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ABSTRACT

A system and method for determining the genetic data for one or a small set of 

cells, or from fragmentary DNA, where a limited quantity of genetic data is available, and 

also for predicting likely phenotypic outcomes using mathematical models and given 

5 genetic, phenotypic and/or clinical data of an individual, and also relevant aggregated 

medical data consisting of genotypic, phenotypic, and/or clinical data from germane 

patient subpopulations. Genetic data for the target individual is acquired and amplified 

using known methods, and poorly measured base pairs, missing alleles and missing 

regions are reconstructed using expected similarities between the target genome and the 

10 genome of genetically related subjects.
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SYSTEM AND METHOD FOR CLEANING NOISY GENETIC DATA AND USING 

DATA TO MAKE PREDICTIONS

Cross-References To Related Applications

5
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on 22 November 2006, and is related to International Patent Application No. 
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Provisional Patent Applications: Serial No. 60/739,882, filed on 26 November 2005;

10 Serial No. 60/742,305, filed on 6 December 2005; Serial No. 60/754,396, filed on 29 

December 2005; Serial No. 60/774,976, filed on 21 February 2006; Serial No. 

60/789,506, filed on 4 April 2006; Serial No. 60/817,741, filed on 30 June 2006; Serial 

No. 11/496,982, filed on 31 July 2006; and Serial No. 60/846,610, filed on 22 September 

2006; each of which is incorporated herein by reference.
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Field of the Technology

The invention relates generally to the field of acquiring, manipulating and using 

genetic data for medically predictive purposes, and specifically to a system in which 

20 imperfectly measured genetic data is made more precise by using known genetic data of 

genetically related individuals, thereby allowing more effective identification of genetic 

irregularities that could result in various phenorypic outcomes. It also relates generally to 

the field of analyzing, managing and acting upon genetic, phenorypic and clinical 

information, and using that information to predict phenotypic outcomes of medical 

25 decisions. More specifically, it relates to methods and systems which use integrated, 

validated genetic and phenotypic data from a group of subjects to make better decisions 

regarding a particular subject.

Description of the Related Art

30

Prenatal and Preimplantation Genetic Diagnosis

Current methods of prenatal diagnosis can alert physicians and parents to

abnormalities in growing fetuses. Without prenatal diagnosis, one in 50 babies is born

with serious physical or mental handicap, and as many as one in 30 will have some form

35 of congenital malformation. Unfortunately, standard methods require invasive testing and
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carry a roughly 1 per cent risk of miscarriage. These methods include amniocentesis, 

chorion villus biopsy and fetal blood sampling. Of these, amniocentesis is the most 

common procedure; in 2003, it was performed in approximately 3% of all pregnancies, 

though its frequency of use has been decreasing over the past decade and a half. A major 

5 drawback of prenatal diagnosis is that given die limited courses of action once an 

abnormality has been detected, it is only valuable and ethical to test for very serious 

defects. As result, prenatal diagnosis is typically only attempted in cases of high-risk 

pregnancies, where the elevated chance of a defect combined with the seriousness of the 

potential abnormality outweighs the risks. A need exists for a method of prenatal 

10 diagnosis that mitigates these risks.

It has recently been discovered that cell-free fetal DNA and intact fetal cells can 

enter maternal blood circulation. Consequently, analysis of these cells can allow early 

Non-Invasive Prenatal Genetic Diagnosis (NGPCD). A key challenge in using NIPGD is 

the task of identifying and extracting fetal cells or nucleic acids from the mother’s blood.

15 The fetal cell concentration in maternal blood depends on the stage of pregnancy and the 

condition of the fetus, but estimates range from one to forty fetal cells in every milliliter 

of maternal blood, or less than one fetal cell per 100,000 maternal nucleated cells. Current 

techniques are able to isolate small quantities of fetal cells from the mother’s blood, 

although it is very difficult to enrich the fetal cells to purity in any quantity. The most 

20 effective technique in this context involves the use of monoclonal antibodies, but other 

techniques used to isolate fetal cells include density centrifugation, selective lysis of adult 

erythrocytes, and FACS. Fetal DNA isolation has been demonstrated using PCR 

amplification using primers with fetal-specific DNA sequences. Since only tens of 

molecules of each embryonic SNP are available through these techniques, the genotyping

25 of the fetal tissue with high fidelity is not currently possible.

Normal humans have two sets of 23 chromosomes in every diploid cell, with one 

copy coming from each parent. Aneuploidy, a cell with an extra or missing 

chromosomes, and uniparental disomy, a cell with two of a given chromosome that 

originate from one parent, are believed to be responsible for a large percentage of failed 

30 implantations, miscarriages, and genetic diseases. When only certain cells in an 

individual are aneuploid, the individual is said to exhibit mosaicism. Detection of 

chromosomal abnormalities can identify individuals or embryos with conditions such as 

Down syndrome, Klinefelters syndrome, and Turner syndrome, among others, in addition
2
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to increasing the chances of a successful pregnancy. Testing for chromosomal 

abnormalities is especially important as mothers age: between the ages of 35 and 40 it is 

estimated that between 40% and 50% of the embryos are abnormal, and above the age of 

40, more than half of the embryos are abnormal.

5 Karyotyping, the traditional method used for the prediction of aneuploides and

mosaicism is giving way to other more high throughput, more cost effective methods. 

One method that has attracted much attention recently is Flow cytometry (FC) and 

fluorescence in situ hybridization (FISH) which can be used to detect aneuploidy in any 

phase of the cell cycle. One advantage of this method is that it is less expensive than 

10 karyotyping, but the cost is significant enough that generally a small selection of 

chromosomes are tested (usually chromosomes 13, 18, 21, X, Y; also sometimes 8, 9, 15, 

16, 17, 22); in addition, FISH has a low level of specificity. Using FISH to analyze 15 

cells, one can detect mosaicism of 19% with 95% confidence. The reliability of the test 

becomes much lower as the level of mosaicism gets lower, and as the number of cells to 

15 analyze decreases. The test is estimated to have a false negative rate as high as 15% when 

a single cell is analysed. There is a great demand for a method that has a higher 

throughput, lower cost, and greater accuracy.

Much research has been done towards the use of pre-implantation genetic 

diagnosis (PGD) as an alternative to classical prenatal diagnosis of inherited disease.

20 Most PGD today focuses on high-level chromosomal abnormalities such as aneuploidy 

and balanced translocations with the primary outcomes being successful implantation and 

a take-home baby. A need exists for a method for more extensive genotyping of embryos 

at the pre-implantation stage. The number of known disease associated genetic alleles is 

currently at 389 according to OMIM and steadily climbing. Consequently, it is becoming 

25 increasingly relevant to analyze multiple embryonic SNPs that are associated with disease 

phenotypes. A clear advantage of pre-implantation genetic diagnosis over prenatal 

diagnosis is that it avoids some of the ethical issues regarding possible choices of action 

once undesirable phenotypes have been detected.

30 Genotyping

Many techniques exist for isolating single cells. The FACS machine has a variety

of applications; one important application is to discriminate between cells based on size,

shape and overall DNA content. The FACS machine can be set to sort single cells into
3
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any desired container. Many different groups have used single cell DNA analysis for a

number of applications, including prenatal genetic diagnosis, recombination studies, and

analysis of chromosomal imbalances. Single-sperm genotyping has been used previously

for forensic analysis of sperm samples (to decrease problems arising from mixed samples)

and for single-cell recombination studies.

Isolation of single cells from human embryos, while highly technical, is now 

routine in in vitro fertilization clinics. To date, the vast majority of prenatal diagnoses 

have used fluorescent in situ hybridization (FISH), which can determine large 

chromosomal aberrations (such as Down syndrome, or trisomy 21) and 

PCR/electrophoresis, which can determine a handful of SNPs or other allele calls. Both 

polar bodies and blastomeres have been isolated with success. It is critical to isolate 

single blastomeres without compromising embryonic integrity. The most common 

technique is to remove single blastomeres from day 3 embryos (6 or 8 cell stage). 

Embryos are transferred to a special cell culture medium (standard culture medium 

lacking calcium and magnesium), and a hole is introduced into the zona pellucida using 

an acidic solution, laser, or mechanical drilling. The technician then uses a biopsy pipette 

to remove a single visible nucleus. Clinical studies have demonstrated that this process 

does not decrease implantation success, since at this stage embryonic cells are 

undifferentiated.

There are three major methods available for whole genome amplification (WGA): 

ligation-mediated PCR (LM-PCR), degenerate oligonucleotide primer PCR (DOP-PCR), 

and multiple displacement amplification (MDA). In LM-PCR, short DNA sequences 

called adapters are ligated to blunt ends of DNA. These adapters contain universal 

amplification sequences, which are used to amplify the DNA by PCR. In DOP-PCR, 

random primers that also contain universal amplification sequences are used in a first 

round of annealing and PCR. Then, a second round of PCR is used to amplify the 

sequences further with the universal primer sequences. Finally, MDA uses the phi-29 

polymerase, which is a highly processive and non-specific enzyme that replicates DNA 

and has been used for single-cell analysis. Of the three methods, DOP-PCR reliably 

produces large quantities of DNA from small quantities of DNA, including single copies 

of chromosomes. On the other hand, MDA is the fastest method, producing hundred-fold 

amplification of DNA in a few hours. The major limitations to amplification material 

from a single cells are (1) necessity of using extremely dilute DNA concentrations or
4
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extremely small volume of reaction mixture, and (2) difficulty of reliably dissociating 

DNA from proteins across the whole genome. Regardless, single-cell whole genome 

amplification has been used successfully for a variety of applications for a number of 

years.

There are numerous difficulties in using DNA amplification in these contexts. 

Amplification of single-cell DNA (or DNA from a small number of cells, or from smaller 

amounts of DNA) by PCR can fail completely, as reported in 5-10% of the cases. This is 

often due to contamination of the DNA, the loss of the cell, its DNA, or accessibility of 

the DNA during the PCR reaction. Other sources of error that may arise in measuring the 

embryonic DNA by amplification and microarray analysis include transcription errors 

introduced by the DNA polymerase where a particular nucleotide is incorrectly copied 

during PCR, and microarray reading errors due to imperfect hybridization on the array. 

The biggest problem, however, remains allele drop-out (ADO) defined as the failure to 

amplify one of the two alleles in a heterozygous cell. ADO can affect up to more than 

40% of amplifications and has already caused PGD misdiagnoses. ADO becomes a 

health issue especially in the case of a dominant disease, where the failure to amplify can 

lead to implantation of an affected embryo. The need for more than one set of primers per 

each marker (in heterozygotes) complicate the PCR process. Therefore, more reliable 

PCR assays are being developed based on understanding the ADO origin. Reaction 

conditions for single-cell amplifications are under study. The amplicon size, the amount 

of DNA degradation, freezing and thawing, and the PCR program and conditions can 

each influence the rate of ADO.

All those techniques, however, depend on the minute DNA amount available for 

amplification in the single cell. This process is often accompanied by contamination. 

Proper sterile conditions and microsatellite sizing can exclude the chance of contaminant 

DNA as microsatellite analysis detected only in parental alleles exclude contamination. 

Studies to reliably transfer molecular diagnostic protocols to the single-cell level have 

been recently pursued using first-round multiplex PCR of microsatellite markers, 

followed by real-time PCR and microsatellite sizing to exclude chance contamination. 

Multiplex PCR allows for the amplification of multiple fragments in a single reaction, a 

crucial requirement in the single-cell DNA analysis. Although conventional PCR was the 

first method used in PGD, fluorescence in situ hybridization (FISH) is now common. It is 

a delicate visual assay that allows the detection of nucleic acid within undisturbed cellular 
5
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and tissue architecture. It relies firstly on the fixation of the cells to be analyzed. 

Consequently, optimization of the fixation and storage condition of the sample is needed, 

especially for single-cell suspensions.

Advanced technologies that enable the diagnosis of a number of diseases at the 

single-cell level include interphase chromosome conversion, comparative genomic 

hybridization (CGH), fluorescent PCR, and whole genome amplification. The reliability 

of the data generated by all of these techniques rely on the quality of the DNA 

preparation. PGD is also costly, consequently there is a need for less expensive 

approaches, such as mini-sequencing. Unlike most mutation-detection techniques, mini

sequencing permits analysis of very small DNA fragments with low ADO rate. Better 

methods for the preparation of single-cell DNA for amplification and PGD are therefore 

needed and are under study. The more novel microairays and comparative genomic 

hybridization techniques, still ultimately rely on the quality of the DNA under analysis.

Several techniques are in development to measure multiple SNPs on the DNA of a 

small number of cells, a single cell (for example, a blastomere), a small number of 

chromosomes, or from fragments of DNA. There are techniques that use Polymerase 

Chain Reaction (PCR), followed by microarray genotyping analysis. Some PCR-based 

techniques include whole genome amplification (WGA) techniques such as multiple 

displacement amplification (MDA), and Molecular Inversion Probes (MIPS) that perform 

genotyping using multiple tagged oligonucleotides that may then be amplified using PCR 

with a singe pair of primers. An example of a non-PCR based technique is fluorescence 

in situ hybridization (FISH). It is apparent that the techniques will be severely error- 

prone due to the limited amount of genetic material which will exacerbate the impact of 

effects such as allele drop-outs, imperfect hybridization, and contamination.

Many techniques exist which provide genotyping data. Taqman is a unique 

genotyping technology produced and distributed by Applied Biosystems. Taqman uses 

polymerase chain reaction (PCR) to amplify sequences of interest. During PCR cycling, 

an allele specific minor groove binder (MGB) probe hybridizes to amplified sequences. 

Strand synthesis by the polymerase enzymes releases reporter dyes linked to the MGB 

probes, and then the Taqman optical readers detect the dyes. In this maimer, Taqman 

achieves quantitative allelic discrimination. Compared with array based genotyping 

technologies, Taqman is quite expensive per reaction (~$0.40/reaction), and throughput is 

relatively low (384 genotypes per run). While only Ing of DNA per reaction is
6
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necessary, thousands of genotypes by Taqman requires microgram quantities of DNA, so 

Taqman does not necessarily use less DNA than microarrays. However, with respect to 

the Γ/F genotyping workflow, Taqman is the most readily applicable technology. This is 

due to the high reliability of the assays and, most importantly, the speed and ease of the 

assay (~3 hours per run and minimal molecular biological steps). Also unlike many array 

technologies (such as 500k Affymetrix arrays), Taqman is highly customizable, which is 

important for the IVF market. Further, Taqman is highly quantitative, so anueploidies 

could be detected with this technology alone.

Illumina has recently emerged as a leader in high-throughput genotyping. Unlike 

Affymetrix, Illumina genotyping arrays do not rely exclusively on hybridization. Instead, 

Illumina technology uses an allele-specific DNA extension step, which is much more 

sensitive and specific than hybridization alone, for the original sequence detection. 

Then, all of these alleles are amplified in multiplex by PCR, and then these products 

hybridized to bead arrays. The beads on these arrays contain unique "address" tags, not 

native sequence, so this hybridization is highly specific and sensitive. Alleles are then 

called by quantitative scanning of the bead arrays. The Illlumina Golden Gate assay 

system genotypes up to 1536 loci concurrently, so the throughput is better than Taqman 

but not as high as Affymetrix 500k arrays. The cost of Illumina genotypes is lower than 

Taqman, but higher than Affymetrix arrays. Also, the Illumina platform takes as long to 

complete as the 500k Affymetrix arrays (up to 72 hours), which is problematic for IVF 

genotyping. However, Illumina has a much better call rate, and the assay is quantitative, 

so anueploidies are detectable with this technology. Illumina technology is much more 

flexible in choice of SNPs than 500k Affymetrix arrays.

One of the highest throughput techniques, which allows for the measurement of 

up to 250,000 SNPs at a time, is the Affymetrix GeneChip 500K genotyping array. This 

technique also uses PCR, followed by analysis by hybridization and detection of the 

amplified DNA sequences to DNA probes, chemically synthesized at different locations 

on a quartz surface. A disadvantage of these arrays are the low flexibility and the lower 

sensitivity. There are modified approaches that can increase selectivity, such as the 

“perfect match” and “mismatch probe” approaches, but these do so at the cost of the 

number of SNPs calls per array.

Pyrosequencing, or sequencing by synthesis, can also be used for genotyping and

SNP analysis. The main advantages to pyrosequencing include an extremely fast
7
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turnaround and unambiguous SNP calls, however, the assay is not currently conducive to 

high-throughput parallel analysis. PCR followed by gel electrophoresis is an exceedingly 

simple technique that has met the most success in preimplantation diagnosis. In this 

technique, researchers use nested PCR to amplify short sequences of interest. Then, they 

run these DNA samples on a special gel to visualize the PCR products. Different bases 

have different molecular weights, so one can determine base content based on how fast 

the product runs in the gel. This technique is low-throughput and requires subjective 

analyses by scientists using current technologies, but has the advantage of speed (1-2 

hours of PCR, 1 hour of gel electrophoresis). For this reason, it has been used previously 

for prenatal genotyping for a myriad of diseases, including: thalassaemia, 

neurofibromatosis type 2, leukocyte adhesion deficiency type I, Hallopeau-Siemens 

disease, sickle-cell anemia, retinoblastoma, Pelizaeus-Merzbacher disease, Duchenne 

muscular dystrophy, and Currarino syndrome.

Another promising technique that has been developed for genotyping small 

quantities of genetic material with very high fidelity is Molecular Inversion Probes 

(MB’s), such as Asymetrix’s Genflex Arrays. This technique has the capability to 

measure multiple SNPs in parallel: more than 10,000 SNPS measured in parallel have 

been verified. For small quantities of genetic material, call rates for this technique have 

been established at roughly 95%, and accuracy of the calls made has been established to 

be above 99%. So far, the technique has been implemented for quantities of genomic data 

as small as 150 molecules for a given SNP. However, the technique has not been verified 

for genomic data from a single cell, or a single strand of DNA, as would be required for 

pre-implantation genetic diagnosis.

The MIP technique makes use of padlock probes which are linear oligonucleotides 

whose two ends can be joined by ligation when they hybridize to immediately adjacent 

target sequences of DNA. After the probes have hybridized to the genomic DNA, a gap

fill enzyme is added to the assay which can add one of the four nucleotides to the gap. If 

the added nucleotide (AC,T,G) is complementaiy to the SNP under measurement, then it 

will hybridize to the DNA and join the ends of the padlock probe by ligation. The 

circular products, or closed padlock probes, are then differentiated from linear probes by 

exonucleolysis. The exonuclease, by breaking down the linear probes and leaving the 

circular probes, will change the relative concentrations of the closed vs. the unclosed 

probes by a factor of 1000 or more. The probes that remain are then opened at a cleavage
8
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site by another enzyme, removed from the DNA, and amplified by PCR. Each probe is

tagged with a different tag sequence consisting of 20 base tags (16,000 have been

generated), and can be detected, for example, by the Affymetrix GenFlex Tag Array. The

presence of the tagged probe from a reaction in which a particular gap-fill enzyme was

5 added indicates the presence of the complimentary amino acid on the relevant SNP.

The molecular biological advantages of MIPS include: (1) multiplexed genotyping 

in a single reaction, (2) the genotype "call" occurs by gap fill and ligation, not 

hybridization, and (3) hybridization to an array of universal tags decreases false positives 

inherent to most array hybridizations. In traditional 500K, TaqMan and other genotyping 

10 arrays, the entire genomic sample is hybridized to the array, which contains a variety of 

perfect match and mismatch probes, and an algorithm calls likely genotypes based on the 

intensities of the mismatch and perfect match probes. Hybridization, however, is 

inherently noisy, because of the complexities of the DNA sample and the huge number of 

probes on the arrays. MIPs, on the other hand, uses inutliplex probes (i.e., not on an 

15 array) that are longer and therefore more specific, and then uses a robust ligation step to 

circularize the probe. Background is exceedingly low in this assay (due to specificity), 

though allele dropout may be high (due to poor performing probes).

When this technique is used on genomic data from a single cell (or small numbers 

of cells) it will - like PCR based approaches — suffer from integrity issues. For example, 

20 the inability of the padlock probe to hybridize to the genomic DNA will cause allele 

dropouts. This will be exacerbated in the context of in-vitro fertilization since the 

efficiency of the hybridization reaction is low, and it needs to proceed relatively quickly 

in order to genotype the embryo in a limited time period. Note that the hybridization 

reaction can be reduced well below vendor-recommended levels, and micro-fluidic 

25 techniques may also be used to accelerate the hybridization reaction. These approaches to 

reducing the time for the hybridization reaction will result in reduced data quality.

Predictive Genomics
Once the genetic data has been measured, the next step is to use the data for 

30 predictive purposes. Much research has been done in predictive genomics, which tries to 

understand the precise functions of proteins, RNA and DNA so that phenotypic 

predictions can be made based on genotype. Canonical techniques focus on the function 

of Single-Nucleotide Polymorphisms (SNP); but more advanced methods are being
9
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brought to bear on multi-factorial phenotypic features. These methods include techniques, 

such as linear regression and nonlinear neural networks, which attempt to determine a 

mathematical relationship between a set of genetic and phenotypic predictors and a set of 

measured outcomes. There is also a set of regression analysis techniques, such as Ridge 

5 regression, log regression and stepwise selection, that are designed to accommodate 

sparse data sets where there are many potential predictors relative to the number of 

outcomes, as is typical of genetic data, and which apply additional constraints on the 

regression parameters so that a meaningful set of parameters can be resolved even when 

the data is underdetermined. Other techniques apply principal component analysis to 

10 extract information from undetermined data sets. Other techniques, such as decision trees 

and contingency tables, use strategies for subdividing subjects based on their independent 

variables in order to place subjects in categories or bins for which the phenotypic 

outcomes are similar. A recent technique, termed logical regression, describes a method 

to search for different logical interrelationships between categorical independent variables 

15 in order to model a variable that depends on interactions between multiple independent 

variables related to genetic data. Regardless of the method used, the quality of the 

prediction is naturally highly dependant on the quality of the genetic data used to make 

the prediction.

The cost of DNA sequencing is dropping rapidly, and in the near future 

20 individual genomic sequencing for personal benefit will become more common.

Knowledge of personal genetic data will allow for extensive phenotypic predictions to be 

made for the individual. In order to make accurate phenotypic predictions high quality 

genetic data is critical, whatever the context. In the case of prenatal or pre-implantation 

genetic diagnoses a complicating factor is the relative paucity of genetic material 

25 available. Given the inherently noisy nature of the measured genetic data in cases where 

limited genetic material is used for genotyping, there is a great need for a method which 

can increase the fidelity of, or clean, the primary data.

The current methods by which clinical decisions are made do not make the best 

possible use of existing information. As medical, biochemical and information 

30 technology advance, increasing amounts of data are generated and stored both for 

individual patients, and also in the context of academic and clinical studies. With the 

recent upsurge in the amounts of genetic, phenotypic and clinical information available 

for analysis, much effort has gone into finding clinically relevant correlations to help
10
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people lead longer, healthier and more enjoyable lives. Whereas previously clinicians 

and researchers would concentrate their analysis on a handful of obvious potential factors 

and use a local store of data, it is becoming clear the potential benefit of being able to 

leverage data measured by scores of other agents, and using more complex models that 

5 can identify previously unsuspected factors which correlate with a given genotype or 

phenotype. This situation will become considerably more complicated once personal 

genetic data occupies a more central role in understanding the causes and treatments of 

diseases and other predispositions of subjects. Within the next decade it may be possible 

to scan the entire genome of a patient as well as to collect a myriad of phenotypic data 

10 points, either for clinical trials, or for the purpose of personalized treatments and or drug 

assignment.

As the amount of data available has become enormous, and is still increasing 

rapidly, the crux of the problem has become designing and implementing good methods 

that allow the most appropriate correlations to be uncovered and used to benefit people.

15 As the number of variables available to analyze has increased, it has become more 

important to develop methods that are able to digest the astronomical number of potential 

correlations, and do not a-priori rule any of them out At the same time it is important to 

develop methods that can integrate and utilize the findings of multiple' studies, even when 

those studies were not conducted with identical protocols. It is also becoming 

20 increasingly important given the large number of prediction models which have been 

studied, to develop systems that can correctly identify the optimal method to use in a 

given analysis.

Bioinformatics in the Context of HIV
25 HIV is considered pandemic in humans with more than 30 million people

currently living with HTV, and more than 2 million deaths each year attributable to HIV. 

One of the major characteristics of HIV is its high genetic variability as a result of its fast 

replication cycle and the high error rate and recombinogenic properties of reverse 

transcriptase. As a result, various strains of the HIV virus show differing levels of 

30 resistance to different drugs, and an optimal treatment regimen may take into account the 

identify of the infective strain and its particular susceptibilities.

As of today, approved ART drugs consist of a list of eleven RTIs: seven 

nucleoside, one nucleotide and three non-nucleoside; seven Pls; and one fusion/entry
11
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inhibitor. Given the current rollout of ART drugs around the world the appearance of 

resistance strains of the virus is inevitable, both due to the low genetic barrier to 

resistance and to poor drug adherence. Consequently, techniques to predict how mutated 

viruses will respond to anti-retroviral therapy are increasingly important as they will 

5 influence the outcome for salvage therapies. The rapidly decreasing cost of viral genetic 

sequencing - with volume pricing as low as $5 for pre-prepared sequences - makes the 

selection of drugs based on viral genetic sequence data an attractive option, rather than 

the more costly and involved in-vitro phenotype measurement. The use of sequence data, 

however, necessitates accurate predictions of viral drug response, based on the 

10 appearance of viral genetic mutations. The many different combinations of viral 

mutations make it difficult to design a model that includes all the genetic cofactors and 

their interactions, and to train the model with limited data. The latter problem is 

exacerbated in the context of modeling in-vivo drug response, where the many different 

combinations of drug regimens make it difficult to collect sufficiently large data sets for 

15 any particular regimen that contain the variables, namely baseline clinical status, 

treatment history, clinical outcome and genetic sequence.

Resistance to antiviral drugs can be the result of one mutation within the RT or 

protease sequences, or the combination of multiple mutations. The RT enzyme is coded 

by a key set of 560 codons; the protease enzyme by 99 codons. By considering only 

20 mutations that alter the amino acids, each amino acid locus has 19 possible mutations; so 

there are a total of 10,640 possible mutations that differ from wild type on the RT 

enzyme, and 1,981 possible mutations on the protease enzyme. Using a simple linear 

model, where each mutation encountered in the data (not all mutations will occur) is 

associated with a particular weighting, or linear regression parameter, several thousand 

25 parameters may exist. If only several hundred patient samples are available for each drug, 

the problem is overcomplete, or ill-posed in the Hadamard sense, since there are more 

parameters to estimate than independent equations. Many techniques exist that can be 

applied to the problem of constructing models for the ill-posed problem. These include 

combining a-priori expert knowledge with observations to create expert-rule based 

30 systems, as well as statistical methods including i) ridge regression, ii) principal 

component analysis, iii) decision trees, iv) stepwise selection techniques, v) Neural 

Networks, vi) the Least Absolute Shrinkage and Selection Operator (LASSO), and vii) 

Support Vector Machines (SVM).
12
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Three main industry-standard expert systems are typically used to predict the 

susceptibility of HTV viruses to ART drugs: the ANRS-AC11 System, the Rega System, 

and the Stanford HlVdb system. It is commonplace in the literature for new algorithms to 

be benchmarked against these expert systems. None of these expert systems, however, is 

designed to perform direct prediction of phenotypic response, but rather to provide a 

numeric score by which different drugs can be compared, or to classify the drugs into 

discrete groupings such as Sensitive, Intermediate and Resistant. In addition, it has been 

clearly established that statistical algorithms, such as linear regression models trained 

with stepwise selection, substantially outperform expert systems in prediction of 

phenotypic outcome. Consequently, only a set of statistical techniques are compared with 

the novel methods in the detailed description, which includes the best performing 

methods recently disclosed in the literature.

Current approaches to predicting clinical outcomes of salvage ART do not 

demonstrate good predictive power, largely due to a lack of statistically significant 

outcome data, combined with the many different permutations of drug regimens and 

genetic mutations. This field has a pressing need both for the integration of multiple 

heterogeneous data sets and the enhancement of drug response prediction.

Bioinformatics in the Context of Cancer
Of the estimated 80,000 annual clinical trials, 2,100 are for cancer drugs. 

Balancing the risks and benefits for cancer therapy represents a clinical vanguard for the 

combined use of phenotypic and genotypic information. Although there have been great 

advances in chemotherapy in the past few decades, oncologists still treat their cancer 

patients with primitive systemic drugs that are frequently as toxic to normal cells as to 

cancer cells. Thus, there is a fine line between the maximum toxic dose of chemo and the 

therapeutic dose. Moreover, dose-limiting toxicity may be more severe in some patients 

than others, shifting the therapeutic window higher or lower. For example, anthracyclines 

used for breast cancer treatment can cause adverse cardiovascular events. Currently, all 

patients are treated as though at risk for cardiovascular toxicity, though if a patient could 

be determined to be at low-risk for heart disease, the therapeutic window could be shifted 

to allow for a greater dose of anthracycline therapy.

To balance the benefits and risks of chemotherapy for each patient, one may 

predict the side effect profile and therapeutic effectiveness of pharmaceutical 
13



20
13

20
25

55
 

04
 A

pr
 2

01
3

5

10

15

20

25

30

interventions. Cancer therapy often fails due to inadequate adjustment for unique host and 

tumor genotypes. Rarely does a single polymorphism cause significant variation in drug 

response; rather, manifold polymorphisms result in unique biomolecular compositions, 

making clinical outcome prediction difficult. “Pharmacogenetics” is broadly defined as 

the way in which genetic variations affect patient response to drugs. For example, natural 

variations in liver enzymes affect drug metabolism. The future of cancer chemotherapy is 

targeted pharmaceuticals, which require understanding cancer as a disease process 

encompassing multiple genetic, molecular, cellular, and biochemical abnormalities. With 

the advent of enzyme-specific drugs, care may be taken to insure that tumors express the 

molecular target specifically or at higher levels than normal tissues. Interactions between 

tumor cells and healthy cells may be considered, as a patient’s normal cells and enzymes 

may limit exposure of the tumor drugs or make adverse events more likely.

Bioinformatics will revolutionize cancer treatmenf allowing for tailored treatment 

to maximize benefits and minimize adverse events. Functional markers used to predict 

response may be analyzed by computer algorithms. Breast, colon, lung and prostate 

cancer are the four most common cancers. An example of two treatments for these 

cancers are tamoxifen, which is used to treat breast cancer, and irinotecan which is used 

in colon cancer patients. Neither tamoxifen or irinotecan are necessary or sufficient for 

treating breast or colon cancer, respectively. Cancer and cancer treatment are dynamic 

processes that require therapy revision, and frequently combination therapy, according to 

a patient’s side effect profile and tumor response. If one imagines cancer treatment as a 

decision tree, to give or withhold any one treatment before, after, or with other therapies, 

then this tree comprises a subset of decision nodes, where much of the tree (i.e. other 

treatments) can be considered a black box. Nonetheless, having data to partially guide a 

physician to the most effective treatment is advantageous, and as more data is gathered, 

an effective method for making treatment decisions based on this data could significantly 

improve life expectancies and quality of living in thousands of cancer patients.

The colon, or large intestine, is the terminal 6-foot section of the gastrointestinal 

(GI) tract. The American Cancer Society estimates that 145,000 cases of colorectal cancer 

will be diagnosed in 2005, and 56,000 will die as a result. Colorectal cancers are assessed 

for grade, or cellular abnormalities, and stage, which is subcategorized into tumor size, 

lymph node involvement, and presence or absence of distant metastases. 95% of 

colorectal cancers are adenocarcinomas that develop from genetically-mutant epithelial
14
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cells lining the lumen of the colon. In 80-90% of cases, surgery alone is the standard of 

care, but the presence of metastases calls for chemotherapy. One of many first-line 

treatments for metastatic colorectal cancer is a regimen of 5-fluorouracil, leucovorin, and 

irinotecan.

Irinotecan is a camptothecin analogue that inhibits topoisomerase, which 

untangles super-coiled DNA to allow DNA replication to proceed in mitotic cells, and 

sensitizes cells to apoptosis. Irinotecan does not have a defined role in a biological 

pathway, so clinical outcomes are difficult to predict. Dose-limiting toxicity includes 

severe (Grade ΠΊ-IV) diarrhea and myelosuppression, both of which require immediate 

medical attention. Irinotecan is metabolized by uridine diphosphate glucuronosyl- 

transferase isoform lai (UGT1A1) to an active metabolite, SN-38. Polymorphisms in 

UGT1 Al are correlated with severity of GI and bone marrow side effects.

Prior Art
Listed here is a set of prior art which is related to the field of the current invention. 

None of this prior art contains or in any way refers to the novel elements of the current 

invention. In US Patent 6,720,140, Hartley et al describe a recombinational cloning 

method for moving or exchanging segments of DNA molecules using engineered 

recombination sites and recombination proteins. In US Patent 6,489,135 Parrott et al. 

provide methods for determining various biological characteristics of in vitro fertilized 

embryos, including overall embryo health, implantability, and increased likelihood of 

developing successfully to term by analyzing media specimens of in vitro fertilization 

cultures for levels of bioactive lipids in order to determine these characteristics. In US 

Patent Application 20040033596 Threadgill et al. describe a method for preparing 

homozygous cellular libraries useful for in vitro phenotyping and gene mapping involving 

site-specific mitotic recombination in a plurality of isolated parent cells. In US Patent 

5,994,148 Stewart et al. describe a method of determining the probability of an in vitro 

fertilization (IVF) being successful by measuring Relaxin directly in the serum or 

indirectly by culturing granulosa lutein cells extracted from the patient as part of an 

IVFZET procedure. In US Patent application 5,635,366 Cooke et al. provide a method for 

predicting the outcome of IVF by determining the level of 11 □-hydroxysteroid 

dehydrogenase in a biological sample from a female patient. In U.S. Patent No. 

7,058,616 Larder et al. describe a method for using a neural network to predict the
15
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resistance of a disease to a therapeutic agent. In U.S. Patent No. 6,958,211 Vingerhoets 

et al. describe a method wherein the integrase genotype of a given HIV strain is simply 

compared to a known database of HTV integrase genotype with associated phenotypes to 

find a matching genotype. In U.S. Patent 7,058,517 Denton et al. describe a method 

5 wherein an individual’s haplotypes are compared to a known database of haplotypes in 

the general population to predict clinical response to a treatment. In U.S. Patent 7,035,739 

Schadt at al. describe a method is described wherein a genetic marker map is constructed 

and the individual genes and traits are analyzed to give a gene-trait locus data, which are 

then clustered as a way to identify genetically interacting pathways, which are validated 

10 using multivariate analysis. In U.S. Patent No. 6,025,128 Veltri et al. describe a method 

involving the use of a neural network utilizing a collection of biomarkers as parameters to 

evaluate risk of prostate cancer recurrence. In U.S. Patent No. 5,824,467 Mascarenhas 

describes a method to predict drug responsiveness by establishing a biochemical profile 

for patients and measuring responsiveness in members of the test cohort, and then 

15 individually testing the parameters of the patients’ biochemical profile to find correlations 

with the measures of drug responsiveness.

SUMMARY OF THE INVENTION

20 The system disclosed enables the cleaning of incomplete or noisy genetic data
l

using secondary genetic data as a source of information, and also using that genetic data 

to make phenotypic and clinical predictions. While the disclosure focuses on genetic data 

from human subjects, it should be noted that the methods disclosed apply to the genetic 

data of a range of organisms, in a range of contexts. The techniques described for 

25 cleaning genetic data are most relevant in the context of pre-implantation diagnosis 

during in-vitro fertilization, prenatal diagnosis in conjunction with amniocentesis, chorion 

villus biopsy, and fetal blood sampling, and non-invasive prenatal diagnosis, where a 

small quantity of fetal genetic material is isolated from maternal blood. The diagnoses 

may focus on inheritable diseases, increased likelihoods of defects or abnormalities, as 

30 well as making phenotype predictions for individuals to enhance clinical and lifestyle 

decisions. The invention addresses the shortcomings of prior art that are discussed above. 

The techniques described here for making phenotypic and clinical predictions are relevant 

in multiple contexts, including in the context of pre-implantation diagnosis, prenatal 
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diagnosis, and also in the context of individuals with medical conditions, or 

susceptibilities. Certain embodiments of the technology disclosed herein describe a 

system for making accurate predictions of phenotypic outcomes or phenotype 

susceptibilities for an individual given a set of genetic, phenotypic and or clinical 

5 information for the individual. In one aspect, a technique for building linear and nonlinear 

regression models that can predict phenotype accurately when there are many potential 

predictors compared to the number of measured outcomes, as is typical of genetic data, is 

disclosed; in another aspect of the invention the models are based on contingency tables 

and built from information available in the public domain. In yet another invention, a 

10 system is described wherein a number of models are trained on a relevant dataset, and that 

model which is most accurate in making the relevant prediction is used.

In one aspect of the invention, methods make use of imperfect knowledge of the 

genetic data of the mother and the father, together with the knowledge of the mechanism 

of meiosis and the imperfect measurement of the embryonic DNA, in order to reconstruct, 

15 in silico, the embryonic DNA at the location of key SNPs with a high degree of 

confidence. It is important to note that the parental data allows the reconstruction not 

only of SNPs that were measured poorly, but also of insertions, deletions, and of SNPs or 

whole regions of DNA that were not measured at all.

The disclosed method is applicable in die context of in-vitro fertilization, where a 

20 very small number of blastomeres are available for genotyping from each embryo being 

considered for implantation. The disclosed method is equally applicable to the context of 

Non-Invasive Prenatal Diagnosis (NIPD) where only a small number of fetal cells, or 

fragments of fetal DNA, have been isolated from the mother’s blood. The disclosed 

method is equally applicable in the case of amniocentesis, and other methods where fetal 

25 blood is sampled directly. The disclosed method is more generally applicable in any case 

where a limited amount of genetic data is available from the target individual, and 

additional genetic data is available from individuals who are genetically related to the 

target.

In one aspect of the invention, the fetal or embryonic genomic data which has 

30 been reconstructed can be used to detect if the cell is aneuploid, that is, if fewer or more 

than two of a particular chromosome is present in a cell. A common example of this 

condition is trisomy-21, which gives rise to Down syndrome. The reconstructed data can 

also be used to detect for uniparental disomy, a condition in which two of a given 
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chromosome are present, and both of which originate from one parent. This is done by 

creating a set of hypotheses about the potential states of the DNA, and testing to see 

which one has the highest probability of being true given the measured data. Note that 

the use of high throughput genotyping data for screening aneuploidy enables a single 

blastomere from each embryo to be used both to measure multiple disease-linked loci as 

well as screen for chromosomal abnormalities.

In another aspect of the invention, the direct measurements of the amount of 

genetic material, amplified or unamplified, present at a plurality of loci, can be used to 

detect for aneuploides, or uniparental disomy. The idea behind this method is simply that 

the amount of genetic material present during amplification is proportional to the amount 

of genetic information in the initial sample, and measuring these levels at multiple loci 

will give a statistically significant result. This method of screening for chromosomal 

abnormalities can be used in conjunction with the related method described herein for 

cleaning genetic data.

In another aspect of the invention, the disclosed method can clean genetic material 

of the individual which has been contaminated by foreign DNA or RNA by identifying 

the data generated by extraneous genetic materials. The spurious signals generated by the 

contaminating DNA can be recognized in a manner similar to that way that chromosome

wide anomalous signals generated by aneuploides can be detected.

In another aspect of the invention, target cells are isolated, the genetic data 

contained in those cells are amplified, and measurements of multiple SNPs are made 

using a combination of one or more of the following techniques: PCR-based amplification 

techniques, PCR-based measurement techniques, or detection techniques based on 

Molecular Inversion Probes, or microarrays such as the GeneChip or TaqMan systems. 

This genetic data is then used in the system described herein.

In another aspect of the invention, the genetic data of an individual can be cleaned 

using diploid and haploid data from both parents. Alternately, haploid data from a parent 

can be simulated if diploid and haploid data of the parent’s parent can be measured. In 

another aspect, genetic data from any person of a known genetic relation to the individual 

can be used to clean the data of the individual, including parents, siblings, grandparents, 

offspring, cousins, uncles, aunts etc.

In another aspect of the invention, the target and/or related individual’s genetic 

data may be partly or wholly known in silico, obviating the need for some direct 
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measurements. Portions of the genetic data can be generated in silico by means of an 

informatics approach utilizing a hidden Markov model.

In one aspect of the invention it is possible to estimate the confidence one has in 

the determination of those SNPs.

Note that the techniques described herein are relevant both to measurements of 

genetic material in one, or a small number of cells, as well as to measurements on smaller 

amounts of DNA such as that which can be isolated from the mother’s blood in the 

context of Non-invasive Prenatal Diagnosis (NIPD). Also note that this method can be 

equally applied to genomic data in silico, i.e. not directly measured from genetic material.

In one aspect of the invention, a technique for creating models based on 

contingency tables that can be constructed from data that is available through publications 

such as through the OMIM (Online Mendelian Inheritance in Man) database and using 

data that is available through the HapMap project and other aspects of the human genome 

project is provided. Certain embodiments of this technique use emerging public data 

about the association between genes and about association between genes and diseases in 

order to improve the predictive accuracy of models.

In yet another aspect, a technique by which the best model can be found for the 

data that is available for a particular patient is disclosed. In this aspect, many different 

combinations of variables may be examined, together with many different modeling 

techniques, and that combination may be chosen which will produce the best prediction 

for an individual subject based on cross-validation with testing data from other subjects.

In some cases the models that may produce the best at making accurate 

predictions of phenotypic outcomes or phenotype susceptibilities for an individual are 

trained using convex optimization techniques to perform continuous subset selection of 

predictors so that one is guaranteed to find the globally optimal parameters for a 

particular set of data. This feature is particularly advantageous when the model may be 

complex and may contain many potential predictors such as genetic mutations or gene 

expression levels. Furthermore, in some examples convex optimization techniques may 

be used to make the models sparse so that they explain the data in a simple way. This 

feature enables the trained models to generalize accurately even when the number of 

potential predictors in the model is large compared to the number of measured outcomes 

in the training data. Similar techniques have been published in an academic journal 

(Rabinowitz, M., et al., 2006, "Accurate prediction of HIV-1 drug response from the
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reverse transcriptase and protease amino acid sequences using sparse models created by 

convex optimization." Bioinformatics 22(5): 541-9.). Note that the information from this 

paper has been included in this document for background and context.

While certain illustrative embodiments disclosed herein focus on genetic data

5 from human subjects, and provide specific embodiments for people suffering from cancer 

or HIV, or for people who seek to understand their susceptibility to diseases such as 

Alzheimer’s or Myocardial Infarction, it should be noted that the methods disclosed apply 

to the genetic data of a range of organisms, in a range of numerous, different contexts. 

The techniques described herein for phenotypic prediction and drug response prediction 

10 may be relevant in the context of the treatment of a variety of cancers, genetic illnesses, 

bacterial, fungal or viral infections, as well as in making phenotypic predictions for 

individuals to enhance clinical and lifestyle decisions. Furthermore, the system can be 

used to determine the likelihood of particular phenotypic outcomes given genetic data, 

specifically SNP (single nucleotide polymorphism) data of an embryo (pre-implantation) 

15 in the context of IVF, or of a fetus in the context of non-invasive or invasive prenatal 

diagnosis including amniocentesis.

In one embodiment, the predictive models may be applied to genetic data for a 

particular individual that has been stored in a standardized computable format. The 

individual may describe particular issues that are relevant to them, or the system may 

20 automatically determine which phenotypic susceptibilities are relevant to that individual.

As new research data becomes available on disease-gene associations, treatments, or 

lifestyle habits, the individual can be notified of the impact of this information on their 

decisions and habits, based on predictive models developed from the aggregated genomic 

and clinical data. Alternately, the system can use new research data to detect hitherto 

25 unsuspected risks to the individual and that individual can be notified of the impact of this 

information.

In another embodiment, enhanced reports can be generated for clinicians using 

outcome prediction models trained on data integrated from databases of genetic data, 

phenotypic data, and clinical records including relevant diagnostic tests. This system may 

30 provide for the creation of enhanced reports for individuals with diseases and/or disease 

predispositions, including but not limited to HIV, cancer, Alzheimers and heart diseases. 

These enhanced reports will indicate to a treating physician which disease-management 

or preventative treatments may be more or less suitable for a given individual, The report 
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will include predictions and confidence bounds for key outcomes for that individual using 

models trained on aggregated subject data.

According to another embodiment, a system and method where data about a specific 

individual is used to make predictions about said individual using models based on 

5 contingency tables and built from information available in the public domain, where said 

data is taken from a group consisting of said individual’s genetic data, said individual’s 

phenotypic data, said individual’s clinical data, and combinations thereof, and where said 

predictions concern topics taken from a group comprising said individual’s phenotypes, 

phenotype susceptibilities, and possible clinical outcomes, and where said information is 

10 taken from a group comprising information about genotype-phenotype associations, 

information about the frequency of certain genetic alleles, information about the 

frequency of certain associations among genetic alleles, information about the probability 

of one or more states of certain phenotypes given certain combinations of genetic alleles, 

information about the probability of a certain' combinations of genetic alleles given the 

15 state of a certain phenotypes, and combinations thereof is disclosed.

According to yet another embodiments, a system and method whereby data about a 

specific individual can be used to make predictions about said individual using a variety 

of mathematical models trained on aggregated data in a way that the model which shows 

the best accuracy can be utilized, where said individual’s data is taken from a group 

20 consisting of said individual’s genetic data, said individual’s phenotypic data, and said 

individual’s clinical data, and where said predictions concern topics taken from a group 

comprising said individual’s phenotypes, phenotype susceptibilities, possible clinical 

outcomes, and combinations thereof is provided. In certain embodiments, the method 

may examine many or all of the different independent variable and dependant variable 

25 combinations in a given set of data, using multiple models and multiple tuning 

parameters, and then selects that combination of independent variables and dependant 

variables, that model and those tuning parameters that achieved the highest correlation 

coefficient with the test data for the purpose of making the best phenotypic predictions.

According to another embodiment, any of the methods disclosed herein may use

30 predictions to generate reports for a specific individual concerning one or more topics that

are relevant to said individual, where said topics are taken from a group comprising

lifestyle decisions, dietary habits, hormonal supplements, possible treatment regimens for

a disease, possible treatment regimens for a pathogen, drug interventions, and
21
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combinations thereof, and where said prediction is based on data concerning said 

individual’s genetic makeup, said individual’s phenotypic characteristics, said 

individual’s clinical history, and combinations thereof.

According to other embodiments, any of the methods disclosed herein may use

5 predictions to generate reports for an agent of a specific individual, such as a physician or 

clinician, and where said predictions could aid said agent by providing information 

relevant to said individual, and where the subject of said information is taken from a 

group of topics comprising lifestyle decisions, dietary habits, hormonal supplements, 

possible treatment regimens for a disease, possible treatment regimens for a pathogen, 

10 drug interventions, other therapeutic interventions, and combinations thereof, and where 

said prediction is based on data concerning said individual’s genetic makeup, said 

individual’s phenotypic characteristics, said individual’s clinical history, and 

combinations thereof.

According to another embodiment, any of the methods disclosed herein may use 

15 predictions to benefit a specific individual afflicted with cancer, and where said 

predictions could aid clinicians by providing information relevant to that individual and 

or to the specific cancer of said individual, and where the subject of said information is 

taken from a group of topics comprising treatment regimens, lifestyle decisions, and 

dietary habits, drug interventions, other therapeutic interventions, and combinations 

20 thereof, and where said prediction is based on data concerning said individual’s genetic 

makeup, said individual’s phenotypic characteristics, said individual’s clinical history, 

and combinations thereof.

According to one embodiment, any of the methods disclosed herein may be used to 

benefit a specific individual afflicted with a pathogen, and where said predictions could 

25 aid clinicians by providing information relevant to that individual and or to the specific 

pathogen infecting said individual, where said pathogen is of a class taken from a group 

consisting of bacteria, virus, microbe, amoeba, fungus and other parasites, and where the 

subject of said information is taken from a group of topics comprising treatment 

regimens, lifestyle decisions, and dietary habits drug interventions, other therapeutic 

30 interventions, and combinations thereof, and where said prediction is based on data 

concerning said individual’s genetic makeup, said individual’s phenotypic characteristics, 

said individual’s clinical history, and combinations thereof.
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According to another embodiment, any of the methods disclosed herein may use 

predictions regarding a specific individual, new knowledge and data as that knowledge 

and data becomes available, and which could be used to generate informational reports, 

automatically or on-demand, regarding topics that are relevant to said individual, where 

5 the topics are taken from a group comprising lifestyle decisions, dietary habits, hormonal 

supplements, possible treatment regimens for a disease, possible treatment regimens for a 

pathogen, drug interventions, other therapeutic interventions, and combinations thereof, 

and where the new knowledge and data are medical in nature, and where the prediction is 

based on data concerning said individual’s genetic makeup, said individual’s phenotypic 

10 characteristics, said individual’s clinical history, and combinations thereof.

According to another embodiment, any of the methods disclosed herein may use 

predictions using genetic data from a specific embryo and said predictions can be used to 

aid in selection of embryos in the context of IVF based on predicted susceptibility to 

certain phenotypes of said embryo.

15 According to one embodiment, any of the methods disclosed herein may use

predictions using genetic data from a specific fetus, and said predictions can be used to 

estimate particular phonotypic outcomes for the potential progeny, such as life 

expectancy, the probability of psoriasis, or the probability of a particular level of 

mathematical ability.

20 Definitions of the specific embodiments of the invention as claimed herein follow.

According to a first embodiment of the invention, there is provided a method for 

detecting the presence or absence of a chromosomal abnormality in a target individual, 

the method comprising:

(a) measuring the amount of genetic material at multiple loci on a

25 chromosome or chromosome segment of interest in a sample comprising DNA from the 

target individual;

(b) comparing the amount from step (a) to either (i) a threshold value or (ii) 

an expected amount for a particular copy number hypothesis; and

(c) identifying the presence or absence of a chromosomal abnormality 

30 based on the comparison.
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According to a second embodiment of the invention, there is provided a method 

for determining the number of copies of a chromosome or chromosome segment of 

interest in the genome of a target individual, the method comprising:

(a) measuring the amount of genetic material at multiple loci on a

5 chromosome or chromosome segment of interest in a sample comprising DNA from the 

target individual;

(b) creating a set of one or more hypotheses about the number of copies of 

the chromosome or chromosome segment of interest in the genome of the target 

individual;

10 (c) determining on a computer the probability of each of the hypotheses

being true or false given the measurements from step (a); and

(d) determining the number of copies of the chromosome or chromosome 

segment of interest in the genome of the target individual using the probabilities 

associated with each hypothesis.

15 It will be recognized by the person of ordinary skill in the art, given the benefit of

this disclosure, that other aspects, features and embodiments may implement one or more 

of the methods and systems disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

20 Figure 1: an illustration of the concept of recombination in meiosis for gamete formation. 

Figure 2: an illustration of the variable rates of recombination along one region of 

Human Chromosome 1.

Figure 3: determining probability of false negatives and false positives for different 

hypotheses.

25 Figure 4: the results from a mixed female sample, all loci hetero. 

Figure 5: the results from a mixed male sample, all loci hetero.

[Text continues on page 24.]
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Figure 6: Ct measurements for male sample differenced from Ct measurements for female

sample.

Figure 7: the results from a mixed female sample; Taqman single dye.

Figure 8: the results from a mixed male; Taqman single dye.

5 Figure 9: the distribution of repeated measurements for mixed male sample.

Figure 10: the results from a mixed female sample; qPCR measures.

Figure 11: the results from a mixed male sample; qPCR measures.

Figure 12: Ct measurements for male sample differenced from Ct measurements for 

female sample.

10 Figure 13: detecting aneuploidy with a third dissimilar chromosome..

Figure 14: an illustration of two amplification distributions with constant allele dropout 

rate.

Figure 15: a graph of the Gaussian probability density function of alpha.

Figure 16: the general relationship diagram of the input data, the database data, the 

15 algorithm and the output. ,

Figure 17: a visual overview of how to derive P(H|M).

Figure 18: a visual representation of the flow chart describing the algorithm used to 

demonstrate the effectiveness of the cleaning algorithm on simulated data.

Figure 19: an illustration of a system that is configured to accomplish the method 

20 disclosed herein, in the context of phenotype prediction of embryos during IVF.

Figure 20: an illustration of the LASSO tendency to produce sparse solutions. The Ridge 

regression solution lies at the meeting of the two circles, and the LASSO solution 

lies at the meeting of the circle and square.

Figure 21: a table of the correlation coefficients (R in %) of measured and predicted 

25 response, averaged over ten different 9:1 splits of training and testing data, and

then averaged over seven Pls or ten RTIs respectively.

Figure 22: graphic representation of the value of LASSO model parameters associated 

with mutations in the protease enzyme for predicting PI response. Only 40 

parameters with the largest absolute magnitudes are shown.

30 Figure 23: graphic representation of the value of LASSO model parameters associated 

with mutations in the RT enzyme for predicting NRTI drug response. Only the 40 

parameters with the largest absolute magnitudes are shown.
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Figure 24: graphic representation the value of LASSO model parameters associated with

mutations in the RT enzyme for predicting NNRTI drug response. Only the 40

parameters with the largest absolute magnitudes are shown.

Table 1: a summary of disease genes as found in OMIM/NCBI.

Table 2: a summaiy of different aneuploidy detection techniques

Table 3: an example of input data for the method described using SNPs with a low degree 

of cosegregation.

Table 4: an example of input data for the method described using SNPs with a high 

degree of cosegregation.

Table 5: an example of the output data for the input data shown in Table 2.

Table 6: an example of the output data for the input data shown in Table 4.

Table 7: the results of the preliminary simulation.

Table 8: the results of the full simulation of the method.

Table 9: three contingency tables representing (lie results of Farrer (2005), Labert (1998), 

and Alvarez (1999) for understanding the role of mutations in APOE and ACE in 

affecting the onset of Alzheimers.

Table 10: results generated from meta-analysis of the studies of Table 7.

Table 11: a table of correlation coefficients (R in %) of measured and predicted response 

to Protease Inhibitor (PI) drugs for various methods, averaged over ten different 

9:1 splits of training and testing data. The standard deviation (Std. dev.) of the 

results is shown in gray; the number of measured drug responses is shown in the 

last row.

Table 12: a table of correlation coefficients (R in %) of measured and predicted response 

to Reverse Transcriptase Inhibitor (RTT) drugs for various methods, averaged over 

ten different 9:1 splits of training and testing data. The standard deviation (Std. 

dev.) of the results is shown in gray; the number of measured drug responses is 

shown in the last row.

Table 13: the number of samples, and total number of mutations used for training for 

various regression methods, together with the number of mutations with non-zero 

weights selected by the Least Absolute Selection and Shrinkage Operator 

(LASSO) as predictors for Protease Inhibitor (PI) drug response.

Table 14: the number of samples, and total number of mutations used for training with 

various methods, together with the number of mutations with non-zero weights 
25
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selected by LASSO as predictors for Reverse Transcriptase Inhibitor (RTI) 

response.

Table 15: phenotypic data for the irinotecan study.

5 DETAILED DESCRIPTON OF THE PREFERRED EMBODIMENT

Conceptual Overview of the System

One goal of the disclosed system is to provide highly accurate genomic data for 

10 the purpose of genetic diagnoses. In cases where the genetic data of an individual 

contains a significant amount of noise, or errors, the disclosed system makes use of the 

similarities between genetic data of related individuals, and the information contained in 

that secondary genetic data, to clean the noise in the target genome. This is done by 

determining which segments of chromosomes were involved in gamete formation and 

15 where crossovers occurred during meiosis, and therefore which segments of the 

secondary genomes are expected to be nearly identical to sections of the target genome. 

In certain situations this method can be used to clean noisy base pair measurements, but it 

also can be used to infer the identity of individual base pairs or whole regions of DNA 

that were not measured. In addition, a confidence can be computed for each 

20 reconstruction call made. A highly simplified explanation is presented first, making 

unrealistic assumptions in order to illustrate the concept of the invention. A detailed 

statistical approach that can be applied to the technology of today is presented afterward.

Another goal of the system is to detect abnormal numbers of chromosomes, 

sections of chromosomes, and origins of chromosomes. In genetic samples that are 

25 aneuploid, have unbalanced translocations, uniparental disomy, or other gross 

chromosomal abnormalities, the amount of genetic material present at a plurality of loci 

can be used to determine the chromosomal state of the sample. There are multiple 

approaches to this method, and several of them are described here. In some approaches, 

the amount of genetic material present in a sample is sufficient to directly detect 

30 aneuploides. In other approaches, the method for cleaning the genetic material can be 

used to enhance the efficiency of detection of chromosomal imbalances. A confidence 

can be computed for each chromosomal call made.
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Another goal of the system is to provide an effective and efficient means of 

extracting the most simple and intelligible statistical models from from genetic data by 

exploring a wide array of terms that are designed to model the effect of variables related 

to genetic data. More specifically, most or all of the currently available methods for 

modeling phenotype or phenotype susceptibility based on genetic data have the following 

drawbacks: (i) they do not use convex optimization techniques and thus are not 

guaranteed to find the local minimum solution for the model parameters for a given 

training data set; (ii) they do not use techniques that minimize the complexity of the 

model and thus they do not build models that generalize well when there are a small 

number of outcomes relative to the number of independent variables; (iii) they do not 

enable the extraction of the most simple intelligible rules from the data in the context of 

logistic regression without making the simplifying assumption of normally distributed 

data; (iv) they do not leverage a-priori information about gene-gene associations, gene

phenotype associations, and gene-disease associations in order to make the best possible 

prediction of phenotype or phenotype susceptibility; (v) they do not provide more than 

one model, and thus do not provide a general approach for selecting the best possible data 

based on cross-validating various models against training data. These shortcomings are 

critical in the context of predicting outcomes based on the analysis of vast amounts of 

data classes relating to genetic and phenotypic information. In summary the currently 

available methods do not effectively empower individuals to ask questions about the 

likelihood of particular phenotypic features given genotype, or about the likelihood of 

particular phenotypic features in an offspring given the genotypic features of the parents.

Note that some of the explanation given below includes work that has been 

previously published by authors of this document It is provided as background 

information to facilitate understanding of and to give a greater context to the material 

disclosed herein.

One may consider genotype-phenotype predictive models in three categories: i) 

genetic defects or alleles are known to cause the disease phenotype with 100% certainty; 

ii) genetic defects and alleles that increase the probability of disease phenotype, where the 

number of predictors is small enough that the phenotype probability can be modeled with 

a contingency table; and iii) complex combinations of genetic markers that can be used to 

predict phenotype using multidimensional linear or nonlinear regression models. Of the 

359 genes (See Table 1, row 2) with currently known sequences and disease phenotypes 
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in the Online Mendelian Inheritance Database (OMIM), the majority fall into category (i); 

and the remainder fall predominantly into category (ii). However, over time, it is expected 

that multiple genotype-phenotype models will arise in category (iii), where the interaction 

of multiple alleles or mutations will need to be modeled in order to estimate the 

5 probability of a particular phenotype. For example, scenario (iii) is certainly the case 

today in the context of predicting the response of HIV viruses to anti-retroviral therapy 

based on the genetic data of the HIV virus.

For scenario (i), it is usually straightforward to predict the occurrence of the 

phenotype based on expert rules. In one aspect, statistical techniques are described that 

10 can be used to make accurate predictions of phenotype for scenarios (ii). In another 

aspect, statistical techniques are described that can be used to make accurate predictions 

for scenario (iii). In another aspect, methods are described by which the best model can 

be selected for a particular phenotype, a particular set of aggregated data, and a particular 

individual’s data.

15 Certain embodiments of the methods disclosed herein implement contingency

tables to accurately make predictions in scenario (ii). These techniques leverage a-priori 

information about gene-gene associations and gene-disease associations in order to 

improve the prediction of phenotype or phenotype susceptibility. These techniques enable 

one to leverage data from previous studies in which not all the relevant independent 

20 variables were sampled. Instead of discarding these previous results because they have 

missing data, the technique leverages data from the HapMap project and elsewhere to 

make use of the previous studies in which only a subset of the relevant independent 

variables were measured. In this way, a predictive model can be trained based on all the 

aggregated data, rather than simply that aggregated data from subjects for which all the 

25 relevant independent variables were measured.

Certain methods described herein use convex optimization to create sparse models 

that can be used to make accurate predictions in scenario (iii). Genotype-phenotype 

modeling problems are often overcomplete, or ill-posed, since the number of potential 

predictors - genes, proteins, mutations and their interactions - is large relative to the 

30 number of measured outcomes. Such data sets can still be used to train sparse parameter 

models that generalize accurately, by exerting a principle similar to Occam’s Razor: 

When many possible theories can explain the observations, the most simple is most likely 

to be correct. This philosophy is embodied in one aspect relating to building genotype- 
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phenotype models in scenario (iii) discussed above. The techniques described here for 

application to genetic data involve generating sparse parameter models for 

underdetermined or ill-conditioned genotype-phenotype data sets. The selection of a 

sparse parameter set exerts a principle similar to Occam’s Razor and consequently 

5 enables accurate models to be developed even when the number of potential predictors is 

large relative to the number of measured outcomes. In addition, certain embodiments of 

the techniques described here for building genotype-phenotype models in scenario (iii) 

use convex optimization techniques which are guaranteed to find the global minimum 

solution for the model parameters for a given training data set.

10 Given a set of aggregated data, and a set of available data for an individual, it is

seldom clear which prediction approach is most appropriate for making the best 

phenotypic prediction for that individual. In addition to describing a set of methods that 

tend to make accurate phenotypic predictions, embodiments disclosed herein present a 

system that tests multiple methods and selects the optimal method for a given phenotypic 

15 prediction, a given set of aggregated data, and a given set of available data for the 

individual for whom the prediction is to be made. The disclosed methods and systems 

examine all the different independent variable and dependant variable combinations in a 

given set of data using multiple models and multiple tuning parameters, and then selects 

that combination of independent variables, dependant variables, and those tuning 

20 parameters that achieve the best modeling accuracy as measured with test data. In cases 

corresponding to scenario (i) expert rales may be drawn; in other cases with few 

independent variables, such as in category (ii), contingency tables will provide the best 

phenotype prediction; and in other cases such as scenario (iii) linear or non-linear 

regression techniques may be used to provide the optimal method of prediction. Note that 

25 it will be clear to one skilled in the art, after reading this disclosure, how the approach to 

selecting the best model to make a prediction for an individual may be used to select from 

amongst many modeling techniques beyond those disclosed here.

Certain embodiments of the technology are demonstrated in several contexts. 

First, it is demonstrated in the context of predicting the likelihood of developing 

30 Alzheimer’s disease using contingency tables and an incomplete set of data integrated 

from many clinical studies focusing on predicting Alzheimer’s disease based on genetic 

markers. Next, the system is demonstrated in the context of modeling the drug response 

of Type-1 Human Immunodeficiency Vims (HIV-1) using regression analysis and the 
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knowledge of genetic markers in the viral genome. Finally the system is demonstrated in

the context of predicting the side-effects caused by the usage of tamoxifen and irinotecan

in the treatment of various cases of breast and colon cancer, respectively, using regression

analysis and the incomplete data of both genetic markers on the individuals and also

5 laboratory and clinical subject information relevant to the cancer.

Due to the decreasing expense of genotypic testing, statistical models that 

reliably predicts viral drug response, cancer drug response, and other phenotypic 

responses or outcomes from genetic data are important tools in the selection of 

appropriate courses of action whether they be disease treatments, lifestyle or habit 

10 decisions, or other actions. The optimization techniques described will have application to 

many genotype-phenotype modeling problems for the purpose of enhancing clinical 

decisions.

Technical Description of the System

15

Cleaning Data: A Simplified Example
Figure 1 illustrates the process of recombination that occurs during meiosis for the 

formation of gametes in a parent. The chromosome 101 from the individual’s mother is 

shown in orange (or grey). The chromosome 102 from the individual’s father is shown in 

20 white. During this interval, known as Diplotene, during Prophase I of Meiosis, a tetrad of 

four chromatids 103 is visible. Crossing over between non-sister chromatids of a 

homologous pair occurs at the points known as recombination nodules 104. For the 

purpose of illustration, the example will focus on a single chromosome, and three Single 

Nucleotide Polymorphisms (SNPs), which are assumed to characterize the alleles of three 

25 genes. For this discussion it is assumed that the SNPs may be measured separately on the 

maternal and paternal chromosomes. This concept can be applied to many SNPs, many 

alleles characterized by multiple SNPs, many chromosomes, and to the current 

genotyping technology where the maternal and paternal chromosomes cannot be 

individually isolated before genotyping.

30 Attention must be paid to the points of potential crossing over in between the

SNPs of interest. The set of alleles of the three maternal genes may be described as (ami, 

am2, am3) corresponding to SNPs (SNPj, SNP2, SNP3). The set of alleles of the three 

paternal genes may be described as (apt, aP2, aP3). Consider the recombination nodules
30
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formed in Figure 1, and assume that there is just one recombination for each pair of 

recombining chromatids. The set of gametes that are formed in this process will have 

gene alleles. (ami, am2, ap3), (ami, aP2, ^>3)» (&pi> aP3), (api, aP2, am3). In the case with no

crossing over of chromatids, the gametes will have alleles (ami, a^, am3), (api, aP2, aP3). In 

the case with two points of crossing over in the relevant regions, the gametes will have 

alleles (ami, ap2, am3), (api, a^, aP3). These eight different combinations of alleles will be 

referred to as the hypothesis set of alleles, for that particular parent.

The measurement of the alleles from the embryonic DNA will be noisy. For the 

purpose of this discussion take a single chromosome from the embryonic DNA, and 

assume that it came from the parent whose meiosis is illustrated in Figure 1. The 

measurements of the alleles on this chromosome can be described in terms of a vector of 

indicator variables: A = [Ai A2 A3]T where Ai = 1 if the measured allele in the embryonic 

chromosome is amj, A] =-1 if the measured allele in the embryonic chromosome is api, 

and Ai = 0 if the measured allele is neither amj or api. Based on the hypothesis set of 

alleles for the assumed parent, a set of eight vectors may be created which correspond to 

all the possible gametes describe above. For the alleles described above, these vectors 
would be a, = [1 1 1 ]T, a2 = [1 1 -1]T, a3 = [1 -1 1]T, 34 = [1 -1 -if, a5 = [-1 1 1 ]T, a6 = [-1 1 

-1 ]T, a? = [-1 -1 1]T, ag = [-1 -1 -1]T. In this highly simplified application of the system, the 

likely alleles of the embryo can be determined by performing a simple correlation 

analysis between the hypothesis set and the measured vectors:

i* - argmax, ATa,, 1=1...8

(1)

Once i* is found, the hypothesis a,* is selected as the most likely set of alleles in 

the embryonic DNA. This process is then repeated twice, with two different assumptions, 

namely that the embryonic chromosome came from the mother or the father. That 
assumption which yields the largest correlation ATaj* would be assumed to be correct. In 

each case a hypothesis set of alleles is used, based on the measurements of the respective 

DNA of the mother or the father. Note that in a typical embodiment of the disclosed 

method, one measures a large number of SNPs between those SNPs that are important 

due to their association with particular disease phenotypes - these will be referred to these 

as Phenotype-associated SNPs or PSNPs. The Non-phenotype-associated SNPs (NSNPs) 

between the PSNPs may be chosen a-priori (for example, for developing a specialized 
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genotyping array) by selecting from the NCBI dbSNP database those RefSNPs that tend 

to differ substantially between individuals. Alternatively, the NSNPs between the PSNPs 

may be chosen for a particular pair of parents because they differ between the parents. 

The use of the additional SNPs between the PSNPs enables one to determine with a

5 higher level of confidence whether crossover occurs between the PSNPs. It is important 

to note that while different “alleles” are referred to in this notation, this is merely a 

convenience; the SNPs may not be associated with genes that encode proteins.

The System in the Context of Current Technology

10 In another more complex embodiment, the a-posteriori probability of a set of

alleles is computed given a particular measurement, taking into account the probability of 

particular crossovers. In addition, the scenario typical of microarrays and other 

genotyping technologies is addressed where SNPs are measured for pairs of 

chromosomes, rather than for a single chromosome at a time. The measurements of the

15 genotype at the locus i for the embryonic, paternal and maternal chromosomes may be 

characterized respectively by random variables representing the pairs of SNP 

measurements (ey, e2,i), (pij, py) and (my, my). Since one cannot determine the 

presence of crossovers in the maternal and paternal chromosomes if all measurements are 

made as pairs, the method is modified: in addition to genotyping the fertilized embryos 

20 and paternal and maternal diploid tissue, one haploid cell from each parent, namely, a 

sperm cell and an egg cell, is also genotyped. The measured alleles of the sperm cell are 

represented by py, i=l...N and the complementary alleles measured from the paternal 

diploid tissue by py. Similarly, the measured alleles of the egg cell are represented by my 

and their complement in the mother’s diploid cell by my. These measurements provide 

25 no information on where the parental chromosomes crossed over in generating the 

measured sperm and egg cells. However, one can assume that the sequence of N alleles 

on the egg or sperm was created from the parental chromosomes by a small number of, or 

no, crossovers. This is sufficient information to apply the disclosed algorithm. A certain _ 

error probability is associated with calling the paternal and maternal SNPs. The

30 estimation of this error probability will vary based on the measurements made (pi.y, P2,i) 

and (my, my) and the signal-to-noise ratio for the technology used. Although these error 

probabilities can be uniquely computed for each locus without affecting the disclosed
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method, the algebra is simplified here by assuming that the probabilities of correctly 

calling the paternal and maternal SNPs are constant at pp and pm respectively.

Assume that a measurement is performed on the embryonic DNA which is termed 

measurement M. In addition, the notation is slightly modified so that A is now a set and

5 not a vector: A refers to a particular hypothesis about the combination (or set) of alleles 

derived from each parent. The set of all possible combinations of alleles A from both 

parents is denoted as Sa. The goal is to determine the combination of alleles (or that 

hypothesis) A e Sa with the highest a-posteriori probability, given the measurement M:

A* - argmax P(A | M), \/A e SA

10 (2)

Using the law of conditional probabilities, P(A|M) = P(M|A)P(A)/P(M). Since P(M) is 

common for all different A’s, the optimizing search can be recast as:

A* = arg max A P(M / A')P(A'), VAe SA

(3)
15 Now consider the computation of P(M/A). Begin with a single locus i, and let the

hypothesis be that this locus on the embryo is derived from the parental SNPs Pt.i.i and 

πίςΐ,ϊ, where the underscore t is used to denote the true value of these Parental SNPs, as 

opposed to the measurements performed, py and my, which may or may not be correct. 

The true value of the embryonic SNPs is denoted as (e^y, e^y). If hypothesis A is true, 

20 then (e^y, e^j) = (pt,y, mt,i,i) or (m^y, pt,y). Since one cannot differentiate which of the 

measurements (ey, e2j) comes from which parent, both orders must be considered so the 

hypothesis set A = [(pt,y, mtjy), (mt,i,i, Pt,i,i)]. The probability of a particular measurement 

M depends on the true values or the underlying states of the parental SNPs, namely (pt,y, 

Pt,2,i) and (mt,i.i, mti2,i). Since there are four SNPs, Pt,2,b ηΐζΐ,ΐ, Ηΐζ2,ί, and each of these 
25 can assume the value of four nucleotide bases, A,C,T,G, there are 44 or 256 possible 

states. The algorithm is illustrated for one state Si for which it is assumed that 

Pt,i,iA)t,2,iAnt!i,i^rnt,2.i· From this explanation, it will be clear how to apply the method to 

all 256 possible states, st, k=1...256. Assume a measurement M of embryonic SNPs (ey, 

ey) is performed, and the result ey=py, e2ii=mi;i is obtained. The a priori probability for

30 this measurement given that hypothesis A and state si are true is computed:
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P(fy.· = Po’eu =mi4\A,sx )=

~ Pt,U’ei,2J I A’si)p(,ei,l ~ Pl,i I e/,l.i ~ Pt,ij)p(e2,i ~miJ I et,2J ~
+ = Ρ,.υ 1)p(ev =PV |eM, =mw,pIM *mlXI)p(e2J \el<2. =p,<24,p,M *

(4)
Consider the first expressions in the first term and second term: P(e1j=piji,e2ii=miii|A,si)= 

P(eiji=mlii,e2;i=piji]A,si)=0.5 since the hypothesis Α=[(ρζι.ί, (mtil|i, ρι,ι,ΐ)] makes two

5 orderings for the embiyonic SNPs equally likely. Now consider the second expression of 

the first term, P(elii=pi.i |et,i,i=pt,iii), the probability of measuring eiji=pi,j given the 

assumption that embryonic SNP e^y actually is derived from paternal SNP Pt,i,i. The 

probabilities for correctly measuring the paternal SNPs, maternal SNPs, and embryonic 

SNPs are pp, pm, and pe. Given the assumption (et,i>i=pt,i>j), the measurement (ei,i=pi,i)

10 requires either that both embiyonic and paternal SNPs are correctly measured, or that 

both are incorrectly measured and they happen to be incorrectly measured as the same 

nucleotide (A,C,T, or G). So, P(ei,i=pi,i[et,i,i=pt,i,i) = pepp+(l-pe)(l-Pp)/3 where it is 

assumed for simplicity that the probability of incorrectly calling all of the four 

nucleotides is equally likely - the algorithm can be easily modified to accommodate

15 different probabilities of calling a particular nucleotide (A,C,T,G) given a measurement 

on another particular nucleotide. The same approach may be applied to the third 

expression in the first term to obtain P(e2ji=mi,i let^i'^tjj) = pepra+(l--pe)(l-pm)/3. Now 

consider the second expression of the second term. P(ei>i=pi,i τη^/ρ^ί)

requires either that eij or pij be an incorrect measurement, or that both be incorrect

20 measurements, so that the measured values happen to be equal: P(eij=pi,i Ιβ^ι,ττηςί,ι, 

mt,i#Pt,i,i) = Pe(l-Pp)/3+(l-pe)Pp/3+(l-pe)(l-pp)2/9. The same argument can be applied to 

the last expression of the second term to yield P(e2,i=mi,i jet,2,i=pt,2,i, ιηςι,πίρςζ,ί) - Pe(l- 

pmy3+(l-pe)Pni/3+(l-pe)(l-pm)2/9. Now, combining all of these terms, and making the 

assumption - merely to simplify the algebra - that pe=pp=pm=p, one can compute:

25 ρ(Μ(βΜ = p1(,e2i =znl;)| /1,5,) =-|-(160p4 -160 p3 + 96 p1 -28 p + 13)
162

(5)
Although the computation will vary, a similar conceptual approach to that described here 

would be used for all 256 possible states, st, k=1...256. Computing P(ei,i=pi.i, e2ij=miii 

JA,Si) for all 256 states s; and summing over the probability of each sj one obtains

30 P(ej,i=PM, e2ii=mj;i jA). In other words:
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p(m\a)=
/=1.,.256

(6)
In order to compute the probabilities of each state Sj, P(si), one must treat all the separate 

alleles making up a state as separate events since they are on separate chromosomes, in 

5 other words: P(s,) = P(pt,i,i> Pt,2,i, πξρ, 1¾) = P(Pu,i)P(pai)P(mt,i,i)P(mt;2,i). Bayesian 

techniques may be applied to estimate the probability distribution for the individual 

measurements. Every measurement of an allele on the maternal or paternal chromosomes 

at locus i may be treated as a coin toss experiment to measure the probability of this allele 

being a particular value (A,C,T or G). These measurements are made on the adult tissue 

10 samples and may be treated as being totally reliable, even though pairs of alleles are 

measured for each SNP, and it is not possible to determine which allele comes from 

which chromosome. Let Wpj,, = P(pt,i,i), corresponding to the probability of the SNP i on 

the father’s chromosome being value pqj. In the following explanation, w is used instead 

of wPii,i. Let the measurements performed on SNP i of the father’s chromosome be 

15 characterized as collecting data D. One can create a probability distribution for w, p(w) 

and update this after the data is measurement according to Bayes Theorem: p(w|D)= 

p(w)p(D|w)/p(D). Assume n alleles of SNP i are observed and that the particular allele 

corresponding to w comes up h times — in other words, heads is observed h times. The 

probability of this observation can be characterized by the binomial distribution

20 p(D | w) = wh (1 - wf~h

(7)
Before data is collected, assume there is a prior distribution p(w) which is uniform 

between 0 and 1. By applying the Bayes theorem, it is straightforward to show that the 

resulting distribution for p(w|D) will be a beta distribution of the form:

25 p(w j D) = — wh (1 - w)"^ where c- f wh (1 - wf~hdw
c ·*

(8)
and c is a normalizing constant However many times p(w|D) is then updated by applying 

Bayes theorem and new measurements, it will continue to have a beta distribution as 

above. The estimates of p(w) are updated every time a new measurement is collected. 

30 Note that there will be a different function p(w) for different races and different genders,
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using the same groupings used in the Hapmap project, since the probability of different 

alleles at particular SNPs is dependent on these groupings of race and gender. For the 

computation of P(sj), each allele on each chromosome will be associated with an 

estimated probability distribution, namely Pp.i.KWp.i.j), pP;2,i(wpAi), Pm,i,i(wm,i,i) and 

pm,2,i(wm>2ii). One may then compute the maximum a-posteriori (MAP) estimate for P(s,) 

according to the MAP estimate for each of the individual distributions. For example, let 

■wP(j,i* be the argument that maximizes pP>i,i(wp>i,i). The MAP estimate of P(sj) may be 

found according to

Ρ(Μμλρ = ^.1., * * w„.2J *

(9)
Since there is the a probability distribution for each w, one can also compute conservative 

estimates of the values P(sj) to any specified confidence level, by integrating over the 

probability distribution, rather than simply using the MAP estimates. It is possible to do 

this, for example, to conservatively estimate P(M|A) to within some confidence level. 

Whether a conservative estimate or a MAP estimate is used, the estimate of P(s;) is 

continually refined for the computation of P(M|A). In what follows, reference to the 

assumed state will be eliminated to simplify the notation, and state Si is assumed for all 

explanations of detailed computation. Bear in mind that in actuality these calculations 

would be performed for each of 256 states and be summed over the probability of each.

The method of computing P(M|A) is now extended to multiple SNP loci, 

assuming that M represents the set of measurements of N pairs of SNPs on the embryo, M 

= [Μι,.,.,Μν]. Assume also that A represents the set of hypotheses for each SNP about 

which parental chromosomes contributed to that SNP, A = [Αι,.,.,Αν]· Let Sa· represent 

the set of all other possible hypotheses that are different from A or are in the set A’. 

P(M|A) and P(M|A’) may be computed:

P(M|J)= nWI4)> P(M\Ai)=XP(A)Y[P(Ml\Al) (10)

Consider the computation of P(A). In essence, this is based on the likelihood of particular 

crossovers occurring in the formation of the gametes that form the embryo. The 

probability of a particular allele set depends on two factors, namely the probability that 

the embryonic chromosome comes from the mother or the father, and the probability of a 

particular combination of crossovers. For a normal set of embryonic chromosomes that do 

not suffer from aneuploidy, the a-priori probability that the embryonic chromosome
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comes from the mother or father is ~50% and is consequently common for all A. Now, 

consider the probability of a particular set of recombination nodes. The number of 

relevant recombination sites R depends on the number of measured SNPS: R=N-1. Since 

the DNA segment constituting N NSNPs around the PSNP of interest will be relatively 

5 short, crossover interference makes it highly improbable that two crossovers on the same 

chromosome can occur in one region. For reasons of computational efficiency this 

method assumes that only one crossover will occur in each region for each relevant 

chromosome, and this can occur at R possible sites. It will be obvious to someone skilled 

in the art how this method may be extended to include the possibility where there are 

10 multiple crossovers in a given region.

Let the probability of a crossover in each region between SNPs be denoted Pr, r = 

1.. .N-l. To first order, the probability of a recombination node in a region r between two 

SNPs is proportional to the genetic distance between those SNPs (measured in 

cMorgans). However, much recent research has enabled a precise modeling of the 

15 probability of recombination between two SNP loci. Observations from sperm studies and 

patterns of genetic variation show that recombination rates vary extensively over kilobase 

scales and that much recombination occurs in recombination hotspots, and causes linkage 

disequilibrium to display a block-like structure. The NCBI data about recombination 

rates on the Human Genome is publicly available through the UCSC Genome Annotation 

20 Database.

Various data sets can be used singly or in combination. Two of the most common 

data sets are from the Hapmap Project and from the Perlegen Human Haplotype Project. 

The latter is higher density; the former is higher quality. See Figure 2 for the regional 

recombination rates from positions 1,038,423 to 4,467,775 of chromosome 1, based on 

25 the HapMap Phase I data, release 16a. These rates were estimated using the reversible- 

jump Markov Chain Monte Carlo (MCMC) method which is available in the package 

LDHat. The state-space considered is the distribution of piece-wise constant 

recombination rate maps. The Markov chain explores the distribution of the number and 

location of rate change-points, in addition to the rates for each segment, 201. These 

30 results may be used to generate an estimate of Pr by integrating over the recombination 

rates times by die length of each constant segment between the SNPS. The cumulative 

recombination rate over the nucleotides 202 is shown in Figure 2 in red.
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Let C be a set of indicator variables cr such that cr=l if a crossover occurred in 

region r and 0 otherwise. c0=l if no crossovers occurred and 0 otherwise. Since it is 

assumed that only one crossover can occur in a region of N SNPs, only one element of the 

set C is non-zero. Hence, the probability of crossover represented by set C is found to be: 

5 ξ=[1- Π-Ρ/' (11)

k /-«l.-JV-l J r=l

In the hypothesis A about SNPs 1...N, there are four potential crossovers of relevance. 

Namely, the potential crossovers in i) the paternal chromosomes that formed the embryo 

(denoted by set Cpe of indicator variables), ii) the paternal chromosomes that formed the 

sequenced sperm (set Cps), iii) the maternal chromosomes that formed the embryo (set 

10 Cme) and iv) the maternal chromosomes that formed the sequenced egg (set Cee). Two 

additional assumptions are v) whether the first paternal embryonic SNP comes from Pt,i,i 

or pti2,i and vi) whether the first maternal embryonic SNP comes from or m^i. 

Since the probabilities of crossovers between SNPs is found to differ between races and 

sexes, different crossover probabilities will be denoted as Pp,r for the paternal 

15 chromosomes, and Pm,r for the maternal chromosomes. Therefore, the probability of a 

particular hypothesis A, which subsumes the sets Cpe, Cps, Cme, Cee is expressed as:
f ___ \Cpsfi f fnvv-zd ndi-zd m+zd nv 

k n4..JV-l J r=i,.14-A k J γΑ,,ΝΛ k r*i.M J z=i..JV-4

(12)
Now with the equations for determining P(A) and P(M/A), all the elements

20 necessary to compute A* per Equation 3 above have been defined. Hence, it is possible to 

determine from the highly error-prone measurements of the embryonic SNPs where 

crossovers occurred, and to consequently clean the embryonic measurements with a high 

degree of confidence. It remains to determine the degree of confidence in the best 

hypothesis A*. To determine this, it is necessary to find the odds ratio

25 P(A*|M)/P(A*’|M). The tools have all been described above for this computation:

P(A*\M) _ P(A*\M) _ P(A*)P(M\A*) _ P(X*)P(M μ*)
P(A*'\M) l-P(A*\M) P(A*')P(M\A*') (\-P(A*))P(M\ A*') ( }

The confidence in A* is then given as P(A*|M) = ORa*/(1+OR a*). This computation

indicates the confidence in a particular hypothesis A*, but it does not indicate a

30 confidence in a particular determination of a SNP. In order to compute the confidence in a

38



20
13

20
25

55
 

04
 A

pr
 2

01
3

5

10

15

20

25

determination of embryonic PSNP n, it is necessary to create the set of all hypotheses A 

that don’t change the value of this SNP. This set will be denoted as SA*,n, which 

corresponds to all hypothesis that result in PSNP n on the embryo having the same value 

as is predicted by hypothesis A*. Similarly, create a set Sa*·^ which corresponds to all 

hypothesis that result in PSNP n having a different value to that predicted by hypothesis 

A*. Now, it is possible to compute the odds ratio of the probability that the SNP is 

correctly called versus the probability that the SNP is incorrectly called:

EW ΣΡ(Α| Μ) ΣΡ^ΡίΜ I A)
Qn _ (14)

ΣΡ(Α\Μ) 1- ΣΑΑ\Μ) ΣΡ(Α)Ρ(Μ\Α)
AeSA.j, AeS^,*

The confidence in the particular call of embryonic SNP n based on the odds ratio ORa*,u 

can be computed as:

P(correctly called SNP n) = fP(A\M) = QR^ 
! + ORA.,

(15)

Note that this technique could also be used to detect such defects as uniparental 

disomy (UPD) wherein two of the same chromosomes are from the same parent, while 

none of that chromosomes from the other parent is present. Upon attempting to deduce 

the crossovers in the parent chromosomes, there will be no hypothesis which adequately 

explains the data with a high confidence, and if alternate hypotheses are allowed that 

include the possibility of UPD, they will found to be more likely.

Bounding the Effect of Uncertainty in Recombination Rates.and SNP Measurement 
Reliability

The disclosed method depends on: assumptions about the probability of 

recombination between particular SNPs; assumptions about the probability of the correct 

measurement of each SNP on the embryonic, sperm, egg, paternal and maternal 

chromosomes; and assumptions about the likelihood of certain alleles within different 

population groups. Consider each of these assumptions: the mechanism of recombination 

is not perfectly understood and modeled, and the crossover probability has been 

established to vary based on an individual’s genotype. Furthermore, the techniques by 

which the recombination rates are measured show substantial variability. For example, 
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the package LDHat, which implements the reversible-jump Markov Chain Monte Carlo

(MCMC) method, makes a set of assumptions and requires a set of user inputs about the

mechanism and characterization of recombination. These assumptions can affect

predicted recombination rates between SNPs as is evinced by the different results

5 obtained by various studies.

It is anticipated that the assumptions about recombination rates, out of all 

assumptions listed above, will have the most impact on Equation 15. The computations 

described above should be based on the best estimates of the probability for crossover 

between SNPS, Pr. Thereafter, conservative estimates can be used for Pr using values at, 

10 for example, the 95% confidence bounds for the recombination rates, in the direction that 

reduces the confidence measure P(correctly called SNP n). The 95% confidence bounds 

can be derived from confidence data produced by various studies of recombination rates, 

and this can be corroborated by looking at the level of discordance between published 

data from different groups using different methods.

15 Similarly, the 95% confidence bounds can be used for the estimates of the

probability that each SNP is correctly called: pp, pm, pe. These numbers can be computed 

based on the actual measured array intensities included in the genotyping assay output 

files, combined with empirical data on the reliability of the measurement technique. Note 

that those NSNPs for which these parameters pp, pm and pe are not well established may 

20 be ignored. For example, since the diploid parental data is reliably measured, one may 

ignore NSNP measurements of the parents’ haploid cells and on the embryo that do not 

correspond to any of the alleles on the relevant SNPs of the parent’s diploid tissue.

Lastly, consider the assumptions about the likelihood of certain alleles within 

different population groups, which give rise to the computation P(s;). These assumptions 

25 also will not have a large impact on the disclosed method since the measurement of the 

parental diploid data is reliable i.e. direct measurement of the state s, from the parental 

samples typically result in data with high confidence. Nonetheless, it is possible to use the 

probability distribution for each w as described in Equation 8 in order to compute a 

confidence bound for the probability of each state P(sj). As above, one can compute the 

30 95% confidence bound for each P(sj) in the conservative direction that reduces confidence

measure P(correctly called SNP n).
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The determination of P(correctly called SNP n) will inform the decision about 

how many NSNPs need to be measured around each PSNP in order to achieve the desired 

level of confidence.

Note that there are different approaches to implementing the concept of the

5 disclosed method, namely combining the measurement of the parent’s DNA, the 

measurement of the DNA of one or more embryos, and the a-priori knowledge of the 

process of meiosis, in order to obtain a better estimate of the embryonic SNPs. It will be 

clear to one skilled in the ait, how similar methods can be applied when different subsets 

of the a-priori knowledge are known or not known, or known to a greater or lesser degree 

10 of certainty. For example, one can use the measurements of multiple embiyos to improve 

the certainty with which one can call the SNPs of a particular embryo or to accommodate 

missing data from the parents. Note also that one does not need a PSNP of interest to be 

measured by the measurement technique. Even if that PSNPs is not determined by the 

measurement system, it can still be reconstructed with a high degree of confidence by the 

15 disclosed method.

Also note that once the points of crossover that occurred during meiosis have been 

determined, and the regions of the target genome have been mapped to the pertinent 

regions of the parental DNA it is possible to infer not only the identity of individual 

SNPs of interest, but also whole regions of DNA that may be missing in the measured 

20 target genome due to allele drop-out or other errors in measurement. It is also possible to 

measure insertions and deletions in the parental DNA, and use the disclosed method to 

infer that they exist in the target DNA.

Various techniques may be used to improve the computational complexity of the 

disclosed algorithm described above. For example, one may only or predominantly select 

25 those NSNPs that differ between the mother and the father. Another consideration would 

be to only use NSNPs that are spaced nearby the PSNPs to minimize the chance of 

crossovers occurring between the NSNPs and PSNPs of interest. One could also use 

NSNPs that were spaced along the chromosome so as to maximize coverage of multiple 

PSNPs. Another consideration will be to initially use only a small number of NSNPs to 

30 determine roughly where crossovers occurred, and with only a limited degree of certainty. 

Additional NSNPs can then be used to refine the crossover model and increase the 

probability of correctly calling the PSNPs. The number of crossover combinations to 
consider scales roughly as Ν*3 where N is the number of SNPs and C is the maximum
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number of crossovers. Consequently, for C=4 it is possible to accommodate roughly

N=100 for each PSNP while remaining computationally tractable on a Pentium-IV

processor. Using the approaches described above and other approaches for increased

computational efficiency, N>100, 04 can be easily accommodated. One such approach

5 will be described below.

Note that there are many other approaches to make a call on a PSNP and generate 

an estimate of the probability that a PSNPs has been correctly determined, based on a 

particular set of embryonic data, parent data, and algorithm used, without changing the 

underlying concept. This probability can be used for individual decision-making, and for 

10 implementing a reliable service in the context of IVF or NIPGD.

Recursive solution to the genetic data cleaning algorithm
Another embodiment of the invention involving an algorithm that scales linearly 

is described here. Given the limited nature of computation power, the length of the 

15 computation may be a significant factor in the use of the disclosed method. When 

running computations, any algorithm that must compute certain values where the number 

of computations needed rises exponentially with the number of SNPs can become 

unwieldy. A solution that involves a number of calculations that increase linearly with 

the number of SNPs will always be preferred from a time standpoint as the number of 

20 SNPs gets large. Below this approach is described.

A simple approach, which is to consider all possible hypotheses must contend 

with the running time being an exponential function in number of SNPs. Suppose, as 

before, that measured data are a collection of measured embryo, father and mother 

chromosome measurements on k SNPs, i.e. M = {Mi,...,Mt} where Mi = 

25 (eii,e2i,pii,p2i,mii,m2i). As before, the hypotheses space is S« = {H1,.. .,Hq}={set of all the 

hypotheses}, where each hypothesis is of the format Hj = (HJi,...HJk) where HJj is the 

“mini” hypothesis for snip i, of the format H's - (pi*,m;*) where p;*e{p1;,p2/} and 

mt* e {mu, mzl} . There are 4 different “mini” hypotheses BP;, in particular:

HJil: (eii,e2i)={(pii,mij) or (mii,pii)}
30 Hj;2: (eii,e2j)={(pii,m2i)or (m2i,pii)}

HJi3: (eii,e2i)={(p2i,mii) or (mu,pa)}
Hji4: (eii,e2i)={(p2i,m2i) or (m2i,p2i)}

42



20
13

20
25

55
 

04
 A

pr
 2

01
3

The goal is to choose the most likely hypothesis H* as:

. H* = argmax//e?w P(H | M) = argmax^^ F(M,H) where function F(M,H)=P(H|M)

There are 4k different hypotheses in the space SH. By trying to find the best 

hypothesis by exhaustively exploring the entire space SH, the necessary algorithm would 

5 be of exponential order in k O(exp(k)), where k is the number of SNPs involved. For 

large k, even k>5, this is immensely slow and unpractical. Therefore, it is more practical 

to resort to a recursive solution which solves the problem of size k as a function of the 

problem of size (k-1) in constant time. The solution shown here is of the linear order in k, 

O(k). .

10

Recursive solution linear in the number of SNPs
Begin with F(M,H)=P(H]M) = P(M|H)*P(H)/P(M). Then argmax H F(M,H) = 

argmax h P(M|H)*P(H) and the goal is to solve P(M|H)*P(H) in linear time. Suppose that 

M(s,k)= measurement on SNPs s to k, = hypothesis on SNPs s to k, and to simplify 

15 notation M(k,k) = Mr, H^k) = Hk = measurement and hypothesis on SNP k. As shown 

before:

I H(U)) = Π w I HA =P(Mk I I HA =P(Mk | Hkf* Ρ(Μ^ | H(1.W))
/=1 /=1

Also:

20

P(H{W ) = 1 / 4 * fl PP(Hm , H,) = PFiH  ̂,H A* \! 4 * fl ΡΡ(Η,-ι ,H,) = PF(Hk^ ,Hk)* P(H^ ) 
i=2 i=2

where

PFiH^HA i-l 

'/-!

= ^/

and PC(Hj_i,Hj) = probability of crossover between Hj_i, Hj

Finally, for k SNPs:

F(M, H) = P(M | H) * P(H) = | Hw) * P(H^ )
= I H^y P(H^YP(Mk I HA*PF(Hk_„HA

25 so inshort F(M, H)=F(M[W, = F(M{i^,H^y p(M*1 Hk)* PF(Hk_t,HA

i.e. we can reduce the calculation of F on k SNPs to the calculation of F on k-1 SNPs.

For H = (Hi,...Hk),the hypothesis onk SNPs:

maxF(M,H) = max F(M,(H^,Hk) = T^m^F(M,(H^,HA = maxG(M(w,Pt)

where
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= max Ε(Μ^Η^,Ηη) =

P(M„ I H„)* max F(M(1.ffPF(H^,Hn) = 
"(U-l)

P(M„\HX^^F(M^H^,Hn^PF(H^,Hn) =

P(M„ |H„)*maxPFiH,,^,H„)*G(M{^,)

To summarize this:

max F(M,H) = max G(M (U), Hk)

where G can be found recursively: for n=2,..,k

5 G(MM,H„)-P(Mn\Hny^{PF(Hn_x,H„yG(M^,H^)\

and G(M(10,2/,) = 0.25 * P(M, | H,)

The algorithm is as follows:

For n= 1: Generate 4 hypotheses H|i, calculate G(Mi|Hii) for 1=1,...,4.

For n = 2: Generate 4 hypothesis for H2I, calculate G(M(i,2)|H2i) ,i=l,.. .,4 in constant time 

10 using the formula:

G(M(i.2) , H2i) = P(M21 #2ί) * max\PF(H,, Η2Ϊ) * G(Mt, HJ)]
7=1.-.4

For n = k: Generate 4 hypothesis for 1¾ make G(M(i>k>|Hki), 1=1,.. .,4 by

G(M^,Hki) = P(Mk I Hki)* m^PF(Hk_t,Hki) ^G(M^,Hk_J)\

At any time there are only 4 hypotheses to remember and a constant number of 

15 operations. So the algorithm is linear in k, number of SNPs, as opposed to exponential.

Solving P(M) in linear time
It is not necessary to solve for P(M) to get the best hypothesis, since it is constant 

for all H. But in order to get the actual, meaningful number for the conditional probability 

20 P(H|M) = P(M|H)*P(H)/P(M), it is also necessary to derive P(M). As above, we can 

write:

Ρ(Μ) = Ρ(Μ^)= £p(Mm IWW

= Σρ(Μκ\Hk) ΧΡ(Λ/(1Λ_Ο |Λ·(1Λ_,))*P(H^yPF(H^,Hk) ■

=XP(Mj^)*r(M(1,w,|^)
et
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where F(M(l>W) |22J= 1^-·))*PF(Hk_i,Hk)
HUJ-U

~We can solve for W(M,H) by recursion:

W(M^ |fft) = ^P(M^\H^yP(H^yPF(Hk_r,Hk)

= £Ρ(1ίΗ 1^-.) Σρ(^(Μ-υ\H^-^HH^}yPF(Hk_2,HkD*PF(H^,Ht)
Hk-\

= XΡ(Μ^ I Hk_x) *PF(Hk_, ,Hky W(M^ | )
n.-,

so in short, problem of size k is reduced to the problem of size (k-1) by

5 W(M^ \Hk) = ^P(MM\Hk_kyPF(Hk_uHkyW(M^\HkJ

and W(Mlt,0 | ) = Σ P(M, ] H,) * 0.25 * PF(Hk, H2)
n,

As before, for n = 2:k, generate IF(2),...,JF(X) = Irecursively, until finally, it

is possible to derive p(M) = χΡ(Μκ | Hk) * | Hk).

At each level there are only four different hypotheses Hk, so the algorithm is again

10 linear in the number of SNPs k.

Individual SNP confidence in linear time
Once we the best hypothesis H* = (Hi*,...,Hk*), has been computed, it is now 

may be desired to derive the confidence in the final answer for each SNP, namely

15 P(Hi*|M), for i=l,...,k As before P(Hj*|M) = P(M| Hi*)P(Hi*)/P(M)=W(Hj*,M)/P(M),

where P(M) is already known.

W(M,H*)= Σρ(Μ\ΗΥ*Ρ(Η)= χΡ(Λ/|#)*Ρ(£0, i-e. hypothesis H has been 

broken up to the hypothesis on first i-1 SNPs, ith SNP, and hypothesis on the i+1 to kth 

SNP. As before:

P(MW | HM) = ΠP(My | Hfi | Hj) *P(M, | H*) * Π?(Λ-( | Hfi
‘ J=l J=L /=/+1

=Ρ(Λ/ΟΛΙ) I H^ypiM, ] η(μ„)

and
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P(ZZ(W) =
y=2

= l/4^f[PF(HJ^HjyPF(Hl_i,HlD^PF(HM,HJ)*Y[PF(Hj_l,HJ)
7=/+2

= 1 / 4 * T(H^) * PF(HM , H,. *) * PF(H„ ,H*)* T(H^ )

So P(H^ = \I^T(Hiw)^H4^T(H^yPF(Hl_i,HjyPF(Hl_„HjyT(H{MJi}) 

where T(H^w) = f[PF(H^,H}).
/=2

From this it is possible to show that

r(M(w,V,*)= f^P(M\H)* P(H) = £Ρ(Μ|2Ϊ)*1/4*Γ(Η) ■ '

1 /4* 7(^.,-.)) * PF(Hm , H*) * PF(Jff,H*) * T(H(i+w)

= 4 * P(M, | Iff * P(fif, | ) *1 /4 * * PF(HM,

Ί Ι^(ί+1Λ))*1/4*Γ(^(ί+1Λ))*Ρ^*,^+1) I
V"m J

= 4 * P(Mt I Η, *) * ί X , H,_t) * PF(HM, Iff | * I £ W(,+.*,, ) * PF( Hff Hw )
) \hm

Again a case of size k has been reduced to two pieces of smaller size, albeit a bit 

more complicated than before. Each of the pieces can be calculated as
( \

\A~t
z

X.^M+1

So the algorithm will, for n = l,..,k, m = k,..l, for each of 4 different Hn , Hm calculate

10 W(MM,Hn),W(M  ̂,Hra)and then combine them as needed to calculate

W(MiW, H,*), for i=l,...,k. The number of operations is still linear in k.

Application of the disclosed method to embryonic data when a smaller or different set of 
data is available

15 In one embodiment of the system it is only necessary to make use of diploid data

from one parent (presumably the mother), with or without haploid data from either or 

both of the parents, and when that data is known to a greater or lesser degree of certainty.
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For example it is expected that, given the grueling nature of egg donation, there will he 

occasions when maternal haploid data is not readily available. It will be clear to one 

skilled in the art, after reading this description, how the statistical methods for computing 

the likelihood of a particular SNP can be modified given a limited data set

An alternative approach uses data from more distant relatives to make up for 

missing diploid or haploid data of one or both parents. For example, since it is known 

that one set of an individual’s chromosomes come from each of his or her parents, diploid 

data from the maternal grandparents could be used to partially reconstruct missing or 

poorly measured maternal haploid, data.

Note the recursive nature of this method: given the naturally noisy measurement 

of single cell parental haploid data, along with the diploid and/or haploid data of the 

appropriate grandparents, the disclosed method could be used to clean the parental 

haploid data, which in turn will provide more accurate genotyping of the embryo. It 

should be obvious to one skilled in the arts how to modify the method for use in these 

cases.

It is preferable to use more information rather than less, as this can increase the 

chances of making the right call at a given SNP, and can increase the confidence in those 

calls. This must be balanced with the increasing complexity of the system as additional 

techniques and sources of data are used. There are many sources of additional 

information, as well as techniques available to use the information to augment the data. 

For example, there are informatics based approaches which take advantage of correlations 

which can be found in Hapmap data, or other repositories of genomic data. In addition 

there are biological approaches which can allow for the direct measurement of genetic 

data that otherwise would need to be recreated in silico. For example, haploid data 

otherwise unavailable may be measureable by extracting individual chromosomes from 

diploid cells using flow cytometry techniques to isolate fluorescently tagged 

chromosomes. Alternately, one may use cell fusion to create monoallelic hybrid cells to 

effect diploid to haploid conversion.

Application of the disclosed method to selecting which embryo is likely to implant

In one embodiment, the system can be used to determine the likelihood of an 

embryo to implant in the mother and develop into a baby. To the extent that the likelihood 

of the embryo implanting is determined by SNPs of the embryo, and/or their relation to 
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SNPs of the mother, the disclosed method will be important in helping the selection of 

embryos, based on making a reliable prediction of which will successfully implant based 

on the clean SNP data. To best predict the likelihood it will be necessary to take into 

account the determined genotype of the embryo possibly combined with the levels of 

5 gene expression in the embryo, the levels of gene expression in the mother, and/or the 

determined genotype of the mother.

In addition, it is well known that aneuploid embryos are less likely to implant, less 

likely to result in a successful pregnancy, and less likely to result in a healthy child. 

. Consequently, screening for aneuploides is an important facet to selecting the embryo that

10 is most likely to result in a successfill outcome. More detail on this approach is given

below.

Deducing Parental Haploid Data
In one embodiment of the method, it may be necessary to deduce parental 

15 haplotypes, given detailed knowledge of the diploid data of a parent. There are multiple 

ways this can be done. In the simplest case, haplotypes have already been inferred by 

molecular assay of single haploid cells of a direct relation (mother, father, son or 

daughter). In this case, it is a trivial matter to one skilled in the art to deduce the sister 

haplotype by subtracting the known haplotype from the diploid genotype measured by 

20 molecular assay. For example, if a particular locus is heterozygous, an unknown parental 

haplotype is the opposite allele from the known parental haplotype.

In another case, the noisy haploid data of the parent may be known from 

molecular biological haplolyping of individual parental haploid cells, such as a sperm 

cell, or from individual chromosomes, which may be isolated by various methods 

25 including magnetic beads and flow cytometry. In this case, the same procedure can be 

used as above, except that the determined haplotype will be as noisy as the measured 

haplotype.

There are also methods for deducing haploid data sets directly from diploid data, 

using statistical methods that utilize known haplotype blocks in the general population 

30 (such as those created for the public Hapmap project). A haplotype block is essentially a 

series of

correlated alleles that occur repeatedly in a variety of populations. Since these haplotype 

blocks are often ancient and common, they may be used to predict haplotypes from
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diploid genotypes. The parents' inferred haplotype blocks can then be used as input for 

the method described herein to clean the noisy data from the embiyos. Publicly available 

algorithms that would accomplish this task include an imperfect phylogeny approach, 

Bayesian approaches based on conjugate priors, and priors from population genetics.

5 Some of these algorithms use hidden Markov models. One study used public trio and 

unrelated individual data to demonstrate that these algorithms perform with error rates as 

low as 0.05% across 1MB of sequence. However, as expected, accuracy is lower for 

individuals with rare haplotype blocks. In one estimate, computational methods failed to 

phase as many as 5.1% of loci with minor allele frequency of 20%.

10 In one embodiment of the invention, genetic data from multiple blastomeres

taken from different embryos during an IVF cycle is used to infer the haplotype blocks of 

the parents with greater reliability.

Techniques for Screening Aneuploidy using High and Medium Throughput Genotyping

15 In one embodiment of the system the measured genetic data can be used to detect

for the presence of aneuploides and/or mosaicism in an individual. Disclosed herein are 

several methods of using medium or high-throughput genotyping to detect the number of 

chromosomes or DNA segment copy number from amplified or unamplified DNA from 

tissue samples. The goal is to estimate the reliability that can be achieved in detecting 

20 certain types of aneuploidy and levels of mosaicism using different quantitative and/or 

qualitative genotyping platforms such as ABI Taqman, MIPS, or Microarrays from 

Illumina, Agilent and Affymetrix. In many of these cases, the genetic material is 

amplified by PCR before hybridization to probes on the genotyping array to detect the 

presence of particular alleles. How these assays are used for genotyping is described 

25 elsewhere in this disclosure.

Described below are several methods for screening for abnormal numbers of DNA 

segments, whether arising from deletions, aneuploides and/or mosaicism. The methods 

are grouped as follows: (i) quantitative techniques without making allele calls; (ii) 

qualitative techniques that leverage allele calls; (iii) quantitative techniques that leverage 

30 allele calls; (iv) techniques that use a probability distribution function for the 

amplification of genetic data at each locus. All methods involve the measurement of 

multiple loci on a given segment of a given chromosome to determine the number of 

instances of the given segment in the genome of the target individual. In addition, the
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methods involve creating a set of one or more hypotheses about the number of instances 

of the given segment; measuring the amount of genetic data at multiple loci on the given 

segment; determining the relative probability of each of the hypotheses given the 

measurements of the target individual’s genetic data; and using the relative probabilities 

5 associated with each hypothesis to determine the number of instances of the given 

segment. Furthermore, the methods all involve creating a combined measurement M that 

is a computed function of the measurements of the amounts of genetic data at multiple 

loci. In all the methods, thresholds are determined for the selection of each hypothesis Hj 

based on the measurement M, and the number of loci to be measured is estimated, in - 

10 order to have a particular level of false detections of each of the hypotheses.

The probability of each hypothesis given the measurement M is P(Hi|M)= 

P(M|Hi)P(Hi)/P(M). Since P(M) is independent of Hi, we can determine the relative 

probability of the hypothesis given M by considering only P(M|Hj)P(Hi). In what follows, 

in order to simplify the analysis and the comparison of different techniques, we assume 

15 that P(Hj) is the same for all {H;}, so that we can compute the relative probability of all 

the P(Hj|M) by considering only Ρ(Μ|Η;). Consequently, our determination of thresholds 

and the number of loci to be measured is based on having particular probabilities of 

selecting false hypotheses under the assumption that P(H;) is the same for all {H;}. It will 

be clear to one skilled in the art after reading this disclosure how the approach would be 

20 modified to accommodate the fact that P(Hj) varies for different hypotheses in the set 

{Hi}. In some embodiments, the thresholds are set so that hypothesis Hi* is selected which 

maximizes P(HjjM) over all i. However, thresholds need not necessarily be set to 

maximize P(Hj|M), but rather to achieve a particular ratio of the probability of false 

detections between the different hypotheses in the set {H;}.

25 It is important to note that the techniques referred to herein for detecting

aneuploides can be equally well used to detect for uniparental disomy, unbalanced 

translocations, and for the sexing of the chromosome (male or female; XY or XX). All of 

the concepts concern detecting the identity and number of chromosomes (or segments of 

chromosomes) present in a given sample, and thus are all addressed by the methods 

30 described in this document. It should be obvious to one skilled in the art how to extend 

any of the methods described herein to detect for any of these abnormalities.
i
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The Concept of Matched Filtering

The methods applied here are similar to those applied in optimal detection of 

digital signals. It can be shown using the Schwartz inequality that the optimal approach to 

maximizing Signal to Noise Ratio (SNR) in the presence of normally distributed noise is 

5 to build an idealized matching signal, or matched filter, corresponding to each of the 

possible noise-fiee signals, and to correlate this matched signal with the received noisy 

signal. This approach requires that the set of possible signals are known as well as the 

statistical distribution - mean and Standard Deviation (SD) - of the noise. Herein is 

described the general approach to detecting whether chromosomes, or segments of DNA, 

10 are present or absent in a sample. No differentiation will be made between looking for 

whole chromosomes or looking for chromosome segments that have been inserted or 

deleted. Both will be referred to as DNA segments. It should be clear after reading this 

description how the techniques may be extended to many scenarios of aneuploidy and sex 

determination, or detecting insertions and deletions in the chromosomes of embryos, 

15 fetuses or bom children. This approach can be applied to a wide range of quantitative and 

qualitative genotyping platforms including Taqman, qPCR, Illumina Arrays, Affymetrix 

Arrays, Agilent Arrays, the MIPS kit etc.

Formulation of the General Problem

20 Assume that there are probes at SNPs where two allelic variations occur, x and y.

At each locus i, i=l.. ,N, data is collected corresponding to the amount of genetic material 

from the two alleles. In the Taqman assay, these measures would be, for example, the 

cycle time, Ct, at which the level of each allele-specific dye crosses a threshold. It will be 

clear how this approach can be extended to different measurements of the amount of 

25 genetic material at each locus or corresponding to each allele at a locus. Quantitative 

measurements of the amount of genetic material may be nonlinear, in which case the 

change in the measurement of a particular locus caused by the presence of the segment of 

interest will depend on how many other copies of that locus exist in the sample from other 

DNA segments. In some cases, a technique may require linear measurements, such that 

30 the change in the measurement of a particular locus caused by the presence of the 

segment of interest will not depend on how many other copies of that locus exist in the 

sample from other DNA segments. An approach will be described for how the 

measurements from the Taqman or qPCR assays may be linearized, but there are many
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other techniques for linearizing nonlinear measurements that may be applied for different 

assays.

The measurements of the amount of genetic material of allele x at loci 1... N is 

given by data dx = [dxj... dxN], Similarly for allele y, dy = [dy[... dyN]. Assume that each

5 segment j has alleles aj = [aji .... ajN] where each element aji is either x or y. Describe the 

measurement data of the amount of genetic material of allele x as dx = sx + ux where sx is 

the signal and uxis a disturbance. The signal sx= [fx(au,...,aji) ... fx(ajN,..., am)] where fx 

is the mapping from the set of alleles to the measurement, and J is the number of DNA 

segment copies. The disturbance vector υχ is caused by measurement error and, in the 

10 case of nonlinear measurements, the presence of other genetic material besides the DNA 

segment of interest. Assume that measurement errors are normally distributed and that 

they are large relative to disturbances caused by nonlinearity (see section on linearizing 
measurements) so that υχ; ~ nx; where nx; has variance ax2 and vector nx is normally 

distributed ~N(0,R), R=E(nxnxT). Now, assume some filter h is applied to this data to 

15 perform the measurement mx = hTdx = hTSx + hTux. In order to maximize the ratio of 

signal to noise (hTsx/hTnx) it can be shown that h is given by the matched filter h = pK'!sx 

where μ is a scaling constant. The discussion for allele x can be repeated for allele y.

Method la: Measuring Aneuploidy or Sex by Quantitative Techniques that Do Not Make 

20 Allele Calls When the Mean and Standard Deviation for Each Locus is Known

Assume for this section that the data relates to the amount of genetic material at a 

locus irrespective of allele value (e.g. using qPCR), or the data is only for alleles that 

have 100% penetrance in the population, or that data is combined on multiple alleles at 

each locus (see section on linearizing measurements) to measure the amount of genetic 

25 material at that locus. Consequently, in this section one may refer to data dx and ignore dy.

Assume also that there are two hypotheses: ho that there are two copies of the DNA 

segment (these are typically not identical copies), and hi that there is only 1 copy. For 

each hypothesis, the data may be described as dxj(ho) = sxi(ho)+nxj and άχίζΐη) = sx;(hi)+nxi 

respectively, where sxi(ho) is the expected measurement of the genetic material at locus i 

30 (the expected signal) when two DNA segments are present and sxi(hi) is the expected data 

for one segment. Construct the measurement for each locus by differencing out the 

expected signal for hypothesis ho: mxj= dxi~sxj(ho). If hi is true, then the expected value of 

the measurement is E(mxj) = sxj(hi)-sxi(ho)· Using the matched filter concept discussed 
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above, set h = (l/N)R_i(sxi(h|)-sxi(ho)). The measurement is described as m = hTdx =

(1/Ν)Σ|=ι ...N((sxi(hi)-sxj(ho))/Άί )mx|.
If hi is true, the expected value of E(m|hi) = mi = (l/N)^i=i...N(Sxi(hi)-sxi(ho))2/ox2

and the standard deviation of m is om|hi2 = (1/Ν2)Σ|=ι ..N((sxi(hi)-sxi(ho))2/oxi4)ox2 =

(l/N2)2i=i...N(sXi(hl)-sXi(ho))2/ox2.

If ho is true, the expected value of m is E(m|h0) - mo = 0 and the standard 

deviation of m is again am[ho2= (l/N2)Zi=1...N(sxi(hl)-sxi(ho))2/oxi2.

Figure 3 illustrates how to determine the probability of false negatives and false 

positive detections. Assume that a threshold t is set half-way between mi and mo in order 

to. make the probability of false negatives and false positives equal (this need not be the 

case as is described below). The probability of a false negative is determined by the ratio 

of (mi-tyomihi^mi-moj^Omihi). “5-Sigma” statistics may be used so that the probability 

of false negatives is l-normcdf(5,0,l) = 2.87e-7. In this case, the goal is for (ηη- 
m0)/(2om|ho) > 5 or 10sqrt((l/N2)Ei=1i..N(sxi(hi)-sxi(ho))2/oxi2) < (l/N)Ei=1..,χ^φι)- 

sxi(ho))2/ox2 or sqrt(Li=i...N(sXi(hi)-sxi(ho))2/ox2) > 10. In order to compute the size of N, 

Mean Signal to Noise Ratio can be computed from aggregated data: MSNR = 
(l/N)Ei=i...N(sXi(hi)-sxi(ho))2/oXj2. N can then be found from the inequality above: 

sqrt(N).sqrt(MSNR) > 10 or N > 100/MSNR.

This approach was applied to data measured with the Taqman Assay from Applied 

BioSystems using 48 SNPs on the X chromosome. The measurement for each locus is the 

time, Ct, that it takes the die released in the well corresponding to this locus to exceed a 

threshold. Sample 0 consists of roughly 0.3ng (50 cells) of total DNA per well of mixed 

female origin where subjects had two X chromosomes;, sample 1 consisted of roughly 

0.3ng of DNA per well of mixed male origin where subject had one X chromosome. 

Figure 4 and Figure 5 show the histograms of measurements for samples 1 and 0. The 

distributions for these samples are characterized by mo= 29.97; SDo=1.32, mi=31.44, 

SDi=1.592. Since this data is derived from mixed male and. female samples, some of the 

observed SD is due to the different allele frequencies at each SNP in the mixed samples. 

In addition, some of the observed SD will be due to the varying efficiency of the different 

assays at each SNP, and the differing amount of dye pipetted into each well. Figure 6 

provides a histogram of the difference in the measurements at each locus for the male and 

female sample. The mean difference between the male and female samples is 1.47 and the 

SD of the difference is 0.99. While this SD will still be subject to the different allele 
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frequencies in the mixed male and female samples, it will no longer be affected the 

different efficiencies of each assay at each locus. Since the goal is to differentiate two 

measurements each with a roughly similar SD, the adjusted SD may be approximated for 

each measurement for all loci as 0.99/sqrt(2)=0.70. Two runs were conducted for every 

5 locus in order to estimate oxj for the assay at that locus so that a matched filter could be 

applied. A lower limit of σχ, was set at 0.2 in order to avoid statistical anomalies resulting 

from only two runs to compute oxj. Only those loci (numbering 37) for which there were 

no allele dropouts over both alleles, over both experiment runs and over both male and 

female samples were used in the plots and calculations. Applying the approach above to 

10 this data, it was found that MSNR=2.26, hence N = 2252/2.26Λ2 = 17 loci.

Method lb: Measuring Aneuploidy or Sex by Quantitative Techniques that Do Not Make 

Allele Calls When the Mean and Std. Deviation is Not Known or is Uniform

When the characteristics of each locus are not known well, the simplifying

15 assumptions that all the assays at each locus will behave similarly can be made, namely 

that E(mxj) and σχί are constant across all loci i, so that it is possible to refer instead only 

to E(mx) and σχ. In this case, the matched filtering approach m= hTdx reduces to finding 

the mean of the distribution of dx. This approach will be referred to as comparison of 

means, and it will be used to estimate the number of loci required for different kinds of 

20 detection using real data.

As above, consider the scenario when there are two chromosomes present in the 

sample (hypothesis ho) or one chromosome present (hi). For ho, the distribution is 
N(po3oo2) and for hi the distribution is Ν(μι,σι2). Measure each of the distributions using 

No and Ni samples respectively, with measured sample means and SDs: mi, mo, si, and so- 

25 The means can be modeled as random variables Mo, Mi that are normally distributed as 
Mo ~Ν(μο, σο2/Νο) and Μι~Ν(μι, σι2/Νι). Assume Ni and No are large enough (> 30) so 

that one can assume that Mi~N(mi, Si2/Ni) and Mo ~N(mo, so2/No). In order to test 

whether the distributions are different, the difference of the means test may be used, 

where d = mi-mo- The variance of the random variable D is σ<ι2 = σι2/Νι +σο2/Νο which 

30 may be approximated as csf = Si2/Ni+s02/N0. Given h0, E(d) = 0; given hi, Ε(ά)=μι-μο· 

Different techniques for making the call between hi for ho will now be discussed.

Data measured with a different run of the Taqman Assay using 48 SNPs on the X 

chromosome was used to calibrate performance. Sample 1 consists of roughly 0.3ng of · 
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DNA per well of mixed male origin containing one X chromosome; sample 0 consisted of 

roughly 0.3ng of DNA per well of mixed female origin containing two X chromosomes. 

Ni = 42 and No = 45. Figure 7 and Figure 8 show the histograms for samples 1 and 0. The 

distributions for these samples are characterized by mi=32.259, Si=1.460, 

omi=Si/sqrt(Ni)=0.225; mo= 30.75; so=1.2O2, om0=So/sqrt(No)=0.179. For these samples 

d=1.509 and od=0.2879.

Since this data is derived from mixed male and female samples, much of the 

standard deviation is due to the different allele frequencies at each SNP in the mixed 

samples. SD is estimated by considering the variations in Ct for one SNP at a time, over 

multiple runs. This data is shown in Figure 9. The histogram is symmetric around 0 since 

Ct for each SNP is measured in two runs or experiments and the mean value of Ct for 

each SNP is subtracted out. The average std. dev. across 20 SNPs in the mixed male 

sample using two runs is s=0.597. This SD will be conservatively used for both male and 

female samples, since SD for the female sample will be smaller than for the male sample. 

In addition, note that the measurement from only one dye is being used, since the mixed 

samples are assumed to be heterozygous for all SNPs. The use of both dyes requires the 

measurements of each allele at a locus to be combined, which is more complicated (see 

section on linearizing measurements). Combining measurements on both dyes would 

double signal amplitude and increase noise amplitude by roughly sqrt(2), resulting in an 

SNR improvement of roughly sqrt(2) or 3dB.

Detection Assuming No Mosaicism and No Reference Sample

Assume that mo is known perfectly from many experiments, and every experiment 

runs only one sample to compute mi to compare with mo. Ni is the number of assays and 

assume that each assay is a different SNP locus. A threshold t can be set half way 

between mo and mi to make the likelihood of false positives equal the number of false 

negatives, and a sample is labeled abnormal if it is above the threshold. Assume sj = S2 = s 

= 0.597 and use the 5-sigma approach so that the probability of false negatives or 

positives is l-normcdf(5,0,l) = 2.87e-7. The goal is for 5si/sqrt(Ni) < (mi-mo)/2, hence 
Ni = 100 s i2/(mi~mo)2 = 16. Now, an approach where the probability of a false positive is 

allowed to be higher than the probability of a false negatives, which is the harmful 

scenario, may also be used. If a positive is measured, the experiment may be rerun. 

Consequently, it is possible to say that the probability of a false negative should be equal
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to the square of the probability of a false positive. Consider Figure 3, let t = threshold, and 
assume Sigma_0 = Sigma_l - s. Thus (l-normcdf((t-mo)/s,0,l))2 = l-normcdf((mi- 

t)/s,0,l). Solving this, it can be shown that t = mo+0.32(nii-mo). Hence the goal is for 
5s/sqrt(Ni)<mi-mo-O.32(mi-mo) = (mrmo)/l .47, hence Nt = (52)(1.472)s2/(mi-m0)2 = 9.

5
Detection with Mosaicism without Running a Reference Sample

Assume the same situation as above, except that the goal is to detect mosaicism 

with a probability of 97.7% (i.e. 2-sigma approach). This is better than the standard 

approach to amniocentesis which extracts roughly 20 cells and photographs them. If one 

10 assumes that 1 in 20 cells is aneuploid and this is detected with 100% reliability, the 

probability of having at least one of .the group being aneuploid using the standard 

approach is 1-0.952° = 64%. If 0.05% of the cells are aneuploid (call this sample 3) then 

m3 = O.95mo + 0.05mj and var(m3) = (0.95s02+0.05si2)/Ni. Thus std(m3)2<(m3-mo)/2 => 

sqrt(O.95so2+O.O5si2)/sqrt(Ni) < 0.05(mi-m2)/4 => Ni = 16(0.95s22+0.05s]2)/(0.052(mi- 

15 m2)2) = 1001. Note that using the goal of 1-sigma statistics, which is still better than can

be achieved using the conventional approach (i.e. detection with 84.1% probability), it 

can be shown in a similar manner that Ni = 250.

Detection with No Mosaicism and Using a Reference Sample

20 Although this approach may not be necessary, assume that every experiment runs

two samples in order to compare mi with truth sample m2. Assume that N = Ni = No- 

Compute d = πη-ιηο and, assuming Oi = σο, set a threshold t = (mo+mi)/2 so that the 

probability of false positives and false negatives is equal. To make the probability of 
false negatives 2.87e-7, it must be the case that (ml-m2)/2>5sqrt(si2/N+s22/N) => N =

25 100(si2+s22)/(ml-m2)2=32.

Detection with Mosaicism and Running a Reference Sample

As above, assume the probability of false negatives is 2.3% (i.e. 2-sigma 

approach). If 0.05% of the cells are aneuploid (call this sample 3) then m3 = 0.95m<> + 
30 0.05mi and var(m3) = (0.95so2+0.05si2)/Ni. d = m3-m2 and of ~ (1.95so2+O.O5si2)/N. It

must be that std(m3)2<(mo-m2)/2 => sqrt(1.95s22+0.05si2)/sqrt(N) < 0.05(mi-m2)/4 => N 

= 16(1.95s22+0.05si2)/(0.052(mi-m2)2) = 2002. Again using 1-sigma approach, it can he 

shown in a similar maimer that N = 500.
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Consider the case if the goal is only to detect 5% mosaicism with a probability of

64% as is the current state of the art Then, the probability of false negative would be

36%. In other words, it would be necessary to find x such that l-normcdf(x,0,1)=36%.
Thus N = 4(0.36A2)(1.95s22+0.05si2)/(0.052(mi-m2)2) = 65 for the 2-sigma approach, or N

5 = 33 for the 1-sigma approach. Note that this would result in a very high level of false

positives, which needs to be addressed, since such a level of false positives is not 

currently a viable alternative.

Also note that if N is limited to 384 (i.e. one 384 well Taqman plate per 

chromosome), and the goal is to detect mosaicism with a probability of 97.72%, then it 

10 will be possible to detect mosaicism of 8.1% using the 1-sigma approach. In order to 

detect mosaicism with a probability of 84.1% (or with a 15.9% false negative rate), then it 

will be possible to detect mosaicism of 5.8% using the 1-sigma approach. To detect 

mosaicism of 19% with a confidence of 97.72% it would require roughly 70 loci. Thus 

one could screen for 5 chromosomes on a single plate.

15 The summary of each of these different scenarios is provided in Table 2. Also

included in this table are the results generated from qPCR and the SYBR assays. The 

methods described above were used and the simplifying assumption was made that the 

performance of the qPCR assay for each locus is the same. Figure 10 and Figure 11 show 

the histograms for samples 1 and 0, as described above. No = Ni = 47. The distributions of 

20 the measurements for these samples are characterized by mi = 27.65, si = 1.40, 

omi=Si/sqrt(Ni)=0.204; mo= 26.64; s0=1.146, omo=So/sqrt(No)=0.167. For these samples 

d=1.01 and Od=0.2636. Figure 12 shows the difference between Ct for the male and 

female samples for each locus, with a standard deviation of the difference over all loci of 

0.75. The SD was approximated for each measurement of each locus on the male or 

25 female sample as 0.75/sqrt(2)=0.53.

Method 2: Qualitative Techniques that Use Allele Calls

In this section, no assumption is made that the assay is quantitative. Instead, the 

assumption is that the allele calls are qualitative, and that there is no meaningful 

30 quantitative data coming from the assays. This approach is suitable for any assay that 

makes an allele call. Figure 13 describes how different haploid gametes form during 

meiosis, and will be used to describe the different kinds of aneuploidy that are relevant
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for this section. The best algorithm depends on the type of aneuploidy that is being 

detected.

Consider a situation where aneuploidy is caused by a third segment that has no 

section that is a copy of either of the other two segments. From Figure 13, the situation 

would arise, for example, if pi and p4, or p2 and pj, both arose in the child cell in addition 

to one segment from the other parent This is very common, given the mechanism which 

causes aneuploidy. One approach is to start off with a hypothesis ho that there are two 

segments in the cell and what these two segments are. Assume, for the purpose of 

illustration, that ho is for p3 and rm from Figure 13 In a preferred embodiment this 

hypothesis comes from algorithms described elsewhere in this document Hypothesis hi is 

that there is an additional segment that has no sections that are a copy of the other 

segments. This would arise, for example, if p2 or mi was also present. It is possible to 

identify all loci that are homozygous in p3 and nu. Aneuploidy can be detected by 

searching for heterozygous genotype calls at loci that are expected to be homozygous.

Assume every locus has two possible alleles, x and y. Let the probability of alleles 

x and y in general be px and py respectively, and px+py=l. If hi is true, then for each locus 

i for which p3 and nu are homozygous, then the probability of a non-homozygous call is 

py or px, depending on whether the locus is homozygous in x or y respectively. Note: 

based on knowledge of the parent data, i.e. pi, p2, p4 and mi, m2, m3, it is possible to 

further refine the probabilities for having non-homozygous alleles x or y at each locus. 

This will enable more reliable measurements for each hypothesis with the same number 

of SNPs, but complicates notation, so this extension will not be explicitly dealt with. It 

should be clear to someone skilled in the art how to use this information to increase the 

reliability of the hypothesis.

The probability of allele dropouts is pa- The probability of finding a heterozygous 

genotype at locus i is poi given hypothesis ho and pn given hypothesis hp

Given ho: poi = 0

Given hi: pn = px(l-pa) or pu = py(l-pd) depending on whether the locus is 

homozygous for x or y.

Create a measurement m - 1/Nh Σι=ι...νιι Ii where I, is an indicator variable, and is 

1 if a heterozygous call is made and 0 otherwise. Nh is the number of homozygous loci. 

One can simplify the explanation by assuming that px=py and poi, pn for all loci are the 
same two values po and pi. Given ho, E(m) = po = θ and σ2πψο = po(l- Po)/Nh. Given hi, 
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E(m) = pi and o2m[hi = pi(l-pi)/Nh- Using 5 sigma-statistics, and making the probability of 

false positives equal the probability of false negatives, it can be shown that (pi-po)/2 > 
5om|hi hence Nh - lOO(po(l-po)+pi(l-pi))/(pi-po)2· For 2-sigma confidence instead of 5- 

sigma confidence, it can be shown thatNh = 4.22(po(l-po)+pi(I-pi))/(pi-po)2·

It is necessary to sample enough loci N that there will be sufficient available 

homozygous loci Nh-avaii such that the confidence is at least 97.7% (2-sigma). Characterize 

Nh-avaii = Σί=ι...Ν Ji where J, is an indicator variable of value 1 if the locus is homozygous 
and 0 otherwise. The probability of the locus being homozygous is px2+py2. Consequently, 

E(Nh.avaii)=N(px2+py2) and ONh-avai2= N(px2+py2)( 1 - px2-py2). To guarantee N is large 

enough with 97.7% confidence, it must be that E(Nh-avaii) - 2oNh-avaii = Nh where Nh is 

found from above.

For example, if one assumes pa = 0.3, px = py = 0.5, one can find Nh = 186 and N 

= 391 for 5-sigma confidence. Similarly, it is possible to show that Nh = 30 and N = 68 

for 2-sigma confidence i.e. 97.7% confidence in false negatives and false positives.

Note that a similar approach can be applied to looking for deletions of a segment 

when ho is the hypothesis that two known chromosome segment are present, and hj is the 

hypothesis that one of the chromosome segments is missing. For example, it is possible to 

look for all of those loci that should be heterozygous but are homozygous, factoring in the 

effects of allele dropouts as has been done above.

Also note that even though the assay is qualitative, allele dropout rates may be 

used to provide a type of quantitative measure on the number of DNA segments present.

Method 3: Making use of Known Alleles of Reference Sequences, and Quantitative Allele 

Measurements

Here, it is assumed that the alleles of the normal or expected set of segments are 

known. In order to check for three chromosomes, the first step is to clean the data, 

assuming two of each chromosome. In a preferred embodiment of the invention, the data 

cleaning in the first step is done using methods described elsewhere in this document. 

Then the signal associated with the expected two segments is subtracted from the 

measured data. One can then look for an additional segment in the remaining signal. A 

matched filtering approach is used, and the signal characterizing the additional segment is 

based on each of the segments that are believed to be present, as well as their 

complementary chromosomes. For example, considering Figure 13, if the results of PS
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indicate that segments p2 and ml are present, the technique described here may be used 

to check for the presence of p2, p3, ml and m.4 on the additional chromosome. If there is 

an additional segment present, it is guaranteed to have more than 50% of the alleles in 

common with at least one of these test signals. Note that another approach, not described

5 in detail here, is to use an algorithm described elsewhere in the document to clean the 

data, assuming an abnormal number of chromosomes, namely 1, 3,4 and 5 chromosomes, 

and then to apply the method discussed here. The details of this approach should be clear 

to someone skilled in the art after having read this document.

Hypothesis ho is that there are two chromosomes with allele vectors ai_ a2.

10 Hypothesis hi is that there is a third chromosome with allele vector a3. Using a method 

described in this document to clean the genetic data, or another technique, it is possible to 

determine the alleles of the two segments expected by fo: ai = [ai i ... am] and a2 = [a2i ... 

a2n] where each element aj; is either x or y. The expected signal is created for hypothesis 

ho: sOx = [fox(an, a2[) ... fx0(aiN, a2N)], sOy= [fy(an, a2i) ... fy(aiN, a^)] where fx, fy describe

15 the mapping from the set of alleles to the measurements of each allele. Given ho, the data
may be described as dxi = soxi+nxj, nXi~N(0,ox2); dyi = soyi+nyi, η^-ΝίΟ,σ^2). Create a 

measurement by differencing the data and the reference signal: mx,=dxj-sxi; m^dyj-Syi. 
The full measurement vector is m=[mxT myT]T.

Now, create the signal for the segment of interest — the segment whose presence is

20 suspected, and will be sought in the residual — based on the assumed alleles of this 

segment: a3 = [a3i ... a3N]. Describe the signal for the residual as: sr= [sraT SryT]T where s„ 

= [frx(a3i) WML Spy = [fpy(a31) ... fry(a3N)] where f„(a3i) = δχί if a3i = x and 0 

otherwise, fty(a3i) = δ^· if a3; = y and 0 otherwise. This analysis assumes that the 

measurements have been linearized (see section below) so that the presence of one copy

25 of allele x at locus i generates data δχι·+ηχϊ and the presence of kx copies of the allele x at 

locus i generates data Κχδχί+η,ά. Note however that this assumption is not necessary for the 

general approach described here. Given hi, if allele a3; = x then mxi = δχ1-+ηχι, m^ = nyi and 
if a3j = y then mxi = nxj, = 5yi+nyi. Consequently, a matched filter h = (l/N)R'’sr can be

created where R = diag([oxi2... oxn2 oy]2... oyN2]). The measurement is m = hTd.

30 h0: m = (1/N) Σι=ι..Ν Snin^/a^+s^-afloyi2

hi· m (1/N) Σ;=ι..ν Snd(6xi4nxi)/crxi Rsiyi(5yi4'nyi)/<yyi
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In order to estimate the number of SNPs required, make the simplifying assumptions that 

all assays for all alleles and all loci have similar characteristics, namely that 6xi=6yi=6 and 

oxi=0yi^a for i=l...N. Then, the mean and standard deviation may be found as follows:
ho: E(m)=mo=0; am)h02= (1/^0^/2)(0^+0^)= δ2/(Νσ2)

hi: E(m)HMl/N)(N/2(rX62+-62)= δ^σ2; σπ.|Η2=(1/Ν2σ4χΝΧσ2δ2)= δ2/(Νσ2) 

Now compute a signal-to-noise ratio (SNR) for this test of hi versus ho. The signal is mi- 
mo= δ^σ2, and the noise variance of this measurement is om|ho2+om[hi2= Ιδ^ζΝσ2). 

Consequently, the SNR for this test is (6^0^/(26^^0^))= Νδ2/(2σ2).

Compare this SNR to the scenario where the genetic information is simply 

summed at each locus without performing a matched filtering based on the allele calls. 

Assume that h=(l/N)T where T is the vector of N ones, and make the simplifying 

assumptions as above that 6xi=6yi=6 and oxj=Oyj=o for i=l...N. For this scenario, it is 
straightforward to show that if m=hTd:

ho: E(m)=mo=O; om|h02= No2/N2+No2/N2 =202^

hi: E(m)=mi=(l/N)(N5/2+N6/2)= δ; om,hl2=(l/N2)(No2+ No2)= 2o2/N 

Consequently, the SNR for this test is N62/(4o2). In other words, by using a matched filter 

that only sums the allele measurements that are expected for segment a3, the number of 

SNPs required is reduced by a factor of 2. This ignores the SNR gain achieved by using 

matched filtering to account for the different efficiencies of the assays at each locus.

Note that if we do not correctly characterize the reference signals sx; and s^ then 

the SD of the noise or disturbance on the resulting measurement signals mxi and myj will 

be increased. This will be insignificant if δ « o, but otherwise it will increase the 

probability of false detections. Consequently, this technique is well suited to test the 

hypothesis where three segments are present and two segments are assumed to be exact 

copies of each other. In this case, sXj and Sy, will be reliably known using techniques of 

data cleaning based on qualitative allele calls described elsewhere. In one embodiment 

method 3 is used in combination with method 2 which uses qualitative genotyping and, 

aside from the quantitative measurements from allele dropouts, is not able to detect the 

presence of a second exact copy of a segment.

We now describe another quantitative technique that makes use of allele calls. The 

method involves comparing the relative amount of signal at each of the four registers for 

a given allele. One can imagine that in the idealized case involving a single, normal cell, 

where homogenous amplification occurs, (or the relative amounts of amplification are
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normalized), four possible situations can occur: (i) in the case of a heterozygous allele, 

the relative intensities of the four registers will be approximately 1:1:0:0, and the absolute 

intensity of the signal will correspond to one base pair, (ii) in the case of a homozygous 

allele, the relative intensities will be approximately 1:0:0:0, and the absolute intensity of 

the signal will correspond to two base pairs; (iii) in the case of an allele where ADO 

occurs for one of the alleles, the relative intensities will be approximately 1:0:0:0, and the 

absolute intensity of the signal will correspond to one base pair; and (iv) in the case of an 

allele where ADO occurs for both of the alleles, the relative intensities will be 

approximately 0:0:0:0, and the absolute intensity of the signal will correspond to no base 

pairs.

In the case of aneuploides, however, different situations will be observed. For 

example, in the case of trisomy, and there is no ADO, one of three situations will occur: 

(i) in the case of a triply heterozygous allele, the relative intensities of the four registers 

will be approximately 1:1:1:0, and the absolute intensity of the signal will correspond to 

one base pair; (ii) in the case where two of the alleles are homozygous, the relative
(

intensities will be approximately 2:1:0:0, and the absolute intensity of the signal will 

correspond to two and one base pairs, respectively; (iii) in the case where are alleles are 

homozygous, the relative intensities will be approximately 1:0:0:0, and the absolute 

intensity of the signal will correspond to three base pairs. If allele dropout occurs in the 

case of an allele in a cell with trisomy, one of the situations expected for a normal cell 

will be observed. In the case of monosomy, the relative intensities of the four registers 

will be approximately 1:0:0:0, and the absolute intensity of the signal will correspond to 

one base pair. This situation corresponds to the case of a normal cell where ADO of one 

of the alleles has occurred, however in the case of the normal cell, this will only be 

observed at a small percentage of the alleles. In the case of uniparental disomy, where 

two identical chromosomes are present, the relative intensities of the four registers will be 

approximately 1:0:0:0, and the absolute intensity of the signal will correspond to two base 

pairs. In the case of UPD where two different chromosomes from one parent are present, 

this method will indicate that the cell is normal, although further analysis of the data 

using other methods described in this patent will uncover this.

In all of these cases, either in cells that are normal, have aneuploides or UPD, the

data from one SNP will not be adequate to make a decision about the state of the cell.

However, if the probabilities of each of the above hypothesis are calculated, and those
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probabilities are combined for a sufficient number of SNPs on a given chromosome, one 

hypothesis will predominate, it will be possible to determine the state of the chromosome 

with high confidence.

5 Methods for linearizing quantitative measurements

Many approaches may be taken to linearize measurements of the amount of 

genetic material at a specific locus so that data from different alleles can be easily 

summed or differenced. We first discuss a generic approach and then discuss an approach 

that is designed for a particular type of assay.

10 Assume data dXj refers to a nonlinear measurement of the amount of genetic

material of allele x at locus i. Create a training set of data using N measurements, where 

for each measurement, it is estimated or known that the amount of genetic material 

corresponding to data dXi is βΧί. The training set βΧί, i=l...N, is chosen to span all the 

different amounts of genetic material that might be encountered in practice. Standard 

15 regression techniques can be used to train a function that maps from the nonlinear 

measuremert, dXi, to the expectation of the linear measurement, Ε(βχ0. For example, a 

linear regression can be used to train a polynomial function of order P, such that Ε(βχ;) = 
[1 da dx2 .... dxp]c where c is the vector of coefficients c = [co ci ... Cp]T. To train this 

linearizing function, we create a vector of the amount of genetic material for N 
20 measurements βχ = [βχί... βχκ]Τ and a matrix of the measured data raised to powers 0.. ,P:

D - [[1 dxi dxi2.... dxiP]T [1 dx2dx22_ dx2P]T ... [1 dxNdxN2.... dxNP]T]T- The coefficients can 

then be found using a least squares fit c = (DTD)‘*D^X.

Rather than depend on generic functions such as fitted polynomials, we may also 

create specialized functions for the characteristics of a particular assay. We consider, for 

25 example, the Taqman assay or a qPCR assay. The amount of die for allele x and some 

locus i, as a function of time up to the point where it crosses some threshold, may be 

described as an exponential curve with a bias offset: gxi(t) = (¾ + pxjexp(yxit) where αχ1· is 

the bias offset, γΧΙ· is the exponential growth rate, and β« corresponds to the amount of 

genetic material. To cast the measurements in terms of βχί, compute the parameter o^; by 

30 looking at the asymptotic limit of the curve gxi(-<») and then may find βχ; andyxi by taking 

the log of the curve to obtain log(gxi(t)- axi) = log$xj) + yxit and performing a standard 

linear regression. Once we have values for ax, and γΧϊ, another approach is to compute βχ;
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from the time, tx, at which the threshold gx is exceeded. βχί = (gx - axi)exp(-yx,-tx). This will

be a noisy measurement of the true amount of genetic data of a particular allele.

Whatever techniques is used, we may model the linearized measurement as βΧϊ =

κχδχϊ+ηχί where kx is the number of copies of allele x, δχ; is a constant for allele x and

5 locus i, and ηχ1—Ν(0, σχ2) where σχ2 can be measured empirically.

Method 4: Using a probability distribution function for the amplification of genetic data 

at each locus

The quantity of material for a particular SNP will depend on the number of initial

10 segments in the cell on which that SNP is present. However, due to the random nature of

the amplification and hybridization process, the quantity of genetic material from a 

particular SNP will not be directly proportional to the starting number of segments. Let 

qs>A, qs,G> Qs.t, qs,c represent the amplified quantity of genetic material for a particular SNP 

s for each of the four nucleic acids (A,C,T,G) constituting the alleles. Note that these

15 quantities may be exactly zero, depending on the technique used for amplification. Also

note that these quantities are typically measured from the intensity of signals from 

particular hybridization probes This intensity measurement can be used instead of a 

measurement of quantity, or can be converted into a quantity estimate using standard 

techniques without changing the nature of the invention. Let qs be the sum of all the 

20 genetic material generated from all alleles of a particular SNP: qs = qs,A + Qs,g + qs,T + qs,c· 

Let N be the number of segments in a cell containing the SNP s. N is typically 2, but may 

be 0,1 or 3 or more. For any high or medium throughput genotyping method discussed, 

the resulting quantity of genetic material can be represented as qs = (A+A0,S)N+9S where 

A is tihe total amplification that is either estimated a-priori or easily measured empirically, 

25 Abj3 is the error in the estimate of A for the SNP s, and 0s is additive noise introduced in 

the amplification, hybridization and other process for that SNP. The noise terms Αθ>3 and 

0s are typically large enough that qs will not be a reliable measurement of N. However, the 

effects of these noise terms can be mitigated by measuring multiple SNPs on the 

chromosome. Let S be the number of SNPs that are measured on a particular 

30 chromosome, such as chromosome 21. It is possible to generate the average quantity of 

genetic material over all SNPs on a particular chromosome as follows:
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5 random variable with 0 mean and variance
S

(Ν2σ2^
+ σ2β). Consequently, if sufficient

number of SNPs are measured on the chromosome such that S »\Ν2σ2Λ^ + &2e), then

N=q/A can be accurately estimated.

In a another embodiment, assume that the amplification is according to a model 

where the signal level from one SNP is s=a+a where (a+α) has a distribution that looks 

10 like the picture in Figure 14, left. The delta function at 0 models the rates of allele 

dropouts of roughly 30%, the mean is a, and if there is no allele dropout, the amplification 

has uniform distribution from 0 to ao. In terms of the mean of this distribution ao is found 

to be ao=2.86a. Now model the probability density function of a using the picture in 

Figure 14, right. Let Sc be the signal arising from c loci; let n be the number of segments;

15 let a, be a random variable distributed according to Figure 14 that contributes to the signal 

from locus i; and let σ be the standard deviation for all {a,}. sc=anc+Li=i..nc a,; mean(sc) = 

anc; std(sc) = sqrt(nc)o. If σ is computed according to the distribution in Figure 14, right, 
it is found to be o=0.907a2. We can find the number of segments from n=sc/(ac) and for 

“5-sigma statistics” we require std(n)<0.1 so std(sc)/(ac) = 0.1 => 0.95a.sqrt(nc)/(ac) = 0.1

20 soc = 0.952n/0.12= 181.

Another model to estimate the confidence in the call, and how many loci or SNPs 

must be measured to ensure a given degree of confidence, incorporates the random 

variable as a multiplier of amplification instead of as an additive noise source, namely 

s=a(l+a). Taking logs, log(s) - log(a) + log(l+a). Now, create a new random variable 

25 y=log(l+a) and this variable may be assumed to be normally distributed ~Ν(0,σ). In this 

model, amplification can range from very small to very large, depending on σ, but never 

negative. Therefore a=eT-l; and sc=Zj=i .cna(l+ai). For notation, mean(sc) and expectation 

value E(sc) are used interchangeably

30 E(sc) = acn + α£$Σι-ι ^oql-acn + «#(]>] ^αι)= acn^ + Ε(ά))
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To find E(a) the probability density function (pdf) must be found for a which is possible 

since a is a function ofy which has a known Gaussian pdf. pa(a)=pY(y)(dy/da). So:

Pr(r) =
1 — and J (log(l + a))- -e

da da 1 + a
e~"' t-

■\12πσ

5

and:

PaG) =
1

-(log(I+a))2

V . c 2σ- 1
• »—"·'· C· o /ΐπσ 1 + a

This has the form shown in Figure 15 for σ=Τ. Now, E(a) can be found by integrating

10 over this pdf E(a) - j apa(a)da which can be done numerically for multiple different J-CQ

o. This gives E(sc) or mean(sc) as a function of o. Now, this pdf can also be used to find 

var(sc):

var(sc) = E(sc - E(sc))2 = e(^w ma(l + a,)-acn - a#(£;=1
=Ε&ι=^αα’ - αΕ^Σι=ι..^α^

=a2E^M^ai-cnE(aif

= )2 - )+ ^2«X«)2 )
= azE(cna2 + cn(cn - 1)α;αγ - 2cnE(a'^'j. i c2n2E(a)2^

= azczn2(E(az) + (cn -1)2^(^0,) — 2cnE(a)2 + cnE(a)2^

= azc2n2(E(a2) + (cn - \)E(ayXj) — cnE^a)2}

15

which can also be solved numerically using ρα(α) for multiple different σ to get var(sc) as 

a function of σ. Then, we may take a series of measurements from a sample with a known 

number of loci c and a known number of segments n and find std(sc)/E(sc) from this data. 

That will enable us to compute a value for σ. In order to estimate n, E(sc)=nac(l+E(a)) so 
s sld Λ c J

20 h-—7—-------x can be measured so that stdin) =—τ—- — ? std(n)ac(l + E(a)) ac(l + E(a))
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When summing a sufficiently large number of independent random variables of 0-mean, 

the distribution approaches a Gaussian form, and thus sc (and it) can be treated as 

normally distributed and as before we may use 5-sigma statistics:

<0.1
ac(l + E(a))
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in order to have an error probability of 2normcdf(5,0,l) = 2.7e-7, From this, one 

can solve for the number of loci c.

Sexing

In one embodiment of the system, the genetic data can be used to determine the 

sex of the target individual. After the method disclosed herein is used to determine which 

segments of which chromosomes from the parents have contributed to the genetic 

material of the target, the sex of the target can be determined by checking to see which of 

the sex chromosomes have been inherited from die father: X indicates a female, and Y 

indicates a make. It should be obvious to one skilled in the art how to use this method to 

determine the sex of the target.

Validation of the Hypotheses

In some embodiments of the system, one drawback is that in order to make a 

prediction of the correct genetic state with the highest possible confidence, it is necessaiy 

to make hypotheses about every possible states. However, as the possible number of 

genetic states are exceptionally large, and computational time is limited, it may not be 

reasonable to test every hypothesis. In these cases, an alternative approach is to use the 

concept of hypothesis validation. This involves estimating limits on certain values, sets 

of values, properties or patterns that one might expect to observe in the measured data if a 

certain hypothesis, or class of hypotheses are true. Then, the measured values can tested 

to see if they fall within those expected limits, and/or certain expected properties or 

patterns can be tested for, and if the expectations are not met, then the algorithm can flag 

those measurements for further investigation.

For example, in a case where the end of one arm of a chromosome is broken off in 

the target DNA, the most likely hypothesis may be calculated to be “normal” (as opposed, 

for example to “aneuploid”). This is because the particular hypotheses that corresponds 

to the true state of the genetic material, namely that one end of the chromosome has 
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broken off, has not been tested, since the likelihood of that state is very low. If the 

concept of validation is used, then the algorithm will note that a high number of values, 

those that correspond to the alleles that lie on the broken off section of the chromosome, 

lay outside the expected limits of the measurements. A flag will be raised, inviting

5 further investigation for this case, increasing the likelihood that the true state of the 

genetic material is uncovered.

It should be obvious to one skilled in the art how to modify the disclosed method 

to include the validation technique. Note that one anomaly that is expected to be very 

difficult to detect using the disclosed method is balanced translocations.

10
Application of the method -with contaminated DNA

In one embodiment of the system, genetic data from target DNA which has been 

definitely or possibly contaminated with foreign DNA can also be cleaned using the 

disclosed method. The concept outlined above, that of hypothesis validation, can be used 

15 to identify genetic samples that fall outside of expected limits; in the case of contaminated 

samples it is expected that this validation will cause a flag to be raised, and the sample 

can be identified as contaminated.

Since large segments of the target DNA will be known from the parental genetic 

data, and provided the degree of contamination is sufficiently low and sufficient SNPs are 

20 measured, the spurious data due to the foreign genetic material can be identified. The 

method disclosed herein should still allow for the reconstruction of the target genome, 

albeit with lower confidence levels. Provided that the level of contamination is 

sufficiently low, the hypothesis that is calculated to be most likely is still expected to 

correspond to the true state of the genetic material in the target DNA sample.

25 It should be obvious to one skilled in the art how to optimize these methods for

the purpose cleaning genetic data contaminated with spurious signals due to foreign 

DNA.

Example of Reduction to Practice

30

In one embodiment of the system, the method described above can be 

implemented using a set of algorithms which will calculate the most likely identity of 

each SNP in a list of relevant SNPs, as well as a confidence level for each SNP call.
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Described here is one possible way to implement the method disclosed in this patent. 

Figure 16 and Figure 17 visually represent the breakdown of this implementation of the 

disclosed method, the input requirements and the format of the output.

Figure 16 focuses on the input data (1601) and its format and requirements, as

5 well as the output data (1605) and its format. Input to the algorithm consists of the 

measured data (1602), including input by the user, and existing data (1603) preserved in 

the database, that is consequently updated by the newly collected data. The measured data 

(MD, 1602) consists of the genetic data as measured for desired SNPs for the embryo, 

and the paternal and maternal alleles, as well as the accuracy, or confidence with which 

10 each of the alleles is known. The existing data (1603) consists of the population 

frequency data (FD), measurement bias data (BD), and crossover data (CD).

The population frequency data (FD) contains the allele frequency (for each of the 

values A,C,T,G) for each of the SNPs available. These data can be previously known or 

measured, and can be updated with newly collected data as described elsewhere in this 

15 document.

Measurement bias data (BD) captures the bias of the measurement process 

towards certain values. For example, assuming the true value of the allele is X=A, and 

probability of the correct measurement is ρχ, the distribution of the measured value x is:

A C T G

Probability Px Pc Pt Pg

probability with no bias Px (l-px)/3 (l-px)/3 (l-px)/3

20

where ρχ +pc +ρτ +Pg = 1. If there is no bias of measurement towards any of the values 

then

pc= pT = pG = (l-px)/3. This information can be discerned from empirical and theoretical 

knowledge about the mechanism of the measurement process and the relevant 

25 instruments.

Crossover data (CD) consists of a database of genetic distances and crossover 

probabilities between pairs of snips, collected from HAPMAP data.

Together, (MD), (FD), (BD), (CD) make up the necessary input to the disclosed 

method (termed ‘Parental Support’, 1604) algorithm. This algorithm (1604) then operates 

30 on the input data to generate the output data (1605), which describes the most likely
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“true” value of the target’s genetic data given the measured values, as well as the most 

likely origin of each SNP in terms of the parental alleles.

Figure 17 focuses on the structure of the algorithm itself (termed ‘Parental 

Support’) and how each of these input data are utilized by the algorithm. Working 

5 backwards: to find the most likely hypotheses it is necessary to calculate P(H|M) 1707, 

the probability of the hypothesis given the measurement, for all the possible hypotheses 

H.

As described previously: P(H | M) = ' —- P(H), P(M) = f\P(M | ti)P(ti)

P(M) heSH

In order to find P(H|M) (1710), it is first necessary to find P(M|H) (1707), and P(H) 

10 (1708), for all hypotheses H. This allows the calculation of P(M), 1709 by the equation

shown above. The probability of the hypothesis P(H) 1708 depends on how many 

crossovers are assumed and the likelihood of each of these crossovers (CD, 1704), as 

explained above.

P(M|H) can be calculated using the following equation:

15 P(M | H) = P(M | H & t)P(t), as explained previously.
/

P(t), 1706 is the frequency of a particular value t for paternal and maternal alleles 

and is derived from population frequency data (FD, 1703). P(M|H&t), 1705 is the 

probability of correctly measuring the allele values of the embryo, the father, and the 

mother, assuming a particular “true” value t. The measurement data and accuracy entered 

20 by the user (MD, 1701), and the measurement bias database (BD, 1702) are the inputs 

required to calculate P(M|H&t), 1705.

A more detailed description of the method is given forthwith. Begin with SNPs R 

= {π,...λ}, (a set of k SNPs), and the corresponding measured identities of parents and 

embryo, M = (ei,e2,pi,p2,miqn2), for k SNPs, identified with id’s sj,...,sk, where :

25 ej = (eu,ei2,...,eik) is the measurement on one of the chromosomes of the embryo

(they don’t all have to come from the same parental chromosome) for all the SNPs

e2= (e2i,e22,.. is the measurement on the other chromosome of the embryo

pi = (pii,Pi2,--.,Pik) is the measurement on the FIRST chromosome of the father 

(all coming from the same chromosome

30 p2 = (ρ2ΐ,Ρ22,···,Ρ20 is the measurement on the SECOND chromosome of the

father (all coming from the same chromosome)
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mi= (mii5mi2,...3mik) is the measurement on the FIRST chromosome of the

mother (all coming from the same chromosome)

m.2 = (ni2i,ni22,..->ni2k) is the measurement on the SECOND chromosome of the

mother (all coming from the same chromosome)

5 One can also write M = {Mi,. ..,Mk} where Mi=(e!i,e2i,Pi;,p2i)
The goal of the method is to determine the “true” embryo valueT= (E1,E2), i.e. 

the most likely case given the measurement M, where:

Ei = (En,Ei2,...,Eik) is the measurement on the FIRST chromosome of the 

embryo, corresponding to the PATERNAL chromosome, Ev e {pu,p2i}

10 E2 = (E2i,E22,...,E2k) is the measurement on the SECOND chromosome of the

embryo, corresponding to the MATERNAL value, E2j e {mu,m2l}

One can also write T = {Tb.. .,Tk} where T> = (Εη,Ε^).

Effectively, the parental chromosome values (ρι,ρ2,ιηι,πΐ2) are being used as 

support to check, validate and correct measured values of (ei,e2), hence the term “Parental 

15 Support Algorithm”.

To achieve this goal, all the possible hypotheses for the origin of embryo values 

are developed and the most likely one is chosen, given the measurement M. The 
hypotheses space is Sh = {H1,. ..,1^)= {set of all the hypotheses}, where each hypothesis 

is of the format IT = (Η’ι,.,.Η’Ο where Η\ is the “mini” hypothesis for SNP i, of the 

20 format Η\ = (pj*,nii*) where p* e {pu,p2l} and m* e {mu,m2i}. There are 4 different 

“mini” hypotheses HJi, in particular:

H3il: (eii,e2i)= {(ρΐί,Ηΐπ) or(mii,pii)}

HJ'i2: (eii,e2i) = {(pii,m2i) or (m2i,pii)}

Η\3: (βΗ,β2ί) = {(P2i,mii) or (mii,p2i)}

25 HJi4: (eii,e2i) = {(p2i,m2i) or (m2i,p2i)}

In theory, SH can have q ~ 4k different members to pick from, though later this 

space will be limited with a maximal number of crossovers of paternal and maternal 

chromosomes.

The most likely hypothesis H* is chosen to be as: H* = argmaxffaSii P(H | M)

30 For a particular H:
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P(H | M) =
P(M | H)----

^P(M\h)P(h) ' J

heSH

So deriving for each hypothesis:

(1) P(M/H) is the probability of measurement M given the particular hypothesis H

(2) P(H) is the probability of the particular hypothesis H

5 (3) P(M) is the probability of the measurement M

After deriving P(H|M) for all H, the one with the greatest probability is chosen.

Deriving P(M\H)

Since measurements on each SNP are independent, for M = (Mi,...M0 and the

10 particular hypothesis H=(Ht,...H0 on all k SNPs then:
P(M\H)- P(MX |Hx) *...*P(Mk |Hk)

For the particular SNP r, derive P(Mr|Hr). For Ω = 

{A,C,T,G}X{A,C,T,G}X={A,C,T,G}X{A,C,T,G}, the space of all the possible values 

for “true” parent values (Pir,P2r,Mir,M2r), by Bayes formula is:

15 P(Mr/Hr) = XP(M,IHr & (Plr,P2r,Mlr,M2r) = t) * P((PXr,P2r,Mlr,M2r) = t)

(εΩ

Deriving P(Mr/Hr & (PIr,P2r,MirM2r) = t)

Mr =(eir,e2r,Pir,P2r,mie,m2r) is a given measurement on this SNP.

T=(Eir,E2r,Pir,p2r,Mir,M2r) is the supposed “true” value, for t = (Plr,P2r,Mir,M2r) 

and (Ειγ,Ε2γ) fixed from T by hypothesis. (Elr is one of Pir,P2r> E2r is one of Mir,M2r)
P(Mr = (elr, e2r, plr ,ρ2Γ3 mir > mir )!T — (EXr > E2r *Pri’ Pzr ’ , M2r)) —

P(eir/Eir) * P(e2r/E2ryP(Plr/PriyP(P2r! PJ * P(."h, fMlr)*P(ni2r /M2r)

Given:

perr’Piaccurately measuring the embryo value i,on SNP r) 

ppri=P(accurately measuring the father value i,on SNP r) 

pmri=P(accurately measuring the mother value i,on SNP r)

^ir=Eir 
eir * Elr

= *Perl +Ie^E,r *PprlYΡ^,Ε^,Γ) = Fp^,r)

where p(eir,Eir,r) = 1/3 if there is no measurement bias, otherwise it can be determined 

from experimental data, such as data from the Hapmap project..
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Fort=(tbt2,t3,t4):
p((pir,p2r,MXr,M2d=(t^My)=p(Pu =tlyp(P2r=t2yp(Mlr=t3yp(M2r =/4)
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5 Suppose there are n samples of (Ρι^,Μι,Μζ), all paternal and maternal values are 

assumed to be independent, and t =(ti,t2,t3,t4) for t; in {A,C,T,G}

To get a particular piA = P(Pi = ti), for ti=A, assume that in absence of any data 

this probability could be anything between 0 and 1, so it is assigned a value of U(0,l). 

With the acquisition of data, this is updated with the new values and the distribution of 

10 this parameter becomes a beta distribution. Suppose that out of n observations of Ρ1, there 

are h values P1=A, and w= (event Pi=A) and D=(data given). It is described in a prior 

section the form of the beta distribution Β(α,β) with a = h+1, β = n-h+1 for p(w|Data) (see 

equation (8)). The expected value and variance of Χ-Β(α,β) distribution are:

EX —
a

a + β

VX =
αβ

(α + /?)2(α + £+1)

15 So the posterior mean value of the parameter plrA = P(Pir= A|Data) = (h+l)/(n+2)

Similarly pirB = (#(pir = B)+l)/(n+2),... = (#(ni2r= G)+l)/(n+2), etc. Thus all the

values pirA,.. .,m2lG have been derived and:

P«Ar, Pzr’Mlr’Mlr) = ObWs’U) = Plrt, % * *™2rl,4

20 Deriving P(H)

The probability of the hypothesis H = (Hi,...,Hk) with H, = (pj*,mj*) depends on 

the amount of chromosome crossover. For example,

with P(crossover) = 0 then P(H) = % and H = (p*,m*) if p* in{(pll,p21,...psl), 

(pl2,p22,...,ps2), m* in {(mll,m21,...,msl),(ml2,m22,...,ms2)}, 0 otherwise

25 with P(crossover)>0 it is important to incorporate the probability of crossover

between each SNP.

Hypothesis H consists of the hypothesis for paternal and maternal chromosomes 

for each SNP, ^*ε {ρ^,ρ^} and mf e {ζη^,τη·^} ,i.e. H = (Hp,Hm) where 

Hp=(pi*,...Pk*), andHm=(mi*,...mk*), which are independent.
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P(H) = P(Hp)*P(Hra). Suppose that SNP are ordered by increasing location,

i=2

where PC, = Plcrossoverfl^,/)) i.e. probability of crossover somewhere between SNPs 

Γμι,Γΐ, and I, =1 if pi*,pj.i* are coming both from pi or p2, and it is 0 otherwise.

5
Deriving P(crossover(a,b))

Given SNPs a,b, at base locations la,lb (given in bases), the probability of 

crossover is approximated as:

PdM = 0.5(l-exp(-2G(/a,Zd)))

10 where G(la,lb) = genetic distance in Morgans between locations la,lb- There is no precise 
closed form function for G but it is loosely estimated as G(la,lb) = |la-lb|*le'8. A better 

approximation can be used by taking advantage of the HapMap database of base locations 

Si, and distances G(si,Si+i), for i spanning over all locations. In particular, 

■ G(la ,lb)~ G(Sf, sM ), so it can be used in crossover probability.

15
Deriving P(M)

Once P(M|H) is known, P(H) can be found for all the different H in Sr, 
P(M) = fflP(M\H)P(H)

h^sh

20 A more expedient method to derive the hypothesis of maximal probability

Given the limitation of computer time, and the exponential scaling of complexity 

of the above method as the number of SNPs increases, in some cases it may be necessary 

to use more expedient methods to determine the hypothesis of maximal probability, and 

thus make the relevant SNP calls. A more rapid way to accomplish this follows:

25

From before: P(H|M) = P(M|H)*P(H)/P(M), argmax r P(H|M) = argmax H and 

P(M|H)*P(H) = argmax H F(M,H), and the object is to find H, maximizing F(M,H).

Suppose M(s,k)= measurement on snips s to k, H(Sik) = hypothesis on snips s to k, 

and for shorts M^kj = Mt, H^k) = Hk= measurement and hypothesis on snip k. As shown 

30 before:
74



/=1 /=1

and also

P(HW ) = 1 /4 * ΠΡΓ(#Μ,2/,) = PF(Ht., Hk) * 1 / 4 * ft PF(H^ ,Ht) = PFtf^,Hk)* P(H^l})

/=2 /=2

where
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5 PF(Ht_t ,Ht) =
t PCiH^Hf)

= H,
^H,

and PC(Hi.1;Hi) = probability of crossover between Hu, H;

So finally, for n snips:
F(M, H) = P(M | H) * P(H) = P(M^ | HM ) * P(HM )

= P(M^} | //(,,_,)) * P(H  ̂) * P(M„ | Hn) * PF(H„_,, H„)

therefore: F(M, H) = F(MM, HM )) = F(M^, ) * P(M, | H„) * PF(H, Hn)

10 Thus, it is possible to reduce the calculation on n snips to the calculation on n-1 snips.

For H = (Hi,...Hn) hypothesis on n snips:

maxF(M,H) = max F(M,,H„) = max max F(M,(H^,Hlt) = maxG(M(I n),Hn) 
η nK «(M-j)

where

G(Mm , //„) = max F[Mm , (H^_iy ,H,) =

max Ρ(Μ(1.„_υ,P(M„ \Η„ΓPF^H^,H„) =

P(Af„ | H„) * max F(M^_iy, H^y) * PF(H, Ha) =

P(Mn | H„) * max max Ρ(Μ(,.„_υ, (T/(I,„_2), ) * PF(Wn_, ,//„) =

P(M„ | H „) * max PF(Hx_t ,Hn)* G(M^,H„_ )
««-I

15 In summary: niaxF(Ai,H) = maxG(MM,Hn)

where G can be found recursively:, for i=2,..n

G(Mm , 2/,,) = P(M„ | Ha) * maxlPF(^_, ,//„)* G(M^_i}, Η„_{ )]

and G(M(11), 2/,) = 0.25 * P(M, 12/,).

The best hypothesis can be found by following the following algorithm:

20 Step 1: For 1=1, generate 4 hypotheses for Hj, make G(Mi|Hi) for each of these, and 

remember Gi,G2,.G3,G4

Step 2: For I =2: generate 4 hypothesis for H2, make G/Mp^llfe) using the above 

formula:
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G(Af(Ιι2), H2) = P(M21H2) * max[PF(V,, H2) * G(Wt, H,)], remember these new four Gn.

Repeat step 2 for I=k with ki=kj.i+l until k=n: generate 4 hypothesis for Hk, make 

Ο(Μ(1Λ)|Η0

= and remember these four

5 Gn.
Since there are only four hypotheses to remember at any time, and a constant 

number of operations, the algorithm is linear.

To find P(M): P(H|M)= P(M|H)*P(H)/P(M) = F(M,H)/P(M))

As above:

Ρ(Μ) = Ρ(Μ^) = Σρ96.,.} IWW

10 =YP(MK\Hk)

where \Hk) = ΣΡ<Μ^ I^οΛ-υ.)

W(M,H) can be solved by using recursion:

W(M(IM, j Hk ) = £ P(M^ j ) * P(H{  ̂) * PF(Ek_t, Hk )

w(m-o
= X P(Mk_, I ffk_,) Σ Ρ(Μολ_2) I ) * P(H^k_2)) * PF(Hk_2, Hk_f) * PFfH^, Hk)

^k-\ U-Z)
= ΣΑΜ,.,\HkD*PF(Hk^Hkr^Milik_2)\H t_t)

W»-i

Therefore: fF(M(I.W) |/fy)= ΣΑ^-, |^)*Ρ^η,Η0*^(ι>2)|^)

15 and Β7(Μ<1ι1)|Ζ?2) = ΣΑΜ1 ]Ht)*0.25* PF(Ht,H2)

Η,

The algorithm is similar to the case above, where i=2:n and in each step a new set 

of W(i) are generated until the final step yields the optimized W.

Deriving the pi, p2, ppi, pp2 values from dj, d2, h, pdj, pd2, ph

20

For the purpose of explanation, this section will focus on the father’s diploid and haploid 

data, but it is important to note that the same algorithm can be applied to the mother. Let: 

o di, d2- allele calls on the diploid measurements
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o h- allele call on the haploid measurement

o pai, pd2-probabilities of a correct allele call on the each of the diploid

measurements

o ph- probability of a correct allele call on the haploid measurement

5 These data should be mapped to the following input parameters for disclosed algorithm:

o pi- allele corresponding to haploid cell and one of the diploid cells

o p2- allele corresponding to the remaining diploid cell

o ppi, pP2- probabilities of correct allele call

Since h corresponds to di, then to find the value of pi it is necessary to use h and dp Then 

10 p2 will automatically correspond to d2. Similarly, if h corresponds to d2, then to find the 

value of pi it is necessary to use h and d2, and thne p2 will correspond to di.

The term “correspond” is used since it can mean either “be equal” or “originate 

with higher probability from" depending on different measurement outcomes and 

population frequency.

15 The goal of the algorithm is to calculate probabilities of “true” allele values hidden 

beyond results of raw measurement h, dj, d2, ph, pai, Pd2 and population frequencies.

The basic algorithm steps are the following:

(i) determine whether h corresponds to dj or d2 based on h, dj, d2, ph, p<n, Pd2 
values and the population frequency data

20 (ii) assign the allele calls to pi and p2; calculate the probabilities ppI and pp2 based

on step (1)

Assigning h to di or d2

Establish two hypotheses:

25 Hi: h corresponds to di (h originates from di)

H2: h corresponds to d2 (h originates from d2)

The task is to calculate probabilities of these two hypotheses given the measurement M:

P(Hi/M(h,di,d2,ph,Pdi,Pd2)) and P(H2/M(h,dI,d2,Ph,Pdi,Pd2))

30 (To simplify the text, these will be referred to as P(Hi/M) and P(H2/M)) hereafter.

In order to calculate these probabilities, apply the Bayesian rule:

( i! } P(M) ’ P(M)
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where Ρ(Μ)=Ρ(Μ/Ηι)*Ρ(Ηι)+Ρ(Μ/Η2)*Ρ(Η2). Since hypotheses Hl and H2 are equally 

likely, P(Hi)=P(H2)=0.5, therefore:

and P(H21M) =
5

P(M\HJ + P(M\H2)

P(M\HD

P(M | Hi) + P(M\H1)

In order to calculate P(M/Hi) and P(M/H2), one must consider the set of all 

possible values of diploid outcomes di and d2, Ω ={AA,AC,...,GG}, i.e. any combination 

of A,C,T,G, so called underlying states. When the hypotheses are applied to the 

10 underlying states (i.e. accompany the assumed value of h based on hypothesis Hi or II2, to 

values di and d2), the following tables of all possible combinations (states 

S={si,s2,...,si6}) of “true values” H, Di and D2 for h, di and d2, can be generated, 

respectively:

Hypothesis Hi: h=di ft={AA,AC,...,G

G}

state H θι d2
Si A

i
A A

S2 A A C

S3 A A T

S4 A A G

S5 C C A

S6 C C C

S7 c C T

Sg c C G

S9 T T A

S10 T T C

Sil T T T

S12 T T

S13 G G A

Hypothesis H2:

h=d2

Ω

={AA,AC,...,GG

}
state H D, d2
Si A A A

S2 C A C

S3 T A T

S4 G A G

S3 A C A

S6 C C C

S7 T C T

sg G C G

S9 A T A

S10 C T C

Sil T T T

S12 G T G

S13 A G A
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S14 G G C

Sj5 G G T

S16 G G G

S14 C G C

S15 T G T

S16 G G G

Since the “true values” H, D1 and D2 are unknown, and only the raw measurement 

outcomes h, dj, d2, ph, Pdi, Pd2, are known, the calculation of the P(M/H[) and P(M/H2) 

over the entire set Ω must be performed in the following manner:

5 P(M| 74,) = XP(M(A,4,,4,)| 24,&P„D,)*P(D„P,)
(0,.0,)60

■ P(M IH2) = £P(W,4,,4,) I 24, &£>,,£>,) *Ρ(Ρ>,,Ρ,) 
,Ώ2)σΩ

If, for the purpose of the calculation, one assuems that dj and d2, as well as pdi and ρω are 

independent variables, it can be shown that:

P(M | 74,) = £Ρ(Λ4(Λ,4,,4,) | 24,&D„D,)*P(D„D,) =
Ω

| 24)*P(M(4,) | Z»,)*P(M(4,) | D,)*P(D,)*P(D,)
■s

10 Consider the first three terms under the last sum above: P(M(x)/X), for x in {h,di,d2}.

The calculation of the probability of correct allele call (hitting the “true allele 

value”) is based on measurement of outcome x given the true value of allele X. If the 

measured value x and the true value X are equal, that probability is px (the probability of 

correct measurement). If x and X are different, that probability is (1 -px)/3. For example, 

15 calculate the probability that the “true value” C is found under the conditions that X=C, 

and the measured value is x=A. The probability of getting A is px. The probability of 

getting C, T or G is (1-px). So, the probability of hitting C is (l-px)/3, since one can 

assume that C, T and G are equally likely.

If the indicator variable Ix is included in the calculation, where Ix=l if x=X and 

20 Ix=0 if x#X, the probabilities are as follows:

Ρ(Μ(χ)/Χ)=Ι{χ=Χ}*ρχ+(1-Ι{χ=χ})*(1/3)*(1-ρχ), x in {h,dbd2}

Now consider the last two terms in P(M|Hi). P(Di) and P(D2) are population frequencies 

of alleles A,C,T and G, that may be known from prior knowledge.

Consider the expression shown above for a particular state s2, given the particular

25 measurement M(h = A,di = G,d2=C):
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p(M(h) i h)*p(w,) i a)*-p(w2) iD2)*m)*m)=
= P(M(h) = A\H = A)* P(M(dt) = G | Dt = A) * P(M(d2 ) = C | D2 =C)*P(Dt = A)* P(D2 = C) = 
= Ph *((1-^!)/3)*^2 */(A =AYf(D2 = C)

Similarly, calculate (1) given the particular measurement (in this case

M(h==A,di=O,d2==C)) for remaining 15 states and sum over the set Ω.

Now P(M/Hi) and P(M/H2) have been calculated. Finally, calculate P(Hi/M) and5 P(Hi/M) as described before:
P(M | HJ

P(M\Hi') + P(M\H2')

P(M\H2)

P(M |/7,)+P(H/|/72)

Assigning the Allele Calls and Corresponding Probabilities

10 Now establish four different hypotheses:

HP2Ai “true value” of p2 is A

HP2c: “true value” of p2 is C

HP2t> “true value” of p2 is T

HP2g: “true value” of p2 is G

15 and calculate P(HP2a/M), P(Hp2c/M), P(HP2t/M), P(HP2g/M)· The highest value 

determines the particular allele call and corresponding probability.

Since the origin of p2 is unknown (it is derived from di with probability of 

P(H2/M) and from d2 with probability P(H]/M)), one must consider both cases that p2 

allele originates from di or d2- For Hypothesis Ha , applying Bayes rule, give:

20 P(Hp2A | M) = P(Hp2A | M,HQ *P(Ht |M) + P(Hp2A \M,H2)*P(H21M)

P(Hi/M) and P(H2/M) have already been determined in step 1. By Bayes rule:

1/7,,11/) =
P(M\Hl,Hp2AyP(Hl,Hp2A)

P(Ht,M)

Since Hi implies that p2 originates from d2:

P(M\Hl,Hp2A) = P(M(d2)\D2 = A)^I^D2fipl!2 + (1-7^)^(1-^)/3

25 P(H1,MHP2A)=P(M(d2)/D2=A)= I{d2=D2}*Pd2+(l-I{<i2=D2})*(l/3)*(l-Pd2), as described

before.

P(Hp2a)=P(D2=A)= fd2(A), where ζη(Α) is obtained from population frequency data.
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P(HblV0=P(HbMffIp2A)*P(Hp2A)+P(H1,MffIp2c)*P(HP2c)+P(HljMZEIp2T)*P(Hp2T)+P(HbM 

/Hp2G)*P(Hp2G).

Similarly, calculate P(HP2a&H2/M).

P(HP2a/M)=P(HP2a&Hi/M)+ P(HP2a&H2/M), therefore the probability that P2 is equal to

5 A has been calcualted. Repeat the calculation for C,T, and G. The highest value will give 

the answer of p2 allele call and the corresponding probability.

Assigning the allele call to pi (allele corresponding to the haploid cell and one of the 

diploid cells)

10 As before, we establish four different hypotheses:

Hpia: “true value” of pi is A

Hpic: “true value” of pi is C

Hpit: “true value” of p[ is T

Hpig: “true value” of pi is G

15 and calculate P(HplA/M), P(Hplc/M), P(HpiT/M), P(HpiG/M)

Here is an elaboration of Hpia. In the “true case” case, pi will be equal to A only if 

the haploid and the corresponding diploid cell are equal to A. Therefore, in order to 

calculate pi and ppi one must consider situations where haploid and corresponding diploid 

cell are equal. So, the hypothesis Hpia: the “true value” of pi is A and becomes HhdA: the 

20 “true value” of the haploid cell and corresponding diploid cell is A.

Since the origin of h is unknown (it is derived from di with probability of P/HfM) 

and from d2 with probability P(H2/M)), one must consider both cases, that h allele 

originates from di or d2, and implement that in determination of pb That means, using 

Bayes rule:

25 P(Hma |M) = P(Hma\M,H0*P(Hl\M) + P(HhiU\Μ,Η^Ρ(Η2\Μ)

As before, P(Hi/M) and P(H2/M) are known from previous calculations.
Ρ(ΗμΜ\Η^Ρ(ΗΜ) 

P(Ht,M)

P(HbM/HhdA) = P(M(h)/H = A)*P(M(d,)/Di = A) =
= |l{h=H}*Ph+(l-I{h=H})*(l/3)*(l-ph)] *[I{di=Di}*Pdi+(l-I{di=Di))*(l/3)*(l-pdi)],

30 since Hl implies that pi originates from db P(HhdA) = P(h = A)*P(D( = A) = fh(A)*fdi(A) 

, where fh(A) and ίη(Α) are obtained from population frequency data. P(HbM) =
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P(Hi,M/HhdA)*P(HhdA)+P(HbM/HhdC)*P(HhdC)+P(H1)M/HhdT)*P(HhdT)+P(Hi,M/HhdG)*P( 
HhdG)

Similarly, calculate P(HhdA&H2/M).

P(HhdA/M) = Ρ(Ημα&ΗιΖΜ)+ P(HhdA&H2/M) and now we have calculated the probability 

5 that pi is equal to A. Repeat the calculation for C,T, and G. The highest value will give 

the answer of pi allele call and corresponding probability.

Example Input

Two input examples are shown. The first example is of a set of SNPs with a low

10 tendency to cosegregate, that is, SNPs spread throughout a chromosome, and the input 

data is shown in Table 3. The second example is of a set of SNPs with a high tendency to 

cosegregate, that is SNPs clustered on a chromosome, and the input data is shown in 

Table 4. Both sets of data include an individual’s measured SNP data, the individual’s 

parents SNP data, and the corresponding confidence values. Note that this data is actual

15 data measured from actual people. Each row represent measurements for one particular 

SNP location. The columns contain the data denoted by the column header. The key to 

the abbreviations in the column headers is as follows:

o family_id = the unique id for each person (included for clerical reasons)

o snp_id = the SNP identification number

20 o el, e2 = the SNP nucleotide values for the embryo

o pl, p2 = the SNP nucleotide values for the father

o ml, m2 = the SNP nucleotide values for the mother

o pel, pe2 = the measurement accuracy for e 1 ,e2

ο pp 1, pp2 = the measurement accuracy for p 1 ,p2

25 o pm 1, pm2 = the measurement accuracy for ml,m2

Example Output

The two examples of output data are shown in Table 5 and Table 6, and 

correspond to the output data from the data given in Table 3 and Table 4 respectively.

30 Both tables show an individual’s measured SNP data, the individual’s parents SNP data, 

the most likely true value of the individual’s SNP data, and the corresponding 

confidences. Each row represents the data corresponding to one particular SNP. The
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columns contain the data denoted by the column header. The key to the abbreviations in

the column headers is as follows:

o snp_id = the SNP identification number

o true value = the proposed nucleotide value for el,e2

5 o true hyp = the hypothesis for the origin of e 1 ,e2

o ee = the measured SNP nucleotide values for e 1 ,e2

o pp = the measured SNP nucleotide values for pl,p2

o mm = the measured SNP nucleotide values for ml,m2

o HypProb = the probability of the final hypothesis. There is only one number for 

10 the output, but due to the excel column structure, this number is replicated in all rows.

Note that this algorithm can be implemented manually, or by a computer. Table 3 

and Table 4 show examples of input data for a computer implemented version of the 

method. Table 5 shows the output data for the input data shown in Table 3. Table 6 

shows the output data for the input data shown in Table 4.
15

Simulation Algorithm

Below is a second simulation which was done to ensure the integrity of the 

system, and to assess the actual efficacy of the algorithm in a wider variety of situations. 

In order to do this, 1,000 full system simulations were nm. This involves randomly 

20 creating parental genetic data, emulating meiosis in silico to generate embryonic data, 

simulating incomplete measurement of the embryonic data, and then running the method 

disclosed herein to clean the simulated measured embryonic data, and then comparing 

that “cleaned” data with the “real” data. A more detailed explanation of the simulation is 

given below, and the visual representation of the flow of events is given in Figure 18. 

25 Two different implementations of the theory were tested. A fuller explanation is given 

below.

Simulation algorithms for DH and PS and results

For both algorithms, the initial input variables are:

30 (i) the list of SNPs to test,

(ii) the population frequency of the maternal (popfreqlistMM) and paternal

(popfreqlistPP) chromosomes,
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(iii) the probabilities of a correct allele call for haploid measurement (ph,pe), and 

for unordered diploid measurements (pd).

These values should be fixed based on the results from empirical data (population 

frequency) on relevant SNPs, and from measuring instrumentation performance

5 (ph,pd,pe). The simulation was run for several scenarios such as most likely (informed), 

uniform (uninformed) and very unlikely (extreme case).

Once the above static parameters are fixed , crossover probabilities given the 

particular SNPs are the same for all the simulations, and will be derived ahead of the time 

given the databases for snip location(SNIPLOC_NAME_MAT) and genetic distance

10 (HAPLOC_NAME_MAT).

[crossprob,snips]=
GetCrossProb(snips,SNIPLOC_NAME_MAT,parameters,HAPLOC_NAME_MAT);

Preliminary Simulation Loop

15 The preliminary simulation loop is to demonstrate that the genetic data that will be

used for the full simulation is realistic. Steps 1 through 5 were repeated 10,000 times. 

Note that this simulation can be run for either or both parents; the steps are identical. In 

this case, the simulation will be run for the paternal case for the purposes of illustration, 

and the references to Figure 18 will also include the corresponding maternal entry in

20 Figure 18 in parentheses.

Step I: Generate original parental diploid cells (PI,P2),

[P1 ,P2]=GenerateOriginalChromosomes(snips,popfreqlistPP); 1801 (1802)

Generate original paternal cells depending on the population frequency for each SNP 

25 for father cells.

Step 2: Generate haploid and unordered diploid data for DHAlgo

Simulate crossover of the parental chromosomes 1803 to give two sets of 

chromosomes, crossed over: P1C1, P2C1 and P1C2, P2C2; 1804 (1805). Pick one of the 

30 father alleles after the crossover 1806 (from the first set) for haploid allele HP 1807 

(1808) in this case Pl (since there is no difference which one), and mix up the order in the 

diploid alleles to get (D1P,D2P) 1807 (1808).

HP = PickOne(PlCl,P2Cl);
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[D1P,D2P] = Jumble(Pl,P2).

Step 3: Introduce error to the original dataset in order to simulate measurements

Based on given probabilities of correct measurement (ph-haploid, pd- diploid 

5 measurement), introduce error into the measurements to give the simulated measured 

parental data 1811 (1812).

hp = MakeError(HP,ph);

dip = MakeError(DlP,pd);

d2p = MakeError(D2P,pd).

10
Step 4: Apply DHAlgo to get (pl,p2), (ppl,pp2)

DHAlgo takes alleles from haploid cell and an unordered alleles from diploid cell and 

returns the most likely ordered diploid alleles that gave rise to these. DHAlgo attempts to 

rebuild (P1,P2), also returns estimation error for father (ppl,pp2). For comparison, the 

15 empirical algorithm that does simple allele matching is also used. The goal is to compare 

how much better is the disclosed algorithm, compared to the simple empirical algorithm, 

[pl, p2, ppi, pp2] =DHAlgo(hp,dlp,d2p,ph,pd,snips,popfreqlistPP,'DH'); 

[pls,p2s,ppls,pp2s]=DHAlgo(hp,dlp,d2p,ph,pd,snips,popfreqlistPP,'ST);

20 Step 5: Collect statistics for the run

Compare (P1,P2) to derived (pl,p2).

[Plcmp( :,i), P2cmp( :,i),Plprob( :,1), P2prob( :,i),Plmn(i),

P2mn(i)]=DHSimValidate(Pl,P2,pl, p2,ppl,pp2);

Note: (PlSi ,P2Si,PlPjT2Pi,PlAi,P2Ai)= (I{pi=pi}, I{P2=p2), pPi,pP2,place, p2acc), where 

25 I{pi=pi) is binary indicator array for estimation of DH algorithm accuracy for all the SNPs, 

similarly, for I(P2=P2}- p[>i,pP2 are probabilities of a correct allele call derived from the 

algorithm, and place = mean(I{pi=pij), i.e. average accuracy for this run for pl, similar for 

p2acc-

30 Preliminary Simulation Results

Ten thousand simulations were used to estimate the algorithm accuracy

DHAccuracy.Pl = mean(PlAi), DHAccuracy.P2 = mean(P2Aj), which shows the overall

accuracy of the DH algorithm from P1,P2. On an individual SNP basis, the average
85
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accuracy on each SNP SNPAcc.Pl = mean(PlSi) should agree with the average of the

estimated probability of correctly measuring that SNP, SNPProb.Pl = mean(P2Pi), i.e. if

the algorithm works correctly, the value for SNPAcc.Plshould correspond closely to

SNPProb.Pl. The relationship between these two is reflected by their correlation.

5 The 10000 loops of the simulation were run for different setup scenarios:

(1) The underlying population frequency was given by existing genotyping data which is

more realistic, and uniform population frequencies where A,C,T,G have the same 

probability on each SNP.

(2) Several combinations for measurement accuracy for haploid and unordered diploid

10 measurements (ph,pd). Varying assumptions were made; that the measurements

are both very accurate (0.95,0.95), less accurate (0.75,0.75) and inaccurate or 

random (0.25,0.25), as well as unbalanced combinations of (0.9, 0.5), (0.5, 0.9). 

What might be closest to reality may be accuracies of approximately 0.6 to 0.8.

(3) The simulation was run in all these cases for both the DHAlgorithm and simple

15 matching STAlgorithm, in order to assess the performance of the disclosed

algorithm.

The results of all these runs are summarized in Table 7.

The disclosed algorithm is performs better than the existing empirical algorithm in 

these simulations, especially for the realistic cases of non-uniform population frequency, 

20 and unbalanced or reduced probabilities of correct measurements. It has also been 

confirmed that our estimates of the algorithm accuracy for individual SNPs are very good 

in these cases, since the correlation between the estimated accuracy of correct allele call 

and simulation average accuracy is around 99%, with average ratio of 1.

In the most realistic case, for data population frequency and (ph,pd) = (0.6, 0.8), 

25 the average percent of correctly retrieved SNPs for (P1,P2) is (0.852, 0.816) in 

implementation 1, and (0.601, 0.673 in implementation 2..

Note that for Table 7 and Table 8 the rows beginning with “data” use population 

frequency data was taken from empirical results, while the rows beginning with 

“uniform” assume uniform populations.

30 It is important to note that in Table 7 and Table 8 the accuracy is defined as the

average percent of SNPs where the correct SNP call was made and the correct 

chromosome of origin was identified. It is also important to note that these simulations 

reflect two possible implementations of the algorithm. There may be other ways to
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implement the algorithm that may give better results. This simulation is only meant to 

demonstrate that the method can be reduced to practice.

Full Simulation Loop

5 Steps 1-8 were repeated 10000 times. This is the simulation to test the full disclosed 

method to clean measured genetic data for a target individual using genetic data measured 

from related individuals, in this case, the parents.

Step 1: Generate original parental diploid cells (P1,P2),(M1,M2)

10 [Pl,P2]=GenerateOriginalChromosomes(snips,popfreqlistPP); (1801)

[Ml,M2]=GenerateOriginalChromosomes(snips,popffeqlistMM); (1802)

Generate original parental cells depending on the population frequency for each SNP 

for mother and father cells.

15 Step 2: Crossover parental cells (PIC,P2C), (Ml C.M2C} (1803)

Generate two sets of paternal cells with crossovers: first to get (P1C1,P2C1) used in 

DHAlgo, and second time to get (P1C2.P2C2) used in PS Algo. (1804)

Generate two sets of maternal cells with crossovers: first to get (M1C1,M2C1) used in 

DHAlgo, and (M1C2,M2C2) used in PSAlgo. (1805)

20 [Pl C1 ,P2C l]=Cross(P 1 ,P2,snips,fiillprob);

[P lC2,P2C2]=Cross(P 1 ,P2,snips,fullprob);

[MlCl,M2Cl]=Cross(Ml,M2,snips,fullprob);

[Ml C2,M2C2]=Cross(Ml,M2,snips,fullprob);

25 Step 3 Make haploid cell and unordered diploid cells for DHAlgo (1806)

Pick one of the sets of paternal cells (1804, first set) for haploid cell HP, and mix up 

the order in the diploid cell to get (D1P,D2P) (1807). Do the same for mother cells 

(1805, first set) to get MH, (D1M,D2M). (1808).

HP = PickOne(PlCl,P2Cl);

30 HM = PickOne(MlCl,M2Cl);

[D1P,D2P] = Jumble(Pl,P2);

[D1M,D2M] = Jumble(Ml,M2);
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Step 4: Make diploid embryo cell (1809)

Pick one of the paternal cells (1804, second set) and one of the maternal cells (1805,

second set) for embryo cell. Mix up the order for measurement purposes.

El = PickOne(PlC2,P2C2);

5 E2 = PickOne(Ml C2,M2C2);

[E1J,E2J] = Jumble(El,E2); (1810)

Step 5: Introduce error to the measurements (1811, 1812, 1813)

Based on given measurement error (ph-haploid cells, pd- unordered diploid cells, pe- 

10 embryo cells), introduce error into the measurements.

hp = MakeError(HP,ph); (1811)

dip = MakeError(DlP,pd); (1811)

d2p = MakeError(D2P,pd); (1811)

hm = MakeError(HM,ph); (1812)

15 dim = MakeError(DlM,pd); (1812)

d2m = MakeError(D2M,pd); (1812)

el = MakeError(ElJ,pel); (1813)

e2 = MakeError(E2J,pe2); (1813)

20 Step 6: Apply DHAlgo to get (pl,p2),(ml,m2), (ppi,pp2),(pml,pm2)

DHAlgo takes a haploid cell and an unordered diplod cell and returns the most likely 

ordered diploid cell that gave rise to these. DHAlgo attempts to rebuild (P1C1,P2C1) for 

father and (M1C1,M2C1) for mother chromosomes, also returns estimation error for 

father (ppl,pp2) and mother (pml,pm2) cells.

25 [pl,p2,ppi,pp2]=DHAlgo(hp,dip,d2p,snips,popfreqlistPP); (1814)

[m 1,m2,pml ,pm2]=DHAlgo(hm,dl m,d2m,snips,popfreqlistMM); (1815)

Step 7: Apply PSAlgo to get (DE1.DE2) (1816)

PS Algo takes rebuilt parent cells (pl,p2,ml,m2) and unordered measured embryo cell 

30 (el,e2) to return most likely ordered true embryo cell (DE1,DE2). PS Algo attempts to

rebuild (E1,E2).

[DEI ,DE2,alldata]=PS Algo(snips,e 1 ,e2,p 1 ,p2,ml ,m2,pe,pp 1 ,pp2,pm 1 ,pm2,parameter 

s,crossprob,popfreqlistPP,popreqlistMM);
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Step 8: Collect desired statistics from this simulation run

Get statistics for the run:

simdata=SimValidate(alldata,DEl ,DE2,P 1 ,P2,M1 ,M2,E1 ,E2,pl ,p2,ml ,m2,el ,e2,pe,pe,pp

5 I,pp2,pml,pm2);

Simulation results

Ten thousand simulations were run and the final estimates for the algorithm 

accuracy PSAccuracy.El = mean(ElAi), PSAccuracy.E2 = mean(E2Aj), which tells us 

10 the overall accuracy of the PS algorithm from E1,E2 were calculated. On an individual 

SNP basis, the average accuracy on each SNP SNPAcc.El = mean(ElSi) should agree 

with the average of the estimated probability of correctly measuring that SNP, 

SNPProb.El = mean(E2Pi), i.e. if the algorithm is written correctly, then SNPAcc.El 

should be observed to correlate to SNPProb.El. The relationship between these two is 

15 reflected by their correlation.

Ten thousand loops of the simulation has been run for different setup scenarios:

(1) Underlying population frequency given by existing genotyping data which is more 

realistic, and uniform population frequencies where A,C,T,G have the same 

probability on each SNP.

20 (2) Several combinations of measurement accuracy for haploid, unordered diploid and

embryo measurements (ph,pd,pe). A variety of accuracies were simulated: very 

accurate (0.95,0.95,0.95), less accurate (0.75,0.75,0.75) and inaccurate or random 

(0.25,0.25,0.25), as well as imbalanced combinations of (0.9, 0.5,0.5), (0.5, 

0.9,0.9). What may be closest to reality is approximately (0.6,0.8,0.8).

25 (3) We ran the simulation in all these cases for both our PSAlgorithm and simple

matching STPSAlgorithm, in order to assess the performance of the disclosed 

algortihm.

The results of these runs are summarized in the Table 8.

The disclosed algorithm is performs better than the existing empirical algorithm in 

30 these simulations, especially for the realistic cases of non-uniform population frequency, 

and unbalanced or reduced probabilities of correct measurements. It has also been shown 

that the estimates of the algorithm accuracy for individual SNPs are very good in these
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cases, since the correlation between the estimated accuracy of correct allele call and 

simulation average accuracy is around 99% , with average ratio of 1.

In the most realistic case, for data population frequency and (ph,pd,pe) = (0.6, 0.8, 

0.8), the average percent of correctly retrieved SNPs for (E1,E2) is (0.777, 0.788) in 

implementation 1 and (0.835, 0.828) in implementation 2.. As mentioned above, the 

number denoting the average accuracy of algorithm refers not only to the correct SNP 

call, but also the identification of correct parental origin of the SNP. To be effective, an 

algorithm must return better results than the algorithm that simply accepts the data as it is 

measured. One might be surprised to see that in some cases, the accuracy of the 

algorithm is lower than the listed accuracy of measurement. It is important to remember 

that for the purposes of this simulation a SNP call is considered accurate only if it is both 

called correctly, and also its parent and chromosome of origin is correctly identified. The 

chance of getting this correct by chance is considerably lower than the measurement 

accuracy.

Laboratory Techniques Necessary for Obtaining Prenatal and Embryonic Genetic 

Material

There are many techniques available allowing the isolation of cells and DNA 

fragments for genotyping. The system and method described here can be applied to any 

of these techniques, specifically those involving the isolation of fetal cells or DNA 

fragments from maternal blood, or blastocysts from embryos in the context of IVF. It can 

be equally applied to genomic data in silico, i.e. not directly measured from genetic 

material.

In one embodiment of the system, this data can be acquired as described below.

Isolation of cells

Adult diploid cells can be obtained from bulk tissue or blood samples. Adult 

diploid single cells can be obtained from whole blood samples using FACS, or 

fluorescence activated cell sorting. Adult haploid single sperm cells can also be isolated 

from sperm sample using FACS. Adult haploid single egg cells can be isolated in the 

context of egg harvesting during IVF procedures.

Isolation of the target single blastocysts from human embryos can be done

following techniques common in in vitro fertilization clinics. Isolation of target fetal cells
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in maternal blood can be accomplished using monoclonal antibodies, or other techniques 

such as FACS or density gradient centrifugation.

DNA extraction also might entail non-standard methods for this application. 

Literature reports comparing various methods for DNA extraction have found that in 

some cases novel protocols, such as the using the addition of N-lauroylsarcosine, were 

found to be more efficient and produce the fewest false positives.

Amplification of genomic DNA

Amplification of the genome can be accomplished by multiple methods inluding: 

ligation-mediated PCR (LM-PCR), degenerate oligonucleotide primer PCR (DOP-PCR), 

and multiple displacement amplification (MDA). Of the three methods, DOP-PCR 

reliably produces large quantities of DNA from small quantities of DNA, including single 

copies of chromosomes; this method may be most appropriate for genotyping the parental 

diploid data, where data fidelity is critical. MDA is the fastest method, producing 

hundred-fold amplification of DNA in a few hours; this method may be most appropriate 

for genotyping embryonic cells, or in other situations where time is of the essence.

Background amplification is a problem for each of these methods, since each 

method would potentially amplify contaminating DNA. Very tiny quantities of 

contamination can irreversibly poison the assay and give false data. Therefore, it is 

critical to use clean laboratory conditions, wherein pre- and post- amplification 

workflows are completely, physically separated. Clean, contamination free workflows 

for DNA amplification are now routine in industrial molecular biology, and simply 

require careful attention to detail.

Genotyping assay and hybridization

The genotyping of the amplified DNA can be done by many methods including 

molecular inversion probes (MIPs) such as Affymetrix’s Genflex Tag Array, microarrays 

such as Affymetrix’s 500K array or the Illumina Bead Arrays, or SNP genotyping assays 

such as AppliedBioscience’s Taqman assay. The Affymetrix 500K array, 

MIPs/GenFlex, TaqMan and Illumina assay all require microgram quantities of DNA, so 

genotyping a single cell with either workflow would require some kind of amplification. 

Each of these techniques has various tradeoffs in terms of cost, quality of data, 

quantitative vs. qualitative data, customizability, time to complete the assay and the 
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number of measurable SNPs, among others. An advantage of the 500K and Illumina 

arrays are the large number of SNPs on which it can gather data, roughly 250,000, as 

opposed to MIPs which can detect on the order of 10,000 SNPs, and the TaqMan assay 

which can detect even fewer. An advantage of the MIPs, TaqMan and Illumina assay 

5 over the 500K arrays is that they are inherently customizable, allowing the user to choose 

SNPs, whereas the 500K arrays do not permit such customization.

In the context of pre-implantation diagnosis during IVF, the inherent time 

limitations are significant; in this case it may be advantageous to sacrifice data quality 

for turn-around time. Although it has other clear advantages, the standard MIPs assay 

10 protocol is a relatively time-intensive process that typically takes 2.5 to three days to 

complete. In MIPs, annealing of probes to target DNA and post-amplification 

hybridization are particularly time-intensive, and any deviation from these times results in 

degradation in data quality. Probes anneal overnight (12-16 hours) to DNA sample. 

Post-amplification hybridization anneals to the arrays overnight (12-16 hours). A number 

15 of other steps before and after both annealing and amplification bring the total standard 

timeline of the protocol to 2.5 days. Optimization of the MIPs assay for speed could 

potentially reduce the process to fewer than 36 hours. Both the 500K arrays and the 

Illumina assays have a faster turnaround: approximately 1.5 to two days to generate 

highly reliable data in the standard protocol. Both of these methods are optimizable, and 

20 it is estimated that the turn-around time for the genotyping assay for the 500k array and/or 

the Illumina assay could be reduced to less than 24 hours. Even faster is the Taqman 

assay which can be run in three hours. For all of these methods, the reduction in assay 

time will result in a reduction in data quality, however that is exactly what the disclosed 

invention is designed to address. Some available techniques that are faster are not 

25 particularly high-throughput, and therefore are not feasible for highly parallel prenatal 

genetic diagnosis at this time.

Naturally, in situations where the timing is critical, such as genotyping a 

blastocyst during IVF, the faster assays have a clear advantage over the slower assays, 

whereas in cases that do not have such time pressure, such as when genotyping the 

30 parental DNA before IVF has been initiated, other factors will predominate in choosing 

the appropriate method. For example, another tradeoff that exists from one technique to 

another is one of price versus data quality. It may make sense to use more expensive 

techniques that give high quality data for measurements that are more importanq and less 
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expensive techniques that give lower quality data for measurements where the fidelity is 

not critical. Any techniques which are developed to the point of allowing sufficiently 

rapid high-throughput genotyping could be used to genotype genetic material for use with 

this method.

5
A Contextual Example of the Method

An example of how the disclosed method may be used in the context of an IVF 

laboratory that would allow full genotyping of all viable embryos within the time 

constraints of the IVF procedure is described here. The turn-around time required in an 

10 IVF laboratory, from egg fertilization to embryo implantation, is under three days. This 

means that the relevant laboratory work, the cleaning of the data, and the phenotypic 

prediction must be completed in that time. A schematic diagram of this system is shown 

in see Figure 19, and decribed here. This system may consist of parental genetic samples 

1901 from IVF user (mother) 1902 and IVF user (father) 1903 being analyzed at IVF lab 

15 1904 using a genotyping system. It may involve multiple eggs that are harvested from the

mother 1902 and fertilized with sperm from the father 1903 to create multiple fertilized 

embryos 1905. It may involve a laboratory technician extracting a blastocyst for each 

embryo, amplifying the DNA of each blastocyst, and analyzing them using a high 

throughput genotyping system 1906. It may involve sending the genetic data from the 

20 parents and from the blastocyst to a secure data processing system 1907 which validates 

and cleans the embryonic genetic data. It may involve the cleaned embryonic data 1908 

being operated on by a phenotyping algorithm 1909 to predict phenotype susceptibilities 

of each embryo. It may involve these predictions, along with relevant confidence levels, 

being sent to the physician 1910 who helps the IVF users 1902 and 1903 to select 

25 embryos for implantation in the mother 1901.

Miscellaneous Notes Relating to Cleaning of Genetic Data

It is important to note that the method described herein concerns the cleaning of

genetic data, and as all living creatures contain genetic data, the methods are equally

30 applicable to any human, animal, or plant that inherits chromosomes from parents. The

list of animals and plants could include, but is not limited to: gorillas, chimpanzees,

bonobos, cats, dogs, pandas, horses, cows, sheep, goats, pigs, cheetahs, tigers, lions,

salmon, sharks, whales, camels, bison, manatees, elk, swordfish, dolphins, armadillos,
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wasps, cockroaches, worms, condors, eagles, sparrows, butterflies, sequoia, com, wheat, 

rice, petunias, cow’s vetch, sun flowers, ragweed, oak trees, chestnut trees, and head lice.

The measurement of genetic data is not a perfect process, especially when the 

sample of genetic material is small. The measurements often contain incorrect 

measurements, unclear measurements, spurious measurements, and missing 

measurements. The purpose of the method described herein is to detect and correct some 

or all of these errors. Using this method can improve the confidence with which the 

genetic data is known to a great extent. For example, using current techniques, uncleaned 

measured genetic data from DNA amplified from a single cell may contain between 20% 

and 50% unmeasured regions, or allele dropouts. In some cases the genetic data could 

contain between 1% and 99% unmeasured regions, or allel dropouts. In addition, the 

confidence of a given measured SNP is subject to errors as well.

In a case where the uncleaned data has an allele dropout rate of approximately 

50%, it is expected that after applying the method disclosed herein the cleaned data will 

- have correct allele calls in at least 90% of the cases, and under ideal circumstances, this 

could rise to 99% or even higher. In a case where the uncleaned data has an allele 

dropout rate of approximately 80%, it is expected that after applying the method disclosed 

herein the cleaned data will have correct allele calls in at least 95% of the cases, and 

under ideal circumstances, this could rise to 99.9% or even higher. In a case where the 

uncleaned data has an allele dropout rate of approximately 90%, it is expected that after 

applying the method disclosed herein the cleaned data will have correct allele calls in at 

least 99% of the cases, and under ideal circumstances, this could rise to 99.99% or even 

higher. In cases where a particular SNP measurement is made with a confidence rate 

close to 90%, the cleaned data is expected to have SNP calls with confidence rate of over 

95%, and in ideal cases, over 99%, or even higher. In cases where a particular SNP 

measurement is made with a confidence rate close to 99%, the cleaned data is expected to 

have SNP calls with confidence rate of over 99.9%, and in ideal cases, over 99.99%, or 

even higher.

It is also important to note that the embryonic genetic data that can be generated 

by measuring the amplified DNA from one blastomere can be used for multiple purposes. 

For example, it can be used for detecting aneuploides, uniparental disomy, sexing the 

individual, as well as for making a plurality of phenotypic predictions. Currently, in IVF 

laboratories, due to the techniques used, it is often the case that one blastomere can only
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provide enough genetic material to test for one disorder, such as aneuploidy, or a 

particular monogenic disease. Since the method disclosed herein has the common first 

step of measuring a large set of SNPs from a blastomere, regardless of the type of 

prediction to be made, a physician or parent is not forced to choose a limited number of 

disorders for which to screen. Instead, the option exists to screen for as many genes 

and/or phenotypes as the state of medical knowledge will allow. With the disclosed 

method, the only advantage to identifying particular conditions to screen for prior to 

genotyping the blastomere is that if it is decided that certain PSNPs are especially 

relevant, then a more appropriate set of NSNPs which are more likely to cosegregate with 

the PSNPs of interest, can be selected, thus increasing the confidence of the allele calls of 

interest. Note that even in the case where SNPs are not personalized ahead of time, the 

confidences are expected to be more than adequate for the various purposes described 

herein.

Phenotypic and Clinical Prediction

There are many models available for predicting phenotypic data from genotypic 

and clinical information. Different models are more appropriate in different situations, 

based on the amount and type of data available. In order to choose the most appropriate 

method for phenotype prediction, it is often best to test multiple methods on a set of 

testing data, and determine which method provides the best accuracy of predictions when 

compared to the measured outcomes of the test data. Certain embodiments described 

herein include a set of methods which, when taken in combination and selected based on 

performance with test data, will provide a high likelihood of making accurate phenotypic 

predictions. First, a technique for genotype-phenotype modeling in scenario (ii) using 

contingency tables is described. Νβχζ a technique for genotype-phenotype modeling in 

scenario (iii) using regression models built by convex optimization is described. Then, a 

technique for choosing the best model given a particular phenotype to be predicted, a 

particular patient’s data, and a particular set of data for training and testing a model is 

described.

The Data of Today: Modeling Phenotypic Outcomes based on Contingency Tables

In cases where there are known genetic defects and alleles that increase the' 

probability of disease phenotype, and where the number of predictors is sufficiently
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small, the phenotype probability can be modeled with a contingency table. If there is only 

one relevant genetic allele, the presence/absence of a particular allele can be described as 

A+/A- and the presence absence of a disease phenotype as D+/D-. The contingency table

containing (fi, Nb f2, N2) is:
5

D+ D- #
G+ fi 1-fi Ni

G- fz l-fz n2

s2 __ + y2)(a,(i-p2)-(i-
(A W, +pM((l-pl)Nl +(l-p2)Y2)

Where fi and f2 represent the measured frequencies or

probabilities of different outcomes and the total number of subjects is N=Ni+N2. From

10 this table, the odds ratio for the probability of having disease state D+ in the two cases of 

having independent variable (TV) G+ or G- can be reported as OR = fi(l-f2)/f2(l -fi) with a 

with 95% confidence interval: ORl±iM/s, where S is a standard deviation. For example, 

using a study of breast cancer in 10,000 individuals, where M+ Represents the presence of 

BRCA1 or BRCA2 allele:
15 D+ D- #

M+ .563 .437 1720

M- .468 .532 8280

This data results in an odds ratio, OR = 1.463, with confidence interval [1.31; 1.62], which 

20 can be used to predict the increased probability of the occurrence of breast cancer with 

the given mutation. Note that contingency tables greater than two by two can be used to 

accommodate more independent variables or outcome variables. For example, in the case 

of breast cancer, the contingencies M+ and M- could be replaced with the four 

contingencies: BRCA1 and BR.CA2, BRCA1 and not BRCA2, not BRCA1 and BRCA2, 

25. and finally not BRCA1 and not BRCA2. It is well understood by those knowledgeable in 

the art how to determine confidence intervals for contingency tables greater than two by 

two. This technique will be used when there are few enough IVs and enough data to build 

models with low standard deviations by counting the patients in different groups defined 

by different contingencies of the independent variables. This approach avoids the 

30 difficulty of designing a mathematical model that relates the different IV’s to the outcome

that is to be modeled, as is needed when constructing a regression model.
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Note that the genetic data from particular SNPs may also be projected onto other 

spaces of independent variables, such as in particular the different patterns of SNPs that 

are recognized in the HapMap project. The HapMap project clusters individuals into bins, 

and each bin will be characterized by a particular pattern of SNPs. For example, consider 

5 one bin (Bl) has a SNP pattern that contains BRCA1 and BRCA2, another bin (B2) has a 

SNP pattern that contains BRCA1 and not BRCA2, and a third bin contains a SNP pattern 

(B3) that is associated all other combinations of mutations. Rather than creating a 

contingency table representing all the different combinations of these SNPs, one may 

create a contingency table representing the contingencies Bl, B2, and B3.

10 Note furthermore that the tendency of certain SNPs to occur together, as described

by the HapMap project, can be used to create models that use multiple SNPs as 

predictors, even then the data consists of separate groups of patients where each group 

has had only one of the SNPs measured. This problem is commonly encountered when 

creating models from publicly available research papers, such as those available from 

15 OMIM, where each paper contains data on a cohort that has only one relevant SNP 

measured, although multiple SNPs are predictive of the phenotype. In order to illustrate 

this aspect which is useful for building predictive models using data available today, 

specific reference is made to Alzheimer’s disease for which predictive models can be 

built based on the IVs: family history of Alzheimer’s, gender, race, age, and the various 

20 alleles of three genes, namely APOE, NOS3, and ACE. In the context of this disease, a 

pervasive issue that applies to many diseases beyond Alzheimers is discussed: although 

many genes are involved in determining propensity for a particular phenotype, the vast 

majority of historical studies only sampled the alleles of a particular gene. In the case of 

Alzheimers disease, almost all study cohorts have only one gene sampled, namely APOE, 

25 NOS3, or ACE. Nonetheless, it is important to build models that input multiple genetic 

alleles even when the majority of available data comes from studies where only one gene 

is investigated. This problem is addressed in one aspect which is illustrated by

considering a simplified case of two phenotype states and only two independent variables

representing two relevant genes, each with just two states. Given a random variable

30 describing the disease phenotype De[D+,D~], and two random variables describing the

genes Ae[A+, A-] and Be(B+, B] the goal is to find the best possible estimate of

P(D/A,B). This can be found by applying Bayes Rule using

P(D/A,B)=P(AJB/D)P(D)/P(A,B). P(D) and P(A,B) are available from public data.
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Specifically, P(D) refers to the overall prevalence of the disease in the population and this 

can be found from publicly available statistics. In addition, P(A,B) refers to the 

prevalence of particular states of the genes A and B occurring together in an individual 

and this can be found from public databases such as the HapMap Project which has 

5 measured many different SNPs on multiple individuals in different racial groups. Note 

that in a preferred embodiment, all of these probabilities will be computed for particular 

racial groups and particular genders, for which there are probability biases, rather than for 

the whole human population. Once these probabilities have been determined, the 

challenge comes from accurately estimating P(A,B/D) since the majority of cohort data 

10 provides estimates of P(A/D) and P(B/D). Relevant information can be found in various 

public databases, such as the HapMap Project, about the statistical associations between 

different genetic alleles i.e. about P(A/B). However, given only P(A/B), P(A/D), P(B/D) 

still nothing can be said of P(A,B/D) since there is an unconstrained degree of freedom. 

Nonetheless, if some information is known about P(A,B/D) from a cohort for which both 

15 genes A and B were sampled, even for just a single contingency such as (A-,B-) then the 

wealth of information about P(A/D), P(B/D), P(A/B) may be leveraged to improve 

estimates of P(A,B/D). This concept will be illustrated using contingency tables.

Consider the two contingency tables below, representing the probabilities of 

outcomes D+ and D- subject to the genetic states A+ and A-. This study is referred to as 

20 A. The measured frequencies for A are referred to with f and the actual probabilities that 

one seeks to estimate are referred to with p.

A D+ D-
A+ fl %
A- f3 ft

A D+ D-
A+ Pi Pz
A- P3 P4

25 where £3=1 -fi , £)=1-f2 and p3=l-pi , p4=l-p2. Let Ki represent the number of subjects in 

the case group for A, that is, the number of subjects that have outcome D+. Let K2 be the 

number in the control group for A, that is, the number of subjects that have outcome D-.

Similarly, consider the two contingency tables below, representing the 

probabilities of outcomes D+ and D- subject to the genetic states B+ and B-. This study is
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referred to as B. The measured frequencies are referred to with f and the actual 

probabilities that one seeks to estimate are referred to with p.

B D+ D-
B+ fS f6
B- Fg

B D+ D-
B+ Ps P6
B- P7 P8

5 where f7=l-fs , and p7=l-p5 , pg=l-p6. Let K3 represent the number in the case

group for B and let K4 be the number in the control group for B. The contingency tables 

above represent trials where the genetic states A and B are measured separately. 

However, the contingency table that is ideally sought out involves the different states of 

A and B combined. The contingency table is shown below for a hypothetical study, 

10 referred to as AB, where f represents the measured probabilities and p represents the 

actual probabilities.

AB D+ D-
A+B+ fs fio
A+-B- fit fl2
A-B+ fl3 fl4
A-B- fl5 fl6

AB D+ D-
A+B+ ps Pio
A+B- Pit P12
A-B+ P13 P14
A-B- P15 P16

where fi5 = l-f9-fn-fi3, f16 = l-f10-fi2-fi4 and pis = l-p9-pn-pi3 > Pt6 = I-P10-P12-P14
Let K5 be the number in case group for AB and let be the number in control group for 

AB.

For notational purposes, note that K7 = K9 =¾ and Kg = K10 = Kg. So in fact, group sizes

20 are:

# D+ D-
A Ki K2
B K3 K4
AB K5 K«
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Basic rules of statistics may be used to enforce dependencies between the cells of 

the hypothetical contingency table AB. In this example, for cells corresponding to D+, the 

following relationships may be enforced:

5 P(A+B-/D+) = P(A+/D+)-P(A+B+/D+)

P(A-B+/D+) = P(B+/D+)-P(A+B+/D+)

P(A-B-/D+) = 1 - P(A+/D+) - P(B+/D+)+P(A+B+/D+)

And similarly for cells corresponding to D-:

10

P(A+B-/D-) = P(A+/D-)-P(A+B+/D-)

P(A-B+/D-) = P(B+/D-)-P(A+B+/D-)

P(A-B-/D-) = 1 - P(A+/D-) - P(B+/D-)+P(A+B+/D-)

15 Using the notation in the contingency tables above, and leaving out the superfluous last 

relationship, these relationships translate to:

pu =Prp9
P13 =P5-P9

20 Pi2 = P2-P10
P14 = P6-P10

or equivalently

25 pi=P9+pn

P2~P10+P12
P5 = Ρ9+Ρ13
P6 = Ρ1θ+Ρ14

30 To summarize all the relationships, below is the table of all the dependencies of pi,..., pie 

on p9,...,pi6. To get a dependency between the values, the probability within the row is 

the summation of probabilities within the column that has value=l, for example the first 

row gives pi=p9+pn.
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P9 Pio Pn P12 P13 P14 Pis P16
Pi 1 1
Pz 1 1
Pz 1 1
P4 1 1
Ps 1 1
P6 1 1
P7 1 1
P8 1 1
P9 1
Pio 1
Pn 1
Pl2 1
Pl3 1
P14 1
Pl5 1
P16 1
From the relationship between the frequencies and probabilities, the measurement 

equations fi = prfn; for n=9... 16 may be created, where Π; is a noise term representing the 

imperfect measurement of the probability p; based on frequency of occurrence fi.

5 Applying this to the relationships described above, and assuming that all the cells of 

contingency table AB have been measured (this is just for illustrative purposes and will 

be discussed below), these 10 observations may be represented:

These measurement equations may be presented in matrix notation as:

10

F = XP+N

Where F = [Fi, ..., Fi6]T, P = [p9, ..., Ριβ]Τ and N = [n9, ..., n16]T and X is the matrix 

represented in the table above. This matrix equation may be used to solve for the 8 

15 unknown coefficients, p9... pig. In this particular case we are solving for all the
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parameters ρ9·..ρΐ6 If we do not have all the measurements for combined A,B genes, we 

need at least one measurement for D+ and one for D-. Given the relationships above, we 

can then fill out the rest of the table. In other words, in order to be able to fill out the 

contingency table for the hypothetical study AB, there desirably is at least one sample 

5 where a particular state of A and B were simultaneously measured on subjects that had 

outcomes of both D+ and D-. This enables one to achieve full rank for the matrix X 

representing the measurements made, so that the values P9... pi6 are solved and filled in 

the contingency table AB. If more study data exists, further rows may be added to the 

bottom of the matrix X with a similar structure to that shown above.

10 To perform an accurate regression, a weighted regression with weights for each

observation f; determined by the size of the group sample is desirable, so that studies and 

cells with many more observations get more weight. For the measurement equations fi = 

pi+nj, the n, do not all have the same variance, and the regression is not homoscedastic. 

Specifically, f; = l/Ki*Binomial(pij Κ;) ~ N(pi, ρ;(1-ρί)/Κ;) where Binomial(pi, Kj) 

15 represents a binomial distribution where each test has probability of the case outcome p; 

and K, tests are performed. This binomial distribution can be approximated by N(pi, p;(l- 

pi)/Ki) which is the normal distribution with mean p, and variance p^l-pQ/K;. 

Consequently, the noise may be modeled as a normal variable n, ~ N(0, p,(l -pJ/K,) which 

has theoretical variance V, = pi*(l-pi)/Ki. This variance can be approximated with the 

20 sample frequency V( = fj*(l-fi)/Ki.

A weighted regression with weights for each observation i inversely proportional 

to variance v, was performed. The distribution of the noise matrix N as ~N(0, V) where 

V is a matrix with diagonal elements [v9,...,vi6] and all other elements are 0 may now be 

described. This is denoted as V = diag([v9,...,vi6]). Similarly, let W=diag([l/v9,...,l/vi6]).

25 Now it is possible to solve for P using a weighted regression:

P = (X’WX)'1 X’WY

It is straightforward to show that the variance of P will be

30

Var(P) = (X’WX)'1

which can be used to indicate the confidence in the determination of P.
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To summarize, we have used the data from individual genes (A: fi,...,fj,B: f5,...,f8) , 

together with data from the combination of A and B (AB:f9;.. .,ίιβ) to help with estimating 

the probabilities for combination of A and B (p9,...,pi6) and their variances (v9,...,vi6). 

5 Finally, in our studies we mostly deal with log odds ratios, not probabilities, so we need 

to translate these probabilities into LORs. Generally, given the probabilities and variances 

for an event H as below.

D+ D-
H+ pi p2
H- 1-pl l-p2
V vl v2

10 The formula for the LOR is LOR = [log(pl) -log(l-pl) ]-[log(p2)-log(l-p2)J, with 
variance (by delta method). V = [(pl)'1 +(l-piy’]2*V(pl) + [(p2y‘+(l-p2)·’] 2*V(p2). The 

table below shows the probabilities, corresponding LOR and variance for combination of 
A,B

D+ D- LOR Var
A+B+ P9 Pio lorj Vi = [l/p9 +l/(l-p9)] 2v9+ [1/P1O +l/(l-pio)J 2vI0

A+B- Pll P12 lor2 V2 = [1/pn +l/(l-pi)J zvj+ [l/pi2 +l/(l-pi2)J ZV[2

A-B+ P13 P14 lor3 V3 = [l/pi3 +l/(l-pi3)] zv3+ [l/pi4 +1/(1-P14)]
ZV14

A-B- P15 P16 Ι0Γ4 V4 = [l/pis +l/(l-p15)] zvu+ [l/pie +1/(1 -pie)J 
2V16

15
This provides an estimate of the log odds ratios and respective variances.

As an illustration of this method, the technique was employed to obtain improved 

estimates of P(A,B/D) where D represents the state of having Alzheimers and where A 

20 and B represents two different states of the APOE and ACE gene respectively. Table 9 

represents three different studies conducted by Alvarez in 1999 where only gene A was 

sampled; by Labert in 1998 where only gene B was sampled; and by Farrer in 2005 where 

genes A and B were sampled. Two sets of results have been generated from these studies, 

and are shown in Table 10. The first set (See Table 10, columns 2, 3, 4 and 5) analyzes
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all the cohorts and improves estimates of P(A,B/D) given P(A/D) and P(B/D) using the 

methods disclosed here. The second set (see Table 10, columns 6, 7, 8 and 9) uses only 

those results generated from the modem cohort of Farrer (2005) for P(A,B/D) in which 

both genes were sampled. The confidence bounds of predictions in the former case are 

5 considerably reduced. Note that these predictions can be further improved using data 

describing P(A/B) from public sources - these measurements can be added to the X 

matrix as described above. Note also that the techniques described here may be used to 

improve the estimates on the separate A, B probabilities such as P(A+/D+), P(A+/D-), 

P(B+/D+), and P(B-/D-) using the relationship such as pl = p5+p7 as described above.

10 Note that while this method has been illustrated for only two variables A and B, it

should be noted that the contingency tables can included many different IVs such as those 

mentioned above in the context of Alzheimer’s prediction: family history of Alzheimer’s, 

gender, race, age, and the various alleles of three genes, namely APOE, NOS3, and ACE. 

Continuous variables such as age can be made categorical by being categorized in bins of 

15 values in order to be suitable to contingency table formulation. In a preferred 

embodiment, the maximum number of IV’s is used to model the probability of an 

outcome, with the standard deviation of the probability typically being below some 

specified threshold. In other words, the most specific contingencies possible may be 

created given the IV’s available for a particular patient, while maintaining enough 

20 relevant training data for that contingency to make the estimate of the associated 

probability meaningful.

Note that it will also be clear to one skilled in the art, after reading this disclosure, 

how a similar technique for using data about disease-gene associations, gene-gene 

associations, and/or gene frequencies in the population can be applied to improve the 

25 accuracy of multivariable linear and nonlinear regression and logistic regression models.

Furthermore, it will be clear to one skilled in the art, after reading this disclosure, how a 

similar technique for using data about disease-gene associations, gene-gene associations, 

'and/or gene frequencies in the population can be applied to improve the accuracy of 

multivariable linear and nonlinear regression and logistic regression models by enabling 

30 the leveraging of outcome data to train the models where not all the independent variables 

of that are relevant to the model were measured for that outcome data. Furthermore, it 

will be clear to one skilled in the art, after reading this disclosure, how a similar technique 

for using data about disease-gene associations, gene-gene associations, and/or gene
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frequencies in the population can be applied to improve the accuracy of contingency table 

models built using other techniques such as the Expectation Maximization (EM) 

algorithm which is well understood in the art. These techniques will be particularly 

relevant to leveraging data from the HapMap project and other data contained in public 

databases such as National Center for Biotechnology Information (NCBI) Online 

Mendelian Inheritance in Man (OMIM) and dbSNP databases.

Note also, throughout the patent, that where we refer to data pertaining to an 

individual or a subject, this also assumes that the data may refer to any pathogen that may 

have infected the subject or any cancer that is infecting the subject The individual or 

subject data may also refer to data about a human embryo, a human blastomere, a human 

fetus, some other cell or set of cells, or to an animal or plant of any kind.

Tomorrow's Data: Modeling Multi-factorial Phenotype with Regression Models

As more data is accumulated correlating genotype with multi-factorial phenotype, 

the predominant scenario will become (iii) as described above, namely it will be desirable 

to consider complex combinations of genetic markers in order to accurately predict 

phenotype, and multidimensional linear or nonlinear regression models will be invoked. 

Typically, in training a model for this scenario, the number of potential predictors will be 

large in comparison to the number of measured outcomes. Examples of the systems and 

methods described here include a novel technology that generates sparse parameter 

models for underdetermined or ill-conditioned genotype-phenotype data sets. The 

technique is illustrated by focusing on modeling the response of HIV/AIDS to Anti

Retroviral Therapy (ART) for which much modeling work is available for comparison, 

and for which data is available involving many potential genetic predictors. When tested 

by cross-validation with actual laboratory measurements, these models predict drug 

response phenotype more accurately than models previously discussed in the literature, 

and other canonical techniques described here.

Two regression techniques are described and illustrated in the context of 

predicting viral phenotype in response to Anti-Retroviral Therapy from genetic sequence 

data. Both techniques employ convex optimization for the continuous subset selection of 

a sparse set of model parameters. The first technique uses the Least Absolute Shrinkage 

and Selection Operator (LASSO) which applies the I1 norm loss function to create a 

sparse linear model; the second technique uses the Support Vector Machine (SVM) with 
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radial basis kernel functions, which applies the ε-insensitive loss function to create a 

sparse nonlinear model. The techniques are applied to predicting the response of the HIV- 

1 virus to ten Reverse Transcriptase Inhibitors (RTIs) and seven Protease Inhibitor drugs 

(Pls). The genetic data is derived from the HIV coding sequences for the reverse 

5 transcriptase and protease enzymes. Key features of these methods that enable this 

performance are that the loss functions tend to generate simple models where many of the 

parameters are zero, and that the convexity of the cost function assures that one can find 

model parameters to globally minimize the cost function for a particular training data set.

10 The LASSO and the L1 Selection Function

When the number of predictors M exceeds the number of training samples N, the 

modeling problem is overcomplete, or ill-posed, since any arbitrary subset of N predictors 

is sufficient to yield a linear model with zero error on the training data, so long as the 

associated columns in the X matrix are linearly independent. Consequently, one is 

15 disinclined to put faith in an Mpredictor model returned by a linear regression method.

Suppose, however, a model with significantly fewer than N variables has low training 

error. The more sparse the model, the less probable that low training error could be a 

chance artifact, hence the more likely that the predictors are causally related to the 

dependent variable. This underlies the importance of sparse solutions in overcomplete 

20 problems, as is the case for the RTI data. A similar argument can be applied to ill- 

conditioned problems characterized by a large condition number on the matrix XTX, as 

is the case for the PI data. In this case, the estimated parameters b are highly susceptible 

to the model error, as well as to measurement noise, and as a result are unlikely to 

generalize accurately. Overcomplete and ill-conditioned problems are typical of genetic 

25 data, where the number of possible predictors—genes, proteins, or, in our case, mutation 

sites—is large relative to the number of measured outcomes.

One canonical approach to such cases is subset selection. For example, with 

stepwise selection, at each step, a single predictor is added to the model, based on having 

the highest F-test statistic indicating the level of significance with which that variable is 

30 correlated with prediction error. After each variable is added, the remaining variables may 

all be checked to ensure that none of them have dropped below a threshold of statistical 

significance in their association with the prediction error of the model. This technique has
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been successfully applied to the problem of drug response prediction. However, due to 

the discrete nature of the selection process, small changes in the data can considerably 

alter the chosen set of predictors. The presence or absence of one variable may affect the 

statistical significance associated with another variable and whether that variable is

5 included or rejected from the model. This affects accuracy in generalization, particularly 

for ill-conditioned problems.

Another approach is for the values of the estimated parameters b to be 

constrained by means of a shrinkage function. A canonical shrinkage function is the sum 

of the squares of the parameters, and this is applied in ridge regression which finds the 

10 parameters according to:

b — arg min ά ||y - Abj2 + λ ||b||2 (17)

where Λ is a tuning parameter, typically determined by cross-validation. This method is

15 non-sparse and does not set parameters to 0. This tends to undermine accuracy in 

generalization, and makes solutions difficult to interpret.

These problems are addressed by the LASSO technique. In contrast to subset 

selection, the LASSO does not perform discrete acceptance or rejection of predictor 

variables; rather it allows one to select en-masse, via a continuous subset optimization, 
20 the set of variables that together are the most effective predictors. It uses the I1 norm 

shrinkage function:

b = arg min 4 ||y - Ab||2 + λ | (18)

25 where λ is typically set by cross-validation. The LASSO will tend to set many of the 

parameters to 0. Figure 20 provides insight into this feature of the LASSO, termed 

selectivity. Suppose that a model based on just two mutations is created with the training 

data X= [1 0; 01]T, y ~ [2 1]T and the x-axis and y-axis represent the two parameters bj 

and b2 respectively. Compare the use of the I1 and I2 shrinkage functions, where in both

30 cases a solution is found that fits the training data equally well such that | \y-Xb| \2=2. The 

large circle (2001), small circle (2002), and square (2003) respectively represent level
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curves for the cost functions ||y-Xbj|2, the I2 norm and the I1 norm A

solution for ridge regression (I2) is found where the two circles meet (2004); a solution for 
the LASSO (I1) is found where the square and the large circle intersect (2005). Due to the 

“pointiness” of the level curve for the I1 norm, a solution is found that lies on the axis b; 

and is therefore sparse. This argument, extended into higher dimensions, explains the 

tendency of LASSO to produce sparse solutions, and suggests why the results achieved 

are measurably better than those reported in the literature.
The I1 norm can be viewed as the most selective shrinkage function, while 

remaining convex. Convexity guarantees that one can find the one global solution for a 

given data set. A highly efficient recent algorithm, termed Least Angle Regression, is 

guaranteed to converge to the global solution of the LASSO in M steps.

Note that it will be clear to one skilled in the art, after reading this disclosure, how 
the I1 norm can also be used in the context of logistic regression to model the probability 

of each state of a categorical variable. In logistic regression, a convex cost function may 

be formed that corresponds to the inverse of the a-posteriori probability of a set of 

measurements. The a-posteriori probability is the probability of the observed training data 
assuming the models estimates of the likelihood of each outcome. By adding to the I1 

norm to the convex cost function, the resulting convex cost function can be minimized to 

find a sparse parameter model for modeling the probability of particular outcomes. The 
use of 1* norm for logistic regression may be particularly relevant when the number of 

measured outcomes is small relative to the number of predictors.

Support Vector Machines and the LI-Norm

SVM’s may be configured to achieve good modeling of drug response and other 

phenotypes, especially in cases where the model involves complex interactions between 

the independent variables. The training algorithm for the SVM makes implicit use of the 

I1 norm selection function. SVM’s are learning algorithms that can perform real-valued 

function approximation and can achieve accurate generalization of sample data even 

when the estimation problem is ill-posed in the Hadamard sense. The ability of SVM’s to 

accurately generalize is typically influenced by two selectable features in the SVM model 

and training algorithm. The first is the selection of the cost function, or the function that is 

to be minimized in training. The second is the selection of the kernels of the SVM, or 

those functions that enable the SVM to map complex nonlinear functions, involving
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interactions between the independent variables, using a relatively small set of linear 

regression parameters. These features are discussed below.

Consider modeling the phenotype for a subject i y; with a linear function 

approximation: = f(xt,b) = bTXi. First, estimate b by minimizing a cost function 

5 consisting of a I2 shrinkage function on the parameters, together with the ‘'ε-insensitive 

loss” function, which does not penalize errors below some ε>0. The SV regression may 

be formulated as the following optimization:

^argmin^ + (^ + ^) (19)
Z /=1

10

subject to the constraints:

yi ~bTXj < ε + £+, i = 1..N (20)

Μχι-γ^ε + ξΤ,ϊ^Ι,.Ν (21)

15 ξι+>0,ξι->0,ΐ = Ι...Ν (22)

The second term of the cost function minimizes the absolute value of the modeling errors, 

beyond the “insensitivity” threshold ε. Parameter C allows one to scale the relative 

importance of the error vs. the shrinkage on the weights. This constrained optimization 

20 can be solved using the standard technique of finding the saddle-point of a Lagrangian, in

order to satisfy the Kuhn-Tucker constraints. The Lagrangian, which accommodates the 

cost and the constraints described above, is:

+cf fc-+r)- -bTx+s+ξ/)

/=1 /=i (23)
~ Σ<(α Μτχ + ε + £~)~ Σ(Λ"< + ΛΧ+)

/=/ /=1

25

Minimize with respect to the vectors of parameters Z>,£",f+, an<I maximize with respect 

to the vectors of Lagrange multipliers α“,α+,Λ“,2+. Note that the Lagrange multipliers
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are desirably positive in accordance with the Kuhn-Tucker constraints. Hence, the 

optimal set of parameters can be found according to:

(b„^.+,£~)=argmini r max^,ξ*,a+,a ,X,x)

5

subject to
a/,al, =

(24)

(25)

Since the order of minimization/maximization can be interchanged, first minimize with 

10 respect to variables Εξ/,ξ) by setting the partial derivatives of L with respect to these 

variables to 0. From the resultant equations, one finds that the weight vector can be 

expressed in terms of

1=1

15

Also from the resultant equations, eliminate variables from the Lagrangian so that one 

may find the coefficients a*,al, i-1...N by maximizing the quadratic form:

20

w(a+,a~)= +<)+ΣΤι(«ί+ - Σ(< ~a*\a7W

1=1 1=1 1,7=1

subject to

N N

ς<=ς<
1=1 i=l

(28)

Q<af <C,i = L..N (29)

0<at~ <C,i = l..N (30)

This enables the vector b to be computed and fully defines the SVM model for the ε- 

insensitive loss function. Note from equation (11) that the model may be characterized as
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/(χ) = Σ^χΤχ,)+δ0 

h=l

where β, - a* - af. The resulting model will tend to be sparse in that many of the

5 parameters in the set {/?., z = 1...M} will be 0. Those vectors x; corresponding to non

zero valued /?, are known as the support vectors of the model. The number of support 

vectors depends on the value of the tunable parameter C, the training data, and the 

suitability of the model. In an illustration below, it is shown how the model can now be 

augmented to accommodate complex nonlinear functions with the use of kernel functions.

10 Next, it will be shown that the ε-insensitive loss function is related to the I1 norm 

shrinkage function, and essentially achieves the same thing, namely the en-masse 
selection of a sparse parameter set by means of the 1’ norm.

In order to model a complex function, with possible coupling between variables, 

the simple inner product of Equation (17) is replaced with a kernel functions that 

15 computes a more complex interaction between the vectors. Inserting kernel functions, our 

function approximation in (17) takes the form:

f(x) = Σβ,Κίχ,φ β0 = ΣβΚ^) (32)
/=1 /=0

20 where Κ(χ, χ0) -1 by definition. To find these parameters, use exactly the same 

optimization methods described above, and replace all terms xT xt with Κζχ,χβ. As 

before, compute the parameter set according to = a/ - af, by finding the arguments 

that maximize

subject to the same constraints as above. For the SVM results described above, radial 

basis kernel functions were selected.
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Now, to illustrate the implicit use of the 1’ norm: consider that instead of trying to 

optimize equation (17) one begins with the optimization:

β' = argmin^ ]f/(x)άχ+εΣ\β\ (34)

/=0 J i=0

5

where the 1' shrinkage has been explicitly used to constrain the values of β, and the data 

fitting error, instead of being defined over discrete samples of training data, is defined 

over the domain of the hypothetical function being modeled. Now, make the variable 

substitutions: β, = αβ -αβ; αβ,αβ > 0, αβαβ > 0, i = Then the optimization may 

10 be recast as:

subject to the constraints

15 a/,a, >0

a/a/ = 0

(36)

(37)

This solution, which has different constraints, will nonetheless coincide with that of the ε- 

insensitive loss function if both the value C for the SV method is chosen sufficiently large 

20 that the constraints 0 < a/,°h~ - Ccan simply become the constraints (21) and (22) and

also one of the basis functions is constant, as in equation (17) for our case. In this case,

one does not require the additional constraint

method. Note that constraint (25) is already implicit in Equations (15) since the 

constraints (8) and (9) cannot be simultaneously active, so one of the Lagrange 

25 multipliers αβ or a,~ should be slack, or 0.

Under these conditions, one can see that the ε-insensitive loss function achieves 

sparse function approximation, implicitly using the approach of an I1 shrinkage function.
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Example of Multi-factorial Phenotype Prediction: Modeling HIV-1 Drug Response

Current approaches to predicting phenotypic outcomes of salvage ART do not 

demonstrate good predictive power, largely due to a lack of statistically significant 

outcome data, combined with the many different permutations of drug regimens and

5 genetic mutations. This field has a pressing need both for the integration of multiple 

heterogeneous data sets and the enhancement of drug response prediction.

The models demonstrated herein used data from the Stanford HlVdb RT and

Protease Drug Resistance Database for training and testing purposes. This data consists of

6644 in vitro phenotypic tests of HIV-1 viruses for which reverse transcriptase (RT) or

10 protease encoding segments have been sequenced. Tests have been performed on ten 

reverse transcriptase inhibitors (RTI) and seven protease inhibitors (PI). The RTIs include 

lamivudine (3TC), abacavir (ABC), zidovudine (AZT), stavudine (D4T), zalcitabine 

(DDC), didanosine (DDI), delaviradine (DLV), efavirenz (EFV), nevirapine (NVP) and 

tenofovir (TDF). The Pls include ampranavir (APV), atazanavir (ATV), nelfinavir (NFV), 

15 ritonavir (RTV), saquinavir (SQV), lopinavir (LPV) and indinavir (IDV)).

For each drug, the data has been structured into pairs of the form 

(xz,y;), z = 1...2V, where N is the number of samples constituting the training data, yt is 

the measured drug fold resistance (or phenotype), and xz is the vector of mutations plus a 

constant term, xt - [1 χ;1,χ,-2 ---¾]7 > where M is the number of possible mutations on 

20 the relevant enzyme. Assume element Xim=\. if the mutation is present oh ih sample,

and set xim=0 otherwise. Each mutation is characterized both by a codon locus and a 

substituted amino acid. Mutations that do not affect the amino acid sequence are ignored.

Note that only mutations present in more than 1% percent of the samples for each drug 

are included in the set of possible predictors for a model, since it is improbable that 

25 mutations associated with resistance would occur so infrequently. The measurement y,· 

represents the fold resistance of the drag for the mutated virus as compared to the wild 

type. Specifically, y,· is the log of the ratio of the IC50 (the concentration of the drug 

required to slow down replication by 50%) of the mutated virus, as compared to the IC50 

of the wild type virus. The goal is to develop a model for each drug that accurately 

30 predicts y,· from x,. In order to perform batch optimization on the data, stack the

independent variables in an N by M+1 matrix,X = [x,,x2 ...x^]r, and stack all 

observations in a vector y = [y z, y2 ... yN ]r.
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The performance of each algorithm is measured using cross-validation. For each 

drug, the first-order correlation coefficient R is calculated between the predicted 

phenotypic response of the model and the actual measured in vitro phenotypic response of 

the test data.

5

(y-Jiy(y-ji)
(38)

Where vector y is the prediction of phenotypes y, y denotes the mean of the elements in 

vector y and ΐ denotes the vector of all ones. For each drug and each method, the data is 

10 randomly subdivided in the ratio 9:1 for training and testing, respectively. In one 

example, ten different subdivisions are performed in order to generate the vector y and R 

without any overlap of training and testing data. This entire process may then be repeated 

ten times to generate ten different values of R. The ten different values of R are averaged 

to generate the R reported. The standard deviation of R is also determined for each of the 

15 models measured over the ten different experiments to ensure that models are being 

compared in a statistically significant manner.

Table 11 displays the results of the above mentioned models for the PI drugs; 

Table 12 displays the results for the ten RTI drugs. Results are displayed in terms of 

correlation coefficient R, averaged over ten subdivisions of the training and test data. The 

20 estimated standard deviation of the mean value of R, computed from the sample variance, 

is also displayed. The number of available samples for each drug is shown in the last row. 

The methods tested, in order of increasing average performance, are: i) RR - Ridge 

Regression, ii) DT - Decision Trees, iii) NN - Neural Networks, iv) PCA - Principal 

Component Analysis, v) SS - Stepwise Selection, vi) SVM_L — Support Vector Machines 

25 with Linear Kernels, vii) LASSO - Least Absolute Shrinkage and Selection Operator, and 

viii) SVM - Support Vector Machines with Radial Basis Kernels. The information in the 

last columns of Table 11 and Table 12 is depicted in Figure 21. The circles in Figure 21 

display the correlation coefficient R averaged over ten different experiments for each PI, 

and averaged over the seven different Pls. The diamonds in Figure 21 display the 

30 correlation coefficient R averaged over ten different experiments for each RTI, and
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averaged over the ten different RTIs. The one standard deviation error bars are also 

indicated.

Wherever modeling techniques involve tuning parameters, these have been 

adjusted for optimal performance of the technique as measured by cross-validation, using 

5 a grid search approach. In all cases, the grid quantization was fine enough that the best 

performing parameters from the grid were practically indistinguishable from the optimal 

parameters for the given data, since the difference in the prediction due to grid 

quantization lay below the experimental noise floor.

Although there are strong trends in the data, it should be noted that due to

10 differences in the number of samples, interactions of the underlying genetic predictors, 

and other idiosyncrasies in the data that vary between drugs, the R achieved by each 

algorithm may vary from drug to drug. This variation may be seen by studying the 

individual drug columns of Table 11 (columns 3 to 9) and Table 12 (columns 3 to 12).

Of all the methods, SVM performs best, slightly outperforming LASSO (P<0.001

15 for the RTIs; P=0.18 for the Pls). The performance of SVM trained with the ε-insensitive 

loss function is considerably better than that of previously reported methods based on the 

support vector machine. SVM, which uses nonlinear kernel functions, outperforms 

SVM_L which uses linear kernel functions, and which is also trained using the ε- 

insensitive loss function (P = 0.003 for RTIs; P < 0.001 for Pls). The SVM considerably 

20 outperforms the other nonlinear technique which uses neural networks and which does 

not create a convex cost function (P<0.001 for both RTIs and Pls). The LASSO 

technique, which trains a linear regression model using a convex cost function and 

continuous subset selection, considerably outperforms the SS technique (P<0.001 for both 

Pls and RTIs). The top five methods, namely SS, PCA, SVM L, LASSO, SVM_R, all 

25 tend to generate models that are sparse, or have a limited number of non-zero parameters.

In order to illustrate the subset of mutations selected as predictors, certain 

embodiments disclosed herein focus on the second-best performing model, namely the 

LASSO, which creates a linear regression model that, unlike SVM, does not attempt to 

emulate nonlinear or logical coupling between the predictors. Consequently, it is 

30 straightforward to show how many predictors are selected. Table 13 shows the number of 

mutations selected by the LASSO as predictors for each PI drug (Table 13, row 4), 

together with the number of mutations (Table 13, row 3), and the total number of samples

115



20
13

20
25

55
 

04
 A

pr
 2

01
3

5

10

15

20

25

30

(Table 13, row 2), used in training each model. The same table is shown for the RTIs 

(Table 14, same rows correspond to the same items).

The selected mutations may also enhance understanding of the causes of drug 

resistance. Figures 22, 23 and 24 show the value of the parameters selected by the 

LASSO for predicting response to PI, Nucleoside RTIs (NRTIs) and Non-Nucleoside 

RTIs (NNRTIs) respectively. Each row in the figures represents a drug; each column 

represents a mutation. Relevant mutations are on the protease enzyme for PI drugs, and 

on the RT enzyme for NRTI and NNRTI drugs. The shading of each square indicates the 

value of the parameter associated with that mutation for that drug. As indicated by the 

color-bar on the right (2201, 2301 and 2401, respectively), those predictors that are 

shaded darker are associated with increased resistance; those parameters that are shaded 

lighter are associated with increased susceptibility. The mutations are ordered from left to 

right in order of decreasing magnitude of the average of the associated parameter. The 

associated parameter is averaged over all rows, or drugs, in the class. Those mutations 

associated with the forty largest parameter magnitudes are shown. Note that for a 

particular mutation, or column, the value of the parameter varies considerably over the 

rows, or the different drugs in the same class.

For the algorithms RR, DT, NN, and SS, the model was not trained on all genetic 

mutations, but rather on a subset of mutations occurring at those sites that have been 

determined to affect resistance by the Department of Health and Human Services 

(DHHS). The reduction in the number of independent variables was found to improve the 

performance of these algorithms. In the case of the SVML algorithm, best performance 

for RTIs was achieved using only the DHHS mutation subset, while best performance for 

Pls was achieved by training the model on all mutations. For all other algorithms, best 

overall performance was achieved by training the model on all mutations.

The set of mutations shown in Figures 22, 23 and 24 that were selected by the 

LASSO as predictors, but are not currently associated with loci determined by the 

DHHHS to affect resistance, are: for Pls - 19P, 91S, 67F, 4S, 37C, 111, 14Z; for NRTIs 

- 68G, 203D, 245T, 208Y, 218E, 208H, 351, 11K, 40F, 28IK; and for NNRTIs - 139R, 

317A, 35M, 102R, 241L, 322T, 379G, 2921, 294T, 21 IT, 142V. Note that in some cases, 

such as for the LASSO and the SVM, the performance for particular drugs, such as LPV, 

was significantly improved (P<0.001) when all mutations were included in the model (R 

= 86.78, Std. dev = 0.17) as compared to the case when only those loci recognized to 
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affect resistance by DHHS were included (R = 81.72, Std. dev. = 0.18). This illustrates 

that other mutations, beyond those recognized by the DHHS, may play a role in drug 

resistance.

The use of convex optimization techniques has herein been demonstrated to

5 achieve continuous subset selection of sparse parameter sets in order to train phenotype 
prediction models that generalize accurately. The LASSO applies the I1 norm shrinkage 

function to generate a sparse set of linear regression parameters. The SVM with radial 

basis kernel functions and trained with the ε-insensitive loss function generates sparse 

nonlinear models. The superior performance of these techniques may be explained in 

10 terms of the convexity of their cost functions, and their tendency to produce sparse 

models. Convexity assures that one can find the globally optimal parameters for a 

particular training data set when there are many potential predictors. Sparse models tend 

to generalize well, particularly in the context of underdetermined or ill-conditioned data,

■ as is typical of genetic data. The 1* norm may be viewed as the most selective convex

15 function. The selection of a sparse parameter set using a selective shrinkage function

exerts a principle similar to Occam’s Razor: when many possible theories can explain the 

observed data, the most simple is most likely to be correct. The SVM, which uses an I2 

shrinkage function together with an ε-insensitive loss function, tends to produce an effect 

similar to the explicit use of the I1 norm as a shrinkage function applied to the parameters 

20 associated with the support vectors.
Techniques using the ll shrinkage function are often able to generalize accurately 

when the number of IVs is large, and the data is undetermined or ill-conditioned. 

Consequently, it is possible to add nonlinear or logical combinations of the independent 

variables to the model, and expect that those combinations that are good predictors will 

25 be selected in training. The SVM is able to model interactions amongst the independent 

variables with the use of nonlinear kernel functions, such as radial basis functions, which 

perform significantly better than linear kernel functions. Consequently, without changing 

the basic concepts disclosed herein, the performance of the LASSO may be enhanced by 

adding logical combinations of the independent variables to the model. Logical terms can 

30 be derived from those generated by a decision tree, from those logical interactions 

described by expert rules, from the technique of logic regression, or even from a set of 

random permutations of logical terms. An advantage of LASSO is that the resulting 

model will be easy to interpret, since the parameters directly combine independent
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variables, or expressions involving independent variables, rather than support vectors. 

The robustness of the LASSO to a large number of independent variables in the model is 
due both to the selective nature of the I1 norm, and to its convexity.

Other techniques exist that use shrinkage function more selective than the I1 norm.

5 For example, log-shrinkage regression uses a shrinkage function derived from coding 

theory which measures the amount of information residing in the model parameter set.

This technique uses the log function as a shrinkage function instead of the I1-norm and is 

consequently non-convex. While offering a theoretically intriguing approach for seeking 

a sparse set of parameters, the non-convexity of the penalty function means that solving 

10 the corresponding regression is still computationally less tractable than the LASSO, and 

for large sets of predictors may yield only a local rather than a global minimum for the 

given data.

The techniques described here may be applied to creating linear and nonlinear 

regression models for a vast range of phenotype prediction problems. They are 

15 particularly relevant when the number of potential genetic predictors is large compared to 

the number of measured outcomes.

Simplifying a Regression Model by Mapping Genetic Independent Variables into a 

Different Space

20 Note that, as described above, in cases where complex combinations of genetic

markers are considered, it is possible to project the SNP variables onto another variable 

space in order to simplify the analysis. This variable space may represent known patters 

of mutations, such as the clusters or bins described by the HapMap project. In other 

words, rather than the vector x, representing particular SNP mutations as described above,

25 it may represent whether the individual falls into particular HapMap clusters or bins. For 

example, following the notation above, imagine there is a vector Xi-[xu, xa ... xns]T where 

B is the number of relevant HapMap bins. One can set element x»=l if the individuals 

SNPS pattern falls into the Z>rt bin and 0 otherwise. Alternatively, if the overlap between 

the individuals SNPs and a particular bin is incomplete, and it may not be desirable to 

30 simply place the individual in a category “other”, then one may set each xa equal to the 

fraction of overlap between his pattern of SNPs and that of bin b. Many other techniques 

are possible to formulate the regression problem without changing the concepts disclosed 

herein.
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Model Selection by Cross Validation for Outcome Prediction

In what has preceded this discussion, different phenotype prediction techniques 

involving expert rules, contingency tables, linear and nonlinear regression were 

described. Now a general approach to selecting from a set of modeling techniques which 

is best to model a particular categorical or non-categorical outcome for a particular 

subject is described, based on the use of training data. Figure 25 provides an illustrative 

flow diagram for the system. The process described in Figure 25 is a general approach to 

selecting the best model given the data that is available for a particular patient, the 

phenotype being modeled, and a given set of testing and training data, and the process is 

independent of the particular modeling techniques. In a preferred embodiment the set of 

modeling techniques that may be used include expert rules, contingency tables, linear 

regression models trained with LASSO or with simple least-squares where the data is no 

under-determined, and nonlinear regression models using support vector machines.

The process begins 2501 with the selection of a particular subject and a particular 

dependent variable (DV) that will be modeled, or - if it’s a categorical variable - for 

which the probability may be modeled. The system then determines 2502 the set of 

Independent Variables (TVs) that are associated with that subject’s record and which may 

be relevant to modeling the outcome of the DV. The human user of the system may also 

select that subset of TVs that the user considers to be possible relevant to the model. The 

system then checks 2503a to see whether a model has already been trained and selected 

for the given combination of independent variables and the given dependent variable to 

be modeled. If this is the case, and the data used for training and testing the ready-made 

model is not out of date, the system will go directly to generating a prediction 2519 using 

that model. Otherwise, the system will extract from the database all other records that 

have the particular DV of interest and which may or may not have the same set of TV’s as 

the particular subject of interest In so doing, the system determines 2503b whether data is 

available for training and testing a model. If the answer is no, the system checks 2515 to 

see if there are any expert rules available to predict the outcome based on a subset of the 

IV’s available for the subject If no expert rules are available then the system exits 2504 

and indicates that it cannot make a valid prediction. If one or more expert rules are 

available, then the system will select 2505 a subset of expert rules that are best suited to 

the particular subject’s data. In a preferred embodiment, the selection of which expert rule
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to apply to a subject will be based on the level of confidence in that expert rule’s estimate.

If no such confidence estimate is available, the expert rules can be ranked based on their

level of specificity, namely based on how many of the IVs available for the subject of

interest the expert rules uses in the prediction. The selected subset of expert rules is then

5 used to generate a prediction 2506.

If it is determined 2503b that data is available, the system will check 2516 to 

determine whether or not there is any data missing in the test and training data. In other 

words, for all those records that include the relevant DV, the system will check to see if 

all those records have exactly the same set of IVs as are available for the patient of 

10 interest and which may be potential predictors in die model. Typically, the answer will be 

‘no’ since different information will be available on different patients. If there is missing 

data, the system will go through a procedure to find that subset of IV’s that should be 

used to make the best possible prediction for the subject. This procedure is time

consuming since it involves a multiple rounds of model training and cross-validation. 

15 Consequently, the first step in this procedure is to reduce 2507 the set of IVs considered 

to a manageable size based on the available computational time. In a preferred 

embodiment, the set of IVs are reduced based on there being data on that IV for a certain 

percentage of the subjects that also have the DV available. The set of IVs can be further 

reduced using other techniques that are known in the art such as stepwise selection which 

20 assumes a simple linear regression model and selects IVs based on the extent to which 

they are correlated with the modeling error. The system then enters a loop in which every 

combination of the remaining IVs is examined. In a preferred embodiment the following 

states for each IV and the DV are considered: each IV can either be included or not 

included in the model and for numerical data for an IV or DV that is positive for all 

25 subjects, the data may or may not be preprocessed by taking its logarithm. For each 

particular combination of inclusions/exclusions and pre-processing of the IVs and the 

DV, a set of modeling technique is applied 2510.

Most modeling techniques will have some tuning parameter that can be optimized 

or tuned based on a grid-search approach using cross-validation with the test data. For 

30 example, for the LASSO technique discussed above, many values will be explored for the 

variable parameter λ. For each value of λ, the regression parameters may be trained, and 

the model predictions may be compared with the measured values of test data. Similarly, 

for the support vector machine approach discussed above, the tuning parameters to be
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optimized using a grid-search approach include C, ε and possibly parameters describing

the characteristics of the kernel functions. For techniques based on contingency tables, the

tunable parameter may correspond to the highest standard deviation that can be accepted

from a contingency table model, while making the contingencies as specific as possible

for the given subject, as discussed above.

Many different metrics may be used to compare the model predictions with test 

data in order to optimize the tunable parameters and select among models. In a preferred 

embodiment, the standard deviation of the error is used. In other embodiments, one may 

use the correlation coefficient R between the predicted and measured outcomes. In the 

context of logistic regression or contingency tables, one may also use the maximum a- 

posteriori probability, namely the probability of the given set of test data assuming the 

model’s prediction of the likelihood of each test outcome. Whatever metric is used, that 

value of the tuning parameter is selected that optimizes the value of the metric, such as 

minimizing the standard deviation of the prediction error if the standard deviation of the 

prediction error is used as a test metric. Since model training and cross-validation is a 

slow process, at this stage 2510 the grid that defines the different tuning parameters to be 

examined is set coarsely, based on the amount of available time, so that only a rough idea 

of the best model and best tuning parameters can be obtained.

Once all the different IV/DV combinations have been examined in this way 2511, 

the system selects that combination of IVs/DV, that model and those tuning parameters 

that achieved the best value of the test metric. Note that if there is no missing data then 

the system will skip the step of checking all combinations of the IVs/DV. Instead, the 

system will examine the different modeling techniques and tuning parameters 2508, and 

will select that modeling method and set of tuning parameters that maximizes the test 

metric. The system then performs refined tuning of the best regression model, using a 

more finely spaced grid, and for each set of tuning parameter values, determines the 

correlation with the test data. The set of tuning parameters is selected that produces the 

best value of the test metric. The system then determines 2518 whether or not the test 

metric, such as the standard deviation of the prediction error, is below or below a selected 

threshold so that the prediction can be considered valid. For example, in one embodiment, 

a correlation coefficient of R > 0.5 is desirable for a prediction to be deemed valid. If the 

resultant test metric does not meet the threshold then no prediction can be made 2517. If 

the test metric meets the requisite threshold, a phenotype prediction may be produced,
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together with the combination of IV’s that was used for that prediction and the correlation 

coefficient that the model achieved with the test data.

Illustrating Model Selection by Cross Validation in Cancer Cohorts with Missing Data

5 In order to demonstrate this aspect, a focus was on utilizing the genetic and

phenotypic data sets related to colon cancer that can be found in PharmGKB which is part 

of the National Institute of Health’s Pharmacogenomic Research Network and has a 

mission to discover how individual genetic variations contribute to different drug 

response. For this dataset, a key challenge was missing information. Ideally, one would 

10 like to apply the regression techniques described above to automatically select an IV 

subset for the model from all IVs that are available on a particular patient. However, this 

limits the amount of data that is available from other patients for training and testing the 

model. Consequently, for datasets containing few enough IVs, it is possible to search 

through all possible subsets of the independent variables. For each, as described above, 

15 one can extract that set of patients for which the required outcome has been measured, 

and the relevant set of independent variables is available. As described above, one can 

also search the space of possible ways to preprocess the included independent variables, 

such as taking the logs of positive numeric independent variables. For each combination 

of independent variables included and independent variable preprocessing techniques, the 

20 model is trained and tested by cross-validation with test data. That model is selected 

which has the best cross-validation with test data. Once a model has been created for a 

given set on IVs, that model is applied to new patient data submitted with the same set of 

IVs without requiring the exhaustive model search.

This technique has been used to predict clinical side effects for colorectal cancer 

25 drug Irinotecan. Severe toxicity is commonly observed in cancer patients receiving 

Irinotecan. Data was included which describes the relationships between Irinotecan 

pharmacokinetics and side effects with allelic variants of genes coding for Irinotecan 

metabolizing enzymes and transporters of putative relevance. Patients were genotyped for 

variations in the genes encoding MDR1 P-glycoprotein (ABCB1), multidrug resistance- 

30 associated proteins MRP-1 (ABCC1) and MRP-2 (ABCC2), breast cancer resistance 

protein (ABCG2), cytochrome P450 isozymes (CYP3A4, CYP3A5), carboxylesterases 

(CES1, CES2), UDP glucuronosyl-transferases (UGT1A1, UGT1A9), and the hepatic
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transcription factor TCF1. The phenotypic data that is associated with the genetic 

sequence data for this study is described in Table 15.

Figure 26 illustrates a model of prediction outcome for colon cancer treatment 

with irinotecan given the available PharmGKB data that was submitted using the 

5 pharmacogenomic translation engine. In Figure 26, the model shows the relevant genetic 

loci (2601), the indicators used, in this casethe log of CPT-11 area-under-the 

concentration curve (AUC) from 0-24 hours (2602) and the log of SN-38 AUC from 0-24 

hours (2603) to predict the log of the Nadir of Absolute Neutrophil Count from day 12 to 

day 14 (2604). Cross-validating the model with test data, a correlation coefficient of 

10 R=64% was achieved (2605). The empirical standard deviation of the model prediction is

shown (2606) superimposed against the histogram of outcomes that were used to train the 

model (2607). These statistics can be used to make an informed treatment decision, such 

as to forgo irinotecan treatment completely or to administer a second drug, such as 

granulocyte colony stimulating factor, to prevent a low ANC and resultant infections.

15
Enhanced Diagnostic Reporting

In the context of disease treatment, the generated phenotypic data is of most use to 

a clinician who can use the data to aid in selecting a treatment regimen. In one aspect, the 

phenotypic predictions will be contextualized and organized into a report for the clinician 

20 or patient In another aspect, the system and method disclosed herein could be used as 

part of a larger system (see Figure 27) wherein a diagnostic lab 2703 validates data from 

lab tests 2701 and medical reports 2702, and sends it to a data center 2704 where it is 

integrated into a standard ontology, analyzed using the disclosed method, and an 

enhanced diagnostic report 2705 could be generated and sent to the physician 2706.

25 One possible context in which a report may be generated would be related to

predicting clinical outcomes for colon cancer patients being treated with irinotecan. It 

may take into consideration concepts such as contraindications for treatment, dosing 

schedules, side effect profiles. Examples of such side effects include myelosuppression 

and late-onset diarrhea which are two common, dose-limiting side effects of irinotecan 

30 treatment which require urgent medical care. In addition, severe neutropenia and severe 

diarrhea affect 28% and 31% of patients, respectively. Certain UGT1A1 alleles, liver 

function tests, past medical history of Gilbert’s Syndrome, and identification of patient
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medications that induce cytochrome p450, such as anti-convulsants and some anti

emetics, are indicators warranting irinotecan dosage adjustment.

Figure 28 is a mock-up of an enhanced report for colorectal cancer treatment with 

irinotecan that makes use of phenotype prediction. Prior to treatment, the report takes into 

5 account the patient’s cancer stage, past medical history, current medications, and 

UGT1A1 genotype to recommend drug dosage. Roughly one data after the first drug 

dosage, the report includes a prediction of the expected Nadir of the patient’s absolute 

neutrophil count in roughly two weeks time, based on the mutations in the UGT1 Al gene 

and metabolites (e.g. SN-38, CPT-11) measured from the patient’s blood. Based on this 

10 prediction, the doctor can make a decision whether to give the patient colony stimulating 

factor drugs, or change the Irinotecan dosage. The patient is also monitored for blood 

counts, diarrhea grade. Data sources and justification for recommendations are provided.

Combinations of the Aspects

15 As noted previously, given the benefit of this disclosure, other aspects, features

and embodiments may implement one or more of the methods and systems disclosed 

herein. Below is a short list of examples illustrating situations in which the various 

aspects of the disclosed invention can be combined in a plurality of ways. It is important 

to note that this list is not meant to be comprehensive, many other combinations of the 

20 aspects, features and embodiments of this invention are possible.

One example could utilize a variety of genotyping measurement techniques in a 

way that would optimize the value of each. For example, a lab could use an technique 

that is expensive but can give high quality data in cases with low signal, such as 

AppliedBioscience’s Taqman assay, to measure the target DNA, and use a technique that 

25 is less expensive but requires a greater amount of genetic material to give good quality 

data, such as Asymetrix’s 500K Genechip, or MIPS, to measure the parental DNA.

Another example could be a situation in which a couple undergoing IVF treatment 

have eggs harvested from the woman, and fertilized with sperm from the man, producing 

eight viable embryos. A blastocyst is harvested from each embryo, and the genomic data 

30 from the blastocysts are measured using Taqman Genotyping Assay. Meanwhile, the 

diploid data is measured from tissue taken from both parents using Molecular Inversion 

Probes. Haploid data from one of the man’s sperm, and one of the woman’s eggs is also 

measured using MIPs. The genetic data of the parents is used to clean the SNP data of
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the eight blastocysts. The cleaned genetic data is then used to allow predictions to be 

made concerning the potential phenotypes of the embryos. Two embryos are selected 

which have the most promising profile, and allowed to implant in the woman’s uterus.

Another example could be a situation where a pregnant woman whose husband

5 has a family history of Tay-Sachs disease wants to know if the fetus she is carrying is 

genetically susceptible, but she does not want to undergo amniocentesis, as it carries a 

significant risk of miscarriage. She has her blood drawn, some fetal DNA is isolated 

from her blood, and that DNA is analyzed using MIPs. She and her husband had already 

had their full genomic data analyzed previously and it is available in silico. The doctor is 

10 able to use the in silico knowledge of the parental genomes and the method disclosed 

herein to clean the fetal DNA data, and check if the critical gene that is responsible for 

Tay-Sachs disease is present in the genome of the fetus.

Another example could be a situation where a 44-year old pregnant woman is 

concerned that the fetus she is carrying may have Downs Syndrome. She is wary of 

15 having an intrusive technique used for pre-natal diagnosis, given a personal history of 

miscarriages, so she chooses to have her blood analyzed. The health care practitioner is 

able to find fetal cells in the maternal blood sample, and using the method disclosed 

herein, together with the knowledge of the woman’s own genetic data, is able to diagnose 

for aneuploidy.

20 Another example could be a situation where a couple are undergoing IVF

treatment; they have eggs harvested from the woman, and fertilized with sperm from the 

man, producing nine viable embryos. A blastocyst is harvested from each embryo, and 

the genomic data from the blastocysts are measured using an Illumina Bead Assay. 

Meanwhile, the diploid data is measured from tissue taken from both parents using 

25 Molecular Inversion Probes. Haploid data from the father’s sperm is measured using the 

same method. There were no extra eggs available from the mother, so bulk diploid tissue 

samples are taken from her own father and mother, and a sperm sample from her father. 

They are all analyzed using MIPs and the method disclosed herein is used to provide a 

genetic analysis for the mother’s genome. That data is then used, along with the father’s 

30 diploid and haploid data, to allow a highly accurate analysis of the genetic data of each of 

the blastocysts. Based on the phenotypic predictions, the couple chooses three embryos 

to implant.
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Another example could be a situation where a racehorse breeder wants to increase 

the likelihood that the foals sired by his champion racehorse become champions 

themselves. He arranges for the desired mare to be impregnated by IVF, and uses genetic 

data from the stallion and the mare to clean the genetic data measured from the viable 

5 embryos. The cleaned embryonic genetic data allows the breeder to find relevant 

genotypic-phenotypic correlations and select the embryos for implantation that are most 

likely to produce a desirable racehorse.

Another example could be a situation where a pregnant woman wants to know 

whether the fetus she is carrying is predisposed towards any serious illness. The father 

10 has since passed away, and so the haploid and diploid data generated from the father’s 

brother and the father’s father are used to help clean the genetic data of the fetus, 

measured from fetal cells gathered during fetal blood sampling. A company contracted 

by the health care practitioner uses the cleaned fetal genetic data to provide a list of 

phenotypes that the fetus is likely to exhibit, along with the confidence of each prediction.

15 Another example could be an amniocentesis lab that must occasionally contend

with contaminated fetal genetic data due to poor laboratoiy techniques. The disclosed 

method could be used to clean the contaminated fetal genetic data using maternal and 

paternal genetic data. One could imagine a situation where a laboratory is able to cut 

costs by relaxing sterility procedures, knowing that the disclosed method would be able to 

20 compensate for an increased rate of contaminating DNA.

Another example could be a situation in which a woman in her forties is 

undergoing IVF to get pregnant She wants to screen the embryos to select the one(s) that 

are least likely to have a genetic illness, and are most likely to implant and carry to term. 

The IVF clinic she is using harvests a blastocyst from each of the viable embryos, and 

25 uses standard procedures to amplify the DNA, and measure key SNPs. The technician 

then uses the methods disclosed herein to screen for chromosomal imbalances, and also 

to find and clean the genetic data of the embryos to make predictions about the 

phenotypic predispositions of each embryo.

Another example could be a situation where a pregnant woman has amniocentesis, 

30 and the genetic material in the fetal cells in the blood sample are used, along with the 

methods described herein to screen for aneuploidy and other chromosomal abnormalities.

One example could be a situation in which a non-linear model using Support
I

Vector Machine with radial basis kernel functions and a norm loss function utilizes
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genetic and phenotypic data of a human adult to predict the likelihood of early onset 

Alzheimer’s disease, and to suggest possible lifestyle changes and exercise regimens 

which may delay the onset of the disease.

Another example could be a situation in which a linear model using the LASSO

5 technique utilizes the genetic and phenotypic data of an adult woman afflicted with lung 

cancer, along with genetic data of the cancer to generate a report for the woman’s 

physicians predicting which pharmaceuticals will be most effective in delaying the 

progression of the disease.

Another example could be a situation in which a plurality of models are tested on 

10 aggregated data consisting of genetic, phenotypic and clinical data of Crohn’s disease 

patients, and then the non-linear regression model that is found to be the most accurate 

utilizes the phenotypic and clinical data of an adult man to generate a report suggesting 

certain nutritional supplements that are likely to alleviate the symptoms of his Crohn’s 

disease.

15 Another example could be a situation in which a model utilizing contingency

tables built from data acquired through the Hapmap project, and utilizing genetic 

information gathered from a blastocyst from an embryo are used to make predictions 

regarding likely phenotypes of a child which would result if the embryo were implanted.

Another example could be a situation where linear regression models utilizing 

20 genetic information of the strain of HIV infecting a newborn are used to generate a report

for the baby’s physician suggesting which antiretroviral drugs give her the greatest 

chance of reaching adulthood if administered.

Another example could be a situation where a new study is published suggesting 

certain correlations between the prevalence of myocardial infarctions in middle aged 

25 women and certain genetic and phenotypic markers. This then prompts the use of a non

linear regression model to reexamine the aggregate data of middle aged data, as well as 

genetic and phenotypic data of identified individuals whose data is known to the system, 

and the model then identifies those women who are most at risk of myocardial 

infarctions, and generates reports that are sent to the women’s respective physicians 

30 informing them of the predicted risks.

Another example could be a situation where a plurality of models are tested on 

aggregated data of people suffering from colon cancer, including the various drug 

interventions that were attempted. The model that is found to allow the best predictions is
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used to identify the patients who are most likely to benefit from an experimental new 

pharmaceutical, and those results are used by the company which owns the rights to the 

new pharmaceutical to aid them in conducting their clinical trials.

5 Definitions

SNP (Single Nucleotide Polymorphism): A specific locus on a chromosome that tends to 

show inter-individual variation.

To call a SNP: to interrogate the identity of a particular base pair, taking into account the 

direct and indirect evidence.

10 To call an allele: to call a SNP.

To clean genetic data: to take imperfect genetic data and correct some or all of the errors, 

using genetic data of related individuals and the method describe herein.

Imperfect genetic data: genetic data with any of the following: allele dropouts, unclear 

base pair measurements, incorrect base pair measurements, spurious signals, or 

15 missing measurements.

Confidence: the statistical likelihood that the called SNP, allele, or set of alleles correctly 

represents the real genetic state of the individual.

Multigenic: affected by multiple genes, or alleles.

Noisy genetic data: incomplete genetic data, also called incomplete genetic data.;

20 Uncleaned genetic data: genetic data as measured, that is, with no method has been used 

to correct for the presence of noise in the raw genetic data; also called crude 

genetic data.

Direct relation: mother, father, son, or daughter.

Chromosomal Region: a segment of a chromosome, or a full chromosome.

25 Parental Support: the name sometimes used for the disclosed method of cleaning genetic 

data.

Section of a chromosome: a section of a chromosome that can range in size from one 

base pair to the entire chromosome.
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The term ‘comprise’ and variants of the term such as ‘comprises’ or ‘comprising’ 

are used herein to denote the inclusion of a stated integer or stated integers but not to 

exclude any other integer or any other integers, unless in the context or usage an 

exclusive interpretation of the term is required.

5 Any reference to publications cited in this specification is not an admission that the

disclosures constitute common general knowledge in Australia.
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Table 3.

snp id el e2 Pl p2 ml m2 pel pe2 . ppi pp2 pml pm2
101100940 C T T C C T 0.9538 0.8902 0.8626 0.8580 0.8654 0.9101
101164838 T C T C T c 0.9359 0.9521 0.9406 0.9253 0.9957 0.8770
rsl463589 c C T c c c 0.9428 0.9928 0.9841 0.9266 0.8661 0.9798
101028396 c G c G c c 0.9252 0.8792 0.9246 0.9856 0.9819 0.8631
101204217 A G G A G G 0.9799 0.9843 0.9194 0.9478 0.9438 0.9709
101214313 A G G A G A 0.8513 0.9863 0.9521 0.9707 0.8570 0.9639
101231593 G A G G A A 0.9857 0.9653 0.8908 0.9036 0.9431 0.9832
TS1426442 G C C G C G 0.9338 0.9278 0.9469 0.9514 0.8766 0.9017
rs7486852 C C C T T C 0.9566 0.9616 0.9390 0.8673 0.8785 0.8889
101266729 A G A G A G 0.9238 0.9500 0.9026 0.9855 0.8760 0.9381

snpjd el e2. pi Pl· ml m2. pel pe2 ppi pp2 pml pm2
101019515 G G G G G G 0.9134 0.8768 0.8666 0.9690 0.8679 0.8599
101100940 C T T C C T 0.9538 0.8902 0.8626 0.8580 0.8654 0:9101
101160854 A A A A A A 0.8705 0.9769 0.8763 0.8870 0.9311 0.9553

,rs4980809 A G G A A G 0.9638 0.9951 0.9582 0.9621 0.9197 0.9199
101058479 G A G A G A 0.9003 0.9885 0.8906 0.9235 0.9787 0.8792
101236938 G G G G G A 0.8528 0.9710 0.8810 0.9249 0.9274 0.9891
rs7137405 T T T T T A 0.9360 0.9918 0.9148 0.9558 0.9135 0.9388
101251161 G G G G G G 0.9802 0.8620 0.9372 0.8501 0.9891 0.8679
101270051 G G G G G A 0.9004 0.9643 0.9778 0.9060 0.9943 0.8962

rs215227 G G G G G A 0.9244 0.9236 0.9629 0.8575 0.9019 0.9362
101245075 G G G G G G 0.9958 0.8593 0.9129 0.8504 0.8534 0.9866
101158538 A G A G G G 0.9471 0.8909 0.8710 0.9581 0.8961 0.9046
rs2535386 A A A A A A 0.9273 0.9479 0.9867 0.8918 0.9264 0.9750
rs6489653 T T T T T T 0.9453 0.9776 0.9051 0.8547 0.9636 0.9532
101137205 C G C C G G 0.8619 0.9503 0.9029 0.9426 0.8845 0.9282
101089311 T C C c C T 0.8844 0.9381 0.9719 0.8636 0.9186 0.9652
101205712 A A A A A A 0.8513 0.9226 0.8755 0.8999 0.9193 0.8535
101124605 G G G G G G 0.8981 0.9093 0.9075 0.8676 0.8931 0.9258
101025989 G T T G G T 0.9695 0.9016 0.8722 0.8821 0.9787 0.9273
rs4766370 T A A T T A 0.8886 0.9166 0.8762 0.8767 0.9890 0.8536

Table 4.
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Table 5.

snp id true value true, hyp ee PP mm SnipProb HypProb |
101100940 CT p2 m2 CT TC CT 0.8416 0.5206
101164838 CT p2 ml TC TC TC 0.9061 0.5206
rsl463589 cc p2 ml cc TC CC 0.9946 0.5206
101028396 GC p2 ml CG CG CC 0.9791 0.5206
101204217 AG p2 m2 AG GA GG 0.9577 0.5206
101214313 GA pl m2 AG GA GA 0.9308 0.5206
101231593 GA pl m2 GA GG AA 1.0000 0.5206
rsl426442 CG pl m2 GC CG CG 0.9198 0.5206
rs7486852 CC pl m2 CC CT TC 0.9138 0.5206
101266729 AG pl m2 AG AG AG 0.9296 0.5206

Table 6.

snp id true value true_hyp ee PP mm SnipProb HypProb
101019515 GG pl ml GG GG GG 1.0000 0.9890
101100940 TC pl ml CT TC CT 0.9946 0.9890
101160854 AA pl ml AA AA AA 1.0000 0.9890
rs4980809 GA pl ml AG GA AG 0.9961 0.9890
101058479 GG pl ml GA GA GA 0.9957 0.9890
101236938 GG pl ml GG GG GA 1.0000 0.9890
rs7137405 TT pl ml TT TT TA 1.0000 0.9890
101251161 GG pl ml GG GG GG 1.0000 0.9890
101270051 GG pl ml GG GG GA 1.0000 0.9890
rs215227 GG pl ml GG GG GA 1.0000 0.9890
101245075 GG pl ml GG GG GG 1.0000 0.9890
101158538 AG pl ml AG AG GG 0.9977 0.9890
rs2535386 AA pl ml AA AA AA 1.0000 0.9890
rs6489653 TT pl ml TT TT TT 1.0000 0.9890
101137205 CG pl ml CG CC GG 1.0000 0.9890
101089311 CC pl ml TC CC CT 0.9940 0.9890
101205712 AA pl ml AA AA AA 1.0000 0.9890
101124605 GG pl ml GG GG GG 1.0000 0.9890
101025989 TG pl ml GT TG GT 0.9973 0.9890
rs4766370 AT pl ml TA At TA 0.9973 0.9890
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Table 7.

DHAIgorithml , DHAIgorithm2
Pop.Freq Ph Pd P1 accuracy P2accuracy P1 accuracy P2accuracy
data 0.95 0.95 0.982 0.951 0.95 0.906
data 0.75 0.75 0.891 0.811 0.749 0.618
data 0.25 0.25 0.71 0.71 0.253 0.25
data 0.5 0.9 0.849 0.838 0.499 0.768
data 0.9 0.5 0.942 0.734 0.898 0.347
data 0.6 0.8 0.852 0.816 0.601 0.673
uniform 0.95 0.95 0.95 0.906 0.949 0.905
uniform 0.75 0.75 0.749 0.612 0.749 0.612
uniform 0.25 0.25 0.25 0.248 0.25 0.25
uniform 0.5 0.9 0.69 0.669 0.501 0.671
uniform 0.9 0.5 0.901 0.412 0.901 0.413
uniform 0.6 0.8 0.678 0.618 0.6 0.618

Table 8.

PSAIgorithml PSAIgorithm2
Pop. Freq Ph Pd... pe P1 accuracy P2accuracy P1 accuracy P2accuracy
data 0.95 0.95 0.95 0.834 0.815 0.928 0.931
data 0.75 0.75 0.75 0.797 0.769 0.819 0.819
data 0.25 0.25 0.25 0.711 0.682 0.703 0.687
data 0.5 0.9 0.9 0.849 0.838 0.866 0.864
data 0.9 0.5 0.5 0.792 0.809 0.756 0.752
data 0.6 0.8 0.8 0.777 0.788 0.835 0.828
uniform 0.95 0.95 0.95 0.673 0.631 0.898 0.901
uniform 0.75 0.75 0.75 0.549 0.497 0.635 0.65
uniform 0.25 0.25 0.25 0.239 0.249 0.252 0.25
uniform 0.5 0.9 0.9 0.601 0.611 0.814 0.818
uniform 0.9 0.5 0.5 0.459 0.391 0.449 0.468
uniform 0.6 0.8 0.8 0.544 0.511 0.672 0.679
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Table 10.
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Other embodiments of the invention as described herein are defined in the 

following paragraphs:

1. A method for determining genetic data of a target individual based on the 

imperfect knowledge of the target individual's genetic data, and knowledge of the genetic

5 data of one or more individuals genetically related to the target, the method comprising:

(i) creating a set of one or more hypotheses concerning which segments of which 

chromosomes from the related individual(s) correspond to those segments found in the 

target individual's genome,

(ii) determining the probability of each of the hypotheses given the measurements

10 of the target individual's genetic data and of the related individual's genetic data, and

(iii) using the probabilities associated with each hypothesis to determine the most 

likely state of the actual genetic material of the target individual.

2. The method of paragraph 1, wherein the method involves determining which

15 regions of the parental chromosomes have the maximum likelihood of having contributed 

to the formation of the gametes that contributed to the target individual, based on the 

measurements of genetic data of the target, and determination of the likelihood of those 

particular measurements given the genetic data of the parents.

20 3. The method of paragraph 1, where the haplotypes of at least one of the parents

have been determined by using genetic data measured from the parent's diploid sample, 

and the genetic data measured from a haploid sample from the parent which is used to 

determine which alleles measured from the diploid sample belong to which haplotype.

25 4. The method of paragraph 1, wherein the genetic data from genetically related

individual(s) is(are) taken from a group comprising genetic data from a diploid maternal 

sample, a haploid maternal sample, a diploid paternal sample, and a haploid paternal 

sample.

30 5. The method of paragraph 1, wherein a confidence is computed for each of the

individual SNP calls in the cleaned embryonic genetic data.

6. The method of paragraph 1, wherein the genetic data from the genetically related 

individual(s) is(are) taken from a group comprising genetic data from diploid maternal
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cells, diploid paternal cells, haploid paternal cells, diploid cells from the maternal 

grandfather, and haploid cells from the maternal grandfather.

7. The method of paragraph 1, wherein the genetic data from the genetically related

5 individual(s) is(are) taken from a group comprising genetic data from diploid maternal 

cells, diploid paternal cells, and diploid cells from a related individual known to be a 

carrier of the phenotype in question.

8. The method of paragraph 1, wherein the genetically related individual(s) is/are

10 taken from a group consisting of the father, mother, son, daughter, brother, sister, 

grandfather, grandmother, uncle, aunt, nephew, niece, grandson, granddaughter, cousin, 

clone, other individuals with known genetic relationship to the target, and combinations 

thereof.

15 9. The method of paragraph 1, where the target individual is taken from a group

consisting of an adult human, a juvenile human, a human fetus, a human embryo, a non- 

human adult, a non-human juvenile, a non-human fetus, and a non-human embryo.

10. The method of paragraph 1, where one or more of the individual's genetic data has

20 been amplified using tools and/or techniques taken from the group comprising 

Polymerase Chain Reaction (PCR), Ligand mediated PCR, degenerative oligonucleotide 

primer PCR, Multiple Displacement Amplification, allele-specific amplification 

techniques, and combinations thereof.

25 11. The method of paragraph 1, wherein one or more of the individual's genetic data

has been measured using tools and or techniques taken from the group comprising 

Molecular Inversion Probes (MIP), Genotyping Microarrays, the Taqman SNP 

Genotyping Assay, the Ulumina Genotyping System, other genotyping assays, fluorescent 

in-situ hybridization (FISH), and combinations thereof.

30

12. The method of paragraph 1, where one or more of the individual's genetic data has 

been measured by analyzing substances taken from the group comprising the individual's 

bulk diploid tissue, one or more diploid cells taken from the individual, one or more 

blastocysts taken from the individual, the individual's semen, the individual's egg, 

35 extracellular genetic material found on the individual, extra-cellular genetic material from
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the individual found in maternal blood, extra-cellular genetic material from the individual 

found in maternal plasma, cells from the individual found in maternal blood, genetic 

material known to have originated from the individual, and combinations thereof.

5 13. The method of paragraph 1, where one or more of the related individual's genetic

data is partly or wholly known in silico, or is provided by parties other than those 

determining the target individual's genetic data.

14. The method of paragraph 1, where the haploid genetic data of one or more of the

10 individuals is partly or wholly generated in silico by means of a computer algorithm that 

simulates haploid data from diploid data.

15. The method of paragraph 14, wherein the computer algorithm comprises a hidden 

Markov model.

15

16. The method of paragraph 1, wherein the determination of the target's genetic data 

is used for the purpose of embryo selection in the context of in-vitro fertilization.

17. The method of paragraph 1, wherein the determination of the target's genetic data 

20 is used for the purpose of prenatal genetic diagnosis.

18. The method of paragraph 1, wherein the determination of the target's genetic data 

is used for the purpose of making predictions of phenotype susceptibility using statistical 

models and/or expert rules.

25

19. The method of paragraph 1, wherein the determination of the target's genetic data 

is used for the purpose of making phenotypic predictions, and where the likelihood of 

displaying some or all of the phenotypes is affected by other previously known 

phenotypic information.

30

20. The method of paragraph 1, wherein the determination of the target's genetic data 

is used for the purpose of making phenotypic predictions, and where the predictions are 

made by comparing the target's genetic data to known genetic markers found in the public 

domain.

35
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21. The method of paragraph 1, wherein the determination of the target's genetic data 

is used for the purpose of making clinical decisions.

22. The method of paragraph 1, wherein the determination of the target's genetic data

5 is used, in combination with phenotypic markers, for the purpose of making clinical 

decisions.

23. The method of paragraph 1, wherein the determination of the target's genetic data 

is used for the purpose of screening for susceptibility to one or more diseases, where no

10 family history of the disease(s) is (are) present.

24. The method of paragraph 1, wherein the determination of the target's genetic data 

is used for the purpose of screening for susceptibility to one or more phenotypes, where 

some or all of the phenotypes are multigenic.

15

25. The method of paragraph 1, wherein the knowledge of the target's genetic data is 

known to or suspected to contain spurious data from contaminating DNA or RNA.

26. The method of paragraph 1, wherein the genetic data of one or more of the 

20 individuals includes the allele calls for a plurality of SNPs and the confidence with which

each SNP is known.

27. The method of paragraph 1, wherein the confidence in the SNP calls of the target 

individual is determined by computing the odds ratio of the probabilities that the SNP is

25 correctly versus incorrectly called.

28. A system configured to accomplish the method of paragraph 1.

29. A computer-implemented system configured to accomplish the method of 

30 paragraph 1.

30. A method wherein the measurement of multiple loci on a given segment of a 

given chromosome of a target individual is used to determine the number of instances of 

the given segment in the genome of the target individual, the method comprising:
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(i) creating a set of one or more hypotheses about the number of instances of the 

given segment present in the genome of the target individual,

(ii) measuring the amount of genetic data for some or all of the possible alleles at 

a plurality of loci on the given segment,

5 (iii) determining the relative probability of each of the hypotheses given the

measurements of the target individual's genetic data and possibly also the related 

individual's genetic data, and

(iv) using the relative probabilities associated with each hypothesis to determine 

the most likely state of the actual genetic material of the target individual.

10

31. The method of paragraph 30 where the determination of the number of instances 

of segments of chromosomes that are present in the target's genome is done in the context 

of screening for a chromosomal abnormality, that abnormality taken from a list 

comprising monosomy, uniparental disomy, trisomy, other aneuploidies, unbalanced

15 translocation, and combinations thereof.

32. The method of paragraph 30 where the determination of the relative probability of 

each hypothesis is made using the concept of matched filtering.

20 33. The method of paragraph 30 where the determination of the relative probability of

each hypothesis is made using quantitative techniques that do not make allele calls and 

where the mean and standard deviation for the measurement of each locus is either 

known, unknown, or uniform.

25 34. The method of paragraph 30 where the determination of the relative probability of

each hypothesis is made using qualitative techniques that make use of allele calls.

35. The method of paragraph 30 where the determination of the relative probability of 

each hypothesis is made by making use of known alleles of reference sequences, and

30 quantitative allele measurements.

36. The method of paragraph 30, where the target individual is taken from a group 

consisting of an adult human, a juvenile human, a human fetus, a human embryo, a non- 

human adult, a non-human juvenile, a non-human fetus, and a non-human embryo.

35
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37. The method of paragraph 30, wherein the target individual's genetic data has been 

amplified using tools and or techniques taken from the group comprising Polymerase 

Chain Reaction (PCR), Ligand mediated PCR, degenerative oligonucleotide primer PCR, 

Multiple Displacement Amplification, allele-specific amplification and combinations

5 thereof.

38. The method of paragraph 30, wherein the target individual's genetic data has been 

measured using tools and or techniques taken from the group comprising Molecular 

Inversion Probes (MIP), Genotyping Microarrays, the Taqman SNP Genotyping Assay,

10 the Illumina Genotyping System, other genotyping assays, fluorescent in-situ 

hybridization (FISH), and combinations thereof.

39. The method of paragraph 30, wherein the target individual's genetic data has been 

measured by analyzing substances taken from the group comprising the target individual's

15 bulk diploid tissue, one or more diploid cells taken from the target individual, one or more 

blastocysts taken from the target individual, extra-cellular genetic material found on the 

target individual, extra-cellular genetic material from the target individual found in 

maternal blood, cells from the target individual found in maternal blood, genetic material 

known to have originated from the target individual, and combinations thereof.

20

40. The method of paragraph 30, wherein the determination of the number of 

chromosomes or chromosome segments in the target is used for the purpose of embryo 

selection in the context of in-vitro fertilization.

25 41. The method of paragraph 30, wherein the determination of the number of

chromosomes or chromosome segments of the target is used for the purpose of prenatal 

genetic diagnosis.

42. A system configured to accomplish the method of paragraph 30.

30

43. A computer-implemented system configured to accomplish the method of 

paragraph 30.

44. A method for determining the genetic data of a target individual, and also the 

35 number of instances of chromosomes or segments of chromosomes that are present in the
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target's genome, based on the imperfect knowledge of the target individual's genetic data, 

and knowledge of the genetic data of one or more individuals genetically related to the 

target, the method comprising:

(i) creating a set of one or more hypotheses about which segments of which

5 chromosomes from the related individual(s) correspond to those segments found in the 

target individual's genome,

(ii) creating a set of one or more hypotheses about the number of a given 

chromosomal segment present in the genome of the target,

(iii) measuring the amount of genetic data for each of the possible alleles at a 

10 plurality of loci on the given segment,

(iv) determining the relative probability of each of the hypotheses given the 

measurements of the target individual's genetic data and of the related individual's genetic 

data, and

(v) using the relative probabilities associated with each hypothesis to determine 

15 the most likely state of the actual genetic material of the target individual.

45. A method for making predictions regarding an individual, the method comprising: 

(i) constructing models based on contingency tables built from publicly available

information about gene-disease associations; and

20 (ii) applying models to make the predictions by operating on data pertaining to the

individual.

46. The method of paragraph 45, wherein an accuracy of the contingency tables that 

employ multiple independent variables can be refined using outcome data where only a

25 subset of those independent variables was measured.

47. The method of paragraph 45, wherein an accuracy of the contingency tables that 

employ multiple independent variables can be refined using data about the association of 

the independent variables.

30

48. The method of paragraph 45, wherein an accuracy of the contingency tables that 

employ multiple independent variables can be refined using data about the frequency of 

occurrence of certain values of the independent variables.
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49. A method for making predictions regarding a first individual, the method 

comprising:

(i) creating and testing a plurality of models using aggregated data from a second 

set of individuals for whom the outcome to be predicted is known;

5 (ii) calculating the relative accuracies of the various models for making the

prediction given the data available on the first individual; and

(iii) using the model that is identified as the most accurate to make a prediction 

for the first individual.

10 50. The method of paragraph 45, where the type of data pertaining to the individual

comprises data taken from a group consisting of the individual’s genotypic data, the 

individual's phenotypic data, the individual's clinical data, and the individual's laboratory 

data.

15 51. The method of paragraph 49, where the type data pertaining to the individual

comprises data taken from a group consisting of the individual's genotypic data, the 

individual's phenotypic data, and the individual's clinical data, and the individual's 

laboratory data.

20 52. The method of paragraph 45, where the type of data also consists of data of a

pathogen infecting the individual.

53. The method of paragraph 49, where the type of data also consists of data of a 

pathogen infecting the individual.

25

54. The method of paragraph 45, where said predictions concern topics selected from 

the group consisting of the individual's phenotypes, phenotype susceptibilities, possible 

clinical outcomes, lifestyle decisions, physical exercise, dietary habits, hormonal 

supplements, nutritional supplements, treatments for a disease, treatments for a pathogen,

30 treatments for an undesirable condition, treatments with pharmaceuticals, and 

combinations thereof.

55. The method of paragraph 49, where said predictions concern topics selected from 

the group consisting of the individual's phenotypes, phenotype susceptibilities, possible

35 clinical outcomes, lifestyle decisions, physical exercise, mental exercise, dietary habits,

142



20
13

20
25

55
 

04
 A

pr
 2

01
3

hormonal supplements, nutritional supplements, treatments for a disease, treatments for a 

pathogen, treatments for an undesirable condition, treatments with pharmaceuticals, and 

combinations thereof.

5 56. The method of paragraph 45, where said predictions are used to generate a report

for the individual or for an agent of the individual.

57. The method of paragraph 49, where said predictions are used to generate a report 

for the individual or for an agent of the individual.

10

58. The method of paragraph 45, wherein the act of operating comprises operating on 

new data to update the individual's predictions where the data is taken from a group 

comprising new research data or new aggregated data on other subjects.

15 59. The method of paragraph 49, wherein the act of operating comprises operating on

new data to update the individual's predictions where the data is taken from a group 

comprising new research data or new aggregated data on other subjects.

60. A system configured to accomplish the method of paragraph 45.

20

61. A system configured to accomplish the method of paragraph 49.

Still further embodiments are within the scope of the following claims.
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CLAIMS

1. A method for detecting the presence or absence of a chromosomal abnormality in a target 

individual, the method comprising:

(a) measuring the amount of genetic material at multiple loci on a chromosome or 

chromosome segment of interest in a sample comprising DNA from the target individual;

(b) comparing the amount from step (a) to either (i) a threshold value or (ii) an expected 

amount for a particular copy number hypothesis; and

(c) identifying the presence or absence of a chromosomal abnormality based on the 

comparison.

2. The method of claim 1, wherein the expected amount is a reference amount.

3. The method of claim 1, wherein the expected amount is the mean value for a reference 

chromosome or chromosome segment that is present in two copies.

4. The method of claim 1, wherein the expected amount is the mean value for samples with two 

copies of a reference chromosome or chromosome segment.

5. The method of claim 1, further comprising determining the number of copies of the 

chromosome or chromosome segment of interest in the genome of the target individual.

6. The method of claim 1, wherein the amount of genetic material at a particular locus is 

determined irrespective of the identity of the alleles at the locus.

7. The method of claim 1, wherein the multiple loci comprise an allele with 100% penetrance.

8. The method of claim 1, wherein sequencing is used to measure the amount of genetic material 

at the multiple loci.

9. The method of claim 1, wherein the identification of the presence or absence of a 

chromosomal abnormality is used to make a clinical decision about the target individual.
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10. The method of claim 9, wherein the target individual(s) is one or more embryos, and wherein 

the method further comprises: (i) using the identification of the presence or absence of a 

chromosomal abnormality in the one or more embryos to select an embryo for in vitro fertilization; 

and (ii) performing in vitro fertilization with the selected embryo.

11. The method of claim 1, wherein the target individual is a fetus, and wherein the sample is a 

maternal blood sample comprising DNA from the fetus and DNA from the mother of the fetus.

12. The method of claim 1, wherein the target individual is a fetus, and wherein the method further 

comprises performing amniocentesis or chorion villus biopsy.

13. The method of claim 1, wherein the chromosome of interest is selected from the group 

consisting of chromosome 13, chromosome 18, chromosome 21, the X chromosome, the Y 

chromosome, and combinations thereof.

14. The method of claim 1, wherein the chromosomal abnormality is selected from the group 

consisting of monosomy, uniparental disomy, trisomy, other aneuploidies, unbalanced translocations, 

insertions, deletions, and combinations thereof.

15. The method of claim 1, wherein the method comprises determining whether the target 

individual has Down syndrome, Klinefelters syndrome, or Turner syndrome.

16. A method for determining the number of copies of a chromosome or chromosome segment 

of interest in the genome of a target individual, the method comprising:

(a) measuring the amount of genetic material at multiple loci on a chromosome or 

chromosome segment of interest in a sample comprising DNA from the target individual;

(b) creating a set of one or more hypotheses about the number of copies of the 

chromosome or chromosome segment of interest in the genome of the target individual;

(c) determining on a computer the probability of each of the hypotheses being true or 

false given the measurements from step (a); and

(d) determining the number of copies of the chromosome or chromosome segment of 

interest in the genome of the target individual using the probabilities associated with each hypothesis.
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17. The method of claim 16, wherein the probabilities are determined using a combined 

measurement that is a function of the measurements from step (a) at the multiple loci.

18. The method of claim 16, wherein the probabilities are determined using a comparison of the 

measurements from step (a) to either (i) a threshold value or (ii) an expected amount for a particular 

copy number hypothesis.

19. The method of claim 18, wherein the expected amount is a reference amount.

20. The method of claim 18, wherein the expected amount is the mean value for a reference 

chromosome or chromosome segment that is present in two copies.

21. The method of claim 16, wherein the amount of genetic material at a particular locus is 

determined irrespective of the identity of the alleles at the locus.

22. The method of claim 16, wherein the multiple loci comprise an allele with 100% penetrance.

23. The method of claim 16, wherein sequencing is used to measure the amount of genetic 

material at the multiple loci.

24. The method of claim 16, wherein the copy number determination is used to make a clinical 

decision about the target individual.

25. The method of claim 24, wherein the target individual(s) is one or more embryos, and wherein 

the method further comprises (i) using the copy number determination for the one or more embryos to 

select an embryo for in vitro fertilization, and (ii) performing in vitro fertilization with the selected 

embryo.

26. The method of claim 16, wherein the target individual is a fetus, and wherein the sample is a 

maternal blood sample comprising DNA from the fetus and DNA from the mother of the fetus.

27. The method of claim 16, wherein the target individual is a fetus, and wherein the method 

further comprises performing amniocentesis or chorion villus biopsy.
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28. The method of claim 16, wherein the chromosome of interest is selected from the group 

consisting of chromosome 13, chromosome 18, chromosome 21, the X chromosome, the Y 

chromosome, and combinations thereof.

29. The method of claim 16, wherein the method comprises screening for a chromosomal 

abnormality in the genome of the target individual; wherein the chromosomal abnormality is selected 

from the group consisting of monosomy, uniparental disomy, trisomy, other aneuploidies, unbalanced 

translocations, insertions, deletions, and combinations thereof.

30. The method of claim 16, wherein the method comprises determining whether the target 

individual has Down syndrome, Klinefelters syndrome, or Turner syndrome.

Date: 4 April 2013
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Sample 0:Mean 29.974 and Std 1320 N=148 Loci=37

Ct CROSSOVER OFTAQMAN ASSAY 
MEASURED IN CYCLE NUMBER

Fig. 4
Sample 1: Mean 31.439 and Std 1.592 N=148 Loci=37

Ct CROSSOVER OFTAQMAN ASSAY 
MEASURED IN CYCLE NUMBER

Fig. 5
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Measurements: Mean 1.465 and Std 0.990. Adjusted Std 0.700 N=74 Lod=37

DIFFERENCE BETWEEN MALE AND FEMALE 
MEASUREMENTS FOR EACH LOCUS

Fig. 6
Sample 1:Mean 32.259 and Std 1.460

Ct CROSSOVER OF TAQMAN ASSAY 
MEASURED IN CYCLE NUMBER

Fig. 7
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Sample 0:Mean 30.750 and Std 1.202
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Ct CROSSOVER OF TAQMAN ASSAY 
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Fig. 8
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Sample 0: Mean 26.640 and Std 1.148

Ct CROSSOVER OF qPCR ASSAY 
MEASURED IN CYCLE NUMBER

Fig.10

Sample 1:Mean 27.652 and Std 1.401

Ct CROSSOVER OF qPCR ASSAY 
MEASURED IN CYCLE NUMBER

Fig. 11
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6/18
Measurements: Mean 1.012 and Std 0.750 Adjusted Std 0530

DIFFERENCE BETWEEN MALE AND FEMALE 
MEASUREMENTS FOR EACH LOCUS 

Fig. 12
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Fig. 17
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Fig. 18
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Fig. 20
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Predictor Predict ANC using OLS method

2603λ
2602-χ

2601-7

Predicted outcome is in the lower 33.3% of the distribution over all records 
Predictors used:

<AUC (uM.hr/L): H 0 to H 24
- log(AUC (uM hr/L) H 0 to H 24)

chr2 234447782
"chr2 234451144

Rule Explanation: Uses a linear regression model, with the model predictors 
selected using either the Least Angle Selection and Shrinkage Operator (LASSO) 
or best subset selection so as to maximize the correlation with test data.

Histogram:

References
Neter, J.Wasserman, W.&Kutner,M. Applied linear Statistical Models·. Regression, Analysis ofVariance and 
Experimental designs,3rd Edition,Richard D.lrwin,Inc(1990)

M. Rabinowitz, L Myers, M. Banjevic, J. Sweetkind-Singer, J, Haberer, A. Chan, K. McCarin, R. Wolkowicz, 
•Rabinowitz, M.et al.Accurate prediction of HIV4 drag response from the reverse transcriptase and protease

Fig. 26
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Enhanced Colorectal Cancer 
Treatment Report GSN

G0SSEO1KIY NETWORK

NAME: R.E. Mission 
MRN: 1122334455 
DOB: 08/08/1958

Sex: Male
Therapy
Date of therapy

Report Date 
Clinical Indication:
ICD-9 153.9
Staging of Colorectal 
Carcinoma
Irinotecan
March 25, 2006

March 26, 2006

Malignant neoplasm, colon

Dukes C; TNM Stage Hl A
Q3 Week Dosing Regimen

Other pertinent past medical history:
Abnormal bilirubin glucuronidation (Gilbert's)
Significant drug-drug Interactions with Effect on irinotecan levels
patient current medications
Phenytoin 1
Paroxetine 1
Ketoconazole CONTRAINDICATED
Laboratory and clinical EMR data
Data Sources: UGT1 Al Assay - 3/26/2006
Quest Labs 3/20/2006 Heterozygous for UGT1 Al ‘28
EMR Data 3/26/2006 AUCcPT-n (n9 ' h/niL) 5582.0

AUCsn-38 (ng · h/mL) 126.6
White blood cell count 3.0 K/uL AUCSN-38G (ng · h/mL) 1,251.3
Absolute neutrophil count 3000/mm3 ANC Prediction:
Neutropenia grade None
Hemoglobin 12g/dL
Platelet count 150K/UL f „
Hyperbilirubinemia 1.2 mg/dL /il

Diarrhea grade grade 2 (4-6 stools/day) , Ilk.._

___________________________ ___ _______________________________ Grade 2 Neutropenia
SUMMARY RECOMMENDATIONS___________ RATIONALE_____________________________________
Pre-Treatment '

Consider reducing starting dose to 300 mg/m2 
Discontinue ketoconazole 1 week prior to 
therapy, resume 2 days after therapy if 
Indicated
Consider alternative regimens not including 
irinotecan 
Day 1 Post Treatment Predictions________
Oecrease dose by 50 mg/m2
Consider addition of colony stimulating factor 
Omit dose until resolved to baseline, then 
reduce to 250 mg/m2

Gilbert's Syndrome

Ketoconazole <-> Irinotecan 
interaction

•28Γ28 genotype

Grade2 neutropenia (1000-1499/mm3)
Grade2 neutropenia (1000-1499/mm3)

Grade2 diarrhea (4-8 stools/day)

Fig. 28


