    | 3      |     |     |        |      |     |
| BlpI           | GCtnagc         | 9  | ) 9  | )      |     |     |        |      |     |
| Bsu36I         | CCtnagg         | 9  | ) 9  | 9      |     |     |        |      |     |
| DraIII         | CACNNNgtg       | 9  | 9    | )      |     |     |        |      |     |
| EspI           | GCtnagc         | 9  | 9    | )      |     |     |        |      |     |
| StuI           | AGGcct          | 9  | 13   | 3      |     |     |        | •    |     |
| Xbal           | Tctaga          | 9  | 9    | )      | HC  | FR3 | 3      |      |     |
| Bsp120I        | Gggeee          | 10 | 11   |        | СНЈ | L   |        |      |     |
| ApaI           | GGGCCc          | 10 | 11   |        | СН1 | _   |        |      |     |
| PspOOMI        | Gggccc          | 10 | 11   |        |     | -   |        |      |     |
| BciVI          | GTATCCNNNNNN    | 11 | 11   |        |     |     |        |      |     |
| Salı           | Gtcgac          | 11 | · 12 |        |     |     |        |      |     |
| DrdI           | GACNNNNnngtc    | 12 | 12   |        |     |     |        |      |     |
| KasI           | Ggcgcc          | 12 | 12   |        |     |     |        |      |     |
| Xma I          | Cccggg          | 12 | 14   | ·      |     |     |        |      |     |
| BglII          | Agatct          | 14 | 14   |        |     |     |        |      |     |
| HincII         | GTYrac          | 16 | 18   |        |     |     |        |      |     |
| BamHI          | Ggatcc          | 17 | 17   |        |     |     |        |      |     |
| PELMI          | CCANNNNtgg      | 17 | 18   |        |     |     |        |      |     |
| BSmBI          | Nnnnngagacg     | 18 | 21   |        |     |     |        |      |     |
| BstXI          | CCANNNNNntgg    | 18 | 19   | 1      | HC  | FR2 |        |      |     |
| Xmri I         | GAANNnnttc      | 18 | 18   |        |     |     |        |      |     |
| SacII          | CCGCgg          | 19 | 19   |        |     |     |        |      |     |
| PstI           | CTGCAg          | 20 | 24   |        |     |     |        |      |     |
| PVuII          | CAGctg          | 20 | 22   |        |     |     |        |      |     |
| Aval           | Cycgrg          | 21 | 24   |        |     |     |        |      |     |
| Eagl           | Cggccg          | 21 | 22   |        |     |     |        |      |     |
| Aatii          | GACGTC          | 22 | 22   |        |     |     |        |      |     |
| BSPMI          | ACCTGC          | 27 | 33   |        |     |     |        |      |     |
| ACCI           | GTmkac          | 30 | 43   |        |     |     |        |      |     |
| Styl           | Ccwwgg          | 36 | 49   |        |     |     |        |      |     |
| ALWNI          | CAGNNNCtg       | 38 | 44   |        |     |     |        |      |     |
| Bsal           | GGTCTCNnnnn     | 38 | 44   |        |     |     |        |      |     |
| PPUMI          | RGGWCCY         | 43 | 46   |        |     |     |        |      |     |
| BSGI           | GTGCAG          | 44 | 54   |        |     |     |        |      |     |
| BSERI          | NNNnnnnnnctcctc | 48 | 60   |        |     |     |        |      |     |
| ECLI<br>B-LREE | nnnnnnntccgcc   | 52 | 57   |        |     |     |        |      |     |
| DSTEII         | Ggthace         | 54 | 61   | HC     | F   | c4, | 47/79  | have | one |
| PC001031       | Regnecy         | 54 | 86   |        |     |     |        |      |     |
| BbwT           | CTCCag          | 60 | 121  |        |     |     |        |      |     |
| AVAII          | Ggwcc           | 71 | 140  |        |     |     |        |      |     |

Table 5: Use of FokI as "Universal Restriction Enzyme" FokI - for dsDNA, | represents sites of cleavage sites of cleavage 5'-cac<u>GGATG</u>tg--nnnnnn|nnnnn-3'(SEQ ID NO:15) 3'-gtg<u>CCTAC</u>ac--nnnnnnnnnnnnn-5'(SEQ ID NO:16) RECOG NITion of FokI Case I 5'-...gtg|tatt-actgtgc..Substrate....-3' (SEQ ID NO:17) 3'-cac-ataaltgacacg-<u>qt</u>GTAGGcac\ 5'- caCATCCgtg/(SEQ ID NO:18) Case II 5'-...gtgtatt|agac-tgc..Substrate....-3'(SEQ ID NO:19) <u>cacataa</u>-tctg|acg-5' /gtgCCTACac \cacGGATGtg-3'(SEQ ID NO:20) Case III (Case I rotated 180 degrees) /gtgCCTACac-5'

\cacGGATGtg-\_\_ gtgtctt|acag-tcc-3' Adapter (SEQ ID NO:21) 3'-...cacagaa-tgtc|agg..substrate....-5'(SEQ ID NO:22)

Case IV (Case II rotated 180 degrees)

```
12/128
```

```
3'- gtGTAGGcac\
                                                      (SEQ ID NO:23)
                                       <u>—ca</u>CATCCgtg/
                   5'-gag|tctc-actgage
     Substrate 3'-...ctc-agag|tgactcg...-5'(SEQ ID NO:24)
Improved FokI adapters
FokI - for dsDNA, | represents sites of cleavage
Case I
Stem 11, loop 5, stem 11, recognition 17
            5'-...catgtg!tatt-actgtgc..Substrate....-3'
               3'-gtacac-ataaltgacacg-
                                                   г<sup>т</sup>-т
                                        <u>gt</u>GTAGGcacG T
                                    5'- caCATCCgtgc C
                                                   LTTJ
Case II
Stem 10, loop 5, stem 10, recognition 18
               5'-...gtgtatt|agac-tgctgcc..Substrate....-3'
                   -cacataa-tctg|acgacgg-5'
       ۲T
      T gtgCCTACac
      C cacGGATGtg-3'
Case III (Case I rotated 180 degrees)
Stem 11, loop 5, stem 11, recognition 20
     Γ<sup>Τ</sup>η
Τ Ί
       TgtgCCTACac-5'
     G AcacGGATGtg-
     LTTJ
                     gtgtctt|acag-tccattctg-3' Adapter
               3'-...cacagaa-tgtc|aggtaagac..substrate...-5'
Case IV (Case II rotated 180 degrees)
Stem 11, loop 4, stem 11, recognition 17
                                                   ۲T٦
                                    3'- gtGTAGGcacc T
                                      r—<u>ca</u>CATCCgtgg T
c L<sub>T</sub>J
               5'-atcgag|<u>tctc-actgagc</u>
Substrate 3'-...tagctc-agag|tgactcg...-5'
```

BseRI

### 13/128

| sites of cleavage 5'-cac<u>GAGGAG</u>nnnnnnnnnnnnn-3' 3'-gt<u>gctcctc</u>nnnnnnnnnnn-5' RECOG NITion of BseRI

Stem 11, loop 5, stem 11, recognition 19

|              |                        | 14/128        |              |          |
|--------------|------------------------|---------------|--------------|----------|
| Table 8: Mat | ches to URE FR         | 3 adapters in | 79 human HC. |          |
| A. List of H | leavy-chains ge        | enes sampled  |              |          |
| AF008566     | af103343               | HSA235676     | HSU92452     | HSZ93860 |
| AF035043     | AF103367               | HSA235675     | HSU94412     | HSZ93863 |
| AF103026     | AF103368               | HSA235674     | HSU94415     | MCOMFRAA |
| af103033     | AF103369               | HSA235673     | HSU94416     | MCOMFRVA |
| AF103061     | AF103370               | HSA240559     | HSU94417     | S82745   |
| Af103072     | af103371               | HSCB201       | HSU94418     | S82764   |
| af103078     | AF103372               | HSIGGVHC      | HSU96389     | S83240   |
| AF103099     | AF158381               | HSU44791      | HSU96391     | SABVH369 |
| AF103102     | E05213                 | HSU44793      | HSU96392     | SADEIGVH |
| AF103103     | E05886                 | HSU82771      | HSU96395     | SAH2IGVH |
| AF103174     | E05887                 | HSU82949      | HSZ93849     | SDA3IGVH |
| AF103186     | <sup>.</sup> HSA235661 | HSU82950      | HSZ93850     | SIGVHTTD |
| af103187     | HSA235664              | HSU82952      | HSZ93851     | SUK4IGVH |
| AF103195     | HSA235660              | HSU82961      | HSZ93853     |          |
| af103277     | HSA235659              | HSU86522      | HSZ93855     |          |
| af103286     | HSA235678              | HSU86523      | HSZ93857     |          |
| AF103309     | HSA235677              |               | · · · · · ·  |          |

Table 8 B. Testing all distinct GLGs from bases 89.1 to 93.2 of the heavy variable domain

| Id         | Nb | 0  | 1  | 2  | З  | 4  |                     | SEQ ID NO: |
|------------|----|----|----|----|----|----|---------------------|------------|
| 1          | 38 | 15 | 11 | 10 | 0  | 2  | Seql gtgtattactgtgc | 25         |
| 2          | 19 | 7  | 6  | 4  | 2  | 0  | Seq2 gtAtattactgtgc | 26         |
| 3          | l  | 0  | 0  | 1  | 0  | 0  | Seq3 gtgtattactgtAA | 27         |
| 4          | 7  | 1  | 5  | 1  | 0  | 0  | Seq4 gtgtattactgtAc | 28         |
| 5          | 0  | 0  | 0  | 0  | 0  | 0  | Seq5 Ttgtattactgtgc | 29         |
| 6          | 0  | 0  | 0  | 0  | 0  | 0  | Seq6 TtgtatCactgtgc | 30         |
| 7          | 3  | 1  | 0  | 1  | 1  | 0  | Seq7 ACAtattactgtgc | 31         |
| 8          | 2  | 0  | 2  | 0  | 0  | 0  | Seq8 ACgtattactgtgc | 32         |
| 9          | 9  | 2  | 2  | 4_ | 1_ | 0  | Seq9 ATgtattactgtgc | 33         |
| Group      |    | 26 | 26 | 21 | 4  | 2  |                     |            |
| Cumulative |    | 26 | 52 | 73 | 77 | 79 |                     |            |

| Table           | 8C Mo | st :            | imp   | orta | ant  | URE  | : re | ecoqn | ition  | sec  | is in | FR | 3 Hea | avv |        |
|-----------------|-------|-----------------|-------|------|------|------|------|-------|--------|------|-------|----|-------|-----|--------|
| 1               | VHS7V | 1               | GT    | Staf | ta   | -tat | ac   | (ON   | SHC10  | וצו  | (SEO  | חד | NO    | 251 |        |
| *               | 11023 | <b>-</b>        | 01    |      | - cu | Jugu | .gc  | (011  |        | ,,,  | (012  | 10 | NO.,  | 207 |        |
| 2               | VHSzy | 2               | GT    | Atat | tad  | ctgt | gc   | (ON   | _ѕнсза | 23)  | (SEQ  | ID | NO:   | 26) |        |
| 3               | VHSzy | 4               | GT    | Gtat | tac  | ctgt | ac   | (ON   | _SHC34 | 19)  | (SEQ  | ID | NO:2  | 28) |        |
| 4               | VHSzy | 9               | AT    | Gtat | tac  | tgt  | gc   | (ON   | _SHC5a | a)   | (SEQ  | ID | NO:   | 33) |        |
|                 |       |                 |       |      |      |      |      |       |        |      |       |    |       |     |        |
| Table           | 8D, t | est:            | ing   | 79   | hur  | nan  | HC   | V ger | nes wi | th   | four  | pr | obes  |     |        |
| Number of bases |       |                 |       |      |      |      |      |       |        |      |       |    |       |     |        |
|                 |       | Nı              | Juppe | er d | ofr  | nism | ato  | thes  |        |      |       |    |       |     |        |
| Id              | Best  | 0               | 1     | 2    | 3    | 4    | 5    |       |        |      |       |    |       |     |        |
| 1               | 39    | 15              | 11    | 10   | 1    | 2    | 0    | Seal  | atata  | itta | ctato | IC | (SEO  | ID  | NO:25) |
| 2               | 22    | 7               | 6     | 5    | 3    | 0    | 1    | Seq2  | atAta  | atta | ctate |    | (SEO  | ID  | NO:26) |
| 3               | 7     | 1               | 5     | 1    | 0    | 0    | 0    | Seq4  | atata  | itta | ctat  | Ac | (SEO  | ID  | NO:28  |
| 4               | 11    | 2               | 4     | _4   | 1    | 0_   | 0    | Seq9  | ATata  | itta | ctato | ac | (SEQ  | ID  | NO:33  |
| Group           |       | 25 <sup>.</sup> | 26    | 20   | 5    | 2    |      |       |        |      |       |    | . ~   | _   |        |
| Cumula          | ative | 25              | 51    | 71   | 76   | 78   |      |       |        |      |       |    |       |     |        |
|                 |       |                 |       |      |      |      |      |       |        |      |       |    |       |     |        |

One sequence has five mismatches with sequences 2, 4, and 9; it is scored as best for 2.

Id is the number of the adapter.

Best is the number of sequence for which the identified adapter was the best available.

The rest of the table shows how well the sequences match the adapters. For example, there are 11 sequences that match VHSzy1(Id=1) with 2 mismatches and are worse for all other adapters. In this sample, 90% come within 2 bases of one of the four adapters.

|    | Table 130: PCR   | primers for amplification of human Ab genes                |
|----|------------------|------------------------------------------------------------|
|    | (HuIgMFOR)       | 5'-tgg aag agg cac gtt ctt ttc ttt-3'                      |
| 30 | ! (HulgMFOREtop) | 5'-aaa gaa aag aac gtg cct ctt cca-3' = reverse complement |
|    | (HuCkFOR)        | 5'-aca ctc tcc cct gtt gaa gct ctt-3'                      |
|    | (HuCL2FOR)       | 5'-tga aca ttc tgt agg ggc cac tg-3'                       |
|    | (HuCL7FOR)       | 5'-aga gca ttc tgc agg ggc cac tg-3'                       |
|    | ! Kappa          |                                                            |
| 35 | (CKForeAsc) 5'-  | acc gcc tcc acc ggg cgc gcc tta tta aca ctc tcc cct gtt-   |
|    |                  | gaa gct ctt-3'                                             |
|    | (CL2ForeAsc)     | 5'-acc gcc tcc acc ggg cgc gcc tta tta tga aca ttc tgt-    |
|    |                  | agg ggc cac tg-3'                                          |
|    | (CL7ForeAsc)     | 5'-acc gcc tcc acc ggg cgc gcc tta tta aga gca ttc tgc-    |
| 40 |                  | agg ggc cac tg-3'                                          |
|    |                  |                                                            |

Table 195: Human GLG FR3 sequences 45 ! VH1 ! 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

|    |   | agg | gtc | acc  | atg   | acc          | agg | gac | acg | tcc | atc | agc | aca | gcc | tac | atg |
|----|---|-----|-----|------|-------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | ! | 81  | 82  | 82a  | 82Ъ   | 82c          | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  |
|    |   | gag | ctg | agc  | agg   | ctg          | aga | tct | gac | gac | acg | gcc | gtg | tat | tac | tgt |
|    | ! | 93  | 94  | 95   |       |              |     |     |     |     |     |     |     |     |     |     |
| 5  |   | gcg | aga | ga ! | ! 1-0 | 02# :        | l   |     |     |     |     |     |     |     |     |     |
|    |   | aga | gtc | acc  | att   | acc          | agg | gac | aca | tcc | gcg | agc | aca | gcc | tac | atg |
|    |   | gag | ctg | agc  | agc   | ctg          | aga | tct | gaa | gac | acg | gct | gtg | tat | tac | tgt |
|    |   | gcg | aga | ga ! | 1-0   | )3# 2        | 2   |     |     |     |     |     |     |     |     |     |
|    |   | aga | gtc | acc  | atg   | acc          | agg | aac | acc | tcc | ata | agc | aca | gcc | tac | atg |
| 10 |   | gag | ctg | agc  | agc   | ctg          | aga | tct | ġag | gac | acg | gcc | gtg | tat | tac | tgt |
|    |   | gcg | aga | gg ! | 1-0   | 08# 3        | 3   |     |     |     |     |     |     |     |     |     |
|    |   | aga | gtc | acc  | atg   | acc          | aca | gac | aca | tcc | acg | agc | aca | gcc | tac | atg |
|    |   | gag | ctg | agg  | agc   | ctg          | aga | tct | gac | gac | acg | gcc | gtg | tat | tac | tgt |
|    |   | gcg | aga | ga ! | 1-1   | .8# 4        | 1   |     |     |     |     |     |     |     |     |     |
| 15 |   | aga | gtc | acc  | atg   | acc          | gag | gac | aca | tct | aca | gac | aca | gcc | tac | atg |
|    |   | gag | ctg | agc  | agc   | ctg          | aga | tct | gag | gac | acg | gcc | gtg | tat | tac | tgt |
|    |   | gca | aca | ga ! | 1-2   | 24# 5        | 5   |     |     |     |     |     |     |     |     |     |
|    |   | aga | gtc | acc  | att   | acc          | agg | gac | agg | tct | atg | agc | aca | gcc | tac | atg |
|    |   | gag | ctg | agc  | agc   | ctg          | aga | tct | gag | gac | aca | gcc | atg | tat | tac | tgt |
| 20 |   | gca | aga | ta ! | 1-4   | 5 <b>#</b> 6 | 5   |     |     |     |     |     |     |     |     |     |
|    |   | aga | gtc | acc  | atg   | acc          | agg | gac | acg | tcc | acg | agc | aca | gtc | tac | atg |
|    |   | gag | ctg | agc  | agc   | ctg          | aga | tct | gag | gac | acg | gcc | gtg | tat | tac | tgt |
|    |   | gcg | aga | ga ! | 1-4   | 6# 7         | 1   |     |     |     |     |     |     |     |     |     |
|    |   |     |     |      |       |              |     |     |     |     |     |     |     |     |     |     |

|    | aga   | gto | acc acc | att   | acc       | agg        | gac | atg | tcc | aca | agc | aca | gcc | tac | atg |
|----|-------|-----|---------|-------|-----------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | gag   | ctg | j agc   | agc   | ctg       | aga        | tcc | gag | gac | acg | gcc | gtg | tat | tac | tgt |
|    | gcg   | gca | ga      | ! 1-  | 58#       | 8          |     |     |     |     |     |     |     |     |     |
|    | aga   | gto | : acg   | att   | acc       | gcg        | gac | gaa | tcc | acg | agc | aca | gcc | tac | atg |
| 5  | gag   | ctg | agc     | agc   | ctg       | aga        | tct | gag | gac | acg | gcc | gtg | tat | tac | tgt |
|    | gcg   | aga | ga      | ! 1-  | 69#       | 9          |     |     |     |     |     |     |     |     |     |
|    | aga   | gto | : acg   | att   | acc       | gcg        | gac | aaa | tcc | acg | agc | aca | gcc | tac | atg |
|    | gag   | ctg | agc     | agc   | ctg       | aga        | tct | gag | gac | acg | gcc | gtg | tat | tac | tgt |
|    | gcg   | aga | ga      | ! 1-  | e# 1      | 0          |     |     |     |     |     |     |     |     |     |
| 10 | aga   | gtc | acc     | ata   | acc       | gcg        | gac | acg | tct | aca | gac | aca | gcc | tac | atg |
|    | gag   | ctg | agc     | agc   | ctg       | aga        | tct | gag | gac | acg | gcc | gtg | tat | tac | tgt |
|    | gca   | aca | ga      | ! 1-: | £# 1      | 1          |     |     |     |     |     |     |     |     |     |
|    | ! VH2 |     |         |       |           |            |     |     |     |     |     |     |     |     |     |
|    | agg   | ctc | acc     | atc   | acc       | aag        | gac | acc | tcc | aaa | aac | cag | gtg | gtc | ctt |
| 15 | aca   | atg | acc     | aac   | atg       | gac        | cct | gtg | gac | aca | gcc | aca | tat | tac | tgt |
|    | gca   | cac | aga     | .c! 2 | 2-05      | # 12       |     |     |     |     |     |     |     |     |     |
|    | agg   | ctc | acc     | atc   | tcc       | aag        | gac | acc | tcc | aaa | agc | cag | gtg | gtc | ctt |
|    | acc   | atg | acc     | aac   | atg       | gac        | cct | gtg | gac | aca | gcc | aca | tat | tac | tgt |
| •  | gca   | cgg | ata     | c! 2  | 2-26      | # 13       |     |     |     |     |     |     |     |     |     |
| 20 | agg   | ctc | acc     | atc   | tcc       | aag        | gac | acc | tcc | aaa | aac | cag | gtg | gtc | ctt |
|    | aca   | atg | acc     | aac   | atg       | gac        | cct | gtg | gac | aca | gcc | acg | tat | tac | tgt |
|    | gca   | cgg | ata     | c! 2  | 2-70      | # 14       |     |     |     |     |     |     |     |     |     |
|    | ! VH3 |     |         |       |           |            | •   | •   |     |     |     |     |     |     |     |
| 25 | cga   | ttc | acc     | atc   | tcc       | aga        | gac | aac | gcc | aag | aac | tca | ctg | tat | ctg |
| 23 | caa   | atg | aac     | agc   | ctg       | aga        | gcc | gag | gac | acg | gct | gtg | tat | tac | tgt |
|    | gcg   | aga | ga      | ! 3-0 | )7# 1     | 15         |     |     |     |     |     |     |     |     |     |
|    | cga   | ttc | acc     | atc   | tcc       | aga        | gac | aac | gcc | aag | aac | tcc | ctg | tat | ctg |
|    | caa   | atg | aac     | agt   | ctg       | aga        | gct | gag | gac | acg | gcc | ttg | tat | tac | tgt |
| 20 | gca   | aaa | gat     | a! 3  | 3-09‡     | <b>#16</b> |     |     |     |     |     |     |     |     |     |
| 50 | cga   | ttc | acc     | atc   | tcc       | agg        | gac | aac | gcc | aag | aac | tca | ctg | tat | ctg |
|    | caa   | atg | aac     | agc   | ctg       | aga        | gcc | gag | gac | acg | gcc | gtg | tat | tac | tgt |
|    | gcg   | aga | ga !    | 3-1   | .1# ]     | 17         |     |     |     |     |     |     |     |     |     |
|    | cga   | ττο | acc     | atc   | tcc       | aga        | gaa | aat | gcc | aag | aac | tcc | ttg | tat | ctt |
| २५ | caa   | atg | aac     | agc   | ctg       | aga        | gcc | ggg | gac | acg | gct | gtg | tat | tac | tgt |
| 55 | gca   | aga | ga !    | 3-1   | .3# ]     | 18         |     |     |     |     |     |     |     |     |     |
|    | aga   | CCC | acc     | atc   | cca       | aga.       | gat | gat | tca | aaa | aac | acg | ctg | tat | ctg |
|    | caa   | acg | aac     | agc   | ctg       | aaa        | acc | gag | gac | aca | gcc | gtg | tat | tac | tgt |
|    | acc   | aca | ga !    | 3-1   | .5# ]<br> | LY         |     |     |     |     |     |     |     |     |     |
|    | cga   | LLC | acc     | aŭC   | CCC       | aga        | qac | aac | acc | aaa | aac | tcc | cta | tat | cta |

2007211861 21 Aug 2007

caa atg aac agt ctg aga gcc gag gac acg gcc ttg tat cac tgt gcg aga ga ! 3-20# 20 cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt gcg aga ga ! 3-21# 21 cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg caa atg aac agc ctg aga gcc gag gac acg gcc gta tat tac tgt gcg aaa ga ! 3-23# 22 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt gcg aaa ga ! 3-30# 23 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt gcg aga ga ! 3303# 24 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt gcg aaa ga ! 3305# 25 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg caa atg aac age etg aga gee gag gae acg get gtg tat tae tgt gcg aga ga ! 3-33# 26 cga ttc acc atc tcc aga gac aac agc aaa aac tcc ctg tat ctg caa atg aac agt ctg aga act gag gac acc gcc ttg tat tac tgt gca aaa gat a! 3-43#27 cga ttc acc atc tcc aga gac aat gcc aag aac tca ctg tat ctg caa atg aac agc ctg aga gac gag gac acg gct gtg tat tac tgt gcg aga ga ! 3-48# 28 aga ttc acc atc tca aga gat ggt tcc aaa agc atc gcc tat ctg caa atg aac agc ctg aaa acc gag gac aca gcc gtg tat tac tgt act aga ga ! 3-49# 29 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt gcg aga ga ! 3-53# 30 aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt caa atg ggc agc ctg aga gct gag gac atg gct gtg tat tac tgt gcg aga ga ! 3-64# 31 aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt gcg aga ga ! 3-66# 32 aga ttc acc atc tca aga gat gat tca aag aac tca ctg tat ctg

|    |            | 20/128     |                  |              |              |            |            |     |           |     |     |     |     |     |     |
|----|------------|------------|------------------|--------------|--------------|------------|------------|-----|-----------|-----|-----|-----|-----|-----|-----|
|    | Caa        | atg        | aac a            | gc d         | ctg          | aaa        | acc        | gag | gac       | acg | gcc | gtg | tat | tac | tgt |
|    | gct        | aga        | ga !             | 3-72         | 2# 3         | 33         |            |     |           |     |     |     |     |     | -   |
|    | agg        | ttc        | acc a            | tc t         | ccc          | aga        | gat        | gat | tca       | aag | aac | acg | gcg | tat | ctg |
|    | Caa        | atg        | aac a            | gc d         | ctg          | aaa        | acc        | gag | gac       | acg | gcc | gtg | tat | tac | tgt |
| 5  | act        | aga        | ca !             | 3-73         | 3# 3         | 34         |            |     |           |     |     |     |     |     |     |
|    | cga        | ttc        | acc a            | tc t         | ccc          | aga        | gac        | aac | gcc       | aag | aac | acg | ctg | tat | ctg |
|    | Caa        | atg        | aac a            | gt c         | tg           | aga        | gcc        | gag | gac       | acg | gct | gtg | tat | tac | tgt |
|    | gca        | aga        | ga !             | 3-74         | 1# 3         | 35         |            |     |           |     |     |     |     |     |     |
|    | aga        | ttc        | acc a            | tc t         | cc           | aga        | gac        | aat | tcc       | aag | aac | acg | ctg | cat | ctt |
| 10 | саа        | atg        | aac a            | gc c         | tg           | aga        | gct        | gag | gac       | acg | gct | gtg | tat | tac | tgt |
|    | aag        | aaa        | ga !             | 3-d#         | \$ 36        | 5          |            |     |           |     |     |     |     |     |     |
|    | ! VH4      |            |                  |              |              |            |            |     |           |     |     |     |     |     |     |
|    | cga        | gtc        | acc a            | ta t         | ca           | gta        | gac        | aag | tcc       | aag | aac | cag | ttc | tcc | ctg |
|    | aag        | ctg        | age to           | ct g         | itg          | acc        | gcc        | gcg | gac       | acg | gcc | gtg | tat | tac | tgt |
| 13 | gcg        | aga        | ga !             | 4-04         | # 3          | 17         |            |     |           |     |     |     |     |     |     |
|    | cga        | gtc        | acc at           | tg t         | ca           | gta        | gac        | acg | tcc       | aag | aac | cag | ttc | tcc | ctg |
|    | aag        | ctg        | age to           | ct g         | tg           | acc        | gcc        | gtg | gac       | acg | gcc | gtg | tat | tac | tgt |
|    | gcg        | aga        | aa ! 4           | 1-28         | # 3          | 8          |            |     |           |     |     |     |     |     |     |
| 20 | cga        | gtt        | acc at           | ta t         | ca           | gta        | gac        | acg | tct       | aag | aac | cag | ttc | tcc | ctg |
| 20 | aag        | ctg        | age to           | st g         | tg           | act        | gcc        | gcg | gac       | acg | gcc | gtg | tat | tac | tgt |
|    | gcg        | aga        | ga!4             | 1301         | # 3          | 9          |            |     |           |     |     |     |     |     |     |
|    | cga        | gtc        | acc at           | ta t         | ca           | gta        | gac        | agg | tcc       | aag | aac | cag | ttc | tcc | ctg |
|    | aag        | ctg        | age to           | t g          | tg           | acc        | gcc        | gcg | gac       | acg | gcc | gtg | tat | tac | tgt |
| 25 | gcc        | aga        | ga ! 4           | 1302         | # 4          | 0          |            |     |           |     |     |     |     |     |     |
|    | cga        | gtt        | acc at           | a t          | са           | gta        | gac        | acg | tcc       | aag | aac | cag | ttc | tcc | ctg |
|    | aag        | ctg        | age to           | r g          | tg<br>"      | act        | gcc        | gca | gac       | acg | gcc | gtg | tat | tac | tgt |
|    | gcc        | aga        | ga ! 4           | 304          | #_4          | 1          |            |     |           |     |     |     |     |     |     |
|    | cga        | gtt        | acc at           | a t          | ca           | gta        | gac        | acg | tct       | aag | aac | cag | ttc | tcc | ctg |
| 30 | aag        | ara        | agc to           | ד g.         | נ ב<br>ה ב   | act        | gcc        | gcg | gac       | acg | gcc | gtg | tat | tac | tgt |
| .0 | geg        | aya        | ya : 4<br>599 54 |              | # 4.         | ۲<br>سهه م |            |     |           |     |     |     |     |     |     |
|    | ара        | ota        | acc at           | .a []        | ca (         | gta        | gac        | acg | tcc       | aag | aac | cag | ttc | tcc | ctg |
|    | aay        | aga        |                  | - 24         | Lg i<br>4 A  | acc        | gcc        | gcg | gac       | acg | gct | gtg | tat | tac | tgt |
|    | caa        | aya<br>ata | ya : 4<br>acc at | - 34         | # 4.<br>~~   | 3          |            |     | <b>4</b>  |     |     |     |     |     |     |
| 15 | aar        | gtt        | acc ac           | .a           |              | gca        | gac        | acg | tcc       | aag | aac | cag | ttc | tcc | ctg |
| -  | aca        | ana        | ayc to<br>ca I A | -201         | су і<br># л. | a CC<br>4  | ycc        | yca | gac       | acg | gct | gtg | tat | tac | tgt |
|    | cus<br>aca | aya<br>atc |                  | - J 71       | m 444        | 3<br>~+~   | <i>a</i>   |     | <b>ha</b> |     |     |     |     |     |     |
|    | дал        | str .      | ado to           | a ((<br>+ ~4 | ca q         | yud        | yac<br>act | acg | CCC       | aag | aac | cag | ttc | tcc | ctg |
|    | aca        | ara i      | age ed<br>ma 1 A | - 501        | суа<br>ни    | 300        | yct        | ycg | gac       | acg | gcc | gtg | tat | tac | tgt |
|    | 909        | uya        | ya : 4           | 224          | n 41:        | J          |            |     |           |     |     |     |     |     |     |

|   | cga | gtc | acc  | ata           | tca   | gta | gac | acg | tcc | aag | aac | cag | ttc | tcc | ctg |  |  |  |
|---|-----|-----|------|---------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|
|   | aag | ctg | agc  | tct           | gtg   | acc | gct | gcg | gac | acg | gcc | gtg | tat | tac | tgt |  |  |  |
|   | gcg | aga | ga ! | 4-6           | 51# 4 | 46  |     |     |     |     |     |     |     |     |     |  |  |  |
|   | cga | gtc | acc  | ata           | tca   | gta | gac | acg | tcc | aag | aac | cag | ttc | tcc | ctg |  |  |  |
|   | aag | ctg | agc  | tct           | gtg   | acc | gcc | gca | gac | acg | gcc | gtg | tat | tac | tgt |  |  |  |
|   | gcg | aga | ga ! | ga ! 4-b# 47  |       |     |     |     |     |     |     |     |     |     |     |  |  |  |
| ! | VH5 |     |      |               |       |     |     |     |     |     |     |     |     |     |     |  |  |  |
|   | cag | gtc | acc  | atc           | tca   | gcc | gac | aag | tcc | atc | agc | acc | gcc | tac | ctg |  |  |  |
|   | cag | tgg | agc  | agc           | ctg   | aag | gcc | tcg | gac | acc | gcc | atg | tat | tac | tgt |  |  |  |
|   | gcg | aga | ca ! | ca ! 5-51# 48 |       |     |     |     |     |     |     |     |     |     |     |  |  |  |
|   | cac | gtc | acc  | atc           | tca   | gct | gac | aag | tcc | atc | agc | act | gcc | tac | ctg |  |  |  |
|   | cag | tgg | agc  | agc           | ctg   | aag | gcc | tcg | gac | acc | gcc | atg | tat | tac | tgt |  |  |  |
|   | gcg | aga | ! 5  | j−a#          | 49    |     |     |     |     |     |     |     |     |     |     |  |  |  |
| ! | VH6 |     |      |               |       |     |     |     |     |     |     |     |     |     |     |  |  |  |
|   | cga | ata | acc  | atc           | aac   | cca | gac | aca | tcc | aag | aac | cag | ttc | tcc | ctg |  |  |  |
|   | cag | ctg | aac  | tct           | gtg   | act | ccc | gag | gac | acg | gct | gtg | tat | tac | tgt |  |  |  |
|   | gca | aga | ga ! | 6-1           | .# 50 | )   |     |     |     |     |     |     |     |     |     |  |  |  |
| ! | VH7 |     |      |               |       |     |     |     |     |     |     |     |     |     |     |  |  |  |
|   | cgg | ttt | gtc  | ttc           | tcc   | ttg | gac | acc | tct | gtc | agc | acg | gca | tat | ctg |  |  |  |
|   | cag | atc | tgc  | agc           | cta   | aag | gct | gag | gac | act | gcc | gtg | tat | tac | tgt |  |  |  |
|   | gcg | aga | ga ! | 74.           | 1# 5  | 51  |     |     |     |     |     |     |     |     | -   |  |  |  |

Table 250: REdaptors, Extenders, and Bridges used for Cleavage and Capture of Human Heavy Chains in FR3. A: HpyCH4V Probes of actual human HC genes

!HpyCH4V in FR3 of human HC, bases 35-56; only those with TGca site TGca;10,

RE recognition:tgca

1

of length 4 is expected at 10 6-1 agttctccctgcagctgaactc

٦

```
23/128
```

| 2 | 3-11,3-07,3-21,3-72,3-48                     | cactgtatctgcaaatgaacag |
|---|----------------------------------------------|------------------------|
| 3 | 3-09,3-43,3-20                               | ccctgtatctgcaaatgaacag |
| 4 | 5-51                                         | ccgcctacctgcagtggagcag |
| 5 | 3-15, 3-30, 3-30.5, 3-30.3, 3-74, 3-23, 3-33 | cgctgtatctgcaaatgaacag |
| 6 | 7-4.1                                        | cggcatatctgcagatctgcag |
| 7 | 3-73                                         | cggcgtatctgcaaatgaacag |
| 8 | 5-a                                          | ctgcctacctgcagtggagcag |
| 9 | 3-49                                         | tcgcctatctgcaaatgaacag |

# 10 B: F

ţ

B: HpyCH4V REdaptors, Extenders, and Bridges

### **B.1 REdaptors**

! Cutting HC lower strand: ! TmKeller for 100 mM NaCl, zero formamide ! Edapters for cleavage

| 15 | (ON_HCFR36-1)    | 5'-agttctcccTGCAgctgaactc-3' | 68.0 | 64.5 |
|----|------------------|------------------------------|------|------|
|    | (ON_HCFR36-1A)   | 5'-ttctcccTGCAgctgaactc-3'   | 62.0 | 62.5 |
|    | (ON_HCFR36-1B) · | 5'-ttctcccTGCAgctgaac-3'     | 56.0 | 59.9 |
|    | (ON_HCFR33-15)   | 5'-cgctgtatcTGCAaatgaacag-3' | 64.0 | 60.8 |
|    | (ON_HCFR33-15A)  | 5'-ctgtatcTGCAaatgaacag-3'   | 56.0 | 56.3 |
| 20 | (ON_HCFR33-15B)  | 5'-ctgtatcTGCAaatgaac-3'     | 50.0 | 53.1 |
|    | (ON_HCFR33-11)   | 5'-cactgtatcTGCAaatgaacag-3' | 62.0 | 58.9 |
|    | (ON_HCFR35-51)   | 5'-ccgcctaccTGCAgtggagcag-3' | 74.0 | 70.1 |

T."

T<sub>m</sub><sup>K</sup>

### B.2 Segment of synthetic 3-23 gene into which captured CDR3 is to be cloned

 25
 Yhintite 5-25 gene into which captuled CDK5 is to be cloned

 25
 Yhintite 5-25 gene into which captuled CDK5 is to be cloned

 10323\*
 CgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC

 1
 scab......

 1
 scab......

```
30 ! HpyCH4V

.... AflII...

! Ttg caG atg aac ag<u>c TtA aq</u>G .
```

### **B.3** Extender and Bridges

```
35 ! Extender (bottom strand):
    !
    (ON_HCHpyEx01) 5'-cAAgTAgAgAgTATTcTTAgAgTTgTcTcTAgAcTTAgTgAAgcg-3'
    ! ON_HCHpyEx01 is the reverse complement of
    ! 5'-cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC Ttg -3'
40 !
```

! Bridges (top strand, 9-base overlap):

5



D.2 Segment of synthetic 3-23 gene into which captured CDR3 is to be cloned

1 BlpI 1 XbaI... !D323\* cgCttcacTaag TCT AGA gac aaC tcT aag aaT acT ctC taC Ttg caG atg aac 1 ! AflII... ! ag<u>C TTA AG</u>G **D.3 Extender and Bridges** ! Bridges (BlpF3Br1) 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtGtaC Ttg caG Ctg a|GC agc ctg-3' (BlpF3Br2) 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtGtaC Ttg caG Ctg algc tct gtg-3' ! | lower strand is cut here ! Extender (BlpF3Ext) 5'-TcAgcTgcAAgTAcAAAgTATTTTTAcTgTTATc<u>TcTAgA</u>cTgAgTgAAgcg-3' ! BlpF3Ext is the reverse complement of: ! 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG taC Ttg caG Ctg a-3'

(BlpF3PCR) 5'-cgCttcacTcag tcT aga gaT aaC-3'

| E: HpyCH4III | Distinct GLG sequences surrounding site, bases 77-98    |                        |
|--------------|---------------------------------------------------------|------------------------|
| 1            | 102#1,118#4,146#7,169#9,1e#10,311#17,353#30,404#37,4301 | ccgtgtattactgtgcgagaga |
| 2            | 103#2,307#15,321#21,3303#24,333#26,348#28,364#31,366#32 | ctgtgtattactgtgcgagaga |
| 3            | 108#3                                                   | ccqtqtattactgtgcgagagg |
| 4            | 124#5,1f#11                                             | ccqtqtattactqtqcaacaga |
| 5            | 145#6                                                   | ccatgtattactgtgcaagata |
| 6            | - 158#8                                                 | ccgtgtattactgtgcggcaga |
| 7            | 205₩12                                                  | ccacatattactgtgcacacag |
| 8            | 226#13                                                  | ccacatattactgtgcacggat |
| 9            | 270#14                                                  | ccacqtattactgtgcacggat |
| 10           | 309#16,343#27                                           | ccttgtattactgtgcaaaaga |
| 11           | 313#18,374#35,61#50                                     | ctgtgtattactgtgcaagaga |
| 12           | 315#19                                                  | ccgtgtattactgtaccacaga |
| 13           | 320#20                                                  | ccttgtatcactgtgcgagaga |
| 14           | 323#22                                                  | ccgtatattactgtgcgaaaga |
| 15           | 330#23,3305#25                                          | ctgtgtattactgtgcgaaaga |
| 16           | 349#29                                                  | CCGLGLattactgLactagaga |
| 17           | 372#33                                                  | ccututattactutuctagaga |
| 18           | 373#34                                                  |                        |
| 19           | 3d∦36                                                   | Ctgtgtattactgtaagaaaga |
| 20           | 428#30                                                  | Cototattactotocoacaaa  |
| 21           | 4302#40,4304#41                                         | Contotattactotoccanaga |
| 22           | 439#44                                                  |                        |
| 23           | 551#48                                                  |                        |
|              |                                                         |                        |

26/128

| 24                        |                   |               |                      |                |               | 5=#40        |            |      |
|---------------------------|-------------------|---------------|----------------------|----------------|---------------|--------------|------------|------|
| F: HpyCH4III REdapto      | ors, Extenders,   | , and Bridg   | <br>es               |                |               |              |            |      |
| F.1 REdaptors             |                   |               |                      |                | ,             |              |            |      |
| ! ONs for cleavage        | of HC(lowe        | r) in FR      | 3 (bases             | 77-9           | 7)            |              |            |      |
| ! For cleavage with       | HpyCH4III         | , Bst4CI      | , or Ta              | aT             | • •           |              |            |      |
| ! cleavage is in lo       | wer chain         | before b      | ase 88.              |                |               |              |            |      |
| !                         | 77 788            | 888 888       | 889 99               | 9 999          | 9             |              |            |      |
| !<br>(H43 77 97 1-02#1)   | 78 901            | 234 567       | 890 12               | 3 456          | 7             | Т            | W<br>20    | T, K |
| (H43,77,97,1-02#1)        |                   | tat tAC       | TGT go               | g aga          | g-3'          | 64           | 4          | 62.6 |
| (H43.77.97.1-03#2)        |                   |               | TGT go               | g aga          | g-3'          | 63           | 2          | 60.6 |
| (1143.77.97.100#3)        |                   | tat tAC       | TGT ge               | g aga          | g-3'          | 64           | 4          | 62.6 |
| (1143.77.97.323#22)       | 5'-cc gua         | tat tac       | tgt go               | g aga<br>®     | g-3'          | 6            | 0          | 58.7 |
| (H43,77,97,330#23)        |                   | tat tac       | tgt go               | g a <u>a</u> a | g-3'          | 60           | )<br>-     | 58.7 |
| (H43 77 97 551#48)        |                   |               | tgt ge               | g aga          | g-3'          | 62           | 2          | 60.6 |
| (H43, 77, 97, 55449)      |                   |               | tgt go               | g aga          | ©-3'<br>≋     | 62           | 2          | 60.6 |
| (                         |                   | LAL LAL       | TGT ge               | g aga          | <u></u> %-3'  | 58           | 3          | 58.3 |
| F. 2 Extender and Bride   | <b>79</b> 0       |               |                      |                | •             |              |            |      |
| 1 Xbal and AflII cit      | sco<br>tos in hai |               | <b>.</b>             |                |               |              |            |      |
| (H43.XABr1) 5'-aata       | tagtga-           | lyes are      | bungea               |                |               |              |            |      |
| TCT AGt gac act           | totlaaglaa(       | Flactict      | -   <del>+</del>   + |                | _1_4_1        |              |            |      |
|                           | at lang lan       |               |                      | rg   cag       | glatgi        | -            |            |      |
| (H43, XABr2) = 5' = aatat | tector-           |               | AIGTCIT              | acitai         | <u>t</u> gt   | gcg a        | ga-3'      |      |
|                           | Layuya-           |               |                      |                |               |              |            |      |
|                           |                   |               | Citacit              | tglcag         | glatgi        |              |            |      |
| (WA2 VARue) EL ARA        | ICT   gag   gag   | aCT GC/       | AlGtclt              | ac tai         | <u>t</u> tgt  | gcg a        | aa-3'      |      |
| (145.XALXT) 5'-ATAG       | ragact gcag       | JTGTCCT (     | =AgcccT              | TAA go         | TgTTc         | ATC T        | gcAAgTAgA- |      |
| GAGTA                     | ATTCTT AGAG       | JTTGTCT (     | TAgATe               | AcT Ad         | CAcc-3        |              |            |      |
| 1 51-225 the re           | erse comp         | lement o      | DÍ                   |                |               |              |            |      |
|                           | <b></b>           |               | ••••                 |                |               |              |            |      |
|                           | TCT   aag   aa    | IT   aCT   CI | tc tac               | ttg ca         | aglatg        | r <b>! -</b> |            |      |
| ad age TTA AGe            | get   gag   ga    | LC   aCT   GC | CA Gtc               | tac ta         | <u>at</u> -3' |              |            |      |
| (HAR VARGE) EL            | <b>.</b> _        |               |                      |                |               |              |            |      |
| (HAS.APCR) 5'-ggtg        | Itagtga ITC       | T   AGA   ga  | ic aac-:             | 3'             | •             |              |            |      |
| (WA2 April 51 meters      | es in brid        | lges are      | bunged               |                |               |              |            |      |
| (mag.nori) preggtgta      | igtga-            |               |                      |                |               |              |            |      |
| HAG AGC ITT AGG           | CT   gag   gac    | aCT   GCA     | Gtclta               | <u>ac tat</u>  | tgt           | gcg ag       | ga-3'      |      |
| (mas.ABI2) S'-ggtgta      | igtga-            |               |                      |                |               |              |            |      |

```
[aac]agC[TTt]AGq[qct]gaq[gac]aCT[GCA]Gtc]tacitat tgt gcg aaa-3'
(H43.AExt) 5'-ATAgTAgAcTgcAgTgTccTcAgcccTTAAgcTgTTTcAcTAcAcc-3'
```

!(H43.AExt) is the reverse complement of 5'-ggtgtagtga-! |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat -3' (H43.APCR) 5'-ggtgtagtga |aac|agC|TTA|AGg|gct|g-3'

### Table 510

(FOKIact) 5'-cAcATccgTg TTgTT cAcggATgTg-3' (VHEx881) 5'-AATAGTAGAC TGCAGTGTCC TCAGCCCTTA AGCTGTTCAT CTGCAAGTAG-AgAgTATTCT TAgAgTTgTC TCTAgACTTA gTgAAgcg-3' ! note that VHEx881 is the reverse complement of the ON below [RC] 5'-cgCttcacTaagţ ļ Scab..... Synthetic 3-23 as in Table 206 |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-XbaI... |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|t-3' ļ AflII... (VHBA881) '5'-cgCttcacTaag-|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt gcg ag-3' (VHBB881) 5'-cgCttcacTaag-|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt Acg ag-3' (VH881PCR) 5'-cgCttcacTaag|TCT|AGA|gac|aac -3'

| !        | Site      | s to         | be          | vari                 | ed           | ->         |            | ***           |               | ***        |         | ***  |       |              |            |       |
|----------|-----------|--------------|-------------|----------------------|--------------|------------|------------|---------------|---------------|------------|---------|------|-------|--------------|------------|-------|
| !        |           | FR1-         |             |                      |              | >          | 1          | CDR1          |               |            |         |      |       | FR2-         |            |       |
| !        | 46        | 47           | 48          | 49                   | 50           | 51         | 52         | 53            | 54            | 55         | 56      | 57   | 58    | 59           | 60         |       |
| !        | A         | S            | G           | F                    | T            | F          | S          | S             | Y             | A          | M       | S    | W     | v            | R          |       |
| 1        | loga      |              | Loot        |                      | ILCT         | ITTC       | LTCT       | ItCG          | TAC           | Gct        | atg     | ltct | ltgg  | gtt          | CqC        | . 143 |
|          | icya      | l Bsi        | DEI         | l aay                | la           | laag       | laga       | lago          | iatg<br>Beim  | lcga<br>Tl | tac     | laga | acc   | caa          | gcg        |       |
| !        |           | •            | F           | •                    |              |            |            | 1             | Datw          | <b>+</b> I |         |      |       |              | 115        | STAI. |
| 1        |           |              | _           |                      |              | Si         | tes        | to b          | e va          | ries       | >       | ***  |       | ***          | ***        |       |
| 1        |           | ]<br>co      | FR2-        |                      |              |            |            |               |               |            | >       | 1    | CDR2  | • • • •      | • • • • •  |       |
| :        | 0         | ס∠<br>א      | ده<br>م     | 64                   | 65<br>V      | 66         | ь/<br>т    | 68            | 69            | 70         | 71      | 72   | 73    | 74           | 75         |       |
| •        | ICAa      | lact         |             | 'IGGt                | n<br>Laaa    | lant       | ىر<br>1++4 | E<br>I CTP C  | w<br>1+00     |            | 5       | A    | 1<br> | S            | G<br>II    | 100   |
| !        | lgtt      | cga          | gga         | lcca                 | lttt         | lcca       | laac       | lctc          | lacc          | lgaa       | laga    | lcaa | 1 atc | laga         | iggti      | 188   |
| !        | BstXI     | -            |             | 1                    | •            |            | •          | •             | •             |            | 1-94    | rogu | leag  | laga         | ( CCa )    |       |
| !        |           |              |             |                      |              |            |            |               |               |            |         |      |       |              |            |       |
| :        | ,         | 2002         |             | ***                  |              | ***        |            |               |               |            |         |      |       |              |            |       |
| !        | 76        | -DR2 -<br>77 | <br>78      | 79                   | 80           | <br>ดา     | <br>82     | ••••          | ••••          | • • • • •  | ••••    | •••• | ••••  | ]            | FR3        | -     |
| !        | ŝ         | G            | Ğ           | s                    | T            | Ŷ          | Y<br>Y     | 20            | 04<br>10      | 03<br>S    | 00<br>V | 8/   | 88    | 89           | 90         |       |
|          | tct       | ggt          | lggc        | lagt                 | lact         | Itaci      | Itat       | loct          | loac          | ltoc       | latt    |      |       | R<br>Logol   | r<br>Ittal | 222   |
| !        | aga       | cca          | ccg         | tca                  | tga          | atgi       | ata        | cora          | Icta          | lago       | caa     | lttt | l cca | laca         | aart       | 233   |
| 1        |           |              |             |                      | -            | -          |            |               |               |            |         |      |       |              | , and i    |       |
| !        |           | 1            | FR3-        |                      |              |            |            |               |               |            |         |      |       |              |            |       |
| 1        | 91<br>7   | 92           | 93          | 94                   | 95           | 96         | 97         | 98            | 99            | 100        | 101     | 102  | 103   | 104          | 105        |       |
| • •      | lacti     | ⊥<br>latcl   | э<br>I ŤCT  | א<br>ו גם גו         | U<br>Lasci   | N<br>Iaaci | S<br>tert  | K             | N<br>Jaati    | T          | L       | Y.   | L     | Q            | M          |       |
| !        | Itra      | tagi         | ara         | Itct                 | leta         | ttor       | ara        | ltta          | ddl <br> ttal | ltaci      | CLC     | tac: | ttg   | cag          | atg        | 278   |
| !        | ·-g       |              | Xb          | aI                   |              | , o eg i   | uga        |               | LLA           | l cya i    | gag     | arg  | dac   | gcel         | TACI       |       |
| !        |           |              |             |                      | •            |            |            |               |               |            |         |      |       |              |            |       |
| !        | FF        | 2            |             |                      |              |            |            |               |               |            |         |      |       |              | >          |       |
| :        | 106       | 107          | 108         | 109                  | 110          | 111        | 112        | 113           | 114           | 115        | 116     | 117  | 118   | 119          | 120        |       |
| :        | N         | <u></u>      | ير<br>درسسا | R<br>IBC-I           | A<br>        | E          | D          | T             | A<br>         | V          | Y       | Y    | С     | Α            | К          |       |
| 1        | lttal     | tcal         | aat         | 1tcal                | GCT          | gag        | gac        | ACT           |               | Gtc        | tac     | tat  | tgc   | gct          | aaa        | 323   |
| !        | lecal     | i A          | flI         | II                   | (Cya )       |            | Cuy        | lugat<br>Il 1 | CGLI<br>DetT  | Cag        | atg     | ataj | acg   | cgal         | ttt        |       |
| !        |           | •            |             | - •                  |              |            |            |               |               | ,          |         |      |       |              |            |       |
| !        | • • • • • | CD           | DR3.        | • • • • •            |              | • • • •    | !          |               | -FR4-         |            |         |      |       |              |            |       |
| !        | 121       | 122          | 123         | 124                  | 125          | 126        | 127        | 128           | 129           | 130        | 131     | 132  | 133   | 134          | 135        |       |
| :        |           | Y<br>And I   | E           | G<br>                | T            | G.         | Y.,        | A             | F             | D          | I       | W    | G     | Q            | G          |       |
| 1        | Igaci     | tati         | gaa         | Iggti                | act          | ggti       | tat        | get           | tte           | gaC        | ATA     | TGq  | aar   | caal         | ggtl       | 368   |
| !        | lecgi     | acal         |             | [CCa]                | rgal         | ccal       | ata        | cga           | aag           | ctg        | tat     | accl | cca   | gtt          | cca        |       |
| 1        |           |              |             |                      |              |            |            |               |               | I          | Nael    | .    |       |              |            |       |
| !        |           |              |             | FR4                  |              |            | >          |               |               |            |         |      |       |              |            |       |
| !        | 136       | 137          | 138         | 139                  | 140          | 141        | 142        |               |               |            |         |      |       |              |            |       |
| :        | T         | M            | CTTC        | T                    | V            | S          | S          |               | -             | -          |         |      |       |              |            |       |
| 1        | Itml      | ate:         | GTC         |                      | gtcl         | tct        | agt-       | •             | 38            | 19         |         |      |       |              |            |       |
|          | Icyal     | laci         | Bati        | 1 <b>4991</b><br>277 | cagi         | agal       | tca-       | •             |               |            |         |      |       |              |            |       |
| 1        |           | 1            | 0001        |                      |              |            |            |               |               |            |         |      |       |              |            |       |
| 1        |           |              |             |                      | 143          | 144        | 145        | 146           | 5 147         | 148        | 149     | 150  | 151   | 152          |            |       |
| !        |           |              |             |                      | A            | S          | T          | К             | Ğ             | <br>P      | s       | v    | F     | P            |            |       |
|          |           |              |             |                      | gcc          | tcc        | acc        | aaG           | GGC           | CCa        | tcg     | GTC  | TTC   | ccc          | -31        | 419   |
| :        |           |              |             |                      | cgg          | agg        | tgg        | tto           | ccq           | ggt        | age     | caq  | aag   | <u>. aaa</u> | -5'        |       |
| 1        |           |              |             |                      |              |            |            | E             | sp12          | 01.        |         | Bbs  | I     | (2/2         | )          |       |
| ·        |           |              |             |                      |              |            |            | 7             | pai.          | •••        |         |      |       |              |            |       |
| (SFPRMET | יכ (ז     | -ctg         | tct         | : gaa                | CG           | GCC        | caơ        | ccG-          | 31            |            |         |      |       |              |            |       |
| (TOPFR1) | A) 5'     | -ctg         | tct         | ; gaa                | cG           | GCC        | Cag        | CCG           | GCC           | ato        | acc-    |      |       |              |            |       |
|          |           | gaa          | gtt         | :   ČAA              | TTG          | ltta       | gag        | tct           | ggt           | ]-         |         |      |       |              |            |       |
|          |           | lggc         | l ggt       | lctt                 | <b>]</b> gtt | Icag       | cct        | lggt          | lggt          | ltct       | ltta    | -3'  |       |              |            |       |
| (BOTFR11 | 5)        | •            | • •         | 3'                   | -caa         | Igto       | gga        | cca           | cca           | laga       | laat    | Igca | gaa   | laga         | acg        | cga!- |
|          |           | ICOA         | 1 200       | ricet                | 1220         | 1 1 7 7 3  | 1220       | _ E I         | 1 2 -         | <b>**</b>  |         |      |       |              |            |       |

! ! ! ! !



!

1

ł

ł

1

!

1

!

!

1

!

Table 600: V3-23 VH framework with variegated codons shown 17 18 19 20 21 22 А Q P А М A 5'-ctg tct gaa cG GCC cag ccG GCC atg gcc 29 3'-gac aga ctt gc cgg gtc ggc cgg tac cgg Scab.....SfiI.... NgoMI... NCOI.... FR1 (DP47/V3-23) ----23 24 25 26 27 28 29 30 E V Q L L E S G gaa|gtt|CAA|TTG|tta|gag|tct|ggt| ctt|caa|gtt|aac|aat|ctc|aga|cca| | MfeI | --FR1---31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 G G L V Q P G G S L R L S C A iggciggticttigtticaglectiggtiggtitetittaicgticttitctitgcigcti |ccg|cca|gaa|caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|

98

53

ļ

Table 800

The following list of enzymes was taken from <a href="http://rebase.neb.com/cgi-bin/asymmlist">http://rebase.neb.com/cgi-bin/asymmlist</a>.

I have removed the enzymes that a) cut within the recognition, b) cut on both sides of the recognition, or c) have fewer than 2 bases between recognition and closest cut site.

REBASE Enzymes 04/13/2001

| Type II r | estriction enzymes with | asymmetric recog        | nition    |
|-----------|-------------------------|-------------------------|-----------|
| sequences | 5:                      |                         |           |
| Enzymes   | Recognition Sequence    | Isoschizomers           | Suppliers |
| AarI      | CACCTGCNNNN^NNNN        | -                       | V         |
| AceIII    | CAGCTCNNNNNNN^NNNN      | -                       | _         |
| Bbr7I     | GAAGACNNNNNNN^NNNN      |                         | -         |
| BbvI      | GCAGCNNNNNNNN^NNNN      |                         | v         |
| BbvII     | GAAGACNN^NNNN           |                         | 1         |
| Bce83I    | CTTGAGNNNNNNNNNNNNNN NI | N^ - ^N                 | _         |
| BceAI     | ACGGCNNNNNNNNNNN^NN     | -                       | v         |
| BcefI     | ACGGCNNNNNNNNNN^N       | -                       | -         |
| BciVI     | GTATCCNNNNN N^          | BfuI                    | v         |
| BfiI      | ACTGGGNNNN_N^           | BmrI                    | y<br>V    |
| BinI      | GGATCNNNN^N             |                         | 1         |
| BscAI     | GCATCNNNN^NN            | -                       | -         |
| BseRI     | GAGGAGNNNNNNNN NN^      | -                       | V         |
| BsmFI     | GGGACNNNNNNNNNN ^NNNN   | BspLU11111              | J<br>V    |
| BspMI     | ACCTGCNNNN^NNNN -       | Acc36I                  | J<br>V    |
| EciI      | GGCGGANNNNNNNN NN^      | -                       | y<br>V    |
| Eco57I    | CTGAAGNNNNNNNNNNNNNN NN | A BSDKT5T               | y<br>V    |
| Faul      | CCCGCNNNN^NN            | BstFZ438T               | y<br>V    |
| FokI      | GGATGNNNNNNNNNN ^NNNN   | BstPZ418T               | y<br>V    |
| GsuI      | CTGGAGNNNNNNNNNNNNN     |                         | y<br>V    |
| HgaI      | GACGCNNNNN^NNNNN        |                         | y<br>V    |
| HphI      | GGTGANNNNNN N^          | AsuHPI                  | y<br>V    |
| MboII     | GAAGANNNNNNN N^         | -                       | y<br>V    |
| MlyI      | GAGTCNNNNN^ -           | SchT                    | y<br>V    |
| MmeI      | TCCRACNNNNNNNNNNNNNNNNN | N NN^                   | <u>y</u>  |
| MnlI      | CCTCNNNNNN N^           |                         | V         |
| PleI      | GAGTCNNNN^N             | PpsI                    | У<br>У    |
| RleAI     | CCCACANNNNNNNN NNN^     | -                       | <u>у</u>  |
| SfaNI     | GCATCNNNNN^NNNN         | BSpST5T                 | V         |
| SspD5I    | GGTGANNNNNNN^ —         |                         | <u>у</u>  |
| Sth132I   | CCCGNNNN^NNNN           | -                       | _         |
| StsI      | GGAT GNNNNNNNNN ^ NNNN  | _                       | _         |
| TaqII     | GACCGANNNNNNN NN^. CA   | CCCANNINININININI NINIA | -         |
| Tth11111  | CAARCANNNNNNN NN^       |                         |           |
| UbaPI     | CGAACG                  | -                       | -         |

The notation is ^ means cut the upper strand and \_ means cut the lower strand. If the upper and lower strand are cut at the same place, then only ^ appears.

Table 120: MALIA3, annotated ! MALIA3 9532 bases !------1 aat get act act att agt aga att gat gee ace ttt tea get ege gee 5 gene ii continued ţ 49 cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat gta 97 tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca\_act 145 gtt aca tgg aat gaa act tcc aga cac cgt act tta gtt gca tat tta 193 aaa cat gtt gag cta cag cac cag att cag caa tta agc tct aag cca 10 241 tcc gca aaa atg acc tct tat caa aag gag caa tta aag gta ctc tct 289 aat cct gac ctg ttg gag ttt gct tcc ggt ctg gtt cgc ttt gaa gct 337 cga att aaa acg cga tat ttg aag tet tte ggg ett eet ett aat ett 385 ttt gat gca atc cgc ttt gct tct gac tat aat agt cag ggt aaa gac 433 ctg att ttt gat tta tgg tca ttc tcg ttt tct gaa ctg ttt aaa gca 15 481 ttt gag ggg gat tca ATG aat att tat gac gat tcc gca gta ttg gac ! Start gene x, ii continues RBS?.... 529 gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct 577 ttt gca aaa gcc tct cgc tat ttt ggt ttt tat cgt cgt ctg gta aac 625 gag ggt tat gat agt gtt gct ctt act atg cct cgt aat tcc ttt tgg 20 673 cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa ctg 721 atg aat ctt tct acc tgt aat aat gtt gtt ccg tta gtt cgt ttt att 769 aac gta gat ttt tct tcc caa cgt cct gac tgg tat aat gag cca gtt 817 ctt aaa atc gca TAA End X & II 25 832 ggtaattca ca 1 M1 E5 Q10 T15 843 ATG att aaa gtt gaa att aaa cca tct caa gcc caa ttt act act cgt 1 Start gene V 30 1 ! S17 S20 P25 E30 891 tet ggt gtt tet egt cag gge aag eet tat tea etg aat gag eag ett ! 1 V35 E40 V45 35 939 tgt tac gtt gat ttg ggt aat gaa tat ccg gtt ctt gtc aag att act Ŧ. ! D50 A55 L60 987 ctt gat gaa ggt cag cca gcc tat gcg cct ggt cTG TAC Acc gtt cat ! BsrGI...

2007211861 21 Aug 2007 š v

! L65 **V70** S75 R80 1035 ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac cgt 1 1 P85 K87 end of V 1083 ctg cgc ctc gtt ccg gct aag TAA C ! 1108 ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg 1 Start gene VII 1 1150 ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc VII and IX overlap. ..... S2 V3 L4 V5 **S10** 1192 gct ggg ggt caa agA TGA gt gtt tta gtg tat tct ttc gcc tct ttc gtt 15 1 End VII ! |start IX 1 L13 W15 G20 T25 E29 1242 tta ggt tgg tgc ctt cgt agt ggc att acg tat ttt acc cgt tta atg gaa ! 20 1293 act tcc tc ! ! .... stop of IX, IX and VIII overlap by four bases 1301 ATG aaa aag tet tta gte etc aaa gee tet gta gee gtt get ace etc Start signal sequence of viii. 1 25 1349 gtt ccg atg ctg tct ttc gct gct gag ggt gac gat ccc gca aaa gcg 1 mature VIII ---> 1397 gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat gcg 1445 tgg gcg atg gtt gtt gtc att 30 1466 gtc ggc gca act atc ggt atc aag ctg ttt aag 1499 aaa ttc acc tcg aaa gca ! 1515 ! 1 1517 agc tga taaaccgat acaattaaag gctccttttg 35 ! ..... -10 ... 1552 gagcettttt ttttGGAGAt ttt ! S.D. underlined ł ! <----- III signal sequence -----

|     | ! |                                                                         |        | М                     | К         | к        | L           | L        | F            | А        | I           | P    | L    | v    |       |       |       |       |     |
|-----|---|-------------------------------------------------------------------------|--------|-----------------------|-----------|----------|-------------|----------|--------------|----------|-------------|------|------|------|-------|-------|-------|-------|-----|
| ,   |   | 1575                                                                    | caac   | GT                    | 5 aa      | a aa     | a tt        | a tt     | a tt         | c gc     | a ati       | t cc | t tt | a gt | t!    | 1611  |       |       |     |
| )   | ! |                                                                         |        |                       |           |          |             |          |              |          |             |      |      |      |       |       |       |       |     |
|     | ! |                                                                         | v      | P                     | F         | Y        | s           | H        | S            | A        | Q           |      |      |      |       |       |       |       |     |
| 5   |   | 1612                                                                    | gtt    | cct                   | ttc       | tat      | tct         | cac      | aGT          | gcA      | Cag         | tCT  |      |      |       |       |       |       |     |
|     | ! |                                                                         |        |                       |           |          |             |          | Ap           | aLI.     | • •         |      |      |      |       |       |       |       |     |
|     | ! |                                                                         |        |                       |           |          |             |          |              |          |             |      |      |      |       |       |       | -     |     |
|     |   | 1642                                                                    |        | GTC                   | GTG       | ACG      | CAG         | CCG      | ccc          | TCA      | GTG         | TCT  | GGG  | GCC  | CCA   | GGG   | CAG   |       |     |
|     |   |                                                                         |        | AG <b>G</b>           | GTC       | ACC      | ATC         | TCC      | TGC          | ACT      | GGG         | AGC  | AGC  | тсс  | AAC   | ATC   | GGG   | GCA   |     |
| 10  | ! |                                                                         |        | B                     | stEII     | τ        |             |          |              |          |             |      |      |      |       |       |       |       |     |
|     |   | 1729                                                                    |        | GGT                   | TAT       | GAT      | GTA         | CAC      | TGG          | TAC      | CAG         | CAG  | CTT  | CCA  | GGA   | ACA   | GCC   | ccc   | AAA |
|     |   | 1777                                                                    |        | CTC                   | CTC       | ATC      | TAT         | GGT      | AAC          | AGC      | AAT         | CGG  | ccc  | TCA  | GGG   | GTC   | CCT   | GAC   | CGA |
|     |   | 1825                                                                    |        | TTC                   | TCT       | GGC      | TCC         | AAG      | TCT          | GGC      | ACC         | TCA  | GCC  | TCC  | CTG   | GCC   | ATC   | ACT   |     |
|     |   | 1870                                                                    |        | GGG                   | CTC       | CAG      | GCT         | GAG      | GAT          | GAG      | GCT         | GAT  | TAT  |      |       |       |       |       |     |
| 15  |   | 1900                                                                    |        | TAC                   | TGC       | CAG      | TCC         | TAT      | GAC          | AGC      | AGC         | CTG  | AGT  |      |       |       |       |       |     |
|     |   | 1930                                                                    |        | GGC                   | CTT       | TAT      | GTC         | TTC      | GGA          | ACT      | GGG         | ACC  | AAG  | GTC  | ACC   | GTC   |       |       |     |
|     | ! | !     BstEII       1969     CTA GGT CAG CCC AAG GCC AAC CCC ACT GTC ACT |        |                       |           |          |             |          |              |          |             |      |      |      |       |       |       |       |     |
|     |   | 1969                                                                    |        | СТА                   | GGT       | CAG      | CCC         | AAG      | GCC          | AAC      | CCC         | ACT  | GTC  | ACT  |       |       |       |       |     |
| • • |   | 2002                                                                    | i      | CTG                   | TTC       | CCG      | ccc         | TCC      | TCT          | GAG      | GAG         | CTC  | CAA  | GCC  | AAC   | AAG   | GCC   | ACA   | CTA |
| 20  |   | 2050                                                                    |        | GTG                   | TGT       | CTG      | ATC         | AGT      | GAC          | TTC      | TAC         | CCG  | GGA  | GCT  | GTG   | ACA   | GTG   | GCC   | TGG |
|     |   | 2098                                                                    | Å      | AAG                   | GCA       | GAT      | AGC         | AGC      | ccc          | GTC      | AAG         | GCG  | GGA  | GTG  | GAG   | ACC   | ACC   | ACA   | ccc |
|     |   | 2146                                                                    | I      | TCC                   | ААА       | CAA      | AGC         | AAC      | AAC          | AAG      | TAC         | GCG  | GCC  | AGC  | AGC   | TAT   | CTG   | AGC   | CTG |
|     |   | 2194                                                                    | 1      | ACG                   | CCT       | GAG      | CAG         | TGG      | AAG          | TCC      | CAC         | AGA  | AGC  | TAC  | AGC   | TGC   | CAG   | GTC   | ACG |
| 25  |   | 2242                                                                    | (      | CAT                   | GAA       | GGG      | AGC         | ACC      | GTG          | GAG      | AAG         | ACA  | GTG  | GCC  | CCT   | ACA   | gaa   | TGT   | TCA |
| 25  | , | 2290                                                                    |        | raa                   | TAA       | ACCO     | S CCI       | ICCAC    | cce <u>e</u> | GCGC     | GCCA        | AT 1 | CTAT | TTC  | AA GO | SAGAC | CAGTO | : ATA | ł   |
|     | ; |                                                                         |        |                       |           |          |             |          | As           | scI      | •••         |      |      |      |       |       |       |       |     |
|     | : |                                                                         | ,      |                       |           |          |             |          |              |          |             |      |      |      |       |       |       |       |     |
|     | : |                                                                         |        | reir                  | ) S1G     |          | <br>T       | <br>•    |              |          |             |      |      |      |       |       |       | >     |     |
| 30  | ÷ | 2343                                                                    | ,      | M<br>M<br>M<br>M<br>M | ת<br>תתת  | I        | ц<br>СШУ    | L        | P C C M      | T        | A           | A    | A    | G    | L     | L<br> | L<br> | L     |     |
| 70  | 1 | 2313                                                                    | 1      | 10                    | AAA       | IAC      | CIA         | TTG      | CUT          | ACG      | GCA         | GCC  | GCT  | GGA  | TTG   | TTA   | TTA   | СТС   |     |
|     | 1 |                                                                         |        | 16                    | 17        | 18       | ٦٥          | 20       |              | 01       | <b>.</b>    |      |      |      |       |       |       |       |     |
|     | • |                                                                         | •      | 20                    | 1,<br>D   | <u> </u> | 19          | 20<br>N  |              | 21<br>M  | 22          |      |      |      |       |       |       |       |     |
|     | • | 2388                                                                    | а<br>а | ר<br>הפי פי           | л<br>СС с | van r    | -<br>-<br>- | л<br>:сс |              | n<br>ato | M<br>700    |      |      |      |       |       |       |       |     |
| 35  | ! |                                                                         | 3.     | Sfi                   | т         | ag c     |             |          |              | ary      | <u>u</u> cc |      |      |      |       |       |       |       |     |
|     | ! |                                                                         |        |                       |           | Nac      | MI.         | . (1/    | (2)          |          |             |      |      |      |       |       |       |       |     |
|     | ! |                                                                         |        |                       |           | 90       |             | NCOT     |              |          |             |      |      |      |       |       |       |       |     |
|     | 1 |                                                                         |        |                       |           |          |             |          |              |          | •           |      |      |      |       |       |       |       |     |

, |

2007211861 21 Aug 2007 FR1 (DP47/V3-23) ------1 ! 23 24 25 26 27 28 29 30 ł EVQLLES G 2409 gaa|gtt|CAA|TTG|tta|gag|tct|ggt| | MfeI | 5 ! ! t ! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 t G G L V Q P G G S L L R S С Α 0 2433 |ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct| t ! ----FR1------>|...CDR1......|---FR2----t 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ł A S G FTFSSYAM S W v R '5 2478 |gct|TCC|GGA|ttc|act|ttc|tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgC| ! | BspEI | | BsiWI| |BstXI. ! -----FR2----->|...CDR2...... ! 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ! !0 ! Q A P G K G L E W V S A I S G 2523 |CAa|gct|ccT|GGt|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt| ! ...BstXI 1 1 '5 ! 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 ! S G G S T Y Y A D S V K G RF 2568 |tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc| ! ٠ **'0** ! 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 ! ! Т I SRDNS K N T L Y L Q Μ 2613 |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg| ! | XbaI | ·5 ! 1 ---FR3----->| ţ 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 1 Ν S L R A E D Т A V Y Y С Α Κ 2658 |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|

2007211861 21 Aug 2007 1 AflII | | PstI | 1 1 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 1 D Y Ε G Т G Y A F D Ι W G Q G 2703 |gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|caa|ggt| ! | NdeI |(1/4) ! 1 -----FR4---->| ŗ 136 137 138 139 140 141 142 ł Т M V T V S S 2748 |act|atG|GTC|ACC|gtc|tct|agt 1 | BstEII | ! From BstEII onwards, pV323 is same as pCES1, except as noted. 5 ! BstEII sites may occur in light chains; not likely to be unique in final ! vector. 1 ! 143 144 145 146 147 148 149 150 151 152 1 Α S Т K G P s v F Ρ 2 2769 gcc tcc acc aaG GGC CCa tcg GTC TTC ccc 1 Bsp120I. BbsI...(2/2) ! ApaI.... 1 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 1 5 L А PSS K S т S G G Т Α Α L 2799 ctg gca ccC TCC TCc aag agc acc tct ggg ggc aca gcg gcc ctg ! BseRI...(2/2) ! ! 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 ) 1 G С L v Κ D Y F Ρ Ε P V Т v S ggc tgc ctg GTC AAG GAC TAC TTC CCc gaA CCG GTg acg gtg tcg 2844 ! AgeI.... ! 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 1 5 ! W N S GAL Т S G v Н т F ₽ Α 2889 tgg aac tca GGC GCC ctg acc agc ggc gtc cac acc ttc ccg gct ! KasI...(1/4) ļ ! 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

-

38/128 2007211861 21 Aug 2007 ! V L Q S S G L Y S L S S V V Т 2934 gtc cta cag tCt agc GGa ctc tac tcc ctc agc agc gta gtg acc ! (Bsu36I...) (knocked out) ŗ 5 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 ! ! v P S S S L G Т 0 Т YICNV 2979 gtg ccC tCt tct age tTG Ggc acc cag acc tac atc tgc aac gtg t (BstXI.....)N.B. destruction of BstXI & BpmI sites. I 10 ł 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 ţ. Ν Η К P S Ν тк и р К Κ VE Ρ 3024 aat cac aag ccc agc aac acc aag gtg gac aag aaa gtt gag ccc ! ţ 243 244 245 15 ! K S САААН н н Η Η Η S Α aaa tot tgt GCG GCC GCt cat cac cat cat cat tot got 3069 1 NotI..... ! ! Ε Q Κ L ISEEDLN GAA 20 3111 gaa caa aaa ctc atc tca gaa gag gat ctg aat ggt gcc gca 1 ! ! D INDDRM ASG А 3153 GAT ATC aac gat gat cgt atg gct AGC ggc gcc 25 ! rEK cleavage\_site..... NheI... KasI... 1 EcoRV.. ! Domain 1 -----TVESC 1 A E L А 30 3183 gct gaa act gtt gaa agt tgt tta gca 1 1 1 K РН т E I S F 3210 aaa ccc cat aca gaa aat tca ttt 35 1 ! Т Ν v W K D D Κ Т 3234 aCT AAC GTC TGG AAA GAC GAC AAA ACt 1 ! L D RYAN Y Ε Ģ С L W Ν А ጥ G v

3261 tta gat cgt tac gct aac tat gag ggt tgt ctg tgG AAT GCt aca ggc gtt ! BsmI v С v т G D Е т Q С Y G т W Ι v Ρ 5 3312 gta gtt tgt act ggt GAC GAA ACT CAG TGT TAC GGT ACA TGG GTT cct att ł 1 G L А Ι Ε Ρ N 3363 ggg ctt gct atc cct gaa aat t 10 ! Ll linker -----٤ Е G G G S Ε G G G s 3384 gag ggt ggt ggc tct gag ggt ggc ggt tct t Ε G G G S Е G G G T 15 3414 gag ggt ggc ggt tct gag ggt ggc ggt act 1 ! Domain 2 -----3444 aaa cct cct gag tac ggt gat aca cct att ccg ggc tat act tat atc aac 3495 cct ctc gac ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct 20 3546 aat cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt cag aat 1 BseRI 3597 aat agg tte ega aat agg eag ggg gea tta act gtt tat acg gge act -3645 gtt act caa ggc act gac ccc gtt aaa act tat tac cag tac act cct 3693 gta tca tca aaa gcc atg tat gac gct tac tgg aac ggt aaa ttC AGA 25 ł. AlwNI 3741 GAC TGc gct ttc cat tct ggc ttt aat gaa gat cca ttc gtt tgt gaa 1 AlwNI 3789 tat caa ggc caa tcg tct gac ctg cct caa cct cct gtc aat gct I 30 3834 ggc ggc ggc tct ! start L2 ------\_\_\_\_\_\_ 3846 ggt ggt ggt tct 3858 ggt ggc ggc tct 3870 gag ggt ggt ggc tct gag ggt ggc ggt tct 15 3900 gag ggt ggc ggc tet gag gga ggc ggt tee 3930 ggt ggt ggc tct ggt ! end L2 ŧ ! Domain 3 ---t S G D F D Y Ε Κ М А N А N Κ G Α

39/128

3945 tcc ggt gat ttt gat tat gaa aag atg gca aac gct aat aag ggg gct ! 1 М Т Ε Ν А D Е Ν А L Q S D Α Κ G 3993 atg acc gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc 5 I. 1 K L D S V Α Т D Y G Α Α I D G F 4041 aaa ctt gat tet gte get act gat tae ggt get get ate gat ggt\_tte 1 t I G D v Ş G L Α N G Ν G Α Т G D 10 4089 att ggt gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt gat t 1 F Α G S Ν S 0 М Α Q v G D G D Ν 4137 ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt gat aat 1 !5 ! S Ρ  $\mathbf{L}$ М Ν Ν F R Q Y L Ρ S  $\mathbf{L}$ Ρ Q 4185 tca cct tta atg aat aat ttc cgt caa tat tta cct tcc ctc cct caa 1 t S v Ε С R Ρ F v F S G А К Ρ Y Е 4233 tog gtt gaa tgt ogo oct ttt gto ttt ago got ggt aaa ooa tat gaa ?0 1 ! F S I D С D ĸ Ι Ν L F R 4281 ttt tct att gat tgt gac aaa ata aac tta ttc cgt ! End Domain 3 25 1 G V F Α F L L Y v Α Т F Μ Y V F140 4317 ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat gta ttt ! start transmembrane segment Ţ S т F А Ν I L 10 4365 tet acg ttt get aac ata etg Т ! R Ν к Ε S 4386 cgt aat aag gag tct TAA ! stop of iii ! Intracellular anchor. :5 ł t M1 P2 V L L5 G I P L L10 L R F L G15 4404 to ATG cca gtt ctt ttg ggt att ccg tta tta ttg cgt ttc ctc ggt ł Start VI Ţ

2007211861 21 Aug 2007 4451 ttc ctt ctg gta act ttg ttc ggc tat ctg ctt act ttt ctt aaa aag 4499 ggc ttc ggt aag ata gct att gct att tca ttg ttt ctt gct ctt att 4547 att ggg ctt aac tca att ctt gtg ggt tat ctc tct gat att agc gct 4595 caa tta ccc tct gac ttt gtt cag ggt gtt cag tta att ctc ccg tct 5 4643 aat gcg ctt ccc tgt ttt tat gtt att ctc tct gta aag gct gct att 4691 ttc att ttt gac gtt aaa caa aaa atc gtt tct tat ttg gat tgg gat ţ ţ M1 A2 **V**3 F5 L10 G13 4739 aaa TAA t ATG gct gtt tat ttt gta act ggc aaa tta ggc tct gga 10 end VI Start gene I 14 15 16 17 19 18 20 21 22 23 24 25 26 27 28 Т L v ł K S v G К Ι Q D K Ι v Α 4785 aag acg ctc gtt agc gtt ggt aag att cag gat aaa att gta gct 15 ٢ <u>!</u>. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ł G С K I Α т L N D L R L Q N L 4830 ggg tgc aaa ata gca act aat ctt gat tta agg ctt caa aac ctc 20 ļ 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 t Ρ 0 v G R F А Κ T Ρ R v L R Ι 4875 ccg caa gtc ggg agg ttc gct aaa acg cct cgc gtt ctt aga ata t 59 60 61 62 63 ţ 64 65 66 67 68 69 70 71 72 73 25 ! Ρ D Ρ s Κ Ι S D L  $\mathbf{L}$ A Ι G R G 4920 ccg gat aag cct tct ata tct gat ttg ctt gct att ggg cgc ggt ! ţ 75 74 76 77 78 79 80 81 82 83 84 85 86 87 88 D S Y Ν D Е N к Ν G L L v L D 30 4965 aat gat tcc tac gat gaa aat aaa aac ggc ttg ctt gtt ctc gat ۱ ١ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 1 Е С т G W F Ν т R S W N D ĸ E 5010 gag tgc ggt act tgg ttt aat acc cgt tct tgg aat gat aag gaa 35 1 1 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 R Q Ρ Ĩ I D W F L Η A R K L G 5055 aga cag ccg att att gat tgg ttt cta cat gct cgt aaa tta gga 1

|    | !      |      | 119       | 120      | 121 | 122 | 123          | 124           | 125 | 126 | 127       | 128 | 129      | 130 | 131  | 132      | 133      |   |
|----|--------|------|-----------|----------|-----|-----|--------------|---------------|-----|-----|-----------|-----|----------|-----|------|----------|----------|---|
|    | !      |      | W         | D        | I   | I   | F            | L             | v   | Q   | D         | L   | S        | I   | v    | D        | к        |   |
|    | 5      | 5100 | tgg       | gat      | att | att | ttt          | ctt           | gtt | cag | gac       | tta | tct      | att | gtt  | gat      | aaa      |   |
| _  | !      |      |           |          |     |     |              |               |     |     |           |     |          |     |      |          |          |   |
| 5  | !      |      | 134       | 135      | 136 | 137 | 138          | 139           | 140 | 141 | 142       | 143 | 144      | 145 | 146  | 147      | 148      |   |
|    | !      |      | Q         | A        | R   | S   | A            | L             | A   | E   | H         | v   | v        | Y   | С    | R        | R        |   |
|    | 5      | 5145 | cag       | gcg      | cgt | tct | gca          | tta           | gct | gaa | cat       | gtt | gtt      | tat | tgt  | cgt      | cgt      | • |
|    | !      |      |           | 1 5 4    |     |     |              |               |     |     |           |     |          |     |      |          |          |   |
| 10 | !      |      | 149       | 150      | 151 | 152 | 153          | 154           | 155 | 156 | 157       | 158 | 159      | 160 | 161  | 162      | 163      |   |
| 10 | : 5    | 100  | بر<br>م+م | U<br>700 | R   | 1   | T            | يلا<br>- مرجد | 2   | · Ľ | V         | G   | T        | ىل  | Y    | S        | L        |   |
|    | ر<br>۱ | 190  | cig       | gac      | aya | alt | act          | LLA           | CCL | τττ | gtc       | ggt | act      | ττα | τατ  | tct      | CTT      |   |
|    | !      |      | 164       | 165      | 166 | 167 | 168          | 169           | 170 | 171 | 172       | 173 | 174      | 175 | 176  | 177      | 170      |   |
|    | !      |      | I         | Т        | G   | s   | ĸ            | M             | P   | L   | т, 2<br>р | ĸ   | L        | н   | v    | с<br>Г/1 | v        |   |
| 15 | 5      | 235  | att       | act      | aac | tcq | aaa          | atg           | cct | cta | -<br>cct  | aaa | -<br>tta | cat | ott. | aac      | att      |   |
|    | !      |      |           |          |     | -   |              | -             |     | 2   |           |     |          |     | 3    | 33-      | <b>j</b> |   |
|    | !      |      | 179       | 180      | 181 | 182 | 183          | 184           | 185 | 186 | 187       | 188 | 189      | 190 | 191  | 192      | 193      |   |
|    | !      |      | v         | к        | Y   | G   | D            | S             | Q   | L   | S         | P   | т        | v   | Е    | R        | W        |   |
|    | 5      | 280  | gtt       | aaa      | tat | ggc | gat          | tct           | caa | tta | agc       | cct | act      | gtt | gag  | cgt      | tgg      |   |
| 20 | !      |      |           |          |     |     |              |               |     |     |           |     |          |     |      |          |          |   |
|    | !      |      | 194       | 195      | 196 | 197 | 198          | 199           | 200 | 201 | 202       | 203 | 204      | 205 | 206  | 207      | 208      |   |
|    | !      |      | L         | Y        | Т   | G   | K            | N             | L   | Y   | N         | А   | Y        | D   | Т    | K        | Q        |   |
| ·  | 5      | 325  | ctt       | tat      | act | ggt | aag          | aat           | ttg | tat | aac       | gca | tat      | gat | act  | aaa      | cag      |   |
| 25 | !      |      |           |          |     |     |              |               |     |     |           |     |          |     |      |          |          |   |
| 25 | !      |      | 209       | 210      | 211 | 212 | 213          | 214           | 215 | 216 | 217       | 218 | 219      | 220 | 221  | 222      | 223      |   |
|    | :<br>5 | 370  | A         | г<br>+++ | 5   | 5   | N            | Y<br>tot      | D   | 5   | G         | V   | Y        | S   | Y    | L        | т        |   |
|    | !      |      | ycc       |          |     | ayı | aal          | Lai           | yar | Lee | ggt       | gtt | τατ      | τστ | τατ  | ττα      | acg      |   |
|    | !      |      | 224       | 225      | 226 | 227 | 228          | 229           | 230 | 231 | 232       | 233 | 234      | 235 | 236  | 237      | 238      |   |
| 30 | !      |      | P         | Y        | L   | s   | Н            | G             | R   | Y   | F         | ĸ   | P        | L   | N    | L        | G        |   |
|    | 5      | 415  | cct       | tat      | tta | tca | cac          | ggt           | cgg | tat | ttc       | aaa | cca      | tta | aat  | tta      | ggt      |   |
|    | !      |      |           |          |     |     |              |               |     |     |           |     |          |     |      |          |          |   |
|    | !      |      | 239       | 240      | 241 | 242 | 243          | 244           | 245 | 246 | 247       | 248 | 249      | 250 | 251  | 252      | 253      |   |
|    | !      |      | Q         | K        | М   | К   | $\mathbf{L}$ | Т             | К   | I   | Y         | L   | к        | ĸ   | F    | S        | R        |   |
| 35 | 5      | 460  | cag       | aag      | atg | aaa | tta          | act           | aaa | ata | tat       | ttg | aaa      | aag | ttt  | tct      | cgc      |   |
|    | !      |      |           |          |     |     |              |               |     |     |           |     |          |     |      |          |          |   |
|    | !      |      | 254       | 255      | 256 | 257 | 258          | 259           | 260 | 261 | 262       | 263 | 264      | 265 | 266  | 267      | 268      |   |
|    | ! -    |      | V         | L        | С   | L   | Α            | I             | G   | F   | A         | S   | A        | F   | T    | Y        | S        |   |
|    | 5      | 303  | αττ       | CTT      | τατ | CTT | aca          | att           | ασa | ttt | aca       | tca | aca      | +++ | aca  | tat      | ant      |   |
ţ 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 ł Y I т Q Ρ K Ρ Е v К K v v ţ S Q 5550 tat ata acc caa cct aag ccg gag gtt aaa aag gta gtc tct cag 5 t 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 ŧ ! Т Y D F D K F т Ι D s s R L \_ 0 5595 acc tat gat ttt gat aaa ttc act att gac tct tct cag cgt ctt ţ 10 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 ١. ł N  $\mathbf{L}$ S Y R Y v F Κ D S K G K L 5640 aat cta agc tat cgc tat gtt ttc aag gat tct aag gga aaa TTA ! PacI t 15 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 ! ۲ Ι Ν S D D L К Q Q G Y S L т Y 5685 ATT AAt agc gac gat tta cag aag caa ggt tat tca ctc aca tat 1 PacI 20 ł 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 I i I D  $\mathbf{L}$ С Т ν S I K K G N S N E ł iv M1 Κ att gat tta tgt act gtt tcc att aaa aaa ggt aat tca aAT Gaa 5730 ! Start IV 25 1 344 345 346 347 348 349 ļ 1 i Ι v К С Ν .End of I 1 iv L3 L N5 V 17 N F . V10 5775 att gtt aaa tgt aat TAA T TTT GTT 30 ! IV continued.... 5800 ttc ttg atg ttt gtt tca tca tct tct ttt gct cag gta att gaa atg 5848 aat aat tog oot otg ogo gat tit gta act tgg tat toa aag caa toa 5896 ggc gaa tee gtt att gtt tet eee gat gta aaa ggt aet gtt aet gta 5944 tat tca tct gac gtt aaa cct gaa aat cta cgc aat ttc ttt att tct 35 5992 gtt tta cgt gct aat aat ttt gat atg gtt ggt tca att cct tcc ata 6040 att cag aag tat aat cca. aac aat cag gat tat att gat gaa ttg cca 6088 tca tct gat aat cag gaa tat gat gat aat tcc gct cct tct ggt ggt 6136 ttc ttt gtt ccg caa aat gat aat gtt act caa act ttt aaa att aat 6184 aac gtt cgg gca aag gat tta ata cga gtt gtc gaa ttg ttt gta aag

2007211861 21 Aug 2007

| $\sim$        |    |   |      |            |            |              |              |          |             | 4          | 4/1.       | 28         |              |       |      |            |           |       |       |
|---------------|----|---|------|------------|------------|--------------|--------------|----------|-------------|------------|------------|------------|--------------|-------|------|------------|-----------|-------|-------|
| 8             |    |   | 6232 | + ~+       | +          | act          | + -+         |          | +           | +          |            | ~+-        | <b>* * -</b> | * - * |      |            |           |       |       |
| 5             |    |   | 6280 | cta        | 4+->       | act          | ~++          |          | <br>        | cca        | aal        | gra        | tta          | LCL   | att  | gac        | ggc       | tCt   | aat   |
| 50            |    |   | 0200 | ιιa        | LLA        | yıı          | yıı          | 201      | gca<br>     | CCL        | aaa        | gat        | att          | ττa   | gat  | aac        | CTT       | cct   | caa   |
| Αl            |    | · | 6328 | ***        | <b>-++</b> | + -+         | <b>a</b> .e+ | Ap.      | - 111 .<br> |            | vea<br>=== | +          |              |       |      | <b></b>    | _ + +     |       |       |
| —             | s  |   | 6276 | ++~        |            | +++          | act          | guu      | yat         | LLG        | cca        | act        | gac          | cag   | ata  | ttg        | att       | gag   | ggt   |
| $\mathbf{C}$  | 5  |   | 6424 | cug        | ala        | 555          | gag          | gtt      | cag         | caa        | ggt        | gat        | gct          | tta   | gat  | ttt        | tca       | ttt   | gct   |
|               |    |   | 6470 | get        | gge        |              | cag          | Cgt      | ggc         | act        | gtt        | gca        | ggc          | ggt   | gtt  | aat        | act       | gac   | cgc   |
| $\frac{1}{2}$ |    |   | 6520 | CLC        | acc        |              | gtt          | tta      | TCT         | tCt        | gct        | ggt        | ggt          | tcg   | ttc. | ggt        | att       | ttt   | aat   |
| 86            |    |   | 6568 | ggc<br>toa | gal        | gtt          | tta          | ggg      | cta         | tca        | gtt        | cgc        | gca          | ττα   | aag  | act        | aat       | agc   | cat   |
| 11            | 10 |   | 6616 | LCd        | aaa        | ata          | ttg          |          | gtg         | cca        | cgt        | att        | CTT          | acg   | CTT  | tca        | ggt       | cag   | aag   |
| 2             | 0  | 1 | 0010 | yyı        | LCL        | alc          | LCL          | gtr<br>M | GGC         | CAg        | aat        | gtc        | CCT          | τττ   | αττ  | act        | ggt       | cgt   | gtg   |
| 0             |    | • | 6664 | act        | aat        | <b>a</b> 2 2 | tet          | acc      |             | <br>(7 = 2 |            | <b></b> +  |              | ***   |      |            |           |       |       |
| 50            |    |   | 6712 | caa        | aat        | ata          | aat          | att      | tee         | ata        | aat        | aat<br>att | +++          | oct   | cag  | acg        | att       | gag   | cgt   |
|               |    |   | 6760 | aat        | aat        | att          | ggc<br>att   | cta      | aat         | aty        | ayc        | ycc<br>add |              | acc   | gtt  | gca        | atg       | gct   | ggc   |
|               | '5 |   | 6808 | tct        | act        | car          | gee          | ant      | gat         | att        | att        | age        | aay          | gee   | yac  | agt        |           | ayı   |       |
|               | -  |   | 6856 | aca        | att        | aat          | tta          | cat      | gat         | gee        | cad        | act        |              | tta   | aya  | agt        | acc       | gee   | aca   |
|               |    |   | 6904 | gat        | tat        | <br>aaa      | aac          | act      | tct         | 994<br>Caa | dat .      | tot        | aac          | ata   | ccc  | 992<br>++~ | gyc       | tot   | acc   |
|               |    |   | 6952 | atc        | cct        | tta          | atc          | aac      | ctc         | cta        | ttt        | age        | tcc          | cac   | tot  | aat        | tcc       | 220   | aaa   |
|               |    |   | 7000 | gaa        | age        | aco          | tta          | tac      | ata         | ctc        | atc        | aaa        | dca          | acc   | ata  | gata       | cac       | aac   | gay   |
|               | ?0 |   | 7048 | TAG        | caad       | cocat        | :t           |          | 909         |            | 900        | uuu        | geu          | acc   | aca  | yca        | cyc       | ycc   | cly   |
|               |    | ! |      | End        | IV         | <b>.</b>     |              |          |             |            |            |            |              |       |      |            |           |       |       |
|               |    |   | 7060 | aago       | cgcgq      | jcg (        | ggtgt        | ggto     | ig ti       | acgo       | gcad       | r cat      | caaco        | act   | acad | tta        | ca d      | icaco | ctage |
|               |    |   | 7120 | gcco       | cgcto      | cct t        | tcgc         | ttto     | t to        | cctt       | cctt       | tct        | caco         | aca   | ttc  | SCCGG      | Ct t      | tccd  | cotca |
|               |    | ! |      |            |            |              |              |          |             |            |            |            | 5            | 2     | ł    | IgoMI      |           |       | - 9   |
|               | !5 |   | 7180 | agct       | tctaa      | at d         | gggg         | gcto     | c ct        | ttag       | gggtt      | : ccç      | gattt        | agt   | gctt | taco       | –<br>Igca | iccto | gaccc |
|               | •  |   | 7240 | caaa       | aaaad      | tt q         | gattt        | gggt     | :g at       | ggtt       | CACO       | TAC        | STGgg        | rcca  | tcgo | cct        | jat a     | gaco  | gtttt |
|               |    | ! |      |            |            |              |              |          |             |            | Dral       |            |              |       |      |            |           |       | -     |
|               |    |   | 7300 | tcg        | ccctt      | tG 7         | ACGTI        | GGAG     | ST Co       | cacgt      | tctt       | : taa      | atagt        | gga   | ctct | tgtt       | cc a      | aact  | ggaac |
|               |    | ! |      |            |            | Dro          | 1I           |          |             |            |            |            |              |       |      |            |           |       |       |
|               | :0 |   | 7360 | aaca       | actca      | ac d         | ctat         | ctcç     | ng ga       | tatt       | cttt       | : tga      | attta        | itaa  | ggga | attt       | .gc d     | gatt  | tcgga |
|               |    |   | 7420 | acca       | accat      | ca a         | acag         | gatt     | t to        | gcct       | gcto       | g gg       | gcaaa        | cca   | gcgt | ggac       | cg c      | ttgc  | tgcaa |
|               |    |   | 7480 | ctct       | tctca      | rdd d        | JCCag        | làcđặ    | st ga       | aggo       | gcaat      | CAC        | SCTGt        | tgc   | cCGI | CTCa       | ict g     | gtga  | aaaga |
|               |    | ! |      |            |            |              |              |          |             |            |            | Ρνι        | II.          |       | Bsn  | BI.        |           |       |       |
|               | _  |   | 7540 | aaaa       | accad      | cc t         | GGAI         | CC       | AAGO        | TT         |            |            |              |       |      |            |           |       |       |
|               | 15 | ! |      |            |            |              | BamH         | II       | Hinc        | IIII       | (1/2       | 2)         |              |       |      |            |           |       |       |
|               |    | ! |      |            |            |              | Inse         | ert c    | arry        | ying       | bla        | gene       | 2            |       |      |            |           |       |       |
|               |    |   | 7563 | ç          | gcago      | stg g        | gcact        | tttc     | g gg        | gaaa       | tgtg       | r cga      | cggaa        | ccc   |      |            |           |       |       |
|               |    |   | 7600 | ctat       | ttgt       | tt a         | ittt         | tcta     | ia at       | acat       | tcaa       | ata        | tGTA         | TCC   | gcto | atga       | .ga d     | aata  | accct |
|               |    | ! |      |            |            |              |              |          |             |            |            |            | Bci          | .VI   |      |            |           |       |       |

| | |

7660 gataaatgct tcaataatat tgaaaaAGGA AGAgt RBS.?... Start bla gene 7695 ATG agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg gca ttt 7746 tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa gta aaa gat gct 7797 gaa gat cag ttg ggC gCA CGA Gtg ggt tac atc gaa ctg gat ctc aac agc BssSI... ApaLI removed 7848 ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc 7899 act ttt aaa gtt ctg cta tgt cat aca cta tta tcc cgt att gac gcc ggg 7550 caa gaG CAA CTC GGT CGc cgg gcg cgg tat tet cag aat gae ttg gtt gAG Scal BcgI 8001 TAC Tca cca gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa ScaI 8052 tta tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta ctt 8103 ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac aac atg PvuI Т 8154 ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc 8205 ata cca aac gac gag cgt gac acc acg atg cct gta gca atg cca aca acg 8256 tTG CGC Aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg caa caa FspI.... ţ 8307 tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg cgc tcg 8358 GCC ctt ccG GCt ggc tgg ttt att gct gat aaa tct gga gcc ggt gag cgt BglI 8409 gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc tcc cgt BsaI ٢ 8460 atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa cga aat AhdI ۲ 8511 aga cag atc gct gag ata ggt gcc tca ctg att aag cat tgg TAA ctgt stop 8560 cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa 8620 ggatctaggt gaagateett tttgataate teatgaceaa aateeettaa egtgagtttt 8680 cgttccactg tacgtaagac cccc GTCGAC tgaa tggcgaatgg cgctttgcct 8704 AAGCTT HindIII SalI.. ۲ HincII (2/2)8740 ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt 1

45/128

0

|              |    |   |      |         |      |       |       |       | 4     | 0/14  | 20    |       |      |      |       |       |       |              |     |
|--------------|----|---|------|---------|------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|--------------|-----|
| 00           |    |   | 8790 | CCTGAGO | ;    |       |       |       |       |       |       |       |      |      |       |       |       |              |     |
| $\mathbf{C}$ |    | ! |      | Bsu36I  | -    |       |       |       |       |       |       |       |      |      |       |       |       |              |     |
| đn           | )  |   | 8797 | cc      | gat  | actg  | tcgt  | cg t  | cccc  | tcaaa | a cto | ggca  | gàtg |      |       |       |       |              |     |
| A            |    |   | 8832 | cacggtt | acg  | atge  | gecea | at c  | taca  | ccaa  | c gta | aacci | tatc | ccat | ttac  | ggt ( | caat  | ccgc         | cg  |
| 21           | 5  |   | 8892 | tttgttc | cca  | cgga  | gaat  | cc ga | acgg  | gttgi | t tao | ctcg  | ctca | cati | ttaat | tgt 1 | tgat  | Jaaa         | gc  |
| C V          |    |   | 8952 | tggctac | agg  | aagg  | ccaga | ac g  | cgaat | ttati | t tti | gate  | ggcg | ttco | ctati | tgg t | ttaaa | aaa          | tg  |
|              |    |   | 9012 | agctgat | tta  | acaaa | aaati | tt a  | acgc  | gaati | t tta | acaa  | aat  | atta | aacgt | tt a  | acaA  | <u>T</u> TTA | AA  |
| 61           |    | ! |      |         |      |       |       |       |       |       |       |       |      |      | -     |       | S     | waI.         | ••  |
| 18           |    |   | 9072 | Tatttgc | tta  | tacaa | atcti | tc ci | tgtti | tttg  | g gga | ttt   | cctg | atta | atcaa | acc ( | GGGG  | [Aca         | t   |
|              | 10 | ! |      |         |      |       |       |       |       |       |       |       |      |      |       | I     | RBS?  |              |     |
| 72           |    |   | 9131 | ATG att | gac  | atg   | cta   | gtt   | tta   | cga   | tta   | ccg   | ttc  | atc  | gat   | tct   | ctt   | gtt          | tgc |
| 00           |    | ! |      | Start g | ene  | II    |       |       |       |       |       |       |      |      |       |       |       |              |     |
| 5            |    |   | 9182 | tcc aga | ctc  | tca   | ggc   | aat   | gac   | ctg   | ata   | gcc   | ttt  | gtA  | GAT   | CTc   | tca   | aaa          | ata |
|              |    | ! |      |         |      |       |       |       |       |       |       |       |      | Bç   | glII. | • • • |       |              |     |
|              | 15 |   | 9233 | gct acc | ctc  | tcc   | ggc   | atg   | aat   | tta   | tca   | gct   | aga  | acg  | gtt   | gaa   | tat   | cat          | att |
|              |    |   | 9284 | gat ggt | gat  | ttg   | act   | gtc   | tcc   | ggc   | ctt   | tct   | cac  | cct  | ttt   | gaa   | tct   | tta          | cct |
|              |    |   | 9335 | aca cat | tac  | tca   | ggc   | att   | gca   | ttt   | aaa   | ata   | tat  | gag  | ggt   | tct   | aaa   | aat          | ttt |
|              |    |   | 9386 | tat cct | tgc  | gtt   | gaa   | ata   | aag   | gct   | tct   | ccc   | gca  | aaa  | gta   | tta   | cag   | ggt          | cat |
|              | •• |   | 9437 | aat gtt | ttt  | ggt   | aca   | acc   | gat   | tta   | gct   | tta   | tgc  | tct  | gag   | gct   | tta   | ttg          | ctt |
|              | 20 |   | 9488 | aat ttt | gct  | aat   | tct   | ttg   | cct   | tgc   | ctg   | tat   | gat  | tta  | ttg   | gat   | gtt   | ! 95         | 532 |
|              |    | ! | gene | II cont | inue | S     |       |       |       |       |       |       |      |      |       |       |       |              |     |

I

| Table 120B | : Sequence | of MALIA3, | condensed   |            |            |            |
|------------|------------|------------|-------------|------------|------------|------------|
| LOCUS      | MALIA3     | 9532       | . C         | IRCULAR    |            |            |
| ORIGIN     |            |            |             |            |            |            |
| 1          | AATGCTACTA | CTATTAGTAG | AATTGATGCC  | ACCTTTTCAG | CTCGCGCCCC | алатдаалат |
| 61         | ATAGCTAAAC | AGGTTATTGA | CCATTTGCGA  | AATGTATCTA | ATGGTCAAAC | ТАААТСТАСТ |
| 121        | CGTTCGCAGA | ATTGGGAATC | AACTGTTACA  | TGGAATGAAA | CTTCCAGACA | CCGTACTTTA |
| 181        | GTTGCATATT | TAAAACATGT | TGAGCTACAG  | CACCAGATTC | ÀGCAATTAAG | CTCTAAGCCA |
| 241        | тссбсааааа | TGACCTCTTA | TCAAAAGGAG  | CAATTAAAGG | тастстстаа | TCCTGACCTG |
| 301        | TTGGAGTTTG | CTTCCGGTCT | GGTTCGCTTT  | GAAGCTCGAA | TTAAAACGCG | ATATTTGAAG |
| 361        | TCTTTCGGGC | TTCCTCTTAA | TCTTTTTGAT  | GCAATCCGCT | TTGCTTCTGA | CTATAATAGT |
| 421        | CAGGGTAAAG | ACCTGATTTT | TGATTTATGG  | TCATTCTCGT | TTTCTGAACT | GTTTAAAGCA |
| 481        | TTTGAGGGGG | ATTCAATGAA | TATTTATGAC  | GATTCCGCAG | TATTGGACGC | TATCCAGTCT |
| 541        | AAACATTTTA | CTATTACCCC | CTCTGGCAAA  | ACTTCTTTTG | CAAAAGCCTC | TCGCTATTTT |
| 601        | GGTTTTTATC | GTCGTCTGGT | AAACGAGGGT  | TATGATAGTG | TTGCTCTTAC | TATGCCTCGT |
| 661        | AATTCCTTTT | GGCGTTATGT | ATCTGCATTA  | GTTGAATGTG | GTATTCCTAA | ATCTCAACTG |
| 721        | ATGAATCTTT | CTACCTGTAA | TAATGTTGTT  | CCGTTAGTTC | GTTTTATTAA | CGTAGATTTT |
| 781        | TCTTCCCAAC | GTCCTGACTG | GTATAATGAG  | CCAGTTCTTA | AAATCGCATA | AGGTAATTCA |
| 841        | CAATGATTAA | AGTTGAAATT | AAACCATCTC  | AAGCCCAATT | TACTACTCGT | TCTGGTGTTT |
| 901        | CTCGTCAGGG | CAAGCCTTAT | TCACTGAATG  | AGCAGCTTTG | TTACGTTGAT | TTGGGTAATG |
| 961        | AATATCCGGT | TCTTGTCAAG | ATTACTCTTG  | ATGAAGGTCA | GCCAGCCTAT | GCGCCTGGTC |
| 1021       | TGTACACCGT | TCATCTGTCC | TCTTTCAAAG  | TTGGTCAGTT | CGGTTCCCTT | ATGATTGACC |
| 1081       | GTCTGCGCCT | CGTTCCGGCT | AAGTAACATG  | GAGCAGGTCG | CGGATTTCGA | CACAATTTAT |
| 1141       | CAGGCGATGA | TACAAATCTC | CGTTGTACTT  | TGTTTCGCGC | TTGGTATAAT | CGCTGGGGGT |
| 1201       | CAAAGATGAG | TGTTTTAGTG | TATTCTTTCG  | CCTCTTTCGT | TTTAGGTTGG | TGCCTTCGTA |
| 1261       | GTGGCATTAC | GTATTTTACC | CGTTTAATGG  | AAACTTCCTC | ATGAAAAAGT | CTTTAGTCCT |
| 1321       | CAAAGCCTCT | GTAGCCGTTG | CTACCCTCGT  | TCCGATGCTG | TCTTTCGCTG | CTGAGGGTGA |
| 1381       | CGATCCCGCA | AAAGCGGCCT | TTAACTCCCT  | GCAAGCCTCA | GCGACCGAAT | ATATCGGTTA |
| 1441       | TGCGTGGGCG | ATGGTTGTTG | TCATTGTCGG  | CGCAACTATC | GGTATCAAGC | TGTTTAAGAA |
| 1501       | ATTCACCTCG | AAAGCAAGCT | GATAAACCGA  | ТАСААТТААА | GGCTCCTTTT | GGAGCCTTTT |
| 1561       | TTTTTGGAGA | TTTTCAACGT | GAAAAAATTA  | TTATTCGCAA | TTCCTTTAGT | TGTTCCTTTC |
| 1621       | TATTCTCACA | GTGCACAGTC | TGTCGTGACG  | CAGCCGCCCT | CAGTGTCTGG | GGCCCCAGGG |
| 1681       | CAGAGGGTCA | CCATCTCCTG | CACTGGGAGC  | AGCTCCAACA | TCGGGGCAGG | TTATGATGTA |
| 1741       | CACTGGTACC | AGCAGCTTCC | AGGAACAGCC  | CCCAAACTCC | TCATCTATGG | TAACAGCAAT |
| 1801       | CGGCCCTCAG | GGGTCCCTGA | CCGATTCTCT  | GGCTCCAAGT | CTGGCACCTC | AGCCTCCCTG |
| 1861       | GCCATCACTG | GGCTCCAGGC | TGAGGATGAG  | GCTGATTATT | ACTGCCAGTC | CTATGACAGC |
| 1921       | AGCCTGAGTG | GCCTTTATGT | CTTCGGAACT  | GGGACCAAGG | TCACCGTCCT | AGGTCAGCCC |
| 1981       | AAGGCCAACC | CCACTGTCAC | TCTGTTCCCG  | CCCTCCTCTG | AGGAGCTCCA | AGCCAACAAG |
| 2041       | GCCACACTAG | TGTGTCTGAT | CAGTGACTTC  | TACCCGGGAG | CTGTGACAGT | GGCCTGGAAG |
| 2101       | GCAGATAGCA | GCCCCGTCAA | GGCGGGGAGTG | GAGACCACCA | CACCCTCCAA | ACAAAGCAAC |

2007211861 21 Aug 2007 s v

| 48/128 |
|--------|
|--------|

| 2161 | AACAAGTACG | CGGCCAGCAG | CTATCTGAGC | CTGACGCCTG | AGCAGTGGAA | GTCCCACAGA        |
|------|------------|------------|------------|------------|------------|-------------------|
| 2221 | AGCTACAGCT | GCCAGGTCAC | GCATGAAGGG | AGCACCGTGG | AGAAGACAGT | GGCCCCTACA        |
| 2281 | GAATGTTCAT | AATAAACCGC | CTCCACCGGG | CGCGCCAATT | CTATTTCAAG | GAGACAGTCA        |
| 2341 | TAATGAAATA | CCTATTGCCT | ACGGCAGCCG | CTGGATTGTT | ATTACTCGCG | GCCCAGCCGG        |
| 2401 | CCATGGCCGA | AGTTCAATTG | TTAGAGTCTG | GTGGCGGTCT | TGTTCAGCCT | GGTGGTTCTT        |
| 2461 | TACGTCTTTC | TTGCGCTGCT | TCCGGATTCA | CTTTCTCTTC | GTACGCTATG | TCTTGGGTTC        |
| 2521 | GCCAAGCTCC | TGGTAAAGGT | TTGGAGTGGG | TTTCTGCTAT | CTCTGGTTCT | GGTGGCAGTA        |
| 2581 | CTTACTATGC | TGACTCCGTT | AAAGGTCGCT | TCACTATCTC | TAGAGACAAC | TCTAAGAATA        |
| 2641 | CTCTCTACTT | GCAGATGAAC | AGCTTAAGGG | CTGAGGACAC | TGCAGTCTAC | TATTGCGCTA        |
| 2701 | AAGACTATGA | AGGTACTGGT | TATGCTTTCG | ACATATGGGG | TCAAGGTACT | ATGGTCACCG        |
| 2761 | TCTCTAGTGC | CTCCACCAAG | GGCCCATCGG | TCTTCCCCCT | GGCACCCTCC | TCCAAGAGCA        |
| 2821 | CCTCTGGGGG | CACAGCGGCC | CTGGGCTGCC | TGGTCAAGGA | CTACTTCCCC | GAACCGGTGA        |
| 2881 | CGGTGTCGTG | GAACTCAGGC | GCCCTGACCA | GCGGCGTCCA | CACCTTCCCG | GCTGTCCTAC        |
| 2941 | AGTCTAGCGG | ACTCTACTCC | CTCAGCAGCG | TAGTGACCGT | GCCCTCTTCT | AGCTTGGGCA        |
| 3001 | CCCAGACCTA | CATCTGCAAC | GTGAATCACA | AGCCCAGCAA | CACCAAGGTG | GACAAGAAAG        |
| 3061 | TTGAGCCCAA | ATCTTGTGCG | GCCGCTCATC | ACCACCATCA | TCACTCTGCT | <b>GAACAAAAAC</b> |
| 3121 | TCATCTCAGA | AGAGGATCTG | AATGGTGCCG | CAGATATCAA | CGATGATCGT | ATGGCTGGCG        |
| 3181 | CCGCTGAAAC | TGTTGAAAGT | TGTTTAGCAA | AACCCCATAC | AGAAAATTCA | TTTACTAACG        |
| 3241 | TCTGGAAAGA | CGACAAAACT | TTAGATCGTT | ACGCTAACTA | TGAGGGTTGT | CTGTGGAATG        |
| 3301 | CTACAGGCGT | TGTAGTTTGT | ACTGGTGACG | AAACTCAGTG | TTACGGTACA | TGGGTTCCTA        |
| 3361 | TTGGGCTTGC | TATCCCTGAA | AATGAGGGTG | GTGGCTCTGA | GGGTGGCGGT | TCTGAGGGTG        |
| 3421 | GCGGTTCTGA | GGGTGGCGGT | ACTAAACCTC | CTGAGTACGG | TGATACACCT | ATTCCGGGCT        |
| 3481 | ATACTTATAT | CAACCCTCTC | GACGGCACTT | ATCCGCCTGG | TACTGAGCAA | AACCCCGCTA        |
| 3541 | ATCCTAATCC | TTCTCTTGAG | GAGTCTCAGC | CTCTTAATAC | TTTCATGTTT | CAGAATAATA        |
| 3601 | GGTTCCGAAA | TAGGCAGGGG | GCATTAACTG | TTTATACGGG | CACTGTTACT | CAAGGCACTG        |
| 3661 | ACCCCGTTAA | AACTTATTAC | CAGTACACTC | CTGTATCATC | AAAAGCCATG | TATGACGCTT        |
| 3721 | ACTGGAACGG | TAAATTCAGA | GACTGCGCTT | TCCATTCTGG | CTTTAATGAA | GATCCATTCG        |
| 3781 | TTTGTGAATA | TCAAGGCCAA | TCGTCTGACC | TGCCTCAACC | TCCTGTCAAT | GCTGGCGGCG        |
| 3841 | GCTCTGGTGG | TGGTTCTGGT | GGCGGCTCTG | AGGGTGGTGG | CTCTGAGGGT | GGCGGTTCTG        |
| 3901 | AGGGTGGCGG | CTCTGAGGGA | GGCGGTTCCG | GTGGTGGCTC | TGGTTCCGGT | GATTTTGATT        |
| 3961 | ATGAAAAGAT | GGCAAACGCT | AATAAGGGGG | CTATGACCGA | AAATGCCGAT | GAAAACGCGC        |
| 4021 | TACAGTCTGA | CGCTAAAGGC | AAACTTGATT | CTGTCGCTAC | TGATTACGGT | GCTGCTATCG        |
| 4081 | ATGGTTTCAT | TGGTGACGTT | TCCGGCCTTG | CTAATGGTAA | TGGTGCTACT | GGTGATTTTG        |
| 4141 | CTGGCTCTAA | TTCCCAAATG | GCTCAAGTCG | GTGACGGTGA | TAATTCACCT | TTAATGAATA        |
| 4201 | ATTTCCGTCA | ATATTTACCT | TCCCTCCCTC | AATCGGTTGA | ATGTCGCCCT | TTTGTCTTTA        |
| 4261 | GCGCTGGTAA | ACCATATGAA | TTTTCTATTG | ATTGTGACAA | ААТАААСТТА | TTCCGTGGTG        |
| 4321 | TCTTTGCGTT | TCTTTTATAT | GTTGCCACCT | TTATGTATGT | ATTTTCTACG | TTTGCTAACA        |
| 4381 | TACTGCGTAA | TAAGGAGTCT | TAATCATGCC | AGTTCTTTTG | GGTATTCCGT | TATTATTGCG        |
| 4441 | TTTCCTCGGT | TTCCTTCTGG | TAACTTTGTT | CGGCTATCTG | CTTACTTTTC | TTAAAAAGGG        |

2007211861 21 Aug 2007 s

|                  | 4                        | 49/128            |
|------------------|--------------------------|-------------------|
| GGTAAG           | ATAGCTATTG               | CTATTTC           |
| CTTGTG           | GGTTATCTCT               | CTGATAT           |
| GGTAAG<br>CTTGTG | ATAGCTATTG<br>GGTTATCTCT | CTATTT<br>CTGATA: |

| 4501 | CTTCGGTAAG | ATAGCTATTG | CTATTTCATT | GTTTCTTGCT | CTTATTATTG | GGCTTAACTC |
|------|------------|------------|------------|------------|------------|------------|
| 4561 | AATTCTTGTG | GGTTATCTCT | CTGATATTAG | CGCTCAATTA | CCCTCTGACT | TTGTTCAGGG |
| 4621 | TGTTCAGTTA | ATTCTCCCGT | CTAATGCGCT | TCCCTGTTTT | TATGTTATTC | TCTCTGTAAA |
| 4681 | GGCTGCTATT | TTCATTTTTG | ACGTTAAACA | AAAAATCGTT | TCTTATTTGG | ATTGGGATAA |
| 4741 | ATAATATGGC | TGTTTATTT  | GTAACTGGCA | AATTAGGCTC | TGGAAAGACG | CTCGTTAGCG |
| 4801 | TTGGTAAGAT | TCAGGATAAA | ATTGTAGCTG | GGTGCAAAAT | AGCAACTAAT | CTTGATTTAA |
| 4861 | GGCTTCAAAA | CCTCCCGCAA | GTCGGGAGGT | TCGCTAAAAC | GCCTCGCGTT | CTTAGAATAC |
| 4921 | CGGATAAGCC | TTCTATATCT | GATTTGCTTG | CTATTGGGCG | CGGTAATGAT | TCCTACGATG |
| 4981 | аааатааааа | CGGCTTGCTT | GTTCTCGATG | AGTGCGGTAC | TTGGTTTAAT | ACCCGTTCTT |
| 5041 | GGAATGATAA | GGAAAGACAG | CCGATTATTG | ATTGGTTTCT | ACATGCTCGT | AAATTAGGAT |
| 5101 | GGGATATTAT | TTTTCTTGTT | CAGGACTTAT | CTATTGTTGA | TAAACAGGCG | CGTTCTGCAT |
| 5161 | TAGCTGAACA | TGTTGTTTAT | TGTCGTCGTC | TGGACAGAAT | TACTTTACCT | TTTGTCGGTA |
| 5221 | CTTTATATTC | TCTTATTACT | GGCTCGAAAA | TGCCTCTGCC | TAAATTACAT | GTTGGCGTTG |
| 5281 | TTAAATATGG | CGATTCTCAA | TTAAGCCCTA | CTGTTGAGCG | TTGGCTTTAT | ACTGGTAAGA |
| 5341 | ATTTGTATAA | CGCATATGAT | ACTAAACAGG | CTTTTTCTAG | TAATTATGAT | TCCGGTGTTT |
| 5401 | ATTCTTATTT | AACGCCTTAT | TTATCACACG | GTCGGTATTT | CAAACCATTA | AATTTAGGTC |
| 5461 | AGAAGATGAA | АТТААСТААА | ATATATTTGA | AAAAGTTTTC | TCGCGTTCTT | TGTCTTGCGA |
| 5521 | TTGGATTTGC | ATCAGCATTT | ACATATAGTT | ATATAACCCA | ACCTAAGCCG | GAGGTTAAAA |
| 5581 | AGGTAGTCTC | TCAGACCTAT | GATTTTGATA | AATTCACTAT | TGACTCTTCT | CAGCGTCTTA |
| 5641 | ATCTAAGCTA | TCGCTATGTT | TTCAAGGATT | CTAAGGGAAA | ATTAATTAAT | AGCGACGATT |
| 5701 | TACAGAAGCA | AGGTTATTCA | CTCACATATA | TTGATTTATG | TACTGTTTCC | ATTAAAAAAG |
| 5761 | GTAATTCAAA | TGAAATTGTT | AAATGTAATT | AATTTTGTTT | TCTTGATGTT | TGTTTCATCA |
| 5821 | TCTTCTTTTG | CTCAGGTAAT | TGAAATGAAT | AATTCGCCTC | TGCGCGATTT | TGTAACTTGG |
| 5881 | TATTCAAAGC | AATCAGGCGA | ATCCGTTATT | GTTTCTCCCG | ATGTAAAAGG | TACTGTTACT |
| 5941 | GTATATTCAT | CTGACGTTAA | ACCTGAAAAT | CTACGCAATT | TCTTTATTTC | TGTTTTACGT |
| 6001 | GCTAATAATT | TTGATATGGT | TGGTTCAATT | CCTTCCATAA | TTCAGAAGTA | TAATCCAAAC |
| 6061 | AATCAGGATT | ATATTGATGA | ATTGCCATCA | TCTGATAATC | AGGAATATGA | TGATAATTCC |
| 6121 | GCTCCTTCTG | GTGGTTTCTT | TGTTCCGCAA | AATGATAATG | TTACTCAAAC | TTTTAAAATT |
| 6181 | AATAACGTTC | GGGCAAAGGA | TTTAATACGA | GTTGTCGAAT | TGTTTGTAAA | GTCTAATACT |
| 6241 | TCTAAATCCT | CAAATGTATT | ATCTATTGAC | GGCTCTAATC | TATTAGTTGT | TTCTGCACCT |
| 6301 | AAAGATATTT | TAGATAACCT | TCCTCAATTC | CTTTCTACTG | TTGATTTGCC | AACTGACCAG |
| 6361 | ATATTGATTG | AGGGTTTGAT | ATTTGAGGTT | CAGCAAGGTG | ATGCTTTAGA | TTTTTCATTT |
| 6421 | GCTGCTGGCT | CTCAGCGTGG | CACTGTTGCA | GGCGGTGTTA | ATACTGACCG | CCTCACCTCT |
| 6481 | GTTTTATCTT | CTGCTGGTGG | TTCGTTCGGT | ATTTTTAATG | GCGATGTTTT | AGGÉCTATCA |
| 6541 | GTTCGCGCAT | TAAAGACTAA | TAGCCATTCA | AAAATATTGT | CTGTGCCACG | TATTCTTACG |
| 6601 | CTTTCAGGTC | AGAAGGGTTC | TATCTCTGTT | GGCCAGAATG | TCCCTTTTAT | TACTGGTCGT |
| 6661 | GTGACTGGTG | AATCTGCCAA | TGTAAATAAT | CCATTTCAGA | CGATTGAGCG | TCAAAATGTA |
| 6721 | GGTATTTCCA | TGAGCGTTTT | TCCTGTTGCA | ATGGCTGGCG | GTAATATTGT | TCTGGATATT |
| 6781 | ACCAGCAAGG | CCGATAGTTT | GAGTTCTTCT | ACTCAGGCAA | GTGATGTTAT | TACTAATCAA |

2007211861 21 Aug 2007 s

2007211861 21 Aug 2007  $\stackrel{>}{\sim}$ 

| 0041        | AGAAGTATTG | CTACAACGG1 | TAATTTGCG1 | GATGGACAGA | CTCTTTTACT | CGGTGGCCTC          |
|-------------|------------|------------|------------|------------|------------|---------------------|
| 6901        | ACTGATTATA | AAAACACTTC | TCAAGATTCI | GGCGTACCGI | TCCTGTCTAA | AATCCCTTTA          |
| 6961        | ATCGGCCTCC | TGTTTAGCTC | CCGCTCTGAT | TCCAACGAGG | AAAGCACGTT | ATACGTGCTC          |
| 7021        | GTCAAAGCAA | CCATAGTACG | CGCCCTGTAG | CGGCGCATTA | AGCGCGGCGG | GTGTGGTGGT          |
| 7081        | TACGCGCAGC | GTGACCGCTA | CACTTGCCAG | CGCCCTAGCG | CCCGCTCCTT | TCGCTTTCTT          |
| 7141        | CCCTTCCTTT | CTCGCCACGT | TCGCCGGCTT | TCCCCGTCAA | GCTCTAAATC | GGGGGCTCCC          |
| 7201        | TTTAGGGTTC | CGATTTAGTG | CTTTACGGCA | CCTCGACCCC | AAAAAACTTG | A <u>T</u> TTGGGTGA |
| 7261        | TGGTTCACGT | AGTGGGCCAT | CGCCCTGATA | GACGGTTTTT | CGCCCTTTGA | CGTTGGAGTC          |
| 7321        | CACGTTCTTT | AATAGTGGAC | TCTTGTTCCA | AACTGGAACA | ACACTCAACC | CTATCTCGGG          |
| 7381        | CTATTCTTT  | GATTTATAAG | GGATTTTGCC | GATTTCGGAA | CCACCATCAA | ACAGGATTTT          |
| 7441        | CGCCTGCTGG | GGCAAACCAG | CGTGGACCGC | TTGCTGCAAC | TCTCTCAGGG | CCAGGCGGTG          |
| 7501        | AAGGGCAATC | AGCTGTTGCC | CGTCTCACTG | GTGAAAAGAA | AAACCACCCT | GGATCCAAGC          |
| 7561        | TTGCAGGTGG | CACTTTTCGG | GGAAATGTGC | GCGGAACCCC | TATTTGTTTA | TTTTTCTAAA          |
| 7621        | TACATTCAAA | TATGTATCCG | CTCATGAGAC | AATAACCCTG | ATAAATGCTT | CAATAATATT          |
| 7681        | GAAAAAGGAA | GAGTATGAGT | AŢTCAACATT | TCCGTGTCGC | CCTTATTCCC | TTTTTTGCGG          |
| 7741        | CATTTTGCCT | TCCTGTTTTT | GCTCACCCAG | AAACGCTGGT | GAAAGTAAAA | GATGCTGAAG          |
| 7801        | ATCAGTTGGG | CGCACGAGTG | GGTTACATCG | AACTGGATCT | CAACAGCGGT | AAGATCCTTG          |
| 7861        | AGAGTTTTCG | CCCCGAAGAA | CGTTTTCCAA | TGATGAGCAC | TTTTAAAGTT | CTGCTATGTC          |
| 7921        | ATACACTATT | ATCCCGTATT | GACGCCGGGC | AAGAGCAACT | CGGTCGCCGG | GCGCGGTATT          |
| 7981        | CTCAGAATGA | CTTGGTTGAG | TACTCACCAG | TCACAGAAAA | GCATCTTACG | GATGGCATGA          |
| 8041        | CAGTAAGAGA | ATTATGCAGT | GCTGCCATAA | CCATGAGTGA | TAACACTGCG | GCCAACTTAC          |
| 8101        | TTCTGACAAC | GATCGGAGGA | CCGAAGGAGC | TAACCGCTTT | TTTGCACAAC | ATGGGGGATC          |
| 8161        | ATGTAACTCG | CCTTGATCGT | TGGGAACCGG | AGCTGAATGA | AGCCATACCA | AACGACGAGC          |
| 8221        | GTGACACCAC | GATGCCTGTA | GCAATGCCAA | CAACGTTGCG | CAAACTATTA | ACTGGCGAAC          |
| 8281        | TACTTACTCT | AGCTTCCCGG | CAACAATTAA | TAGACTGGAT | GGAGGCGGAT | AAAGTTGCAG          |
| 8341        | GACCACTTCT | GCGCTCGGCC | CTTCCGGCTG | GCTGGTTTAT | TGCTGATAAA | TCTGGAGCCG          |
| 8401        | GTGAGCGTGG | GTCTCGCGGT | ATCATTGCAG | CACTGGGGCC | AGATGGTAAG | CCCTCCCGTA          |
| 8461        | TCGTAGTTAT | CTACACGACG | GGGAGTCAGG | CAACTATGGA | TGAACGAAAT | AGACAGATCG          |
| 8521        | CTGAGATAGG | TGCCTCACTG | ATTAAGCATT | GGTAACTGTC | AGACCAAGTT | TACTCATATA          |
| 8581        | TACTTTAGAT | TGATTTAAAA | CTTCATTTTT | AATTTAAAAG | GATCTAGGTG | AAGATCCTTT          |
| 8641        | TTGATAATCT | CATGACCAAA | ATCCCTTAAC | GTGAGTTTTC | GTTCCACTGT | ACGTAAGACC          |
| 8701        | CCCAAGCTTG | TCGACTGAAT | GGCGAATGGC | GCTTTGCCTG | GTTTCCGGCA | CCAGAAGCGG          |
| 8761        | TGCCGGAAAG | CTGGCTGGAG | TGCGATCTTC | CTGAGGCCGA | TACTGTCGTC | GTCCCCTCAA          |
| 8821        | ACTGGCAGAT | GCACGGTTAC | GATGCGCCCA | TCTACACCAA | CGTAACCTAT | CCCATTACGG          |
| 8881        | TCAATCCGCC | GTTTGTTCCC | ACGGAGAATC | CGACGGGTTG | TTACTCGCTC | ACATTTAATG          |
| 8941        | TTGATGAAAG | CTGGCTACAG | GAAGGCCAGA | CGCGAATTAT | TTTTGATGGC | GTTCCTATTG          |
| 9001        | GTTAAAAAAT | GAGCTGATTT | ААСАААААТТ | TAACGCGAAT | тттаасаааа | TATTAACGTT          |
| 906T        | TACAATTTAA | ATATTTGCTT | ATACAATCTT | CCTGTTTTTG | GGGCTTTTCT | GATTATCAAC          |
| <b>ATST</b> | CGGGGTACAT | ATGATTGACA | TGCTAGTTTT | ACGATTACCG | TTCATCGATT | CTCTTGTTTG          |

| 9181 | CTCCAGACTC | TCAGGCAATG | ACCTGATAGC | CTTTGTAGAT | СТСТСААААА | TAGCTACCCT |
|------|------------|------------|------------|------------|------------|------------|
| 9241 | CTCCGGCATG | AATTTATCAG | CTAGAACGGT | TGAATATCAT | ATTGATGGTG | ATTTGACTGT |
| 9301 | CTCCGGCCTT | TCTCACCCTT | TTGAATCTTT | ACCTACACAT | TACTCAGGCA | TTGCATTTAA |
| 9361 | AATATATGAG | GGTTCTAAAA | ATTTTTATCC | TTGCGTTGAA | ATAAAGGCTT | CTCCCGCAAA |
| 9421 | AGTATTACAG | GGTCATAATG | TTTTTGGTAC | AACCGATTTA | GCTTTATGCT | CTGAGGCTTT |
| 9481 | ATTGCTTAAT | TTTGCTAATT | CTTTGCCTTG | CCTGTATGAT | TTATTGGATG | TT         |

Table 200: Enzymes that either cut 15 or more human GLGs or have 5+-base recognition in FR3 Typical entry: REname Recognition #sites GLGid#:base# GLGid#:base#.... GLGid#:base# 5 BstEII Ggtnacc 2 1: 3 48: 3 There are 2 hits at base# 3 10 MaeIII gtnac 36 1: 2: 4 4 3: 4 4: 4 5: 4 6: 4 7: 4 8: 4 9: 4 10: 4 11: 4 37: 4 37: 58 38: 38: 58 4 39: 4 39: 58 40: 4 40: 58 41: 4 41: 58 42: 4 42: 58 43: 4 15 43: 58 44: 44: 58 4 45: 4 45: 58 46: 4 46: 58 47: 4 47: 58 48: 4 49: 4 50: 58 There are 24 hits at base# 4 Tsp45I gtsac 33 20 1: 4 2: 4 3: 4 4: 4 5: 4 6: 4 7: 4 8: 4 9: 4 10: 4 11: 4 37: 4 37: 58 38: 4 38: 58 39: 58 40: 4 40: 58 41: 58 42: 58 43: 4 43: 58 44: 4 44: 58 45: 4 45: 58 46: 4 46: 58 47: 4 47: 58 25 48: 4 49: 4 50: 58 There are 21 hits at base# 4 HphI tcacc 45 1: 5 2: 5 3: 5 4: 5 5: 5 6: 5 30 7: 5 8: 5 5 11: 12: 5 12: 11 13: 5 14: 5 15: 5 5 16: 17: 5 18: 5 19: 5 20: 5 21: 5 22: 5 23: 5 24: 5 25: 5 26: 5 27: 5 28: 5 29: 5 30: 5 5 31: 32: 5 33: 5 34: 5 35: 5 36: 5 37: 5 35 38: 5 40: 5 43: 5 5 44: 45: 5 46: 5 47: 5 48: 5 5 49: There are 44 hits at base# 5

NlaIII CATG

|    | 1:         | 9    | 1:    | 42          | 2:            | 42  | 3:            | 9         | 3:          | 42  | 4:         | 9         |   |
|----|------------|------|-------|-------------|---------------|-----|---------------|-----------|-------------|-----|------------|-----------|---|
|    | 4:         | 42   | 5:    | 9           | 5:            | 42  | 6:            | 42        | 6:          | 78  | 7:         | 9         |   |
|    | 7:         | 42   | 8:    | 21          | 8:            | 42  | 9:            | 42        | 10:         | 42  | 11:        | 42        |   |
| 5  | 12:        | 57   | 13:   | 48          | 13:           | 57  | 14:           | 57        | 31:         | 72  | 38:        | 9         |   |
|    | 48:        | 78   | 49:   | 78          |               |     |               |           |             |     |            |           |   |
|    | The        | re   | are l | 1 h:        | its at        | ba  | se# 42        |           |             |     |            |           |   |
|    | The        | re   | are   | 1 h:        | its at        | ba  | se# 48        | Cou       | ld cau      | ıse | ragge      | iness     | • |
|    |            |      |       |             |               |     |               |           |             |     |            |           |   |
| 10 | BsaJ       | ιс   | cnngg |             |               |     | :             | 37        |             |     |            |           |   |
|    | 1:         | 14   | 2:    | 14          | 5:            | 14  | 6:            | 14        | 7:          | 14  | 8:         | 14        |   |
|    | 8:         | 65   | 9:    | 14          | 10:           | 14  | 11:           | 14        | 12:         | 14  | 13:        | 14        |   |
|    | 14:        | 14   | 15:   | 65          | 17:           | 14  | 17:           | 65        | 18:         | 65  | 19:        | 65        |   |
|    | 20:        | 65   | 21:   | 65          | 22:           | 65  | 26:           | 65        | 29:         | 65  | 30:        | 65        |   |
| 15 | 33:        | 65   | 34:   | 65          | 35:           | 65  | 37:           | 65        | 38:         | 65  | 39:        | 65        |   |
|    | 40:        | 65   | 42:   | 65          | 43:           | 65  | 48:           | 65        | 49:         | 65  | 50:        | 65        |   |
|    | 51:        | 14   |       |             |               |     |               |           |             |     |            |           |   |
|    | The        | re   | are 2 | 3 hi        | its at        | bas | se# 65        |           |             |     |            |           |   |
|    | The        | re   | are 1 | 4 hi        | its at        | bas | se# 14        |           |             |     |            |           |   |
| 20 |            |      |       |             |               |     |               |           |             |     |            |           |   |
|    | AluI       | AG   | ct    |             |               |     | 4             | 12        |             |     |            |           |   |
|    | 1:         | 47   | 2:    | 47          | 3:            | 47  | 4:            | 47        | 5:          | 4.7 | 6:         | 47        |   |
|    | 7:         | 47   | 8:    | 47          | 9:            | 47  | 10:           | 47        | 11:         | 47  | 16:        | 63        |   |
|    | 23:        | 63   | 24:   | 63          | 25:           | 63  | 31:           | 63        | 32:         | 63  | 36:        | 63        |   |
| 25 | <u>37:</u> | 47   | 37:   | <u>52</u>   | <u> 38:</u>   | 47  | 38:           | <u>52</u> | <u> 39:</u> | 47  | 39:        | <u>52</u> |   |
|    | <u>40:</u> | 47   | 40:   | <u>52</u>   | <u>41:</u>    | 47  | 41:           | <u>52</u> | <u>42:</u>  | 47  | <u>42:</u> | <u>52</u> |   |
|    | <u>43:</u> | 47   | 43:   | <u>52</u>   | <u>44:</u>    | 47  | 44:           | 52        | <u>45:</u>  | 47  | 45:        | 52        |   |
|    | <u>46:</u> | 47   | 46:   | 52          | <u>47:</u>    | 47  | <u> 47:</u>   | <u>52</u> | 49:         | 15  | 50:        | 47        |   |
| •• | The:       | re   | are 2 | 3 hi        | its at        | bas | se# 47        |           |             |     |            |           |   |
| 30 | <u>The</u> | re   | are 1 | <u>1 hi</u> | <u>its at</u> | bas | <u>se# 52</u> | Onl       | y 5 ba      | ses | from       | 47        |   |
|    | _          |      |       |             |               |     |               |           |             |     |            |           |   |
|    | BlpI       | GC   | tnage |             |               |     | 2             | 21        |             |     |            |           |   |
|    | 1:         | 48   | 2:    | 48          | 3:            | 48  | 5:            | 48        | 6:          | 48  | 7:         | 48        |   |
|    | 8:         | 48   | 9:    | 48          | 10:           | 48  | 11:           | 48        | 37:         | 48  | 38:        | 48        |   |
| 35 | 39:        | 48   | 40:   | 48          | 41:           | 48  | 42:           | 48        | 43:         | 48  | 44:        | 48        |   |
|    | 45:        | 48   | 46:   | 48          | 47:           | 48  |               |           |             |     |            |           |   |
|    | The        | re a | are 2 | 1 hi        | ts at         | bas | e# 48         |           |             |     |            |           |   |

~

. . . .

|    | MwoI        | GCNN  | NNNnı       | ngc          |             |           |              | 19   |                |           |             |       |    |
|----|-------------|-------|-------------|--------------|-------------|-----------|--------------|------|----------------|-----------|-------------|-------|----|
|    | 1:          | 48    | 2:          | 28           | 19:         | 36        | 22:          | 36   | 23:            | 36        | 24:         | 36    |    |
|    | 25:         | 36    | 26:         | 36           | 35:         | 36        | 37:          | 67   | 39:            | 67        | 40:         | 67    |    |
|    | 41:         | 67    | 42:         | 67           | 43:         | 67        | 44:          | 67   | 45:            | 67        | 46:         | 67    |    |
| 5  | 47:         | 67    |             |              |             |           |              |      |                |           |             |       |    |
|    | The         | re ar | e 10        | 0 hit        | s at        | bas       | e# 67        |      |                |           |             |       |    |
|    | The         | re ar | e ·         | 7 hit        | s at        | bas       | <b>e#</b> 36 |      |                |           |             |       |    |
|    |             |       |             |              |             |           |              |      |                |           |             |       |    |
|    | DdeI        | Ctna  | g           |              |             |           | •            | 71   |                |           |             |       |    |
| 10 | 1:          | 49    | 1:          | 58           | 2:          | 49        | 2:           | 58   | 3:             | 49        | 3:          | 58    |    |
|    | 3:          | 65    | 4:          | 49           | 4:          | 58        | 5:           | 49   | 5:             | 58        | 5:          | 65    |    |
|    | 6:          | 49    | <u>6:</u>   | 58           | 6:          | <u>65</u> | 7:           | 49   | <u>7:</u>      | 58        | <u> </u>    | _65   |    |
|    | 8:          | 49    | 8:          | 58           | 9:          | 49        | <u>9:</u>    | 58   | 9:             | 65        | 10:         | 49    |    |
|    | <u>10:</u>  | 58    | 10:         | 65           | 11:         | 49        | <u>11:</u>   | 58   | <u>    11:</u> | <u>65</u> | 15:         | 58    |    |
| 15 | <u> 16:</u> | 58    | 16:         | 65           | 17:         | 58        | 18:          | 58   | 20:            | 58        | 21:         | 58    |    |
|    | 22:         | 58    | <u>23:</u>  | 58           | _23:        | <u>65</u> | <u>24:</u>   | 58   | 24:            | 65        | <u> 25:</u> | 58    | _  |
|    | <u>25:</u>  | 65    | 26:         | 58           | <u> 27:</u> | 58        | 27:          | 65   | 28:            | 58        | 30:         | 58    |    |
|    | <u>31:</u>  | 58    | 31:         | 65           | <u>32:</u>  | 58        | 32:          | 65   | 35:            | 58        | <u> 36:</u> | 58    | _  |
|    | 36:         | 65    | 37:         | 49           | 38:         | 49        | 39:          | 26   | 39:            | 49        | 40:         | 49    |    |
| 20 | 41:         | 49    | 42:         | 26           | 42:         | 49        | 43:          | 49   | 44:            | 49        | 45:         | 49    |    |
|    | 46:         | 49    | 47:         | 49           | 48:         | 12        | 49:          | 12   | 51:            | 65        |             |       |    |
|    | The         | re ar | e 29        | ) hit        | s at        | bas       | e# 58        |      |                |           |             |       |    |
|    | The         | re ar | <u>e 22</u> | <u>2 hit</u> | <u>s at</u> | bas       | e# 49        | Only | y nine         | e ba      | se fro      | om 54 | 8  |
|    | The         | re ar | <u>e 16</u> | 5 hit        | <u>s at</u> | bas       | e# 65        | Only | y seve         | en b      | ases 1      | Erom  | 58 |
| 25 |             |       |             |              |             |           |              |      |                |           |             |       |    |
|    | BglII       | I Aga | tct         |              |             |           | 1            | 11   |                |           |             |       |    |
|    | 1:          | 61    | 2:          | 61           | 3:          | 61        | 4:           | 61   | 5:             | 61        | 6:          | 61    |    |
|    | 7:          | 61    | 9:          | 61           | 10:         | 61        | 11:          | 61   | 51:            | 47        |             |       |    |
|    | The         | re ar | e 10        | ) hit        | s at        | bas       | e# 61        |      |                |           |             |       |    |
| 30 |             |       |             |              |             |           |              |      |                |           |             |       |    |
|    | BstY        | I Rga | tcy         |              |             |           | 1            | 2    |                |           |             |       |    |
|    | 1:          | 61    | 2:          | 61           | 3:          | 61        | 4:           | 61   | 5:             | 61        | 6:          | 61    |    |
|    | 7:          | 61    | 8:          | 61           | 9:          | 61        | 10:          | 61   | 11:            | 61        | 51:         | 47    |    |
|    | The         | re ar | e 11        | l hit        | s at        | bas       | e# 61        |      |                |           |             |       |    |
| 35 |             |       |             |              |             |           |              |      |                |           |             |       |    |

|    | Hpy1                 | 881        | I TCNga        | ē          |            |     |         | 17  |        |     |       |      |
|----|----------------------|------------|----------------|------------|------------|-----|---------|-----|--------|-----|-------|------|
|    | 1:                   | 64         | 4 2:           | 64         | 3:         | 64  | 4:      | 64  | 5:     | 64  | 6:    | 64   |
|    | 7:                   | 64         | 4 8:           | 64         | 9:         | 64  | 10:     | 64  | 11:    | 64  | 16:   | 57   |
|    | 20:                  | 57         | 7 27:          | : 57       | 35:        | 57  | 48:     | 67  | 49:    | 67  |       |      |
| 5  | The                  | re         | are 1          | 11 h:      | its at     | ba  | se# 64  |     |        |     |       |      |
|    | The                  | re         | are            | 4 h        | its at     | ba  | se# 57  |     |        |     |       |      |
|    | The                  | re         | are            | 2 h:       | its at     | bas | se# 67  | Cot | ild be | raș | gged. |      |
|    | <b>M</b> -1 <b>T</b> |            | 173737         |            |            |     |         |     |        |     |       |      |
| '0 | MSII                 |            | AI NNNNF       | KTG<br>70  | ۰.         |     |         | 44  | -      |     |       | -    |
| U  | 1:                   | 12         |                | . 70       | 3:         | 72  | 4:      | 72  | 5:     | 72  | 6:    | 72   |
|    | 17.                  | 14         | 2 8:<br>       | . 72       | 9:         | 72  | 10:     | 72  | 11:    | 72  | 15:   | 72   |
|    | 1/:                  | 12         | . 18:          | . 72       | 19:        | 72  | 21:     | 72  | 23:    | 72  | 24:   | 72   |
|    | 20;                  | 12         | 2 20:<br>D 22. | 72         | 28:        | 72  | 29:     | 72  | 30:    | 72  | 31:   | 72   |
| 15 | 32:                  | 12         |                | 72         | 34:        | 72  | 35:     | 72  | 36:    | 72  | 37:   | 72   |
| 5  | 30;                  | 12         | 2 39;<br>AE.   | 72         | 40:        | 72  | 41:     | 72  | 42:    | 72  | 43:   | 72   |
|    | 44:<br>50.           | 72         | 40:<br>5 51.   | 72         | 46:        | 12  | 4/:     | 72  | 48:    | 72  | 49:   | 72   |
|    | 50:                  | 12         | . 51:          | 12<br>14 1 | • • •      | 1   |         |     |        |     |       |      |
|    | The:                 | re         | are 4          | 14 D.      | lts at     | Das | se# /2  |     |        |     |       |      |
| !0 | BsiE:                | ΙC         | GRYcg          |            |            |     | :       | 23  |        |     |       |      |
|    | 1:                   | 74         | 3:             | 74         | 4:         | 74  | 5:      | 74  | 7:     | 74  | 8:    | 74 . |
|    | 9:                   | 74         | 10:            | 74         | 11:        | 74  | 17:     | 74  | 22:    | 74  | 30:   | 74   |
|    | 33:                  | 74         | 34:            | 74         | 37:        | 74  | 38:     | 74  | 39:    | 74  | 40:   | 74   |
|    | 41:                  | 74         | 42:            | 74         | 45:        | 74  | 46:     | 74  | 47:    | 74  |       |      |
| '5 | The:                 | re         | are 2          | 23 hi      | its at     | bas | se# 74  |     |        |     |       |      |
|    |                      |            |                |            |            |     |         |     |        |     |       |      |
|    | EaeI                 | Yg         | ldccr          |            |            |     | 2       | 23  |        |     |       |      |
|    | 1:                   | 74         | 3:             | 74         | 4:         | 74  | 5:      | 74  | 7:     | 74  | 8:    | 74   |
|    | 9:                   | 74         | 10:            | 74         | 11:        | 74  | 17:     | 74  | 22:    | 74  | 30:   | 74   |
| :0 | 33:                  | 74         | 34:            | 74         | 37:        | 74  | 38:     | 74  | 39:    | 74  | 40:   | 74   |
|    | 41:                  | 74         | 42:            | 74         | 45:        | 74  | 46:     | 74  | 47:    | 74  |       |      |
|    | The                  | re         | are 2          | 3 hi       | its at     | bas | ie# 74  |     |        |     |       |      |
|    | Eagt                 | <b>~</b> - |                |            |            |     |         |     |        |     |       |      |
| :5 | ayı<br>1.            | 74         |                | 74         | <b>A</b> . | 74  | 2<br>E. |     | -      |     | •     |      |
| 5  | ο.<br>Τ:             | 74         | 1 3:<br>1 10-  | 74         | 4:         | 74  | 5:      | 74  | 7:     | 74  | 8:    | 74   |
|    | 9:                   | 74         | 10:            | 74         | 11:        | 74  | 17:     | 74  | 22:    | 74  | 30:   | 74   |

i

| )     | 33:   | 74            | 34:     | 74   | 37:    | 74  | 38:     | 74   | 39:    | 74   | 40:    | 74     |          |        |
|-------|-------|---------------|---------|------|--------|-----|---------|------|--------|------|--------|--------|----------|--------|
| 0     | 41:   | 74            | 42:     | 74   | 45:    | 74  | 46:     | 74   | 47:    | 74   |        |        |          |        |
|       | The   | re a          | are 2   | 3 hi | its at | bas | se# 74  |      |        |      |        |        |          |        |
|       |       |               |         |      |        |     |         |      |        |      |        |        |          |        |
| 5     | HaeI  | II (          | GGCC    |      |        |     | :       | 27   |        |      |        |        |          |        |
|       | 1:    | 75            | 3:      | 75   | 4:     | 75  | 5:      | 75   | 7:     | 75   | 8:     | 75     |          |        |
| l     | 9:    | 75            | 10:     | 75   | 11:    | 75  | 16:     | 75   | 17:    | 75   | 20:    | 75     | -        |        |
| )     | 22:   | 75            | 30:     | 75   | 33:    | 75  | 34:     | 75   | 37:    | 75   | 38:    | 75     |          |        |
| 10    | 39:   | 75            | 40:     | 75   | 41:    | 75  | 42:     | 75   | 45:    | 75   | 46:    | 75     |          |        |
| 10    | 47:   | 75            | 48:     | 63   | 49:    | 63  |         |      |        |      |        |        |          |        |
| )     | The:  | re a          | are 2   | 5 hi | its at | bas | se# 75  |      |        |      |        |        |          |        |
| )<br> |       |               |         | 0    | _      |     |         |      | _      |      |        |        |          |        |
|       | Bst4  |               | ACNgt ( | 65°C | 2      | 63  | 3 Site: | 5 T. | here i | ls a | third  | l isos | chis     | ner    |
| 15    | 1:    | 86            | 2:      | 86   | 3:     | 86  | 4:      | 86   | 5:     | 86   | 6:     | 86     |          |        |
| 13    | 7:    | 34            | 7:      | 86   | 8:     | 86  | 9:      | 86   | 10:    | 86   | 11:    | 86     |          |        |
|       | 12:   | 86            | 13:     | 86   | 14:    | 86  | 15:     | 36   | 15:    | 86   | 16:    | 53     |          |        |
|       | 16:   | 86            | 17:     | 36   | 17:    | 86  | 18:     | 86   | 19:    | 86   | 20:    | 53     |          |        |
|       | 20:   | 86            | 21:     | 36   | 21:    | 86  | 22:     | 0    | 22:    | 86   | 23:    | 86     |          |        |
|       | 24:   | 86            | 25:     | 86   | 26:    | 86  | 27:     | 53   | 27:    | 86   | 28:    | 36     |          |        |
| ?0    | 28:   | 86            | 29:     | 86   | 30:    | 86  | 31:     | 86   | 32:    | 86   | 33:    | 36     |          |        |
|       | 33:   | 86            | 34:     | 86   | 35:    | 53  | 35:     | 86   | 36:    | 86   | 37:    | 86     |          |        |
|       | 38:   | 86            | 39:     | 86   | 40:    | 86  | 41:     | 86   | 42:    | 86   | 43:    | 86     |          |        |
|       | 44:   | 86            | 45:     | 86   | 46:    | 86  | 47:     | 86   | 48:    | 86   | 49:    | 86     |          |        |
|       | 50:   | 86            | 51:     | 0    | 51:    | 86  |         |      |        |      |        |        |          |        |
| ?5    | The:  | re a          | are 53  | l hi | ts at  | bas | se# 86  | A11  | the c  | the  | r site | es are | e well   | . away |
|       |       |               |         |      |        |     |         |      |        |      |        |        |          |        |
|       | HpyCl | H <b>4I</b> J | II ACNO | gt   |        |     | (       | 53   |        |      |        |        | <b>`</b> |        |
|       | 1:    | 86            | 2:      | 86   | 3:     | 86  | 4:      | 86   | 5:     | 86   | 6:     | 86     |          |        |
|       | 7:    | 34            | 7:      | 86   | 8:     | 86  | 9:      | 86   | 10:    | 86   | 11:    | 86     |          |        |
| 10    | 12:   | 86            | 13:     | 86   | 14:    | 86  | 15:     | 36   | 15:    | 86   | 16:    | 53     |          |        |
|       | 16:   | 86            | 17:     | 36   | 17:    | 86  | 18:     | 86   | 19:    | 86   | 20;    | 53     |          |        |
|       | 20:   | 86            | 21:     | 36   | 21:    | 86  | 22:     | 0    | 22:    | 86   | 23:    | 86     |          |        |
|       | 24:   | 86            | 25:     | 86   | 26:    | 86  | 27:     | 53   | 27:    | 86   | 28:    | 36     |          |        |
|       | 28:   | 86            | 29:     | 86   | 30:    | 86  | 31:     | 86   | 32:    | 86   | 33:    | 36     |          |        |
| 15    | 33:   | 86            | 34:     | 86   | 35:    | 53  | 35:     | 86   | 36:    | 86   | 37:    | 86     |          |        |
|       | 38:   | 86            | 39:     | 86   | 40:    | 86  | 41:     | 86   | 42:    | B6   | 43:    | 86     |          |        |

|     |                 |            |             |              |                    | 011       | 120 | ,  |            |    |
|-----|-----------------|------------|-------------|--------------|--------------------|-----------|-----|----|------------|----|
|     | 44: 86          | 5 45:      | 86          | 46: 8        | 6 47:              | 86        | 48: | 86 | 49:        | 86 |
| ſ   | 50: 8e          | 5 51:      | 0 !         | 51: 8        | 6                  |           |     |    |            |    |
| 5   | There           | are 51     | l hits      | at b         | ase# 86            | 5         |     |    |            |    |
|     |                 |            |             |              |                    |           |     |    |            |    |
| 5   | HinfI G         | antc       |             |              |                    | 43        |     |    |            |    |
|     | 2: 2            | : 3:       | 2           | 4:           | 2 5:               | 2         | 6:  | 2  | 7:         | 2  |
|     | 8: 2            | 9:         | 2           | 9: 2         | 2 10:              | 2         | 11: | 2  | 15:        | 2  |
|     | 16: 2           | 17:        | 2 :         | L8:          | 2 19:              | 2         | 19: | 22 | 20:        | 2  |
|     | 21: 2           | 23:        | 2 2         | 24:          | 2 25:              | 2         | 26: | 2  | 27:        | 2  |
| '0  | 28: 2           | 29:        | 2 3         | 30:          | 2 31:              | 2         | 32: | 2  | 33:        | 2  |
|     | 33: 22          | 34:        | 22 3        | 35:          | 2 36:              | 2         | 37: | 2  | 38:        | 2  |
|     | 40: 2           | 43:        | 2 4         | 14:          | 2 45:              | 2         | 46: | 2  | 47:        | 2  |
|     | 50: 60          | )          |             |              |                    |           |     |    |            |    |
|     | There           | are 38     | hits hits   | at b         | ase# 2             | !         |     |    |            |    |
| '5  |                 |            |             |              |                    |           |     |    |            |    |
|     | MlyI GA         | GTCNNN     | INn         |              |                    | 18        |     |    |            |    |
|     | 2: 2            | 3:         | 2           | 4:           | 2 5:               | 2         | 6:  | 2  | 7:         | 2  |
|     | 8: 2            | 9:         | 2 1         | 10:          | 2 11:              | 2         | 37: | 2  | 38:        | 2  |
|     | 40: 2           | 43:        | 2 4         | 14:          | 2 45:              | 2         | 46: | 2  | 47:        | 2  |
| '0  | There           | are 18     | hits        | at b         | ase# 2             |           |     |    |            |    |
| ·   |                 |            |             |              |                    |           |     |    |            |    |
|     | PleI ga         | gtc        |             |              |                    | 18        |     |    |            |    |
|     | 2: 2            | 3:         | 2           | 4:           | 2 5:               | 2         | 6:  | 2  | 7:         | 2  |
| . = | 8: 2            | 9:         | 2 1         | .0:          | 2 11:              | 2         | 37: | 2  | 38:        | 2  |
| '5  | 40: 2           | 43:        | 24          | 14:          | 2 45:              | 2         | 46: | 2  | 47:        | 2  |
|     | There           | are 18     | hits        | at b         | ase# 2             |           |     |    |            |    |
|     | Acil Co         | gc         |             |              |                    | 24        |     |    |            |    |
|     | 2: 26           | 9:         | 14 ]        | .0: 1        | 4 11:              | 14        | 27: | 74 | <u>37:</u> | 62 |
| 'n  | <u>37: 65</u>   | 38:        | 62 3        | 39: 6        | 5 <u>40:</u>       | 62        | 40: | 65 | 41:        | 65 |
| U   | 42: 00          | 43:        | 62 4        |              | <u>5 44:</u>       | <u>62</u> | 44: | 65 | 45:        | 62 |
|     | 40; 02<br>Thore | <u>4/:</u> | <u>02</u> 4 | <u>./: 0</u> | <u> </u>           | 35        | 48: | /4 | 49:        | 74 |
|     | There           | are d      | ) HILS      | at D         | asen oz            |           |     |    |            |    |
|     | There           | are 9      | hite        | at D         | 222# 03            |           |     |    |            |    |
| 5   | There           | are 3      | hits        | at h         | -se# 74<br>ase# 74 |           |     |    |            |    |
|     | There           | are 1      | . hits      | at b         | ase# 26            |           |     |    |            |    |
|     | There           | are 1      | hits        | at b         | ase# 35            |           |     |    |            |    |

•

|                |     |       |       |                 |          |            |              |        | 58 | 8/128 | 3  |     |    |  |
|----------------|-----|-------|-------|-----------------|----------|------------|--------------|--------|----|-------|----|-----|----|--|
| 00             |     | _"_   | Gcad  | a               |          |            |              |        | 11 |       |    |     |    |  |
| 0              |     | 8:    | 91    | 9:              | 16       | 10:        | 16           | 11:    | 16 | 37:   | 67 | 39: | 67 |  |
| - SO<br>DO     |     | 40:   | 67    | 42:             | 67       | 43:        | 67           | 45:    | 67 | 46:   | 67 | -   |    |  |
| Ā              |     | The   | re a: | re <sup>°</sup> | 7 hi     | .ts at     | bas          | se# 67 |    |       |    |     |    |  |
| $\overline{2}$ | 5   | The   | re an | re              | 3 hi     | ts at      | bas          | se# 16 |    |       |    |     |    |  |
| ( I            |     | The   | re a  | re              | 1 hi     | .ts at     | bas          | se# 91 |    |       |    |     |    |  |
| Ξ              |     |       |       |                 |          |            |              |        |    |       |    |     |    |  |
| 80             |     | BsiH  | KAI ( | SWGCW           | C        |            |              |        | 20 |       |    |     |    |  |
| 18             |     | 2:    | 30    | 4:              | 30       | 6:         | 30           | 7:     | 30 | 9:    | 30 | 10: | 30 |  |
| 21             | 10  | 12:   | 89    | 13:             | 89       | 14:        | 89           | 37:    | 51 | 38:   | 51 | 39: | 51 |  |
| Ľ              |     | 40:   | 51    | 41:             | 51       | 42:        | 51           | 43:    | 51 | 44:   | 51 | 45: | 51 |  |
| 00             |     | 46:   | 51    | 47:             | 51       |            |              |        |    |       |    |     |    |  |
| 2              |     | The   | re ai | re 11           | l hi     | ts at      | bas          | e# 51  |    |       |    |     |    |  |
|                | 1.5 |       |       |                 |          |            |              |        |    |       |    |     |    |  |
|                | 15  | Bspl. | 2861  | GDGCI           | łc       |            |              |        | 20 |       |    |     |    |  |
|                |     | 2:    | 30    | 4 :             | 30       | 6:         | 30           | 7:     | 30 | 9:    | 30 | 10: | 30 |  |
|                |     | 12:   | 89    | 13:             | 89       | 14:        | 89           | 37:    | 51 | 38:   | 51 | 39: | 51 |  |
|                |     | 40:   | 51    | 41:             | 51       | 42:        | 51           | 43:    | 51 | 44:   | 51 | 45: | 51 |  |
|                | 20  | 46:   | 51    | 47:             | 51       |            |              |        |    |       |    |     |    |  |
|                | 20  | The.  | re ar | e 11            | l hi     | ts at      | bas          | e# 51  |    |       |    |     |    |  |
|                |     | Mai N | т сма |                 |          |            |              |        |    |       |    |     |    |  |
|                |     |       | 30    |                 | 30       | ۶.         | 20           | 7.     | 20 | 0.    | 20 | 10  | 20 |  |
|                |     | 12.   | 90    | 12.             | 20       | <br>       | 20           | 27.    | 50 | 9:    | 30 | 10: | 30 |  |
|                | 25  | 40.   | 51    | 41.             | 51       | 14:<br>12: | 69<br>51     | 37:    | 51 | 30:   | 21 | 39: | 51 |  |
|                |     | 46.   | 51    | 41.<br>17.      | 51       | 42;        | 51           | 43:    | 21 | 44:   | 21 | 45: | 51 |  |
|                |     | The   | 74 97 |                 | J.<br>hi | ++         | <b>b</b> a a | -# E1  |    |       |    |     |    |  |
|                |     | Ine.  | re ar | .e 11           | - 11-    | LS AL      | Das          | e# JI  |    |       |    |     |    |  |
|                |     | BsoF: | I GCn | ıgc             |          |            |              | 2      | 26 |       |    |     |    |  |
|                | 30  | 2:    | 53    | 3:              | 53       | 5:         | 53           | 6:     | 53 | 7:    | 53 | 8:  | 53 |  |
|                |     | 8:    | 91    | 9:              | 53       | 10:        | 53           | 11:    | 53 | 31:   | 53 | 36: | 36 |  |
|                |     | 37:   | 64    | 39:             | 64       | 40:        | 64           | 41:    | 64 | 42:   | 64 | 43: | 64 |  |
|                |     | 44:   | 64    | 45:             | 64       | 46:        | 64           | 47:    | 64 | 48:   | 53 | 49: | 53 |  |
|                |     | 50:   | 45    | 51:             | 53       |            |              |        |    |       |    |     |    |  |
|                | 15  | The   | re ar | e 13            | hi hi    | ts at      | bas          | e# 53  |    |       |    |     |    |  |
|                |     | The   | re ar | e 10            | ) hi     | ts at      | bas          | e# 64  |    |       |    |     |    |  |
|                |     |       |       |                 |          |            |              |        |    |       |    |     |    |  |
|                |     | TseI  | Gcwg  | C               |          |            |              | 1      | .7 |       |    |     |    |  |
|                |     | 2:    | 53    | 3:              | 53       | 5:         | 53           | 6:     | 53 | 7:    | 53 | 8:  | 53 |  |

. ...

ı I

•

| Ľ              |    |            |       |       |      |       |              |        | 5  | 9/128  | }    |        |      |
|----------------|----|------------|-------|-------|------|-------|--------------|--------|----|--------|------|--------|------|
| 00             |    | 9:         | 53    | 10:   | 53   | 11:   | 53           | 31:    | 53 | 36:    | 36   | 45:    | 64   |
| $\mathbf{O}$   |    | 46:        | 64    | 48:   | 53   | 49:   | 53           | 50:    | 45 | 51:    | 53   |        |      |
| an             |    | The        | re a  | re 13 | 3 hi | ts at | bas          | se# 53 |    |        |      |        |      |
| V              |    |            |       |       |      |       |              |        |    |        |      |        |      |
| 21             | 5  | MnlI       | gago  | 3     |      |       |              | :      | 34 |        |      |        |      |
|                |    | 3:         | 67    | 3:    | 95   | 4:    | 51           | 5:     | 16 | 5:     | 67   | 6:     | 67   |
| -              |    | 7:         | 67    | 8:    | 67   | 9:    | 67           | 10:    | 67 | 11:    | 67   | 15:    | 67   |
| 86             |    | 16:        | 67    | 17:   | 67   | 19:   | 67           | 20:    | 67 | 21:    | 67   | 22:    | 67   |
|                |    | 23:        | 67    | 24:   | 67   | 25:   | 67           | 26:    | 67 | 27:    | 67   | 28:    | 67   |
| $\overline{2}$ | 10 | 29:        | 67    | 30:   | 67   | 31:   | 67           | 32:    | 67 | 33:    | 67   | 34:    | 67   |
| 01             |    | 35:        | 67    | 36:   | 67   | 50:   | 67           | 51:    | 67 |        |      |        |      |
| 20             |    | The:       | re a: | re 3: | l hi | ts at | bas          | se# 67 |    |        |      |        |      |
|                |    |            |       |       |      |       |              |        |    |        |      |        |      |
|                |    | HpyC       | H4V ! | rgca  |      |       |              | :      | 34 |        |      |        |      |
|                | 15 | 5:         | 90    | 6:    | 90   | 11:   | 90           | 12:    | 90 | 13:    | 90   | 14:    | 90   |
|                |    | 15:        | 44    | 16:   | 44   | 16:   | 90           | 17:    | 44 | 18:    | 90   | 19:    | 44   |
|                |    | 20:        | 44    | 21:   | 44   | 22:   | 44           | 23:    | 44 | 24:    | 44   | 25:    | 44   |
|                |    | 26:        | 44    | 27:   | 44   | 27:   | 90           | 28:    | 44 | 29:    | 44   | 33:    | 44   |
|                |    | 34:        | 44    | 35:   | 44   | 35:   | 90           | 36:    | 38 | 48:    | 44   | 49:    | 44   |
|                | 20 | 50:        | 44    | 50:   | 90   | 51:   | 44           | 51:    | 52 |        |      |        |      |
|                |    | The        | re a  | re 21 | l hi | ts at | bas          | ie# 44 |    |        |      |        |      |
|                |    | The        | re a  | re :  | l hi | ts at | bas          | se# 52 |    |        |      |        |      |
|                |    |            |       |       |      |       |              |        |    |        |      |        |      |
|                | 25 | AccI       | GTml  | cac   |      |       |              | -      | 13 | 5-base | e re | cognit | cion |
|                | 25 | 7:         | 37    | 11:   | 24   | 37:   | 16           | 38:    | 16 | 39:    | 16   | 40:    | 16   |
|                |    | 41:        | 16    | 42:   | 10   | 43:   | 16           | 44:    | 16 | 45:    | 16   | 46:    | 16   |
|                |    | 4/;<br>The | 10    | ro 11 | । চন | ++    | <b>b</b> - c | 0# 16  |    |        |      |        |      |
|                |    |            | ic ai |       |      | us au | Dae          | 16# IO |    |        |      |        |      |
|                | 30 | SacI       | I CCO | GCqq  |      |       |              |        | 8  | 6-bas  | se r | ecogni | tion |
|                |    | 9:         | 14    | 10:   | 14   | 11:   | 14           | 37:    | 65 | 39:    | 65   | 40:    | 65   |
|                |    | 42:        | 65    | 43:   | 65   |       |              |        |    |        |      |        |      |
|                |    | The        | re ai | re S  | 5 hi | ts at | bas          | e# 65  |    |        |      |        |      |
|                |    | The        | re ai | re 3  | 3 hi | ts at | bas          | e# 14  |    |        |      |        |      |
|                | 35 |            |       |       |      |       |              |        |    |        |      |        |      |
|                |    | TfiI       | Gawt  | c     |      |       |              | 2      | 24 |        |      |        |      |
|                |    | 9:         | 22    | 15:   | 2    | 16:   | 2            | 17:    | 2  | 18:    | 2    | 19:    | 2    |
|                |    | 19:        | 22    | 20:   | 2    | 21:   | 2            | 23:    | 2  | 24:    | 2    | 25:    | 2    |

-

|    | 26: 2   | 2 27:                                                 | 2 28:                                                  | 2        | 29:    | 2  | 30: | 2  | 31: | 2  |
|----|---------|-------------------------------------------------------|--------------------------------------------------------|----------|--------|----|-----|----|-----|----|
|    | 32: 2   | 2 33:                                                 | 2 33:                                                  | 22       | 34:    | 22 | 35: | 2  | 36: | 2  |
|    | There   | are 20                                                | hits at                                                | ba       | se# 2  |    |     |    |     |    |
| -  |         |                                                       |                                                        |          |        |    |     |    |     |    |
| 3  | BSMAI N | Innnnga                                               | gac                                                    |          |        | 19 |     |    |     |    |
|    | 15: 11  | 1 16:                                                 | 11 20:                                                 | 11       | 21:    | 11 | 22: | 11 | 23: | 11 |
|    | 24: 11  | L 25:                                                 | 11 26:                                                 | 11       | 27:    | 11 | 28: | 11 | 28: | 56 |
|    | 30: 11  | L 31:                                                 | 11 32:                                                 | 11       | 35:    | 11 | 36: | 11 | 44: | 87 |
|    | 48: 87  | 7                                                     |                                                        |          |        |    |     |    |     |    |
| 10 | There   | are 16                                                | hits at                                                | ba       | se# 11 |    |     |    |     |    |
|    | BomT ct |                                                       |                                                        |          |        | 10 |     |    |     |    |
|    | 15. 12  |                                                       | 10 17.                                                 | 10       | 10.    | 12 | 20. | 10 | 21. | 10 |
|    | 22. 12  | 2 2 2 2 3 2 4 5 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | $\begin{array}{ccc} 12 & 17 \\ 12 & 24 \\ \end{array}$ | 12       | 10:    | 12 | 20: | 12 | 21: | 12 |
| 15 | 22: 12  | 20.                                                   | 12 24;                                                 | 12       | 20:    | 12 | 20: | 12 | 2/: | 12 |
| 15 | 36. 12  | 50:<br>5                                              | 12 51:                                                 | 12       | 32:    | 12 | 34: | 12 | 35: | 12 |
|    | Thore   | -<br>                                                 | hite at                                                | <b>b</b> | # 10   |    |     |    |     |    |
|    | INGLE   | are 19                                                | nits at                                                | Dat      | 56# 12 |    |     |    |     |    |
|    | XmnI GA | ANNnntt                                               | с                                                      |          |        | 12 |     |    |     |    |
| 20 | 37: 30  | 38:                                                   | 30 39:                                                 | 30       | 40:    | 30 | 41: | 30 | 42: | 30 |
|    | 43: 30  | 44:                                                   | 30 45:                                                 | 30       | 46:    | 30 | 47: | 30 | 50: | 30 |
|    | There   | are 12                                                | hits at                                                | bas      | se# 30 |    |     |    |     |    |
|    |         |                                                       |                                                        |          |        |    |     |    |     |    |
|    | BsrI NC | Ccagt                                                 |                                                        |          | -      | 12 |     |    | ,   |    |
| 25 | 37: 32  | 38:                                                   | 32 39:                                                 | 32       | 40:    | 32 | 41: | 32 | 42: | 32 |
|    | 43: 32  | 2 44:                                                 | 32 45:                                                 | 32       | 46:    | 32 | 47: | 32 | 50: | 32 |
|    | There   | are 12                                                | hits at                                                | bas      | se# 32 |    |     |    |     |    |
|    | BanTT 6 | BCCYC                                                 |                                                        |          | -      | 11 |     |    |     |    |
| 30 | 37: 51  | 38:                                                   | 51 39.                                                 | 51       | 40.    | 51 | 41. | 51 | 12. | 51 |
|    | 43: 51  | 44:                                                   | 51 45:                                                 | 51       | 46.    | 51 | 47. | 51 | 42. | 21 |
|    | There   | are 11                                                | hits at                                                | bas      | se# 51 | 51 |     | 51 |     |    |
|    |         |                                                       |                                                        |          |        |    |     |    |     |    |
|    | Ecl1361 | GAGctc                                                |                                                        |          | 1      | L1 |     |    |     |    |
| 35 | 37: 51  | 38:                                                   | 51 39:                                                 | 51       | 40:    | 51 | 41: | 51 | 42: | 51 |
|    | 43: 51  | . 44:                                                 | 51 45:                                                 | 51       | 46:    | 51 | 47: | 51 |     |    |
|    | There   | are 11                                                | hits at                                                | bas      | se# 51 |    |     |    |     |    |
|    | Sact Cr |                                                       |                                                        |          | -      |    |     |    |     |    |
|    | Dact GM | تبالا ساقانة                                          |                                                        |          | 2      | L  |     |    |     |    |

61/128 37: 51 38: 51 39: 51 40: 51 41: 51 42: 51 43: 51 44: 51 45: 51 46: 51 47: 51 There are 11 hits at base# 51

1



Table 217: Human HC GLG FR1 Sequences VH Exon - Nucleotide sequence alignment VH1 1-02 CAG GTG CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG CCT GGG GCC TCA GTG AAG 5 GTC TCC TGC AAG GCT TCT GGA TAC ACC TTC ACC cag gtC cag ctT gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag 1-03 gtT tcc tgc aag gct tct gga tac acc ttc acT 1-08 cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag gtc tcc tgc aag gct tct gga tac acc ttc acc cag gtT cag ctg gtg cag tct ggA gct gag gtg aag aag cct ggg gcc tca gtg aag 1-18 gtc tcc tgc aag gct tct ggT tac acc ttT acc cag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag 1-24 gtc tcc tgc aag gTt tcC gga tac acc Ctc acT 1-45 cag Atg cag ctg gtg cag tct ggg gct gag gtg aag aag Act ggg Tcc tca gtg aag gtT tcc tgc aag gct tcC gga tac acc ttc acc 1-46 cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag gtT tcc tgc aag gcA tct gga tac acc ttc acc 1-58 caA Atg cag ctg gtg cag tct ggg Cct gag gtg aag aag cct ggg Acc tca gtg aag gtc tcc tgc aag gct tct gga tTc acc ttT acT :0 1-69 cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg Tcc tcG gtg aag gtc tcc tgc aag gct tct gga GGc acc ttc aGc 1-e cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg Tcc tcG gtg aag gtc tcc tgc aag gct tct gga GGc acc ttc aGc Gag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcT Aca gtg aaA 1-f **5**' Atc tcc tgc aag gTt tct gga tac acc ttc acc VH2 2-05 CAG ATC ACC TTG AAG GAG TCT GGT CCT ACG CTG GTG AAA CCC ACA CAG ACC CTC ACG CTG ACC TGC ACC TTC TCT GGG TTC TCA CTC AGC 2-26 cag Gtc acc ttg aag gag tct ggt cct GTg ctg gtg aaa ccc aca Gag acc ctc acg *'0* ctg acc tgc acc Gtc tct ggg ttc tca ctc agc 2-70 cag Gtc acc ttg aag gag tct ggt cct Gcg ctg gtg aaa ccc aca cag acc ctc acA ctg acc tgc acc ttc tct ggg ttc tca ctc agc VH3 GAG GTG CAG CTG GTG GAG TCT GGG GGA GGC TTG GTC CAG CCT GGG GGG TCC CTG AGA 3-07 5 CTC TCC TGT GCA GCC TCT GGA TTC ACC TTT AGT 3-09 gaA gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggC Agg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttt GAt 3-11 Cag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc Aag cct ggA ggg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 0 3-13 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-15 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA Aag cct ggg ggg tcc ctT aga ctc tcc tgt gca gcc tct gga ttc acT ttC agt 3-20 gag gtg cag ctg gtg gag tct ggg gga ggT Gtg gtA cGg cct ggg ggg tcc ctg aga

64/128 ctc tcc tgt gca gcc tct gga ttc acc ttt GAt 3-21 gag gtg cag ctg gtg gag tct ggg gga ggc Ctg gtc Aag cct ggg ggg.tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-23 gag gtg cag ctg Ttg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga 5 ctc tcc tgt gca gcc tct gga ttc acc ttt agC 3-30 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-30.3 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 10 3-30.5 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-33 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga ctc tcc tgt gca gcG tct gga ttc acc ttC agt 3-43 gaA gtg cag ctg gtg gag tct ggg gga gTc Gtg gtA cag cct ggg ggg tcc ctg aga 15 ctc tcc tgt gca gcc tct gga ttc acc ttt GAt 3-48 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-49 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag ccA ggg Cgg tcc ctg aga ctc tcc tgt Aca gcT tct gga ttc acc ttt Ggt 20 3-53 gag gtg cag ctg gtg gag Act ggA gga ggc ttg Atc cag cct ggg ggg tcc ctg aga ctc tcc tgt gca gcc tct ggG ttc acc GtC agt 3-64 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-66 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga 25 ctc tcc tgt gca gcc tct gga ttc acc GtC agt 3-72 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggA ggg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-73 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aAa ctc tcc tgt gca gcc tct ggG ttc acc ttC agt 30 3-74 gag gtg cag ctg gtg gag tcC ggg gga ggc ttA gtT cag cct ggg ggg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttC agt 3-d gag gtg cag ctg gtg gag tct Cgg gga gTc ttg gtA cag cct ggg ggg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc GtC agt VH4 35 CAG GTG CAG CTG CAG GAG TCG GGC CCA GGA CTG GTG AAG CCT TCG GGG ACC CTG TCC 4-04 CTC ACC TGC GCT GTC TCT GGT GGC TCC ATC AGC 4-28 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAC acc ctg tcc ctc acc tgc gct gtc tct ggt TAc tcc atc agc 4-30.1 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc 40 ctc acc tgc Act gtc tct ggt ggc tcc atc agc 4-30.2 cag Ctg cag ctg cag gag tcC ggc Tcà gga ctg gtg aag cct tcA CAg acc ctg tcc ctc acc tgc gct gtc tct ggt ggc tcc atc agc 4-30.4 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc ctc acc tgc Act gtc tct ggt ggc tcc atc agc

|               |   |       |     |     |     |     |     |     |     | 6   | 5/12 | 28  |     |     |     |     |     |     |     |     |     |
|---------------|---|-------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ő             |   | 4-31  | cag | gtg | cag | ctg | cag | gag | tcg | ggc | cca  | gga | ctg | gtg | aag | cct | tcA | CAg | acc | ctg | tcc |
|               |   |       | ctc | acc | tgc | Act | gtc | tct | ggt | ggc | tcc  | atc | agc |     |     |     |     |     |     |     |     |
| ಲ್            |   | 4-34  | cag | gtg | cag | ctA | cag | Cag | tGg | ggc | Gca  | gga | ctg | Ttg | aag | cct | tcg | gAg | acc | ctg | tcc |
| Ā             |   |       | ctc | acc | tgc | gct | gtc | tAt | ggt | ggG | tcc  | Ttc | agT |     |     |     |     |     |     |     |     |
|               | 5 | 4-39  | cag | Ctg | cag | ctg | cag | gag | tcg | ggc | cca  | gga | ctg | gtg | aag | cct | tcg | gAg | acc | ctg | tcc |
| $\mathbf{C}$  |   |       | ctc | acc | tgc | Act | gtc | tct | ggt | ggc | tcc  | atc | agc |     |     |     |     |     |     |     |     |
|               |   | 4-59  | cag | gtg | cag | ctg | cag | gag | tcg | ggc | cca  | gga | ctg | gtg | aag | cct | tcg | gAg | acc | ctg | tcc |
| _             |   |       | ctc | acc | tgc | Act | gtc | tct | ggt | ggc | tcc  | atc | agT |     |     |     |     |     | -   |     |     |
| Ú             |   | 4-61  | cag | gtg | cag | ctg | cag | gag | tcg | ggc | cca  | gga | ctg | gtg | aag | cct | tcg | gAg | acc | ctg | tcc |
| 8             | 0 |       | ctc | acc | tgc | Act | gtc | tct | ggt | ggc | tcc  | Gtc | agc |     |     |     |     |     |     |     |     |
|               |   | 4-b   | cag | gtg | cag | ctg | cag | gag | tcg | ggc | cca  | gga | ctg | gtg | aag | cct | tcg | gAg | acc | ctg | tcc |
| 2             |   |       | ctc | acc | tgc | gct | gtc | tct | ggt | TAC | tcc  | atc | agc |     |     |     |     |     |     |     |     |
| 0             |   | VH5   |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |
| Õ             |   | 5-51  | GAG | GTG | CAG | CTG | GTG | CAG | TCT | GGA | GCA  | GAG | GTG | ААА | AAG | ccc | GGG | GAG | TCT | CTG | AAG |
| $\mathcal{C}$ | 5 |       | ATC | TCC | TGT | AAG | GGT | TCT | GGA | TAC | AGC  | TTT | ACC |     |     |     |     |     |     |     |     |
|               |   | 5-a   | gaA | gtg | cag | ctg | gtg | cag | tct | gga | gca  | gag | gtg | aaa | aag | ccc | ggg | gag | tct | ctg | aGg |
|               |   |       | atc | tcc | tgt | aag | ggt | tct | gga | tac | agc  | ttt | acc |     |     |     |     |     |     |     |     |
|               |   | VH6   |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |
|               |   | 6-1   | CAG | GTA | CAG | CTG | CAG | CAG | TCA | GGT | CCA  | GGA | CTG | GTG | AAG | ccc | TCG | CAG | ACC | СТС | TCA |
|               | 0 |       | СТС | ACC | TGT | GCC | ATC | TCC | GGG | GAC | AGT  | GTC | TCT |     |     |     |     |     |     |     |     |
|               |   | VH7   |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |
|               |   | 7-4.1 | CAG | GTG | CAG | CTG | GTG | CAA | тст | GGG | TCT  | GAG | TTG | AAG | AAG | CCT | GGG | GCC | TCA | GTG | AAG |
|               |   |       | GTT | TCC | TGC | AAG | GCT | тст | GGA | TAC | ACC  | TTC | ACT |     |     |     |     |     |     |     |     |
|               |   |       |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |

i i

1

I

2007211861 21 Aug 2007 Table 220: RERS sites in Human HC GLG FR1s where there are at least 20 GLGs cut BsgI GTGCAG 71 (cuts 16/14 bases to right) 1: 4 1: 13 2: 13 3: 4 3: 13 4: 13 6: 13 7: 4 7: 13 8: 13 9: 4 9: 13 5 10: 4 10: 13 15: 4 15: 65 16: 4 16: 65 17: 17: 65 4 18: 4 18: 65 19: 4 19: 65 20: 4 20: 65 21: 4 21: 65 22: 22: 65 4 23: 23: 65 4 24: 4 24: 65 25: 4 25: 65 26: 26: 65 27: 65 4 27: 4 28: 4 28: 65 10 29: 30: 4 30: 65 4 31: 4 31:65 32: 4 32: 65 33: 4 33: 65 34: 4 34: 65 35: 4 35: 65 36: 4 36: 65 37: 38: 4 4 39: 4 41: 4 42: 4 43: 4 45: 4 46: 4 47: 4 48: 4 48: 13 49: 4 49: 13 51: 4 !5 There are 39 hits at base# 4 There are 21 hits at base# 65 -"- ctgcac 9 12: 63 13: 63 14: 63 39: 63 41: 63 42: 63 ?0 44: 63 45: 63 46: 63 BbvI GCAGC 65 1: 6 3: 6 6: 6 7: 6 8: 6 9: 6 10: 6 15: 6 15: 67 16: 6 16: 67 17: 6 17: 67 18: 6 18: 67 19: 6 19: 67 20: 6 25 20: 67 21: 6 21: 67 22: 6 22: 67 23: 6 23: 67 24: 6 24: 67 25: 6 25: 67 26: 6 26: 67 27: 6 27: 67 28: 6 28: 67 29: б 30: 30: 67 6 31: 6 31: 67 32: 6 32: 67 33: 6 33: 67 34: 6 34: 67 35: 6 35: 67 10 36: 6 36: 67 37: 6 38: 39: 6 6 40: 6 41: 6 42: 6 43: б 44: 45: б 6 46: 6 47: 6 48: 6 49: 6 **50:** 12 51: 6 There are 43 hits at base# 6 Bolded sites very near sites listed below :5 There are 21 hits at base# 67 -"gctgc 13 37: 9 38: 9 39: 9 40: 3 40: 9 41: 9 42: 9 44: 3 44: 9 45: 9 46: 9 47: 9

**50:** 9

| DSOI                                                                                                                                             | FI GO                                                                     | Ingc                                                                                                              |                                                             |                                                                                                      |                                                                                           |                                                                                                 | 78                                                             |                                                                                                             |                                                          |                                                                                               |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1:                                                                                                                                               | : 6                                                                       | 3:                                                                                                                | 6                                                           | 6:                                                                                                   | 6                                                                                         | 7:                                                                                              | 6                                                              | 8 :                                                                                                         | 6                                                        | 9:                                                                                            | 6                                                   |
| 10:                                                                                                                                              | 6                                                                         | 15:                                                                                                               | 6                                                           | 15:                                                                                                  | 67                                                                                        | 16:                                                                                             | 6                                                              | 16:                                                                                                         | 67                                                       | 17:                                                                                           | 6                                                   |
| 17:                                                                                                                                              | 67                                                                        | 18:                                                                                                               | 6                                                           | 18:                                                                                                  | 67                                                                                        | 19:                                                                                             | 6                                                              | 19:                                                                                                         | 67                                                       | 20:                                                                                           | 6                                                   |
| 20:                                                                                                                                              | 67                                                                        | 21:                                                                                                               | 6                                                           | 21:                                                                                                  | 67                                                                                        | 22:                                                                                             | 6                                                              | 22:                                                                                                         | 67                                                       | 23:                                                                                           | 6                                                   |
| 23:                                                                                                                                              | 67                                                                        | 24:                                                                                                               | 6                                                           | 24:                                                                                                  | 67                                                                                        | 25:                                                                                             | 6                                                              | 25:                                                                                                         | 67                                                       | 26:                                                                                           | 6                                                   |
| 26:                                                                                                                                              | 67                                                                        | 27:                                                                                                               | 6                                                           | 27:                                                                                                  | 67                                                                                        | 28:                                                                                             | 6                                                              | 28:                                                                                                         | 67                                                       | 29:                                                                                           | 6                                                   |
| 30:                                                                                                                                              | 6                                                                         | 30:                                                                                                               | 67                                                          | 31:                                                                                                  | 6                                                                                         | 31:                                                                                             | 67                                                             | 32:                                                                                                         | 6                                                        | 32:                                                                                           | 67                                                  |
| 33:                                                                                                                                              | 6                                                                         | 33:                                                                                                               | 67                                                          | 34:                                                                                                  | 6                                                                                         | 34:                                                                                             | 67                                                             | 35:                                                                                                         | 6                                                        | 35:                                                                                           | 67                                                  |
| 36:                                                                                                                                              | 6                                                                         | 36:                                                                                                               | 67                                                          | <u>37:</u>                                                                                           | 6                                                                                         | 37:                                                                                             | 9                                                              | <u>38:</u>                                                                                                  | 6                                                        | 38:                                                                                           | 9                                                   |
| 39:                                                                                                                                              | 6                                                                         | 39:                                                                                                               | 9                                                           | <u>40:</u>                                                                                           | 3                                                                                         | 40:                                                                                             | 6                                                              | 40:                                                                                                         | 9                                                        | 41:                                                                                           | 6                                                   |
| 41:                                                                                                                                              | 9                                                                         | 42:                                                                                                               | 6                                                           | 42:                                                                                                  | 9                                                                                         | 43:                                                                                             | 6                                                              | <u>44</u> :                                                                                                 | 3                                                        | 44:                                                                                           | 6                                                   |
| 44:                                                                                                                                              | 9                                                                         | <u>45:</u>                                                                                                        | 6                                                           | 45:                                                                                                  | 9                                                                                         | <u> 46:</u>                                                                                     | 6                                                              | 46:                                                                                                         | 9                                                        | 47:                                                                                           | 6                                                   |
| 47:                                                                                                                                              | <u> </u>                                                                  | 48:                                                                                                               | 6                                                           | 49:                                                                                                  | 6                                                                                         | 50 <b>:</b>                                                                                     | 9                                                              | 50:                                                                                                         | 12                                                       | 51:                                                                                           | 6                                                   |
| The                                                                                                                                              | re a                                                                      | re 43                                                                                                             | 3 hi                                                        | ts at                                                                                                | bas                                                                                       | e# 6                                                                                            | The                                                            | ese of                                                                                                      | ten                                                      | occur                                                                                         | too                                                 |
| The                                                                                                                                              | re a                                                                      | re 11                                                                                                             | L hi                                                        | ts at                                                                                                | bas                                                                                       | e# 9                                                                                            |                                                                |                                                                                                             |                                                          |                                                                                               | •                                                   |
| The                                                                                                                                              | re a                                                                      | re 2                                                                                                              | 2 hit                                                       | ts at                                                                                                | bas                                                                                       | e# 3                                                                                            |                                                                |                                                                                                             |                                                          |                                                                                               |                                                     |
| The                                                                                                                                              | re a:                                                                     | re 21                                                                                                             |                                                             |                                                                                                      |                                                                                           |                                                                                                 |                                                                |                                                                                                             |                                                          |                                                                                               |                                                     |
|                                                                                                                                                  |                                                                           |                                                                                                                   |                                                             | cs at                                                                                                | bas                                                                                       | e# 67                                                                                           |                                                                |                                                                                                             |                                                          |                                                                                               |                                                     |
|                                                                                                                                                  |                                                                           |                                                                                                                   |                                                             | cs at                                                                                                | bas                                                                                       | e# 67                                                                                           |                                                                |                                                                                                             |                                                          |                                                                                               |                                                     |
| <b>ľse</b> I                                                                                                                                     | Gcw                                                                       | ge                                                                                                                |                                                             | cs at                                                                                                | bas                                                                                       | e# 67                                                                                           | 78                                                             |                                                                                                             |                                                          |                                                                                               |                                                     |
| rseI<br>1:                                                                                                                                       | Gcwg<br>6                                                                 | gc<br>3:                                                                                                          | 6                                                           | cs at<br>6:                                                                                          | bas<br>6                                                                                  | e# 67<br>-<br>7:                                                                                | 78<br>6                                                        | 8:                                                                                                          | 6                                                        | 9:                                                                                            | 6                                                   |
| rseI<br>1:<br>10:                                                                                                                                | Gcwg<br>6<br>6                                                            | gc<br>3:<br>15:                                                                                                   | 6                                                           | 6:<br>15:                                                                                            | bas<br>6<br>67                                                                            | e# 67<br>7:<br>16:                                                                              | 78<br>6<br>6                                                   | 8:<br>16:                                                                                                   | 6<br>67                                                  | 9:<br>17:                                                                                     | 6                                                   |
| TseI<br>1:<br>10:<br>17:                                                                                                                         | Gcwg<br>6<br>6<br>67                                                      | gc<br>3:<br>15:<br>18:                                                                                            | 6<br>6<br>6                                                 | 6:<br>15:<br>18:                                                                                     | bas<br>6<br>67<br>67                                                                      | e# 67<br>7:<br>16:<br>19:                                                                       | 78<br>6<br>6<br>6                                              | 8:<br>16:<br>19:                                                                                            | 6<br>67<br>67                                            | 9:<br>17:<br>20:                                                                              | 6<br>6<br>6                                         |
| FseI<br>1:<br>10:<br>17:<br>20:                                                                                                                  | Gcwg<br>6<br>6<br>67<br>67                                                | gc<br>3:<br>15:<br>18:<br>21:                                                                                     | 6<br>6<br>6<br>6                                            | 6:<br>15:<br>18:<br>21:                                                                              | 6<br>67<br>67<br>67                                                                       | e# 67<br>7:<br>16:<br>19:<br>22:                                                                | 78<br>6<br>6<br>6                                              | 8:<br>16:<br>19:<br>22:                                                                                     | 6<br>67<br>67<br>67                                      | 9:<br>17:<br>20:<br>23:                                                                       | 6<br>6<br>6                                         |
| <pre> IseI 10: 17: 20: 23: </pre>                                                                                                                | Gcwg<br>6<br>67<br>67<br>67                                               | gc<br>3:<br>15:<br>18:<br>21:<br>24:                                                                              | 6<br>6<br>6<br>6<br>6                                       | 6:<br>15:<br>18:<br>21:<br>24:                                                                       | 6<br>67<br>67<br>67<br>67                                                                 | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:                                                         | 78<br>6<br>6<br>6<br>6                                         | 8:<br>16:<br>19:<br>22:<br>25:                                                                              | 6<br>67<br>67<br>67                                      | 9:<br>17:<br>20:<br>23:<br>26:                                                                | 6<br>6<br>6<br>6                                    |
| FseI<br>1:<br>10:<br>17:<br>20:<br>23:<br>26:                                                                                                    | Gcwg<br>6<br>67<br>67<br>67<br>67                                         | gc<br>3:<br>15:<br>18:<br>21:<br>24:<br>27:                                                                       | 6<br>6<br>6<br>6<br>6<br>6                                  | 6:<br>15:<br>18:<br>21:<br>24:<br>27:                                                                | 6<br>67<br>67<br>67<br>67<br>67<br>67                                                     | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:<br>28:                                                  | 78<br>6<br>6<br>6<br>6<br>6                                    | 8:<br>16:<br>19:<br>22:<br>25:<br>28:                                                                       | 6<br>67<br>67<br>67<br>67<br>67                          | 9:<br>17:<br>20:<br>23:<br>26:<br>29:                                                         | 6<br>6<br>6<br>6<br>6                               |
| FseI<br>1:<br>10:<br>17:<br>20:<br>23:<br>26:<br>30:                                                                                             | Gcwg<br>6<br>67<br>67<br>67<br>67<br>67                                   | gc<br>3:<br>15:<br>18:<br>21:<br>24:<br>27:<br>30:                                                                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>7                        | 6:<br>15:<br>18:<br>21:<br>24:<br>27:<br>31:                                                         | bas<br>6<br>67<br>67<br>67<br>67<br>67<br>67                                              | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:<br>28:<br>31:                                           | 78<br>6<br>6<br>6<br>6<br>6<br>6<br>7                          | 8:<br>16:<br>19:<br>22:<br>25:<br>28:<br>32:                                                                | 6<br>67<br>67<br>67<br>67<br>67<br>67                    | 9:<br>17:<br>20:<br>23:<br>26:<br>29:<br>32:                                                  | 6<br>6<br>6<br>6<br>6<br>7                          |
| <pre>     Sel     1:     10:     17:     20:     23:     26:     30:     33: </pre>                                                              | Gcwo<br>6<br>67<br>67<br>67<br>67<br>6<br>6                               | gc<br>3:<br>15:<br>18:<br>21:<br>24:<br>27:<br>30:<br>33:                                                         | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>67             | 6:<br>15:<br>18:<br>21:<br>24:<br>27:<br>31:<br>34:                                                  | bas<br>6<br>67<br>67<br>67<br>67<br>67<br>67<br>6<br>6                                    | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:<br>28:<br>31:<br>34:                                    | 78<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>67                    | 8:<br>16:<br>19:<br>22:<br>25:<br>28:<br>32:<br>35:                                                         | 6<br>67<br>67<br>67<br>67<br>67<br>67<br>6               | 9:<br>17:<br>20:<br>23:<br>26:<br>29:<br>32:<br>35:                                           | 6<br>6<br>6<br>6<br>6<br>6<br>7<br>67               |
| <pre>FseI 1: 10: 17: 20: 23: 26: 30: 33: 36:</pre>                                                                                               | GCW9<br>6<br>67<br>67<br>67<br>67<br>67<br>6<br>6<br>6<br>6               | gc<br>3:<br>15:<br>18:<br>21:<br>24:<br>27:<br>30:<br>33:<br>36:                                                  | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>67                  | 6:<br>15:<br>18:<br>21:<br>24:<br>27:<br>31:<br>34:<br><u>37:</u>                                    | bas<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>6<br>6                                   | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:<br>28:<br>31:<br>34:<br>37:                             | 78<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>67<br>9               | 8:<br>16:<br>19:<br>22:<br>25:<br>28:<br>32:<br>35:<br><u>38</u> :                                          | 6<br>67<br>67<br>67<br>67<br>6<br>6<br>6                 | 9:<br>17:<br>20:<br>23:<br>26:<br>29:<br>32:<br>35:<br>38:                                    | 6<br>6<br>6<br>6<br>6<br>6<br>7<br>9                |
| <pre> FseI 1: 10: 17: 20: 23: 26: 30: 33: 36: 39: </pre>                                                                                         | Gcwo<br>6<br>67<br>67<br>67<br>67<br>6<br>6<br>6<br>6                     | gc<br>3:<br>15:<br>18:<br>21:<br>24:<br>27:<br>30:<br>33:<br>36:<br><u>39:</u>                                    | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>67<br>67<br>9       | 6:<br>15:<br>18:<br>21:<br>24:<br>27:<br>31:<br>34:<br><u>37:</u><br><u>40:</u>                      | bas<br>67<br>67<br>67<br>67<br>67<br>67<br>6<br>6<br>5<br>3                               | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:<br>28:<br>31:<br>34:<br><u>37:</u><br>40:               | 78<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>9<br>6                | 8:<br>16:<br>19:<br>22:<br>25:<br>28:<br>32:<br>35:<br><u>38:</u><br>40:                                    | 6<br>67<br>67<br>67<br>67<br>6<br>6<br>6<br>9            | 9:<br>17:<br>20:<br>23:<br>26:<br>29:<br>32:<br>35:<br>38:<br>41:                             | 6<br>6<br>6<br>6<br>6<br>7<br>9<br>6                |
| <pre>FseI 1: 10: 17: 20: 23: 26: 30: 33: 36: <u>39: 41:</u></pre>                                                                                | GCW9<br>6<br>67<br>67<br>67<br>67<br>6<br>6<br>6<br>6<br>6<br>6<br>9      | 3:<br>15:<br>18:<br>21:<br>24:<br>27:<br>30:<br>33:<br>36:<br><u>39:</u><br><u>42:</u>                            | 6<br>6<br>6<br>6<br>6<br>6<br>7<br>67<br>67<br>9<br>9       | 6:<br>15:<br>18:<br>21:<br>24:<br>27:<br>31:<br>34:<br><u>37:</u><br><u>40:</u><br>42:               | bas<br>6<br>67<br>67<br>67<br>67<br>67<br>6<br>6<br>6<br>6<br>6<br>3<br>9                 | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:<br>28:<br>31:<br>34:<br>37:<br>40:<br>43:               | 78<br>6<br>6<br>6<br>6<br>6<br>7<br>67<br>9<br>6               | 8:<br>16:<br>19:<br>22:<br>25:<br>28:<br>32:<br>35:<br><u>38:</u><br>40:<br>44:                             | 6<br>67<br>67<br>67<br>67<br>6<br><u>6</u><br>9<br>3     | 9:<br>17:<br>20:<br>23:<br>26:<br>29:<br>32:<br>35:<br>38:<br><u>41:</u><br>44:               | 6<br>6<br>6<br>6<br>6<br>7<br>9<br>6                |
| <pre>     Sel     1:     10:     17:     20:     23:     26:     30:     33:     36:     <u>39:     41:     44:       </u></pre>                 | Gcwo<br>6<br>67<br>67<br>67<br>67<br>6<br>6<br>6<br>6<br>9<br>9           | gc<br>3:<br>15:<br>18:<br>21:<br>24:<br>27:<br>30:<br>33:<br>36:<br><u>39:</u><br><u>42:</u><br><u>45:</u>        | 6<br>6<br>6<br>6<br>6<br>6<br>7<br>67<br>67<br>67<br>9<br>6 | 6:<br>15:<br>18:<br>21:<br>24:<br>27:<br>31:<br>34:<br><u>37:</u><br><u>40:</u><br>42:<br>45:        | bas<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67         | e# 67<br>7:<br>16:<br>19:<br>22:<br>28:<br>31:<br>34:<br><u>37:</u><br>40:<br>43:<br>43:        | 78<br>6<br>6<br>6<br>6<br>6<br>7<br>9<br>6<br>6                | 8:<br>16:<br>19:<br>22:<br>25:<br>28:<br>32:<br>35:<br><u>38:</u><br>40:<br><u>44:</u><br>46:               | 6<br>67<br>67<br>67<br>67<br>6<br>6<br>9<br>3<br>9       | 9:<br>17:<br>20:<br>23:<br>26:<br>29:<br>32:<br>35:<br>38:<br><u>41:</u><br>44:<br>47:        | 6<br>6<br>6<br>6<br>7<br>9<br>6<br>6<br>6           |
| <pre>     Sel     1:     10:     17:     20:     23:     26:     30:     33:     36:     <u>39:     41:     44:     47:     47:       </u></pre> | GCW9<br>6<br>67<br>67<br>67<br>67<br>6<br>6<br>6<br>6<br>6<br>9<br>9<br>9 | gc<br>3:<br>15:<br>18:<br>21:<br>24:<br>27:<br>30:<br>33:<br>36:<br><u>39:</u><br><u>42:</u><br><u>45:</u><br>48: | 6<br>6<br>6<br>6<br>6<br>7<br>67<br>67<br>67<br>9<br>6<br>6 | 6:<br>15:<br>18:<br>21:<br>24:<br>27:<br>31:<br>34:<br><u>37:</u><br><u>40:</u><br><u>42:</u><br>49: | bas<br>6<br>67<br>67<br>67<br>67<br>67<br>67<br>6<br>7<br>6<br>6<br>3<br>9<br>9<br>9<br>6 | e# 67<br>7:<br>16:<br>19:<br>22:<br>25:<br>28:<br>31:<br>34:<br>37:<br>40:<br>43:<br>40:<br>50: | 78<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>9<br>6<br>6<br>6<br>9 | 8:<br>16:<br>19:<br>22:<br>25:<br>28:<br>32:<br>35:<br><u>38:</u><br>40:<br><u>44:</u><br><u>46:</u><br>50: | 6<br>67<br>67<br>67<br>67<br>6<br>6<br>9<br>3<br>9<br>12 | 9:<br>17:<br>20:<br>23:<br>26:<br>29:<br>32:<br>35:<br>38:<br><u>41:</u><br>44:<br>47:<br>51: | 6<br>6<br>6<br>6<br>6<br>7<br>9<br>6<br>6<br>6<br>6 |

|    | The    | re a  | re 2      | hi     | ts at    | bas           | e# 3       |               |             |        |              |        |
|----|--------|-------|-----------|--------|----------|---------------|------------|---------------|-------------|--------|--------------|--------|
|    | The    | re a  | re 1      | hi     | ts at    | bas           | e# 12      |               |             |        |              |        |
|    | The    | re a  | re 21     | hi     | ts at    | bas           | e# 67      |               |             |        |              |        |
|    |        |       |           |        |          |               |            |               |             |        |              |        |
| 5  | MspA   | 1I C  | MGckg     |        |          |               |            | 48            |             |        |              |        |
|    | 1:     | 7     | 3:        | 7      | 4:       | 7             | 5:         | 7             | 6:          | 7      | 7:           | 7      |
|    | 8:     | 7     | 9:        | 7      | 10:      | 7             | 11:        | 7             | 15:         | 7      | 16:          | 7      |
|    | 17:    | 7     | 18:       | 7      | 19:      | 7             | 20:        | 7             | 21:         | 7      | 22:          | 7      |
|    | 23:    | 7     | 24:       | 7      | 25:      | 7             | 26:        | 7             | 27:         | 7      | 28:          | 7      |
| 10 | 29:    | 7     | 30:       | 7      | 31:      | 7             | 32:        | 7             | 33:         | 7      | 34:          | 7      |
|    | 35:    | 7     | 36:       | 7      | 37:      | 7             | 38:        | 7             | 39:         | 7      | <u>40:</u>   | 1      |
|    | 40:    | 7     | 41:       | 7      | 42:      | 7             | <u>44:</u> | 1             | 44:         | 7      | 45:          | 7      |
|    | 46:    | 7     | 47:       | 7      | 48:      | 7             | 49:        | 7             | 50:         | 7      | 51:          | 7      |
|    | The:   | re a  | re 46     | hi     | ts at    | base          | ∍# 7       |               |             |        |              |        |
| 15 |        |       |           |        |          |               |            |               |             |        |              |        |
|    | PvuI:  | I CA  | Gctg      |        |          |               |            | 48            |             |        |              |        |
|    | 1:     | 7     | 3:        | 7      | 4:       | 7             | 5:         | 7             | 6:          | 7      | 7:           | 7      |
|    | 8:     | 7     | 9:        | 7      | 10:      | 7             | 11:        | 7             | 15:         | 7      | 16:          | 7      |
|    | 17:    | 7     | 18:       | 7      | 19:      | 7             | 20:        | 7             | 21:         | 7      | 22:          | 7      |
| 20 | 23:    | 7     | 24:       | 7      | 25:      | 7             | 26:        | 7             | 27:         | 7      | 28:          | 7      |
|    | 29:    | 7     | 30:       | 7      | 31:      | 7             | 32:        | 7             | 33:         | 7      | 34:          | 7      |
|    | 35:    | 7     | 36:       | 7      | 37:      | 7             | 38:        | 7             | 39:         | 7      | 40:          | 1      |
|    | 40:    | 7     | 41:       | 7      | 42:      | 7             | 44:        | 1             | 44:         | 7      | 45.          |        |
|    | 46:    | 7     | 47:       | 7      | 48:      | 7             | 49.        | 7             | 50.         | <br>7  | 51.          | 7      |
| 25 | The    | re ai | <br>re 46 | hił    | re st    | hace          | .# 7       | •             | 50.         | •      | 9 <b>1</b> . | '      |
|    | The    |       |           |        | o at     | base          | =π /       |               |             |        |              |        |
|    |        |       |           |        | is al    | Dase          | :# I       |               |             |        |              |        |
|    | AluT   | AGet  | -         |        |          |               |            | - 4           |             |        |              |        |
|    | 1.     | 8     | 2.        | 6      | 2.       | 0             |            |               |             | ~ •    | ~            |        |
| 30 | <br>6. | 8     | 7.        | 0<br>9 | з:<br>е. | 0             | 4;         | 8             | 4:          | 24     | 5:           | 8      |
| 20 | 15.    | 8     | 16.       | 0<br>8 | 17.      | 0<br>0        | 9;<br>10.  | 0             | 10:         | 8      | 11:          | 8      |
|    | 21.    | 8     | 22.       | о<br>8 | 1/i      | 0<br>0        | 10:        | 0             | 19:         | 8      | 20:          | 8      |
|    | 27.    | 8     | 22.       | 0<br>0 | 23:      | 0             | 24:        | 0             | 20:         | 8      | 26:          | 8      |
|    | 32:    | 8     | 20.       | о<br>8 | 29.      | 8             | 29:        | 09            | 30:         | 0      | 31:          | 8      |
| 35 | 38:    | 8     | 39.       | 8      | 40.      | 2             | 40.        | e<br>e        | JO;<br>/1.  | 0      | 37:          | đ<br>o |
|    | 43:    | 8     | 44:       | 2      | 44 •     | <u>-</u><br>8 | 45.        | <u>о</u><br>я | 41:<br>41:  | 0<br>R | 42:<br>A7.   | Ø      |
|    |        | -     |           | _      |          |               |            | <b>.</b>      | <b>1</b> 0. | 0      | -1/1         | 0      |

| 48: | 8 | 48:        | 82 | 49:        | 8 | 49: | 82 | 50: | 8 | 51:  |
|-----|---|------------|----|------------|---|-----|----|-----|---|------|
| 43: | 8 | <u>44:</u> | 2  | 44:        | 8 | 45: | 8  | 46: | 8 | 47:  |
| 38: | 8 | 39:        | 8  | <u>40:</u> | 2 | 40: | 8  | 41: | 8 | 42:  |
| 32: | 8 | 33:        | 8  | 34:        | 8 | 35: | 8  | 36: | 8 | 37 : |
| 27: | 8 | 28:        | 8  | 29:        | 8 | 29: | 69 | 30: | 8 | 31:  |
| 21: | 8 | 22:        | 8  | 23:        | 8 | 24: | 8  | 25: | 8 | 26:  |
| 15: | 8 | 16:        | 8  | 17:        | 8 | 18: | 8  | 19: | 8 | 20:  |
|     |   | -          | -  | - •        | - |     | •  | ±0. | • |      |

8

There are 48 hits at base# 8

|    | There   | are 2        | hits at       | base#        | 2          |        |               |           |
|----|---------|--------------|---------------|--------------|------------|--------|---------------|-----------|
|    |         |              |               |              |            |        |               |           |
| )  | DdeI C  | tnag         |               |              | 48         |        |               |           |
|    | 1: 2    | 61:          | 48 2:         | 26 2         | : 48       | 3:     | 26 3:         | : 48      |
| 5  | 4: 2    | 6 4:         | 48 5:         | 26 5         | : 48       | 6:     | 26 6:         | : 48      |
|    | 7: 2    | 67:          | 48 8:         | 26 8         | : 48       | 9:     | 26 10:        | 26        |
|    | 11: 2   | 6 12:        | 85 13:        | 85 14        | 85         | 15:    | 52 16:        | 52        |
|    | 17: 5   | 2 18:        | 52 19:        | 52 20        | : 52       | 21:    | 52 22:        | 52 -      |
|    | 23: 5   | 2 24:        | 52 25:        | 52 26        | 52         | 27:    | 52 28         | 52        |
| 10 | 29: 5   | 2 30:        | 52 31:        | 52 32        | : 52       | 33:    | 52 35         | : 30      |
|    | 35: 5   | 2 36:        | 52 40:        | 24 49        | : 52       | 51:    | 26 51:        | 48        |
|    | There   | are 22       | hits at       | base# 5      | 2 52       | and 48 | never t       | cogether. |
|    | There   | are 9        | hits at       | base# 4      | <u>3</u>   |        |               |           |
|    | There   | are 12       | hits at       | base# 2      | 5 26       | and 24 | never t       | cogether. |
| 15 |         |              |               |              |            |        |               |           |
|    | HphI t  | cacc         |               |              | 42         |        |               |           |
|    | 1: 8    | 63:          | 86 6:         | 86 7         | 86         | 8:     | 80 11:        | 86        |
|    | 12:     | 5 13:        | 5 14:         | 5 15         | 80         | 16:    | 80 17:        | 80        |
|    | 18: 8   | 0 20:        | 80 21:        | 80 22        | : 80       | 23:    | 80 24:        | 80        |
| 20 | 25: 8   | 0 26:        | 80 27:        | 80 28        | : 80       | 29:    | 80 30:        | 80        |
|    | 31: 8   | 0 32:        | 80 33:        | 80 34        | 80         | 35:    | 80 36:        | 80        |
|    | 37: 5   | 9 38:        | 59 39:        | 59 40        | 59         | 41:    | 59 42:        | 59        |
|    | 43: 5   | 9 44:        | 59 45:        | 59 46        | 59         | 47:    | 59 50:        | 59        |
|    | There   | are 22       | hits at       | base# 8      | 80         | and 86 | never t       | ogether   |
| 25 | There   | are 5        | hits at       | base# 8      | 5          |        |               |           |
|    | There   | are 12       | hits at       | base# 5      | )          |        |               |           |
|    |         |              |               |              |            |        |               |           |
|    | BssKI 1 | Nccngg       |               |              | 50         |        |               |           |
| 10 | 1: 3    | 92:          | 39 3:         | 39 4         | 39         | 5:     | 39 7:         | 39        |
| 30 | 8:3     | 99:          | 39 10:        | 39 11        | 39         | 15:    | 39 16:        | 39        |
|    | 17: 3   | 9 18:        | 39 19:        | 39 20        | : 39       | 21:    | 29 21:        | 39        |
|    | 22: 3   | 9 23:        | 39 24:        | 39 25        | 39         | 26:    | 39 27:        | 39        |
|    | 28: 3   | 9 29:        | 39 30:        | 39 31        | 39         | 32:    | 39 33:        | 39        |
| 25 | 34: 3   | 9 35:        | 19 35:        | 39 36        | : 39       | 37:    | 24 38:        | 24        |
| 55 | 39: 2   | 4 41:        | 24 42:        | 24 44        | : 24       | 45:    | 24 46:        | 24        |
|    | 4/: 2   | 4 <u>48:</u> | <u>39 48:</u> | 40 49        | 39         | 49:    | <u>40</u> 50: | 24        |
|    | 50: 7   | ع 51:<br>    | 39            | <b>_ 1</b> - |            | ,      |               |           |
|    | There   | are 35       | nits at       | base# 3      | <b>3</b> 9 | and 40 | togethe       | er twice. |

|    | BsaJI Cc      | nngg          |                | 47             |           |               |
|----|---------------|---------------|----------------|----------------|-----------|---------------|
|    | 1: 40         | 2: 40         | 3: 40          | 4: 40          | 5: 40     | 7: 40         |
|    | 8: 40         | 9: 40         | 9: 47          | 10: 40         | 10: 47    | 11: 40        |
| 5  | 15: 40        | 18: 40        | 19: 40         | 20: 40         | 21: 40    | 22: 40        |
|    | 23: 40        | 24: 40        | 25: 40         | 26: 40         | 27: 40    | 28: 40        |
|    | 29: 40        | 30: 40        | 31: 40         | 32: 40         | 34: 40    | 35: 20        |
|    | 35: 40        | 36: 40        | 37: 24         | 38: 24         | 39: 24    | 41: 24        |
|    | 42: 24        | 44: 24        | 45: 24         | 46: 24         | 47: 24    | <u>48: 40</u> |
| 10 | <u>48: 41</u> | <u>49: 40</u> | <u> 49: 41</u> | 50: 74         | 51: 40    |               |
|    | There a       | re 32 hi      | ts at base     | e# 40 40       | and 41 to | gether twice  |
|    | There a       | re 2 hi       | ts at bas      | e# 41          |           |               |
|    | There a       | re 9 hi       | ts at bas      | e# 24          |           |               |
|    | There a:      | re 2 hi       | ts at base     | e <b># 4</b> 7 |           |               |
| 15 |               |               |                |                |           |               |
|    | BstNI CC      | wgg           |                | 44             |           |               |
|    | PspGI cc      | wgg           |                |                |           |               |
|    | ScrFI(\$M     | .HpaII) CO    | Cwgg           |                |           |               |
|    | 1: 40         | 2: 40         | 3: 40          | 4: 40          | 5: 40     | 7: 40         |
| 20 | 8: 40         | 9: 40         | 10: 40         | 11: 40         | 15: 40    | 16: 40        |
|    | 17: 40        | 18: 40        | 19: 40         | 20: 40         | 21: 30    | 21: 40        |
|    | 22: 40        | 23: 40        | 24: 40         | 25: 40         | 26: 40    | 27: 40        |
|    | 28: 40        | 29: 40        | 30: 40         | 31: 40         | 32: 40    | 33: 40        |
|    | 34: 40        | 35: 40        | 36: 40         | 37: 25         | 38: 25    | 39: 25        |
| 25 | 41: 25        | 42: 25        | 44: 25         | 45: 25         | 46: 25    | 47: 25        |
|    | 50: 25        | 51: 40        |                |                |           |               |
|    | There as      | re 33 hit     | s at base      | ∍# 40          |           |               |
|    |               |               |                |                |           |               |
|    | ScrFI CC      | ngg           |                | 50             |           |               |
| 30 | 1: 40         | 2: 40         | 3: 40          | 4: 40          | 5: 40     | 7: 40         |
|    | 8: 40         | 9: 40         | 10: 40         | 11: 40         | 15: 40    | 16: 40        |
|    | 17: 40        | 18: 40        | 19: 40         | 20: 40         | 21: 30    | 21: 40        |
|    | 22: 40        | 23: 40        | 24: 40         | 25: 40         | 26: 40    | 27: 40        |
|    | 28: 40        | 29: 40        | 30: 40         | 31: 40         | 32: 40    | 33: 40        |
| 35 | 34: 40        | 35: 20        | 35: 40         | 36: 40         | 37: 25    | <b>38:</b> 25 |
|    | 39: 25        | 41: 25        | 42: 25         | 44: 25         | 45: 25    | 46: 25        |
|    | 47: 25        | 48: 40        | 48: 41         | 49: 40         | 49: 41    | 50: 25        |
|    | 50: 74        | 51: 40        |                |                |           |               |
|    | There         |               |                |                |           |               |

| )<br>N                                     |                | <b>0</b> 14     | <b>-</b> •     | - 11           |                |                |          |       |    |
|--------------------------------------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------|-------|----|
| Ì                                          | There as       | re 2 hit        | ts at base     | e# 41          |                |                |          |       |    |
| 0                                          | R 01 007       | 20.0            |                |                |                | _              |          |       |    |
|                                            | ECOOLOAT       | RGgnccy         |                | 34             |                |                |          |       |    |
| (<br>, , , , , , , , , , , , , , , , , , , | 1: 43          | 2: 43           | 3: 43          | 4: 43          | 5: 43          | 6: 43          |          |       |    |
| 5                                          | 7:43           | 8: 43           | 9: 43          | 10: 43         | 15: 46         | 16: 46         |          |       |    |
|                                            | 17:46          | 18: 46          | 19: 46         | 20: 46         | 21: 46         | 22: 46         |          |       |    |
| (                                          | 23: 46         | 24: 46          | 25: 46         | 26: 46         | 27: 46         | 28: 46         |          | -     |    |
| )                                          | 30: 46         | 31: 46          | 32: 46         | 33: 46         | 34: 46         | 35: 46         | -        |       |    |
|                                            | 36: 46         | 37: 46          | 43: 79         | 51: 43         |                |                |          |       |    |
|                                            | There as       | e 22 hit        | s at base      | ≥# 46 46       | and 43 nev     | er togeth      | er       |       |    |
|                                            | There as       | re 11 hit       | s at base      | ≘# 43          |                |                |          |       |    |
| )<br>)                                     | NlaIV GGN      | Incc            |                | 71             |                |                |          |       |    |
|                                            | 1: 43          | 2: 43           | 3: 43          | 4: 43          | 5: 43          | 6: 43          |          |       |    |
|                                            | 7: 43          | 8: 43           | 9: 43          | 9: 79          | 10: 43         | 10: 79         |          |       |    |
| 15                                         | <u>15:46</u>   | 15: 47          | 16: 47         | <u> 17: 46</u> | 17: 47         | <u> 18: 46</u> |          |       |    |
|                                            | <u>18: 47</u>  | <u> 19: 46</u>  | <u> 19: 47</u> | <u> 20: 46</u> | 20: 47         | <u>21: 46</u>  |          |       |    |
|                                            | <u>21: 47</u>  | <u>22: 46</u>   | 22: 47         | 23: 47         | 24: 47         | 25: 47         |          |       |    |
|                                            | 26: 47         | <u>27: 46</u>   | 27: 47         | <u> 28: 46</u> | 28: 47         | 29: 47         |          |       |    |
|                                            | <u> 30: 46</u> | 30: 47          | <u>31: 46</u>  | 31: 47         | <u>32: 46</u>  | 32: 47         |          |       |    |
| ?0                                         | <u>33: 46</u>  | 33: 47          | 34: 46         | 34: 47         | <u> 35: 46</u> | 35: 47         |          |       |    |
|                                            | 36: 46         | <u> 36: 4</u> 7 | 37: 21         | <u> 37: 46</u> | 37: 47         | 37: 79         |          |       |    |
|                                            | 38: 21         | 39: 21          | 39: 79         | 40: 79         | 41: 21         | 41: 79         |          |       |    |
|                                            | 42: 21         | 42: 79          | 43: 79         | 44: 21         | 44: 79         | 45: 21         |          |       |    |
|                                            | 45: 79         | 46: 21          | 46: 79         | 47: 21         | 51: 43         |                |          |       |    |
| ?5                                         | There ar       | e 23 hit        | s at base      | # 47 46        | 47 often       | together       |          |       |    |
|                                            | There ar       | e 17 hit        | s at base      | ≥# 46          | There are      | 11 hits        | at base# | 43    |    |
|                                            | Sau96I Gg      | Incc            |                | 70             |                |                |          |       |    |
|                                            | 1: 44          | 2: 3            | 2: 44          | 3: 44          | 4: 44          | 5: 3           | 5: 44    | 6: 4  | 44 |
|                                            | 7: 44          | 8: 22           | 8: 44          | 9: 44          | 10: 44         | 11: 3          | 12: 22   | 13: 2 | 22 |
| 10                                         | 14: 22         | 15: 33          | 15: 47         | 16: 47         | 17: 47         | 18: 47         | 19: 47   | 20: 4 | 47 |
|                                            | 21: 47         | 22: 47          | 23: 33         | 23: 47         | 24: 33         | 24: 47         | 25: 33   | 25:   | 47 |
|                                            | 26: 33         | 26: 47          | 27: 47         | 28: 47         | 29: 47         | 30: 47         | 31: 33   | 31: 4 | 47 |
|                                            | 32: 33         | 32: 47          | 33: 33         | 33: 47         | 34: 33         | 34: 47         | 35: 47   | 36: 4 | 47 |
|                                            | <u>37: 21</u>  | 37: 22          | 37: 47         | <u>38: 21</u>  | 38: 22         | 39: 21         | 39: 22   | 41: 2 | 21 |
| 15                                         | 41: 22         | 42: 21          | 42: 22         | 43: 80         | 44: 21         | 44: 22         | 45: 21   | 45: 2 | 22 |
|                                            | 46: 21         | 46: 22          | 47: 21         | 47: 22         | 50: 22         | 51: 44         |          |       |    |
|                                            | There ar       | e 23 hit        | s at base      | # 47 The       | se do not      | occur toge     | ether.   |       |    |
|                                            | There ar       | e 11 hit        | s at bace      | # AA           |                | -              |          |       |    |

There are 14 hits at base# 22 These do occur together. There are 9 hits at base# 21 BsmAI GTCTCNnnnn 22 5 1: 58 3: 58 4: 58 5: 58 8: 58 9: 58 10: 58 13: 70 36: 18 37: 70 38: 70 39: 70 40: 70 41: 70 42: 70 44: 70 45: 70 46: 70 47: 70 48: 48 49: 48 50: 85 There are 11 hits at base# 70 10 Nnnnngagac 27 13: 40 15: 48 16: 48 17: 48 18: 48 20: 48 21: 48 22: 48 23: 48 24: 48 25: 48 26: 48 27: 48 28: 48 29: 48 30: 10 30: 48 31: 48 15 32: 48 33: 48 35: 48 36: 48 43: 40 44: 40 45: 40 46: 40 47: 40 There are 20 hits at base# 48 AvaII Ggwcc 44 20 Sau96I(\$M.HaeIII) Ggwcc 44 2: 3 5: 3 6: 44 8: 44 9: 44 10: 44 11: 3 12: 22 13: 22 14: 22 15: 33 15: 47 16: 47 17: 47 18: 47 19: 47 20: 47 21: 47 22: 47 23: 33 23: 47 24: 33 24: 47 25: 33 25 25: 47 26: 33 26: 47 27: 47 28: 47 29: 47 30: 47 31: 33 31: 47 32: 33 32: 47 33: 33 33: 47 34: 33 34: 47 35: 47 36: 47 37: 47 43: 80 50: 22 There are 23 hits at base# 47 44 & 47 never together 30 There are 4 hits at base# 44 PpuMI RGgwccy 27 6: 43 8: 43 9: 43 10: 43 15: 46 16: 46 17: 46 18: 46 19: 46 20: 46 21: 46 22: 46 35 23: 46 24: 46 25: 46 26: 46 27: 46 28: 46 30: 46 31: 46 32: 46 33: 46 34: 46 35: 46 36: 46 37: 46 43: 79 There are 22 hits at base# 46 43 and 46 never occur together. There are 4 hits at base# 43

|     | BsmFI GG        | GAC      |            | 3              |        |        |
|-----|-----------------|----------|------------|----------------|--------|--------|
|     | 8: 43           | 37: 46   | 50: 77     |                |        |        |
|     | - <b>"-</b> gt( | ccc      |            | 33             |        |        |
| 5   | 15: 48          | 16: 48   | 17: 48     | 1: 0           | 1: 0   | 20: 48 |
|     | 21: 48          | 22: 48   | 23: 48     | 24: 48         | 25: 48 | 26: 48 |
|     | 27: 48          | 28: 48   | 29: 48     | 30: 48         | 31: 48 | 32: 48 |
|     | 33: 48          | 34: 48   | 35: 48     | 36: 48         | 37: 54 | 38: 54 |
|     | 39: 54          | 40: 54   | 41: 54     | 42: 54         | 43: 54 | 44: 54 |
| 10  | 45: 54          | 46: 54   | 47: 54     |                |        |        |
|     | There as        | re 20 hi | ts at base | e# 48          |        |        |
|     | There as        | e 11 hi  | ts at base | ∍# 54          |        |        |
|     |                 |          |            |                |        |        |
| 15  | Hinfi Gar       | itc      |            | 80             |        |        |
| 15  | 8: 77           | 12: 16   | 13: 16     | 14: 16         | 15: 16 | 15: 56 |
|     | 15: 77          | 16: 16   | 16: 56     | 16: 77         | 17: 16 | 17: 56 |
|     | 17: 77          | 18: 16   | 18: 56     | 18: 77         | 19: 16 | 19: 56 |
|     | 19: 77          | 20: 16   | 20: 56     | 20: 77         | 21: 16 | 21: 56 |
| • • | 21: 77          | 22: 16   | 22: 56     | 22: 77         | 23: 16 | 23: 56 |
| 20  | 23: 77          | 24: 16   | 24: 56     | 24: 77         | 25: 16 | 25: 56 |
|     | 25: 77          | 26: 16   | 26: 56     | 26: 77         | 27: 16 | 27: 26 |
|     | 27: 56          | 27: 77   | 28: 16     | 28: 56         | 28: 77 | 29: 16 |
|     | 29: 56          | 29: 77   | 30: 56     | 31: 16         | 31: 56 | 31: 77 |
|     | 32: 16          | 32: 56   | 32: 77     | 33: 16         | 33: 56 | 33: 77 |
| ?5  | 34: 16          | 35: 16   | 35: 56     | 35: 77         | 36: 16 | 36: 26 |
|     | 36: 56          | 36: 77   | 37: 16     | 38: 16         | 39: 16 | 40: 16 |
|     | 41: 16          | 42: 16   | 44: 16     | 45: 16         | 46: 16 | 47: 16 |
|     | 48: 46          | 49: 46   |            |                |        |        |
|     | There ar        | e 34 hit | s at base  | # 16           |        |        |
| 30  |                 |          |            |                |        |        |
|     | Tfil Gawt       | c        |            | 21             |        |        |
|     | 8: 77           | 15: 77   | 16: 77     | 17: 77         | 18: 77 | 19: 77 |
|     | 20: 77          | 21: 77   | 22: 77     | 23: 77         | 24: 77 | 25: 77 |
|     | 26: 77          | 27: 77   | 28: 77     | 29 <u>:</u> 77 | 31: 77 | 32: 77 |
| 35  | 33: 77          | 35: 77   | 36: 77     |                |        |        |
|     |                 |          |            |                |        |        |

There are 21 hits at base# 77

|                |    |       |       |       |       |            |      |       | 74/ | 128 | }  |     |    |
|----------------|----|-------|-------|-------|-------|------------|------|-------|-----|-----|----|-----|----|
| Ò              |    | MIVT  | GAGT  | C     |       |            |      |       | 38  |     |    |     |    |
| 20             |    | 12:   | 16    | 13:   | 16    | 14:        | 16   | 15:   | 16  | 16. | 16 | 17. | 16 |
| δ              |    | 18:   | 16    | 19:   | 16    | 20:        | 16   | 21:   | 16  | 22. | 16 | 23. | 16 |
| Ąu             |    | 24:   | 16    | 25:   | 16    | 26:        | 16   | 27:   | 16  | 27: | 26 | 28: | 16 |
| $1_{I}$        | 5  | 29:   | 16    | 31.   | 16    | 32.        | 16   | 27.   | 16  | 34. | 16 | 20. | 16 |
| $\mathbf{C}$   | 2  | 36:   | 16    | 36:   | 26    | 37:        | 16   | 38:   | 16  | 39. | 16 | 40. | 16 |
|                |    | 41:   | 16    | 42:   | 16    | 44:        | 16   | 45.   | 16  | 46. | 16 | 47. | 16 |
|                |    | 48:   | 46    | 49:   | 46    |            | 10   | 151   | 10  |     | 10 |     | 10 |
| 86             |    | The   | re ar | e 34  | 4 hit | s at       | bas  | e# 16 |     |     |    |     |    |
| Ξ              | 10 |       |       |       |       | <b>U U</b> | 240  |       |     |     |    |     |    |
| $\overline{2}$ | 10 | _ "_  | GACT  | с     |       |            |      |       | 21  |     |    |     |    |
| 01             |    | 15:   | 56    | 16:   | 56    | 17:        | 56   | 18:   | 56  | 19. | 56 | 20. | 56 |
| Õ              |    | 21:   | 56    | 22:   | 56    | 23:        | 56   | 24:   | 56  | 25: | 56 | 26: | 56 |
| C I            |    | 27:   | 56    | 28:   | 56    | 29:        | 56   | 30:   | 56  | 31: | 56 | 32: | 56 |
|                | 15 | 33:   | 56    | 35:   | 56    | 36:        | 56   |       |     |     |    | 02. |    |
|                |    | The   | re ar | e 2:  | l hit | s at       | bas  | e# 56 |     |     |    |     |    |
|                |    |       |       |       |       |            |      |       |     |     |    |     |    |
|                |    | PleI  | gagt  | с     |       |            |      |       | 38  |     |    |     |    |
|                |    | 12:   | 16    | 13:   | 16    | 14:        | 16   | 15:   | 16  | 16: | 16 | 17: | 16 |
|                | 20 | 18:   | 16    | 19:   | 16    | 20:        | 16   | 21:   | 16  | 22: | 16 | 23: | 16 |
|                |    | 24:   | 16    | 25:   | 16    | 26:        | 16   | 27:   | 16  | 27: | 26 | 28: | 16 |
|                |    | 29:   | 16    | 31:   | 16    | 32:        | 16   | 33:   | 16  | 34: | 16 | 35: | 16 |
|                |    | 36:   | 16    | 36:   | 26    | 37:        | 16   | 38:   | 16  | 39: | 16 | 40: | 16 |
|                |    | 41:   | 16    | 42:   | 16    | 44:        | 16   | 45:   | 16  | 46: | 16 | 47: | 16 |
|                | 25 | 48:   | 46    | 49:   | 46    | _          |      |       |     |     |    |     |    |
|                |    | The   | re ar | e 34  | 4 hit | s at       | bas  | e# 16 |     |     |    |     |    |
|                |    | _"_   | gact  | с     |       |            |      | 2     | 21  |     |    |     |    |
|                |    | 15:   | 56    | 16:   | 56    | 17:        | 56   | 18:   | 56  | 19: | 56 | 20: | 56 |
|                |    | 21:   | 56    | 22:   | 56    | 23:        | 56   | 24:   | 56  | 25: | 56 | 26: | 56 |
|                | 30 | 27:   | 56    | 28:   | 56    | 29:        | 56   | 30:   | 56  | 31: | 56 | 32: | 56 |
|                |    | 33:   | 56    | 35:   | 56    | 36:        | 56   |       |     |     |    |     |    |
|                |    | The   | re ar | e 21  | l hit | s at       | bas  | e# 56 |     |     |    |     |    |
|                |    | AlwN: | I CAG | NNNc1 | tg    |            |      | 2     | 26  |     |    |     |    |
|                |    | 15:   | 68    | 16:   | 68    | 17:        | 68   | 18:   | 68  | 19: | 68 | 20: | 68 |
|                | 35 | 21:   | 68    | 22:   | 68    | 23:        | 68   | 24:   | 68  | 25: | 68 | 26: | 68 |
|                |    | 27:   | 68    | 28:   | 68    | 29:        | 68   | 30:   | 68  | 31: | 68 | 32: | 68 |
|                |    | 33:   | 68    | 34:   | 68    | 35:        | 68   | 36:   | 68  | 39: | 46 | 40: | 46 |
|                |    | 41:   | 46    | 42:   | 46    |            |      |       |     |     |    |     |    |
|                |    | The   | re ar | e 22  | 2 hit | s at       | base | e# 68 |     |     |    |     |    |

Table 255: Analysis of frequency of matching REdaptors in actual V genes

A: HpyCH4V in HC at bases 35-56

| H   | 1 Ntot | 0          |            | 2          | m          | 4   | S          | ٥        | ~         | ω        | δ         | 10  | Cut  | Id    | Probe                  |
|-----|--------|------------|------------|------------|------------|-----|------------|----------|-----------|----------|-----------|-----|------|-------|------------------------|
| -   | 1 510  | ŝ          | ц.         | 274        | 92         | 61  | 25         | 22       | 11        | H        | m         | ß   | 443  | 6-1   | agttctcccTGCAgctgaactc |
| ~   | : 192  | 54         | 42         | 32         | 24         | 15  | 2          | m        | 10        | m        | 7         | 9   | 167  | 3-11  | cactgtatcTGCAaatgaacag |
| ~)  | 3 58   | 19         | ٢          | 17         | 9          | ŝ   | 7          | 0        | 1         | 0        | 2         | 0   | 54   | 3-09  | ccctgtatcTGCAaatgaacag |
| 4   | 267    | 42         | ອີ         | Q          | α,         | 8   | 82         | 43       | 22        | 8        | 11        | Ħ   | 100  | 5-51  | ccgcctaccTGCAgtggagcag |
| ני) | 250    | 111        | 59         | 41         | 24         | ٢   | ŝ          | ч        | 0         | 0        | 2         | 0   | 242  | 3-15  | cgctgtatcTGCAaatgaacag |
| Ð   | 5 7    | 0          | 2          | 0          | Ч          | 0   | 0          | 0        | 0         | 0        | 4         | 0   | e    | 7-4.1 | cggcatatcTGCAgatctgcag |
|     | Γ.     | 0          | <b>`</b> N | 2          | 0          | 0   | 2          | Ч        | 0         | 0        | 0         | 0   | 4    | 3-73  | cggcgtatcTGCAaatgaacag |
| œ   | 26     | 10         | 4          | Ч          | m          | Ч   | 8          | Н        | m         | ٦        | 0         | 0   | 19   | 5-a   | ctgcctaccTGCAgtggagcag |
| ማ   | 21     | 80         | 0          | m          | 1          | 9   | 1          | 0        | 0         | 0        | 0         | 0   | 20   | 3-49  | tcgcctatcTGCAaatgaacag |
|     | 1338   | 249<br>249 | 162<br>411 | 379<br>790 | 149<br>939 | 103 | 120<br>162 | 71<br>12 | 47<br>280 | 13<br>13 | 23<br>316 | 12  | 1052 |       |                        |
|     |        |            |            | :          |            | 042 | H          | 233      | 12        | 293      | 13        | 338 |      |       |                        |

|    | Id    | Probe                  | dotted probe                    |
|----|-------|------------------------|---------------------------------|
|    | 6-1   | agttctcccTGCAgctgaactc | agttctccc <b>TGCA</b> gctgaactc |
| 20 | 3-11  | cactgtatcTGCAaatgaacag | cac.g.ataaag                    |
|    | 3-09  | ccctgtatcTGCAaatgaacag | ccc.g.ataaag                    |
|    | 5-51  | ccgcctaccTGCAgtggagcag | ccgcatgg.ag                     |
|    | 3-15  | cgctgtatcTGCAaatgaacag | c.c.g.ataaag                    |
|    | 7-4.1 | cggcatatcTGCAgatctgcag | c.gca.ata.ctg.ag                |
| 25 | 3-73  | cggcgtatcTGCAaatgaacag | c.gcg.ataaag                    |
|    | 5-a   | ctgcctaccTGCAgtggagcag | ctgcatgg.ag                     |
|    | 3-49  | tcgcctatcTGCAaatgaacag | tcgcataaag                      |
|    |       |                        |                                 |

Seqs with the expected RE site only.....1004

(Counts only cases with 4 or fewer mismatches) Segs with only an unexpected site..... 0

Seqs with both expected and unexpected.... 48

Ś

B: BlpI in HC

| Id         Ntot         0         1         2         3         16         11         13         6         9         1         4         5         6         7         4         13         6         9         1         4         1         1         0         0         1         13         6         9         1         4         1         1         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""><th>8 Ncut Name</th><th>0 119 1-58 acatggaGCTGAGCagcctga</th><th>1 12 1-02 acatgga<mark>getgagc</mark>aggetgag</th><th>0 0 1-18 acatggagctgaggggggcctgag</th><th>0 2 5-51 acctgcagtggagcagcctga</th><th>0 0 3-15 atctgcaaatgaacagcctga</th><th>0 3303 atctgcaaatgaacagcctga</th><th>0 0 3-20 atctgcaaatgaacagtctga</th><th>0 74.1 atctgcagatctgcagcctaa</th><th>0 3-66 atcttcaaatgaacagcctga</th><th>) 0 3-64 atcttcaaatgggcagcctga</th><th>l 467 4301 ccctgaagctgagctctgtga</th><th>) 1 6-1 ccctgcagctgaactctgtga</th><th>) 0 2-70 trettaraatdarcaaratdd</th><th></th></th1<> | 8 Ncut Name | 0 119 1-58 acatggaGCTGAGCagcctga | 1 12 1-02 acatgga <mark>getgagc</mark> aggetgag | 0 0 1-18 acatggagctgaggggggcctgag | 0 2 5-51 acctgcagtggagcagcctga | 0 0 3-15 atctgcaaatgaacagcctga | 0 3303 atctgcaaatgaacagcctga | 0 0 3-20 atctgcaaatgaacagtctga | 0 74.1 atctgcagatctgcagcctaa | 0 3-66 atcttcaaatgaacagcctga | ) 0 3-64 atcttcaaatgggcagcctga | l 467 4301 ccctgaagctgagctctgtga | ) 1 6-1 ccctgcagctgaactctgtga | ) 0 2-70 trettaraatdarcaaratdd |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|-------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|----------------------------------|-------------------------------|--------------------------------|--|
| Id       Ntot       0       1       2       3       4       5       6       7         1       133       73       16       11       13       6       9       1       9       6       9       1       0       0         2       14       11       1       0       0       0       0       0       1       0       0       1       0       0       1       1       0       1       1       0       1       0       0       1       1       0       1       1       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8           | 0                                |                                                 | 0                                 | 0                              | 0                              | 0                            | 0                              | 0                            | 0                            | 0                              | Ч                                | 0                             | 0                              |  |
| Id         Ntot         0         1         2         3         4         5         6         9         1           1         133         73         16         11         13         6         9         1           2         14         11         1         0         0         0         0         1         1           3         34         11         1         0         0         0         0         1         1           3         34         17         8         2         6         1         0         0         1         1           5         55         13         11         10         17         3         1         0         0         0         1           7         82         25         16         10         17         3         1         0         0         0         0         0         0         1         1         3         1         0         0         0         1         1         3         0         2         1         0         0         0         0         0         1         3         3         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 4                                | 0                                               | 0                                 | 7                              | 0                              | Ч                            | 0                              | 0                            | 0                            | 0                              | 4                                | Ч                             | 0                              |  |
| Id         Ntot         0         1         2         3         4         5         5         4         5         5         4         5         5         4         5         5         1         13         6         9         3         4         5         5         3         1         1         1         0         0         0         0         0         0         1         0         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>9</td> <td>Ħ</td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>m</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                   | 9           | Ħ                                |                                                 | 0                                 | 1                              | 0                              | 0                            | 0                              | 0                            | 0                            | 0                              | 4                                | m                             | 0                              |  |
| Id         Ntot         0         1         2         3         4           1         133         73         16         11         13         6           2         14         11         1         0         0         0         0           3         34         17         8         2         6         1         3         6           4         120         50         32         16         10         9         9           5         55         13         11         10         17         3         3           6         340         186         89         41         15         6         1           7         82         25         16         25         12         1         0           9         33         18         2         2         1         0         0           9         23         18         2         2         1         0         0           10         2         1         0         1         0         1         0         0           11         486         249         78         81 <t< td=""><td>2</td><td>σ</td><td>0</td><td>0</td><td>Ч</td><td>н.</td><td>e</td><td>m</td><td>0</td><td>0</td><td>0</td><td>10</td><td>1</td><td>0</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2           | σ                                | 0                                               | 0                                 | Ч                              | н.                             | e                            | m                              | 0                            | 0                            | 0                              | 10                               | 1                             | 0                              |  |
| Id         Ntot         0         1         2         3           1         133         73         16         11         13           2         14         11         1         0         0           3         34         17         8         2         6           4         120         50         32         16         10           5         55         13         11         10         17           6         340         186         88         41         15           7         82         25         16         25         12           8         3         0         2         0         1           9         23         18         2         1         0           10         2         1         0         1         0           11         486         249         78         81         38           12         16         6         3         1         0           11         486         249         78         81         38           12         16         6         3         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4           | 9                                | 0                                               | r-1                               | თ                              | m                              | 9                            | Ч                              | 0                            | 0                            | 0                              | 21                               | 1                             | Ч                              |  |
| Id         Ntot         0         1         2           1         133         73         16         11         2           2         14         11         1         0         3         34         11         1         0           3         34         17         8         2         34         11         1         0           4         120         50         32         16         32         16         31         10           6         340         186         88         41         10         2         32         16         25           7         82         25         13         11         10         2         32         34         33         34         34         32         34         33         34         34         32         34         32         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34 </td <td>m</td> <td>13</td> <td>0</td> <td>9</td> <td>10</td> <td>17</td> <td>15</td> <td>12</td> <td>-1</td> <td>1</td> <td>0</td> <td>38</td> <td>0</td> <td>2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                 | m           | 13                               | 0                                               | 9                                 | 10                             | 17                             | 15                           | 12                             | -1                           | 1                            | 0                              | 38                               | 0                             | 2                              |  |
| Id         Ntot         0         1           1         133         73         16           2         14         11         1           3         34         17         8           4         120         50         32           5         55         13         11           6         340         186         88           7         82         25         16           8         3         0         2           9         23         186         25           9         23         18         2           10         2         1         0           11         486         249         78           12         16         6         3           11         486         249         78           12         16         6         3         1           13         28         15         8         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2           | 11                               | 0                                               | 2                                 | 16                             | 10                             | 41                           | 25                             | 0                            | 2                            | 1                              | 81                               | ٦                             | 2                              |  |
| Id         Ntot         0           1         133         73           2         14         11           3         34         17           4         120         50           5         55         13           6         340         186           7         82         25           8         3         0           9         23         18           10         22         18           11         486         249           12         16         6           11         486         249           12         16         6           13         28         15           13         28         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٦           | 16                               | ٦                                               | 8                                 | 32                             | 11                             | 88                           | 16                             | 2                            | 2                            | 0                              | 78                               | ო                             | 8                              |  |
| Id     Ntot       1     133       1     133       2     14       3     34       4     120       5     55       5     55       6     340       7     82       8     3       9     23       10     2       11     486       12     16       13     28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 73                               | 11                                              | . 17                              | 50                             | 13                             | 186                          | 25                             | 0                            | 18                           | 1                              | 249                              | 9                             | 15                             |  |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ntot        | 133                              | 14                                              | 34                                | 120                            | 55                             | 340                          | 82                             | m                            | 23                           | 2                              | 486                              | 16                            | 28                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I q         | 4                                | 7                                               | ო                                 | 4                              | ŝ                              | 9                            | ٢                              | 8                            | თ                            | 10                             | 11                               | 12                            | 13                             |  |

76/128

25

|    | Namo        | Fill commence                   |                                                                   |
|----|-------------|---------------------------------|-------------------------------------------------------------------|
|    |             | acuanbas ITNJ                   | DOC MODE                                                          |
|    | 1-58        | acatggaGCTGAGCagcctgag          | acatggaGCTGAGCagcctgag                                            |
|    | 1-02        | acatgga <b>gctgagc</b> aggctgag | ·····g·····                                                       |
|    | 1-18        | acatggagctgaggagcctgag          | ······g······g······                                              |
| Ś  | 5-51        | acctgcagtggagcagcctgaa          | ctga                                                              |
|    | 3-15        | atctgcaaatgaacagcctgaa          | .tcc.aaaa                                                         |
|    | 3-30.3      | atctgcaaatgaacagcctgag          | .tcc.aaa                                                          |
|    | 3-20        | atctgcaaatgaacagtctgag          | .tcc.aat                                                          |
|    | 7-4.1       | atctgcagatctgcagcctaaa          | .tcca.cta.a                                                       |
| 10 | 3-66        | atcttcaaatgaacagcctgag          | .tc.tc.aaa                                                        |
|    | 3-64        | atcttcaaatgggcagcctgag          | .tc.tc.aag                                                        |
|    | 4-30.1      | ccctgaagctgagctctgtgac          | c.catctgc                                                         |
|    | 6-1         | ccctgcagctgaactctgtgac          | c.cca.tctgc                                                       |
|    | 2-70        | tccttacaatgaccaacatgga          | t.c.tacaaca.aga                                                   |
| 15 | 2-26        | tccttaccatgaccaacatgga          | t.c.taccaca.aga                                                   |
|    |             |                                 |                                                                   |
|    | Seqs wit    | h the expected RE site on]      | y 597 (counting sequences with 4 or fewer mismatches)             |
|    | Segs wit:   | h only an unexpected site.      | 2                                                                 |
|    | Seqs wit    | h both expected and unexpe      | cted 2                                                            |
| 20 | Segs with   | h no sites                      | 686                                                               |
|    | C: HpyCH4   | IIII, Bst4CI, or Taal in HC     |                                                                   |
|    | In scoring  | whether the RE site of interest | is present, only ONs that have 4 or fewer mismatches are counted. |
| 25 | Number of s | sequences 1617                  |                                                                   |

Number of sequences..... 1617

|    | PI     | Ntot     | 0      | ٦      | 2      | m     | 4    | S    | و     | 7     | 8      | Ncut |         | acnqt                         | acnqt                  |
|----|--------|----------|--------|--------|--------|-------|------|------|-------|-------|--------|------|---------|-------------------------------|------------------------|
|    |        | 244      | 78     | 92     | 43     | 18    | 10   | T    | 2     | 0     | 0      | 241  | 102#1,1 | ocgtgtattACTGTgcgagaga        | ccgtgtattactgtgcgagaga |
|    | 7      | 457      | 69     | 150    | 115    | 99    | 34   | 11   | 8     | m     | ,<br>H | 434  | 103#2,3 | ctgtgtattactgtgcgagaga        | .t                     |
|    | m      | 173      | 52     | 45     | 36     | 22    | 14   | m    | 0     | 0     | н      | 169  | 108#3   | ccgtgtattactgtgcgagagg        | <u>ɓ</u>               |
| Ś  | 4      | 16       | 0      | ¢7     | 2      | 7     | ٦    | 9    | 0     | 1     | 1      | 8    | 124#5,1 | ccgtgtattactgtgcaacaga        | ·····a.c               |
|    | S      | 4        | 0      | 0      | Ч      | 0     | -    | H    | 0     | ٦     | 0      | 7    | 145#6   | ccatgtattactgtgcaagata        | att.                   |
|    | 9      | 15       | 1      | 0      |        | 0     | 9    | 4    | 4     |       | 1      | 8    | 158#8   | ccgtgtattactgtgcggcaga        | gc                     |
|    | ٢      | 23       | 4      | 80     | Ś      | 7     | 7    | -    | 1     | 0     | 0      | 21   | 205#12  | ccacatattactgtgcacacag        | acaacacag              |
|    | 8      | ማ        | Ч      | -1     |        | 0     | m    | 2    | 1     | 0     | 0      | 9    | 226#13  | ccacatattactgtgcacggat        | acagat                 |
| 10 | σ      | ٢        | -      | m      | 7      | 1     | 0    | 0    | H     | 0     | 0      | 9    | 270#14  | ccacgtattactgtgcacggat        | acacac.gat             |
|    | 10     | 23       | 7      | e      | S      | S     | 7    | 1    | 0     | 0     | 0      | 22   | 309#16, | ccttgtattactgtgcaaaaga        |                        |
|    | 11     | 35       | ß      | 10     | 2      | 9     | m    | m    | 0     | 1     | 0      | 31   | 313#18, | ctgtgtattactgtgcaagaga        | . ta                   |
|    | 12     | 18       | 8      | e      | 2      | 2     | 9    | Ч    | 0     | 2     | 0      | 15   | 315#19  | ccgtgtattactgtaccacaga        | ·····a.c.c             |
|    | 13     | n        | -      | 7      | 0      | 0     | 0    | 0    | 0     | 0     | 0      | m    | 320#20  | ccttgtatcactgtgcgagaga        | tc                     |
| 15 | 14     | 117      | 29     | 23     | 28     | 22    | 8    | 4    | 2     | ٦     | 0      | 110  | 323#22  | ccgtatattactgtgcgaaaga        |                        |
|    | 15     | 75       | 21     | 25     | 13     | 6     | H    | 4    | 7     | 0     | 0      | 69   | 330#23, | ctgtgtattactgtgcgaaaga        | . t                    |
|    | 16     | 14       | 2      | 2      | 2      | m     | 0    | m    | ч     | Ч     | 0      | 6    | 349#29  | ccgtgtattactgtactagaga        | a.t                    |
|    | 17     | 7        | 0      | 0      | 7      | 0     | 0    | 1    | 0     | 0     | 0      | Ч    | 372#33  | ccgtgtattactgtgctagaga        | t                      |
|    | 18     | Ч        | 0      | 0      | 7      | 0     | 0    | 0    | 0     | 0     | 0      | ٦    | 373#34  | ccgtgtattactgtactagaca        | a.tc.                  |
| 20 | 19     | 2        | 0      | 0      | 0      | 0     | 0    | 0    | 0     | 0     | 2      | 0    | 3d#36   | <b>ctgtgtattactgtaagaaaga</b> | .taaa                  |
|    | 20     | 34       | ቅ      | თ      | σ      | 4     | S    | m    | 0     | 0     | 0      | 31   | 428#38  | ccgtgtattactgtgcgagaaa        |                        |
|    | 21     | 17       | S      | 4      | 7      | 2     | т    | н    | 0     | 0     | 0      | 16   | 4302#40 | ccgtgtattactgtgccagaga        | ·····C·····            |
|    | 22     | 75       | 15     | 17     | 24     | ٢     | 10   | H    | н     | 0     | 0      | 73   | 439#44  | otgtgtattactgtgcgagaca        | .tc.                   |
|    | 23     | 40       | 14     | 15     | 4      | Ц     | H    | 0    | н     | 0     | 0      | 39   | 551#48  | coatgtattactgtgcgagaca        |                        |
| 25 | 24     | 213      | 26     | 56     | 60     | 42    | 20   | ~    | 7     | 0     | 0      | 204  | 5a#49   | <u>coatqtattaotqtqcqaqaAA</u> | AA                     |
|    | Group  |          | 337    | 471    | 363    | 218   | 130  | 58   | 23    | 11    | 9      |      |         |                               |                        |
|    | Cumula | tive     | 337    | 808 1  | 171 1  | 389   | 1519 | L577 | 600 1 | 611 1 | 617    |      |         |                               |                        |
|    | Segs W | dth the  | expect | ted RE | site   | only. | :    | 1511 |       |       |        |      |         |                               |                        |
|    | Segs w | tith onl | y an u | nexpec | ted si | te    |      | 0    |       |       |        |      |         |                               |                        |

78/128

|

I

·
|   |   |          | 1056                 | 4         | 277            |       |        |        |         | 1          | 9/12   | 28        |         |           |                        |
|---|---|----------|----------------------|-----------|----------------|-------|--------|--------|---------|------------|--------|-----------|---------|-----------|------------------------|
| ) |   | Se<br>Se | egs with<br>egs with | bot<br>no | h exp<br>sites | ected | and u  | unexpe | cted.   | •••        | 8<br>0 |           |         |           |                        |
| • |   | Ana      | alysis               | re        | peate          | ed us | sing   | only   | 8 b     | est        | REda   | ptor      | 5       |           |                        |
|   | 5 | Id       | -<br>Ntot            | 0         | 1              | 2     | 3      | 4      | 5       | б          | 7      | 8+        | _       |           |                        |
|   |   | 1        | 301                  | 78        | 101            | 54    | 32     | 16     | 9       | 10         | 1      | 0         | 281     | 102#1     | ccqtqtattactqtqcqaqaqa |
|   |   | 2        | 493                  | 69        | 155            | 125   | 73     | 37     | 14      | 11         | 3      | 6         | 459     | 103#2     | ctgtgtattactgtgcgagaga |
|   |   | 3        | 189                  | 52        | 45             | 38    | 23     | 18     | 5       | 4          | l      | 3         | 176     | 108#3     | ccgtgtattactgtgcgagagg |
|   |   | 4        | 127                  | 29        | 23             | 28    | 24     | 10     | 6       | 5          | 2      | 0         | 114     | 323#22    | ccgtatattactgtgcgaaaga |
| ( | 9 | 5        | 78                   | 21        | 25             | 14    | 11     | 1      | 4       | 2          | 0      | 0         | 72      | 330#23    | ctgtgtattactgtgcgaaaga |
|   |   | 6        | 79                   | 15        | 17             | 25    | 8      | 11     | 1       | 2          | 0      | 0         | 76      | 439#44    | ctgtgtattactgtgcgagaca |
|   |   | 7        | 43                   | 14        | 15             | 5     | 5      | 3      | 0       | 1          | 0      | 0         | 42      | 551#48    | ccatgtattactgtgcgagaca |
|   |   | 8        | 307                  | 26        | 63             | 72    | 51     | 38     | 24      | 14         | 13     | 6         | 250     | 5a#49     | ccatgtattactgtgcgaga   |
|   | _ | 1        | 102#                 | 1         | ccç            | gtgta | ittac  | tgtg   | cgag    | aga        | ccgi   | tgtat     | tact    | cgtgcgaga | aga                    |
| - | 5 | 2        | 103#:                | 2         | cto            | ytgta | ittac  | tgtg   | cgag    | aga        | .t.    | • • • • • | • • • • |           | • • •                  |
|   |   | 3        | 108#                 | 3         | cco            | gtgta | ittac  | tgtg   | cgag    | agg        | •••    |           | ••••    | ••••      | • • g                  |
|   |   | 4        | 323#:                | 22        | ccç            | gtata | ittac  | tgtg   | cgaa    | aga        | • • •  | .a        |         | •••••a    | •••                    |
|   |   | 5        | 330#                 | 23        | cto            | ytgta | ittac  | tgtg   | cgaa    | aga        | .t.    | • • • • • | • • • • | a         | • • •                  |
|   | ~ | 6        | 439#                 | 44        | ctç            | gtgta | ittac  | tgtg   | cgag    | aca        | .t.    | • • • • • | • • • • | •••••     | .c.                    |
| ( | , | 7        | 551#                 | 48        | cca            | itgta | ittac  | tgtg   | cgag    | aca        | ••a    | • • • • • | • • • • | ••••      | .c.                    |
|   |   | 8        | 5a#4:                | 9         | cca            | itgta | ittac  | tgtg   | cgag    | aAA        | a.     | • • • • • | ••••    | •••••     | .AA                    |
|   |   | 54       | age wit              | + 5 +     | .ho a          |       | .+ a d |        | · • - · |            |        |           |         |           |                        |
|   |   | Se       | ede mil              | th c      | ne e<br>nlv    | an u  | nevn   | RE S   | lte i   | oniy<br>to | ••••   | 14        | 163 /   | 1617      |                        |
|   | 5 | Se       | eas with             | C<br>th F | oth            |       | ucrb   | and    | n ST    | vner       | ••••   | • • •     | U<br>7  |           |                        |
| • |   | Se       | eqs wit              | th r      | no si          | .tes. |        |        |         |            |        | •••       | ,<br>0  |           |                        |
|   |   |          | -                    |           |                |       |        |        | - /     |            |        |           | -       |           |                        |

80/128

| 1  | Τa | able | 300: | Kapp | a FR | l GLG | S   |     |     |     |     |     |     |             |
|----|----|------|------|------|------|-------|-----|-----|-----|-----|-----|-----|-----|-------------|
| D  | !  | 1    | 2    | 3    | 4    | 5     | 6   | 7   | 8   | 9   | 10  | 11  | 12  |             |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCC | тсс | CTG | TCT |             |
|    | !  | 13   | 14   | 15   | 16   | 17    | 18  | 19  | 20  | 21  | 22  | 23  |     |             |
| 5  |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | 012         |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | тсс | TCC | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | .02         |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TCC | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | 1   | 018         |
| 10 |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TCC | CTG | TCT |             |
| 1  |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | 08          |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TCC | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | A20         |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TCC | CTG | TCT |             |
| 15 |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | <b>A</b> 30 |
|    |    | AAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCT | GCC | ATG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGT | !   | L14         |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TCA | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGT | !   | L1          |
| 20 |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TCA | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGT | !   | L15         |
|    |    | GCC  | ATC  | CAG  | TTG  | ACC   | CAG | TCT | CCA | TCC | TCC | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | L4          |
|    |    | GCC  | ATC  | CAG  | TTG  | ACC   | CAG | TCT | CCA | TCC | TCC | CTG | TCT |             |
| ?5 |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | L18         |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCT | TCC | GTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGT | !   | L5          |
|    |    | GAC  | ATC  | CAG  | ATG  | ACC   | CAG | TCT | CCA | TCT | тст | GTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGT | !   | L19         |
| 30 |    | GAC  | ATC  | CAG  | TTG  | ACC   | CAG | TCT | CCA | TCC | TTC | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | !   | <b>L</b> 8  |
|    |    | GCC  | ATC  | CGG  | ATG  | ACC   | CÀG | TCT | CCA | TTC | TCC | CTG | TCT |             |
|    |    | GCA  | TCT  | GTA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGC | 1   | L23         |
|    |    | GCC  | ATC  | CGG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TCA | TTC | TCT |             |
| 35 |    | GCA  | TCT  | ACA  | GGA  | GAC   | AGA | GTC | ACC | ATC | ACT | TGT | !   | L9          |
|    |    | GTC  | ATC  | TGG  | ATG  | ACC   | CAG | TCT | CCA | TCC | TTA | CTC | тст |             |

| 8 | 1 | /1 | 2 | 8 |
|---|---|----|---|---|
|   |   |    |   |   |

| | | |

|    | GCA | TCT | ACA | GGA | GAC | AGA | GTC | ACC | ATC | AGT | TGT | !   | L24  |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|    | GCC | ATC | CAG | ATG | ACC | CAG | TCT | CCA | TCC | TCC | CTG | TCT |      |
|    | GCA | TCT | GTA | GGA | GAC | AGA | GTC | ACC | ATC | ACT | TGC | 1   | L11  |
|    | GAC | ATC | CAG | ATG | ACC | CAG | TCT | CCT | TCC | ACC | CTG | TCT |      |
| 5  | GCA | TCT | GTA | GGA | GAC | AGA | GTC | ACC | ATC | ACT | TGC | !   | L12  |
|    | GAT | ATT | GTG | ATG | ACC | CAG | ACT | CCA | CTC | TCC | CTG | CCC |      |
|    | GTC | ACC | CCT | GGA | GAG | CCG | GCC | TCC | ATC | тсс | TGC | !   | .011 |
|    | GAT | ATT | GTG | ATG | ACC | CAG | ACT | CCA | CTC | TCC | CTG | CCC |      |
|    | GTC | ACC | CCT | GGA | GAG | CCG | GCC | TCC | ATC | TCC | TGC | !   | 01   |
| 10 | GAT | GTT | GTG | ATG | ACT | CAG | TCT | CCA | CTC | TCC | CTG | CCC |      |
|    | GTC | ACC | CTT | GGA | CAG | CCG | GCC | TCC | ATC | TCC | TGC | !   | A17  |
|    | GAT | GTT | GTG | ATG | ACT | CAG | TCT | CCA | CTC | TCC | CTG | CCC |      |
|    | GTC | ACC | CTT | GGA | CAG | CCG | GCC | TCC | ATC | TCC | TGC | !   | A1   |
|    | GAT | ATT | GTG | ATG | ACC | CAG | ACT | CCA | CTC | TCT | CTG | TCC |      |
| 15 | GTC | ACC | CCT | GGA | CAG | CCG | GCC | TCC | ATC | TCC | TGC | 1   | A18  |
|    | GAT | ATT | GTG | ATG | ACC | CAG | ACT | CCA | CTC | TCT | CTG | TCC |      |
|    | GTC | ACC | ССТ | GGA | CAG | CCG | GCC | TCC | ATC | TCC | TGC | !   | A2   |
|    | GAT | ATT | GTG | ATG | ACT | CAG | TCT | CCA | CTC | TCC | CTG | CCC |      |
|    | GTC | ACC | ССТ | GGA | GAG | CCG | GCC | TCC | ATC | TCC | TGC | !   | A19  |
| 20 | GAT | ATT | GTG | ATG | ACT | CAG | TCT | CCA | CTC | TCC | CTG | CCC |      |
|    | GTC | ACC | CCT | GGA | GAG | CCG | GCC | TCC | ATC | TCC | TGC | !   | A3   |
|    | GAT | ATT | GTG | ATG | ACC | CAG | ACT | CCA | CTC | TCC | TCA | CCT |      |
|    | GTC | ACC | CTT | GGA | CAG | CCG | GCC | TCC | ATC | TCC | TGC | !   | A23  |
|    | GAA | ATT | GTG | TTG | ACG | CAG | TCT | CCA | GGC | ACC | CTG | TCT |      |
| 25 | TTG | TCT | CCA | GGG | GAA | AGA | GCC | ACC | CTC | TCC | TGC | !   | A27  |
|    | GAA | ATT | GTG | TTG | ACG | CAG | TCT | CCA | GCC | ACC | CTG | TCT |      |
|    | TTG | TCT | CCA | GGG | GAA | AGA | GCC | ACC | CTC | TCC | TGC | !   | A11  |
|    | GAA | ATA | GTG | ATG | ACG | CAG | TCT | CCA | GCC | ACC | CTG | TCT |      |
| 20 | GTG | TCT | CCA | GGG | GAA | AGA | GCC | ACC | CTC | TCC | TGC | !   | L2   |
| 30 | GAA | ATA | GTG | ATG | ACG | CAG | TCT | CCA | GCC | ACC | CTG | TCT |      |
|    | GTG | TCT | CCA | GGG | GAA | AGA | GCC | ACC | CTC | TCC | TGC | !   | L16  |
|    | GAA | ATT | GTG | TTG | ACA | CAG | TCT | CCA | GCC | ACC | CTG | TCT |      |
|    | TTG | TCT | CCA | GGG | GAA | AGA | GCC | ACC | CTC | TCC | TGC | !   | L6   |
| 25 | GAA | ATT | GTG | TTG | ACA | CAG | TCT | CCA | GCC | ACC | CTG | TCT |      |
| 22 | TTG | TCT | CCA | GGG | GAA | AGA | GCC | ACC | CTC | TCC | TGC | !   | L20  |
|    | GAA | ATT | GTA | ATG | ACA | CAG | TCT | CCA | GCC | ACC | CTG | TCT |      |

| -        |            |     |     |     |     |     |     |     | 82  | /128 | 3   |     |     |     |  |
|----------|------------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|
| Ś        |            | TTG | TCT | CCA | GGG | GAA | AGA | GCC | ACC | CTC  | TCC | TGC | !   | L25 |  |
| ո        |            | GAC | ATC | GTG | ATG | ACC | CAG | TCT | CCA | GAC  | TCC | CTG | GCT |     |  |
|          |            | GTG | TCT | CTG | GGC | GAG | AGG | GCC | ACC | ATC  | AAC | TGC | !   | В3  |  |
| -        |            | GAA | ACG | ACA | CTC | ACG | CAG | TCT | CCA | GCA  | TTC | ATG | TCA |     |  |
| j        | 5          | GCG | ACT | CCA | GGA | GAC | AAA | GTC | AAC | ATC  | TCC | TGC | !   | B2  |  |
|          |            | GAA | ATT | GTG | CTG | ACT | CAG | TCT | CCA | GAC  | TTT | CAG | TCT |     |  |
|          |            | GTG | ACT | CCA | AAG | GAG | ААА | GTC | ACC | ATC  | ACC | TGC | 1   | A26 |  |
| 5        |            | GAA | ATT | GTG | CTG | ACT | CAG | TCT | CCA | GAC  | TTT | CAG | TCT |     |  |
| <b>₹</b> |            | GTG | ACT | CCA | AAG | GAG | AAA | GTC | ACC | ATC  | ACC | TGC | !   | A10 |  |
| 1        | ' <b>0</b> | GAT | GTT | gtg | ATG | ACA | CAG | TCT | CCA | GCT  | TTC | CTC | TCT |     |  |
| 2        |            | GTG | ACT | CCA | GGG | GAG | AAA | GTC | ACC | ATC  | ACC | TGC | !   | A14 |  |

-

Table 302 RERS sites found in Human Kappa FR1 GLGs

|    |            |           | MslI | FokI | PÉLEI | BsrI | BsmAI     | Ilm       | Нрусн |
|----|------------|-----------|------|------|-------|------|-----------|-----------|-------|
|    | _          |           |      | <> < |       |      |           |           | 4V    |
| -  | UKII       |           |      |      |       |      |           |           |       |
|    | 011        | 1901-1969 | -    |      | ł     | 1    | 1         | 1956      | 1     |
|    | 01         | 2001-2069 | -    | 1    | -     | 1    |           | 2056      | 1     |
|    | A17        | 2101-2169 | 1    | ٩    | 2112  | 1    | 2118      | 2156      | 1     |
| S  | Al         | 2201-2269 | -    | I    | 2212  | 4    | 2218      | 2256      | 1     |
|    | A18        | 2301-2369 | 1    | -    | 1     | 1    | 1         | 2356      | 1     |
|    | A2         | 2401-2469 | I    | -    | t     | t    | 1         | 2456      | 1     |
| -  | A19        | 2501-2569 | 1    | 1    | 2512  |      | 2518      | 2556      | 1     |
|    | A3         | 2601-2669 | 3    |      | 2612  | 1    | 2618      | 2656      | -     |
| 10 | A23        | 2701-2769 | 1    |      | t     | 1    | 1         | 2729 2756 | -     |
|    | NKIT       | Ţ         |      |      |       |      |           |           |       |
|    | A27        | 2801-2869 | 1    |      | 2812  | 1    | 2818 2839 |           | 1     |
|    |            |           |      |      |       |      |           | 2860      |       |
|    | A11        | 2901-2969 | t    |      | 2912  |      | 2918 2939 |           | 1     |
|    |            |           |      |      |       |      |           | 2960      |       |
|    | L2         | 3001-3069 | 1    |      | 3012  | 1    | 3018 3039 |           | 1     |
|    |            |           |      |      |       |      |           | 3060      |       |
| 15 | L16        | 3101-3169 | 1    | 1    | 3112  | 1    | 3118 3139 |           | 1     |
|    |            |           |      |      |       |      |           | 3160      |       |
|    | <b>T</b> 6 | 3201-3269 | I    |      | 3212  | 1    | 3218 3239 |           | 1     |
|    |            |           |      |      |       |      |           | 3260      |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3818                           |                                                                                             | 3812                                                                                                                                                                                                                                                   | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                 | 3801-3869                                                                            | A10                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                      | _                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3718                           | 1                                                                                           | 3712                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                 | 3701-3769                                                                            | A26                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                      | LYON                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3618 3647                      | I                                                                                           | 3649                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                 | 3601-3669                                                                            | B2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                      | N <sup>2</sup> N                                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3551<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                              |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3518 3539                      | 3515                                                                                        | 3512                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3503                                              | 3501-3569                                                                            | B3                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                      | VKEN                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3418 3439                      | 1                                                                                           | 3412                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                 | 3401-3469                                                                            | L25                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                 |                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3318 3339                      | ł                                                                                           | 3312                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                 | 3301-3369                                                                            | L20                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                             |                                                                                                                                                                                                                                                        | <> <                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MnlI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BsmAI                          | BsrI                                                                                        | PÉLFI                                                                                                                                                                                                                                                  | FokI                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MslI                                              |                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A CONTRACTOR AND A | Mnl I<br>3360<br>3460<br>3551< | BsmAI Mnl I<br>3318 3339 3360<br>3418 3439 3360<br>3460<br>3518 3539 3460<br>3551<<br>3551< | BsrI     BsmAI     Mnl1       -     3318 3339     3360       -     3318 3339     3360       -     3418 3439     3460       -     3418 3439     3460       3515     3518 3539     3551       3515     3518 3539     3551       -     3618 3539     3551 | FfIFI     BsrI     BsmAI     MnlI       3312     -     3318     3339     3360       3312     -     3418     3439     3360       3412     -     3418     3439     3460       3412     -     3418     3439     3460       3512     3515     3518     3539     3460       3512     3515     3518     3539     3551       3512     3515     3518     3539     3551       3513     3516     3518     3551       3549     -     3618     3647       3649     -     3618     3647 | FokI       PfIFI       BsrI       MnII        > < | MslI         FokI         PfIFI         BsrI         BsmAI         MnII          > < | Mail         Fokf         Barl         Mnl          > < | Mail         Fok         FflfI         Barl         Mnli           L20         3301-3369         -         -         3312         -         3318         3339         3360           L25         3401-3469         -         -         3412         -         3318         3399         3360           L25         3401-3469         -         -         3412         -         3418         3450           L25         3401-3469         -         -         3412         -         3418         3460           VKV         -         -         3412         -         3418         3439         3460           VKV         -         -         -         3412         -         3418         3450           b3         3501-3569         3503         -         -         3512         3515         3516         3551           VKV         -         -         3512         3515         3551         3551         3551           VKV         -         -         -         3518         3539         3551         3551           VKV         -         -         -         3516         3518         3551 |

Table 302 RERS sites found in Human Kappa FR1 GLGs, continued

| Hpall  | Igay           | XX06 XX52  |    | 1       |           |            |
|--------|----------------|------------|----|---------|-----------|------------|
| IhphI  | XX38 XX56 XX62 |            |    | 56      | 156       | 256        |
| MaeIII | Tsp45I         | same sites |    | 55      | 155       | 255        |
| MlyI   | > < <          |            |    | 53      | 153       | 253        |
| HinfI  |                |            |    | 53      | 153       | 253        |
| SfcI   |                | •          |    | 41      | 141       | 241        |
| SfaNI  |                |            |    | 37      | 137       | 237        |
|        |                |            | tt | 12 1-69 | 2 101-169 | 18 201-269 |
|        |                |            |    | 15 0    | ö         | ö          |

i

85/128

|    | <u> </u>   |           | SfaNI | SfcI | HinfI | MIVI | MaeIII     | HuhT           | Hnart     |
|----|------------|-----------|-------|------|-------|------|------------|----------------|-----------|
|    |            |           |       |      |       |      | Tsp45I     | XX38 XX56 XX62 | MspI      |
|    |            |           |       |      |       |      | same sites |                | xx06 xx52 |
|    | 80<br>0    | 301-369   | 337   | 341  | 353   | 353  | 355        | 356            | 1         |
|    | A20        | 401-469   | 437   | 441  | 453   | 453  | 455        | 456            | 1         |
|    | A30        | 501-569   | 537   | 541  | 553   | 553  | 555        | 556            | ŀ         |
| _  | L14        | 601-669   | 637   | 641  | 653   | 653  | 655        | 656            | 3         |
| S  | ГI         | 701-769   | 737   | 741  | 753   | 753  | 755        | 756            | ŧ         |
|    | L15        | 801-869   | 837   | 841  | 853   | 853  | 855        | 856            |           |
|    | L4         | 901-969   | 937   | 941  | 953   | 953  | 955        | 956            |           |
|    | L18        | 1001-1069 | 1037  | 1041 | 1053  | 1053 | 1055       | 1056           |           |
|    | LS         | 1101-1169 | 1137  | 1141 | 1153  | 1153 | 1155       | 1156           | 1         |
| 10 | L19        | 1201-1269 | 1237  | 1241 | 1253  | 1253 | 1255       | 1256           |           |
|    | <b>L</b> 8 | 1301-1369 | 1337  | 1341 | 1353  | 1353 | 1355       | 1356           | 1         |
|    | L23        | 1401-1469 | 1437  | 1441 | 1453  | 1453 | 1455       | 1456           | 1406      |
|    | L9         | 1501-1569 | 1537  | 1541 | 1553  | 1553 | 1555       | 1556           | 1506      |
|    | L24        | 1601-1669 | 1637  | 1641 | 1653  | 1653 | 1655       | 1656           |           |
| 15 | L11        | 1701-1769 | 1737  | 1741 | 1753  | 1753 | 1755       | 1756           |           |
|    | L12        | 1801-1869 | 1837  | 1841 | 1853  | 1853 | 1855       | 1856           |           |
|    | LINU       |           |       |      |       |      |            |                |           |
|    | 110        | 1901-1969 | 1     | ı    | 1918  | 1918 | 1937       | 1938           | 1952      |
| A_ | б          | 2001-2069 | 1     | 1    | 2018  | 2018 | 2037       | 2038           | 2052      |
| 20 | TIA 17     | 2101-2169 | 1     | 1    | 2112  | 2112 | 2137       | 2138           | 2152      |
| •  | M          | 2201-2269 | 1     | 1    | 2212  | 2212 | 2237       | 2238           | 2252      |

|    |            |           | Sfant | Sfet | HinfT     | MINT      | Maettt     | НпһТ                                  | una 11           |
|----|------------|-----------|-------|------|-----------|-----------|------------|---------------------------------------|------------------|
|    |            |           |       |      |           | >         | Tsp45I     | XX38 XX56 XX62                        | MspI             |
|    |            |           |       |      |           |           | same sites | · · · · · · · · · · · · · · · · · · · | <b>xx06</b> xx52 |
|    | A18        | 2301-2369 |       | 1    | 2318      | 2318      | 2337       | 2338                                  | 2352             |
|    | A2         | 2401-2469 | I     | I    | 2418      | 2418      | 2437       | 2438                                  | 2452             |
|    | A19        | 2501-2569 | 1     | I    | 2512      | 2512      | 2537       | 2538                                  | 2552             |
|    | A.3        | 2601-2669 | •     | -    | 2612      | 2612      | 2637       | 2638                                  | 2652             |
| S  | A23        | 2701-2769 | ł     | I    | 2718      | 2718      | 2737       | 2731* 2738*                           | 1                |
|    | 1 IMA      | I         |       |      |           |           |            |                                       |                  |
|    | A27        | 2801-2869 | 1     | 1    | 1         | 1         |            |                                       |                  |
|    | A11        | 2901-2969 | 1     | 1    | 1         | . 1       |            |                                       | -                |
|    | L2         | 3001-3069 | _1    | 1    | ł         |           |            |                                       | 1                |
| 10 | L16        | 3101-3169 | 1     | I    | 1         | F         |            |                                       | 1                |
| d  | 1.6        | 3201-3269 | 1     | 1    | 1         | I         |            |                                       |                  |
|    | L20        | 3301-3369 | 1     | 1    | 1         | 1         |            |                                       |                  |
|    | L25        | 3401-3469 | 1     | 1    | 1         | 3         |            |                                       |                  |
|    | A E XA     |           |       |      |           |           |            |                                       |                  |
| 15 | <b>B</b> 3 | 3501-3569 | t     | 1    | 3525      | 3525      |            |                                       | -                |
|    | VKV        |           |       |      |           |           |            |                                       |                  |
|    | B2         | 3601-3669 | ı     | 1    | 3639      | 3639      |            |                                       | ,                |
|    | 1.52A      |           |       |      |           |           | 8          |                                       |                  |
| l  | A26        | 3701-3769 | 1     | 1    | 3712 3739 | 3712 3739 | 3737 3755  | 3756 3762                             | 1                |
| 50 | A10        | 3801-3869 | 1     | 1    | 3812 3839 | 3812 3839 | 3837 3855  | 3856 3862                             | 1                |
| J  | A14        | 3901-3969 | 1     |      | 3939      | 3939      | 3937 3955  | 3956 3962                             | ł                |

87/128

ļ

|   |     |           | BsaJI          | BssKI (NstNI)  | BpmI           | BsrFI       | Haell | Tsp5091 |
|---|-----|-----------|----------------|----------------|----------------|-------------|-------|---------|
|   |     |           | XX29 XX42 XX43 | XX22 XX30 XX43 | XX20 XX41 XX44 | Cac81       | н     |         |
|   |     |           |                |                | > <            | NaeI        | _     |         |
|   |     |           |                |                |                | NgoMI       |       |         |
|   |     |           |                |                |                | >           |       |         |
|   | VKE |           |                |                |                |             |       |         |
|   | 012 | 1-69      | •              | 1              | Ĩ              | ł           | I     | t       |
| ŝ | 02  | 101-169   | 1              | 1              | 1              | 1           | 1     | 1       |
|   | 018 | 201-269   | 1              | 1              | I              | 1           | 1     |         |
|   | 80  | 301-369   | 1              | 1              | 1              | 1           | . 1   |         |
| _ | A20 | 401-469   | -              | 1              | 1              | 1           | 1     | 1       |
|   | A30 | 501-569   | 1              | 1              | 1              | i           | 1     |         |
| 0 | L14 | 601-669   |                | 3              |                | ,<br>,<br>1 | 1     |         |
|   | L1  | 701-769   | I              | 1              | 1              | I           | i     |         |
|   | L15 | 801-869   | l              | 1              | 1              | 1           | 1     |         |
|   | L4  | 901-969   | 4              | I              | 1              | 1           | 1     | ł       |
|   | 118 | 1001-1069 | 1              | 4              | 1              | 1           |       |         |
| 5 | LS  | 1101-1169 | -              | -              | t              | 1           | -     | 1       |
|   | L19 | 1201-1269 | 1              | J              | 1              |             |       |         |
|   | L8  | 1301-1369 | ł              | 1              |                | 1           | 1     |         |
|   | L23 | 1401-1469 | 3              |                | -              | ı           | ł     | 3       |
|   | 19  | 1501-1569 |                | 1              | I              | -           | I     | 3       |
| 0 | L24 | 1601-1669 | 1              | 1              |                |             |       |         |

Table 302 RERS sites found in Human Kappa FR1, continued

|          |             |           | i .            |                |                       |       |       |         |
|----------|-------------|-----------|----------------|----------------|-----------------------|-------|-------|---------|
| _        |             |           | BsaJI          | BssKI (NstNI)  | BpmI                  | BsrFI | Haell | Tsp509I |
|          |             |           | XX29 XX42 XX43 | XX22 XX30 XX43 | xx20 xx41 xx44        | Cac8I | I     |         |
|          |             |           |                | ·              | · · · · · · · · · · · | Nael  |       |         |
|          |             |           |                |                |                       | IMopN |       |         |
|          |             |           | -              |                |                       | >     |       |         |
|          | 111         | 1701-1769 | 1              | ł              |                       | 1     | 1     |         |
|          | L12         | 1801-1869 | -              | -              | 1                     | 1     | 1     | 1       |
|          | VKI         |           |                |                |                       |       |       |         |
|          | 011         | 1901-1969 | 1942           | 1943           | 1944                  | 1951  | 1954  | -       |
| S        | 01          | 2001-2069 | 2042           | 2043           | 2044                  | 2051  | 2054  |         |
|          | A17         | 2101-2169 | 2142           | 1              | 1                     | 2151  | 2154  |         |
|          | Al          | 2201-2269 | 2242           | 1              | 1                     | 2251  | 2254  |         |
| <b>1</b> | A18         | 2301-2369 | 2342           | 2343           | t                     | 2351  | 2354  | 3       |
|          | A2          | 2401-2469 | 2442           | 2443           | 4                     | 2451  | 2454  | 1       |
| 10       | A19         | 2501-2569 | 2542           | 2543           | 2544                  | 2551  | 2554  |         |
| <b>A</b> | A3          | 2601-2669 | 2642           | 2643           | 2644                  | 2651  | 2654  | 1       |
|          | A23         | 2701-2769 | 2742           | 1              |                       | 2751  | 2754  |         |
|          | <b>TDIV</b> | 1         |                |                |                       |       |       |         |
| <b>.</b> | A27         | 2801-2869 | 2843           | 2822 2843      | 2820 2841             | <br>1 | 1     | 2803    |
| 15       | A11         | 2901-2969 | 2943           | 2943           | 2920 2941             | 8     | 1     | 2903    |
| K        | 1.2         | 3001-3069 | 3043           | 3043           | 3041                  | 1     | 1     | 1       |
| I        | L16         | 3101-3169 | 3143           | 3143           | 3120 3141             | 1     | I     | t       |
| <b>A</b> | 1C6         | 3201-3269 | 3243           | 3243           | 3220 3241             | 1     | 1     | 3203    |
|          | L20         | 3301-3369 | 3343           | 3343           | 3320 3341             | 1     | ,     | 3303    |

|            |      | BsaJI          | BssKI (NstNI)  | BpmI           | BsrFI | HaeII | Tsp509I |
|------------|------|----------------|----------------|----------------|-------|-------|---------|
|            |      | XX29 XX42 XX43 | XX22 XX30 XX43 | XX20 XX41 XX44 | Cac8I | I     |         |
|            |      |                |                | > < <          | NaeI  |       |         |
|            |      |                |                |                | NgoMI |       |         |
|            |      | -              |                |                | >     |       |         |
| L25 3401-3 | 3469 | 3443           | 3443           | 3420 3441      | 1     | J     | 3403    |
| VICIV      |      |                |                |                |       |       |         |
| B3 3501-3  | 3569 | 3529           | 3530           | 3520           | I     | 3554  |         |
| VKV        |      |                |                |                |       |       |         |
| B2 3601-3  | 3669 |                | 3643           | 3620 3641      |       | I     |         |
| VKVT       |      |                |                |                |       |       |         |
| A26 3701-3 | 3769 |                | I              | 3720           | I     | 1     | 3703    |
| A10 3801-3 | 3869 |                | I              | 3820           | 1     |       | 3803    |
| A14 3901-3 | 3969 | 3943           | 3943           | 3920 3941      | 1     | 1     |         |
|            |      |                |                |                |       |       |         |

5

10

|     |   |                |     |      |       |     |     |      | 91/   | 128 |     |     |       |     |     |   |
|-----|---|----------------|-----|------|-------|-----|-----|------|-------|-----|-----|-----|-------|-----|-----|---|
| 200 |   | Table<br>! VL1 | 400 | Lamt | oda ] | FR1 | GLG | sequ | lenc  | es  |     |     |       |     |     |   |
| 3n  |   |                |     | CAG  | TCT   | GTG | CTG | ACT  | CAG   | CCA | ccc | TCG | GTG   | TCT | GAA |   |
| A   |   |                |     | GCC  | ccc   | AGG | CAG | AGG  | GTC   | ACC | ATC | TCC | TGT   | !   | 1a  |   |
| 21  | 5 |                |     | cag  | tct   | gtg | ctg | acG  | cag   | ссG | ccc | tcA | gtg   | tct | gGG |   |
|     |   |                |     | gcc  | CCA   | Ggg | cag | agg  | gtc   | acc | atc | tcc | tgC   | !   | 1e  |   |
|     |   |                |     | cag  | tct   | gtg | ctg | act  | cag   | cca | ccc | tcA | gCg   | tct | gGG | - |
| 86  |   |                |     | Acc  | ccc   | Ggg | cag | agg  | gtc   | acc | atc | tcT | tgt   | !   | 1c  |   |
| 11  |   |                |     | cag  | tct   | gtg | ctg | act  | cag   | cca | ccc | tcA | gCg   | tct | gGG |   |
| 72  | 0 |                |     | Acc  | ccc   | Ggg | cag | agg  | gtc   | acc | atc | tcT | tgt   | !   | 1g  |   |
| õ   |   |                |     | cag  | tct   | gtg | Ttg | acG  | cag   | CCG | ccc | tcA | gtg   | tct | gCG |   |
| 20  |   |                |     | gcc  | ccA   | GgA | cag | aAg  | gtc   | acc | atc | tcc | tgC   | 1   | 1b  |   |
|     |   | ! VL2          |     |      |       |     |     |      |       |     |     |     |       |     |     |   |
|     |   |                |     | CAG  | TCT   | GCC | CTG | ACT  | CAG   | CCT | ccc | TCC | GCG   | TCC | GGG |   |
|     | 5 |                |     | TCT  | CCT   | GGA | CAG | TCA  | GTC   | ACC | ATC | TCC | TGC   | !   | 2c  |   |
|     |   |                |     | cag  | tct   | gcc | ctg | act  | cag   | cct | cGc | tcA | gTg   | tcc | ggg |   |
|     |   |                |     | tct  | cct   | gga | cag | tca  | gtc   | acc | atc | tcc | tgcl  | 2   | e   |   |
|     |   |                |     | cag  | tct   | gcc | ctg | act  | cag   | cct | Gcc | tcc | gTg   | tcT | ggg |   |
|     | _ |                |     | tct  | cct   | gga | cag | tcG  | Atc   | acc | atc | tcc | tgc   | !   | 2a2 |   |
|     | 0 |                |     | cag  | tct   | gcc | ctg | act  | cag   | cct | ccc | tcc | gTg   | tcc | ggg |   |
|     |   |                |     | tct  | cct   | gga | cag | tca  | gtc   | acc | atc | tcc | tgc   | !   | 2d  |   |
|     |   |                |     | cag  | tct   | gcc | ctg | act  | cag   | cct | Gcc | tcc | gTg   | tcT | ggg |   |
|     |   |                |     | tct  | cct   | gga | cag | tcG  | Atc   | acc | atc | tcc | tgc   | !   | 2b2 |   |
|     | ~ | ! VL3          |     |      |       |     |     |      |       |     |     |     |       |     |     |   |
|     | 2 |                |     | TCC  | TAT   | GAG | CTG | ACT  | CAG   | CCA | CCC | TCA | GTG   | TCC | GTG |   |
|     |   |                |     | TCC  | CCA   | GGA | CAG | ACA  | GCC   | AGC | ATC | ACC | TGC ! |     | 3r  |   |
|     |   |                |     | tcc  | tat   | gag | ctg | act  | cag   | cca | cTc | tca | gtg   | tcA | gtg |   |
|     |   |                |     | GCC  | cTG   | gga | cag | acG  | gcc   | agG | atT | acc | tgT   | !   | 3j  |   |
|     | 0 |                |     | tcc  | tat   | gag | ctg | acA  | cag   | cca | ccc | tcG | gtg   | tcA | gtg |   |
|     | 0 |                |     | tcc  | cca   | gga | caA | acG  | gcc   | agG | atc | acc | tgc!  | 3   | P   |   |
|     |   |                |     | tcc  | tat   | gag | ctg | acA  | cag   | cca | CCC | tcG | gtg   | tcA | gtg |   |
|     |   |                |     | tCC  | cra   | gga | cag | aTG  | gcc   | agG | atc | acc | tgc   | !   | За  |   |
|     |   |                |     | CCT  | τυτ   | gag | CTG | açt  | cag   | GAC | CCT | GCT | gtg   | tcT | gtg |   |
|     |   |                |     | GCC  | TTG   | gga | cag | aca  | g.r.c | agG | atc | acA | τgc   | :   | ٦٢  |   |

I

5

•

92/128

tcc tat gTg ctg act cag cca ccc tca gtg tcA gtg Gcc cca gga Aag acG gcc agG atT acc tgT ! Зh tcc tat gag ctg acA cag cTa ccc tcG gtg tcA gtg tcc cca gga cag aca gcc agG atc acc tgc ! 3e 5 tcc tat gag ctg aTG cag cca ccc tcG gtg tcA gtg tcc cca gga cag acG gcc agG atc acc tgc.! Зm tcc tat gag ctg acA cag cca Tcc tca gtg tcA gtg tcT ccG gga cag aca gcc agG atc acc tgc ! V2-19 ! VL4 10 CTG CCT GTG CTG ACT CAG CCC CCG TCT GCA TCT GCC TTG CTG GGA GCC TCG ATC AAG CTC ACC TGC ! 4c cAg cct gtg ctg act caA TcA TcC tct gcC tct gcT tCC ctg gga Tcc tcg Gtc aag ctc acc tgc ! 4a cAg cTt gtg ctg act caA TcG ccC tct gcC tct gcc 15 tCC ctg gga gcc tcg Gtc aag ctc acc tgc ! 4b ! VL5 CAG CCT GTG CTG ACT CAG CCA CCT TCC TCC GCA TCT CCT GGA GAA TCC GCC AGA CTC ACC TGC ! 5e cag Gct gtg ctg act cag ccG Gct tcc CTc tcT gca 20 tct cct gga gCa tcA gcc agT ctc acc tgc ! 5c cag cct gtg ctg act cag cca Tct tcc CAT tcT gca tct Tct gga gCa tcA gTc aga ctc acc tgc ! 5b ! VL6 AAT TTT ATG CTG ACT CAG CCC CAC TCT GTG TCG GAG 25 TCT CCG GGG AAG ACG GTA ACC ATC TCC TGC ! 6a ! VL7 CAG ACT GTG GTG ACT CAG GAG CCC TCA CTG ACT GTG TCC CCA GGA GGG ACA GTC ACT CTC ACC TGT ! 7a cag Gct gtg gtg act cag gag ccc tca ctg act gtg 30 tcc cca gga ggg aca gtc act ctc acc tgt ! 7b ! VL8 CAG ACT GTG GTG ACC CAG GAG CCA TCG TTC TCA GTG TCC CCT GGA GGG ACA GTC ACA CTC ACT TGT ! 8a

| L          |        | 93/128                                          |   |
|------------|--------|-------------------------------------------------|---|
| 20C        | ! VL9  |                                                 |   |
| 50         |        | CAG CCT GTG CTG ACT CAG CCA CCT TCT GCA TCA GCC | ; |
| ŝ'n        |        | TCC CTG GGA GCC TCG GTC ACA CTC ACC TGC ! 9a    |   |
| A          | ! VL10 |                                                 |   |
| 5 5        |        | CAG GCA GGG CTG ACT CAG CCA CCC TCG GTG TCC AAG | ; |
|            |        | GGC TTG AGA CAG ACC GCC ACA CTC ACC TGC ! 10a   |   |
| 2007211861 |        |                                                 |   |

94/128 2007211861 21 Aug 2007 Table 405 RERSs found in human lambda FR1 GLGs ! There are 31 lambda GLGs MlyI NnnnnGACTC 25 1: 6: 6 6 3: 6 4: 6 7: 6 8: 6 9: 6 10: 6 11: 6 12: 15: 6 16: 6 6 20: 6 21: 6 22: 6 23: 6 23: 50 24: 6 25: 6 25: 50 26: 27: 28: 6 6 6 30: 6 -31: 6 There are 23 hits at base# 6 1 GAGTCNNNNNn \_ 11 \_ 26: 34 MwoI GCNNNNnngc 20 5 1: 2: 3: 9 9 9 4: 9 11: 9 11: 56 12: 9 13: 9 14: 9 17: 16: 9 9 18: 9 19: 20: 9 9 23: 9 24: 9 25: 9 26: 9 30: 9 31: 9 There are 19 hits at base# 9 0 HinfI Gantc 27 1: 12 3: 12 4: 12 6: 12 7: 12 8: 12 9: 12 10: 12 11: 12 12: 12 15: 12 16: 12 20: 12 21: 12 22: 12 23: 12 23: 46 23: 56 25: 12 24: 12 25: 56 26: 12 26: 34 27: 12 5 28: 12 30: 12 31: 12 There are 23 hits at base# 12 PleI gactc 25 1: 12 3: 12 4: 12 6: 12 7: 12 8: 12 9: 12 10: 12 11: 12 12: 12 15: 12 16: 12 0 20: 12 21: 12 22: 12 23: 12 23: 56 24: 12 25: 12 25: 56 26: 12 27: 12 28: 12 30: 12 31: 12 There are 23 hits at base# 12 5 -"- gagtc 1 26: 34

## 95/128

|          | DdeI                                                                                 | Ctna                                                                     | g                                                                                                                                                 |                                                                          |                                                                    |                                                            |                                                                                                                                     | 32                                                                                                     |                                      |                                  |                                                 |                                  |         |
|----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|-------------------------------------------------|----------------------------------|---------|
|          | 1:                                                                                   | 14                                                                       | 2:                                                                                                                                                | 24                                                                       | 3:                                                                 | 14                                                         | 3:                                                                                                                                  | 24                                                                                                     | 4:                                   | 14                               | 4:                                              | 24                               |         |
|          | 5:                                                                                   | 24                                                                       | 6:                                                                                                                                                | 14                                                                       | 7:                                                                 | 14                                                         | 7:                                                                                                                                  | 24                                                                                                     | 8:                                   | 14                               | 9:                                              | 14                               |         |
| 5        | 10:                                                                                  | 14                                                                       | 11:                                                                                                                                               | 14                                                                       | 11:                                                                | 24                                                         | 12:                                                                                                                                 | 14                                                                                                     | 12:                                  | 24                               | 15:                                             | 5                                |         |
|          | 15:                                                                                  | 14                                                                       | 16:                                                                                                                                               | 14                                                                       | 16:                                                                | 24                                                         | 19:                                                                                                                                 | 24                                                                                                     | 20:                                  | 14                               | 23:                                             | 14                               |         |
|          | 24:                                                                                  | 14                                                                       | 25:                                                                                                                                               | 14                                                                       | 26:                                                                | 14                                                         | 27:                                                                                                                                 | 14                                                                                                     | 28:                                  | 14                               | 29:                                             | 30.                              | -       |
|          | 30:                                                                                  | 14                                                                       | 31:                                                                                                                                               | 14                                                                       |                                                                    |                                                            |                                                                                                                                     |                                                                                                        |                                      |                                  |                                                 |                                  |         |
|          | The                                                                                  | re ar                                                                    | e 21                                                                                                                                              | L hits                                                                   | s at                                                               | base                                                       | # 14                                                                                                                                |                                                                                                        |                                      |                                  |                                                 |                                  |         |
| 10       |                                                                                      |                                                                          |                                                                                                                                                   |                                                                          |                                                                    |                                                            |                                                                                                                                     |                                                                                                        |                                      |                                  |                                                 |                                  |         |
|          | BsaJl                                                                                | I Coni                                                                   | ngg                                                                                                                                               |                                                                          |                                                                    |                                                            |                                                                                                                                     | 38                                                                                                     |                                      |                                  |                                                 |                                  |         |
|          | 1:                                                                                   | 23                                                                       | 1:                                                                                                                                                | 40                                                                       | 2:                                                                 | 39                                                         | 2:                                                                                                                                  | 40                                                                                                     | 3:                                   | 39                               | 3:                                              | 40                               |         |
|          | 4:                                                                                   | 39                                                                       | . 4:                                                                                                                                              | 40                                                                       | 5:                                                                 | 39                                                         | 11:                                                                                                                                 | 39                                                                                                     | 12:                                  | 38                               | 12:                                             | 39                               |         |
|          | 13:                                                                                  | 23                                                                       | 13:                                                                                                                                               | 39                                                                       | 14:                                                                | 23                                                         | 14:                                                                                                                                 | 39                                                                                                     | 15:                                  | 38                               | 16:                                             | 39                               |         |
| 15       | 17:                                                                                  | 23                                                                       | 17:                                                                                                                                               | 39                                                                       | 18:                                                                | 23                                                         | 18:                                                                                                                                 | 39                                                                                                     | 21:                                  | 38                               | 21:                                             | 39                               |         |
|          | 21:                                                                                  | 47                                                                       | 22:                                                                                                                                               | 38                                                                       | 22:                                                                | 39                                                         | 22:                                                                                                                                 | 47                                                                                                     | 26:                                  | 40                               | 27:                                             | 39                               |         |
|          | 28:                                                                                  | 39                                                                       | 29:                                                                                                                                               | 14                                                                       | 29:                                                                | 39                                                         | 30:                                                                                                                                 | 38                                                                                                     | 30:                                  | 39                               | 30:                                             | 47                               |         |
|          | 31:                                                                                  | 23                                                                       | 31:                                                                                                                                               | 32                                                                       |                                                                    |                                                            |                                                                                                                                     |                                                                                                        |                                      |                                  |                                                 |                                  |         |
|          | Ther                                                                                 | ce are                                                                   | e 17                                                                                                                                              | / hits                                                                   | s at                                                               | base                                                       | # 39                                                                                                                                |                                                                                                        |                                      |                                  |                                                 |                                  |         |
| 20       | Ther                                                                                 | e are                                                                    | e 5                                                                                                                                               | 5 hits                                                                   | s at                                                               | base                                                       | # 38                                                                                                                                |                                                                                                        |                                      |                                  |                                                 |                                  |         |
|          | Ther                                                                                 | e are                                                                    | e 5                                                                                                                                               | 5 hits                                                                   | s at                                                               | base                                                       | # 40                                                                                                                                | Makes                                                                                                  | s cle                                | eava                             | ige rag                                         | gged.                            |         |
|          |                                                                                      |                                                                          |                                                                                                                                                   |                                                                          |                                                                    |                                                            |                                                                                                                                     |                                                                                                        |                                      |                                  |                                                 |                                  |         |
|          | MnlI                                                                                 | cctc                                                                     |                                                                                                                                                   |                                                                          |                                                                    |                                                            | 3                                                                                                                                   | 35                                                                                                     |                                      |                                  |                                                 |                                  |         |
|          | MnlI<br>1:                                                                           | cctc<br>23                                                               | 2:                                                                                                                                                | 23                                                                       | 3:                                                                 | 23                                                         | 3<br>4:                                                                                                                             | 35<br>23                                                                                               | 5:                                   | 23                               | 6:                                              | 19                               |         |
|          | MnlI<br>1:<br>6:                                                                     | cctc<br>23<br>23                                                         | 2:<br>7:                                                                                                                                          | 23<br>19                                                                 | 3:<br>8:                                                           | 23<br>23                                                   | 4:<br>9:                                                                                                                            | 35<br>23<br>19                                                                                         | 5:<br>9:                             | 23<br>23                         | 6:<br>10:                                       | 19<br>23                         |         |
| 25       | MnlI<br>1:<br>6:<br>11:                                                              | cctc<br>23<br>23<br>23                                                   | 2:<br>7:<br>13:                                                                                                                                   | 23<br>19<br>23                                                           | 3:<br>8:<br>14:                                                    | 23<br>23<br>23                                             | 4:<br>9:<br>16:                                                                                                                     | 35<br>23<br>19<br>23                                                                                   | 5:<br>9:<br>17:                      | 23<br>23<br>23                   | 6:<br>10:<br>18:                                | 19<br>23<br>23                   |         |
| 25       | MnlI<br>1:<br>6:<br>11:<br>19:                                                       | cctc<br>23<br>23<br>23<br>23<br>23                                       | 2:<br>7:<br>13:<br>20:                                                                                                                            | 23<br>19<br>23<br>47                                                     | 3:<br>8:<br>14:<br>21:                                             | 23<br>23<br>23<br>23                                       | 4:<br>9:<br>16:<br>21:                                                                                                              | 35<br>23<br>19<br>23<br>29                                                                             | 5:<br>9:<br>17:<br>21:               | 23<br>23<br>23<br>47             | 6:<br>10:<br>18:<br>22:                         | 19<br>23<br>23<br>23             |         |
| 25       | MnlI<br>1:<br>6:<br>11:<br>19:<br>22:                                                | cctc<br>23<br>23<br>23<br>23<br>23<br>29                                 | 2:<br>7:<br>13:<br>20:<br>22:                                                                                                                     | 23<br>19<br>23<br>47<br>35                                               | 3:<br>8:<br>14:<br>21:<br>22:                                      | 23<br>23<br>23<br>23<br>47                                 | 4:<br>9:<br>16:<br>21:<br>23:                                                                                                       | 35<br>23<br>19<br>23<br>29<br>26                                                                       | 5:<br>9:<br>17:<br>21:<br>23:        | 23<br>23<br>23<br>47<br>29       | 6:<br>10:<br>18:<br>22:<br>24:                  | 19<br>23<br>23<br>23<br>23<br>27 |         |
| 25       | MnlI<br>1:<br>6:<br>11:<br>19:<br>22:<br>27:                                         | cctc<br>23<br>23<br>23<br>23<br>23<br>29<br>23                           | 2:<br>7:<br>13:<br>20:<br>22:<br>28:                                                                                                              | 23<br>19<br>23<br>47<br>35<br>23                                         | 3:<br>8:<br>14:<br>21:<br>22:<br>30:                               | 23<br>23<br>23<br>23<br>47<br>35                           | 4:<br>9:<br>16:<br>21:<br>23:<br>30:                                                                                                | 35<br>23<br>19<br>23<br>29<br>26<br>47                                                                 | 5:<br>9:<br>17:<br>21:<br>23:<br>31: | 23<br>23<br>23<br>47<br>29<br>23 | 6:<br>10:<br>18:<br>22:<br>24:                  | 19<br>23<br>23<br>23<br>23<br>27 |         |
| 25       | MnlI<br>1:<br>6:<br>11:<br>19:<br>22:<br>27:<br>Ther                                 | cctc<br>23<br>23<br>23<br>23<br>23<br>29<br>23<br>29                     | 2:<br>7:<br>13:<br>20:<br>22:<br>28:<br>28:                                                                                                       | 23<br>19<br>23<br>47<br>35<br>23<br>. hits                               | 3:<br>8:<br>14:<br>21:<br>22:<br>30:<br>; at                       | 23<br>23<br>23<br>23<br>47<br>35<br>base                   | 4:<br>9:<br>16:<br>21:<br>23:<br>30:<br># 23                                                                                        | 35<br>23<br>19<br>23<br>29<br>26<br>47                                                                 | 5:<br>9:<br>17:<br>21:<br>23:<br>31: | 23<br>23<br>23<br>47<br>29<br>23 | 6:<br>10:<br>18:<br>22:<br>24:                  | 19<br>23<br>23<br>23<br>23<br>27 |         |
| 25<br>30 | MnlI<br>1:<br>6:<br>11:<br>19:<br>22:<br>27:<br>Ther<br>Ther                         | cctc<br>23<br>23<br>23<br>23<br>29<br>23<br>ce are                       | 2:<br>7:<br>13:<br>20:<br>22:<br>28:<br>28:<br>28:<br>3                                                                                           | 23<br>19<br>23<br>47<br>35<br>23<br>hits<br>hits                         | 3:<br>8:<br>14:<br>21:<br>22:<br>30:<br>; at<br>; at               | 23<br>23<br>23<br>47<br>35<br>base                         | 4:<br>9:<br>16:<br>21:<br>23:<br>30:<br># 23<br># <b>19</b>                                                                         | 35<br>23<br>19<br>23<br>29<br>26<br>47                                                                 | 5:<br>9:<br>17:<br>21:<br>23:<br>31: | 23<br>23<br>23<br>47<br>29<br>23 | 6:<br>10:<br>18:<br>22:<br>24:                  | 19<br>23<br>23<br>23<br>27       |         |
| 25<br>30 | MnlI<br>1:<br>6:<br>11:<br>19:<br>22:<br>27:<br>Ther<br>Ther                         | cctc<br>23<br>23<br>23<br>23<br>29<br>23<br>ce are<br>ce are             | 2:<br>7:<br>13:<br>20:<br>22:<br>28:<br>28:<br>28:<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 23<br>19<br>23<br>47<br>35<br>23<br>hits<br>hits<br>hits                 | 3:<br>8:<br>14:<br>21:<br>22:<br>30:<br>; at<br>; at               | 23<br>23<br>23<br>47<br>35<br>base<br><b>base</b>          | 4:<br>9:<br>16:<br>21:<br>23:<br>30:<br># 23<br># <b>19</b><br># <b>29</b>                                                          | 35<br>23<br>19<br>23<br>29<br>26<br>47                                                                 | 5:<br>9:<br>17:<br>21:<br>23:<br>31: | 23<br>23<br>23<br>47<br>29<br>23 | 6:<br>10:<br>18:<br>22:<br>24:                  | 19<br>23<br>23<br>23<br>27       |         |
| 25<br>30 | MnlI<br>1:<br>6:<br>11:<br>19:<br>22:<br>27:<br>Ther<br>Ther<br>Ther                 | cctc<br>23<br>23<br>23<br>29<br>23<br>ce are<br>ce are                   | 2:<br>7:<br>13:<br>20:<br>22:<br>28:<br>28:<br>28:<br>3<br>29:<br>3<br>3<br>3<br>3<br>3<br>4<br>1                                                 | 23<br>19<br>23<br>47<br>35<br>23<br>hits<br>hits<br>hits<br>hits         | 3:<br>8:<br>14:<br>21:<br>22:<br>30:<br>5 at<br>5 at<br>5 at       | 23<br>23<br>23<br>47<br>35<br>base<br>base<br>base         | 4:<br>9:<br>16:<br>21:<br>30:<br># 23<br># 19<br># 29<br># 26                                                                       | 35<br>23<br>19<br>23<br>29<br>26<br>47                                                                 | 5:<br>9:<br>17:<br>21:<br>23:<br>31: | 23<br>23<br>47<br>29<br>23       | 6:<br>10:<br>18:<br>22:<br>24:                  | 19<br>23<br>23<br>23<br>27       |         |
| 25<br>30 | Mnll<br>1:<br>6:<br>11:<br>19:<br>22:<br>27:<br>Ther<br>Ther<br>Ther<br>Ther         | cctc<br>23<br>23<br>23<br>29<br>23<br>ce are<br>ce are<br>ce are         | 2:<br>7:<br>13:<br>20:<br>22:<br>28:<br>28:<br>28:<br>3<br>2 3<br>3<br>3<br>1<br>3<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>3                        | 23<br>19<br>23<br>47<br>35<br>23<br>hits<br>hits<br>hits<br>hits<br>hits | 3:<br>8:<br>14:<br>21:<br>22:<br>30:<br>at<br>at<br>at<br>at<br>at | 23<br>23<br>23<br>47<br>35<br>base<br>base<br>base         | 4:<br>9:<br>16:<br>21:<br>30:<br># 23<br># 19<br># 29<br># 26<br># 27                                                               | <ul> <li>35</li> <li>23</li> <li>19</li> <li>23</li> <li>29</li> <li>26</li> <li>47</li> </ul>         | 5:<br>9:<br>17:<br>21:<br>23:<br>31: | 23<br>23<br>47<br>29<br>23       | 6:<br>10:<br>18:<br>22:<br>24:<br><b>make c</b> | 19<br>23<br>23<br>23<br>27       | ragged. |
| 25<br>30 | MnlI<br>1:<br>6:<br>11:<br>19:<br>22:<br>27:<br>Ther<br>Ther<br>Ther<br>Ther<br>Ther | cctc<br>23<br>23<br>23<br>29<br>23<br>ce are<br>ce are<br>ce are<br>gagg | 2:<br>7:<br>13:<br>20:<br>22:<br>28:<br>28:<br>28:<br>3<br>2 3<br>3<br>3<br>1<br>3<br>1<br>3<br>1<br>1                                            | 23<br>19<br>23<br>47<br>35<br>23<br>hits<br>hits<br>hits<br>hits<br>hits | 3:<br>8:<br>14:<br>21:<br>22:<br>30:<br>at<br>at<br>at<br>at<br>at | 23<br>23<br>23<br>47<br>35<br>base<br>base<br>base<br>base | 4:<br>9:<br>16:<br>21:<br>30:<br>23:<br>30:<br>4<br>23<br>4<br>23<br>4<br>23<br>4<br>23<br>4<br>29<br>4<br>29<br>4<br>26<br>4<br>27 | <ul> <li>35</li> <li>23</li> <li>19</li> <li>23</li> <li>29</li> <li>26</li> <li>47</li> </ul> These 7 | 5:<br>9:<br>17:<br>21:<br>23:<br>31: | 23<br>23<br>47<br>29<br>23       | 6:<br>10:<br>18:<br>22:<br>24:<br><b>make c</b> | 19<br>23<br>23<br>23<br>27       | ragged. |

96/128

29: 44

|            | BSSKI No | cngg      |           | 3      | 9      |    |     |     |
|------------|----------|-----------|-----------|--------|--------|----|-----|-----|
|            | 1: 40    | 2: 39     | 3: 39     | 3:     | 40 4:  | 39 | 4:  | 40  |
| 5          | 5: 39    | 6: 31     | 6: 39     | 7:     | 31 7:  | 39 | 8:  | 39  |
|            | 9: 31    | 9: 39     | 10: 39    | 11:    | 39 12: | 38 | 12: | 52  |
|            | 13: 39   | 13: 52    | 14: 52    | 16:    | 39 16: | 52 | 17: | 39. |
|            | 17: 52   | 18: 39    | 18: 52    | 19:    | 39 19: | 52 | 21: | 38  |
|            | 22: 38   | 23: 39    | 24: 39    | 26:    | 39 27: | 39 | 28: | 39  |
| 10         | 29: 14   | 29: 39    | 30: 38    |        |        |    |     |     |
|            | There a  | re 21 hit | ts at bas | se# 39 |        |    |     |     |
|            | There a  | re 4 hi   | ts at bas | se# 38 |        |    |     |     |
|            | There a  | re 3 hit  | ts at bas | se# 31 |        |    |     |     |
|            | There a  | re 3 hit  | ts at bas | se# 40 | Ragged |    |     |     |
| 15         |          |           |           |        |        |    |     |     |
|            | BstNI CC | wgg       |           | 3      | 0      |    |     |     |
|            | 1: 41    | 2: 40     | 5: 40     | 6:     | 40 7:  | 40 | 8:  | 40  |
|            | 9: 40    | 10: 40    | 11: 40    | 12:    | 39 12: | 53 | 13: | 40  |
|            | 13: 53   | 14: 53    | 16: 40    | 16:    | 53 17: | 40 | 17: | 53  |
| 20         | 18: 40   | 18: 53    | 19: 53    | 21:    | 39 22: | 39 | 23: | 40  |
|            | 24: 40   | 27: 40    | 28: 40    | 29:    | 15 29: | 40 | 30: | 39  |
|            | There a  | re 17 hit | ts at bas | e# 40  |        |    |     |     |
|            | There a  | re 7 hit  | ts at bas | ;e# 53 |        |    |     |     |
|            | There a  | re 4 hit  | ts at bas | e# 39  |        |    |     |     |
| 25         | There a  | re 1 hit  | ts at bas | e# 41  | Ragged |    |     |     |
|            |          |           |           |        |        |    |     |     |
|            | PspGI cc | wgg       |           | 3      | 0      |    |     |     |
|            | 1: 41    | 2: 40     | 5: 40     | 6:     | 40 7:  | 40 | 8:  | 40  |
| • •        | 9: 40    | 10: 40    | 11: 40    | 12: 3  | 39 12: | 53 | 13: | 40  |
| 30         | 13: 53   | 14: 53    | 16: 40    | 16:    | 53 17: | 40 | 17: | 53  |
|            | 18: 40   | 18: 53    | 19: 53    | 21: 3  | 39 22: | 39 | 23: | 40  |
|            | 24: 40   | 27: 40    | 28: 40    | 29: 3  | 15 29: | 40 | 30: | 39  |
|            | There a  | re 17 hit | s at bas  | e# 40  |        |    |     |     |
| <b>.</b> - | There a  | re 7 hit  | s at bas  | e# 53  |        |    |     |     |
| 35         | There a  | re 4 hit  | s at bas  | e# 39  |        |    |     |     |

97/128 There are 1 hits at base# 41 ScrFI CCngg 39 1: 41 2: 40 3: 40 3: 41 4: 40 4: 41 5 5: 40 6: 32 7: 32 6: 40 7: 40 8: 40 9: 32 9: 40 10: 40 11: 40 12: 39 12: 53 13: 40 13: 53 14: 53 16: 40 16: 53 17: 40 . 17: 53 18: 40 18: 53 19: 40 19: 53 21: 39 23: 40 22: 39 24: 40 26: 40 27: 40 28: 40 10 29: 15 29: 40 30: 39 There are 21 hits at base# 40 There are 4 hits at base# 39 There are 3 hits at base# 41 15 MaeIII gtnac 16 1: 52 2: 52 4: 52 3: 52 5: 52 6: 52 7: 52 9: 52 26: 52 27: 10 27: 52 28: 10 28: 52 29: 10 29: 52 30: 52 There are 13 hits at base#.52 20 Tsp451 gtsac 15 1: 52 2: 52 3: 52 4: 52 5: 52 6: 52 7: 52 9: 52 27: 10 27: 52 28: 10 28: 52 29: 10 29: 52 30: 52 25 There are 12 hits at base# 52 HphI tcacc 26 2: 53 1: 53 3: 53 4: 53 5:53 6:53 7: 53 8: 53 9: 53 10: 53 11: 59 13: 59 30 14: 59 17: 59 18: 59 19: 59 20: 59 21: 59 22: 59 23: 59 24: 59 25: 59 27: 59 28: 59 30: 59 31: 59 There are 16 hits at base# 59 There are 10 hits at base# 53 15

|   |           |          |      |      | g    | 8/1 | 28     |       |     |    |
|---|-----------|----------|------|------|------|-----|--------|-------|-----|----|
|   | BspMI ACC | TGCNNNNn |      |      | :    | 14  |        |       |     |    |
|   | 11: 61    | 13: 61   | 14:  | 61   | 17:  | 61  | 18:    | 61    | 19: | 61 |
|   | 20: 61    | 21: 61   | 22:  | 61   | 23:  | 61  | 24:    | 61    | 25: | 61 |
|   | 30: 61    | 31: 61   |      |      |      |     |        |       |     |    |
| 5 | There ar  | e 14 hit | s at | base | # 61 | Goe | es int | :0 CI | DR1 |    |

.

## 99/128

21 Aug 2007 Table 500: h3401-h2 captured Via CJ with BsmAI 2 3 4 5 6 7 1 1 8 9 10 11 12 13 14 15 ! S Α D Ι Q Q М Т Q S Ρ Α Т  $\mathbf{L}$ S aGT GCA Caa gac atc cag atg acc cag tot cca gcc acc ctg tot 5 ! Apall... a gcc acc ! L25, L6, L20, L2, L16, A11 ! Extender.....Bridge... 2007211861 17 18 19 21 22 23 24 ! 16 20 25 26 27 28 29 30 10 1 V S Ρ G Ε R A T L S С R Α S Q gtg tct cca ggg gaa agg gcc acc ctc tcc tgc agg gcc agt cag ! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ! S V S Ν Ν  $\mathbf{L}$ Α W Y Q 0 Κ Ρ G Q 15 agt gtt agt aac aac tta gcc tgg tac cag cag aaa cct ggc cag ! 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ! V Ρ R Ι Y  $\mathbf{L}$  $\mathbf{L}$ G Α S Т R Α Т D gtt ccc agg ctc ctc atc tat ggt gca tcc acc agg gcc act gat 20 ! 61 62 63 64 65 66 67 68 69 70 72 71 73 74 75 ! I Ρ Α R F S G S G S G Т F D Т atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gac ttc act ?5 ! 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 ! L Т Ι S R L Ε Ρ Ε D F Α V Y Y ctc acc atc agc aga ctg gag cct gaa gat ttt gca gtg tat tac 92 ! 91 93 94 95 96 97 98 99 100 101 102 103 104 105 10 ! C Q R Υ G S S PGWT F G 0 G tgt cag cgg tat ggt agc tca ccg ggg tgg acg ttc ggc caa ggg ! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 ! T K V E I K T V A R Α Ρ S V F 15 acc aag gtg gaa atc aaa cga act gtg gct gca cca tct gtc ttc ! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 I FPPSDE QLKS G Т Α S atc ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct 10 ! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 V C L L N N F Y P R E v Α Κ V gtt gtg tgc ctg ctg aat aac ttc tat ccc aga gag gcc aaa gta

| 5      |                 |             |                                                |                                                     |                                              |                                                     |                                                     |                                                     | 70                                                  | 00/1                                               | 28                                                 |                                                           |                                                    |                                                         |                                                   |                                                   |                                              |   |    |
|--------|-----------------|-------------|------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------|---|----|
| ug 200 | )               | !<br>!      | 151<br>Q<br>cag                                | 152<br>W<br>tgg                                     | 153<br>K<br>aag                              | 154<br>V<br>gtg                                     | 155<br>D<br>gat                                     | 156<br>N<br>aac                                     | 157<br>A<br>gcc                                     | 158<br>L<br>ctc                                    | 159<br>Q<br>caa                                    | 160<br>S<br>tcg                                           | 161<br>G<br>ggt                                    | 162<br>N<br>aac                                         | 163<br>S<br>tcc                                   | 164<br>Q<br>cag                                   | 165<br>E<br>gag                              |   |    |
| 21 A   | 5               | !<br>!      | 166<br>S<br>agt                                | 167<br>V<br>gtc                                     | 168<br>T<br>aca                              | 169<br>E<br>gag                                     | 170<br>Q<br>cag                                     | 171<br>D<br>gac                                     | 172<br>S<br>agc                                     | 173<br>K<br>aag                                    | 174<br>D<br>gac                                    | 175<br>S<br>agc                                           | 176<br>T<br>acc                                    | 177<br>Y<br>tac                                         | 178<br>S<br>agc                                   | 179<br>L<br>ctc                                   | 180<br>S<br>agc                              |   |    |
| 11861  | !0              | !<br>!      | 181<br>S<br>agc                                | 182<br>T<br>acc                                     | 183<br>L<br>ctg                              | 184<br>T<br>acg                                     | 185<br>L<br>ctg                                     | 186<br>S<br>agc                                     | 187<br>K<br>aaa                                     | 188<br>A<br>gca                                    | 189<br>D<br>gac                                    | 190<br>Y<br>tac                                           | 191<br>E<br>gag                                    | 192 <sup>°</sup><br>K<br>aaa                            | 193<br>H<br>cac                                   | -<br>194<br>K<br>aaa                              | 195<br>V<br>gtc                              |   |    |
| 20072  | !5              | !<br>!      | 196<br>Y<br>tac                                | 197<br>A<br>gcc                                     | 198<br>C<br>tgc                              | 199<br>E<br>gaa                                     | 200<br>V<br>gtc                                     | 201<br>T<br>acc                                     | 202<br>H<br>cat                                     | 203<br>Q<br>cag                                    | 204<br>G<br>ggc                                    | 205<br>L<br>ctg                                           | 206<br>S<br>agc                                    | 207<br>S<br>tcg                                         | 208<br>P<br>cct                                   | 209<br>V<br>gtc                                   | 210<br>T<br>aca                              |   |    |
|        | ?0              | !           | 211<br>K<br>aag                                | 212<br>S<br>agc                                     | 213<br>F<br>ttc                              | 214<br>N<br>aac                                     | 215<br>K<br>aaa                                     | 216<br>G<br>gga                                     | 217<br>E<br>gag                                     | 218<br>C<br>tgt                                    | 219<br>K<br>aag                                    | 220<br>G<br>ggc                                           | 221<br>E<br>gaa                                    | 222<br>F<br>ttc                                         | 223<br>A<br>gc.                                   |                                                   |                                              |   |    |
|        |                 | Та          | able                                           | 501:                                                | h34                                          | 101-a                                               | 18 KZ                                               | APPA                                                | capt                                                | urec                                               | i wit                                              | h Ci                                                      | J and                                              | l Bsı                                                   | nAI                                               |                                                   |                                              |   |    |
|        | ?5              | !<br>!      | 1<br>S<br>a <u>GT</u>                          | 2<br>A<br>GCA                                       | 3<br>Q<br><u>C</u> aa                        | 4<br>D<br>gac                                       | 5<br>I<br>atc                                       | 6<br>Q<br><b>cag</b>                                | 7<br>M<br>atg                                       | 8<br>T<br>acc                                      | 9<br>Q<br>cag                                      | 10<br>S<br>tct                                            | 11<br>P<br>cct                                     | 12<br>A<br>gcc                                          | 13<br>T<br>acc                                    | 14<br>L<br>ctg                                    | 15<br>S<br>tct                               |   |    |
|        |                 | :<br>L:     | дра<br>25,L6                                   | 5, <b>L2</b> (                                      | $\mathbf{L2}$                                | ,L16                                                | ,A11                                                |                                                     |                                                     | • • • •                                            | • • • •                                            | ••••                                                      | · · · <u>a</u>                                     | gcc                                                     | acc                                               | i                                                 |                                              |   |    |
|        | <i>i0</i>       | !           |                                                |                                                     |                                              |                                                     |                                                     |                                                     |                                                     |                                                    |                                                    |                                                           | A                                                  | GCC                                                     | ACC                                               | CTG                                               | TCT                                          | ! | L2 |
|        |                 | !<br>!      | 16<br>V                                        | 17                                                  | 18                                           | 19                                                  | 20                                                  | 21                                                  | 22                                                  | 22                                                 |                                                    |                                                           |                                                    |                                                         | 28                                                | 29                                                | 30                                           |   |    |
|        |                 | !           | gtg<br>GTG                                     | tct<br>TCT                                          | P<br>cca<br>CCA                              | G<br>ggt<br>GG <b>G</b>                             | E<br>gaa<br>GAA                                     | R<br>aga<br>AGA                                     | A<br>gcc<br>GCC                                     | T<br>acc<br>ACC                                    | 24<br>L<br>ctc<br>CTC                              | 25<br>S<br>tcc<br>TCC                                     | 26<br>C<br>tgc<br>TGC                              | 27<br>R<br>agg<br>!                                     | A<br>gcc<br>I                                     | S<br>agt                                          | Q<br>cag                                     |   |    |
|        | 15              | !<br>!<br>! | gtg<br>GTG<br>31<br>N<br>aat                   | tct<br>TCT<br>32<br>L<br>ctt                        | P<br>CCA<br>CCA<br>33<br>L<br>ctc            | G<br>ggt<br>GG <b>G</b><br>34<br>S<br>agc           | E<br>gaa<br>GAA<br>35<br>N<br>aac                   | R<br>aga<br>AGA<br>36<br>L<br>tta                   | A<br>gcc<br>GCC<br>37<br>A<br>gcc                   | T<br>acc<br>ACC<br>38<br>W<br>tgg                  | 24<br>L<br>CTC<br>39<br>Y<br>tac                   | 25<br>S<br>tcc<br>TCC<br>40<br>Q<br>cag                   | 26<br>C<br>tgc<br>TGC<br>41<br>Q<br>cag            | 27<br>R<br>agg<br>!<br>42<br>K<br>aaa                   | A<br>gcc<br>I<br>43<br>P<br>cct                   | s<br>agt<br>2<br>44<br>G<br>ggc                   | Q<br>cag<br>45<br>Q<br>cag                   |   |    |
|        | <i>י5</i><br>10 | !!!!        | gtg<br>GTG<br>31<br>N<br>aat<br>46<br>A<br>gct | s<br>tct<br>TCT<br>32<br>L<br>ctt<br>47<br>P<br>ccc | P<br>CCA<br>33<br>L<br>CtC<br>48<br>R<br>agg | G<br>ggt<br>GGG<br>34<br>S<br>agc<br>49<br>L<br>ctc | E<br>gaa<br>GAA<br>35<br>N<br>aac<br>50<br>L<br>ctc | R<br>aga<br>AGA<br>36<br>L<br>tta<br>51<br>I<br>atc | A<br>gcc<br>GCC<br>37<br>A<br>gcc<br>52<br>Y<br>tat | ZS<br>T<br>ACC<br>38<br>W<br>tgg<br>53<br>G<br>ggt | 24<br>L<br>CTC<br>39<br>Y<br>tac<br>54<br>A<br>gct | 25<br>S<br>tcc<br>TCC<br>40<br>Q<br>cag<br>55<br>S<br>tcc | 26<br>C<br>TGC<br>41<br>Q<br>cag<br>56<br>T<br>acc | 27<br>R<br>agg<br>!<br>42<br>K<br>aaa<br>57<br>G<br>ggg | A<br>gcc<br>I<br>43<br>P<br>cct<br>58<br>A<br>gcc | s<br>agt<br>2<br>44<br>G<br>ggc<br>59<br>I<br>att | Q<br>cag<br>45<br>Q<br>cag<br>60<br>G<br>ggt |   |    |

|        |    |        |                 |                 |                 |                 |                 |                 | 1               | 01/1            | 28              |                 |                 |                 |                 |                 |                 |
|--------|----|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| ug 200 |    | !<br>! | 76<br>L<br>ctc  | 77<br>T<br>acc  | 78<br>I<br>atc  | 79<br>S<br>agc  | 80<br>S<br>agc  | 81<br>L<br>ctg  | 82<br>Q<br>cag  | 83<br>S<br>tct  | 84<br>E<br>gaa  | 85<br>D<br>gat  | 86<br>F<br>ttt  | 87<br>A<br>gca  | 88<br>V<br>gtg  | 89<br>Y<br>tat  | 90<br>F<br>ttc  |
| 21 A   | 5  | !      | 91<br>C<br>tgt  | 92<br>Q<br>cag  | 93<br>Q<br>cag  | 94<br>Y<br>tat  | 95<br>G<br>ggt  | 96<br>T<br>acc  | 97<br>S<br>tca  | 98<br>P<br>ccg  | 99<br>P<br>ccc  | 100<br>T<br>act | 101<br>F<br>ttc | 102<br>G<br>ggc | 103<br>G<br>gga | 104<br>G<br>ggg | 105<br>T<br>acc |
| 1861   | '0 | !<br>! | 106<br>K<br>aag | 107<br>V<br>gtg | 108<br>E<br>gag | 109<br>I<br>atc | 110<br>K<br>aaa | 111<br>R<br>cga | 112<br>T<br>act | 113<br>V<br>gtg | 114<br>A<br>gct | 115<br>A<br>gca | 116<br>P<br>CCa | 117<br>S<br>tct | 118<br>V<br>gtc | 119<br>F<br>ttc | 120<br>I<br>atc |
| 00721  | 5  | !<br>! | 121<br>F<br>ttc | 122<br>P<br>ccg | 123<br>P<br>cca | 124<br>S<br>tct | 125<br>D<br>gat | 126<br>E<br>gag | 127<br>Q<br>cag | 128<br>L<br>ttg | 129<br>K<br>aaa | 130<br>S<br>tct | 131<br>G<br>gga | 132<br>T<br>act | 133<br>A<br>gcc | 134<br>S<br>tct | 135<br>V<br>gtt |
| 0      | 0' | !<br>! | 136<br>V<br>gtg | 137<br>C<br>tgc | 138<br>P<br>ccg | 139<br>L<br>ctg | 140<br>N<br>aat | 141<br>N<br>aac | 142<br>F<br>ttc | 143<br>Y<br>tat | 144<br>P<br>ccc | 145<br>R<br>aga | 146<br>E<br>gag | 147<br>A<br>gcc | 148<br>K<br>aaa | 149<br>V<br>gta | 150<br>Q<br>cag |
|        | Ū  | !<br>! | 151<br>W<br>tgg | 152<br>K<br>aag | 153<br>V<br>gtg | 154<br>D<br>gat | 155<br>N<br>aac | 156<br>A<br>gcc | 157<br>L<br>ctc | 158<br>Q<br>caa | 159<br>S<br>tcg | 160<br>G<br>ggt | 161<br>N<br>aac | 162<br>S<br>tcc | 163<br>Q<br>cag | 164<br>E<br>gag | 165<br>S<br>agt |
|        | 5  | !<br>! | 166<br>V<br>gtc | 167<br>T<br>aca | 168<br>E<br>gag | 169<br>Q<br>cag | 170<br>D<br>gac | 171<br>N<br>aac | 172<br>K<br>aag | 173<br>D<br>gac | 174<br>S<br>agc | 175<br>T<br>acc | 176<br>Y<br>tac | 177<br>S<br>agc | 178<br>L<br>ctc | 179<br>S<br>agc | 180<br>S<br>agc |
|        | 0  | !<br>! | 181<br>T<br>acc | 182<br>L<br>ctg | 183<br>T<br>acg | 184<br>L<br>ctg | 185<br>S<br>agc | 186<br>K<br>aaa | 187<br>V<br>gta | 188<br>D<br>gac | 189<br>Y<br>tac | 190<br>E<br>gag | 191<br>K<br>aaa | 192<br>H<br>cac | 193<br>E<br>gaa | 194<br>V<br>gtc | 195<br>Y<br>tac |
|        | 5  | !<br>! | 196<br>A<br>gcc | 197<br>C<br>tgc | 198<br>E<br>gaa | 199<br>V<br>gtc | 200<br>T<br>acc | 201<br>H<br>cat | 202<br>Q<br>cag | 203<br>G<br>ggc | 204<br>L<br>ctt | 205<br>S<br>agc | 206<br>S<br>tcg | 207<br>P<br>ccc | 208<br>V<br>gtc | 209<br>T<br>acg | 210<br>K<br>aag |
|        | 0  | !<br>! | 211<br>S<br>agc | 212<br>F<br>ttc | 213<br>N<br>aac | 214<br>R<br>agg | 215<br>G<br>gga | 216<br>E<br>gag | 217<br>C<br>tgt | 218<br>K<br>aag | 219<br>K<br>aaa | 220<br>E<br>gaa | 221<br>F<br>ttc | 222<br>V<br>gtt | 223<br>t        |                 |                 |

Table 508 Human heavy chains bases 88.1 to 94.2

840 Number of sequences.....

| <b>ر م</b> |        |              | IUN         | nber     | of N          | li smë          | atche            | rs.         |              |                    |                                       | Probe                             |                      |
|------------|--------|--------------|-------------|----------|---------------|-----------------|------------------|-------------|--------------|--------------------|---------------------------------------|-----------------------------------|----------------------|
| I          | Id     | Ntot         | 0           | 7        | 2             | m               | 4                | S           | 9            | ٢                  | Name                                  | Sequence                          | Dot form             |
|            | 1      | 364          | 152         | 97       | 76            | 26              | 5                | 4           | 2            | 0                  | VHS881-1.1                            | gctqtqtattactqtqcqag              | gctgtgtattactgtgcgag |
|            | 2      | 265          | 150         | 60       | 33            | 13              | S                | 4           | 0            | 0                  | VHS881-1.2                            | gccgtgtattactgtgcgag              |                      |
|            | m      | 96           | 14          | 34       | 16            | 10              | ະດ               | 2           | 6            | ı                  | VHS881-2.1                            | gccgtatattactgtgcgag              | ca                   |
| 10         | 4      | 20           | 0           | ო        | Ъ             | თ               | 2                | 0           | 0            | 0                  | VHS881-4.1                            | gccgtgtattactgtacgag              |                      |
|            | S      | 95           | 25          | 36       | · 18          | 11              | 2                | 2           | 0            | Ч                  | VHS881-9.1                            | gccatgtattactgtgcgag              | ••Ca                 |
|            |        | 840          | 341         | 230      | 147           | 69              | 21               | 19          | 11           | 7                  |                                       |                                   |                      |
|            |        |              | 341         | 571      | 718           | 787             | 808              | 827         | 838          | 940                |                                       |                                   |                      |
| 15         |        |              |             | 88       | 39 96         | 91              | 92 6             | 13 94       | 95           | Todon              | number as it                          | n Tahle 195                       |                      |
| 1          |        |              |             | Der      | t i u u u     |                 |                  | •<br>•<br>• |              | tem                |                                       |                                   |                      |
|            | (VHS8  | 81-1.1)      | ,<br>L      |          | tata          |                 | act-o            | rtaca       |              | -ACATC             | cala Tlal                             | оссист                            |                      |
|            | (VHS8  | 81-1.2)      | 5.          | 500g-    | jtgta         | it   te         |                  | Itgeg       | n Di<br>N Di | ACATC              | TTQTT TTQTT                           | caddArgrg-3'                      |                      |
|            | (VHS8  | 81-2.1)      | 51.         | ່ວວຍ     | jtata         | lt   të         | act-g            | Itgcg       | ag           | ACATC              | cord Trorr                            | cAcggATgTg-3'                     |                      |
| 20         | (VHS8  | 81-4.1)      | 51-         | ້າງວຽ    | jtgta         | t   ti          | act-g            | tacg        | ag           | CACATA             | cord TTGTT                            | cAcggATgTg-3'                     |                      |
|            | (VHS8  | 81-9.1)      | 5           | -000     | <u>atgt</u> é | <u>at l t</u> é | act-c            | <u>site</u> | ad •         | subst1             | <b>cofro</b> TrgTT (<br>ate cleavage: | <b>cAc<u>ggATg</u>Tg-</b> 3'<br>e |                      |
|            | (FOK   | Tact)        | י<br>ב<br>ע |          | LTCCT (       | י.<br>די די     | եմեներ           |             | L C D D      | т.<br>2<br>Т.      |                                       |                                   |                      |
| 25         |        |              | )           |          |               | ກ<br>1          | -<br>-<br>-<br>- | 5           |              | )<br>71<br>4<br>11 |                                       |                                   |                      |
|            | (VHEX  | 881) 5'      | PAA         | PAGT?    | AgAc<br>"TrT  | Tgc?            | AgT'gT<br>AgT'gT | E E<br>D E  | cAgc         | CTTA               | AgeTgTTcAT                            | cTgcAAgTAg-                       |                      |
|            | 400    |              |             | 1000-    |               |                 | 5 5              |             | -<br>front   |                    |                                       |                                   |                      |
|            |        | ה נוומר<br>ה |             |          |               |                 | rever<br>1911-   | ະ<br>ບ      | Tomo         | Juans              | OT LITE ON DI                         | MOTE                              |                      |
| 30         |        | 5            |             | ັ<br>ເ   | ab.           |                 | ית<br>וויי       |             |              |                    |                                       |                                   |                      |
|            |        |              |             | ŝ        | 'nthe         | tic             | 3-23             | 5           | tn Té        | uble 2             | 106                                   |                                   |                      |
|            |        |              |             | -        | CTIA          | GA   S          | jac a            | aclt        | ct   ai      | ıg aat             | :   act   ctc   tai                   | c ttg cag atg -                   |                      |
|            |        |              |             | ×        | tbaI.         | •               |                  |             |              | ı                  |                                       |                                   |                      |
| l          |        |              |             | <u>a</u> | ac a          | I D DI          | <b>TTA</b>   A   | Gg   g      | ctlga        | ig gac             | :   aCT   GCA   Gt (                  | c tac tat t-3'                    |                      |
| 35         |        |              |             |          |               | Afl             | LII              | •           |              |                    |                                       |                                   |                      |
|            | (VHBA) | 881)         | ,           | 50-j     | JCttc         | acTa            | lag-             |             |              |                    |                                       |                                   |                      |
|            |        |              |             | <u>-</u> | CT A          | GA   5          | jac a            | aclt        | ct   ai      | ıg aat             | : act ctc ta                          | c ttg cag atg -                   |                      |
|            |        |              |             | <u> </u> | ac a          | gC l 1          | TALA             | Gg   g      | ctlga        | ıglgac             | :  aCT   GCA   Gt (                   | c tac tat tgt gcg ag-3            | -                    |
|            | (VHBB  | 881)         | 41          | 52-1S    | JCtto         | acTa            | lag-             |             |              |                    |                                       |                                   |                      |

[aac]agC]TTA]AGG[gct]gag]gac]acTiGCA[Gtc]tac]tat]tgt Acg ag-3' (VH881PCR) 5'-cgCttcacTaag]TCT]AGA]gac]aac -3' TCT | AGA | gac | aac | tct | aag | aat | act | ctc | tac | ttg | cag | atg | -

Table 512: Kappa, bases 12-30 Ś

|    | II<br>i          | Ntot          | 0        | -   | 2                    | m              | 4               | 2          | 9                        | Name                                   | Sequence                                                             | Dot Form        |
|----|------------------|---------------|----------|-----|----------------------|----------------|-----------------|------------|--------------------------|----------------------------------------|----------------------------------------------------------------------|-----------------|
|    | :                | 84            | 40       | 21  | 20                   | -              | 2               | 0          | 0                        | SK12012                                | gacccagtctccatcctcc                                                  | gacccagtctccatc |
|    | :                | 32            | 19       | m   | 9                    | 2              | Ч               | 0          | 1                        | SK12A17                                | gactcagtctccactctcc                                                  | tct             |
| 10 | <del>س</del><br> | 26            | 17       | æ   | Ч                    | 0              | 0               | 0          | 0                        | SK12A27                                | gacgcagtctccaggcacc                                                  | 66              |
|    | 4                | 40            | 21       | 18. | ٦                    | 0              | 0               | 0          | 0                        | SK12A11                                | gacgcagtctccagccacc                                                  |                 |
|    | <b>-</b> .       | 182           | 97       | 50  | 28                   | e              | e               | 0          |                          |                                        | •                                                                    | 1               |
|    |                  |               | 97       | 147 | 175                  | 178            | 181 ]           | 181        | 182                      |                                        |                                                                      |                 |
| 15 | !<br>URE ac      | lapters:      |          |     |                      |                |                 |            |                          |                                        |                                                                      |                 |
|    | <br>  <>KB       | 1230-012      | _        |     | ທີ່ເ<br>ເ<br>ເ       | tem.           | ••••••          | Loc        | р. 5<br>7<br>1<br>1<br>1 | tem                                    | Recognition                                                          | -               |
| νc |                  | 710-0071      | <br>     | RC] | ງ ຫໍສັ<br>  1<br>ກ ທ | acce           | agtet           | ccat       | cete                     | cccccccccccccccccccccccccccccccccccccc | ggaggarggagggre-<br>JTg AAcAA cAcggAATgTg-<br>loop. Stem             | -               |
| 70 |                  |               |          |     |                      |                |                 |            |                          | FOKI.                                  | . LYO'I                                                              |                 |
|    | i<br>(SzKB]      | ,<br>1230-A17 | ~        |     | ភ <sup>ា</sup> ក្ម   | tem<br>AcATo   |                 | Loc<br>TTG | p. S<br>TT c             | tem                                    | Recognition                                                          |                 |
| 25 | <b></b>          |               | <b>ت</b> | RCJ | 51-95<br>R           | actca<br>ecogr | agtct<br>litic  | ccac       | stete                    | c cAcATCC                              | rrg AACAA cAcggAIrgrg-3<br>loop. Stem                                | -               |
|    |                  |               |          |     |                      |                |                 |            |                          | FokI.                                  | FokI.                                                                |                 |
|    |                  |               |          | _   |                      | tem.           | • [             | Loc        | р. S                     | tem                                    | Recognition                                                          | -               |
| 30 | lanzs)           | 1230-AZ 1     | -<br>-   | RC] | ບ<br>1 ບີ<br>1 ບີ    | ACATC<br>acgca | scg'rg<br>Igtet | CCag       | igcac                    | AcggATgTg<br>c <b>cAcATcc</b>          | ggrgccrggAgAcrgcgrc-<br>rrg AAcAA <mark>cac<u>ggArrg</u>rg-</mark> 5 |                 |
|    |                  |               |          |     | ž                    | ecodi          |                 |            | •<br>•<br>•              | . stem<br>FokI.                        | Loop. Stem<br>FokI.                                                  |                 |
|    |                  |               |          |     | St                   | tem            | •<br>•<br>•     | Loo        | р.<br>S                  | tem                                    | Recognition                                                          |                 |
| 35 | (SzKB]           | 230-A11       | ~        | -   | 5'-cj                | AcATc          | cgTg            | TT9        | י<br>דד<br>ע             | AcggATgTg                              | ggTggcTggAgAcTgcgTc-3                                                | -               |
|    |                  |               | Ξ        | RC] | 5'-g;                | acgca          | ugtct           | ccag       | Iccac                    | c cAcATCC                              | TTG AACAA CACGGATGTG-S                                               | -               |
|    |                  |               |          |     | ž                    | recogn         | TTTC            |            | :                        | . SCEM                                 | 100P. SLEM                                                           |                 |
|    | •                |               |          |     |                      |                |                 |            |                          |                                        | • + 4 > 4                                                            |                 |

What V

|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt Acg ag-3' (VH881PCR) 5'-cgCttcacTaag|TCT|AGA|gac|aac -3'

5 †able 512: Kappa, bases 12-30 ---

|    | ID<br>i          | Ntot     | 0    | -           | 2             | ო                       | 4                    | 2                  | 9            | Name                                            | Sequence                                                     | Dot Form            |
|----|------------------|----------|------|-------------|---------------|-------------------------|----------------------|--------------------|--------------|-------------------------------------------------|--------------------------------------------------------------|---------------------|
|    | <br>             | 84       | 40   | 21          | 20            | Ч                       | 2                    | 0                  | 0            | SK12012                                         | gacccagtctccatcctcc                                          | gacccagtctccatcctcc |
|    |                  | 32       | 19   | m           | 9             | ~                       | ٦                    | 0                  | Ч            | SK12A17                                         | gactcagtctccactctcc                                          |                     |
| 10 | <del>د</del><br> | 26       | 17   | 8           | Ч             | 0                       | 0                    | 0                  | 0            | SK12A27                                         | gacgcagtctccaggcacc                                          | d                   |
|    | 4                | 40       | 21   | 18          | 1             | 0                       | 0                    | 0                  | 0            | SK12A11                                         | gacgcagtctccagccacc                                          |                     |
|    | <del>_</del> .   | 182      | 97   | 50          | 28            | e                       | m                    | 0                  |              |                                                 |                                                              |                     |
|    |                  |          | . 76 | 147         | 175 ]         | 178 1                   | 81 1                 | 81 1               | 82           |                                                 |                                                              |                     |
| 15 | :<br>URE ad      | apters:  |      |             |               |                         |                      |                    |              |                                                 |                                                              |                     |
|    |                  |          |      |             | St            | tem.                    | :                    | Loo                | р. S         | tem                                             | Recognition                                                  |                     |
| ç  | (SzKB1           | 230-012  | 1]   | RCJ         | 5'-C'<br>5'-g | AcATc<br>accca<br>ecogn | cgTg<br>gtct<br>itio | r TTg<br>ccat<br>n | TT c<br>cctc | AcggATgTg<br>c <b>cA<u>cATcc</u>g</b><br>. Stem | ggAggATggAgAcTgggTc-3<br>Tg AAcAA cAcggATgTg-3<br>loop. Stem |                     |
| 70 | <b>-</b>         |          |      |             |               |                         |                      |                    |              | FokI.                                           | FokI.                                                        |                     |
|    | i<br>(SzKB12     | 230-A17) | -    |             | St-ch         | cem.                    | caTa                 | LOO<br>LOO         | p. S<br>TT C | tem<br>AcaaATaTa                                | Recognition<br>addadrradadrradarr-3                          | -                   |
| 25 | -                |          | 1    | RC]         | 5'-ga<br>Re   | actca<br>scogn          | gtct                 | ccac<br>n          |              | c cAcATccg                                      | Tg AAcAA cAcgGATgTg-3<br>loop. Stem                          | _                   |
|    |                  |          |      |             |               |                         |                      |                    |              | FokI.                                           | FokI.                                                        |                     |
|    | !<br>(SzKB12     | 230-A27) | _    | _ •         | 5'-cA         | cem.                    | <br>caTa             | Loo]               | p. S.<br>TT  | tem<br>AcaaATaTa                                | Recognition<br>aaraceraadademeenee                           | _                   |
| 30 | ·                |          | E.   | <b>3</b> C] | 5'-ga<br>Re   | Icgca                   | gtat<br>dtat         | c cag              | gcac         | c cacarced                                      | TG AACAA CACGGATGTG-3<br>TG AACAA CACGGATGTG-3               | -                   |
|    |                  |          |      |             |               |                         | )<br> <br> <br>      | •                  | •            | FokI.                                           | FokI.                                                        |                     |
| 35 | 1<br>2 - 47 - 1  | 114-054  |      | -           | st<br>st      | em.                     | • E<br>• E           | Lool               | p.<br>Si     | tem                                             | Recognition                                                  |                     |
| )  |                  |          | н]   | ົຼ          | 5'-ga<br>Be   | cgca                    | gtct<br>gtct<br>itio | ccag.              |              | c cAcATCCG                                      | 9919951994946195915-3<br>Tg AAcAA cacggaATgTg-3<br>1000 Stem | -                   |
|    |                  |          |      |             |               | ,<br>,<br>,<br>,        |                      |                    | •            | FokI.                                           | FokI.                                                        |                     |

105/128

I I

What happens in the upper strand:

| <b>ب</b>                                                            | )                                |                                  | 10                               |                                                                        | 15                           | 20                                                                                                                                                                                        |                                                                                                                                          |                                                                                                                                          | <b>?</b> 7                                                                                        |
|---------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| (SzKB1230-012+)<br>!<br>!                                           | (SzKB1230-A17*)                  | (SzKB1230-A27*)                  | (SzKB1230-A11*)                  | (kapextURE) 5'-cc1<br>Scz                                              | (kapextUREPCR) 5'-cc1<br>Sca | (kaBR01UR)       5' -ggAggI         I       [RC]       5' -ccTct         (kaBR02UR)       5' -ggAgAg                                                                                      | l [RC] 5'-ccTct<br>(kaBRO3UR) 5'-ggTgcc                                                                                                  | I [RC] 5'-ccTct<br>(kaBR04UR) 5'-ggTggc                                                                                                  | l [RC] 5'-ccTct<br>Scab.                                                                          |
| 5'-gac cca gtc tcc a-tc ctc c-3'<br>  Site of cleavage in substrate | 5'-gac tca gtc tcc a-ct ctc c-3' | 5'-gac gca gtc tcc a-gg cac c-3' | 5'-gac gca gtc tcc a-gc cac c-3' | ctactcTgTcAcA <u>gTgcAc</u> AA gAc ATc cAg-3'  sense strand<br>bApaLI. | ctactctTgTcAcAgTg-3'<br>bb   | TggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3'<br>actctTgTcAcA <u>gTgcAc</u> AA gAc ATc cAg tcc a-tc ctc c-3' ON above is R.C. of this or<br>TggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3' | actctTgTcAcA <u>gTgcAc</u> AA gAc ATc cAg tcc a-ct ctc c-3' ON above is R.C. of this or<br>TggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3' | actctTgTcAcA <u>gTgcAc</u> AA gAc ATc cAg tcc a-gg cac c-3' ON above is R.C. of this or<br>[ggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3' | actctTgTcAcA <u>gTgcAc</u> AA gAc ATc cAg tcc a-gc cac c-3' ON above is R.C. of this or<br>ApaLI. |
|                                                                     |                                  |                                  |                                  | 106/                                                                   | 128                          | one                                                                                                                                                                                       | on€                                                                                                                                      | oné                                                                                                                                      | one                                                                                               |

gtctcctggacagtcgatc .g.cttg....a.ag.: ....aq... .g.c..a..g...ag.g.. Dot form... gtctcctggacagtcgatc ggccttgggacagacagtc gtctcctggacagtcagtc ggccccagggcagaggtc Sequence 5'-cAcATccgTg TTgTT cAcggATgTg gATcgAcTgTccAggAgAc-3' 5'-gtctcctggacagtcgatc cAcAIccgTg AAcAA cAcggAIgTg-3' 5'-cAcATccgTg TTgTT cAcggATgTg gAcTgTcrccAAggcc-3' 5'-ggccttgggacagacagtc cAcAIccgTg AAcAA cAcggATgTg-3' 5'-ggccccagggcagaggtc cAcAIccgIg AAcAA cAcggAIg-3' 5'-сАсАТссдТд ТТдТТ сАсддАТдТд дАсТдАсТдТссАддАдАс-3' 5'-gtctcctggacagtcagtc cAcAIccgTg AAcAA cAcgGATgTg-3' 5'-cAcATccgTg TTgTT cAcggATgTg gAcccTcTgcccTgggggcc-3' Stem..... loop. Stem..... Recognition..... Stem..... loop. Stem..... Recognition..... Stem..... loop. Stem..... Recognition..... Stem..... loop. Stem..... Recognition..... Recognition..... Stem.... Loop. Stem.... Recognition..... Stem.... Loop. Stem.... Recognition..... Stem.... Loop. Stem.... VL133-2a2 VL133-2c VL133-1c VL133-31 Name 96 101 112 123 128  $\sim$ 0 Table 515 Lambda URE adapters bases 13.3 to 19.3 N Number of mismatches.... 128 0 ഗ 0 Number of sequences..... 88 e 0 83 72 æ С 64 [RC] [RC] 4 S 64 [RC] [RC] Ntot (VL133-2a2) (VL133-2c) (VL133-31) (VL133-1c) Ы 15 25 30 20 5 10



j



(ON\_Lam133PCR) 5'-ccTcTgAcTgAgT gcA cAg AGt gc-3'

Table 525 ONs used in Capture of kappa light chains using CJ method and BsmAI

All ONs are written 5' to 3'.

| 5<br>10 | REdapters (6)<br>ON_20SK150<br>ON_20SK15L<br>ON_20SK15L<br>ON_20SK15A<br>ON_20SK15A<br>ON_20SK15A | <ul> <li>12 BBBABBATBBABACTBBBTC</li> <li>12 BBBAABATBBABACTBBBTC</li> <li>17 BBBABABACTBBBACTBBBTC</li> <li>27 BBBTBCCTBBABACTBABTC</li> <li>27 BBBTBBCCTBBBABACTBCBTC</li> <li>3 BBBABTCTBBABACTBCBTC</li> <li>3 BBBABTCTBBABACTBBBTC</li> </ul>                                                                                             |
|---------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15      | Bridges (6)<br>kapbr±1012<br>kapbr±1112<br>kapbr±1112<br>kapbr±11A27<br>kapbr±11A11<br>kapbr±11B3 | BBBABBATBBABACTBBBATCATCTBACATBTBCACTBTBACABABB<br>BBBAABATBBABACTBBBTCATCTBTBTCATBTBCACTBTBACABABB<br>BBBABBABTBBABACTBBBTCATCTBTBCACTBTBACABABB<br>BBBTBSCTBBBABACTBBBATCATCTBTBCACTBTBACABABB<br>BBBTBSCTBBBABACTBBBATCATCTBTBCACTBTBACABABB<br>BBBABTCTBBBABACTBBBATCATCTBTBCACTBTBACABABB<br>BBBABTCTBBBABACTBBBATCATCTTBTBCACTBTBACABABB |
| 20      | Extender (5' bii<br>kapext1bio                                                                    | otinylated)<br>ccTcTgTcAcAgTgcAcAAgAcATccAgATgAcccAgTcTcc                                                                                                                                                                                                                                                                                      |
| 25      | Primers<br>kaPCRt1<br>kapfor                                                                      | ccTcTgTcAcAgTgcAcAAgAc<br>5'-aca ctc tcc cct gtt gaa gct ctt-3'                                                                                                                                                                                                                                                                                |

Table 530 30

PCR program for amplification of kappa DNA 95°C 5 minutes 95°C 15 seconds 65°C 30 seconds

- 72°C 1 minute 72°C 7 minutes 4°C hold
- 50 ng 1x 4U 200 μM each 300 nM 300 nM Reagents (100 ul reaction): Template 10x turbo PCR buffer turbo Pfu dNTPs kaPCRt1 kapfor Ś 10

Table 610: Stuffer used in VH

|            |             |            |             | GA         | GAGTCGTCTA | 901 |   |
|------------|-------------|------------|-------------|------------|------------|-----|---|
| GGCGCATAAG | AGGATGTGGA  | TTAACGAAGC | GTCGCTCTGG  | TTGGCCGTAA | TACGAAAATT | 841 |   |
| GCTGAAAATG | ATGAAGATCA  | GATAAGCACT | TGGAACAGTT  | TTGCTCCCGA | AGTGGGTTTA | 781 | Ś |
| ACCCGGTCAG | ATGTGGTCGC  | CTTGCCTGGG | TCGTCCTGTG  | CGACAAGCGA | TTCTCACCAA | 721 |   |
| TATGATTGTT | CAGAAAACGA  | AACCGTGGAA | GGAGTATCAA  | GTCATCAGGC | GAAGAAACGC | 661 |   |
| GGCCGCAGCG | GTGTACCGCA  | AATTTCTTTG | CCGGGCCAAAT | CCTTAACGTT | CCTGCAATGG | 601 |   |
| CTGGAAAACA | ATGTGAGTAA  | TATGGCAATA | TTCCAAACGC  | GGGAGACTCT | GAAGATACCT | 541 |   |
| GGCTGCGCTG | AGGTTGTGTT  | CCACAGCAGG | TGCTGGGGAAA | TTGATCTGTT | CCACAGGCGG | 481 | 0 |
| ATCACCAATC | AGGGAGACAA  | GAGGCGGTGC | AATTTTGTAT  | TTGGAGCAAA | AATATAAGTG | 421 |   |
| TGGTTCGCTG | ACGGCCCCAAC | ACAACCCAGG | TGGCTACGAA  | ACAGCGCCAG | GATAAGTGGT | 361 |   |
| TATGCCATTT | CTGCCGTACC  | ACCGTAGTGG | GTTGAAGCGT  | TGACCAGTAT | AACGTTTGGC | 301 |   |
| TGCCATCCTG | AGCCAGGCTC  | ACCTGGCAGC | TGATGGTAAA  | TGCTTAATGA | GGCATCAATT | 241 |   |
| ACGTTGGGAT | AAACATTAAC  | CAGTTGGTAG | TCCGCGTCGT  | CACAGAGCGA | TCTGGTTTGA | 181 | 5 |
| AGCAGCGACP | CTACTCTGCA  | CTTTTTAC   | TAACCTGAGG  | GTCAGGATCT | CAAACCAGTC | 121 |   |
| TGTTATTCGC | AGGCATGGGA  | ACTGCTGATC | GCCACGCTTA  | TTGAGCAAAA | GACCGACTGC | 61  |   |
| TACGGAGATC | CAGATCGCGT  | TGGGGTGGTG | TGCCTTTTTG  | CAGATCTGTT | TCCGGAGCTT |     |   |

|    | Table 620: DNA segue<br>! pCES5 6680 bases<br>!                                                               | nce of pCES5<br>= pCes4 with stuffe                                                                       | irs in (                                                                         | CDR1-2 and CDR3 2000.12.13                                           |
|----|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 5  | Ngene = 6680<br>  Useful REs (cut MA                                                                          | noLI fewer than 3 ti                                                                                      | mes) 2(                                                                          | 000.06.05                                                            |
|    | Non-cutters<br>Acc651 Ggtacc                                                                                  | Afel AGCgct                                                                                               | Ave                                                                              | ll Cctagg                                                            |
| 01 | Bsabl GATNNnnatc<br>BsrGI Tgtaca<br>BstZ171 GTAtac<br>EcoRV GATatc<br>MacT TGGCa                              | BsiWI Cgtacg<br>BstAPI GCANNNNntgc<br>BtrI CACgtg<br>Fsel GGCCGGcc<br>Nruit TCCcca                        | BSm<br>BSt<br>BSt<br>BSt<br>BS<br>F<br>C<br>I<br>I<br>K<br>D<br>I<br>K<br>D<br>I | FI Nnnnnnnnnnngtccc<br>31 TTcgaa<br>1361 GAGctc<br>1361AGcc          |
| 15 | Paci TTAATtaa<br>PpuMi RGgwccy<br>Sacii CCGCgg<br>Sgfi GCGATcgc<br>Sphi GCATcgc                               | Pmei GTTTagac<br>Pshal GTTTagac<br>Pshal GACNNnngtc<br>Sbfi CCTGCAgg<br>SnaBl TACgta<br>Sse83871 CCTGCAgg | Pmll<br>Sacl<br>Sex<br>Seel<br>Stul                                              | . CACgtg<br>. CACgtg<br>. CACgtc<br>. CACgtg<br>. Actagt<br>. Actagt |
| 20 | ISWAL ATTTAAAT<br> <br>  cutters                                                                              | Xmal Cccggg                                                                                               |                                                                                  |                                                                      |
| 25 | I Enzymes that cut m<br>AlwNI CAGNNNctg<br>BsgI ctgcac<br>BsrFI Rccggy<br>Earl CTCTTCNnnn<br>Faul nNNNNNGCGGG | ore than 3 times.<br>5<br>5<br>10<br>10                                                                   |                                                                                  |                                                                      |
| 30 | ! Enzymes that cut f<br> <br> Ecool091 RGgnccy<br> BssS1 Ctcgtg<br> -"- Cacgag                                | rom 1 to 3 times.<br>3 7<br>1 12<br>1 1703                                                                | 2636                                                                             | 4208                                                                 |
| 35 | BspHI Tcatga<br> AatII GACGTc<br> BciVI GTATCCNNNNN<br> BciVI CTGAAG<br> -" cttcag                            | 3 43<br>1 65<br>2 140<br>1 301                                                                            | 148<br>1667                                                                      | 1156                                                                 |
| 40 | HAVAI CYCGTG<br>BsiHKAI GWGCWC<br>HgiAI GWGCWC<br>BcgI gcannnntcg<br>Scal AGTact                              | 2 10<br>3 401<br>3 401<br>1 461<br>1 505                                                                  | 2347<br>2321<br>2321                                                             | 6137<br>4245<br>4245                                                 |

|    | Pvul CGATca                  | e       | 616  | 3598 | 5926         |
|----|------------------------------|---------|------|------|--------------|
|    | !FspI TGCgca                 | 0       | 763  | 5946 | )<br>  ·<br> |
|    | Bgli GCCNNNNnggc             | m       | 864  | 2771 | 5952         |
| :  | BpmI CTGGAG                  | 1       | 868  |      |              |
| ŝ  | I-"- ctccag                  | 1.4     | 413  |      |              |
|    | <b>!Bsal GGTCTCNnnn</b>      | 1       | 916  |      |              |
|    | ! AhdI GACNNNnngtc           | L       | 983  |      |              |
|    | <b>!Eaml1051</b> GACNNNnngtc | 1       | 983  |      |              |
|    | IDrdI GACNNNNngtc            | 3       | .768 | 6197 | 6579         |
| 10 | <b>!Sapi gaagagc</b>         | 1       | 966  |      |              |
|    | Pwill CAGetg                 | 3 2     | 054  | 3689 | 5896         |
|    | <b>!PflMI</b> CCANNNNLGG     | 3 2     | 233  | 3943 | 3991         |
|    | HindIII Aagett               | 1 2     | 235  |      |              |
|    | Parl Gtgcac                  | 1 2     | 321  |      |              |
| 15 | !BspMI Nnnnnnngcaggt         | 1 2     | 328  |      |              |
|    | I-"- ACCTGCNNNN              | 2 3     | 460  |      |              |
|    | PstI CTGCAG                  | 1 2     | 335  |      |              |
|    | <b>IACCI GTMKaC</b>          | 2 2     | 341  | 2611 |              |
| 1  | HincII GTYrac                | 2       | 341  | 3730 |              |
| 20 | Sall Gtcgac                  | 1       | 341  |      |              |
|    | <b>!Tlii</b> Ctcgag          | 1       | 347  |      |              |
|    | !XhoI Ctcgag                 | 1       | 347  |      |              |
|    | !BbsI gtcttc                 | 2       | 383  | 4219 |              |
|    | <b>!BlpI GCtnagc</b>         | 1 2     | 580  |      |              |
| 25 | <b> EspI GCtnagc</b>         | 1       | 580  |      |              |
|    | SgrAI CRccggyg               | 1 2     | 648  |      |              |
|    | Pagel Accggt                 | 2       | 649  | 4302 |              |
|    | Asci GGcgcgcc                | 1       | 689  |      |              |
| (  | BSSHII GCGCGC                | 1 2     | 690  |      |              |
| 30 | SELL GGCCNNNNDGGCC           | 1       | 770  |      |              |
|    | INAEI GCCggc                 | 2       | 776  | 6349 |              |
|    | INGOMIV Gccggc               | 5<br>7  | 776  | 6349 |              |
|    | lBtgI Ccrygg                 | Э       | 781  | 3553 | 5712         |
| l  | IDsal Ccrygg                 | 3<br>3  | 781  | 3553 | 5712         |
| 35 | INCOI CCAtgg                 | 1       | 781  |      |              |
|    | istyi cowwgg                 | З.<br>Э | 781  | 4205 | 4472         |
|    | IMfel Caattg                 | 1.2     | 795  |      |              |
|    | BspBI Tccgga                 | 1 2     | 861  |      |              |
| 9  | <b>[BglII Agat</b> ct        | 1 21    | 872  |      |              |
| 40 | <b>!BclI Tgatca</b>          | 1 2     | 956  |      |              |
|    | <b> Bsu36I Cctnagg</b>       | э<br>Э  | 004  | 4143 | 4373         |
|    | IXcmI CCANNNNNnnntgg         | 1 3.    | 215  |      |              |
|    | Mului Acgegt                 | 1       | 527  |      |              |
|                           |                                                 | 625<br>402 6310                                                                              |                                                             | 967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   | tataggttaa tgtcatgata ataatggttt<br>atgtgcgcgg aacccctatt tgtttatttt<br>tgagacaata accctgataa atgcttcaat<br>2) | -<br>9 with some RE sites removed              |
|---------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| L 3730<br>L 3767          | L 3811<br>3821<br>4695                          | 3827<br>4166<br>4182<br>4183<br>6673<br>4209<br>4209<br>4209                                 | 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                     | 44308<br>44415<br>45507<br>5508<br>5508<br>5508<br>5508<br>5508<br>5508<br>5508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5476<br>5672<br>5806<br>6118<br>6243                                              | cgcctatttt<br>2)<br>tttcggggaa<br>TATCCgctca<br>ciVI(1 of                                                      | from pUC119                                    |
| ac<br>Ja                  | aag<br>tto<br>XCN                               | secg - 1<br>Je thace - 1<br>thace - 1<br>trace - 1<br>Crownnn - 2<br>Inngagacg - 1<br>Sc - 1 | Jgccc<br>Jgccc<br>Jnnnnnctcctc<br>Annagg                    | ACNINGLC<br>ACNINGLC<br>ANNNNLGG<br>SCGC<br>CGC<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>1<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>CGC<br>2<br>C<br>C<br>C<br>C | Jat<br>59<br>51<br>51<br>51<br>51<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | <pre>gacgaaaggg cCTCGTGata  BssSI.(1/  CttaGACGTC aggtggcact  AatII.  tctaaataca ttcaaatatG  B</pre>           | aatattgaaa aaggaagagt<br>01 to 1061 = ApR gene |
| Hpal GTTa:<br> Xbal Tctac | !<br> AflII Ctta<br>5  BsmI NGcat<br> -"- GAATG | IRBELI CGGY<br>INDEL GCTA<br>IBSELI GGT<br>ID IBSELI CGTC<br>!-"- NUNT<br>IAPAL GGGCC        | 15 1291201 GG<br>15 12920MI GGG<br>185eRI NNN<br>155RI CCTN | 20 ITTALLI GAC<br>ITTALILI GA<br>IKasl Ggege<br>IBSTXI CCAN<br>INOTI GCGGC<br>IEAGI CGGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BspDI Arcg<br>NdeI CAtat<br>NdeI CAtat<br>EcoRI Gaat<br>Psil TTAta<br>BsaAI YACG  | 35   1<br>35   61<br>  121                                                                                     | 40   Base # 2<br>1                             |

gcg K aaa CC P CC CC C tgt 9 1 9 1 9 1 9 P cca L tta L tta I atc L ttg P 102 103 104 : E Y S gAG TAC TCa o Scal... 137 138 139 140 141 142 143 144 145 146 147 148 149 L T T I G G P K E L T A F ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt Pvul.... (1/2) V gtg 59 59 107 108 109 110 111 112 113 114 115 116 117 118 119 T E K H L T D G M T V R E aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa N aac LL 89 Ctc atg agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt Y tac L Cta 156 157 158 159 160 161 162 163 164 H V T R L D R W E 87 88 E Q gaG CAa o Bcg1... L Ctg G ggt Frtt L ctg A 9cc T acg s agt V gtt V gtg A gcg 100 101 L V ttg gtt E gaa R cga E gag K aaa Q Caa T act P Cca A 9cc L ctt F ttt G 999 N aac H cac G ggt I atc Tr act D gac A A GCC D gat A A gct L ttg K aag S agc N aat D gac S agt G ggt F ttt Q cag 0 cag 126 127 T M acc atg M atg I att V V gtt s agc D gat M atg R Cgt tot 124 125 A I gcc ata P Cct N aac E gaa P CCA t s 80 Y tat 152 153 154 155 N M G D 48 49 D L gat ctc Ctt tr ttt A gct L tta H Cac C C tgc Ggt D gat V gta Å gct I ata L ctg F ttt E gaa K aaa A gcg R R CgC S agt E gaa P gca V gtc L ctt V gta E Gaa G ggc CGC CGC CGC C C C H ..BcgI 

| · -         | 651                  | cac                     | aac                 | atg                     | 666                     | gat                      | cat                     | gta                    | act                                | cgc                   | ctt                      | gat                     | cgt             | tgg             | gaa<br>170             | 600 r                 |      |
|-------------|----------------------|-------------------------|---------------------|-------------------------|-------------------------|--------------------------|-------------------------|------------------------|------------------------------------|-----------------------|--------------------------|-------------------------|-----------------|-----------------|------------------------|-----------------------|------|
| رم<br>      | 696                  | 166<br>E<br>gag         | L<br>L<br>ctg       | 168<br>N<br>aat         | 169<br>E<br>Gaa         | a<br>A<br>gcc            | 1/1<br>I<br>ata         | 172<br>P<br>cca        | 173<br>N<br>aac                    | 174<br>D<br>gac       | 175<br>E<br>gag          | 176<br>R<br>cgt         | D<br>D<br>gac   | 178<br>T<br>acc | 179<br>T<br>acg        | 180<br>M<br>atg       |      |
| - <i>01</i> | 741                  | 181<br>P<br>cct         | 182<br>V<br>gta     | 183<br>A<br>GCA<br>Bsrl | 184<br>M<br>ATG<br>DI   | 185<br>A<br>gca<br>(1/2) | 186<br>T<br>aca         | 187<br>T<br>acg        | 188<br>L<br>tTG<br>Fs <sub>I</sub> | 189<br>R<br>CGC<br>DI | 190<br>K<br>Aaa<br>. (1  | 191<br>L<br>cta<br>[/2] | 192<br>L<br>tta | 193<br>T<br>act | 194<br>G<br>ggc        | 195<br>E<br>gaa       |      |
| <i>15</i>   | 786                  | 196<br>L<br>cta         | 197<br>L<br>ctt     | 198,<br>act             | 199<br>L<br>cta         | 200<br>A<br>gct          | 201<br>5<br>tcc         | 202<br>R<br>Cgg        | 203<br>Q<br>Caa                    | 204<br>Q<br>Caa       | 205<br>L<br>tta          | 206<br>I<br>ata         | 207<br>D<br>gac | 208<br>W<br>tgg | 209<br>M<br>atg        | 210<br>E<br>gag       |      |
| ** == =     | 831                  | gcg                     | D<br>gat            | K X<br>R A              | v<br>gtt                | A gca                    | с то<br>G<br>gga        | P<br>Cca               | ctt<br>ctt                         | L<br>L<br>Ctg         | cgc                      | s<br>tcg                | gcc<br>gcc      | ct r ??         | P P                    | act<br>A<br>gct       |      |
|             | 876                  | 226<br>G<br>ggc         | 227<br>W<br>tgg     | 228<br>F<br>ttt         | 229<br>I<br>att         | 230<br>A<br>gct          | 231<br>D<br>gat         | 232<br>K<br>aaa        | 233<br>S<br>tCT<br>Bpn             | 234<br>66<br>11       | 235<br>A<br>Gcc<br>. (1/ | 236<br>G<br>ggt<br>'2)  | 237<br>E<br>gag | 238<br>R<br>cgt | 239<br>6<br>966<br>Bss | 240<br>5<br>TCT<br>AI |      |
| 25          | 921<br>Bsal          | 241<br>R<br>Cgc         | 242<br>G<br>ggt     | 243<br>I<br>atc<br>Bs   | 244<br>I<br>ATT<br>JLI. | 245<br>A<br>GCa          | 246<br>A<br>gca<br>2/2) | 247<br>L<br>ctg        | 248<br>G<br>ggg                    | 249<br>P<br>CCa       | 250<br>D<br>gat          | 251<br>G<br>ggt         | 252<br>K<br>aag | 253<br>P<br>ccc | 254<br>S<br>tcc        | 255<br>R<br>cgt       |      |
| 30          | 996                  | 256<br>I<br>atc         | 257<br>v<br>gta     | 258<br>v<br>gtt         | 259<br>I<br>atc         | 260<br>Y<br>tac          | 261<br>T<br>acG         | 262<br>T<br>ACG<br>MdI | 263<br>G<br>ggg                    | 264<br>S<br>aGT       | 265<br>Q<br>Cag          | 266<br>A<br>gca         | 267<br>T<br>act | 268<br>M<br>atg | 269<br>D<br>gat        | 270<br>E<br>gaa       |      |
| 35          | 1011                 | 271<br>R<br>cga         | 272<br>N<br>aat     | 273<br>R<br>aga         | 274<br>Q<br>cag         | 275<br>I<br>atc          | 276<br>A<br>gct         | 277<br>E<br>gag        | 278<br>I<br>ata                    | 279<br>G<br>ggt       | 280<br>A<br>gcc          | 281<br>5<br>tca         | 282<br>L<br>ctg | 283<br>I<br>att | 284<br>K<br>aag        | 285<br>H<br>cat       |      |
| 40          | 1056<br>1062<br>1081 | 286<br>W<br>tgg<br>cata | 287<br>taa<br>atata | ict t                   | :taga                   | lttga                    | it tt                   | aaaa                   | ictto                              | att                   | ttta                     | att                     | ctg<br>taaa     | tcag<br>agga    |                        | aagtttad<br>aggtgaag  | ga t |

|          | 1141      | tcctttttga           | taatctcatg             | accaaaatcc              | cttaacqtqa                           | atttcattc              | cactgagcgt     |
|----------|-----------|----------------------|------------------------|-------------------------|--------------------------------------|------------------------|----------------|
|          | 1201      | cagaccccgt           | agaaaagatc             | aaaggatctt              | cttgagatcc                           | tttttttg               | cqcqtaatct     |
|          | 1261      | gctgcttgca           | aacaaaaaaa             | ccaccgctac              | cagcggtggt                           | ttgtttgccg             | gatcaagagc     |
| ı        | 1321      | taccaactct           | tttccgaag              | gtaactggct              | tcagcagagc                           | gcagatacca             | aatactgtcc     |
| Ś        | 1381      | ttctagtgta           | gccgtagtta             | ggccaccact              | tcaagaactc                           | tgtagcaccg             | cctacatacc     |
|          | 1441      | tcgctctgct           | aatcctgtta             | ccagtggctg              | ctgccagtgg                           | cgataagtcg             | tgtcttaccg     |
|          | 1501      | ggttggacto           | aagacgatag             | ttaccggata              | aggcgcagcg                           | gtcgggctga             | acgggggggtt    |
|          | 1561      | cgtgcataca           | gcccagcttg             | gagcgaacga              | cctacaccga                           | actgagatac             | ctacagcgtg     |
| 10       | 1621<br>! | agcattgaga           | aagcgccacg             | cttcccgaag              | ggagaaaggc                           | ggacagGTAT<br>RciVT    | CCggtaagcg     |
|          | 1681<br>! | gcagggtcgg           | аасаддадад             | cgCACGAGgg<br>BssSI.(2/ | agcttccagg<br>2)                     | gggaaacgcc             | tggtatcttt     |
|          | 1741      | atagtcctgt           | cgggtttcgc             | cacctctgac              | ttgagcgtcg                           | atttttgtga             | tgctcgtcag     |
|          | 1801      | ggggggggggg          | cctatggaaa             | aacgccagca              | acgcggcctt                           | tttacggttc             | ctggcctttt     |
| ຸ        | 1861<br>I | gctggccttt           | tgctcACATG<br>PciI     | Ttctttcctg.             | cgttatcccc                           | tgattctgtg             | gataaccgta     |
|          | 1921      | ttaccgcctt           | tgagtgagct             | gataccgctc              | gccgcagccg                           | aacgaccqaq             | cgcagcgagt     |
|          | 1981      | cagtgagcga           | ggaagcgGAA             | GAGCgcccaa              | tacgcaaacc                           | gcctctcccc             | gcgcgttggc     |
| <br>c    |           |                      | Sapi                   | •                       |                                      |                        |                |
|          | 2041      | cgattcatta           | atgCAGCTGg<br>PVUII.(1 | cacgacaggt<br>/3)       | ttcccgactg                           | gaaagcgggc             | agtgagcgca     |
|          | 2101      | acgcaatTAA           | TGTgagttag             | ctcactcatt              | aggcaccca                            | ggcTTTACAc             | tttatgcttc     |
|          |           | :                    | 35                     | Plac                    |                                      | 10.                    | •              |
| 5        | 2161      | cggctcgtat           | gttgtgtgga             | attgtgagcg              | gataacaatt                           | tcacaCAGGA             | AACAGCTATG     |
| 22       |           |                      |                        |                         |                                      | MI3Rev                 | seq primer     |
|          | 2221      | ACcatgatta           | CGCCAAGCTT<br>Pf1MT    | TGGagccttt              | tttttggaga '                         | tttcaac                | ·              |
|          |           |                      | Hind3.                 | •                       |                                      |                        |                |
| 30       | signal::  | linker::CLig         | <b>j</b> ht            |                         |                                      |                        |                |
|          |           | 123                  | 4 5 6                  | 7 8 .                   | 9 10 11                              | 12 13 14               | 15             |
| -        |           | fm K K               | L L                    | Ч<br>Ч                  | P L V                                | V P F                  | Х              |
| -        | 2269      | gtg aaa aas          | a tta tta tt           | c gca att c             | ct tta gtt e                         | <pre>gtt cct ttc</pre> | tat            |
| 35 I     |           |                      | Link                   | er                      | •<br>•<br>•<br>•<br>•<br>•<br>•<br>• | •                      | End of FR4     |
|          |           | 16 17 18             | 1 19 20                | 21 22 2                 | 3 24 25 3                            | 26 27 28               | 29 30          |
|          | 2314      | S H S<br>tct cac aG1 | A Q GCA Cad            | V Q L<br>atc caa CT     | CAG GTC GI                           |                        | I K<br>atr ass |
| <b>d</b> |           | AF                   | all                    | E B                     |                                      | Xhol                   |                |
| 40       |           | •                    |                        |                         | BspMI                                | •<br>•<br>•            |                |
|          |           |                      |                        |                         | Sall.                                |                        |                |
| • •••    |           |                      |                        |                         | Hincl                                | (1/2)<br>(.(1/2)       |                |

74 75 V D gtg gat 89 90 E Q gag cag 

 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 104
 105

 D
 S
 K
 D
 S
 T
 Y
 S
 L
 S
 T
 L
 T
 L

 gac agg aag gac agg acg tag agg tag agg tag agg tag agg tag agg tag agg tag
 agg tag agg tag agg tag
 agg tag agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tag
 agg tagg tag
 a agg EspI.. 45 s tct г 60 ctg ctg 

 106
 107
 108
 109
 110
 112
 113
 114
 115
 116
 117
 119
 120

 S
 K
 A
 D
 Y
 E
 K
 H
 K
 V
 Y
 A
 C
 E
 V

 AGC
 ama
 gca
 gac
 tag
 cac
 ama
 GTC
 TAC
 gra
 gtc
 gaa
 gtc

122 123 124 125 126 127 128 129 130 131 132 133 134 135 H Q G L S S P V T K S F N R cat cag ggc ctg agt tcA CCG GTg aca aag agc ttc aac agg 111 59 L cca 44 ! Vlight domains could be cloned in as ApaLI-XhoI fragments. | VL-CL(kappa) segments can be cloned in as ApaLI-AscI fragments. ρ. 8 39 40 41 42 43 V F I F P t GTC TTC atc ttc ccg c BbsI...(1/2) 57 58 V C gtg tgc c 87 88 V T gtc aca <u>c</u> 

 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73

 N
 N
 F
 Y
 P
 R
 E
 A
 K
 V
 Q
 W
 K

 at at at the state cost aga gag goes gag goes at gag gag
 F
 F
 A
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F</td Acc1...(2/2) 84 85 86 Q E S : cag gag agt c gtt 56 V 54 55 A S gcc tct ç AgeI....(1/2) GG CGCGCCCaatt 52 53 G T gga act ( 82 83 N S aac tcc c 38 tct AscI.... BssHII. 
 31
 32
 33
 34
 35
 36
 37

 R
 G
 T
 V
 A
 A
 P

 cgt
 gga
 act
 gtg
 gct
 gca
 cca
 46 47 48 49 50 51 D E Q L K S gat gag cag ttg aaa tct 81 G ggt t s 0 136 137 138 139 140 G E C . . gga gag tgt taa taa 79 0 Caa 76 77 78 N A L aac gcc ctc c Ckappa-31 32 R G 121 T T acc ...Espl... 2449 2359 2404 2539 2584 2494 2629 2674 20 10 15 25 35 5 30 40

.

|               |                                                   |                                 |                                 |                                                   |                                          |                                               | <b>A</b> •••                  | <b></b>                              | <b>.</b>                       |
|---------------|---------------------------------------------------|---------------------------------|---------------------------------|---------------------------------------------------|------------------------------------------|-----------------------------------------------|-------------------------------|--------------------------------------|--------------------------------|
|               | 15<br>+<br>+                                      | 2                               |                                 | t -                                               | ct<br>t                                  |                                               | rgtttgcctt                    | aaagccacg<br>atcttaacct              | gcgatccgcg<br>atgatgatgg       |
|               |                                                   |                                 |                                 | 28 29 30<br>E S G<br>gag tct gg                   | 43 44 4<br>S C J                         |                                               | cttcAGATC                     | Bgill.<br>tgcttgagc a<br>gtcgtcagg a | tgacacaga g<br>atttgctta a     |
|               | 10 11 12<br>A G L                                 | 5<br>5<br>7<br>7<br>7<br>7<br>7 |                                 | V3-23)<br>5 26 27<br>Q L L<br>AAlTTG tta <br>MfeI | 40 41 42<br>L R L<br>ttalcgtlctt         |                                               | tuffer.                       | atcgaccga c<br>cgccaaacc a           | acatctggt t<br>gatggcatc a     |
| ŗţ            | lsion gene<br>7 8 9<br>T A A                      |                                 |                                 | FR1 (DP47/<br>23 24 2<br>E V<br>gaalgtt C         | 7 38 39<br>6 6 S<br>9t ggt tct           |                                               | and CDR2<br>s in thís s       | cgttacgga g<br>ggatgttat to          | gcaagcagc ga<br>aacacqttq qa   |
| agacagtca t   | CH1::III fu                                       | 20 21 22                        | A M A<br>CC atg gcc<br><br>Ncol |                                                   | 11<br>35 36 3'<br>Q P (<br>caglcctlg     |                                               | DR1, FR2, a<br>stop codon:    | tgcagatc go<br>TCAggcat go           | acctactc to<br>agaaacat ta     |
| ctatttcaag ga | 3(stuffed)::C<br>1 2 3 4<br>K Y L<br>d aa tac.cta | 17 18 19                        | A Q P<br>GCC cag ccG G<br>LI    |                                                   | FR<br>32 33 34<br>G L V<br>siggticttigtt | -FR1<br>47 48<br>5 6<br>c TCC GGA <br>  BSPEI | stuffer for C<br>there are no | ttgtggggt gg<br>ttaactgcT GA<br>Rrlf | aggettttt tti<br>cqtcaqttq qti |
| 2701          | PelB::3-2:<br>1<br>2723 atc                       | 16                              | A<br>2768 gcG (<br>Sfj          | 2789                                              | <br>31<br>6<br>2813   ggc                | <br>46<br>A<br>2858  gct                      | S<br>2867 T                   | 2887 t<br>2947 c                     | 3007 g<br>3067 t               |
| -             | <u>ک</u>                                          | 10                              | 13                              |                                                   | 25 1                                     | 30                                            | 35 -                          | 40                                   | •                              |

:

| tgg cagcagccag gctctgccat cctgaacgtt tggctgacca gta<br>gta gtggctgccg tacctatgCC Atttgataag TGGtacagcg cca<br>XcmL | oct of ggaacagaaa acgatatgat tgttttctca ccaacgacaa gcga<br>gcc tgggatgtgg tcgcacccgg tcagagtggg tttattgctc ccga<br>aag cactatgaag atcagctgaa aatgtacgaa aattttgggcc gtaa<br>PvuII. | LT (2/2)<br>3 5 6 7 8 9 10 11 12 13 14 15 16<br>3 94 95 96 97 98 99 100 101 102 103 104 105<br>5 R D N S K N T L Y L Q M<br>CT AGA   gac  aac  tct   aag  aat  act  ctc  tac  ttg  cag  atg <br>(bal | 19 20<br>19 109<br>2 s l s i r s g<br>11 l RarII             | <pre>h s p t .<br/>at tct cca aac tya ccagacga cacaaacggc<br/>aa tcccgcgcat gggatggtaa agaggtggcg tctttgctgg cctgg<br/>ag gccaaaaatt ggcaggagtg gacacagcag gcagcgaaac aagca<br/>gg tactatgctg atgtaaacgg caatattggt tatgttcata ctggt<br/>cgt caatcaggcc atgatccgcg attacccgtt cctggtacgg gaaaa<br/>gg ctattgcctt ttgaaatgaa ccctaaggtg tataaccccc ag<br/>Mhel</pre> | ci gtc tca agc |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3127 taaaacctg<br>3187 gcgtaccgt<br>3247 cgaaacaac<br>3307 gtatgaggc<br>3367 gaaaccacg                             | 3547 tcaaaaccg<br>3607 tgtgcttgc<br>3667 agttgataa<br>3727 ctgGTTAAC                                                                                                               | Hpal<br>HincII<br>HincII<br>HincII<br>FR3-<br>4<br>4<br>4<br>3767<br>1707<br>1707                                                                                                                    | FR3<br>17 18 19<br>106 107 108<br>N S L<br>8806 laaclagclTTA | 164 gg caa ca<br>1834 gg caa ca<br>1872 ttacgctaa<br>1832 tcagatgaa<br>1992 catcaactg<br>1052 tccagatcg<br>1112 ctggaaagg<br>164 aa                                                                                                                                                                                                                                 | 182 GIGTCIACC  |

|         |           | 136                     | 137                    | 138                                                                                         | 139                                 | 140             | 141                   | 142                     | 143                     | 144                     | 145             | 146             | 147             | 148             | 149             | 150             |
|---------|-----------|-------------------------|------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|-----------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| رب<br>س | 1<br>4198 | д<br>gcc                | s<br>tcc               | acc<br>acc                                                                                  | K<br>aag                            | 395<br>9        | P<br>CCa              | s<br>tcg                | V<br>gtc                | F<br>ttc                | P<br>CCC        | L<br>ctg        | Agca            | CC P            | s<br>tcc        | s<br>tcc        |
|         | 4243      | 151<br>K<br>aag         | 152<br>S<br>agc        | 153<br>T<br>acc                                                                             | 154<br>5<br>tct                     | 155<br>G<br>999 | 156<br>G<br>ggc       | 157<br>T<br>aca         | 158<br>A<br>gcg         | 159<br>A<br>gcc         | 160<br>L<br>ctg | 161<br>G<br>ggc | 162<br>C<br>tgc | 163<br>L<br>ctg | 164<br>V<br>gtc | 165<br>K<br>aag |
| 07      | 4288      | 166<br>D<br>gac         | 167<br>Y<br>tac        | 168<br>F<br>ttc                                                                             | 169<br>P<br>ccc                     | 170<br>E<br>gaa | 171<br>P<br>ccg       | 172<br>V<br>gtg         | 173<br>T<br>acg         | 174<br>V<br>gtg         | 175<br>S<br>tcg | 176<br>W<br>tgg | 177<br>N<br>aac | 178<br>S<br>tca | 179<br>G<br>ggc | 180<br>A<br>gcc |
| 15      | 4333      | 181<br>L<br>ctg         | 182<br>T<br>acc        | 183<br>5<br>agc                                                                             | 184<br>G<br>ggc                     | 185<br>V<br>gtc | 186<br>H<br>cac       | 187<br>T<br>acc         | 188<br>F<br>ttc         | 189<br>P<br>ccg         | 190<br>A<br>gct | 191<br>V<br>gtc | 192<br>L<br>cta | 193<br>Q<br>Cag | 194<br>S<br>tcc | 195<br>S<br>tca |
| 20      | 4378      | 196<br>G<br>gga         | 197<br>L<br>ctc        | 198<br>Y<br>tac                                                                             | 199<br>5<br>tcc                     | 200<br>L<br>ctc | 201<br>S<br>agc       | 202<br>S<br>agc         | 203<br>V<br>gta         | 20 <b>4</b><br>V<br>gtg | 205<br>T<br>acc | 206<br>V<br>gtg | 207<br>P<br>ccc | 208<br>S<br>tcc | 209<br>S<br>agc | 210<br>S<br>agc |
|         | 4423      | 211<br>L<br>ttg         | 212<br>G<br>ggc        | 213<br>T<br>acc                                                                             | 214<br>Q<br>cag                     | 215<br>T<br>acc | 216<br>Y<br>tac       | 217<br>I<br>atc         | 218<br>C<br>tgc         | 219<br>N<br>aac         | 220<br>V<br>gtg | 221<br>N<br>aat | 222<br>H<br>cac | 223<br>K<br>aag | 224<br>P<br>CCC | 225<br>S<br>agc |
|         | 4468      | 226<br>N<br>aac         | 227<br>T<br>acc        | 228<br>K<br>aag                                                                             | 229<br>V<br>gtg                     | 230<br>D<br>gac | 231<br>K<br>aag<br>ON | 232<br>K<br>AAA<br>FTQH | 233<br>V<br>GTT<br>Cfor | 234<br>E<br>GAG         | 235<br>P<br>CCC | 236<br>K<br>AAA | 237<br>S<br>TCT | 238<br>C<br>TGT | :               |                 |
| 35      | 4507      |                         |                        | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | 9 14<br>• A<br>6 6C<br>• tI<br>agI. |                 | 1 14<br>A H           | LLYH<br>214<br>t ca     | は314<br>314<br>た Ca     | inke<br>41414<br>I H    | 5 14<br>C Ca    | 6 14<br>t ca    | c gg            | 8 14<br>9 gc    | 9 15<br>c gc    | ०्त             |
| 40      | 4543      | 151 15<br>E C<br>gaa ca | 5215<br>1 K<br>1 a a a | a 15<br>C 15<br>Ct I                                                                        | 4<br>15<br>cat                      | 5 15<br>C t C   | 6 15<br>8 15<br>8 3   | 715<br>88               | 815<br>90<br>93a        | 9 16<br>t L             | 0 16<br>9 aa    | 1 16<br>t gg    | 2 16<br>9 90    | 3 16<br>C 9C    | 4 16<br>a ta    | a<br>D          |
|         |           | Mature<br>166 16        | , III<br>17 16         | 8 16                                                                                        | <br>9 17                            | 0 17            | 1 17                  | 2 17.                   | 3 17                    | 4 17                    | 5 17            | 6 17            | 171             | 8 17            | 9 18            | :               |

|    | !<br>4588 | act<br>act      | att<br>att      | E<br>Caa        | s<br>agt                | tat<br>tat              | t<br>tta                 | A<br>gca        | K<br>aaa        | сt<br>Ссt       | H<br>Cat        | aca             | E<br>gaa        | N<br>aat        | s<br>tca        | t F<br>tt       |
|----|-----------|-----------------|-----------------|-----------------|-------------------------|-------------------------|--------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ś  | 4633      | 181<br>T<br>act | 182<br>N<br>aac | 183<br>V<br>gtc | 184<br>W<br>tgg         | 185<br>K<br>aaa         | 186<br>D<br>gac          | 187<br>D<br>gac | 188<br>K<br>aaa | 189<br>T<br>act | 190<br>L<br>tta | 191<br>D<br>gat | 192<br>R<br>cgt | 193<br>Y<br>tac | 194<br>A<br>gct | 195<br>N<br>aac |
| 01 | 4678      | 196<br>Y<br>tat | 197<br>E<br>gag | 198<br>G<br>ggc | 199<br>C<br>tgt         | 200<br>L<br>ctg         | 201<br>801<br>85<br>85   | 202<br>N<br>AAT | 203<br>A<br>GCt | 204<br>T<br>aca | 205<br>G<br>ggc | 206<br>V<br>gtt | 207<br>v<br>gtg | 208<br>V<br>gtt | 209<br>C<br>tgt | 210<br>T<br>act |
| 15 | 4723      | 211<br>G<br>ggt | 212<br>D<br>gac | 213<br>E<br>gaa | 214<br>T<br>act         | 215<br>Q<br>cag         | 216<br>C<br>tgt          | 217<br>Y<br>tac | 218<br>G<br>ggt | 219<br>T<br>aca | 220<br>W<br>tgg | 221<br>V<br>gtt | 222<br>P<br>cct | 223<br>I<br>att | 224<br>G<br>ggg | 225<br>L<br>ctt |
| 20 | 4768      | 226<br>A<br>gct | 227<br>I<br>atc | 228<br>P<br>cct | 229<br>E<br>gaa         | 230<br>N<br>aat         | 231<br>E<br>gag          | 232<br>G<br>ggt | 233<br>G<br>ggt | 234<br>G<br>ggc | 235<br>s<br>tct | 236<br>E<br>gag | 237<br>G<br>ggt | 238<br>G<br>ggc | 239<br>G<br>ggt | 240<br>S<br>tct |
|    | 4813      | 241<br>E<br>gag | 242<br>G<br>ggt | 243<br>G<br>ggc | 244<br>G<br>ggt         | 245<br>5<br>tct         | 246<br>E<br>gag          | 247<br>G<br>ggt | 248<br>G<br>ggc | 249<br>G<br>ggt | 250<br>T<br>act | 251<br>K<br>aaa | P<br>P<br>cct   | 253<br>P<br>cct | 254<br>E<br>gag | 255<br>Y<br>tac |
| 25 | 4858      | 256<br>G<br>ggt | 257<br>D<br>gat | 258<br>T<br>aca | 259<br>P<br>cct         | 260<br>I<br>att         | 261<br>P<br>ccg          | 262<br>G<br>ggc | 263<br>Y<br>tat | 264<br>T<br>act | 265<br>Y<br>tat | 266<br>I<br>atc | 267<br>N<br>aac | 268<br>P<br>cct | 269<br>L<br>ctc | 270<br>D<br>gac |
| 30 | 4903      | 271<br>G<br>ggc | 272<br>T<br>act | 273<br>Y<br>tat | 274<br>P<br>ccg         | 275<br>P<br>cct         | 276<br>G<br>ggt          | 277<br>T<br>act | 278<br>E<br>gag | 279<br>Q<br>Caa | 280<br>N<br>aac | 281<br>P<br>CCC | 282<br>A<br>gct | 283<br>N<br>aat | 284<br>P<br>cct | 285<br>N<br>aat |
| 35 | 4948      | 286<br>P<br>cct | 287<br>S<br>tct | 288<br>L<br>ctt | 289<br>E<br>GAG<br>Bseř | 290<br>E<br>GAG<br>UI ( | 291<br>S<br>tct<br>(2/2) | 292<br>Q<br>cag | 293<br>P<br>cct | 294<br>L<br>ctt | 295<br>N<br>aat | 296<br>T<br>act | 297<br>F<br>ttc | 298<br>M<br>atg | 299<br>F<br>ttt | 300<br>Q<br>cag |
| 40 | 4993      | 301<br>N<br>aat | 302<br>N<br>aat | 303<br>R<br>agg | 304<br>F<br>ttc         | 305<br>R<br>cga         | 306<br>N<br>aat          | 307<br>R<br>agg | 308<br>Q<br>Cag | 309<br>G<br>ggt | 310<br>A<br>gca | 311<br>L<br>tta | 312<br>T<br>act | 313<br>V<br>gtt | 314<br>Y<br>tat | 315<br>T<br>acg |
|    |           | 316<br>G        | 317<br>T        | 318<br>V        | 319<br>T                | 320<br>Q                | 321<br>G                 | 322<br>T        | 323<br>D        | 324<br>P        | 325<br>V        | 326<br>K        | 327<br>T        | 328<br>· Y      | 329<br>Y        | 330<br>0        |

356 357 358 359 360 G F N E D c ggc ttt aat gaG GAT BamHI.. Y W N tac tgg aac 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 P F V C E Y Q G Q S S D L P Q C C a ttc gtt tgt gaa tat caa ggc caa tcg tct gAC CTG Cct caa ... BspMI...(2/2) 6 99C G ggc D gat T acc ggc act gtt act caa ggc act gac ccc gtt aaa act tat tac cag 50 K aaa F ttc 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 I G D V S G L A N G N G A T G **) 431 432 433 434 4** K G A M t aag ggg gct atg a 

 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419

 G
 S
 E
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G ggt G ggt G ggc G ggt 387 388 3 G S 9 99t tct 0 462 463 1 I D ATC GAT ( BspDI.. E gag 442 443 444 445 446 447 448 A L Q S D A K gcg cta cag tct gac gct aaa 339 340 341 342 M Y D A A gct s tct G ggt gac 

 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386

 P
 P
 V
 N
 A
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G< 455 456 457 458 459 460 461 A T D Y G A A gct act gat tac ggt gct gct 331 332 333 334 335 336 337 338 339 340 Y T P V S S K A M Y tac act cct gta tca tca aaa gcc atg tat 

 346
 347
 348
 349
 350
 351
 352
 353
 354
 355

 G
 K
 F
 N
 C
 A
 F
 H
 S

 ggt
 aaa
 ttc
 aga
 gac
 tgc
 gct
 ttc
 cat
 tct

G ggc 429 430 A N Gct aat a N G ggt 427 428 4 A N gca aac g E gag s tct 6 99c M atg N gaa aac K aaa 99C E 423 424 4 Y E tat gaa a 452 453 454 4 D S V gat tct gtc g G ggt **4**D gat 392 393 3 5 E tct gag g A gcc D gat aat N L ctt G F gaa tt E BamHI. 

| ggt   | 495<br>G<br>Jgt            | 510<br>S<br>tet<br>525<br>G                     | 540<br>TC                                   | 555<br>Y<br>at                                | .70<br>.aa                            | caacttaatc<br>cgcacCGATC     | PvuI<br>tattttctcc<br>attttgttaa<br>gaaatcggca<br>ccagtttgga<br>accgtttgga<br>accgtctatc<br>tcgaggtgcc |
|-------|----------------------------|-------------------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------|
| act   | 194<br>D<br>Jac            | 509 :<br>P 254 :<br>P 324 :<br>F 4              | 1 1 33<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | M B<br>M C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | S S S S S S S S S S S S S S S S S S S | a c c<br>g c c               | cgg<br>gcc<br>gct<br>ggg<br>ggg                                                                        |
| gct ¿ | 493 4<br>G<br>ggt <u>g</u> | 508 5<br>L L<br>tta c<br>523 5<br>G c<br>G c    | aac t                                       | 553 5<br>Fr a<br>Ctta                         | 568 5<br>E<br>Jag t                   | jcgtt<br>lagag               | :gatg<br>(2/2)<br>Lcgtt<br>Lcgtt<br>Jtgtt<br>Jgcga<br>:tttg                                            |
| ggt   | 192<br>V<br>gtc            | S07<br>Y<br>F<br>F<br>S22<br>S22                | 537<br>I<br>ata                             | 152<br>152                                    | 67<br>K<br>ag                         | t tgo                        | a a a a a a a a a a a a a a a a a a a                                                                  |
| aat i | 491<br>0<br>caa            | 506 9<br>Q<br>Caa 1<br>521 9<br>V<br>V<br>dtc 1 | 536<br>7<br>8<br>8<br>8<br>8<br>8           | 551 5<br>A<br>gcc a                           | 5665<br>8665<br>aata                  | aaccc<br>aatag               | tGGCG<br>KasI<br>attgt<br>tttaa<br>gggtt<br>ggcta<br>gfcaa<br>tcaag                                    |
| ggt   | 490<br>A<br>gct            | 505<br>R<br>cgt<br>520<br>fat                   | 535<br>D<br>gac                             | 550<br>V<br>gtt                               | 565<br>8<br>54                        | ggaa.<br>Jogt                | rgaa<br>attt<br>jataa<br>jataa<br>saac                                                                 |
| aat   | 489<br>M<br>atg            | 504<br>F<br>519<br>C<br>F<br>C<br>C<br>C<br>C   | 534<br>C C<br>tgt                           | 549<br>Y<br>tat                               | 564<br>5764                           | 555<br>56                    |                                                                                                        |
| gct   | 488<br>Q<br>Caa            | 503<br>N<br>aat<br>518<br>R<br>cqc              | 533<br>D<br>gat                             | 548<br>L<br>tta                               | 563<br>A Lata                         | gtga.<br>ccag.               | rgaat<br>/2)<br>accgo<br>agcco<br>agcco<br>agcco<br>agcco<br>catca                                     |
| ctt   | 487<br>5<br>tcc            | 502<br>N<br>aat<br>517<br>C<br>C                | 532<br>I<br>att                             | 547<br>L<br>ctt                               | 562<br>N<br>aac                       | cgtco<br>ttcgo               | Agcci<br>(2,<br>(2,<br>(2,<br>(2,<br>(2,<br>(2,<br>(2,<br>(2,                                          |
| ggc   | 486<br>N<br>aat            | 501<br>M<br>atg<br>516<br>E<br>gaa              | 531<br>S<br>tct                             | 546<br>F<br>ttt                               | 561<br>A<br>gct                       | caa<br>cct                   | PI.<br>PJI.<br>Frgt<br>CGT<br>CGT<br>CGT<br>CGT                                                        |
| tcc   | 485<br>5<br>tct            | 500<br>L<br>tta<br>515<br>V<br>gtt              | 530<br>F<br>ttt                             | 545<br>A<br>gcg                               | 560<br>F<br>ttt                       | ttta                         | gtTG<br>gtTG<br>cggt<br>cggt<br>c<br>sgt<br>atta<br>Acta<br>rall:<br>rall:                             |
| gtt   | 484<br>G<br>ggC            | 499<br>P<br>cct<br>514<br>514<br>tcg            | 529<br>Е<br>Gaa                             | 544<br>F<br>ttt                               | 559<br>acg                            | cgt<br>aca                   | aca<br>gtg<br>raaaa<br>rraa<br>rraa<br>ccc<br>ccc                                                      |
| gac   | 483<br>A<br>gct            | 498<br>5<br>513<br>2<br>0<br>cag                | 528<br>Y<br>TAT                             | 543<br>V<br>gtc                               | 558<br>5<br>tcg                       | TC<br>I.<br>ccgt<br>cagc     | ccca<br>atct<br>cTTA<br>psi<br>atgg                                                                    |
| ggt   | 482<br>F<br>ttt            | 497<br>N<br>aat<br>512<br>P<br>cct              | 527<br>P<br>cCA<br>Nde                      | 542<br>G<br>ggt                               | 557<br>F<br>ttt                       | GAAT<br>EcoR<br>ctgg<br>cttg | (3/3<br>(3/3)<br>accontractor<br>atcona<br>ggcga                                                       |
| att   | 481<br>D<br>gat            | 496<br>D<br>gat<br>511<br>L<br>ttg              | 526<br>K<br>aaa                             | 541<br>R<br>cgt                               | 556<br>V<br>gta<br>571                | taa<br>gaa                   | មិលី ប្តី ឆ្នាំ ដំ ប៉ូ<br>ឆ្នាំ ឆ្នាំ ដំ ប៉ូ                                                           |
| 5488  | 2533<br>5533               | 5578<br>5623<br>5623                            | 5668                                        | 5713                                          | 5758                                  | 5803<br>5812<br>5871         | 5931<br>PvuI<br>5991<br>6051<br>6111<br>6171<br>6231                                                   |
| _     | رم<br>•                    | 01                                              | 15                                          | 50                                            | 25                                    | 30                           |                                                                                                        |

6291 gtaaagcact aaatcggaac cctaaaggga gcccccgatt tagagcttga cggggaaaGC

- NgoMIV.. CGGCgaacgt ggcgagaaag gaagggaaga aagcgaagg agcgggcgct agggcgctgg ..NgoMIV. (2/2) 6351
  - caagtgtagc ggtcacgctg cgcgtaacca ccacacccgc cgcgcttaat gcgccgctac agggcgcgta ctatggttgc tttgacgggt gcagtctcag tacaatctgc tctgatgccg 6411 6471 6531 5
    - catagitaag ccagccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 6591 6651

10

Table 630: Oligonucleotides used to clone CDR1/2 diversity

All sequences are 5' to 3'.

5 1) ON\_CD1Bsp, 30 bases

A C C T C A C T G G C T T C C G G A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

**10 T T C A C T T T C T C T 19 20 21 22 23 24 25 26 27 28 29 30** 

2) ON\_Br12, 42 bases

A C T C C A A A C C 9 10 11 12 13 14 15 16 17 18 36 g ນ ຜູ 34 g a a 32 H а<del>л</del> 31 30 U c c A g g A g 23 24 25 26 27 28 29 υω 0 5 A A C C C A 37 38 39 40 41 42 υω ч р - U 22 4 **4** 4 T T T 19 20 21 3 ላ ይ ממ **A** 11 15 20

3) ON\_CD2Xba, 51 bases

A 18 36 T 179 35 H c T A 14 15 16 34 H ပက္က A c 31 32 ( 13 13 g T g A 9 10 11 12 **A** T A G T G A A G C G 20 21 22 23 24 25 26 27 28 29 30 **A** 80 0 10 b Q ວານ ф Ъ **4** 0 σг 1 d היס 30

A A C G G A G T C A 37 38 39 40 41 42 43 44 45 46 35 4) ON BotXba, 23 bases

51 51

50

49 49

48 C

9 74

g T g A T c T A g A 9 10 11 12 13 14 15 16 17 18 **rt** 80 5 ъø Ծտ 4 Þ **R** 6 מים ъч

10 End Tables