w0 2022/040283 A1 | I 0000 KO0 Y0 OO0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
24 February 2022 (24.02.2022)

(10) International Publication Number

WO 2022/040283 Al

WIPO I PCT

(51) International Patent Classification:
H04J 3/16 (2006.01) GO6F 15/173 (2006.01)

(21) International Application Number:
PCT/US2021/046456

(22) International Filing Date:
18 August 2021 (18.08.2021)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available). ARIPO (BW, GH,
63/067,250 18 August 2020 (18.08.2020) US GM. KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
) , UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Apphcant': PLAID INC. [US/US]; 1098 Harrison Avenue, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
San Francisco, CA 94103 (US). EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(72) Inventors: KIEFER, William, Frederick; 1098 Harri- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK, SM,
son Avenue, San Francisco, CA 94103 (US). JACOKES, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Michael, Brian; 1098 Harrison Avenue, San Francisco, CA KM, ML, MR, NE, SN, TD, TG).
94103 (US). DUDEK, Jan, Maksymillian; 1098 Harri-
son Avenue, San Francisco, CA 94103 (US). TINDALL, Published:

Nathan, James; 1098 Harrison Avenue, San Francisco, CA
94103 (US).

Agent: VAN OSDOL, Brian; 968 Rose Ave., Piedmont,
CA 94611 (US).

(74)

@81)

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR MANAGING USER INTERACTION FLOWS WITHIN THIRD PARTY APPLI-

CATIONS

(57) Abstract: A system and method for cloud management of user inter-
actions on a client device comprising: initiating, in response to an initiation
request of a client application, processing of a workflow configuration with
an initial session state, wherein the workflow is a data model of a graph of
nodes connected with directed edges, where the nodes include a set of node
types that includes at least a pane node; iteratively processing the workflow
configuration, initially using the initial session state, and thereby generat-
ing rendered panes for use in a user interaction flow of a client application,
which comprises:; following a next edge of the workflow configuration to
determine a next workflow node, processing the next workflow node, which
comprises, when the next workflow node is a pane node, rendering the pane
node into a rendered pane, and sending the rendered panes to the client de-

.
| Processing workflow nodes :
5240 |
! I
: Invoking |
| ™| processor node |
| s241 :
! I
! I
: Rendering neighbor panes)
Y | :
) : HH
Selecting workflow Following next | .
N | Rendering Sending rendered
version and setting edge of workflow
up session state configuration [pagezggde pane;zlgochent
5220 20 == : =5
| T
A f I l |
| ! [Evaluating |)
! ! ! switch node |) .
! | : Lel su3 | ' VICE.
| ! | i
| : ' ! |
1 | e | 1
i ! |
| H Updating session 1
| ! state analytics H
: ' 520 :
' | i
' I
| SERVER i f !
T T
! CLIENT i warkflow iupdate *'
L 1 1
Calling workflow Evaluating user
Call workflow start update with action and pane | ren[;‘eszzy;;r;gnes
210 collected user input transitions 3760
$210 —
\—/ I
Action requires APl call Action specifies Exiting
existing pane 295
FIGURE 5

WO 2022/040283 PCT/US2021/046456

SYSTEM AND METHOD FOR MANAGING USER INTERACTION FLOWS WITHIN
THIRD PARTY APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This Application claims the benefit of U.S. Provisional Application No.
63/067,250, filed on 18-AUG-2020, which is incorporated in its entirety by this reference.

TECHNICAL FIELD

[0002] This invention relates generally to the field of application services, and more
specifically to a new and useful system and method for managing user interaction flows

within 3rd party applications.

BACKGROUND

[0003] The rise of application programming interface (API) services allows many
applications to expand their capabilities. API service providers can provide services and
capabilities in a consumable programmatic format that are increasingly used in various
third-party applications. By way of example, these API services may include services for
authentication, financial services, communication, and/or a wide variety of other
services. In some cases, these service providers manage various user interaction
experiences within the application. While these can be useful to many third-party
applications, there are many challenges that can arise from developing an application that
relies on the coordinated operation of the application and a third-party service.

[0004] In many cases, integrating with an API can require developing code and
logic within the application that specifically enables the features of the API provider. This
code and logic however may not be well adapted to accommodate changes in the API or
service such as when new API versions are released or when new features are enabled. In
some situations, an application’s integration with an API may break when an API changes.
As a result, the code and logic of the integration needs to constantly be updated to stay

current with the API service provider.

WO 2022/040283 PCT/US2021/046456

[0005] Parallel challenges are also experienced by the API provider. An API
provider will often have their API consumed by a vast number of different applications
and services. Updates, new features, and other changes have to be weighed carefully to
avoid complicating the development process of their customers. In particular, API
services that facilitate portions of the user experience, such as various authentication

processes or other interaction flows, may be limited in rolling out new features.

[0006] Many API service providers provide a software development kit (SDK) or
other types of code libraries that a third-party application may incorporate into the native
code of their application. Similar to challenges of supporting older versions of an API,
there are many challenges for an API service provider relating to SDK/library version
support when changing or updating the services and features of an API service. For
example, changes to an API service provider can break functionality of an older version
of an SDK version.

[0007] Thus, there is a need in the application services field to create a new and
useful system and method for managing user interaction flows within 3rd party

applications. This invention provides such a new and useful system and method.

BRIEF DESCRIPTION OF THE FIGURES

[0008] FIGURE 1 is a schematic representation of a system;

[0009] FIGURE 2 is a schematic representation of exemplary node types in a
workflow configuration graph;

[0010] FIGURE 3 is a flowchart representation of a method;

[0011] FIGURE 4 is a detailed flowchart representation of processing workflow
interaction;

[0012] FIGURE 5 is a detailed flowchart representation of interactions between a

server and a client application when processing a workflow interaction;

[0013] FIGURE 6 is an exemplary representation of the directed graph of a
workflow configuration; and

[0014] FIGURE 7 is an exemplary system architecture that may be used in

implementing the system and/or method.

WO 2022/040283 PCT/US2021/046456

DESCRIPTION OF THE EMBODIMENTS

[0015] The following description of the embodiments of the invention is not
intended to limit the invention to these embodiments but rather to enable a person skilled

in the art to make and use this invention.

1. QOverview

[0016] A system and method for managing user interaction flows within a third-
party application function to guide a client-implemented user interface based on cloud
managed evaluation of a user interaction flow. In particular, the system and method
enable the presentation of dynamic user experiences using a software development kit
(SDK) within a client application but directed and managed by server-side configuration
and code.

[0017] The system and method can enable the backend computing infrastructure
of an API service provider (e.g., a remote/cloud-hosted server) to be in charge of a
significant part of logic handled by a client for a particular user interaction flow. An SDK,
library, or other type of client-side code can be implemented within a client application
that uses generic workflow. In this way, the SDK can be made to be maintained as a
reliable and consistent code base, and the backend can be used to design, and release new

and different user interaction flows.

[0018] The system and method preferably process a directed graph data model of
a workflow interaction on back-end hosted infrastructure and serve rendered UI data to
a client application. The client application can then interpret the UI data (possibly
through an SDK) to update the user interface. In this way, the client application may be
alleviated of interpretation and managing of workflow interaction logic beyond repeated
tasks (e.g., defined in an SDK) for rendering of Ul elements, collection of input data,
requesting updates from a cloud-hosted workflow service, and/or other basic operations.
[0019] The directed graph data model of a workflow interaction (alternatively
referred to as a workflow graph or a workflow configuration) can be a state graph of nodes
that defines transformations on data, logic used in navigating the graph, and nodes

defining UI associated panes (i.e., user interaction components) to be rendered and used

WO 2022/040283 PCT/US2021/046456

on a client application. The nodes are connected by directed edges that define possible
paths for navigating the graph during a user interaction flow. Edges of the graph can be
navigated as a result of an action at the client application (e.g., a user takes some action
on the current rendered pane). Repeated actions result in traversing the graph of the
workflow configuration until handoff or termination of the user interaction flow.

[0020] Using a workflow configuration to define the graph can reduce complexity
in development of new user interaction flows, creating minor variations of a user
interaction flows, and/or delegating editing and versioning of different portions of a user
interaction flow to various parties.

[0021] In one variation, the graph of the system and method includes a type of node
referred herein as a pane node. Pane nodes take input data to generate a rendered pane
which can be or at least specify parameters for a user interface presentation (e.g., a view
and/or audio) to be presented by the client application. The outbound edges to a pane
node are defined by paths resulting from possible actions taken on the rendered pane
when presented at a client application.

[0022] In one variation, the graph of the system and method include three basic
types of nodes, which includes a pane node, a processor node, and a switch node.

[0023] Processor nodes can be used, in addition to other things, from interacting
with and getting data from dynamic external systems (systems within the API service
provider and/or other external computing services or computing systems). For example,
processor nodes can encapsulate programmatic logic for arbitrary interactions with
external systems in the backend, such as running a data extraction or looking up status of
some element. Processor nodes more generally function to transform input data into
output data.

[0024] Switch nodes function as a mechanism for defining how to branch the state
graph. A switch node examines input data (i.e., output data from a previous node in the
graph) and selects one of multiple possible output edges for traversal. Use of switch nodes,
while not necessary, do offer a form workflow abstraction that simplifies development of
a user interaction flow. The three core node primitives of a pane node primitive, a

processor node primitive, and switch node primitive can be configured to make up a

WO 2022/040283 PCT/US2021/046456

statically defined state machine for a desired workflow. This may allow for configuration-
only deployment, static analysis, easy testing, easy versioning, and useful tooling.

[0025] The system and method may also be combined with a workflow editor
interface, which can enable administrators of the workflow interactions to create new
workflows and/or change workflows. Additionally, in some variations, the system and
method may support ways of sharing workflows, portions of workflows, and/or workflow
nodes. In some implementations, a library of different capabilities can be offered across
a team so that new user interaction flows can be more quickly created and changed. The
workflow editor interface and the modular nature of the workflow configurations can be
such that users may more readily create new user interaction flows, edit user interaction
flows, and/or create variations of existing user interaction flow.

[0026] The system and method may be particularly useful in situations where a
user interaction flow is executed within a client application, but the client application is
developed by an entity that differs from the entity managing the user interaction flow.
One example of this situation is when a service provider, such as an API service provider,
is directing the user interaction flow within a third-party client application. Traditionally,
an SDK of the service provider or other custom application logic in a client application
handled a large amount of logic when interacting with the API service provider. This
approach can be accompanied by many complications. For example, new interaction
flows or changes to user interaction flows, in some cases, relied on updating of an SDK
and then rolling out an update to the third-party client application. The system and
method can reduce dependency on the client application and enable a novel approach for
directing user interactions from the back end. The system and method can be used to
facilitate a best-in-class user frontend user experiences in a third-party client application,
while maintaining the development advantages of a backend-only deployment.

[0027] The system and method may be used in connection with offering some
programmatic services related to a user interaction experience described herein as a
workflow interaction. In one example, the system and method may be used to manage the
user interaction flow for an authentication process. The workflow interaction may guide
an end user on a client application through requesting credential information, verifying

authentication information, possibly filling in profile information, possibly handling any

WO 2022/040283 PCT/US2021/046456

error states, and/or managing any suitable part of the user interaction involved in the
authentication process. Other examples of user interaction flows could include checkout
processing flow, user-on-boarding, and/or other types of interaction experiences. As one
example, the system and method may be used in managing client user interaction flows
for authentication using an authentication process like that discussed in U.S. Patent
Application No. 14/790,840, filed July 2, 2015, U.S. Patent No. 9,449,346, and titled
“SYSTEM AND METHOD FOR PROGRAMMATICALLY ACCESSING FINANCIAL
DATA”, which is hereby incorporated in its entirety by this referenced. The system and
method may alternatively be used for any programmatic service.

[0028] The system and method can enable a new form of client integration, which
may reduce hard-coded, imperative logic built into a client application for navigating a
particular interaction flow of an API service.

[0029] For example, the system and method may simplify API service integration
for a client application such that the native code of the client application (e.g., written by
a developer of the client application or managed by an included SDK) can be alleviated
from having to be explicitly configured with information like what input fields or text to
show to a user, how to use a complex set of API endpoints, how to process responses to
determine how to update a Ul, and/or other aspects related to how to update a UI based
on API interactions.

[0030] Additionally, the system and method can make cross-ecosystem
development significantly simpler. Cloud management of user interaction flows can
enable rendering-focused SDKs (without complicated workflow logic) to be developed
and deployed to multiple app ecosystems like iOS, Android, and the web. Changes to a
user interaction flow can be made in the cloud computing environment, without
necessarily requiring updates to the various app ecosystems.

[0031] The system and method may provide a number of potential benefits. The
system and method are not limited to always providing such benefits and are presented
only as exemplary representations for how the system and method may be put to use. The
list of benefits is not intended to be exhaustive and other benefits may additionally or

alternatively exist.

WO 2022/040283 PCT/US2021/046456

[0032] As one potential benefit, the system and method can function to simplify
and enhance the developer experience. The system and method enable API and SDK
integration of a client application with an outside API-driven service to be more easily
developed. For those doing the initial integration, this can simplify the process thereby
accelerating the rate at which they can build a client application with API integration. It
further enhances maintenance and ongoing development — changes and updates to the
workflow interaction may require no changes by the developer of the client application.
[0033] As a related benetfit, the system and method can use the system and method
in order to provide a more stable SDK. The system and method will generally delegate
more complex logic to the network accessible resources of a cloud hosted workflow
service. As a result, the SDK and/or components built into the application code may be
simplified, at least for the portions related to managing workflow interactions. In some
implementations, the SDK may operate as a thin render for the backend-defined
interaction flows. In this way the SDK may not need to be updated to accommodate
changes to an interaction flow.

[0034] As another potential benefit, the system and method can shorten
development time for the developer of the API service. In the system and method, changes
to workflow interactions are less tied to SDK version releases. The API service provider

can push out code to the backend to update a workflow interaction.

[0035] Related to this, the API service provider can have options of creating custom
functionality or features offered to different subsets of their user accounts.

[0036] As another potential advantage, the system and method may enable a
workflow to be configured as a static graph while also potentially including interaction
with dynamic external systems. In one variation of the system and method, processor
nodes in a graph definition can be configured to perform various transformations of data
and to interface with other dynamic systems which could be internal systems or external
systems accessed over an API or other suitable channel.

[0037] As another potential advantage of the new code deployment opportunities.
Tests or experiments such as multivariate or A/B tests can be implemented because the
changes can be remotely and dynamically managed. Similarly, new features can be rolled

out gradually across an API services users. For example, logic could be used to

WO 2022/040283 PCT/US2021/046456

dynamically use one of existing version of a workflow configuration or a new version of a
workflow configuration across multiple client applications.

[0038] Herein, the system and method are described with references to service
providers and client applications. These terms are used as exemplary descriptions of these
different components and/or entities but is not intended to limit them to necessarily be

operated by different entities.

[0039] A service provider as used herein is generally characterized as a computer-
implemented platform facilitating the workflow service. The service provider will
generally be an API service provider, which may be operating as a SaaS (software as a
service) computing platform. The service provider may additionally be a multi-tenant
computing platform that supports multiple independent accounts. As an example, a
service provider may enable integration with one or more financial accounts by an end
user. A plurality of different client applications may make use of this service provider to
enable the end user of the client application to connect to and/or perform actions with a
financial account. Herein the people interacting and managing the infrastructure and
features of the service provider are generally referred to as administrators.

[0040] A client application is preferably an application or service operating on a
client device. A client device can be a computing device with a user interface for
interacting with a user. The client device can be, for example, a personal computer device
used by an end user. For example, the client device may be a smart phone, smart watch,
smart glasses, smart audio system, a computer, a tablet, a smart TV, and/or any suitable
computing device. The client device may alternatively be a browser, terminal, or any
suitable viewer for an application. The client application will generally include an SDK or
code library from the service provider, but the client application may alternatively include

native code directly defining instructions for interactions with the service provider.

2. System

[0041] As shown in FIGURE 1, a system for managing user interaction flows within
a third-party client application can include a workflow service 110 that can be configured
with workflow configuration 120 to generate rendered panes; and a client user interface

(UI) engine 130 that presents, and monitors user actions performed within a rendered

WO 2022/040283 PCT/US2021/046456

pane. The workflow service 110 is preferably a cloud-hosted system (e.g., a remote server
or computer system accessible over a network) that interfaces with multiple instances of
client applications/devices. The client UI 130 is preferably operable on the client
application/device. In some variations, the system can include the workflow service 110
and the workflow configuration 120, which are configured to work with an external client
Ul engine 130. In other variations, the system can include the workflow service, workflow
configuration 120, and the external client UI engine 130. In another variation, the system
can include the external client UI engine 130, which can be configured to interface with
an external workflow service 110. The system may alternatively be any suitable

combination of variations and elements described herein.

[0042] The workflow service 110 functions to process and evaluate the logic and
render user interface data according to a workflow configuration 120. The workflow
service 110 is a computer-implemented system that is hosted and implemented as part of
a backend system. The workflow service 110 can be remotely accessible over a network
(e.g., the internet) by one or more client applications. For example, the workflow service
110 can be implemented as part of an internet-accessible cloud infrastructure for an API
service platform. The workflow service 110 may be implemented as part of an API service
computing platform. However, the workflow service 110 may alternatively operate

independently and connect with one or more other API service platforms.

[0043] The workflow service 110 primarily evaluates workflow configuration 120,
which, as described herein, can be a directed graph defining an interaction flow. The
workflow service 110 can traverse and evaluate nodes in the workflow configuration 120
resulting in UI data. The UI data, described herein as rendered panes, can be
communicated to a client application. More specifically, the UI data is communicated to
a client application with the client UT engine 130. The client application can then use the
rendered panes to present a corresponding user interface. In one implementation, the
rendered panes may be communicated to and processed by a corresponding SDK (i.e., a
client UI engine 130) integrated into the client application to present the corresponding
user interface. The client application may return data representing user actions and other
information gathered by the rendered pane, and then the workflow service 110 can

continue in its traversal of the graph structure of the workflow configuration 120 based

WO 2022/040283 PCT/US2021/046456

on the user actions. This process loop (involving the workflow service 110 navigating and
processing the workflow configuration 120, communicating rendered panes, the client
rendering panes and then requesting updates with new data) can continue until the graph
is exited.

[0044] The workflow service 110 preferably maintains all needed data as part of
stored session state. Accordingly, the workflow service 110 may include a session state
database or data record for maintaining session state for each instance of a workflow. The
session state can include global data, request data, node output data, and/or other
suitable types of data. For example, all the user actions and input from previously
presented rendered panes can be stored.

[0045] In general, the workflow service 110 is used in facilitating user interactions
for a plurality of different instances of client applications. Session state can be maintained
for each individual client application. Furthermore, the workflow service 110 can support
different types of client applications.

[0046] The workflow configuration 120 can be maintained within the workflow
service 110. The workflow service 110 can handle evaluation of the workflow configuration
120 so that a client application can reduce its responsibility to managing presentation of
the UI data generated by the workflow service 110. This may alleviate a client application
from having to deal with logic of negotiating an interaction flow, which even for seemingly
simple tasks can get very complicated when addressing possible errors, edge cases, and/or
other conditions.

[0047] The workflow service 110 can additionally include configuration to manage
communication from and to the client application. The workflow service 110 can handle
workflow related requests from clients. One variety of requests may initiate or start a new
workflow. Another variety of requests may request an update to the workflow as a result
of user interaction or another input at the client application. The workflow service 110
additionally communicates UI data to a client application. In particular, the workflow
service 110 generates rendered panes (or views) that can be communicated to a client
application.

[0048] The workflow service 110 can include a workflow service API, which

functions to expose a programmatic interface through which an instance of a client

10

WO 2022/040283 PCT/US2021/046456

application (i.e., a client application instance), and more specifically a client UI engine
130, can communicatively interact for the purpose of enabling a user interaction flow on
the client application instanced. The workflow service API can be a REST
(Representational State Transfer) API, a GraphQL API, SOAP (Simple Object Access
Protocol) API, and/or other suitable type of API. The workflow service API, in some
variations, involves request and response communication over a HTTP (Hypertext
Transfer Protocol) based application layer protocol. However, any suitable

communication protocol or style of API may alternatively be used.

[0049] The workflow service API exposes an API endpoint, such as a URL
(Universal Resource Locator) or URI (Uniform Resource Identifier), for initiating a
workflow, for transitioning between rendered panes, and/or for updating with newer
data.

[0050] In one example, the workflow service API can expose an API endpoint like
“workflow/start”, “workflow/next”, and “workflow/update”. Other suitable set of API
endpoints may alternatively be used.

[0051] The start API endpoint (e.g., “.../workflow/start”) can be used for a client to
send initial configuration/initiation data. The data may be used to initialize the session
state. The data may also be used by the workflow service 110 to select an appropriate
workflow configuration 120 to be used. A workflow configuration 120 may be selected
based on an identifier of the type of client application, a user identifier, and/or any other
suitable information. In some versions, dynamic selection workflow configuration 130
can be used when performing multivariate or A/B tests, when performing gradual rollout
out of a new workflow version, and/or during other situations. In this case multiple
options of a workflow configuration 130 may be dynamically selected (e.g., randomly,
based on some data property of the start request, etc.).

[0052] In response to a client request to a start API endpoint, the workflow service
110 processes the request and processes an appropriate workflow configuration 120, and
then returns a first set of rendered panes that the client can display.

[0053] The “next” API endpoint (e.g., “.../workflow/next”) can be used to transition
to new rendered panes. This may be referred to as a workflow update API endpoint.

During one version of usage, the client sends collected user input as a data object

11

WO 2022/040283 PCT/US2021/046456

representing the user action along with any previous pane input data not yet sent to the
server. Other suitable information/data may also be sent. In response, the background
processes the request, uses the updated data to walk/process the workflow configuration

130, and then returns the next set of rendered panes that the client can display.

[0054] The state update API endpoint (e.g., .../workflow/update”) can be used to
communicate updated data from the client without requiring new rendered panes. This
may be described as a state update API endpoint or an analytics API endpoint. A client
can send an update of when the client transitions to a new pane, possibly with other
collected data. The backend can use the updated data to update session state and/or
potentially update the current position in the graph of the workflow configuration 120
(e.g., updating the current node). The update API endpoint can be used for consistent
analytics or logging when navigating between panes when the client already has the
rendered panes (e.g., cached or sent as a set of neighboring panes). The update API
endpoint may, in some implementations, be combined or replaced with the next API
endpoint.

[0055] The workflow configuration 120 functions to model a directed graph that
defines the logic and generated user interface elements. Preferably, the workflow
configuration 120 is static data that represents a user interaction experience. The
workflow configuration 120 preferably represents the user experience as a directed graph.
The workflow configuration 120 can be stored and processed by the backend workflow
service 110 thereby generating data that a client UI engine 130 (e.g., an SDK of the API
service provider) uses when rendering a user interface. Interactions with the rendered
user interface results in updated processing of graph model of the workflow configuration
120.

[00546] The workflow configuration 120 may be formatted or organized into any
suitable file type. In one variation, the data of the workflow configuration 120 is a data file
or files configured as a serialized structured data. A limited set of exemplary data formats
for the workflow configuration 120 could include a protocol buffer format (e.g., a proto
file format), a JavaScript Object Notation (JSON), Extensible Markup Language (XML),

and/or other suitable file formats.

12

WO 2022/040283 PCT/US2021/046456

[0057] The workflow configuration 120 may be edited and created from any
suitable source. In one variation, the workflow configuration 120 is generated and edited
by a workflow editor 140.

[0058] As discussed, the workflow configuration 120 preferably defines a directed
graph that specifies how to generate new UI data. The directed graph preferably includes
a number of nodes that are connected through directional edges. A node will have one or

more inputs and/or one or more outputs.

[0059] There may be different types of nodes that handle different operations. In
one variation, the workflow configuration 120 is a directed graph of nodes that include at
least the type of node: a pane node 121. In another variation, the workflow configuration
120 is a directed graph of at least three types of nodes: a pane node 121, a processor node
122, and a switch node 123 as shown in FIGURE 2. Below is a description of properties of
a collection of node types for such an implementation. The system is not limited to these

node types and other alternative implementations may also be used.

[0060] A pane node 121 functions to define a discrete step within a UI interaction
experience. A pane node 121 therefore can represent a corresponding pane or “UI
element” (e.g., a Ul view, a module defining some unit of a UI interaction) within a
workflow interaction.

[0061] A pane node 121 can be a static data template. A pane node will generally
have a render method that takes incoming data payload (from an incoming edge) and
configures the pane properties to generate a rendered pane. The render method can
include programmatic logic to translate incoming data payload (e.g., the current state)
into a rendered pane data object. For example, based on supplied input data, a pane node
121 may set various UI properties such as colors, text content, media assets, fields, and
the like. The output of the render method can be a client pane data object, referred herein
as a rendered pane, that can be delivered to and rendered by a client application. Pane
nodes 121 are preferably not directly sent or processed by a client, and instead a resulting
rendered pane can be sent. The rendered pane, and more preferably a set of rendered
panes, can be communicated in an API response to a client application.

[0062] A rendered pane may be a programmatic prop (property) data object. A Ul

component can accept the props as input for returning a UI element for presenting in a

13

WO 2022/040283 PCT/US2021/046456

user interface. (e.g., displaying a view on a screen). For example, the rendered pane could
be a React Component prop which can be used by a React Component for updating a user
interface at the client application that uses the React JavaScript library.

[0063] In one implementation a pane node may have any suitable number of
incoming edges, and an outgoing edge for each user action supported by the pane as
shown in FIGURE 2. For example, a pane node may have an outgoing edge for three
possible actions: “submit”, “cancel”, or “select an item in a list”. The output of the user
actions (e.g., user credentials when submitting credentials for authentication) is
preferably stored in the session state. Herein, circles are primarily used to represent pane
nodes in depictions of nodes of a graph of a workflow configuration.

[0064] The pane nodes are preferably used to render a pane (a rendered pane),
which is UI data that can be sent to the client application. The pane node 121 takes current
session state (or data passed to the node) and specification of the pane node to output a
rendered pane. The rendered pane includes the necessary data that is needed at the client
to render the desired Ul. For example, the text, graphics, input fields, buttons, and/or
other UI elements can be described in the rendered pane. In one implementation, a
rendered pane can include a pane type (e.g., “credentials pane”, “user information pane”,
“information pane”, etc.) and information data used to display the pane type to a user
(e.g., color options, text/strings, assets such as an image, labels, interaction option
settings, etc.). In one implementation, a set of different pane types can be provided, where
the pane types serve as Ul element templates that can be updated with the pane
information data. Alternative forms of Ul element specification may be used for a
rendered pane such as specifying the rendered pane as a data object defining HTML
(HyperText Markup Language), CSS (Cascading Style Sheet), and/or JavaScript. The
rendered pane can preferably be interpreted by a client application operating on the client
application. In one preferred implementation, the client UI engine 130 (e.g., an SDK)
provided by the service provider can be installed within the client application and used to
render the rendered panes. In an implementation making use of pane types, the client UI

engine 130 can include configuration to present rendered panes for the possible pane

types.

14

WO 2022/040283 PCT/US2021/046456

[0065] The pane can be a modal UTI element wherein a single pane is presented at
one time. For example, during a sign-up user interaction flow, the pane can a UI window
in a graphical UI, where each pane is a different slide, page, or visual state of the sign-up
user interaction flow. In another variations, however, a user interaction flow may have at
one point, multiple panes used in combination. For example, a set of rendered panes may
include a parent pane that can contain child panes.

[0066] In one variation of a pane, the pane defines a UI view with discrete set of
possible actions within the UI view. In other words, a pane (and its resulting rendered
pane) can correspond to a discrete step within a user interaction flow. In the sign-up user
interaction flow example, one pane may display a set of user input fields such as name,
email, and password, and a button to submit the information for sign-up. The previous
and/or next stage of the user signup interaction flow can be a different pane in this
exemplary implementation. In another variation, a pane may define a Ul element with
multiple states of a user interaction. For example, a pane could provide data to fully
enable a digital survey that collects user responses to multiple prompts across multiple
sequentially displayed views.

[0067] A processor node functions to allow a static graph to interact with dynamic
code. The processor nodes are where logic can be defined to interact with external systems

and code.

[0068] In one implementation, a processor node may be defined as a one-to-one
node that has one incoming edge and one outgoing edge as shown in FIGURE 2. In this
way, the processor node may not alter the path of a workflow and it functions primarily
as a transformer of data. In other words, this one-to-one form of processor node can
ensure that there is no graph edge state or traversal decision contained within imperative
code. The processor node can act on data for transforms, data-retrieval/fetches, external
system integration, and the like. In some variations, a processor node may have multiple
incoming edges, in which case, for example, the data passed from each incoming edge
includes required data for the processor node. Herein, blocks/squares are primarily used
to represent processor nodes in depictions of nodes of a graph of a workflow

configuration.

15

WO 2022/040283 PCT/US2021/046456

[0069] The processor node may be directed to a single function or process. A
function or configuration for an executable process invoked by a processor node may be
statically defined in data, the workflow service 110 can invoke the function in accordance
with the processor node 121. Implementing processor nodes as primarily functional
transformers, which be accompanied with many potential benefits such as: preventing
graph-walking logic from being used, enabling processor nodes to be re-used across
different workflows, and/or keeping code modular and unit testable.

[0070] Configuration defining a processor node may specify logic but may
alternatively delegate logic definition to an external resource. In one example, the
processor node may be associated with configuration details and a script defining
implementation and logic of the processor node. The configuration examples may specity
input state (e.g., inputs for the processor node) and output state (e.g., the result output
by the processor node) and/or any node specific data or configuration information. In
another example, a processor node configured in the workflow configuration 120 may
specify an internal API, which manages the definition of the actual logic. The return value

from the internal API can then be used as the output.

[0071] The output of the processor node is preferably always stored in the session
state. Though in some alternative instances it may be temporary and communicated to

the next node.

[0072] A switch node functions to enable a workflow graph to branch based on the
session state. The switch node can be configured to operate like a switch statement by
testing a value and then picking an outgoing edge based on the value. Accordingly, one
implementation of a switch node has a single input edge with multiple output edges,
where an output edge corresponds to a different case(s). In some variations, however, a
single switch node may alternatively have an incoming edge from multiple other nodes.
In such a variation, the incoming data payload will generally be of similar or the same
format for processing. Herein, blocks/squares are primarily used to represent processor
nodes in depictions of nodes of a graph of a workflow configuration.

[0073] A switch node can be configured without specifying any logic and can be
configured by specifying the value conditions and the corresponding outbound edge that

is mapped to the value. When a switch node 122 is processed by the workflow service 110,

16

WO 2022/040283 PCT/US2021/046456

a single property on the incoming data payload (e.g., from a stored session state) is
examined and used to determine the external edge to follow. In some variations, multiple
properties may be examined. In one implementation, configuration of a switch node may
be defined in data as a property to check and a list of key value pairs that map case values
of the property to edges. An example of a switch node may be a switch node that tests the
session state variable for indication that an end user agreed to a terms of service
agreement. If not, then the outgoing edge directs flow to an outgoing edge that results in
rendering a pane for terms of service. If so, then the outgoing edge skips the terms of
service pane.

[0074] In some variations, the system includes a workflow editor 140, which
functions as a graphical user interface for creating and/or editing workflow configuration
120. The workflow editor 140 may be implemented using a variety of user interface
paradigms. Preferably, the workflow editor 140 enables a user to create nodes, edit the
properties of those nods, and edit connections between the nodes. In one implementation,
the workflow editor 140 may present the workflow of the workflow configuration 120 as a
visual directed graph of the nodes such as in FIGURE 6. Presentation of the node and the
edges in the directed graph of the workflow configuration may be selectable and editable
through such interactions. Nodes and edges may be added, altered, and/or deleted. For
example, the order of various rendered panes can be altered by reordering the associated
pane nodes 121 using the workflow editor 140.

[0075] A workflow editor 140 may enable a wide variety of administrators to edit
and collaborate within a workflow.

[0076] There may be a variety of features to enhance the collaboration and use of
the workflow editor 140 within an organization.

[0077] As a first example, the workflow editor 140 may enforce permissions for
collaborators on a workflow. Permissions may restrict which aspects can be viewed
and/or changed. For example, an account for an administrator from a marketing
department may be granted editing permission over the copy presented within the user
interfaces while a developer may be granted more permissions to alter logic and user
interface flow. In other words, select properties or elements of a pane node 121 may be

editable by a select set of users. In the implementation described above for a pane node

17

WO 2022/040283 PCT/US2021/046456

121, a render method of the pane node 121 may be edited to alter the generated strings
output as a prop data object in the rendered pane. Continuing the example, an account
for a developer may be able to change any aspect of the workflow configuration 120
including creating new nodes and editing the graph.

[0078] As a second example, the workflow editor 140 may additionally enable
features for importing or depending on other nodes, workflows, or portions of workflows.
The workflow editor 140 may additionally alternatively include overriding a referenced
parent workflow or node.

[0079] In one variation, workflow configurations may import or reference
additional workflow configurations. For example, a first workflow configuration may
define a user onboarding interaction flow and include a subsection within the graph of
the first workflow configuration that references a second workflow configuration that
defines a portion of the interaction flow that retrieves consent to various policies from a
user. The workflow editor may enable navigation between different interconnected
workflow configurations.

[0080] In an example of referencing other nodes, the workflow editor 140 may have
a library of nodes that can be added to a workflow configuration 120. In some instances,
a type of node from a library of nodes may be fixed to serve a set purpose. For example, a
pane node for displaying an error message may not be editable except by select users with
permission. In other instances, a type of node from the library of nodes may be
customizable. For example, a pane node for collecting user input may be selected and
customized to specify the number of input fields, the type of fields, data labels for the
fields, user labels for the fields, and/or other information. This can make it easier for non-

developers to easily create new interaction flows using a set of pane types.

[0081] Since the system can make customization and modification of a workflow
very flexible, the system may additionally include tools to manage a diversity of
workflows. Accordingly, the system may include workflow versioning to support a wide
variety of versions to be invoked. In one implementation, the workflow versioning can be
implemented such that a wide variety of experiences, variants (which may be used for
testing), and/or other version updates can be selectively used. A semantic versioning

scheme may be used to enable different versions of a workflow to be easily initiated in

18

WO 2022/040283 PCT/US2021/046456

response to a workflow request. In some variations, the workflow service 110 may

dynamically determine which workflow configuration to initiate for a given request.

[0082] In some instances, various rules may be set for how different workflow
configurations are used. For example, the workflow editor may be used to set mapping of
workflow configuration versions to customer accounts (e.g., different client application
identifiers), individual users, different geographic or spatial location, and/or other
properties. As discussed, the system may support multivariate and/or A/B testing of
different workflow configuration versions. In one variation, a set of workflow
configuration versions can be selected for testing. The population for testing could
optionally be specified. Then the workflow service 110 may automatically select from the
set of workflow configuration versions and log collected analytics for each workflow
configuration version.

[0083] The client UI engine 130 functions to implement the rendered panes
generated by the workflow service 110. The client Ul engine 130 may be implemented as
part of an SDK or library offered by the service provider. An application developer can
integrate the SDK with their client application so that the client application can invoke
the workflow interaction. The client UI engine 130 is preferably not responsible for
performing complex workflow logic. The client Ul engine 130 is preferably configured to
present a rendered pane, collect any user input or other suitable data input, update the
rendered pane in response to an action, and/or request an update from the workflow
service 110. The client Ul engine 130 may additionally facilitate logging session state
analytics.

[0084] As discussed, the system can be used to facilitate user interaction flows
within a plurality of client applications. In some implementations, it can facilitate user
interaction flows for not only multiple distinct instances of client applications but for
multiple distinct types of client applications. As one example, the workflow service 110
may operate as part of offering a digital financial tool used in accessing or interacting with
various external financial accounts. Multiple different types of applications may make use
of such offering and include the SDK (i.e., the client Ul engine 130) within their
applications. In this way, the workflow service 110 can interact with multiple users of the

various types of applications.

19

WO 2022/040283 PCT/US2021/046456

[0085] The client UI engine 130 interfaces with the workflow service 110 through
the workflow service API. The client Ul engine 130 can initiate the start of an interaction
flow based on a trigger within the client application. In response, a set of rendered panes
can be received. The rendered pane can be presented in the user interface, and then any
user action or new data collected can be used in determining next steps. User action may
trigger requesting updated rendered panes from the workflow service 110, using local
rendered panes, and/or ending the user interaction flow.

[0086] In some variations, a set of rendered panes are communicated to the client
Ul engine 130. The client Ul engine 130 can cache or otherwise store the set of rendered
panes. These pre-loaded rendered panes can be accessed and used when user action
triggers their use. When a rendered pane is not locally stored, the client UI engine 130
interfaces with the workflow service 110 to receive an updated rendered pane or set of
rendered panes.

[0087] The client UT engine 130 may include logic to present a set of different types
of panes. In one implementation, the rendered panes may specify a pane type selected
from a set of potential pane types. Alternatively, the rendered pane may include any
suitable information to enable the client UI engine 130 to convert and present in a UT of
the client application.

[0088] As discussed, in one implementation, a rendered pane may be a
programmatic prop (property) data object. In such a variation, the client UI engine 120
can use a function to translate the prop data object into a Ul element. For example, a
React Component may take in the received rendered pane as a React Component prop
and update a user interface within a DOM (Document Object Model) of a browser-based
user interface.

[0089] While the system and method are described herein primarily for graphical
user interface, the system and method could similarly be used with other modes of user

interfaces such as an audio user interface.

3. Method

[0090] As shown in FIGURE 3, a method for managing user interaction flows

within third party client applications can include setting workflow configuration S100 and

20

WO 2022/040283 PCT/US2021/046456

processing the workflow configuration thereby generating rendered panes for a client
application S200. This method enables management of a client-implemented user
interface based on cloud managed evaluation of a user interaction flow, which is specified
through a workflow configuration.

[0091] As shown in FIGURE 4, the processing of the workflow configuration in
block S200 may be comprised of: initiating processing of workflow configuration S201;
following a next edge of the workflow configuration S230; evaluating workflow nodes of
the workflow configuration and generating a rendered pane S240; sending at least one
rendered pane S250; displaying the rendered pane S260; evaluating user action and pane
transitions S270; calling a workflow update S280; and exiting the workflow interaction in
response to the server S295.

[0092] A variation of the method implemented at a workflow service (e.g., one or
more server or processor-based devices in a cloud computing environment) for remotely
managing user interaction flow at an external client application can include, processing
of a workflow configuration by initiating processing of workflow configuration S201;
following a next edge of the workflow configuration S230; evaluating workflow nodes of
the workflow configuration and generating a rendered pane S240; and sending at least
one rendered pane S250. This process may repeat to facilitate progressing through the
user interaction flow broken up into different panes, until coming to an exit state for the
workflow configuration and sending an exit command to the client application (S295).
[0093] In one particular variation, the method can include: initiating, in response
to aninitiation request of a client application, processing of a workflow configuration with
an initial session state, wherein the workflow is a data model of a graph of nodes
connected with directed edges, where nodes include a set of node types that includes at
least a pane node; iteratively processing the workflow configuration, initially using the
initial session state, thereby generating rendered panes for use in a user interaction flow
of a client application, which comprises: following a next edge of the workflow
configuration to determine a next workflow node, processing the next workflow node,
which comprises, when the next workflow node is a pane node, rendering the pane node

into a rendered pane, and sending the rendered pane to the client device.

21

WO 2022/040283 PCT/US2021/046456

[0094] In some variations, the type of nodes of the workflow configuration further
includes a second type of node that is a processor node and a third type of node that is a
switch node; and wherein processing workflow nodes comprises: when the node is a
processor node, invoking a data processing method defined by the processor node to
output a transformed data output; when the node is a switch node, evaluating the one or
more value from the data payload input to the switch node and selecting a corresponding
branch to another node.

[0095] More generally, processing of the workflow configuration S200 can include
navigating the directed graph of a workflow configuration until arriving at state
configured for transmission of a set of rendered panes to the client, and while navigating
the directed graph, rendering a pane node, and outputting a rendered pane (S242). The
initial state when initiating navigating the directed graph of the workflow configuration
is set based on a request from a request from the client application. Here rendering a pane
node can includes translating session state data (data payload supplied as an input to the
pane node) into a rendered pane.

[0096] In one variation, processing of a pane node may trigger the state configured
for transmission (i.e., a transmission condition). In other words, a rendered pane is sent
to the client and processing halts until further communication is received from the client
application. In other variations discussed herein, processing all of a set of neighboring
pane nodes or other suitable groups of pane nodes may trigger the state configured for

sending the set of rendered panes to the client application.

[0097] With the other node types like a processor node this may additionally
include: while navigating the directed graph of the processing workflow configuration,
invoking a processor node (S241). Invoking the processor node, can perform some action
on the inbound data payload (e.g., the session state data) and generate an outbound data
payload, which be a stored update to the session state data. A processor node may have
only a single outbound edge and therefore the next connected node can be processed. The
updated session state data can be used in processing the node connected by the single
outbound edge of the processor node.

[0098] With the other node types like a switch node, this may additionally include:

while navigating the directed graph of the processing workflow configuration, evaluating

22

WO 2022/040283 PCT/US2021/046456

a switch node S243. Evaluating a switch node involves selecting, based on inbound data

payload (e.g., current session state) an edge to determine a next node.

[0099] A variation of the method can include cooperative interaction between a
workflow service and a client application. Accordingly, the method may include: a) at one
or more servers of a workflow service, initiating, in response to an initiation request of a
client application, processing of a workflow configuration with an initial session state,
wherein the workflow is a data model of a graph of nodes connected with directed edges,
where the nodes include a set of node types that includes at least a pane node; iteratively
processing the workflow configuration, initially using the initial session state, thereby
generating rendered panes for use in a user interaction flow of a client application, which
comprises: following a next edge of the workflow configuration to determine a next
workflow node, processing the next workflow node, which comprises, when the next
workflow node is a pane node, and rendering the pane node into a rendered pane sending
rendered panes to the client device; and b) at a client application, displaying the rendered
panes; evaluating user action and pane transitions; and when a workflow update is
required based on the user action and pane transition, calling a workflow update with
user input collected. The client application may additionally call or initiate a workflow
start.

[00100] A variation of the method may be implemented at a client
application/device for controlling user interaction flow at the client device based on API
communication with a remote service and can include, in association with remote
processing of a workflow configuration: receiving at least one rendered pane (S250);
displaying (or otherwise presenting) the rendered pane S260; evaluating user action and
pane transitions S270; calling a workflow update S280. This process can repeat until
initiating exiting the workflow interaction in response to the server S295. This variation
of the method may be performed by the client using an API. Accordingly, this variation
can include, at the client application: initiating processing of the workflow configuration
with an API call to an API URI endpoint of a service; and transmitting a workflow update
API request to a workflow update API URI endpoint of the service. Initiating an APT call
to the API URI endpoint involves transmitting a workflow initiate API request to a

workflow initiate API URI endpoint of the workflow service which thereby initiates

23

WO 2022/040283 PCT/US2021/046456

processing of the workflow configuration. A corresponding workflow service can facilitate
processing of an appropriate workflow configuration and then sending one or a set of
rendered panes in response to an API calls or other suitable responses such as an
acknowledgement or exit command.

[00101] The method may additionally include, at the client application, updating
session state analytics by transmitting a workflow state update API request. This can be
used when the client application updates to a locally stored rendered panes from a current
rendered pane, such that session state at the workflow service can be kept in
synchronization.

[00102] Block S100, which includes setting a workflow configuration, functions to
setup and define workflow configuration. The workflow configuration will be used in
determining how a workflow service updates a user interaction flow on a client
application. Setting workflow configuration preferably involves defining and storing data
that defines the properties of a workflow configuration as described above. Accordingly,
setting workflow configuration may include setting nodes and the connections of the
nodes. In one preferred implementation, this may include setting a directed graph of
nodes. In one preferred variation, the nodes include a set of node types that includes at
least pane node(s). In another preferred variation, the set of node types that includes pane
node(s), processing node(s), and switch node(s). Other suitable types of nodes may
additionally or alternatively be used.

[00103] Setting workflow configuration may be set by receiving one or more data
files defining the workflow configuration.

[00104] Alternatively, setting workflow configuration may include providing a
workflow editor user interface wherein data of the workflow configuration data and its
sub-components may be created and/or edited by the workflow editor user interface. In
such a variation, setting a workflow configuration may include building a workflow
configuration within a workflow editor application. Building the workflow configuration
within the workflow editor application may include adding nodes (e.g., pre-configured
nodes), adding node templates (e.g., nodes intended for editing), customizing, or editing

nodes, setting connections between nodes, deleting nodes, and the like. In this way

24

WO 2022/040283 PCT/US2021/046456

building the workflow configuration can set definition of a directed graph of pane nodes,
processor nodes and switch nodes.

[00105] In one variation, user permissions may be set and enforced in viewing,
editing, and/or performing other actions related to a workflow or portion of a workflow.
For example, an account for an administrator from a marketing department may be
granted editing permission over the copy presented within the user interfaces while a
developer may be granted more permissions to alter logic and user interface flow.
[00106] In another variation, setting the workflow configuration may include
referencing other workflows, nodes, or other sub-components. This may enable workflow
configurations to depend on other workflow configurations in defining at least a portion

of their operation.

[00107] In some variations, a library of workflow templates, nodes, sub-workflow
portions may be navigable and selectable within a workflow editor user interface. The
components of this library may be added to new workflows. They may be copied or
symbolically linked so that they depend on a parent version of the component.

[00108] The workflow configurations may be customized to suit a number of
different use-cases and types of user interaction flows. As one example, the workflow
configuration can define a user interaction flow for multistep authentication, wherein the
rendered panes include panes for collecting user input in response to earlier user input.
While the method may be applied to a wide variety of applications, sign-on or
authentication flows for a API service facilitating such activities may need to be able to
handle a wide diversity of different flows depending on, for example, what account is
being authenticated, to which external service authentication is occurring, the app in
which the authentication process is happening, the type of action being performed, the
type of authentication required, and/or other factors. For example, such method for
dynamic interaction flows could be of use by systems and methods such as those described
in U.S. Patent Application No. 14/790840, filed July 2, 2015, U.S. Patent No. 9,449,346,
and titled “SYSTEM AND METHOD FOR PROGRAMMATICALLY ACCESSING
FINANCIAL DATA”, which is fully incorporated by this reference.

[00109] In one particular variation of the method, a set of different workflow

configuration versions may be defined. These different versions may be used in

25

WO 2022/040283 PCT/US2021/046456

multivariate testing, A/B testing, gradual version roll out, or other applications. The set
of different workflow configuration versions may be a set of distinct workflow
configurations. This may alternatively be a workflow with select properties or nodes

configured to have different settings.

[00110] Block S200, which includes processing the workflow configuration thereby
generating rendered panes for a client application, functions to facilitate a workflow
interaction within a client application. Processing the workflow configuration involves
interaction between the workflow service (e.g., the service provider) and a specific client
application. In general, the workflow service will facilitate multiple different workflow
interactions for a plurality of different client applications. The plurality of client
applications could involve different applications and different end users. Additionally, the
client applications may make use of the same workflow configuration, but in many
applications, a set of different workflow configurations will be used across the client
applications.

[00111] Processing of a workflow configuration is generally initiated by a client
application. The workflow service will primarily facilitate traversing and evaluating the
nodes in a directed graph of the workflow configuration and sending resulting Ul data
(i.e., rendered pane(s)) to the SDK (a client user UI engine on a client application). The
SDK can use the UI data to generate one or more UI for one or more panes/stages of a
user interaction flow. The SDK can additionally subsequently return data representing
user actions, and, in response, the workflow service continues to traverse the graph based
on the data in those user actions, and the loop continues until the graph is exited or the

user interaction flow otherwise ended.

[00112] Throughout this process, processing the workflow configuration can include
storing or otherwise maintaining state data used by the workflow configuration. In one
variation, this includes maintaining data as part of Session State. The session state may
include global data as well as output from all the nodes.

[00113] In one variation, processing the workflow configuration can include, after
initiating processing of a workflow configuration, creating a session object, which can
function to store client configuration data (e.g., products, public key, etc.). The session

object can also store the output of all nodes and stores it as what we call “Session State”.

26

WO 2022/040283 PCT/US2021/046456

This session state can be used to satisfy the input state requirements of nodes when
walking the graph. In an alternative implementation, navigation of the graph can be
stateless where navigation of the graph can depend only on the data passed to it and the
immediate requests from a client application. Other approaches to storing and

communicating data or information may alternatively be used.

[00114] In one exemplary variation, the kinds of data stored in the session state can

include Global data, per-request data, and node output data.

[00115] Global data can be pre-populated at the start of every session (when a
receiving an initiation request from a client application). It could include data like locale,
device, SDK metadata, etc.

[00116] Per-request data can be populated at the start of every request. Examples
could include request id, geolP, user agent, data from user action or UI state at the client

application.

[00117] Node Output can be populated with the output of pane and processor nodes.
Node outputs could include data such as credentials, institution data, multi-factor

authentication results, item, occurrence, and the like.

[00118] In one implementation, pane and processor nodes can declaratively define
what session state they require as input and the workflow service can automatically inject
the needed session state into their processing method automatically. A switch node can
additionally check session state to determine an output edge. Additionally, static
validation of the workflow graph can determine if the declared state is even available as
input at that point in the graph.

[00119] Each workflow (i.e., graph of a workflow configuration) has an initial
starting edge. Walking the graph from this starting edge follows the directed edges to a
node and then a corresponding output edge of that node is used to determine the next
step. When encountering a node where the set of node types include a processor node, a
switch node, and a pane node, it will perform one of the following.

[00120] Ifitis a processor node, the backend will invoke a dynamic method specified
by that processor node and then follow the outbound edge (a processor node generally

has a single outbound edge).

27

WO 2022/040283 PCT/US2021/046456

[00121] If it is a switch node, the backend will evaluate the state data specified by
the switch node configuration. The cases of the switch are value/edge pairs, so the switch
will follow the edge of the matching case statement.

[00122] If it is a pane node, the backend will create a rendered pane using the pane
node input and send the rendered pane down to the client. Walking will pause until the
required output of the pane has been submitted by the client. In this way, navigation of
the workflow will generally be performed in stages, with breaks occurring when a set of
rendered panes can be sent to a client application. In some variations, batching of
rendered panes may additionally be used, where panes can be preemptively rendered and
sent as a collection.

[00123] In one preferred variation, the method repeatedly follows the edges of the
workflow and processes workflow nodes and then sends a rendered pane after at least one
rendered pane is generated. In one variation, sending a rendered pane to the client device
occurs after processing a pane node. The navigation and/or processing of the directed
graph of the workflow configuration can halt after sending the rendered pane.

[00124] In another variation, rendered panes may be sent in batches. They are
preferably sent in batches for pane nodes that can be pre rendered without needing
updated information from user actions. For example, pane nodes that neighbor one each
other may qualify for rendering and sending in one communication to the client
application. A condition of qualifying as a neighboring pane node may be if two pane
nodes are directly connected by an edge. An alternative condition of qualifying as a
neighboring pane node may be if a set of pane nodes are interconnected without a
processing node, switch node, and/or other type of intermediary node. For example, a
string of pane nodes may be processed, and a set of rendered panes generated.

[00125] In this way, processing the next workflow node may further include, when
the next workflow node is a pane node with neighboring pane nodes, rendering the pane
node and the neighboring pane nodes into a set of rendered panes. In such a variation,
sending the rendered pane to the client device comprises, can further include sending the
set of rendered panes. The set of rendered panes may be leveraged at the client application
for reducing interactions with the workflow service, by transitioning to a stored rendered

pane, if possible, as discussed herein.

28

WO 2022/040283 PCT/US2021/046456

[00126] As discussed, processing of the workflow configuration in block S200 can
include: initiating processing of workflow configuration S201; following a next edge of the
workflow configuration S230; evaluating workflow nodes of the workflow configuration
and generating a rendered pane S240; sending at least one rendered pane S250;
displaying the rendered pane S260; evaluating user action and pane transitions S270;
calling a workflow update S280; and exiting the workflow interaction in response to the
server S295.

[00127] As shown in FIGURE 5, this may more specifically include: at a client
application, calling workflow start S210; at server of the service provider: selecting
workflow configuration and setting up session state S220, following a next edge of the
workflow configuration S230, evaluating workflow nodes of the workflow configuration
and generating a rendered pane S240, and sending at least one rendered pane S250; and
then at the client application: displaying the rendered pane S260, evaluating user action
and pane transitions S270, calling a workflow update S280, and exiting the workflow
interaction in response to the server S295.

[00128] When considering the S200 as implemented at one or more servers (or
other computer-based systems) of the workflow service, processing of the workflow
configuration includes: receiving workflow initiation request from a client application
instance (S110); selecting workflow configuration and setting up session state S220;
following a next edge of the workflow configuration S230; evaluating workflow nodes of
the workflow configuration and generating a rendered pane S240; and sending at least
one rendered pane S250. Subsequently, the method can include, at one or more servers
of the workflow service, receiving a workflow update request from a client application
(S280), and repeating S230, S240, S250 with updated session state. Then after reaching
an exit state in the workflow, exiting the workflow interaction, and sending an exit
command to the client application (S295).

[00129] Block S201, which includes initiating processing of workflow configuration,
functions to start a new workflow interaction for a client application. Initiating processing
of the workflow configuration is preferably performed in response to an action taken by

the client application. Accordingly, initiating processing of workflow configuration can

29

WO 2022/040283 PCT/US2021/046456

include: at the client application calling workflow start S210 and at the server selecting

workflow configuration and setting up session state S220.

[00130] Block S210, which includes calling workflow start, functions to instruct a
server to begin directing a workflow interaction. Block S210 can include, at the client
application, determining to initiate workflow interaction and transmitting a workflow
initiation request to a workflow processing engine. Calling workflow start may be
managed by an SDK. In one implementation, calling workflow start transmits a message
to an exposed workflow service API of the workflow service (e.g., a start API endpoint). A
client application will generally determine to initiate the workflow interaction when the
state of the client application is updated to one that makes use of a view dependent on the
workflow interaction. For example, if a user triggers a user authentication action within
the client application it may initiate a user interaction flow that facilitates authentication
guided by the workflow service.

[00131] In response to calling workflow start, the workflow service will

correspondingly receive a workflow initiation request at a server of the workflow service.

[00132] The request for workflow start will preferably include the necessary
information to determine which workflow configuration to start. The request may also be
authenticated using credentials of a user account. In some variations, the identity of the
requester (e.g., the developer user account) and/or other metadata (client user identifier)
may also be used to selectively determine the workflow version. While this may be used
for various applications, one exemplary use case would be to select different workflow
versions depending on the client application and the user of that client application.

[00133] Block S220, which includes selecting workflow configuration and setting up
session state, functions to setup workflow configuration for use with the client
application. Selecting workflow configuration may include selecting a workflow version.
Setting up session state functions to initialize the session state information used in
managing the workflow execution. In some instance variations, session state may be
initialized to a default state. In other instance variations, the session state may be
initialized using available information from the workflow initiation request. In other
instance variations, the session state may be initialized by loading session state using

available information such as parameters from the workflow initiation request.

30

WO 2022/040283 PCT/US2021/046456

[00134] In some implementations, workflow configuration selection could be used
to provide customized user interaction flows to different segments of users. For example,
different workflow configurations could be created for different geographic regions.
[00135] As yet another variation, the method can include dynamically selecting a
version of a workflow configuration according to settings of an account. This may be used
when performing multivariate or A/B tests, when performing gradual rollout out of a new
workflow version, and/or during other situations. An account could configure a set of
different workflow configuration versions. In exemplary A/B testing use case, the
workflow configurations can be fairly similar in nature but with slight differences.
[00136] Selecting a version of a workflow configuration may include selecting
different node options (e.g., different pane node versions for a particular pane node in the
workflow configuration).

[00137] Selecting a version of a workflow configuration may include selecting
different workflow configuration files. In this way different interaction flows entirely can
be selected. For example, an experiment may be run to test different ordering of panes to
track conversion rates of the different workflow configurations.

[00138] When using dynamic selection of versions of a workflow configuration is
used for testing purposes, the method may additionally include collecting analytics and
saving analytics in association with the dynamically selected workflow configuration. This
data may be used to determine versions of workflow configurations with performance
characteristics (as indicated in the saved analytics) that may be selected for further usage.
In one variation, the method can then dynamically select a version of the workflow
configuration based on collected analytics and comparison of the different versions.
[00139] Blocks S230 and S240 are preferably performed repeatedly. Accordingly
processing the workflow configuration can include traversing the directed graph of the
workflow configuration by repeatedly: following a next edge of the workflow
configuration, evaluating a workflow node to determine an output edge, and repeating
until a suitable set of rendered panes are generated. As discussed, in some variations a
single rendered pane can trigger halting traversal and sending the rendered pane to the
client application. In other variations, a set of rendered panes may be generated prior to

trigger halting traversal and sending the rendered pane to the client application. In this

31

WO 2022/040283 PCT/US2021/046456

variation, generating rendered panes for all neighboring panes may be the condition for
halting traversal and sending the rendered pane to the client application.

[00140] Block S230, which includes following a next edge of the workflow
configuration, functions to transition the workflow interaction according to the directed
graph of the workflow configuration. Following the next edge of the workflow
configuration 230 evaluates the directed graph of the workflow configuration and
determines a subsequent workflow node. Execution then transitions to processing of the

appropriate workflow node.

[00141] In one preferred implementation, a processor node has one outbound edge
and so following the next edge after a processor node leads to evaluating the next
connected node. A switch node will have multiple possible outbound edges, and the result
of the switch node is selection of one of those edges. Accordingly following the next edge
for a switch node is following the outbound edge selected by the switch node. A pane node
may have multiple possible outbound edges as well, where the outbound edges can

correspond do different actions.

[00142] Block S240, which includes evaluating workflow nodes of the workflow
configuration and generating a rendered pane, functions to perform the operations of the
nodes and continue to navigation of the directed graph of the workflow configuration.
Evaluating workflow nodes can include selectively performing one or more of: invoking a
processor node S241, rendering a pane node S242, and/or evaluating a switch node S243.
Evaluating processing nodes and switch nodes can be a conditionally cyclical process until
rendering a pane node is reached in which case it proceeds to S250. In a variation with
batched rendering of panes, evaluating processing nodes and switch nodes can be a
conditionally cyclical process until rendering a first pane node is reached which then
triggers rendering any neighboring pane nodes, and sending resulting rendered panes
from the first pane node and the neighboring pane nodes during S250.

[00143] Block S241, which includes invoking a processor node, functions to perform
logic. More specifically invoking the processor mode includes invoking a data processing
method defined by the processor node to output a transformed data output. Processing a
processor node, when processing the workflow configuration results in subsequently

processing a node connected to the output edge of the processor node. The processor node

32

WO 2022/040283 PCT/US2021/046456

preferably takes an input and generates some output, which is used in updating session
state. Invoking a processor node may call on other internal or external services and/or
perform any suitable operation. Invoking a processor node could additionally or

alternatively fetch or retrieve data.

[00144] Block S242, which includes rendering a pane node, functions to render a
pane. Rendering the pane node takes the inbound input and generates a rendered pane
using the session state. The rendered pane is one that describes UI elements for that
particular stage of the workflow interaction. The rendered pane is preferably in a format

that can be transformed into a rendered user interface at the client application.

[00145] Given the current session information and the configuration of a pane node,
the workflow service has sufficient information to determine what should be shown to the

user on a given pane.

[00146] Rendering the pane node can include evaluating current session state and
configuration of the pane node to output a rendered pane. In one variation, a rendered
pane can contain a pane type (e.g., "Credentials Pane") and all information necessary to
display that pane type to the user (e.g., color, text/strings, logo, translated text, etc.). In
one implementation, the rendered pane could be characterized as a React component

prop or other suitable data object.

[00147] Client applications are preferably served a sequence of rendered panes to
display. The rendered panes can be explicitly typed, and, depending on implementation,
can range from very specific (e.g., AccountTypeSelectPane) to generic templated panes
(e.g., InputsPane).

[00148] One task of the client application can be to collect user input from displayed
panes and send the user input to the workflow service to compute the next set of panes to
display. This may be accomplished by having each specific rendered pane have a
correlated “Output” proto which the client sends to the backend. The output proto has a
specific proto sub-message for each action a user can take on a pane which contains the
required collected user input (see early prototype). Upon receiving the output payload,
the backend knows which action the user took and can follow the appropriate output edge
of the pane node to continue walking the graph (more on this in the "backend" section
below).

33

WO 2022/040283 PCT/US2021/046456

[00149] Rendering a pane node may additionally include rendering neighbor panes.
When evaluating a pane node, the method may search the directed graph for neighboring
pane nodes and prerender those pane nodes. This functions to batch the rendering of

related panes and possibly reduce communication between the client and server.

[00150] Block S243, which includes evaluating a switch node, functions to evaluate
the one or more value from the data payload input to the switch node (e.g., a value from
the current session state) and selecting a corresponding branch to another node. In one
preferred implementation, the input to the switch node can be one or more values stored
in the session state. selection of a branch is used by block S230 to determine the next

node.

[00151] Block S250, which includes sending at least one rendered pane, functions
to transfer a generated rendered pane to the client application. The rendered pane is
preferably transmitted to the client application that had made the workflow initiation
request. Sending at least one rendered pane preferably includes sending the rendered
pane from the current pane node. Sending at least one rendered pane may additionally
include sending the rendered neighbor panes. In the case where the workflow interaction
is over, sending a rendered pane may be replaced with sending an exit command, which
initiates transition to exiting the workflow interaction S295. In one implementation, one
type of “rendered pane” can be an exit pane which when processed by the client UI engine
of the client application can result in exiting the interaction flow.

[00152] As a complimentary process to sending the rendered pane(s), the method
caninclude, at a client application, receiving the at least one rendered pane. When a single
rendered pane is received, it may be passed to S260 for displaying. When a set of rendered
panes are received, the current rendered pane can be used for updating the current user
interface, and the remaining rendered panes of the set of rendered panes can be stored or
cached for possible local use.

[00153] As mentioned, in some variations the method may include operations
performed at a client application. These processes may additionally be applied
independent from operation of the workflow service as a method for a client to interact
with a suitable remote workflow service. In such variations, the processing the workflow

configuration thereby generating rendered panes for a client application S200 can

34

WO 2022/040283 PCT/US2021/046456

include, at the client application, displaying the rendered panes S260; evaluating user
action and pane transitions S270; and when a workflow update is required based on the
user action and pane transition, calling a workflow update with user input collected S280.
[00154] Block S260, which includes displaying the rendered pane, functions to
present the user interface of the rendered pane at the client application. The client
application preferably receives the rendered pane and then updates the user interface to
display or otherwise present the rendered pane. Displaying the rendered pane may
involve performing any suitable action related to updating a user interface. The rendered
pane preferably defines various input elements that can be used in monitoring specific
user actions. For example, the rendered pane may define a login window with two text
input fields, a submit button and a cancel button.

[00155] In one implementation, a rendered pane may be a programmatic prop
(property) data object. In such a variation, Block S260 can include translating the prop
data object into a UI element presented within the client application. For example, a React
Component defined through script instructions (e.g., JavaScript) may take in the received
rendered pane as a React Component prop and update a user interface within a DOM
(Document Object Model) of a browser-based user interface.

[00156] Herein, the method is described primarily as being used with a graphical
user interface. However, the method may also be used with an audio user interface or any
suitable type of user interface. Accordingly, the rendered pane may define any properties
of a segment of user interaction that can be presented in a user interface.

[00157] Block S270, which includes evaluating user action and pane transitions,
functions to monitor for events that trigger a change in the Ul A change in the UI will
generally result from some user interaction. However, the rendered pane may
alternatively define an alternative input that is not received from an end user of the client
application. Pane transitions may involve going back to previous panes or other suitable
transitions.

[00158] Evaluating user action and pane transitions may include determining if an
updated API call is needed to update the pane or if a cached or prerendered pane would
be available. Accordingly, evaluating user action and pane transitions may include

determining when to initiate an API call for a workflow update in order to update a

35

WO 2022/040283 PCT/US2021/046456

current pane of the workflow. Requesting a workflow update via an API call can be used
in situations where only one rendered pane is sent or stored at a time.

[00159] Alternatively, requesting a workflow update via an API call may additionally
be used in situations where the client application dynamically selects to either use a locally
stored rendered pane or request a new rendered pane. In the event user action specifies a
workflow update to an existing pane such as one of the neighboring prerendered panes or
a cached pane, the process can revert back to displaying the indicated existing pane and
return to process S260. In the event the user action leads to a new API call or a transition
to a pane not currently available, then the processing can transition to calling a workflow
update API endpoint in S280.

[00160] Accordingly, evaluating user action and pane transitions may include
determining when to initiate an API call for a workflow update in order to update a
current pane of the workflow and determining when an existing rendered pane in a set of
rendered panes (stored or locally accessible by the client application) can be used to
update a current pane of the workflow. This variation may be used when batch
preparation and sending of rendered panes is used. Accordingly rendering a pane node
will generally include rendering a set of rendered panes including rendering a current
pane node and neighboring pane nodes in the workflow and sending the rendered pane
will further include sending the set of rendered panes. A client application may
additionally or alternatively store or cache rendered panes and if they can be reused if
available.

[00161] Block S280, which includes calling a workflow update, functions to request
an update to the workflow interaction from the workflow service. Calling a workflow
update preferably includes transmitting a workflow update request which then results in,
at the workflow service, receiving a workflow update request and then transitioning to the
next edge of the workflow configuration as determined by block S230. The workflow
update request preferably includes user input data, which can be used for updating

session state.

[00162] When the workflow concludes, the workflow interaction can exit. In one
implementation, the workflow service renders a pane signaling an exit or the workflow

service generates an exit command. This exit command in place of or in the form of a

36

WO 2022/040283 PCT/US2021/046456

rendered pane results in exiting the workflow interaction at the client application S295.
The conclusion of the workflow interaction at the workflow service can additionally be

modeled. In some variations, the session state can be stored and possibly reinvoked.

[00163] In some variations, the method may additionally include updating session
state analytics S290. Updating session state analytics S290 is preferably a process
initiated as a result of evaluating user action and pane transitions S270. State analytics
may alternatively be updated at any suitable point. In one implementation, updating
session state analytics may be used as a parallel process when locally stored rendered
panes are used. This may be used to keep session state in a workflow service in
synchronization with the local user interaction flow despite the workflow service not
needing to take any action at that time. Alternatively, such updates may be communicated

if and when a workflow update API call is triggered.

4. System Architecture

[00164] The systems and methods of the embodiments can be embodied and/or
implemented at least in part as a machine configured to receive a computer-readable
medium storing computer-readable instructions. The instructions can be executed by
computer-executable components integrated with the application, applet, host, server,
network, website, communication service, communication interface,
hardware/firmware/software elements of a user computer or mobile device, wristband,
smartphone, or any suitable combination thereof. Other systems and methods of the
embodiment can be embodied and/or implemented at least in part as a machine
configured to receive a computer-readable medium storing computer-readable
instructions. The instructions can be executed by computer-executable components
integrated with apparatuses and networks of the type described above. The computer-
readable medium can be stored on any suitable computer readable media such as RAMs,
ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives,
or any suitable device. The computer-executable component can be a processor, but any
suitable dedicated hardware device can (alternatively or additionally) execute the

instructions.

37

WO 2022/040283 PCT/US2021/046456

[00165] In one variation, a system comprising of one or more computer-readable
mediums (e.g., non-transitory computer-readable mediums) storing instructions that,
when executed by the one or more computer processors, cause a computing platform to
perform operations comprising those of the system or method described herein such as:
setting workflow configuration and processing the workflow configuration thereby
generating rendered panes for a client application, which may include: initiating
processing of workflow configuration; following a next edge of the workflow
configuration; evaluating workflow nodes of the workflow configuration and generating a
rendered pane; sending at least one rendered pane; displaying the rendered pane;
evaluating user action and pane transitions; calling a workflow update; and in response
to the server exiting the workflow interaction.

[00166] FIGURE 7 is an exemplary computer architecture diagram of one
implementation of the system. In some implementations, the system is implemented in a
plurality of devices in communication over a communication channel and/or network. In
some implementations, the elements of the system are implemented in separate
computing devices. In some implementations, two or more of the system elements are
implemented in same devices. The system and portions of the system may be integrated
into a computing device or system that can serve as or within the system.

[00167] The communication channel 1001 interfaces with the processors 1002A-
1002N, the memory (e.g., a random-access memory (RAM)) 1003, a read only memory
(ROM) 1004, a processor-readable storage medium 1005, a display device 1006, a user
input device 1007, and a network device 1008. As shown, the computer infrastructure
may be used in connecting a workflow service 1101, workflow configuration 1102,
workflow editor 1103, client UI engine 1104, and/or other suitable computing devices.
[00168] The processors 1002A-1002N may take many forms, such CPUs (Central
Processing Units), GPUs (Graphical Processing Units), microprocessors, ML/DL
(Machine Learning / Deep Learning) processing units such as a Tensor Processing Unit,
FPGA (Field Programmable Gate Arrays, custom processors, and/or any suitable type of

Processor.

[00169] The processors 1002A-1002N and the main memory 1003 (or some sub-

combination) can form a processing unit 1010. In some embodiments, the processing unit

38

WO 2022/040283 PCT/US2021/046456

includes one or more processors communicatively coupled to one or more of a RAM,
ROM, and machine-readable storage medium; the one or more processors of the
processing unit receive instructions stored by the one or more of a RAM, ROM, and
machine-readable storage medium via a bus; and the one or more processors execute the
received instructions. In some embodiments, the processing unit is an ASIC (Application-
Specific Integrated Circuit). In some embodiments, the processing unit is a SoC (System-
on-Chip). In some embodiments, the processing unit includes one or more of the elements

of the system.

[00170] A network device 1008 may provide one or more wired or wireless interfaces
for exchanging data and commands between the system and/or other devices, such as
devices of external systems. Such wired and wireless interfaces include, for example, a
universal serial bus (USB) interface, Bluetooth interface, Wi-Fi interface, Ethernet
interface, near field communication (NFC) interface, and the like.

[00171] Computer and/or Machine-readable executable instructions comprising of
configuration for software programs (such as an operating system, application programs,
and device drivers) can be stored in the memory 1003 from the processor-readable

storage medium 1005, the ROM 1004 or any other data storage system.

[00172] When executed by one or more computer processors, the respective
machine-executable instructions may be accessed by at least one of processors 1002A-
1002N (of a processing unit 1010) via the communication channel 1001, and then
executed by at least one of processors 1001A-1001N. Data, databases, data records or
other stored forms data created or used by the software programs can also be stored in
the memory 1003, and such data is accessed by at least one of processors 1002A-1002N
during execution of the machine-executable instructions of the software programs.

[00173] The processor-readable storage medium 1005 is one of (or a combination of
two or more of) a hard drive, a flash drive, a DVD, a CD, an optical disk, a floppy disk, a
flash storage, a solid-state drive, a ROM, an EEPROM, an electronic circuit, a
semiconductor memory device, and the like. The processor-readable storage medium
1005 can include an operating system, software programs, device drivers, and/or other

suitable sub-systems or software.

39

WO 2022/040283 PCT/US2021/046456

[00174] As used herein, first, second, third, etc. are used to characterize and
distinguish various elements, components, regions, layers and/or sections. These
elements, components, regions, layers and/or sections should not be limited by these
terms. Use of numerical terms may be used to distinguish one element, component,
region, layer and/or section from another element, component, region, layer and/or
section. Use of such numerical terms does not imply a sequence or order unless clearly
indicated by the context. Such numerical references may be used interchangeable without
departing from the teaching of the embodiments and variations herein.

[00175] As a person skilled in the art will recognize from the previous detailed
description and from the figures and claims, modifications and changes can be made to
the embodiments of the invention without departing from the scope of this invention as

defined in the following claims.

40

WO 2022/040283 PCT/US2021/046456

CLAIMS
We Claim:
1. A method for cloud management of user interactions on a client device comprising;:
initiating, in response to an initiation request of a client application, processing of
a workflow configuration with an initial session state, wherein the workflow is
a data model of a graph of nodes connected with directed edges, where the
nodes include a set of node types that includes at least a pane node;
iteratively processing the workflow configuration, initially using the initial session
state, and thereby generating rendered panes for use in a user interaction flow
of a client application, which comprises:
following a next edge of the workflow configuration to determine a next
workflow node,
processing the next workflow node, which comprises, when the next workflow
node is a pane node, rendering the pane node into a rendered pane, and
sending the rendered panes to the client device.

2. The method of claim 1, wherein the set of node types further includes a second type of
node that is a processor node and a third type of node that is a switch node; and
wherein processing the workflow configuration comprises:

when the next workflow node is a processor node, invoking a data processing
method defined by the processor node to output a transformed data output,
and

when the next workflow node is a switch node, evaluating the one or more value
from the data payload input to the switch node and selecting a corresponding
branch to another node.

3. The method of claim 1, further comprising, at the client application: displaying the
rendered panes; evaluating user action and pane transitions; and when a workflow
update is required based on the user action and pane transition, calling a workflow

update with user input collected.

41

WO 2022/040283 PCT/US2021/046456

4. The method of claim 3, wherein evaluating user action and pane transitions comprises
determining when to initiate an application programming interface (API) call for a
workflow update to update a current pane of the workflow.

5. The method of claim 4, wherein rendering the pane node comprises rendering a set of
rendered panes including rendering a current pane node and neighboring pane nodes
in the workflow configuration, and wherein sending the rendered pane further
comprises sending the set of rendered panes; and wherein evaluating user action and
pane transitions comprises determining when an existing rendered pane in the set of
rendered panes can be used to update a current pane of the workflow.

6. The method of claim 3, further comprises at the client application:

transmitting a workflow initiate application programming interface (API) request
to a workflow initiate API universal resource identifier (URI) endpoint of a
workflow service which thereby initiates processing of the workflow
configuration; and

transmitting a workflow update API request to a workflow update API URI
endpoint of the workflow service.

7. The method of claim 6, further comprising at the client application, updating session
state analytics by transmitting a workflow state update API request.

8. A system for cloud management of user interactions on a client device comprising:

one or more computer-readable mediums storing instructions that, when executed
by the one or more computer processors, cause the one or more computer
processors to perform operations comprising;:

initiating, in response to an initiation request of a client application, processing of
a workflow configuration with an initial session state, wherein the workflow is
a data model of a graph of nodes connected with directed edges, where the
nodes include a set of node types that includes at least a pane node;

iteratively processing the workflow configuration, initially using the initial session
state, and thereby generating rendered panes for use in a user interaction flow
of a client application, which comprises:
following a next edge of the workflow configuration to determine a next

workflow node,

42

WO 2022/040283 PCT/US2021/046456

processing the next workflow node, which comprises, when the next workflow
node is a pane node, rendering the pane node into a rendered pane, and
sending the rendered panes to the client device.

9. The system of claim 8, wherein the set of node types further includes a second type of
node that is a processor node and a third type of node that is a switch node; and
wherein processing the workflow configuration comprises:

when the next workflow node is a processor node, invoking a data processing
method defined by the processor node to output a transformed data output,
and

when the next workflow node is a switch node, evaluating the one or more value
from the data payload input to the switch node and selecting a corresponding
branch to another node.

10. The system of claim 8, further comprising a client application configured to perform
the operations: displaying the rendered panes; evaluating user action and pane
transitions; and when a workflow update is required based on the user action and pane
transition, calling a workflow update with user input collected.

11. The system of claim 10, wherein evaluating user action and pane transitions comprises
determining when to initiate an application programming interface (API) call for a
workflow update to update a current pane of the workflow.

12. The system of claim 11, wherein rendering the pane node comprises rendering a set of
rendered panes including rendering a current pane node and neighboring pane nodes
in the workflow configuration, and wherein sending the rendered pane further
comprises sending the set of rendered panes; and wherein evaluating user action and
pane transitions comprises determining when an existing rendered pane in the set of
rendered panes can be used to update a current pane of the workflow.

13. The system of claim 10, wherein the client application is further configured to perform
the operations:

transmitting a workflow initiate application programming interface (API) request
to a workflow initiate API universal resource identifier (URI) endpoint of a
workflow service which thereby initiates processing of the workflow

configuration; and

43

WO 2022/040283 PCT/US2021/046456

transmitting a workflow update API request to a workflow update API URI
endpoint of the workflow service.

14. The system of claim 13, wherein the client application is further configured to perform
the operations: updating session state analytics by transmitting a workflow state
update API request.

15. A non-transitory computer-readable medium storing instructions for cloud
management of user interactions on a client device comprising that, when executed by
one or more computer processors of a computing platform, cause the computing
platform to perform the operations:

initiating, in response to an initiation request of a client application, processing of
a workflow configuration with an initial session state, wherein the workflow is
a data model of a graph of nodes connected with directed edges, where the
nodes include a set of node types that includes at least a pane node;
iteratively processing the workflow configuration, initially using the initial session
state, and thereby generating rendered panes for use in a user interaction flow
of a client application, which comprises:
following a next edge of the workflow configuration to determine a next
workflow node,
processing the next workflow node, which comprises, when the next workflow
node is a pane node, rendering the pane node into a rendered pane, and
sending the rendered panes to the client device.

16. The non-transitory computer-readable medium of claim 15, wherein the set of node
types further includes a second type of node that is a processor node and a third type
of node that is a switch node; and wherein processing the workflow configuration
comprises:

when the next workflow node is a processor node, invoking a data processing
method defined by the processor node to output a transformed data output,
and

when the next workflow node is a switch node, evaluating the one or more value
from the data payload input to the switch node and selecting a corresponding

branch to another node.

44

17.

18.

19.

WO 2022/040283 PCT/US2021/046456

The non-transitory computer-readable medium of claim 15, further comprising, at the
client application: displaying the rendered panes; evaluating user action and pane
transitions; and when a workflow update is required based on the user action and pane
transition, calling a workflow update with user input collected.

The non-transitory computer-readable medium of claim 17, wherein evaluating user
action and pane transitions comprises determining when to initiate an application
programming interface (API) call for a workflow update to update a current pane of
the workflow.

The non-transitory computer-readable medium of claim 18, wherein rendering the
pane node comprises rendering a set of rendered panes including rendering a current
pane node and neighboring pane nodes in the workflow configuration, and wherein
sending the rendered pane further comprises sending the set of rendered panes; and
wherein evaluating user action and pane transitions comprises determining when an
existing rendered pane in the set of rendered panes can be used to update a current

pane of the workflow.

20.The method of claim 17, further comprises at the client application:

transmitting a workflow initiate application programming interface (API) request
to a workflow initiate API universal resource identifier (URI) endpoint of a
workflow service which thereby initiates processing of the workflow
configuration; and

transmitting a workflow update API request to a workflow update API URI

endpoint of the workflow service.

45

WO 2022/040283

176

PCT/US2021/046456

Workflow
Configuration
120

Workflow Service 110

Workflow Editor
120

Y

E————
SERE—————
S—————

S

)

Client Device

FIGURE 1

Client Ul Engine 130

H

SUBSTITUTE SHEET (RULE 26)

WO 2022/040283 PCT/US2021/046456

2/ 6
—>
—> —>
—>
Pane Node Processor Node Switch Node
FIGURE 2

SUBSTITUTE SHEET (RULE 26)

WO 2022/040283 PCT/US2021/046456

3/6

Setting workflow configuration S100

Processing the workflow configuration thereby
generating rendered panes for a client application S200.

Initiating processing of workflow
configuration S201

Y

Following a next edge of the workflow
configuration
5230

l

Evaluating workflow nodes of the
workflow configuration and generating a
rendered pane S240

l

Sending at least one rendered pane
5250

FIGURE 3

Calling a workflow update S280

!

Action requires API call

—

Evaluating user action and pane
transitions S270

Action specifies existing pane T

N

>

Displaying the rendered pane S260

Exiting the workflow interaction $295

FIGURE 4

SUBSTITUTE SHEET (RULE 26)

WO 2022/040283

PCT/US2021/046456

4 /6
T I
| Processing workflow nodes
! | S240 |
| |
: Invoking I
I | processor node |
| s241 |
' |
' |
: Rendering neighbor panes
Y | v :
. , | |
Selecting workflow Following next Renderi I :
version and setting edge of workflow : | 0 :r:] e iggg ' Szgilgg tz)egﬁ:,:fd
up session state configuration | 5249 5250
$220 $20 == | ===
| T
* o | :
: ! | Evaluating | :
! ! | switch node | :
| . : Ly 5243 | i
| | | | |
| | I | !
| | . _ | |
: ! :
! ! Updating session :
: ! state analytics :
| ' 520 :
|
I | I
|
| SERVER | A |
] T
| CLENT workfow update i
Calling workflow Evaluating user Displaying
Call workflow start update with action and pane <! rendered panes
$210 collected user input fransitions $260
280 8270 25
Action requires APl call ~ Action specifies Exiting
existing pane 205
FIGURE 5

SUBSTITUTE SHEET (RULE 26)

WO 2022/040283 PCT/US2021/046456

51/6
Client Ul Engine 140

Error é

Consent

Internal

Start

Authorize Client b Initialize _>Get Experiment

Session Variants Pane Switch
On
Consent . Select
Pane Confinue Institution

Submit

Load Institution

Submit

Input Status
Switch

Process Result

Validate Input

Validation
Switch

Create and
Extract ltem

<+ 0

Additiona
Input Status
Switch

Additional
Input Switch

Success
Pane

3 Click
Click

Additional

Input Ul 1

Submit

Additional
Additional Input . Input Ul 2
Processor Submit

FIGURE 6

SUBSTITUTE SHEET (RULE 26)

WO 2022/040283 PCT/US2021/046456
6 /6
1010
Processor Processor Processor Memory ROM
1002A 1002B 1002N 1003 1004
1001
Display Device 1006

User Input Device 1007

Network Device 1008

Workflow service 1101

Workflow Configuration 1102

Workflow Editor 1103

Client Ul Engine 1104

FIGURE 7

SUBSTITUTE SHEET (RULE 26)

Storage Medium
1005

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 21/46456

A. CLASSIFICATION OF SUBJECT MATTER
IPC - HO04J 3/16, GO6F 15/173 (2021.01)
CPC -

HO4L 67/24, G0O6Q 10/10, HO4L 67/14, HO4L 69/32, HO4L 69/327

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/0273773 A1 (Gold et al.) 08 December 2005 (08.12.2005) entire document, especially | 1-20
para [0006], [0063], [0067], [0068), [0069), [0070).
A US 7,577,554 B2 (Lystad et al.), 18 August 2009 (18.08.2009), entire document 1-20
A US 2008/0276242 A1 (Taniguchi et al.), 06 November 2008 (06.11.2008), entire document 1-20

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“D” document cited by the applicant in the international application

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other
special reason (as specified)

“Q” documentreferring toan oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the apﬁlncauon but cited to understand

the principle or theory underlying the invention

“X™ document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step

when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

11 October 2021 (11.10.2021)

Date of mailing of the international search report

NOV 09 2021

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Kari Rodriquez

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report

