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ABSTRACT

A method and apparatus for determining the state, at any time in the past,
relative to a present state, of a linear feedback shift register comprises determining a an
inverse transition matrix which, if multiplied by the current state in modulo-2 arithmetic,
yields the state one step into the past; and multiplying in modulo-2 arithmetic the

present state of the linear feedback shift register by the inverse transition matrix N times

to obtain the state N steps into the past.

FAWPDATA\NORTEL\ 1256\LFSRAPP




10

15

20

CA 02270827 1999-05-05

PSEUDORANDOM BINARY SEQUENCE BLOCK SHIFTER

FIELD OF THE INVENTION
This invention relates to linear feedback shift registers (LFSR’s), and more
particularly to methods and apparatus for rapidly determining the state of an LFSR at

any point in the past relative to a current state, and to synchronizing the LFSR’s in base

and mobile stations in a CDMA communication system.

BACKGROUND OF THE INVENTION

LFSR’s are used in many applications for generating pseudorandom numbers,
which in turn may be used for such purposes as encryption, or synchronization of data
transmissions.

A well known such use is in the CDMA (Code Division Multiple Access) scheme
employed in the IS-95 standard for cellular telephone transmission. Both the base
station and the mobile stations employ a 42-bit LFSR to generate a periodic code with
period 242-1 bits (known to those in the cellular telephone art as “the Long Code™). For
a base station to communicate with a mobile station, tﬁeir Long Codes must be
synchronized. Due to range uncertainty (which affects transmission time) and
randomized delays introduced to avoid multiple user traffic collisions, at a given time a
mobile station’s Long Code and a base station’s Long Code may be different, and thus

require synchronization in order to communicate. (Typically, the base station’s code is
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ahead of the mobile station’s code.)

Synchronization requires a “searcher” in the base station to determine the number
of shifts (bit offsets) by which the base station’s LFSR leads the mobile station’s LFSR.
The two LFSRs must then be syunchronized. The base station’s LFSR cannot simply be
backward-shifted to accomplish this, because the feedback mechanisms are not
susceptible of reversal.

One conventional method for accomplishing synchronization in the case where the
mobile station’s LFSR is ahead of the base station’s is to run the base station’s LFSR

forward at a clock rate many times (typically, 48 times) higher than normal until it has

advanced to the desired state.

In the case where the base station’s LFSR leads the mobile station’s LFSR, the
base station’s LFSR is simply stopped until the mobile LFSR “catches up” to it. These
conventional methods have the disadvantage of requiring extra hardware for the high-
speed forward shift, and the disadvantage of wasting time while the LFSR is stopped.

Another conventional method is to store the base station LFSR output over a
sufficient number of bits (typically, 1400) to enable matching with the mobile station’s
current bit pattern. The obvious drawback is that 1400 flip-flops are required, with their
resultant increase m cost and power consumption. .

Yet another conventional method is to use a mirror-image LFSR in addition to
the main LFSR with feedback mechanisms such that it shifts backward through the

reverse of the sequence through which the main LFSR shifts forward. This has the

obvious drawback of necessitating a great deal of additional circuitry.
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While most conventional solutions are hardware-based, some recent algorithms
have been posited for determining future states of LFSR’s by mathematical methods -
susceptible of implementation in software or firmware. See the work of Arthur H. M.

Ross, Ph.D., at Internet web page http://www.cdj.org/a ross/LFSR.html (date

unknown), or the work of M. Serra at

http: /www.csr.uvic.ca/home/mserra/CApaper/noded.html (June 24, 1996). These

~ algorithms, however, are not able to determine past states of LFSRs.

Accordingly, there exists a need for a method of determining a past state of a
LFSR that does not require significant additional hardware and that does not cause the
waste of significant amounts of time.

It is thus an object of the present invention to provide a method of resetting a

LFSR that eliminates the drawbacks of conventional CDMA systems.
It is a further object of the present invention to provide a method for resetting a

LFSR that has fixed overhead for shifting backward or forward independent of shift

length.

It is a further object of the present invention to provide a practical method of
performing very large shifts, which are impractical in conventional systems.

It is a further object of the present invention to provide a method of resetting a
LFSR that may be easily embedded in firmware in an application-specific integrated
circuit (ASIC) and ideally in parallel operation where multiple shift positions are needed,
as in multi-user detection.

These and other objects of the invention will become apparent to those skilled in
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the art from the following description thereof.

Summary of the Invention

In accordance with the teachings of the present

invention, these and other objects may be accomplished by

the present systems and methods of generating spreading

y—
p—

codes which are resistant to the effects of time delays in

CDMA systems. An embodiment of the present invention
includes a method of determining an inverse transition
matrix which when used to multiply in modulo-2 arithmetic
the current state of an LFSR yields the previous state of

the LFSR, and multiplying the state of the LFSR by the

1nverse transition matrix in modulo-2 arithmetic once for
each desired backward shift of the LFSR, and loading the
state thus determined back into the LFSR. Another

embodiment of the i1nvention uses apparatus to determine the

inverse transition matrix, to multiply the LFSR contents by

the 1nverse transition matrix one for each backward shift

required, and to load the result back into the LFSR.

One broad aspect provides a method of restoring a

linear feedback shift register to a state that it had N
clock pulses prior to a present state, N being an integer

greater than or equal to 1, comprising: determining a first

inverse transition matrix for the linear feedback shift

i

register such that modulo-2 multiplication of a current

binary vector contained in the linear feedback shift
reglster by the first inverse transition matrix produces a
plnary vector that was contained in the linear feedback

shift register prior to the clock pulse which advanced the

linear feedback shift register to its current binary vector;

determining a second 1nverse transition matrix which is the

first i1nverse transitlion matrix raised to a power J where J

F

1s an 1nteger, and 1f J 1s equal to N, multiplying in

4
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modulo—~2 arithmetic the second inverse transition matrix by
the current binary vector to produce the blnary wvector that
was contained 1n the linear feedback shift register N clock
pulses prior to the present state; and loading the binary

vector into the linear feedback shift register.

The invention will next be described in connection

with certain exemplary embodiments; however, it should be
clear to those skilled in the art that wvarious
modifications, additions and subtractions can be made

without departing from the spirit or scope of the claims.

4a
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Brief Description of the Drawing
The invention will be more clearly understood by reference to the following
detailed description of an exemplary embodiment in conjunction with the accompanying
drawings, in which:
5 Fig. 1 depicts a generic S-bit LFSR.
Fig. 2 depicts a Type I LFSR of arbitrary length.
Fig. 3 depicts a Type II LFSR of arbitrary length.
Fig. 4 illustrates the transition matrix for the LFSR of Fig. 2.
Fig. 5 illustrates the transition matrix for the LFSR of Fig. 3.
10 Fig. 6 illustrates the inverse transition matrix for the LFSR of Fig. 2.
Fig. 7 illustrates the inverse transition matrix for the LFSR of Fig. 3.
Fig. 8 illustrates the transition matrix for a 42-bit CDMA LFSR.

Fig. 9 illustrates the inverse transition matrix for a 42-bit CDMA LFSR.

Fig. 10 depicts a basic operation of modulo-2 matrix multiplication.

15
DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention is associated with the 42-bit
LFSR employed for producing the Long Code used for synchronizing data transmission
between a base station and a mobile station in an IS-95 CDMA cellular communications
20 system.

To service a mobile user, the base station’s LFSR must be set to the same value

as the mobile user’s. A searcher algorithm in the base station determines the amount of
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time difference between the two LFSR’s. Time alignment of the base station Long
Code generator LFSR includes resetting the binary value stored in the shift register to a
value of a previous or future time, according to the searcher results.

An example of an embodiment‘of the present invention will now be considered
using a five-bit LFSR, an example of which is shown in Fig. 1. Those in the art will
recognize this as a Type I, or Galois, LFSR since the exclusive OR is located in a series
path (as opposed to a Type II, or Fibonacci, LFSR which would have the exclusive OR
in the feedback paths). Although the ensuing discussion applies to the Type I LFSR, the
principles apply equally to the Type II LFSR.

The state transition equations for the LFSR of Fig. 1 are

%f‘%
L =4
zy = (z; XOR %)
=4
Zs = Z4
where z is the present state of cell i and z; is the state after clocking the shift register

one time. In matrix form, this can be expressed as:

zy .2 .2y ,2 ., T =AX|[z,,2,2,2,, 5"

where all operations are carried out in modulo 2 arithmetic, T indicates transpose and A

is the transition matrix:

00001
1000
A= 01001
00100
00010
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Because of the modulo-2 arithmetic that must be employed, the inverse transition matrix
can not be determined from the transition matrix by the conventional means used in
decimal anthmetic for determining an inverse matrix. This becomes evident by taking a

conventional inverse transition matrix, multiplying it by the transition matrix, and finding
that the result is not the identity matrix.

The inverse transition matrix can be determined empirically by determining what is

necessary to transit the LFSR back by one shift. For the LFSR of Figure 1, the inverse
transition matrix is:

01000
10100

Al= 100010
00001
10000

Obtaining the next state of the LFSR using the transition matrix could be written as:

00001 Z, Z,
10000 zZ, Z,
01001) X Z, | = |z4
001060 Z4 Z4
00010 Zs Zg

Similarly, obtaining the previous state (one clock pulse ago) can now be written as:

01000 z,
10100
00010] X Z, | =
00001 Z,

10000 Zs
Block jumps (jumps of more than one clock pulse) may easily be obtained by raising the
transition matrix to a power equal to the desired number of clock pulses prior to
performing the multiplication. That is:

00001]|N
10000
01001 X
00100
00010

yields the state of the LFSR N clock pulses in the future, while
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01000]|N Z,
10100 Z,
00010 X Z,
00001 Z,
10000 Zs

yields the state of the LFSR N clock pulses in the past.

It will now be shown how to find the inverse transition matrix for a Type I or

Type II LFSR of arbitrary length > 2.
A Type I (Galois) LFSR of arbitrary length is shown in Fig. 2. A Type II
(Fibonacci) LFSR of arbitrary length is shown in Fig. 3. Generally, the number of taps

and tap positions are not the same for Galois and Fibonacci versions.
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The onginal state of each of the LFSR is the binary sequence {S,}, for k=1, ..., N.
The set of state transition equation for Type 1 (Galois) LFSR is in general, as follows:

S,* =8y
57 =35,

St =5,
Sk+1+ =Sk+SN

Sm+l+ :Sm + SN
Sm+2+=sm+l

Sn*=Sx.1

where k, ..., m are positive integers less than N, corresponding to tap positions in the
Type 1 Galois LFSR. Note that "+" is the Exclusive - OR or modulo two operation
The transition matrix representing these state transition equations is given in Figure 4.

The set of state transition equations for Type 2 (Fibonacci) LFSR is in general, as
follows:

S;* =5 + .. +§ + Sy
S;*=S,
53+ =93,

éN+:SN-l

where h, ..., j are positive integers less than N.
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The state transition matrix, G, for one step forward in the Galois LFSR is shown
in Fig. 4. The NxN (where N is the number of positions in the LFSR) matrix has a
subdiagonal of ones, and ones in the Nth column corresponding to tap positions. All
other elements are zero.

The state transition matrix, F, for one step forward in the Fibonacci LFSR is

shown in Fig. 5. The NxN matrix has a subdiagonal of ones, and ones in the first row

corresponding to tap positions. All other elements are zero.

Determination of inve ansition matrix for generalized Tvr

The problem of determining G-, the inverse of the Galois transition matrix is
equivalent to finding the permutations needed to reverse the corresponding state
equations.

The matrix G maps the sequence {S,}, into the next step {S,*},.

Substituting the S,* with the equivalent S, terms, the one-step inverse transition

matrix operations can be shown as follows:

10
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The first row of G is all zeros except for a one in column 2 to map S, to the first

position in the present state vector, on the right hand side. The second row of G is all

zeros except for a one in column 3 to map S, to the second position in the present state

vector, on the right-hand side:

Row 1 of G

Row 2 of G
Row m of G

=[01,,00
=[001,,0

=[0....1

Lfor1sm < N

11

T e WA Al i A ST E] SENAO shbe B v A Lt 4t . ..
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Rowkof Gt =(1,,0... Lgguy. ... 0], since §;* = Sy and Sy + (S¢ + Sy) = Sy

Rowk+10of Gt =[0.... L iga2---.. 0].

This is true for all k; for 1 < k < N, where each k corresponds to a tap in the LFSR.
The resulting structure of the inverse transition matrix G-1. for a Type I (Galois)

LFSR is given in Fig. 6. Then, G! * G = I,y which is the identity matrix of rank N.

The product is obtained using modulo 2 arithmetic.

Determination of invers ansition matrix for generalized Type H:

The problem of determining F-1, the inverse of the Fibonacci transition matrix is
equivalent to finding the permutations needed to reverse the corresponding state
equations.

The matrix F maps the sequence (S, }, into the next step {S,*},.

Substituting the S,* with the equivalent S, terms, the one-step inverse transition

matrix operations can be shown as follows:

The first row of F-1 is all zeros except for a one in column 2 to map S, to the first

12
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position 1n the present state vector, on the right hand side. The second row of F! is all

zeros except for a one in column 3 to map S, to the second position in the present stz'ne
vector, on the right-hand side.

Row lof F' =[01,,00.......... 0]

Row2of F1' =[001,0.......... 0]

In general the pattern is

Rowwof F1 =[0. lywagcvooveens ], for 1 s w < N, and
Row Nof F! =[1y,0.. Iy,...1y....0]
Row k+1of Gt =[0.... 1 ike2---.. Oljfor1t <h<j<N

The resulting structure of the inverse transition matrix F-! for a Type II
(Fibonacci) LFSR is given in Fig. 7. Then, F1 * F = I which is the identity matrix of
rank N. The product is obtained using modulo 2 arithmetic.

.‘c; ) {1 -4 J) V1A

Ly »
_a.. .L. ‘ \

JI1%
F

The forward transition matrix A for the IS-95 Long Code is given in Fig. 8. A-l,
the inverse of A for shifting backwards in time is shown in Fig. 9. By direct
multiplication using modulo 2 arithmetic, A * Al = [, the identity matrix of rank 42.

Considering the one-step forward case, the shifting and XOR operation can be
emulated as ; matrix operation: .

S, = Ax S,

where S, = 42-bit contents of LFSR after one clock period,
S, = initial contents of LFSR
A is the transition matrix of Fig. 8.

13
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Simularly, the one-step backward case can be emulated by:
S, = AlXS,
The 42-bit contents of the LFSR can be shifted up to 242 -1 clock pulses in a
single matrix operation. For example, had the value of
Al = A*A*A*A*AACA
been precalculated and prestored, emulation of shifting 7 clock pulses into the future
could be performed as:
S, = A7x §,
It may be beneficial to precalculate and prestore such matrices, such as power-of-two

numbers of shifts:

A2 A4 A8 Al6 Al A4 A3 A6
A shift emulation of some arbitrary number of clock pulses can then be performed by a
few well-chosen matrix operations in succession. While an example involving powers of
two has been considered, it will be apparent to those skilled in the art that any power
can be used and that matrices of a.rbitra:y powers can be stored.

In a similar vein, with some hardware implementations of an LFSR, for shifts of
fewer than 42 clock pulses it may be faster to actually shift the LFSR than to perform
the matrix multiplies. In such cases, shifts by large numbers of clock pulses may be
speeded up by calculating and prestoring values for mulitiples of 42 shifts:

AR AW AL AlS A4 AU A-126 A-l8
Shifting can then be emulated by matrix mathematics unless or until there are fewer than

42 forward shifts remaining to be performed, and they can then be performed by actual

14
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shifting. The number 42 has been chosen here since that is the number of bits in the
LFSR under the IS-95 standard, but other numbers may be chosen and still fall within
the scope of the invention.

The invention may be practiced in host hardware equipped with computational

capability, such as a minicomputer or microcomputer, in which a program may be

employed to determine the inverse transition matrix and to perform matrix
multiplications with it so as to obtain past states of an LFSR. Firmware may also be
employed, enabling practicing the invention in, for example, an ASIC (application-

specific integrated circuit).

Modulo-2 matrix multiplication can be speeded up using parity checker hardware
instead of actually performing a row-by-column multiplication. Fig. 10 depicts the
multiplication of the PN vector by a row of a transition matrix. This process must be
executed for each row of the transition matrix. In modulo-2 arithmetic, the process is
equivalent to:

--overlaying the row and PN vector;

--ANDing the corresponding bits; and

--summing the resultant 1’s in modulo-2 z_lddition.
In modulo-2 arithmetic, the latter step can yield a result of either zero or one, and zero
if the number of 1’s is even, and one if the number of 1's is odd. This determination of

whether the number of 1’s is even or odd is the function performed by a parity checker.

If host hardware includes a parity checker it can be invoked to assist in the matrix

multiply, saving 42 row-by-column multiplications each time.

15
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[t will thus be seen that the invention efficiently attains the objects set forth
above, among those made apparent from the preceding description. In particular, the

invention provides rapid determination of a past state of a linear feedback shift register

without significant additional hardware.

It will be understood that changes may be made in the above construction and in
the foregoing sequences of operation without departing from the scope of the invention.
[t 1s accordingly intended that all matter contained in the above description or shown in
the accompanying drawings be interpreted as illustrative rather than in a limiting sense.

It is also to be understood that the following claims are intended to cover all of
the generic and specific features of the invention as described herein, and all statements
of the scope of the invention which, as a matter of language, might be said to fall
therebetween.

Having described the invention, what is claimed as new and secured by Letters

Patent is:

16
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1. A method of restoring a linear feedback shift register to a state that it had N clock
pulses prior to a present state, N being an integer greater than or equal to 1, comprising:
determining a first inverse transition matrix for the linear feedback shift register

such that modulo-2 multiplication of a current binary vector contained in the linear
feedback shift register by the first inverse transition matrix produces a binary vector that
was contained in the linear feedback shift register prior to the clock pulse which
advanced the linear feedback shift register to its current binary vector;

determining a second inverse transition matrix which is the first inverse transition
matrix raised to a power J where J is an integer, and

if J is equal to N, multiplying in modulo-2 arithmetic the second inverse transition
matrix by the current binary vector to produce the binary vector that was contained in
the linear feedback shift register N clock pulses prior to the present state; and

loading the binary vector into the linear feedback shift register.

17
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2. The method of claim 1 wherein if J is not equal to N:

multiplying in modulo-2 arithmetic the second inverse transition matrix by the
current binary vector to produce the binary vector that was contained in the linear
feedback shift register J clock pulses prior to the present state;

S reducing the value of N by the value of J;

‘ repeating the multiplying and reducing steps if the reduced N is greater than 0;
loading the binary vector into the linear feedback shift register; and
shifting the linear feedback shift register forward ABS(N) times if the reduced N

is less than O, where ABS(N) is the absolute value of the reduced N.

10
3. The method of claim 1 wherein the linear feedback shift register has M stages and J
is equal to I*M where I is an integer and N is greater than 2M-1, and
the method further comprises converting N to its modulo(2M) value prior to the
multiplying step.
15

4. The method of claim 2 wherein the linear feedback shift register has M stages where
N is greater than or equal to M, and

J is an integer multiple of M.

20 S. The method of claim 2 wherein:

said second inverse transition matrix has been predetermined and stored.

18
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6. The method of claim 2 wherein:
said second inverse transition matrix is selected from a plurality of third inverse

transition matrices which have been predetermined and stored, each being the first

inverse transition matrix raised to a different integer power.

7. The method of claim 1 wherein the linear feedback shift register leads a second
linear feedback shift register by N clock pulses, whereby restoring the linear feedback
shift register to the state that it had N clock pulses prior to the present state
synchronizes the linear feedback shift register with the second linear feedback shift

register.

8. The method of claim 7 to be practiced in a CDMA system wherein the linear

feedback shift register is in a base station and the second linear feedback shift register is

in a mobile station.

9. The method of claim 7 to be practiced in a CDMA system wherein the linear

feedback shift register is in a mobile station and the second linear feedback shift register

IS in a base station.

19
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10. Apparatus for restoring a linear feedback shift register to a state that it had N clock
pulses prior to a present state, N being an integer greater than or equal to 1, compri.sing:
means for determining a first inverse transition matrix for the linear feedback shift
register such that modulo-2 multiplication of a current binary vector contained in the
5 linear feedback shift register by the first inverse transition matrix produces a binary
vector that was contained in the linear feedback shift register prior to the clock pulse
which advanced the linear feedback shift register to its current binary vector;
means for determining a second inverse transition matrix which is the first inverse
transition matrix raised to a power J where J is an integer;
10 means for determining whether J is equal to N;
means for multiplying, if J is equal to N, in modulo-2 arithmetic the second
Inverse transition matrix by the current binary vector to produce the binary vector that

was contained in the linear feedback shift register N clock pulses prior to the present

state; and

15 means for loading, if J is equal to N, the binary vei:tor into the linear feedback

shift register.

20
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11. The apparatus of claim 10, further comprising:

means for multiplying, if J is not equal to N, in modulo-2 arithmetic the second
inverse transition matrix by the current binary vector to produce the binary vector that
was contained in the linear feedback shift register J clock pulses prior to the present
state; and

means for reducing the value of N by the value of J;

means for repeating the multiplying and reducing operations if the reduced N is
greater than 0;

means for loading the binary vector into the linear feedback shift register if the
reduced N is equal to or less than 0; and

means for shifting the linear feedback shift register forward ABS(N) times if the

reduced N is less than 0, where ABS(N) is the absolute value of the reduced N.

12. The apparatus of claim 10 wherein the linear feedback shift register has M stages

and J is equal to I*M where I is an integer and N is greater than 2M-1, and

further comprising means for converting N to its modulo(2™) value prior to the

multiplying operation.

13. The apparatus of claim 10 wherein the linear feedback shift register has M stages

where N is greater than or equal to M, and

J is an integer multiple of M.

21
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14. The apparatus of claim 11 further comprising:

means for predetermining and storing the second inverse transition matrix.

15. The apparatus of claim 14 further comprising:
means for predetermining and storing a plurality of third inverse transition

matrices, each being the first inverse transition matrix raised to a different integer power;

and

means for selecting the second inverse transition matrix from among the plurality

of third inverse transition matrices.

16. The apparatus of claim 10 wherein the linear feedback shift register leads a second
linear feedback shift register by N clock pulses, whereby restoring the linear feedback
shift register to the state that it had N clock pulses prior to the present state

synchronizes the linear feedback shift register with the second linear feedback shift

register.

17. The apparatus of claim 16 in a CDMA system wherein the linear feedback shift
register is in a base station and the second linear feedback shift register is in a mobile

station.

18. The apparatus of claim 16 in a CDMA system wherein the linear feedback shift
register is in a mobile station and the second linear feedback shift register is in a base

station.
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19. Apparatus for restoring a linear feedback shift register to a state that it had N clock
pulses prior to a present state, N being an integer greater than or equal to 1, 'comprising:
a logic device for determining a first inverse transition matrix for the linear
feedback shift register such that modulo-2 multiplication of a current binary vector
contained in the linear feedback shift register by the first inverse transition matrix
produces a binary vector that was contained in the linear feedback shift register prior to
the clock pulse which advanced the linear feedback shift register to its current binary
vector,

the logic device being further adapted to determine a second inverse transition
matrix which is the first inverse transition matrix raised to a power J where J is an
integer;

the logic device being further adapted to determine whether J is equal to N;

the logic device being further adapted to multiply, if J is equal to N, in modulo-2

arithmetic the second inverse transition matrix by the current binary vector to produce

the binary vector that was contained in the linear feedback shift register N clock pulses
prior to the present state; and
a loading circuit for loading, if J is equal to N, the binary vector into the linear

feedback shift register.
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20. The apparatus of claim 19 wherein:

the logic device is further adapted to multiply, if J is not equal to N, ir; modulo-2
arithmetic the second inverse transition matrix by the current binary vector to produce
the binary vector that was contained in the linear feedback shift register J clock pulses
prior to the present state;

the logic device is further adapted to reduce the value of N by the value of J after

each multiplication;

the logic device is further adapted to repeat the multiplying and reducing
operations if the reduced N is greater than 0; and

the apparatus further includes a loading circuit to load the binary vector into the
linear feedback shift register if the reduced N is equal to or less than 0;

the apparatus further includes a shifter for shifting the linear feedback shift
register forward ABS(N) times after loading it if the reduced N is less than 0, where

ABS(N) is the absolute value of the reduced N.

21. The apparatus of claim 19 wherein the linear feedback shift register has M stages
and J is equal to I*M where I is an integer and N is greater than 2™-1, and
the logic device is further adapted to convert N to its modulo(2M) value prior to

the multiplying operation.
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22. The apparatus of claim 19 wherein the linear feedback shift register has M stages

where N is greater than or equal to M, and

J 1s an integer multiple of M.

23. The apparatus of claim 20 wherein:

the logic device is further adapted to predetermine and store the second inverse

transition matrix.

24. The apparatus of claim 20 wherein:

the logic device is further adapted to predetermine and store a plurality of third
inverse transition matrices, each being the first inverse transition matrix raised to a
different integer power; and

the logic device is further adapted to select the second inverse transition matrix

from among the stored third inverse transition matrices.

25. The apparatus of claim 19 wherein the linear feedback shift register leads a second
linear feedback shift register by N clock pulses, whereby restoring the linear feedback
shift register to the state that it had N clock pulses prior to the present state
synchronizes the linear feedback shift register with the second linear feedback shift

register.
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26. The apparatus of claim 25 in a CDMA system wherein the linear feedback shift
register is in a base station and the second linear feedback shift register is in a mobile

station.

S 27. The apparatus of claim 25 in a CDMA system wherein the linear feedback shift

register is in a mobile station and the second linear feedback shift register is in a base

station.

28. The apparatus of claim 19 further comprising memory means for storing instructions,

10 and wherein
the logic device is responsive to at least one instruction stored by said memory

means.
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