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MALWARE DETECTION USING MACHINE LEARNING

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Patent Application No. 15/864,329, filed

January 8, 2018, the entire contents of which are hereby incorporated herein by reference.

TECHNICAL FIELD
[0001] This application relates to enterprise network security, and more specifically to

the use of machine learning to support and augment malware detection 1n an enterprise network.

BACKGROUND

[0002] Various techniques are known for securing endpoints in an enterprise network
against malicious software, such as the techniques described in commonly-owned U.S. Pat. App.
No. 14/263,955 filed on April 28, 2014, U.S. App. No. 14/485,759 tiled on September 14, 2014,
U.S. Pat. App. No. 15/042,862 filed on February 12, 2016, U.S. Pat. App. No. 15/098,684 filed
on April 14, 2016, and U.S. Pat. App. No. 15/429,291 filed on February 10, 2017, each of which
1S hereby incorporated by reference in its entirety. While machining learning can be used 1n this
context to train a model to recognize malware, machine learning exhibits certain biases and
limitations. In particular, the performance of a machine learning detection engine may degrade as
new malware deviates from the training sets used to initially train the detection engine.

[0003] There remains a need for techniques to enhance training of machine learning

systems 1n order to improve the detection of new, previously unseen malware threats.

SUMMARY

[0004] Synthetic training sets for machine learning are created by 1dentifying and
modifying functional features of code in an existing malware training set. By filtering the
resulting synthetic code to measure malware impact and novelty, training sets can be created that
predict novel malware and to seek to preemptively exhaust the space of new malware. These
synthesized training sets can be used 1n turn to improve training of machine learning models.
Furthermore, by repeating the process of new code generation, filtering and training, an iterative
machine learning process may be created that continuously narrows the window of

vulnerabilities to new malicious actions.



BRIEF DESCRIPTION OF THE FIGURES

[000S] The foregoing and other objects, features and advantages of the devices, systems,
and methods described herein will be apparent from the following description of particular
embodiments thereof, as 1llustrated in the accompanying drawings. The drawings are not
necessarily to scale, emphasis instead being placed upon 1llustrating the principles of the devices,
systems, and methods described herein.

[0006] Fig. 1 i1llustrates a threat management system.

[0007] Fig. 2 illustrates a computer system.

[0008] Fig. 3 1llustrates a machine learning system.

[0009] Fig. 4 illustrates a method for machine learning.

DETAILED DESCRIPTION

[0010] Embodiments will now be described with reference to the accompanying figures,
1n which preferred embodiments are shown. The foregoing may, however, be embodied 1n many
different forms and should not be construed as limited to the illustrated embodiments set forth
herein.

[0011] All documents mentioned herein are hereby incorporated by reference in their
entirety. References to items 1n the singular should be understood to include items 1n the plural,
and vice versa, unless explicitly stated otherwise or clear from the context. Grammatical
conjunctions are intended to express any and all disjunctive and conjunctive combinations of
conjoined clauses, sentences, words, and the like, unless otherwise stated or clear from the
context. Thus, the term “or” should generally be understood to mean “and/or” and so forth.

[0012] Recitation of ranges of values herein are not intended to be limiting, referring
instead individually to any and all values falling within the range, unless otherwise indicated
herein, and each separate value within such a range 1s incorporated into the specification as 1f 1t

2% ¢

were individually recited herein. The words “about,” “approximately,” or the like, when
accompanying a numerical value, are to be construed as indicating a deviation as would be
appreciated by one of ordinary skill in the art to operate satistactorily for an intended purpose.
Ranges of values and/or numeric values are provided herein as examples only, and do not
constitute a limitation on the scope of the described embodiments. The use of any and all

2% ¢¢

examples, or exemplary language (“e.g.,” “such as,” or the like) provided herein, 1s intended



merely to better illuminate the embodiments and does not pose a limitation on the scope of the
embodiments or the claims. No language 1n the specification should be construed as indicating

any unclaimed element as essential to the practice of the embodiments.

2% ¢¢

[0013] In the following description, 1t 1s understood that terms such as “first,” “second,”
“third,” “above,” “below,” and the like, are words of convenience and are not to be construed as
implying a chronological order or otherwise limiting any corresponding element unless expressly
state otherwise.

[0014] Fig. 1 1llustrates a threat management system according to some implementations.
In general, the system 100 may include an endpoint 102, a firewall 104, a server 106 and a threat
management facility 108 coupled to one another directly or indirectly through a data network
105. Each of the entities depicted in Fig. 1 may, for example, be implemented on one or more
computing devices such as the computing device described below with reference to Fig.2. A
number of systems may be distributed across these various components to support threat
detection, such as a coloring system 110, a key management system 112 and a heartbeat system
114 (or otherwise an endpoint health system), each of which may include software components
executing on any of the foregoing system components, and each of which may communicate
with the threat management facility 108 and an endpoint threat detection agent 120 executing on
the endpoint 102 to support improved threat detection and remediation.

[0015] The endpoint 102 may, for example, include a desktop or other computing device
such as a laptop, tablet mobile device, cellular phone, virtual machine, server, or any other
physical or virtual device that might couple to the network 105 to communicate with other
devices and endpoints.

[0016] In general, the threat management facility 108 may help to secure the endpoint
102 and other devices coupled to an enterprise network against malicious software or other
threats such viruses, spyware, adware, Trojans, intrusion, spam, phishing explorations, policy
abuse, uncontrolled access and the like. Regardless of how categorized, the threat may need to be
stopped at various points of a networked computing environment, such as the endpoint 102, the
firewall 104, the server 106 and/or the threat management facility 108, or any other devices such
as laptops, cellular phones, desktops, servers, gateways, communication ports, handheld or

mobile devices, firewalls, and the like, and the threat management facility 108 may help to

generally coordinate detection and remediation 1n this context.



[0017] In one aspect, this may include email security and control, e.g., where security
management may help to eliminate spam, viruses, spyware and phishing, control of email
content, and the like. The threat management facility 108 may also help to protect against other
inbound and outbound threats, protect email infrastructure, prevent data leakage, provide spam
filtering, and the like. The threat management facility may support other security techniques and
services such as reporting on suspect devices, security and content filtering, active monitoring of
network traffic, URI filtering, network access control, access to virtual private networks (VPN),
host 1ntrusion prevention, and so forth.

[0018] The system 100 may employ a model 130 such as a machine learning threat
detection model to assist in analyzing software to detect malicious code. In general, the model
130 may use a classifier or any other suitable detection or recognition technology or technologies
to attempt to classify code as malicious (or not malicious). For example, the model 130 may be
trained using machine learning techniques and a training set based on known samples of
malicious code so that the model 130 learns to recognize other code with similar static or
behavioral features or attributes as malicious or otherwise unwanted. In some implementations,
this type of machine learning detection model can usefully recognize malware characteristics to
1dentify new malware families, polymorphic strains of existing families, and other variants and
the like with similar characteristics. While the model 130 1s illustrated as associated with the
threat management facility 108, 1t will be appreciated that the model 130 may be deployed at the
threat management facility 108, at the firewall 104, at the endpoint 102 (e.g., with the endpoint
threat detection 120) or any other suitable location, as well as combinations of the foregoing, and
may be correspondingly trained to identify malware based on observations available at one or
more corresponding locations. A model may be used instead of or in combination with other
classification, detection, or recognition technologies to 1dentify malware or characterize a
likelihood of a threat, a detection of a threat, and so forth.

[0019] The coloring system 110 may be used to label or color software objects for
improved tracking and detection of potentially harmful activity. The coloring system 110 may,
for example, label files, executables, processes, network communications, data sources and so
forth with any suitable label. A variety of techniques may be used to select static and/or dynamic
labels for any of these various software objects, and to manage the mechanics of applying and
propagating coloring information as appropriate. For example, a process may inherit a color from

an application that launches the process. Similarly, a file may inherit a color from a process when



1t 1s created or opened by a process, and/or a process may inherit a color from a file that the
process has opened. A network communication stream may inherit a color from the application
that launched 1t, a machine that communicated it, and so forth. More generally, any type of
labeling, as well as rules for propagating, inheriting, changing, or otherwise manipulating such
labels, may be used by the coloring system 110 as contemplated herein. A coloring model, alone
or 1n combination with other classifications, detections, or characteristics, may be used to assign
one or more colors.

[0020] The key management system 112 may support management of keys for the
endpoint 102 1n order to selectively permit or prevent access to content on the endpoint 102 on a
file-specific basis, a process-specific basis, an application-specific basis, a user-specific basis, or
any other suitable basis 1n order to prevent data leakage, and 1n order to support more fine-
grained and immediate control over access to content on the endpoint 102 when a security
compromise 1s detected. Thus, for example, 1f a particular process executing on the endpoint 1s
compromised, or potentially compromised or otherwise under suspicion, as determined by a
model, alone or in combination with other classifications, detections, or characteristics, access by
that process may be blocked (e.g., with access to keys revoked) in order to prevent, e.g., data
leakage or other malicious activity.

[0021] The heartbeat system 114 may be used to provide periodic or aperiodic
information from the endpoint 102 or other system components about system health, security,
status, and so forth. The heartbeat system 114 or otherwise an endpoint health system may thus
1n general include a health status report system for the endpoint 102, such as through the use of a
heartbeat system or the like. A heartbeat may be encrypted or plaintext, or some combination of
these, and may be communicated unidirectionally (e.g., from the endpoint 108 to the threat
management facility 108) or bidirectionally (e.g., between the endpoint 102 and the server 106,
or any other pair of system components) on any useful schedule. In some implementations, the
heartbeat system 114 may be used to securely communicate information about the health status
of a device. In some implementations, the heartbeat system 114 may be used to communicate
color information or other information (e.g., user information, source information, process
information) about files, executables, processes, network communications, data sources and so
forth. For example, a firewall 104 may use the heartbeat system 114 to request information from
an endpoint 102 about an application associated with a network communication. For example, a

firewall 104 may use the heartbeat system 114 to direct an endpoint 102 to take action to manage



the endpoint 102 or the system 100 1n response to a potential or actual security threat or for
administrative purposes. For example, an endpoint 102 may use the heartbeat system 114 to
communicate a determination by the endpoint threat detection agent 120 to other network entities
or locations. In some implementations, the heartbeat system 114 may be used to communicate
machine learning model outputs, such as an output from any of the machine learning models
described herein, either alone or in combination with other classifications, detections, or
characteristics, with respect to detections on files, executables, processes, network
communications, data sources and so forth.

[0022] Fig. 2 illustrates a computer system. In general, the computer system 200 may
include a computing device 210 connected to a network 202, e.g., through an external device
204. The computing device 210 may be or include any type of network endpoint or endpoints as
described herein, e.g., with reference to Fig. 1 above. For example, the computing device 210
may 1nclude a desktop computer workstation. The computing device 210 may also or instead be
any suitable device that has processes and communicates over a network 202, including without
[imitation a laptop computer, a desktop computer, a personal digital assistant, a tablet, a mobile
phone, a television, a set top box, a wearable computer (e.g., watch, jewelry, or clothing), a home
device (e.g., a thermostat or a home appliance controller), just as some examples. The computing
device 210 may also or instead include a server, or it may be disposed on a server.

[0023] The computing device 210 may provide a physical or virtual device as a platform
for any of the entities described in the threat management environment above with reference to
Fig. 1. For example, the computing device 210 may be a server, a client, a threat management
facility, or any of the other facilities or computing devices described therein. In certain aspects,
the computing device 210 may be implemented using hardware (e.g., in a desktop computer),
software (e.g., 1n a virtual machine or the like), or a combination of software and hardware (e.g.,
with programs executing on the desktop computer). The computing device 210 may be a
standalone device, a device integrated into another entity or device, a platform distributed across
multiple entities, or a virtualized device executing in a virtualization environment.

[0024] The network 202 may include the network 105 described above, which may be
any data network(s) or internetwork(s) suitable for communicating data and control information
among participants 1n the computer system 200. This may include public networks such as the
Internet, private networks, and telecommunications networks such as the Public Switched

Telephone Network or cellular networks using third generation cellular technology (e.g., 3G or
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IMT-2000), fourth generation cellular technology (e.g., 4G, LTE (RTM). MT-Advanced, E-
UTRA, etc.), fifth generation cellular technology (e.g., 5G), WiMax (RTM)-Advanced (IEEE
802.16m)) and/or other technologies, as well as any of a variety of corporate area, metropolitan
area, campus or other local area networks or enterprise networks, along with any switches,
routers, hubs, gateways, and the like that might be used to carry data among participants in the
computer system 200. The network 202 may also include a combination of data networks, and
need not be limited to a strictly public or private network.

[0025] The external device 204 may be any computer or other remote resource that
connects to the computing device 210 through the network 202. This may include threat
management resources such as any of those contemplated above, gateways or other network
devices, remote servers or the like containing content requested by the computing device 210, a
network storage device or resource, a device hosting malicious content, or any other resource or
device that might connect to the computing device 210 through the network 202.

[0026] The computing device 210 may include a processor 212, a memory 214, a
network interface 216, a data store 218, and one or more input/output devices 220. The
computing device 210 may further include or be in communication with peripherals 222 and
other external input/output devices 224.

[0027] The processor 212 may be any as described herein, and may generally be capable
of processing instructions for execution within the computing device 210 or computer system
200. The processor 212 may include a single-threaded processor or a multi-threaded processor.
The processor 212 may be capable of processing instructions stored 1n the memory 214 or on the
data store 218.

[0028] The memory 214 may store information within the computing device 210 or
computer system 200. The memory 214 may include any volatile or non-volatile memory or
other computer-readable medium, including without limitation a Random Access Memory
(RAM), a flash memory, a Read Only Memory (ROM), a Programmable Read-only Memory
(PROM), an Erasable PROM (EPROM), registers, and so forth. The memory 214 may store
program instructions, program data, executables, and other software and data useful for
controlling operation of the computing device 200 and configuring the computing device 200 to
perform functions for a user. The memory 214 may include a number of different stages and

types for different aspects of operation of the computing device 210. For example, a processor
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may include on-board memory and/or cache for faster access to certain data or instructions, and a
separate, main memory or the like may be included to expand memory capacity as desired.

[0029] The memory 214 may, 1n general, include a non-volatile computer readable
medium containing computer code that, when executed by the computing device 200 creates an
execution environment for a computer program 1n question, e.g., code that constitutes processor
firmware, a protocol stack, a database management system, an operating system, or a
combination of the foregoing, and/or code that performs some or all of the steps set forth 1n the
various flow charts and other algorithmic descriptions set forth herein. While a single memory
214 1s depicted, 1t will be understood that any number of memories may be usetully incorporated
into the computing device 210. For example, a first memory may provide non-volatile storage
such as a disk drive for permanent or long-term storage of files and code even when the
computing device 210 1s powered down. A second memory such as a random access memory
may provide volatile (but higher speed) memory for storing instructions and data for executing
processes. A third memory may be used to improve performance by providing even higher speed
memory physically adjacent to the processor 212 for registers, caching and so forth.

[0030] The network interface 216 may include any hardware and/or software for
connecting the computing device 210 1n a communicating relationship with other resources
through the network 202. This may include remote resources accessible through the Internet, as
well as local resources available using short range communications protocols using, e.g.,
physical connections (e.g., Ethernet), radio frequency communications (e.g., WiF1 (RTM)),
optical communications, (e.g., fiber optics, infrared, or the like), ultrasonic communications, or
any combination of these or communications through any other media that might be used to
carry data between the computing device 210 and other devices. The network interface 216 may,
for example, include a router, a modem, a network card, an infrared transceiver, a radio
frequency (RF) transceiver, a near field communications interface, a radio-frequency
1identification (RFID) tag reader, or any other data reading or writing resource or the like.

[0031] More generally, the network interface 216 may include any combination of
hardware and software suitable for coupling the components of the computing device 210 to
other computing or communications resources. By way of example and not limitation, this may
include electronics for a wired or wireless Ethemet connection operating according to the IEEE
802.11 standard (or any variation thereof), or any other short or long range wireless networking

components or the like. This may include hardware for short range data communications such as
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Bluetooth (RTM) or an infrared transceiver, which may be used to couple to other local devices,
or to connect to a local area network or the like that 1s 1n turn coupled to a data network 202 such
as the Internet. This may also or instead include hardware/software for a WiMax (RTM)
connection or a cellular network connection (using, e.g., CDMA, GSM, LTE (RTM), 5G, or any
other suitable protocol or combination of protocols). The network interface 216 may be included
as part of the input/output devices 220 or vice-versa.

[0032] The data store 218 may be any internal memory store providing a computer-
readable medium such as a disk drive, an optical drive, a magnetic drive, a flash drive, or other
device capable of providing mass storage for the computing device 210. The data store 218 may
store computer readable instructions, data structures, program modules, and other data for the
computing device 210 or computer system 200 1n a non-volatile form for subsequent retrieval
and use. For example, the data store 218 may store the operating system, application programs,
program data, databases, files, and other program modules or other software objects and the like.

[0033] The input/output interface 220 may support input from and output to other devices
that might couple to the computing device 210. This may, for example, include seral ports (e.g.,
RS-232 ports), umiversal serial bus (USB) ports, optical ports, Ethernet ports, telephone ports,
audio jacks, component audio/video inputs, HDMI ports, and so forth, any of which might be
used to form wired connections to other local devices. This may also or instead include an
infrared interface, RF interface, magnetic card reader, or other input/output system for coupling
1n a communicating relationship with other local devices. It will be understood that, while the
network 1nterface 216 for network communications 1s described separately from the input/output
interface 220 for local device communications, these two interfaces may be the same, or may
share functionality, such as where a USB port 1s used to attach to a WiF1 (RTM) accessory, or
where an Ethernet connection 1s used to couple to a local network attached storage.

[0034] The computer system 200 may include a peripheral 222 for the computing device
210 such as any device used to provide information to or receive information from the
computing device 200. This may include human input/output (I/O) devices such as a keyboard, a
mouse, a mouse pad, a track ball, a joystick, a microphone, a foot pedal, a camera, a touch
screen, a scanner, or other device that might be employed by the user 230 to provide input to the
computing device 210. This may also or instead include a display, a speaker, a printer, a
projector, a headset or any other audiovisual device for presenting information to a user. The

peripheral 222 may also or instead include a digital signal processing device, an actuator, or
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other device to support control of or communications with other devices or components. Other
I/O devices suitable for use as a peripheral 222 include haptic devices, three-dimensional
rendering systems, augmented-reality displays, magnetic card readers, and so forth. In one
aspect, the peripheral 222 may serve as the network interface 216, such as with a USB device
configured to provide communications via short range (e.g., Bluetooth (RTM), WiF1 (RTM),
Infrared, RF, or the like) or long range (e.g., cellular data or WiMax (RTM)) communications
protocols. In another aspect, the peripheral 222 may provide a device to augment operation of the
computing device 210, such as a global positioning system (GPS) device, a security dongle, or
the like. In another aspect, the peripheral may be a storage device such as a flash card, USB
drive, or other solid state device, or an optical drive, a magnetic drive, a disk drive, or other
device or combination of devices suitable for bulk storage. More generally, any device or
combination of devices suitable for use with the computing device 200 may be used as a
peripheral 222 as contemplated herein.

[003S] Other hardware 226 may be incorporated into the computing device 200 such as a
co-processor, a digital signal processing system, a math co-processor, a graphics engine, a video
driver, and so forth. The other hardware 226 may also or instead include expanded imnput/output
ports, extra memory, additional drives (e.g., a DVD drive or other accessory), and so forth.

[0036] A bus 232 or combination of busses may serve as an electromechanical platform
for interconnecting components of the computing device 200 such as the processor 212, memory
214, network interface 216, other hardware 226, data store 218, and input/output interface. As
shown 1n the figure, each of the components of the computing device 210 may be interconnected
using a system bus 232 or other communication mechanism for communicating information.

[0037] Methods and systems described herein can be realized using the processor 212 of
the computer system 200 to execute one or more sequences of instructions contained 1n the
memory 214 to perform predetermined tasks. In embodiments, the computing device 200 may be
deployed as a number of parallel processors synchronized to execute code together for improved
performance, or the computing device 200 may be realized 1n a virtualized environment where
software on a hypervisor or other virtualization management facility emulates components of the
computing device 200 as appropriate to reproduce some or all of the functions of a hardware

instantiation of the computing device 200.
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[0038] Fig. 3 1llustrates a machine leaming system according to some implementations.
In general, the machine learning system 300 operates to create a detection model 302 that can be

deployed on one or more devices 1n an enterprise network to detect new malware. A machine

11



learning engine 304 may process a training set 306, e.g., of known malware samples, to generate
the detection model 302 using various machine learning techniques. Deep learning techniques
are one form of machine learning that generates multiple hidden layers 1n an artificial neural
network. These techniques have been successfully applied in a wide range of pattern recognition
applications such as computer vision, facial recognition, speech recognition and so forth.
However, a variety of other machine learning techniques are known 1n the art and may be
adapted for use in creating the detection model 302 as contemplated herein. By way of non-
limiting examples, suitable techniques include association rule learning, neural networks,
inductive logic programming, support vector machines, clustering, Bayesian networks, genetic
algorithms, rule-based machine learning and so forth.

[0039] The code samples in the training set 306 may be obtained, for example, from
malware samples 308 that have been positively 1dentified as malicious or otherwise unwanted.
This may, for example, include scripts, executables, applications, libraries, modules and the like,
alone or 1n combination, any of which may deploy malware such as adware, bots, bugs,
advanced persistent threats, ransomware, rootkits, spyware, Trojans, viruses, worms and other
code that performs undesirable, unwanted and potentially destructive tasks on an affected device.
This may also or instead include messages or other communications such as phishing attacks
intended to elicit compromising responses from end users. The machine learning engine 304 may
programmatically learn to 1dentify characteristics of these malware samples 308 to identify new
but functionally similar or derivative code.

[0040] The code samples in the training set 306 may also or instead include synthetic
malware samples 310 that have been programmatically generated based upon features 312 of
actual malware samples 308, such as abstracted features and behaviors of the code samples 1n the
training set 306. It 1s possible, for example, to generate perturbations or variations in code that
eventually yield classification errors 1n a trained neural network’s 1dentification, and these code
samples can be used 1n turn to increase the ability of the detection model 302 to accurately
classify new code samples. The features 312 may include any abstracted features or behaviors of
existing code that usefully characterizes operation of the code during execution.

[0041] The features 312 may be applied to a generative engine 314. The generative
engine may use any suitable techniques for generating code based on the features 312 of the
input code samples, such as by using known substitutions for abstracted features. For example,

this may include variations (e.g., randomization, substitution rules) of the order or
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implementation of behaviors, variations to the coding or scripting instructions, variations in the
order or format of inputs and outputs and so forth. This may also or instead include variations in
text, graphics, words, languages and so forth. In another aspect, this may include the use of
packers, encryption, compression and the like to obscure existing code. In another aspect, this
may include randomizing code 1inputs, e.g., using a fuzzer or the like to automatically test a range
of 1inputs 1n an attempt to 1dentify exploitable holes or vulnerabilities 1n a target platform or code.
Thus, 1n one aspect, the code may remain unchanged, but inputs to the code, or outputs from the
code to a target system, may be varied in order to achieve different computational results. This
may include a human-guided process, an automated process or some combination of these.

[0042] In one aspect, the generative engine 314 may include a generative adversarial
network. In some implementations, the generative adversarial network may employ unsupervised
machine learning, implemented with two neural networks that compete with one another. In the
context of generating malware, one neural network (a generative engine) may generate candidate
samples based on known malware samples or abstracted descriptions of known malware
samples. The second neural network (a discriminative engine) may analyzes these generated
candidates to evaluate a likelthood of whether they come from the generative engine or original,
known malware samples, while the generative engine seeks to generate new code that evades
proper classification. Backpropagation can be applied to both engines to promote continuous
improvement, €.g., so that the generative engine produces malware samples more like real-world
samples while the discriminative engine becomes better at identifying malware variations.

[0043] More generally, a variety of other techniques are known for generating code
including automatic programming, generative programming and the like, and of which may also
or instead be used to create synthetic malware samples based upon abstracted features, generic
descriptions and other inputs, parameters, features, behaviors, characteristics and so forth.

[0044] After candidate samples have been generated, one or more filters 316 may be
applied 1n order to ensure that the resulting code samples provide a useful training set for
improving the machine learning engine 304. The one or more filters 316 may, for example,
include a validation module 318 or process to validate the candidate samples, such as by
executing each sample 1n a sandbox or otherwise veritying that the generated code can execute
or perform a potentially or nominally malicious task on a target platform. Such a filter 316
usefully avoids training the machine learning engine 304 against samples that are incapable of

performing malicious tasks. The filters 316 may also or instead include a detection module 320
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or process that tests whether the synthesized code can be detected by the existing detection
model 302. This latter filter 316 may usefully reduce the amount of processing required within
the machine learning engine 304 by avoiding additional training of the machine learning engine
304 with samples that can already be detected with the current detection model 302.

[0045] These and any other useful filters 316 may be applied to output from the
ogenerative engine 314 to provide a set of synthetic malware samples 322 that can be added to the
training set 306 for the machine learning engine 304. The system 300 may also provide
additional features and functions to support iterative improvement and refinement to the malware
generation and machine learning processes. For example, the synthetic malware samples 322
may be analyzed to 1dentify abstracted features and behaviors that can be used to seed the
features and behaviors 312 used by the generative engine. In this manner, 1f the generative
engine 314 produces, e.g., a new order of steps or a new function call that embody a new,
successful exploit, this new exploit can be used to seed further perturbations and variations that
further extend the range of detectable malware. In another aspect, the inputs to and output from
the generative engine 314 may be logged over time, e.g., 1n order to prevent repeating analyses
that might waste computer resources and/or introduce biases into the detection model 302.

[0046] According to the foregoing, there 1s disclosed herein a threat detection system
including a machine learning engine and an endpoint. The machine learning engine may be
configured to train a detection model for an antimalware system by 1teratively generating
synthetic malware samples based on one or more functional blocks of malware samples 1n a
training set, filtering the synthetic malware samples to remove imoperable code samples and code
samples that can be detected by a prior detection model trained to detect the malware samples,
and training a new detection model until a receiver operating characteristic for the new detection
model achieves a predetermined threshold for true positive detection. In this context, examples
of functional blocks suitable for creating synthetic malware samples may include, but are not
limited to, such elements or combinations of elements as creation or modification of certain
types of values of registry keys on Microsoft (RTM) Windows (RTM) operating systems;
creation of certain system processes, 1njection of code into existing processes, modification of
system files; attempts to tamper with program control flows; attempts to reduce or defeat
defensive randomization techniques; attempts to discover and/or evade the presence of

debugging and/or virtualization and/or protective software on a system; attempts to read or
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modify protected memory regions; attempts to use legitimate system application programming

interfaces (APIs) to discover system
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states or values 1n ways that are characteristic of a sequence within an attack; attempts to
introduce and/or conceal and/or execute shellcode; attempts to conduct direct or side-channel
attacks against cryptosystems, privileged system resources, or otherwise protected system
components, attempts to access key material or otherwise intercept or control cryptographic
processes, and so forth. More generally, any functional block of code performing a known
malicious action or potentially malicious action, or performing a substep, prerequisite or
supporting function for such action, may be a functional block as contemplated herein. The
endpoint may be coupled to an enterprise network and configured to deploy the detection model
to detect malicious received through the enterprise network.

[0047] Fig. 4 shows a method for training a machine learning system to detect malware
according to some implementations.

[0048] As shown in step 402, the method 400 may include providing a training set, such
as by providing a first training set include a plurality of malware samples. This may include
malware samples that have been 1dentified and gathered 1n any suitable manner, and that have
been selected for inclusion 1n a machine learning process for creating a malware detection
model.

[0049] As shown 1n step 404, the method 400 may include configuring a first
antimalware system to detect the malware samples, e.g., by using any of the machine learning or
similar techniques described herein.

[0050] As shown 1n step 406, the method 400 may include characterizing one or more
functional blocks of the malware samples. This may include any automated techniques, manual
techniques or combination of these for extracting abstracted features, functions behaviors or the
like of the malware samples 1nto a form suitable for processing by a machine learning system. In
general, this may be at any suitable level of abstraction, and may include simple steps or
functions as well as complex routines, calculations and so forth.

[0051] As shown 1n step 408, the method 400 may include generating synthetic samples
based on the one or more functional blocks of the malware samples characterized in step 406.
This may include code generation using the generative engine described above, which may, for
example, apply any of a variety of automated programming techniques, code generation
techniques, or generative adversarial network techniques to create new code based on the

original malware samples in the training set.
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[0052] In one aspect, generating the number of synthetic malware samples includes
generating code with a generative engine of a generative adversarial network. Generating the
number of synthetic malware samples may also or instead include testing generated samples with
a discriminative engine of a generative adversarial network. Generating the number of synthetic
malware samples may 1nclude generating code based on known variants of the one or more
functional blocks, or generating code based on known substitutes for the one or more functional
blocks. Generating the number of synthetic malware samples may also or instead includes
applying a fuzzer to one or more of the plurality of malware samples 1n the first training set, e.g.,
1in order to generate randomized 1nputs to or outputs from the malware samples that might
sttimulate different, and 1n particular, compromised responses from a target plattorm. Generating
the number of synthetic malware samples may similarly include applying a randomizer to one or
more of the plurality of malware samples 1n the first training set.

[0053] As shown 1n step 410, the method 400 may include filtering the synthetic
samples. This may, for example, include validating the number of synthetic malware samples to
provide a validated sample set containing one or more of the synthetic malware samples that
execute and perform an unwanted task in a target computing context. For example, validating the
number of synthetic malware samples may include executing each of the number of synthetic
malware samples in a sandbox while monitoring the results in order to ensure that the code
executes and performs an unwanted (or potentially or nominally unwanted) task. In this manner,
the filtering can ensure that only valid code 1s included 1in subsequent training sets.

[0054] Filtering may also or instead include filtering malware samples such as the
validated sample set to provide a filtered sample set containing one or more of the synthetic
malware samples (e.g., 1n the validated sample set) that are not detected by the first antimalware
system. In particular, filtering may include removing any of the synthetic malware samples
substantially 1dentical to one of the plurality of malware samples or removing any one of the
synthetic malware samples substantially identical to another one of the synthetic malware
samples. In this manner, repeats of synthetic samples, or synthetic samples that do not
substantially vary the underlying source samples, may be removed from future training sets in
order to conserve computational resources. As noted above, code generation may also be
monitored to prevent or avoid repeat generations of 1dentical or nearly 1dentical candidate

samples.

17



[005S] As shown 1n step 412, the method 400 may include configuring a second
antimalware system. This may, for example, include creating a second antimalware system by
training a machine learning malware detection engine to detect malicious code including the
synthetic malware samples 1n the validated sample set. Depending upon the machine learning
techniques employed, this may be achieved with an incremental training to the new samples, or a
complete retraining using a training set that contains the original malware samples and the
filtered sample set obtained from the generative engine.

[0056] As shown in step 414, the method 400 may include generating a second number
of synthetic malware samples based on functional blocks of the synthetic malware samples 1n the
validated sample set, and also validating and filtering the second number of synthetic malware
samples to provide a second training set.

[0057] As shown 1n step 416, the method 400 may include retraining the antimalware
system. This may include creating a third antimalware system by training the machine learning
malware detection engine to detect synthetic malware samples in the second training set.

[0058] As shown 1n step 418, the method 400 may include determining whether a
stopping condition such as a predetermined threshold for 1terations has been reached. The
predetermined threshold may, for example, include a receiver operating characteristic for the
new (e.g., retrained) antimalware system, which usefully provides a figure of merit for detection
accuracy by measuring true positive detections against false positive detections. More generally,
any suitable threshold or stopping condition for measuring the accuracy of the detection model
may also or instead be employed.

[0059] If the stopping condition 1s not met, the method 400 may return to step 414 where
additional samples may be generated for additional processing. Thus, the method 400 may
include 1teratively repeating the generating, validating, filtering and creating a new antimalware
system until a predetermined threshold or stopping condition 1s reached. In this manner, the
techniques contemplated herein may be iteratively repeated any number of times 1n order to
expand the range of functional and potentially malicious code that can be detected and to
improve the ability of the detection model to correctly classity new and previously unseen
malware. The use of an objective stopping condition usefully permits unsupervised, iterative
refinement to the detection model until a user-specified result 1s achieved. If the stopping

condition 1s met, the method 400 may proceed to step 420.
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[0060] As shown in step 420, the method may include deploying an antimalware system
such as an antimalware system created using any of the steps described above. This may, for
example, include deploying the second antimalware system on an endpoint, deploying the second
antimalware system on a gateway to an enterprise network, deploying the second antimalware
system at a threat management facility for an enterprise network or any combination of these, as
well as deploying the second antimalware system at any other location or combination of
locations where events or actions might be observed and used to detect the presence of malicious
code. The antimalware system may generally be used to detect malware 1n an enterprise network.

[0061] For example, deploying the antimalware system may include detecting malware
on an endpoint 1n an enterprise network with the antimalware system and initiating a remediation
of the endpoint. It will be appreciated that a wide range of remediation measures are known in
the art, and may vary according to, e.g., the type of threat, the likelthood of an accurate detection,
the endpoint affected, and so forth.

[0062] Remedial action may, for example, include terminating or modifying an ongoing
process or interaction, sending a warning or other notification to an administrator, executing a
program or application to remediate against a threat or violation, initiating a logging of actions
for subsequent evaluation, or the like. The remedial action may also or instead include blocking
network activity, initiating a malicious code scan, quarantining an endpoint (or a process or
application on the endpoint) and so forth. More generally, any remedial action suitable for
temporarily or permanently addressing the detected threat may usefully be employed as a
remedial action in response to a threat detection as contemplated herein.

[0063] The above systems, devices, methods, processes, and the like may be realized 1n
hardware, software, or any combination of these suitable for a particular application. The
hardware may include a general-purpose computer and/or dedicated computing device. This
includes realization 1n one or more microprocessors, microcontrollers, embedded
microcontrollers, programmable digital signal processors or other programmable devices or
processing circuitry, along with internal and/or external memory. This may also, or instead,
include one or more application specific integrated circuits, programmable gate arrays,
programmable array logic components, or any other device or devices that may be configured to
process electronic signals. It will further be appreciated that a realization of the processes or
devices described above may include computer-executable code created using a structured

programming language such as C, an object oriented programming language such as C++, or any
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other high-level or low-level programming language (including assembly languages, hardware
description languages, and database programming languages and technologies) that may be
stored, compiled or interpreted to run on one of the above devices, as well as heterogeneous
combinations of processors, processor architectures, or combinations of different hardware and
software. In another aspect, the methods may be embodied 1in systems that perform the steps
thereof, and may be distributed across devices 1n a number of ways. At the same time, processing
may be distributed across devices such as the various systems described above, or all of the
functionality may be integrated into a dedicated, standalone device or other hardware. In another
aspect, means for performing the steps associated with the processes described above may
include any of the hardware and/or software described above. All such permutations and
combinations are intended to fall within the scope of the present disclosure.

[0064] Embodiments disclosed herein may include computer program products
comprising computer-executable code or computer-usable code that, when executing on one or
more computing devices, performs any and/or all of the steps thereof. The code may be stored in
a non-transitory fashion in a computer memory, which may be a memory from which the
program executes (such as random access memory associated with a processor), or a storage
device such as a disk drive, flash memory or any other optical, electromagnetic, magnetic,
infrared or other device or combination of devices. In another aspect, any of the systems and
methods described above may be embodied 1n any suitable transmission or propagation medium
carrying computer-executable code and/or any inputs or outputs from same.

[006S] The elements described and depicted herein, including in flow charts and block
diagrams throughout the figures, imply logical boundaries between the elements. However,
according to software or hardware engineering practices, the depicted elements and the functions
thereof may be implemented on machines through computer executable media having a
processor capable of executing program instructions stored thereon as a monolithic software
structure, as standalone software modules, or as modules that employ external routines, code,
services, and so forth, or any combination of these, and all such implementations may be within
the scope of the present disclosure. Examples of such machines may include, but may not be
limited to, personal digital assistants, laptops, personal computers, mobile phones, other
handheld computing devices, medical equipment, wired or wireless communication devices,
transducers, chips, calculators, satellites, tablet PCs, electronic books, gadgets, electronic

devices, devices having artificial intelligence, computing devices, networking equipment,
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servers, routers and the like. Furthermore, the elements depicted in the flow chart and block
diagrams or any other logical component may be implemented on a machine capable of
executing program instructions. Thus, while the foregoing drawings and descriptions set forth
functional aspects of the disclosed systems, no particular arrangement of software for
implementing these functional aspects should be inferred from these descriptions unless
explicitly stated or otherwise clear from the context. Similarly, 1t may be appreciated that the
various steps i1dentified and described above may be varied, and that the order of steps may be
adapted to particular applications of the techniques disclosed herein. All such variations and
modifications are intended to fall within the scope of this disclosure. As such, the depiction
and/or description of an order for various steps should not be understood to require a particular
order of execution for those steps, unless required by a particular application, or explicitly stated
or otherwise clear from the context. Absent an explicit indication to the contrary, the disclosed
steps may be modified, supplemented, omitted, and/or re-ordered without departing from the
scope of this disclosure.

[0066] The method steps of the implementations described herein are intended to include
any suitable method of causing such method steps to be performed, consistent with the
patentability of the following claims, unless a different meaning 1s expressly provided or
otherwise clear from the context. So, for example, performing the step of X includes any suitable
method for causing another party such as a remote user, a remote processing resource (e.g., a
server or cloud computer) or a machine to perform the step of X. Similarly, performing steps X,
Y and Z may include any method of directing or controlling any combination of such other
individuals or resources to perform steps X, Y and Z to obtain the benefit of such steps. Thus,
method steps of the implementations described herein are intended to include any suitable
method of causing one or more other parties or entities to perform the steps, consistent with the
patentability of the following claims, unless a different meaning 1s expressly provided or
otherwise clear from the context. Such parties or entities need not be under the direction or
control of any other party or entity, and need not be located within a particular jurisdiction.

[0067] It will be appreciated that the methods and systems described above are set forth
by way of example and not of limitation. Numerous variations, additions, omissions, and other
modifications will be apparent to one of ordinary skill in the art. In addition, the order or
presentation of method steps in the description and drawings above 1s not intended to require this

order of performing the recited steps unless a particular order 1s expressly required or otherwise
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clear from the context. Thus, while particular embodiments have been shown and described, 1t
will be apparent to those skilled 1n the art that various changes and modifications in form and
details may be made therein without departing from the spirit and scope of this disclosure and are
intended to form a part of the invention as defined by the following claims, which are to be

interpreted 1n the broadest sense allowable by law.
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CLAIMS

1. A computer program product comprising computer executable code embodied 1n
a computer readable medium that, when executing on one or more computing devices,
performs the steps of:

providing a first training set including a plurality of malware samples;

configuring a first antimalware system to detect the malware samples;

characterizing one or more functional blocks of the malware samples;

generating a first number of synthetic malware samples including modifications
of the one or more functional blocks of the malware samples;

validating the first number of synthetic malware samples to provide a validated
sample set containing one or more of the first number of synthetic malware samples that
execute and perform an unwanted task 1n a target computing context;

filtering the validated sample set to provide a filtered sample set containing one or
more of the first number of synthetic malware samples 1n the validated sample set that are
not detected by the first antimalware system:;

creating a second antimalware system by training a machine learning malware
detection engine to detect malicious code including the one or more of the first number of
synthetic malware samples 1n the validated sample set;

generating a second number of synthetic malware samples based on functional
blocks of the first number of synthetic malware samples 1n the validated sample set;

validating and filtering the second number of synthetic malware samples to
provide a second training set;

creating a third antimalware system by training the machine learning malware
detection engine to detect synthetic malware samples 1n the second training set; and

detecting malware on an endpoint 1n an enterprise network with the second

antimalware system and initiating a remediation of the endpoint.
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2. A method comprising:

providing a first training set including a plurality of malware samples;

configuring a first antimalware system to detect the malware samples;

ogenerating a first number of synthetic malware samples including modifications
of the malware samples;

validating the first number of synthetic malware samples to provide a validated
sample set containing one or more of the first number of synthetic malware samples that
execute and perform an unwanted task 1n a target computing context;

filtering the validated sample set to provide a filtered sample set containing one or
more of the first number of synthetic malware samples 1n the validated sample set that are
not detected by the first antimalware system:;

creating a second antimalware system by training a machine learning malware
detection engine to detect malicious code including the one or more of the first number of
synthetic malware samples 1n the validated sample set;

generating a second number of synthetic malware samples based on functional
blocks of the first number of synthetic malware samples 1n the validated sample set;

validating and filtering the second number of synthetic malware samples to
provide a second training set;

creating a third antimalware system by training the machine learning malware
detection engine to detect synthetic malware samples 1n the second training set; and

detecting malware on an endpoint 1in an enterprise network with the second

antimalware system and 1nitiating a remediation of the endpoint.

3. The method of claim 2 wherein generating the first number of synthetic malware
samples includes generating code with a generative engine of a generative adversarial

network.
4 The method of claim 2 wherein generating the first number of synthetic malware

samples includes testing generated samples with a discriminative engine of a generative

adversarial network.
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5. The method of claim 2 further comprising characterizing one or more functional

blocks of the malware samples.

6. The method of claim 5 wherein generating the first number of synthetic malware

samples includes generating code based on known variants of the one or more functional

blocks.

7. The method of claim 5 wherein generating the first number of synthetic malware
samples includes generating code based on known substitutes for the one or more

functional blocks.

8. The method of claim 2 wherein generating the first number of synthetic malware
samples includes applying a fuzzer to one or more of the plurality of malware samples 1n

the first training set.

9 The method of claim 2 wherein generating the first number of synthetic malware
samples includes applying a randomizer to one or more of the plurality of malware

samples 1n the first training set.

10. The method of claim 2 wherein validating the first number of synthetic malware
samples includes executing each of the first number of synthetic malware samples 1n a

sandbox.

11. The method of claim 2 wherein filtering includes removing any of the first
number of synthetic malware samples substantially 1dentical to one of the plurality of

malware samples.
12. The method of claim 2 wherein filtering includes removing any one of the first

number of synthetic malware samples substantially identical to another one of the first

number of synthetic malware samples.
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13. The method of claim 2 further comprising iteratively repeating the generating,
validating, filtering and creating a new antimalware system until a predetermined

threshold 1s reached.

14. The method of claim 13 wherein the predetermined threshold includes a receiver

operating characteristic for the new antimalware system.

15. The method of claim 2 further comprising deploying the second antimalware

system on an endpoint.

16. The method of claim 2 further comprising deploying the second antimalware

system on a gateway to an enterprise network.

17. The method of claim 2 further comprising deploying the second antimalware

system at a threat management facility for an enterprise network.

18. The method of claim 2 further comprising using the second antimalware system to

detect malware 1n an enterprise network.

19. A system comprising:

a threat management facility including a first memory storing computer-
executable code for providing a first training set including a plurality of malware
samples, configuring a first antimalware system to detect the malware samples,
characterizing one or more functional blocks of the malware samples, generating a first
number of synthetic malware samples including modifications of the one or more
functional blocks of the malware samples, validating the first number of synthetic
malware samples to provide a validated sample set containing one or more of the first
number of synthetic malware samples that execute and perform an unwanted task 1n a
target computing context, filtering the validated sample set to provide a filtered sample
set containing one or more of the first number of synthetic malware samples 1n the
validated sample set that are not detected by the first antimalware system, creating a

second antimalware system by training a machine learning malware detection engine to
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detect malicious code including the one or more of the first number of synthetic malware
samples 1n the validated sample set, generating a second number of synthetic malware
samples based on functional blocks of the first number of synthetic malware samples 1n
the validated sample set, validating and filtering the second number of synthetic malware

samples to provide a second training set, and creating a third antimalware system by
training the machine learning malware detection engine to detect synthetic malware
samples 1n the second training set; and

an endpoint coupled to an enterprise network, the endpoint including a second
memory storing computer-executable code for detecting malware with the second

antimalware system and 1nitiating a remediation of the endpoint.

27



	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - CLAIMS
	Page 29 - CLAIMS
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS

