

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

CO9D 133/14 (2006.01) **CO9D 161/28** (2006.01) **CO9D 163/00** (2006.01) **CO9D 167/00** (2006.01)

(21) 출원번호 **10-2014-0188794**

(22) 출원일자 **2014년12월24일** 심사청구일자 **2014년12월24일**

(65) 공개번호 **10-2016-0078091**

(43) 공개일자 2016년07월04일

(56) 선행기술조사문헌

KR100638263 B1*

KR1020100079868 A*

JP4540876 B2 KR101180343 B1

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2017년06월07일

(11) 등록번호 10-1744008

(24) 등록일자 2017년05월31일

(73) 특허권자

주식회사 케이씨씨

서울특별시 서초구 사평대로 344 (서초동)

(72) 발명자

최석현

울산광역시 북구 염포로 715 고려화학사택 C동 411호

봉지훈

울산광역시 북구 염포로 715 고려화학사택 C동 510호

(뒷면에 계속)

(74) 대리인

특허법인한성

전체 청구항 수 : 총 8 항

심사관 : 이흥재

(54) 발명의 명칭 비철금속 코팅용 도료 조성물 및 도장 물품

(57) 요 약

본 발명은 비철금속 코팅용 도료 조성물 및 도장 물품에 관한 것으로서, 보다 상세하게는, 아크릴계 폴리올 수지 또는 폴리에스테르 수지, 블록 폴리이소시아네이트, 멜라민계 수지, 에폭시 수지 및 실란 화합물을 포함함으로써 비철금속과의 부착성, 내식성, 내약품성, 절곡성, 내마모성, 경도, 스크래치 등의 물성이 개선된 비철금속 코팅용 도료 조성물 및 도장 물품에 관한 것이다.

(72) 발명자

황동준

울산광역시 남구 팔등로 85 신정푸르지오 111동 1902호

박영희

울산광역시 동구 대송4길 5 대송현대아파트 303동 206호

오일석

울산광역시 중구 유곡로 10

명 세 서

청구범위

청구항 1

- (a) 아크릴계 폴리올 수지 또는 폴리에스테르 수지 40 내지 85 중량%; (b) 블록 이소시아네이트 10 내지 45 중량%; (c) 멜라민계 수지 0.1 내지 10 중량%; (d) 에폭시 수지 0.1 내지 0.6 중량%; 및 (e) 실란 화합물 0.01 내지 5 중량%를 포함하는 비철금속 코팅용 도료 조성물로서,
- (d) 에폭시 수지는 비스페놀A형 에폭시인, 비철금속 코팅용 도료 조성물.

청구항 2

제1항에 있어서, 상기 (a) 아크릴계 폴리올 수지는 메틸 메타크릴레이트-부틸 아크릴레이트-2-히드록시에틸 메타크릴레이트 코폴리머인, 비철금속 코팅용 도료 조성물.

청구항 3

제1항에 있어서, 상기 (b) 블록 이소시아네이트는 핵사메틸렌 디이소시아네이트계 블록 이소시아네이트인, 비철 금속 코팅용 도료 조성물.

청구항 4

제1항에 있어서, 상기 (c) 멜라민계 수지는 메틸레이티드 멜라민 수지, 부틸레이티드 멜라민 수지 또는 이들의 조합인, 비철금속 코팅용 도료 조성물.

청구항 5

삭제

청구항 6

제1항에 있어서, 상기 (e) 실란 화합물은 아미노기, 에폭시기 또는 이들의 조합을 갖는 것인, 비철금속 코팅용 도료 조성물.

청구항 7

제6항에 있어서, 상기 (e) 실란 화합물은 3-글라이시독시프로필 트리메톡시실란, N-(2-아미노에틸)3-아미노프로 필트리메톡시실란(N-(2-aminoethyl)3-aminopropyl trimethoxysilane) 또는 이들의 조합인, 비철금속 코팅용 도료 조성물.

청구항 8

제1항에 있어서, 소부 온도는 80 내지180 ℃인, 비철금속 코팅용 도료 조성물.

청구항 9

제1항 내지 제4항 및 제6항 내지 제8항 중 어느 한 항의 비철금속 코팅용 도료 조성물을 포함하는 1액형 비철금 속 코팅용 도료.

발명의 설명

기술분야

[0001]

본 발명은 비철금속 코팅용 도료 조성물 및 도장 물품에 관한 것으로서, 보다 상세하게는, 아크릴계 폴리올 수지 또는 폴리에스테르 수지, 블록 폴리이소시아네이트, 멜라민계 수지, 에폭시 수지 및 알콕시실란 화합물을 포함함으로써 비철금속과의 부착성, 내식성, 내약품성, 절곡성, 내마모성, 경도, 스크래치 등의 물성이 개선된 비철금속 코팅용 도료 조성물 및 도장 물품에 관한 것이다.

배경기술

- [0002] 알루미늄, 마그네슘 등 비철금속 소지는 도료와의 부착성이 불량하기 때문에, 종래에는 에폭시계 수지를 주수지로 하는 하도를 도장하고, 그 위에 우레탄을 주수지로 하는 상도를 도장하거나, 또는 아크릴 수지를 주수지로 하는 2코팅 또는 3코팅 도장을 실시하여 부착성, 내식성, 내약품성, 절곡성, 내마모성, 경도, 스크래치 등을 확보하였다.
- [0003] 그러나, 이러한 도장 시스템은 공정이 복잡하고 도장 비용이 상승하게 되는 문제점이 있다. 또한, 열경화성 아크릴 폴리올과 멜라민 수지 또는 이소시아네이트수지를 사용한 1코팅 도료의 경우에는 휴대폰 및 가전제품에서 요구하는 부착성, 내염수성, 경도, 내마모성, 내비등수성, 내약품성, 내후성 등의 성능을 내기에는 부족한 면이 있다.
- [0004] 테트라에톡시 실란과 메틸트리에톡시 실란 및 3-(메타크릴옥시프로필) 트라이메톡시실란으로 이루어진 실리카 전구체 혼합물을 사용한 마그네슘 소지 코팅 조성물이 개시된 바 있으나(예컨대, 대한민국 등록특허 제1189812호), 소지와의 부착성 및 절곡성이 떨어지고, 상기 도료를 사용하는 경우 다공질 도막이 형성되어 내식성이 떨어지는 단점이 있다. 또한, 폴리올과 화학적으로 블록된 이소시아네이트기를 갖는 프레폴리머를 사용한 도료 조성물이 개시된 바 있으나(예컨대, 일본 특허출원 제 2004-087337호), 방청성, 절곡성, 저장성이 떨어지는 문제가 발생될 수 있다. 또한, 일본 특허출원 제 2002-235151호 및 제 2000-389793호에 기술된 분체 도료는 별도의 전처리가 요구되고, 전처리를 수행하지 않는 경우 부착 불량, 절곡성 저하, 외관 불량 등의 문제가 발생하며, 10~20마이크론 두께의 박막 도장을 할 수 없기 때문에 금속 소재 고유질감 표현이 떨어진다.

발명의 내용

해결하려는 과제

[0005] 본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하고자 한 것으로, 아크릴계 폴리올 수지 또는 폴리에스 테르 수지, 블록 폴리이소시아네이트, 멜라민계 수지, 에폭시 수지 및 알콕시실란 화합물을 포함함으로써 비철 금속과의 부착성, 내식성, 내약품성, 절곡성, 내마모성, 경도, 스크래치 등의 물성이 개선된 비철금속 코팅용 도료 조성물 및 도장 물품을 제공하는 것을 기술적 과제로 한다.

과제의 해결 수단

- [0006] 상기한 기술적 과제를 해결하고자 본 발명은, (a) 아크릴계 폴리올 수지 또는 폴리에스테르 수지 40내지 85 중량%; (b) 블록 폴리이소시아네이트 10내지 45 중량%; (c) 멜라민계 수지 0.1내지 10 중량%; (d) 에폭시 수지 0.05내지 5 중량%; 및 (e) 알콕시실란 화합물 0.01 내지 5 중량%를 포함하는, 비철금속 코팅용 도료 조성물을 제공한다.
- [0007] 본 발명의 또 다른 측면은, 상기 비철금속 코팅용 도료 조성물을 포함하는 1액형 또는 2액형 비철금속 코팅용 도료를 제공한다.
- [0008] 본 발명의 또 다른 측면은, 상기 비철금속 코팅용 도료로 형성된 하나 이상의 코팅층을 포함하는 도장 물품을 제공하다.

발명의 효과

[0009] 본 발명의 비철금속용 코팅 도료 조성물을 사용함으로써 알루미늄, 마그네슘 등의 비철금속 소지와의 부착성, 내식성, 내약품성, 절곡성, 내마모성, 경도, 스크래치 등의 물성을 향상시킬 수 있다. 특히 알루미늄, 마그네슘 등의 비철금속 기재로 된 휴대폰, 노트북, 테블릿 PC 등의 가전제품 케이스에 적용할 수 있다.

발명을 실시하기 위한 구체적인 내용

- [0010] 이하에서 본 발명의 실시 형태를 상세히 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형 될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
- [0011] 본 발명은 (a) 아크릴계 폴리올 수지 또는 폴리에스테르 수지 40내지 85 중량%; (b) 블록 폴리이소시아네이트 10내지 45 중량%; (c) 멜라민계 수지 0.1내지 10 중량%; (d) 에폭시 수지 0.05내지 5 중량%; 및 (e) 알콕시실 란 화합물 0.01 내지 5 중량%를 포함하는, 비철금속 코팅용 도료 조성물을 제공한다.

- [0012] 상기 비철금속 코팅용 도료 조성물의 (a) 아크릴계 폴리올 수지 또는 폴리에스테르 수지 함량은 도료 조성물 총 중량에 대해 40 내지 85 중량%, 바람직하게는 50 내지 80 중량%, 보다 바람직하게는 60 내지 75 중량%일 수 있다. 40 중량% 미만인 경우 수지의 고형분 함량이 낮아 코팅의 작업성이 저하될 수 있고, 85 중량%를 초과하는 경우 추가적인 효과를 기대할 수 없어 경제성이 저하될 수 있다.
- [0013] 본 발명에서 아크릴계 폴리올 수지는 특별히 한정하지 않으며, 예를 들어 메틸 메타크릴레이트-부틸 아크릴레이트-2-히드록시에틸 메타크릴레이트 코폴리머를 사용할 수 있으며, 예를 들어 NRC-5445 등을 사용할 수 있다.
- [0014] 본 발명에서 사용되는 (b) 블록 폴리이소시아네이트의 함량은 도료 조성물 총 중량에 대해 10 내지 45 중량%, 바람직하게는 15 내지 40 중량%, 보다 바람직하게는 20 내지 35 중량%일 수 있다. 10 중량% 미만인 경우 다량의 폴리올이 미반응되어 결합력이 약해 부착성이 저하될 수 있고, 45 중량%를 초과하는 경우 지속적인 반응에 의한 도막 깨짐의 문제가 있을 수 있다.
- [0015] 상기 (b) 블록 폴리이소시아네이트는 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate, HDI)계를 사용할 수 있으며, 예를 들어 DESMODUR PL 350(BAYER), DURANATE K-6000 등을 사용할 수 있다
- [0016] 본 발명에서 사용되는 (c) 멜라민계 수지의 함량은 도료 조성물 총 중량에 대해 0.1 내지 10 중량%, 바람직하게는 1 내지 8 중량%, 보다 바람직하게는 2 내지 6 중량%일 수 있다. 0.1 중량% 미만인 경우 도료 조성물의 경화가 저하되어 건조되지 않는 문제가 있으며, 10 중량%를 초과하는 경우 도막 깨짐의 문제가 있을 수 있다.
- [0017] 특별히 한정하지 않으나, 상기 (c) 멜라민계 수지는 메틸레이티드 멜라민 수지, 부틸레이티드 멜라민 수지 또는 이들의 조합을 사용할 수 있다.
- [0018] 본 발명에서 사용되는 (d) 에폭시 수지의 함량은 도료 조성물 총 중량에 대해 0.05 내지 5 중량%, 바람직하게는 0.1 내지 3 중량%, 보다 바람직하게는 0.1 내지 0.6 중량%일 수 있다. 0.05 중량% 미만인 경우 비철금속에 대한 도료 조성물의 부착성이 저하될 수 있으며, 5 중량%를 초과하는 경우 내후성이 저하될 수 있다.
- [0019] 특별히 한정하지 않으나, 상기 (d) 에폭시 수지는 비스페놀A형 에폭시를 사용할 수 있으나 이에 한정되지 않으며, 다른 변형 에폭시도 사용할 수 있다.
- [0020] 본 발명에서 사용되는 (e) 실란 화합물의 함량은 도료 조성물 총 중량에 대해 0.01 내지 5 중량%, 바람직하게는 0.05 내지 3 중량%, 보다 바람직하게는 0.1 내지 0.6 중량%일 수 있다. 0.01 중량% 미만인 경우 부착에 의한 부착성 및 내염수성이 저하될 수 있으며, 5 중량%를 초과하는 경우 추가적인 효과를 기대할 수 없다.
- [0021] 상기 (e) 실란 화합물은 에폭시기, 아미노기 또는 이들의 조합을 갖는 것을 사용할 수 있으며, 특별히 한정하지 않으나 3-글라이시독시프로필 트리메톡시실란(3-Glycidoxypropyl trimethoxysilane), N-(2-아미노에틸)3-아미노프로필트리메톡시실란(N-(2-aminoethyl)3-aminopropyltrimethoxysilane) 또는 이들의 조합을 사용할 수 있다.
- [0022] 특별히 한정하지 않으나, 본 발명의 비철금속 코팅용 도료 조성물의 소부 온도는 80 내지180 ℃이다.
- [0023] 본 발명의 도료 조성물은 선택적으로 경화제, 희석제, 산촉매 또는 촉진제 등의 첨가제를 포함할 수 있다. 따라서, 본 발명의 또 다른 측면은, 상기 비철금속 코팅용 도료 조성물을 포함하는 1액형 또는 2액형 비철금속 코팅용 도료를 제공한다.
- [0024] 또한, 본 발명의 또 다른 측면은, 상기 비철금속 코팅용 도료로 형성된 하나 이상의 코팅층을 포함하는 도장 물품을 제공한다. 상기 도장 물품은 비철금속 기재의 가전 기기로서, 예를 들어 핸드폰, 테블릿PC 및 노트북으로 이루어진 그룹에서 선택되는 어느 하나인, 비철금속 기재의 도장 물품일 수 있다.
- [0025] 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
- [0026] [실시예]
- [0027] 하기 표 1에 기재된 바와 같이 실시예 1~3 및 비교예 1~4의 도료 조성물을 제조한 후, 아래의 방법으로 시편을 제작하여 각 도료의 물성을 평가하였다.
- [0028] *시편제작방법
- [0029] 소지: 마그네슘

- [0030] 스프레이도장: 에어스프레이IWATA W-61, 압력3.5bar
- [0031] 희석비율: KCC THINNER 094A(하절) 30~40중량%
- [0032] 점도: 포드컵점도계F#4, 15~18sec(25'C)
- [0033] 도막두께; 도막측정기, 20~25um
- [0034] 1) 부착성: 크로스컷 가이드, 1mm 크로스 컷하여 테이프 테스트(cross cut tape test)를 시행하여 TAPE TEST를 3회 실시한 후, 가공면의 박리가 없을 경우 합격, 바둑눈일 경우 한개에서 2/3 이상 면적이 박리된 경우 불량으로 평가함.
- [0035] 2) 내염수성: 5% NaCl로 35℃에서72시간 동안 수세하여 물기를 제거한 후, 상온에서 4시간 방치한 후, 2mm 크로스 컷하여 TAPE TEST를 행하여 시험 전/후의 탈색, 변색, 균열, 부풀음, 박리, 뒤틀림 등의 불량 및 손톱에 의한 긁힘이 없고, TAPE 착탈에서 가공면의 박리가 없을 경우 합격, 바둑눈일 경우 한개에서 2/3 이상 면적이 박리된 경우 불량으로 평가함.
- [0036] 3) 경도: MITSUBISHI PENCIL로 0.5mm간격으로 3cm길이로 3줄을 그어 2H 이상일 것, 스크래치가 없을 경우 합격, 스크래치가 1개라도 있을 경우 불량
- [0037] 4) 내약품성: 지우개 러빙시험기, 500g 하중을 주어 메틸알콜이 마르지 않게 투입한 후, 250회 왕복(40회 왕복 / min)하여 벗겨지지 않을 것(평면 기준).
- [0038] ※ 지우개에 의한 표면 SCRATCH는 허용함.
- [0039] ※ 지우개 행정(Stroke): 15mm, 메틸알콜 투입량 1ml/50회당
- [0040] ※ 지우개 돌출량: JIG 끝단으로부터 5mm
- [0041] ※ 메틸 알콜이 묻지 않은 지우개로 시험할것. (RUBBER 경도 유지)
- [0042] 5) 내비등수성: 항온수조 80℃±2℃에서 30분간 두고, 물기를 제거한 후 상온에 4시간 방치, 2mm 크로스 컷하여 TAPE TEST 1회 실시. 변색, 부식 및 도막 박리, 흑점이 없고, TAPE 착탈에서 가공면의 박리가 없을 경우 합격, 바둑눈일 경우 한 개에서 2/3 이상 면적이 박리된 경우 불량으로 평가함.
- [0043] 6)절곡성: 벤딩시험기를 사용하여 시험시편(길이 35mm 이상, 두께 4mm 이하)을 120° 밴딩을 1회 실시한 후, TAPE TEST를 3회 실시함. 시험 전 후의 시료를 비교하여 후가공막이 박리되지 않을 것. 가공면의 박리가 없을 경우 합격, 박리된 면이 있을 경우 불량으로 평가함.

[표 1] (중량%)

원료명		실시예			비교예			
		1	2	3	1	2	3	4
수지	아크릴 폴리올 수지 A	45	45		45	50	45	20
	아크릴 수지 B	25	25		25	29	25	15
	폴리에스테르 수지			62.6				31.5
	멜라민 수지 A	4		5	4	20		
	멜라민 수지 B		4					5
	BPA 에폭시 수지	0.5	0.5	0.2	0.5	0.5	0.5	
경화제	BLOCK ISOCYANATE	25	25	32	25		29	28
첨가제	SILANE	0.5	0.5	0.2		0.5		0.5
	DBTDL				0.5		0.5	
도료물성	부착성	0	0	0	×	0	×	×
	내염수성	0	0	0	×	0	×	×
	경도	0	0	0	0	×	0	×
	내약품성	0	0	0	0	0	0	0
	내비등수성	0	0	0	×	×	×	0
	내약품성	0	0	0	0	×	0	0
	내후성	0	0	0	0	0	0	0
	절곡성	0	0	0	×	0	×	0

평가기준: 합격[○] / 불량[×]

[0044]

[0048]

[0049]

[0052]

[0045] 아크릴 폴리올 수지 A: NRC-5445(노루케미칼) (Methyl methacrylate-butyl acrylate-2-hydroxyethyl methacrylate copolymer)

[0046] 아크릴 수지 B: JWS-99K(A&P RESIN) (2-PROPENIC ACID HOMOPOLYMER.)

[0047] 폴리에스테르 수지: KCC CRF00231

멜라민 수지 A: 메틸레이티드 멜라민 수지 CYMEL 303(CYTEC INDUSTRIES, INC.)

멜라민 수지 B: 메틸레이티드 멜라민 수지 CYMEL 325(CYTEC INDUSTRIES, INC.)

[0050] BPA 에폭시 수지: 비스페놀 A형 에폭시 수지(KCC CVB80134)

[0051] BLOCK ISOCYANATE: HDI계 블록 지방족 폴리이소시아네이트 DESMODUR PL 350(BAYER)

실란: 3-글라이시독시프로필 트리메톡시실란(KBM-403, SHIN-ETSU CHEMICAL)

[0053] DBTDL: 디부틸 틴 디라우레이트(WOOCHANG CHEMICAL)

[0054] 상기 표 1로부터 알 수 있는 바와 같이, 본 발명의 비철금속 코팅용 도료 조성물인 실시예 1 내지 3은 부착성, 내염수성, 경도 등의 물성 등이 우수하였다. 그러나, 비교예 1 및 3은 부착성, 내염수성, 내비등수성 및 절곡성에서 낮은 평가를 받았으며, 비교예 2의 경우 내약품성, 경도 등에서 낮은 평가를 받았다. 또한, 비교예 4에서는 부착성, 내염수성 및 경도가 불량함을 알 수 있었다.

[0055] 상기의 결과로부터, 본 발명의 도료 조성물은 부착성, 내식성, 내약품성, 내마모성 등의 물성이 우수함을 알 수 있었다.