(19) **日本国特許庁(JP)**

(51) Int.Cl.

(12) 特 許 公 報(B2)

 $\mathbf{F} \mathbf{L}$

(11)特許番号

特許第4474882号 (P4474882)

最終頁に続く

(45) 発行日 平成22年6月9日(2010.6.9)

(24) 登録日 平成22年3月19日(2010.3.19)

CO4B 35/46	(2006.01) CO4B	35/46	E
HO1L 35/22	(2006.01) CO4B	35/46	L
HO1L 35/34	(2006.01) HO1L	35/22	
HO1L 37/02	(2006.01) HO1L	35/34	
HO1L 41/187	(2006.01) HO1L	37/02	
			請求項の数 23 (全 29 頁) 最終頁に続く
(21) 出願番号	特願2003-333260 (P2003-333260)	(73) 特許権者	* 000003609
(22) 出願日	平成15年9月25日 (2003.9.25)		株式会社豊田中央研究所
(65) 公開番号	特開2005-97041 (P2005-97041A)		愛知県愛知郡長久手町大字長湫字横道41
(43) 公開日	平成17年4月14日 (2005.4.14)		番地の1
審査請求日	平成18年4月12日 (2006.4.12)	(74) 代理人	100095669
			弁理士 上野 登
		(72) 発明者	齋藤 康善
			愛知県愛知郡長久手町大字長湫字横道41
			番地の1 株式会社豊田中央研究所内
		(72) 発明者	▲高▼尾 尚史
			愛知県愛知郡長久手町大字長湫字横道41
			番地の1 株式会社豊田中央研究所内
		審査官	正 知晃

(54) 【発明の名称】結晶配向セラミックス及びその製造方法、並びに、異方形状粉末及びその製造方法

(57)【特許請求の範囲】

【請求項1】

一般式:(Sr_xA'_{1-x})(Ti_yB'_{1-y})O₃

(但し、0 < x 1。0 < y 1。A'は、1種又は2種以上の2価の金属元素。B'は、

1種又は2種以上の4価の金属元素。)

で表される第1のペロブスカイト型化合物の多結晶体からなり、

該多結晶体を構成する各結晶粒の擬立方{100}面が配向しており、

前記第1のペロブスカイト型化合物のロットゲーリング法による擬立方 { 1 0 0 } 面の配向度が 7 0 % 以上である結晶配向セラミックス。

【請求項2】

前記第1のペロブスカイト型化合物は、 $SrTiO_3$ である請求項1に記載の結晶配向セラミックス。

【請求項3】

一般式:(Sr_xA'_{1-x})(Ti_yB'_{1-y})O₃

(但し、0 < x 1。0 < y 1。A'は、1種又は2種以上の2価の金属元素。B'は、1種又は2種以上の4価の金属元素。)

で表される第2のペロブスカイト型化合物からなり、その発達面が擬立方 { 1 0 0 } 面からなり、かつその厚さ(ta)に対する前記発達面の最大長さ(Wa)のアスペクト比(Wa/ta)が2以上である異方形状粉末と、該異方形状粉末と反応し又は反応することなく請求項1に記載の第1のペロブスカイト型化合物となるマトリックス化合物粉末とを

混合する混合工程と、

該混合工程で得られた混合物を、前記異方形状粉末の発達面が配向するように成形する成形工程と、

該成形工程で得られた成形体を焼結させる焼結工程とを備えた結晶配向セラミックスの製造方法。

【請求項4】

前記結晶配向セラミックス中における前記第1のペロブスカイト型化合物のロットゲーリング法による擬立方{100}面配向度が<u>70</u>%以上となるように、混合、成形及び焼結を行う請求項3に記載の結晶配向セラミックスの製造方法。

【請求項5】

前記混合工程は、前記結晶配向セラミックスに含まれる前記第1のペロブスカイト型化合物のBサイトイオンの0.1at%以上が前記異方形状粉末から供給されるように、前記異方形状粉末と、前記マトリックス化合物とを混合するものである請求項3又は4に記載の結晶配向セラミックスの製造方法。

【請求項6】

 $\frac{- \, \text{般式}: \left(\, \text{B i }_{\,\, 2} \, \, \text{O }_{\,\, 2} \, \right)^{\,\, 2 \,\, +} \left(\, \text{A }_{\,\, \text{m } \, - \,\, 1} \, \, \text{B }_{\,\, \text{m }} \, \, \text{O }_{\,\, 3 \,\, \text{m } \, + \,\, 1} \, \right)^{\,\, 2 \,\, -}}{\left(\,\, \text{但 U } \, \, \text{A } \, \text{U }_{\,\, \text{N }} \, \, \text{N } \, \text{a}^{\,\, +} \, \, \text{K }^{\,\, +} \, \, \text{K }^{\,\, +} \, \, \text{S } \, \text{r}^{\,\, 2 \,\, +} \, \, \text{N } \, \text{B } \, \text{a}^{\,\, 2 \,\, +} \, \, \text{X } \, \text{B } \, \text{B } \, \text{a}^{\,\, 2 \,\, +} \, \, \text{X } \, \text{X } \, \text{B } \, \text{A}^{\,\, 2 \,\, +} \, \, \text{A } \, \text{B } \, \text$

<u>Bは、Fe³⁺、Ti⁴⁺、Nb⁵⁺、Ta⁵⁺、及びW⁶⁺から選ばれる少なくとも</u> 1種の元素、又はこれらの元素の組み合わせ。

<u>元素 A、 B は、元素 A の平均価数を 、元素 B の平均価数を としたときに、 (m −</u> 1) + m = 6 m の関係を満たすもの。

mは、1から8までの整数。

また、A がN a $^+$ D \overline{U} / \overline{V} \overline{U} \overline{U}

であらわされるビスマス層状ペロブスカイト型化合物からなり、その発達面が以下の一般式で表される第 2 のペロブスカイト型化合物の擬立方 $\{100\}$ 面と格子整合性を有し、かつ、その厚さ(t_b)に対する前記発達面の最大長さ(W_b)のアスペクト比(W_b / t_b)が 2 以上である第 1 異方形状粉末を合成し、前記第 1 異方形状粉末と、該第 1 異方形状粉末とのイオン交換反応により前記第 2 のペロブスカイト型化合物及び余剰成分を生成するイオン交換反応用原料とを、溶液又は融液中においてイオン交換反応を行わせ、前記余剰成分を熱的又は化学的に除去することにより得られる、

一般式:(Sr x A' 1 - x)(Ti y B' 1 - y)O 3

(但し、0 < x 1。0 < y 1。A 'は、1種又は2種以上の2価の金属元素。B 'は、

1種又は2種以上の4価の金属元素。)

で表される前記第2のペロブスカイト型化合物単相からなり、

その発達面が擬立方{100}面からなり、かつ

その厚さ(t_a)に対する前記発達面の最大長さ(W_a)のアスペクト比(W_a / t_a)が 2以上である異方形状粉末。

【請求項7】

前記第2のペロプスカイト型化合物は、 $SrTiO_3$ である請求項6に記載の異方形状粉末。

【請求項8】

前記発達面の最大長さ(W_a)は、100µm以下である請求項6又は7に記載の異方形状粉末。

【請求項9】

B は、F e 3 $^+$ 、T i 4 $^+$ 、N b 5 $^+$ 、T a 5 $^+$ 、D U W 6 $^+$ から選ばれる少なくとも

10

20

30

30

40

1種の元素、又はこれらの元素の組み合わせ。

元素 A 、 B は、元素 A の平均価数を 、元素 B の平均価数を としたときに、 (m -1) + m = 6 m の関係を満たすもの。

mは、1から8までの整数。

<u>また、AがNa⁺及び/又はK⁺とBi³⁺の双方のみからなり、かつBがNb⁵⁺の</u>みからなるものを除く。)

であらわされるビスマス層状ペロブスカイト型化合物からなり、その発達面が請求項 $\underline{6}$ に記載の第 $\underline{2}$ のペロブスカイト型化合物の擬立方 $\underline{4}$ 1 $\underline{0}$ 0 $\underline{0}$ 面と格子整合性を有し、かつ、その厚さ(\underline{t} \underline{b})に対する前記発達面の最大長さ(\underline{W} \underline{b})のアスペクト比(\underline{W} \underline{b} / \underline{t} \underline{b})が $\underline{2}$ 以上である第 $\underline{1}$ 異方形状粉末を合成する合成工程と、

前記第1異方形状粉末と、該第1異方形状粉末とのイオン交換反応により前記第2のペロブスカイト型化合物及び余剰成分を生成するイオン交換反応用原料とを、溶液又は融液中においてイオン交換反応を行わせるイオン交換工程と、

前記余剰成分を熱的又は化学的に除去する除去工程とを備えた異方形状粉末の製造方法

【請求項10】

前記層状化合物は、Bi₄Ti₃O₁₂又はSrBi₄Ti₄O₁₅である請求項9に 記載の異方形状粉末の製造方法。

【請求項11】

請求項1に記載の結晶配向セラミックスを用いた誘電素子。

【請求項12】

請求項1に記載の結晶配向セラミックスを用いたマイクロ波誘電素子。

【請求項13】

請求項1に記載の結晶配向セラミックスを用いた熱電素子。

【請求項14】

請求項1に記載の結晶配向セラミックスを用いた焦電素子。

【請求項15】

請求項1に記載の結晶配向セラミックスを用いた磁気抵抗素子。

【請求項16】

請求項1に記載の結晶配向セラミックスを用いた磁性素子。

【請求項17】

請求項1に記載の結晶配向セラミックスを用いた圧電素子。

【請求項18】

請求項1に記載の結晶配向セラミックスを用いた超伝導素子。

【請求項19】

請求項1に記載の結晶配向セラミックスを用いた抵抗素子。

【請求項20】

請求項1に記載の結晶配向セラミックスを用いた電子伝導素子。

【請求項21】

請求項1に記載の結晶配向セラミックスを用いたイオン伝導性素子。

【請求項22】

請求項1に記載の結晶配向セラミックスを用いたPTC素子。

【請求項23】

請求項1に記載の結晶配向セラミックスを用いたNTC素子。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、結晶配向セラミックス及びその製造方法、並びに、異方形状粉末及びその製造方法に関し、更に詳しくは、特定の結晶面が一方向に配向している結晶配向セラミックス及びその製造方法、このような結晶配向セラミックスを製造するためのテンプレート(

10

20

30

30

40

種結晶)として用いられる異方形状粉末及びその製造方法、並びにこのような結晶配向セラミックスを用いた誘電素子、マイクロ波誘電素子、熱電素子、焦電素子、磁気抵抗素子、磁性素子、圧電素子、超伝導素子、抵抗素子、電子伝導素子、イオン伝導性素子、PTC素子、及びNTC素子に関する。

【背景技術】

[0002]

一般式: ABO_3 で表されるペロブスカイト型化合物は、その組成に応じて、圧電性、誘電性、強誘電性、反強誘電性、磁性、熱電性、電子伝導性、イオン伝導性等(以下、これらを「圧電特性等」という。)の優れた特性を示すことが知られており、主として、多結晶体の状態で用いられている。このようなペロブスカイト型化合物からなる多結晶セラミックスは、従来、相対的に少数の陽イオン元素を含む単純化合物を出発原料に用いて、固相反応法又はフラックス法によりペロブスカイト型化合物からなる粉末を合成し、次いで合成された粉末を成形・焼結する方法により製造するのが一般的であった。

[0003]

一方、ペロブスカイト型化合物が有する圧電特性等は、一般に、結晶軸の方向によって 異なることが知られている。そのため、圧電特性等の高い結晶軸を一定の方向に配向させ ることができれば、圧電特性等の異方性を最大限に利用することができ、単結晶に近い高 い特性を有する多結晶セラミックスが得られる可能性がある。

[0004]

しかしながら、ペロブスカイト型化合物は、結晶格子の異方性が極めて小さいので、固相反応法あるいはフラックス法では、球状あるいは立方体に近い等方的な形状を有する粉末(具体的には、アスペクト比が1.5以下)となり、アスペクト比の大きな粉末は得られない。また、従来の製造方法を用いてこのような粉末を成形・焼結すると、得られる焼結体は、各結晶粒がランダムに配向したものとなる。そのため、本質的には高い圧電特性等を有している組成であっても、得られる焼結体の圧電特性等は不十分である。

[0005]

そこでこの問題を解決するために、従来から種々の提案がなされている。例えば、特許文献 1 には、ビスマス層状ペロブスカイト型化合物の一種であるチタン酸ビスマス(Bi $_4$ Ti $_3$ O $_1$ $_2$)からなる板状粉末と、Bi $_2$ O $_3$ 、Na $_2$ С O $_3$ 、及びTiO $_2$ とを所定の比率で混合し、この混合物を板状粉末が配向するように成形し、これを焼結することにより、ペロブスカイト型化合物の一種であるチタン酸ナトリウムビスマス(Bi $_0$. $_5$ Na $_0$. $_5$ TiO $_3$)からなり、かつロットゲーリング法による擬立方{100}面の配向度が34%である結晶配向セラミックスが得られる点が記載されている。

[0006]

また、特許文献 2 及び非特許文献 1 には、このような結晶配向セラミックスを製造するために用いられる異方形状粉末の製造方法が記載されている。すなわち、特許文献 2 には、チタン酸ビスマス(Bi $_4$ Ti $_3$ O $_1$ $_2$)からなる板状粉末と、N a $_2$ C O $_3$ 、K $_2$ C O $_3$ 、及び T i O $_2$ とを所定の比率で混合し、これをフラックス中で加熱することにより、ペロブスカイト型化合物の一種である B i $_0$ 、 $_5$ (N a 、 K) $_0$ 、 $_5$ T i O $_3$ からなる異方形状粉末が得られる点が記載されている。

[0007]

さらに、非特許文献 1 には、ルドルスデン・ポッパー(Rudd I esden-Popper)型層状ペロブスカイト化合物の一種である S r $_3$ T i $_2$ O $_7$ 板状粉末と T i O $_2$ とを K C 1 溶融塩中で加熱することにより、エッジ長さ 1 0 ~ 4 0 μ m、厚さ 1 ~ 4 μ m であり、かつ { 1 0 0 } 面を発達面とする S r T i O $_3$ 板状粉末が得られる点が記載されている。

[0008]

【特許文献1】特開平10-139552号公報

【特許文献2】特開2000-203935号公報

【非特許文献 1】M. E.Ebrahimi, et al., "Synthesis of Platelet SrTiO3 by Epitaxia I Growth on Sr3Ti2O7 Core Paticles", Proceedings of the 13th IEEE International 10

20

30

40

Symposium on Applications of Ferroelectrics, pp.239-242, 2002.

【発明の開示】

【発明が解決しようとする課題】

[0009]

ビスマス層状ペロブスカイト型化合物、ルドルスデン・ポッパー型層状ペロブスカイト型化合物等の層状化合物は、結晶格子の異方性が大きいので、形状異方性を有する粉末を比較的容易に合成することができる。また、これらの層状化合物の内、ある種の化合物からなる異方形状粉末の発達面は、ペロブスカイト型化合物の擬立方 { 1 0 0 } 面との間に良好な格子整合性を有している。

[0010]

そのため、特許文献1に開示されているように、層状化合物からなる異方形状粉末と所定の原料との混合物を異方形状粉末が配向するように成形し、これを焼結すると、擬立方{100}面が一方向に配向したペロブスカイト型化合物からなる結晶配向セラミックスが得られる。また、特許文献2及び非特許文献1に開示されているように、このような層状化合物からなる異方形状粉末と所定の原料とを反応させると、層状化合物からなる異方形状粉末が格子鋳型(テンプレート)として機能し、所定の組成を有するペロブスカイト型化合物からなり、かつその発達面が擬立方{100}面からなる異方形状粉末を合成することができる。

[0011]

しかしながら、特許文献 1 に開示された結晶配向セラミックスの製造方法、あるいは、特許文献 2 及び非特許文献 1 に開示された異方形状粉末の製造方法では、結晶配向セラミックスあるいは異方形状粉末内に、テンプレートに由来する陽イオン元素が必ず残留する。そのため、最も望ましい組成を実現できない場合があり、不可避的に含まれる A サイト元素及び / 又は B サイト元素によって、圧電特性等の各種特性が害されるおそれがある。

[0012]

さらに、特許文献 1 に開示された方法の場合、高い配向度を有する結晶配向セラミックスを得るためには、相対的に多量のテンプレートを用いる必要がある。しかしながら、多量のテンプレートの使用は、結晶配向セラミックスを高コスト化させる一因となる。

[0013]

本発明が解決しようとする課題は、所定の組成を有するペロブスカイト型化合物の多結晶体からなり、多結晶体を構成する各結晶粒の擬立方 { 1 0 0 } 面が高い配向度で配向し、しかも、その組成制御が比較的容易な結晶配向セラミックス及びその製造方法を提供することにある。また、本発明が解決しようとする他の課題は、所定の組成を有するペロブスカイト型化合物からなり、擬立方 { 1 0 0 } 面を発達面とし、しかも、その組成制御が比較的容易な異方形状粉末及びその製造方法を提供することにある。

[0014]

さらに、本発明が解決しようとする他の課題は、相対的に少量のテンプレートを使用した場合であっても、高い配向度が得られる結晶配向セラミックスの製造方法を提供することにある。また、本発明が解決しようとする他の課題は、このような結晶配向セラミックスを用いた誘電素子、マイクロ波誘電素子、熱電素子、焦電素子、磁気抵抗素子、磁性素子、圧電素子、超伝導素子、抵抗素子、電子伝導素子、イオン伝導性素子、PTC素子、及びNTC素子を提供することにある。

【課題を解決するための手段】

[0015]

上記課題を解決するために、本発明に係る結晶配向セラミックスは、

一般式:(Sr x A' 1 - x)(Ti y B' 1 - y)O 3

(但し、0 < x 1。0 < y 1。A'は、1種又は2種以上の2価の金属元素。B'は、1種又は2種以上の4価の金属元素。)

で表される第1のペロブスカイト型化合物の多結晶体からなり、該多結晶体を構成する各結晶粒の擬立方 { 100 } 面が配向していることを要旨とする。

10

20

30

40

[0016]

また、本発明に係る結晶配向セラミックスの製造方法は、

一般式:(Sr_xA'_{1-x})(Ti_yB'_{1-y})O₃

(但し、0 < x 1。0 < y 1。A'は、1種又は2種以上の2価の金属元素。B'は、1種又は2種以上の4価の金属元素。)

で表される第2のペロブスカイト型化合物からなり、その発達面が擬立方 { 100 } 面からなり、かつその厚さ(ta)に対する前記発達面の最大長さ(Wa)のアスペクト比(Wa/ta)が2以上である異方形状粉末と、該異方形状粉末と反応し又は反応することなく第1のペロブスカイト型化合物となるマトリックス化合物粉末とを混合する混合工程と、該混合工程で得られた混合物を、前記異方形状粉末の発達面が配向するように成形する成形工程と、該成形工程で得られた成形体を焼結させる焼結工程とを備えていることを要旨とする。

[0017]

また、本発明に係る異方形状粉末は、層状結晶構造を有する層状化合物からなり、その発達面が第2のペロブスカイト型化合物の擬立方 $\{100\}$ 面と格子整合性を有し、かつ、その厚さ(t_b)に対する前記発達面の最大長さ(W_b)のアスペクト比(W_b / t_b)が2以上である第1異方形状粉末を合成し、前記第1異方形状粉末と、該第1異方形状粉末とのイオン交換反応により前記第2のペロブスカイト型化合物及び余剰成分を生成するイオン交換反応用原料とを、溶液又は融液中においてイオン交換反応を行わせ、前記余剰成分を熱的又は化学的に除去することにより得られる、

一般式:(Sr x A'_{1 - x})(Ti y B'_{1 - y})O₃

(但し、0 < x 1。0 < y 1。A'は、1種又は2種以上の2価の金属元素。B'は、1種又は2種以上の4価の金属元素。)

で表される第 2 のペロブスカイト型化合物からなり、その発達面が擬立方 $\{100\}$ 面からなり、かつその厚さ(t_a)に対する前記発達面の最大長さ(W_a)のアスペクト比(W_a / t_a)が 2 以上であることを要旨とする。

[0018]

さらに、本発明に係る異方形状粉末の製造方法は、層状結晶構造を有する層状化合物からなり、その発達面が第2のペロプスカイト型化合物の擬立方 $\{100\}$ 面と格子整合性を有し、かつ、その厚さ(t_b)に対する前記発達面の最大長さ(W_b)のアスペクト比(W_b / t_b)が2以上である第1異方形状粉末を合成する合成工程と、前記第1異方形状粉末と、該第1異方形状粉末とのイオン交換反応により前記第2のペロブスカイト型化合物及び余剰成分を生成するイオン交換反応用原料とを、溶液又は融液中においてイオン交換反応を行わせるイオン交換工程と、前記余剰成分を熱的又は化学的に除去する除去工程とを備えていることを要旨とする。

【発明の効果】

[0019]

所定の条件を満たす第1異方形状粉末(AB)と、これと層間イオン置換反応を起こすイオン交換反応用原料(C)とを、溶液又は融液中において反応させると、イオン交換反応によって目的とする第2のペロブスカイト型化合物(AC)と、余剰成分(B)との混合物が得られる。この時、第1異方形状粉末の発達面は、第2のペロブスカイト型化合物の擬立方{100}面として承継される。次いで、この混合物から余剰成分を除去すると、所定の組成を有する第2のペロブスカイト型化合物からなり、かつ擬立方{100}面を発達面とする異方形状粉末が得られる。

[0020]

次に、第2のペロブスカイト型化合物からなる異方形状粉末と、所定の条件を満たすマトリックス化合物粉末との混合物を、異方形状粉末が配向するように成形し、これを焼結すると、異方形状粉末の配向方位を承継した状態で、第1のペロブスカイト型化合物からなる異方形状結晶が生成及び成長する。その結果、擬立方{100}面を発達面とする結晶粒が特定の方向に配向した結晶配向セラミックスが得られる。

10

20

30

40

[0021]

このような方法により得られた異方形状粉末は、イオン交換反応時に余剰成分(B)が排出されるので、従来の方法に比べて、組成制御が容易化する。また、作製しようとする結晶配向セラミックスと同一又は類似の結晶構造を有する異方形状粉末をテンプレートとして用いているので、テンプレート量が相対的に少量であっても、高い配向度を有する結晶配向セラミックスが得られる。

【発明を実施するための最良の形態】

[0022]

以下、本発明の一実施の形態について詳細に説明する。本発明に係る結晶配向セラミックスは、次の(1)式に示す一般式で表される第1のペロブスカイト型化合物の多結晶体からなり、かつ多結晶体を構成する各結晶粒の擬立方{100}面が配向していることを特徴とする。

[0023]

(Sr_xA'_{1-x})(Ti_yB'_{1-y})O₃ ・・・(1) (但し、0 < x 1。0 < y 1。A'は、1種又は2種以上の2価の金属元素。B'は、1種又は2種以上の4価の金属元素。)

[0024]

本発明において、第1のペロブスカイト型化合物は、Aサイト元素として、少なくともSrを含むものからなる。この場合、Aサイト元素は、Srのみからなるものであっても良く、あるいは、Sr以外のAサイト元素(元素A')が含まれていても良い。元素 A'の種類は、特に限定されるものではなく、少なくとも2価の金属元素であればよい。元素 A'としては、具体的には、Pb、Ba、Ca、Mg、Zn、Co、Fe等が好適な一例として挙げられる。

[0025]

また、第1のペロブスカイト型化合物は、B サイト元素として、少なくともT i を含むものからなる。この場合、B サイト元素は、T i のみからなるものであっても良く、あるいは、T i 以外のB サイト元素(元素 B ')が含まれていても良い。元素 B 'の種類は、特に限定されるものではなく、少なくとも 4 価の金属元素であればよい。元素 B 'としては、具体的には、Z r、X f f 、X n 、X G e 、X i 等が好適な一例として挙げられる。

[0026]

(1)式で表される第1のペロブスカイト型化合物としては、具体的には、SrTiO $_3$ 、(Sr、Pb)TiO $_3$ 、(Sr、Pb)(Ti、Zr)O $_3$ 、(Sr、Pb)(Ti、Sn)O $_3$ 、(Sr、Pb)(Ti、Zr、Sn)O $_3$ 等が好適な一例として挙げられる。

[0027]

なお、本発明に係る結晶配向セラミックスは、(1)式に示す一般式で表される第1のペロブスカイト型化合物のみからなることが望ましいが、ペロブスカイト型の結晶構造を維持でき、かつ、焼結特性、圧電特性等の諸特性に悪影響を及ぼさないものである限り、他の元素又は他の相が含まれていても良い。

[0028]

このような「他の元素」としては、具体的には、Pb、Ba、Ca、Mg、Zr、Sn、Ge、Si等がある。また、「他の相」としては、具体的には、後述する製造方法や使用する出発原料に起因する添加物、焼結助剤、副生成物、不純物等(例えば、 Bi_2O_3 、CuO、 MnO_2 、NiO等)が一例として挙げられる。圧電特性等に悪影響を及ぼすおそれのある他の元素又は他の相の含有量は、少ないほど良い。

[0029]

「擬立方 { 100 } 面が配向している」とは、(1)式で表される第1のペロブスカイト型化合物の擬立方 { 100 } 面が互いに平行になるように、各結晶粒が配列していること(以下、このような状態を「面配向」という。)、又は、擬立方 { 100 } 面が成形体を貫通する1つの軸に対して平行になるように、各結晶粒が配列していること(以下、このような状態を「軸配向」という。)の双方を意味する。

10

20

30

40

[0030]

なお、「擬立方 { HKL } 」とは、一般に、ペロブスカイト型化合物は、正方晶、斜方晶、三方晶など、立方晶からわずかに歪んだ構造を取るが、その歪は僅かであるので、立方晶とみなしてミラー指数表示することを意味する。

[0031]

また、特定の結晶面が面配向している場合において、面配向の程度は、次の数1の式で表されるロットゲーリング(Lotgering)法による平均配向度F(HKL)で表すことができる。

[0032]

【数1】

$$F (HKL) = \frac{\frac{\sum' I (HKL)}{\sum I (hkl)} - \frac{\sum' I o (HKL)}{\sum I o (hkl)}}{1 - \frac{\sum' I o (HKL)}{\sum I o (hkl)}} \times 100 (\%)$$

[0033]

なお、数1の式において、 I(hkl)は、結晶配向セラミックスについて測定されたすべての結晶面(hkl)のX線回折強度の総和であり、 $I_0(hkl)$ は、結晶配向セラミックスと同一組成を有する無配向セラミックスについて測定されたすべての結晶面(hkl)のX線回折強度の総和である。また、 I(HKL)は、結晶配向セラミックスについて測定された結晶学的に等価な特定の結晶面(HKL)のX線回折強度の総和であり、 $I_0(HKL)$ は、結晶配向セラミックスと同一組成を有する無配向セラミックスについて測定された結晶学的に等価な特定の結晶面(HKL)のX線回折強度の総和である。

[0034]

従って、多結晶体を構成する各結晶粒が無配向である場合には、平均配向度 F (H K L) は 0 %となる。また、多結晶体を構成するすべての結晶粒の (H K L) 面が測定面に対して平行に配向している場合には、平均配向度 F (H K L) は 1 0 0 %となる。

[0035]

一般に、配向している結晶粒の割合が多くなる程、高い特性が得られる。具体的には、特定の結晶面を面配向させる場合において、高い特性を得るためには、数 1 の式で表されるロットゲーリング(Lotgering)法による平均配向度 F (HKL)は、20%以上が好ましく、さらに好ましくは50%以上である。また、後述する製造方法を用いると、平均配向度 F (HKL)が90%を越える結晶配向セラミックスであっても製造することができる。

[0036]

本発明に係る結晶配向セラミックスは、擬立方 { 100 } 面が配向しているので、配向方向の特性は、同一組成を有する無配向セラミックスに比べて高い値を示す。特に、(1)式で表される第1のペロブスカイトが化合物が圧電特性を有している場合には、擬立方 { 100 } 面が分極軸に垂直な面となるので、擬立方 { 100 } 面を配向させることによって、配向方向の圧電特性を大きく向上させることができる。

[0037]

なお、特定の結晶面を軸配向させる場合には、その配向の程度は、面配向と同様の配向度(数1の式)では定義できない。しかしながら、配向軸に垂直な面に対してX線回折を行った場合の(HKL)回折に関するLotgering法による平均配向度(以下、これを「軸配向度」という。)を用いて、軸配向の程度を表すことができる。また、特定の結晶面がほぼ完全に軸配向している成形体の軸配向度は、特定の結晶面がほぼ完全に面配向している成形体について測定された軸配向度と同程度になる。

10

20

30

40

[0038]

本発明に係る結晶配向セラミックスは、擬立方 { 100} 面が配向しているので、配向方向の圧電特性等は、無配向セラミックスに比べて高い値を示す。そのため、これを、誘電素子、マイクロ波誘電素子、熱電素子、焦電素子、磁気抵抗素子、磁性素子、圧電素子、超伝導素子、抵抗素子、電子伝導素子、イオン伝導性素子、PTC素子、NTC素子等に応用すれば、高い性能を有する各種素子を得ることができる。

[0039]

次に、本発明に係る結晶配向セラミックスの製造に用いられる異方形状粉末について説明する。ペロプスカイト型化合物のような複雑な組成を有するセラミックスは、通常、成分元素を含む単純化合物を化学量論比になるように混合し、この混合物を成形・仮焼した後に解砕し、次いで解砕粉を再成形・焼結する方法によって製造される。しかしながら、このような方法では、各結晶粒の特定の結晶面が特定の方向に配向した配向焼結体を得るのは極めて困難である。

[0040]

本発明は、この問題を解決するために、所定の条件を満たす異方形状粉末を成形体中に配向させ、この異方形状粉末をテンプレートとして用いてペロブスカイト型化合物の生成及びその焼結を行わせ、これによって多結晶体を構成する各結晶粒の特定の結晶面を一方向に配向させた点に特徴がある。本発明において、異方形状粉末には、以下の条件を満たすものが用いられる。

[0041]

第1に、異方形状粉末は、次の(2)式に示す一般式で表される組成を有する第2のペロブスカイト型化合物からなるものが用いられる。

[0042]

(Sr_xA'_{1-x})(Ti_yB'_{1-y})O₃ ・・・(2) (但し、0 < x 1。0 < y 1。A'は、1種又は2種以上の2価の金属元素。B'は、 1種又は2種以上の4価の金属元素。)

[0043]

この場合、異方形状粉末を構成する第2のペロブスカイト型化合物は、作製しようとする結晶配向セラミックスを構成する第1のペロブスカイト型化合物と同一組成を有するものであっても良く、あるいは、異なる組成を有しているものであっても良い。なお、第2のペロブスカイト型化合物のその他の点については、第1のペロブスカイト型化合物と同様であるので、説明を省略する。

[0044]

第2に、異方形状粉末は、その発達面(最も広い面積を有する面)が第2のペロブスカイト型化合物の擬立方{100}面からなるものが用いられる。第2のペロブスカイト型化合物の擬立方{100}面は、当然に、第1のペロブスカイト型化合物の擬立方{100}面と良好な格子整合性を有している。そのため、擬立方{100}面を発達面とする異方形状粉末を成形体中に配向させ、これを焼結すれば、異方形状粉末の配向方位を承継した状態で第1のペロブスカイト型化合物からなる異方形状結晶を生成及び成長させることができる。

[0 0 4 5]

第3に、異方形状粉末は、異方形状粉末には、成形時に一定の方向に配向させることが容易な形状を有しているものが用いられる。そのためには、異方形状粉末のアスペクト比(=Wa/ta。Wa:異方形状粉末の発達面の最大長さ。ta:異方形状粉末の厚さ。)は、2以上であることが好ましい。アスペクト比が2未満であると、成形時に異方形状粉末を一方向に配向させるのが困難となるので好ましくない。高い配向度の結晶配向セラミックスを得るためには、異方形状粉末のアスペクト比は、5以上が好ましく、さらに好ましくは、10以上である。

[0046]

一般に、異方形状粉末の平均アスペクト比が大きくなるほど、成形時における異方形状

20

10

30

40

粉末の配向が容易化される傾向がある。但し、アスペクト比が過大になると、後述する混合工程において異方形状粉末が破砕され、異方形状粉末が配向した成形体が得られない場合がある。従って、異方形状粉末の平均アスペクト比は、100以下が好ましい。

[0047]

また、異方形状粉末の発達面の最大長さW_aは、0.05µm以上が好ましい。最大長さW_aが0.05µm未満であると、成形時に作用するせん断応力によって異方形状粉末を一定の方向に配向させるのが困難になる。また、界面エネルギーの利得が小さくなるので、結晶配向セラミックスを作製する際のテンプレートとして用いた時に、テンプレート粒子へのエピタキシャル成長が生じにくくなる。

[0048]

一方、異方形状粉末の発達面の最大長さW $_a$ は、 1 0 0 μ m以下が好ましい。最大長さW $_a$ が 1 0 0 μ mを越えると、焼結性が低下し、焼結体密度の高い結晶配向セラミックスが得られない。最大長さW $_a$ は、さらに好ましくは、 0 . 1 μ m以上 5 0 μ m以下であり、さらに好ましくは、 0 . 5 μ m以上 2 0 μ m以下である。特に、異方形状粉末のW $_a$ が 0 . 5 μ m以上であると、テープ成形時に配向成形するのが容易となり、高い配向度を有する結晶配向セラミックスが得られる。

[0049]

なお、アスペクト比(Wa/ta)及び/又は最大長さ(Wa)の異なる異方形状粉末の混合物をテンプレートとして用いる場合、アスペクト比(Wa/ta)及び/又は最大長さ(Wa)の平均値が、上述の範囲であればよい。また、「異方形状」とは、幅方向又は厚さ方向の寸法に比して、長手方向の寸法が大きいことをいう。具体的には、板状、柱状、鱗片状等が好適な一例として挙げられる。

[0050]

本発明に係る結晶配向セラミックスを製造するために用いられる異方形状粉末としては、具体的には、擬立方 $\{100\}$ 面を発達面とする $SrTiO_3$ 粉末、 $Sr(Ti、Zr)O_3$ 粉末、 $(Sr,Pb)TiO_3$ 粉末、 $(Sr,Pb)(Ti,Zr)O_3$ 粉末等が好適な一例として挙げられる。高い配向度を有する結晶配向セラミックスを得るためには、異方形状粉末は、作成しようとする結晶配向セラミックスと同一組成を有するものを用いるのが好ましい。また、作成しようとする結晶配向セラミックスが2以上の成分を含む固溶体からなる場合、異方形状粉末は、いずれか1以上の端成分からなるものを用いても良い。

[0051]

さらに、このような条件を満たす異方形状粉末は、種々の方法により製造することができるが、後述する本発明に係る方法(Topochemical Microcrystal Conversion: TMC変換法)により得られる粉末が特に好適である。本発明に係る方法により得られた異方形状粉末は、他の方法を用いて得られる異方形状粉末に比べて、目的とするセラミック組成と同じ組成の板状粉末が製造でき、少ないテンプレート量により結晶配向セラミックスを作ることができ、また少ないテンプレートのために焼結性が向上する(低温、かつ短時間で高密度化できる)という利点がある。

[0052]

次に、本発明に係る異方形状粉末の製造方法について説明する。本発明に係る異方形状粉末の製造方法は、合成工程と、イオン交換工程と、除去工程とを備えている。

[0053]

初めに、合成工程について説明する。「合成工程」は、第2のペロブスカイト型化合物からなる異方形状粉末を合成するための反応性テンプレートとして用いられる第1異方形状粉末を合成する工程である。第1異方形状粉末が本発明に係る異方形状粉末を合成するための反応性テンプレートとして機能するためには、以下のような条件を備えている必要がある。

[0054]

第1に、第1異方形状粉末には、層状結晶構造を有する層状化合物からなるものが用いられる。層状化合物は、結晶格子の異方性が大きいので、表面エネルギの最も小さい結晶

10

20

30

40

20

30

40

50

面を発達面とし、かつ形状異方性を有する粉末を比較的容易に合成することができる。

[0055]

第2に、第1異方形状粉末は、その発達面が(2)式に示す第2のペロブスカイト型化合物の擬立方{100}面と格子整合性を有しているものが用いられる。所定の形状を有している第1異方形状粉末であっても、その発達面が第2のペロブスカイト型化合物の擬立方{100}面と格子整合性を有していない場合には、本発明に係る異方形状粉末を合成するための反応性テンプレートとして機能しない場合がある。

[0056]

格子整合性の良否は、第1異方形状粉末の発達面の格子寸法と、第2のペロブスカイト型化合物の擬立方{100}面の格子寸法との差の絶対値を、第1異方形状粉末の発達面の格子寸法で割った値(以下、これを「格子整合率」という。)で表すことができる。この格子整合率は、格子をとる方向によって若干異なる場合がある。一般に、平均格子整合率(各方向について算出された格子整合率の平均値)が小さくなるほど、その第1異方形状粉末は、良好な反応性テンプレートとして機能することを示す。所定の条件を満たす異方形状粉末を得るためには、格子整合率は20%以下が好ましく、さらに好ましくは、10%以下である。

[0057]

第3に、成形時に一方向に配向させることが容易な第2のペロブスカイト型化合物からなる異方形状粉末を容易に合成するためには、その合成に使用する第1異方形状粉末もまた、成形時に一方向に配向させることが容易な形状を有していることが望ましい。これは、第1異方形状粉末を反応性テンプレートとして用いて第2のペロブスカイト型化合物からなる異方形状粉末を合成する場合、反応条件を最適化すれば、得られる異方形状粉末の平均粒径及び/又はアスペクト比を増減させることもできるが、通常は、結晶構造の変化のみが起こり、粉末形状の変化はほとんど生じないためである。

[0058]

すなわち、第1異方形状粉末は、その厚さ(t_b)に対する発達面の最大長さ(W_b)のアスペクト比(W_b / t_b)が2以上であるものが好ましい。第1異方形状粉末のアスペクト比は、さらに好ましくは5以上であり、さらに好ましくは10以上である。また、後工程における破砕を抑制するためには、第1異方形状粉末のアスペクト比は、100以下が好ましい。

[0059]

また、焼結性の高い異方形状粉末を得るためには、第1異方形状粉末の発達面の最大長さ W_b は、100μm以下が好ましい。また、配向させるのが容易な異方形状粉末を得るためには、第1異方形状粉末の発達面の最大長さ W_b は、0.05μm以上が好ましい。最大長さ W_a は、さらに好ましくは、0.1μm以上50μm以下であり、さらに好ましくは、0.5μm以上20μm以下である。

[0060]

なお、アスペクト比(W_b / t_b) 及び / 又は最大長さ(W_a) の異なる第1異方形状粉末の混合物を反応性テンプレートとして用いる場合、アスペクト比(W_b / t_b) 及び / 又は最大長さ(W_a)の平均値が、上述の範囲であればよい。また、「異方形状」とは、幅方向又は厚さ方向の寸法に比して、長手方向の寸法が大きいことをいう。具体的には、板状、柱状、鱗片状等が好適な一例として挙げられる。

[0061]

このような条件を満たす層状化合物には、種々の化合物があるが、中でも、次の(3)式に示す一般式で表されるビスマス層状ペロブスカイト型化合物が好適である。ビスマス層状ペロブスカイト型化合物は、その $\{0\ 0\ 1\}$ 面($(B\ i\ _2\ O\ _2)^2$ [†]層に平行な面)の表面エネルギーが他の結晶面の表面エネルギーより小さいので、 $\{0\ 0\ 1\}$ 面を発達面とする異方形状粉末を比較的容易に合成できる。

[0062]

また、ビスマス層状ペロブスカイト型化合物の{001}面は、第2のペロブスカイト

20

30

40

型化合物の擬立方 { 1 0 0 } 面との間に極めて良好な格子整合性を有している。さらに、後述するイオン交換反応用原料の組成を最適化することによって、イオン交換反応時にBiを余剰成分として排出することができるので、Aサイト元素として実質的にBiを含まない第2のペロブスカイト型化合物を合成することができる。しかも、排出されたBi含有化合物は、比較的容易に除去することができる。そのため、ビスマス層状ペロブスカイト型化合物は、第1異方形状粉末を構成する材料として特に好適である。

[0063]

Bは、Fe 3 ⁺、Ti 4 ⁺、Nb 5 ⁺、Ta 5 ⁺、及びW 6 ⁺から選ばれる少なくとも1種の元素、又はこれらの元素の組み合わせ。

元素 A 、 B は、元素 A の平均価数を 、元素 B の平均価数を としたときに、 (m - 1) + m = 6 m の関係を満たすもの。

mは、1から8までの整数。

また、 A が N a $^+$ 及び / 又は K $^+$ と B i 3 $^+$ の双方のみからなり、かつ B が N b 5 $^+$ の みからなるものを除く。)

[0064]

(3)式で表されるビスマス層状ペロブスカイト型化合物は、 B i $_2$ A $_m$ $_1$ B $_m$ O $_3$ $_m$ $_1$ $_3$ と表すこともできる。このようなビスマス層状ペロブスカイト型化合物としては、 具体的には、 B i $_4$ T i $_3$ O $_1$ $_2$ 、 S r B i $_4$ T i $_4$ O $_1$ $_5$ 、 S r $_2$ B i $_4$ T i $_5$ O $_1$ $_8$ 、 S r B i $_2$ N b $_2$ O $_9$ 等が好適な一例として挙げられる。また、これらの中でも、 A サイトイオンとして、少なくとも S r $_2$ * を含むものが好適である。

[0065]

なお、このような第1異方形状粉末は、成分元素を含む酸化物、炭酸塩、硝酸塩等の原料を、液体又は加熱により液体となる物質と共に加熱することにより容易に製造することができる。具体的には、所定の原料に適当なフラックス(例えば、NaCl、KCl、NaClとKClの混合物、BaCl $_2$ 、KF等)を加えて所定の温度で加熱する方法(フラックス法)、作製しようとする第1異方形状粉末と同一組成を有する不定形粉末をアルカリ水溶液と共にオートクレーブ中で加熱する方法(水熱合成法)等が好適な一例として挙げられる。この場合、第1異方形状粉末のアスペクト比及び平均粒径は、合成条件を適宜選択することにより、制御することができる。

[0066]

次に、イオン交換工程について説明する。「イオン交換工程」は、合成工程で得られた 第1異方形状粉末と、イオン交換反応用原料とを、溶液又は融液中においてイオン交換を 行わせる工程である。

[0067]

ここで、「イオン交換反応用原料」とは、第1異方形状粉末とのイオン交換反応により第2のペロブスカイト型化合物及び余剰成分を生成するものをいう。イオン交換反応用原料の形態は、特に限定されるものではなく、酸化物粉末、複合酸化物粉末、炭酸塩、硝酸塩、シュウ酸塩等の塩、アルコキシド等を用いることができる。また、イオン交換反応用原料の組成は、作製しようとする第2のペロブスカイト型化合物の組成、及び、第1異方形状粉末の組成によって決まる。

[0068]

また、「余剰成分」とは、目的とする第2のペロブスカイト型化合物以外の物質であって、熱的又は化学的に除去が容易なものをいう。そのためには、余剰成分は、第2のペロブスカイト型化合物に比べて融点若しくは蒸気圧が高いもの、又は、酸、アルカリ等に対する溶解度が高いものであることが望ましい。余剰成分としては、具体的には、Bi含有化合物(例えば、Bi₂O₃等)が好適な一例として挙げられる。

[0069]

さらに、「溶液又は融液中においてイオン交換を行わせる」とは、第1異方形状粉末及びイオン交換反応原料を適当なフラックス中で加熱すること(フラックス法)、あるいは、第1異方形状粉末及びイオン交換反応原料を適当な水溶液と共にオートクレーブ中で加熱すること(水熱合成法)等をいう。

[0070]

例えば、(3)式で表されるビスマス層状ペロブスカイト型化合物の一種である B i $_4$ T i $_3$ O $_1$ $_2$ からなる第 1 異方形状粉末を用いて、第 2 のペロブスカイト型化合物の一種である S r T i O $_3$ からなる異方形状粉末を合成する場合、イオン交換反応用原料として、 S r を含む化合物(酸化物、水酸化物、炭酸塩、硝酸塩等)を用いる。この場合、 1 モルの B i $_4$ T i $_3$ O $_1$ $_2$ に対して、 S r 原子 3 モルに相当する S r 含有化合物をイオン交換反応用原料として添加すれば良い。

[0071]

このような組成を有する第1異方形状粉末及びイオン交換反応用原料に対して、適当なフラックス(例えば、NaCl、KCl、NaClとKClの混合物、BaCl₂、KF等)を1wt%~500wt%加えて、共晶点・融点に加熱すると、融液中において第1異方形状粉末とイオン交換反応用原料との間でイオン交換反応が起こり、SrTiO₃からなる異方形状粉末と、Bi₂O₃を主成分とする余剰成分が生成する。

[0072]

また、例えば、(3)式で表されるビスマス層状ペロブスカイト型化合物の一種である Sr Bi $_4$ Ti $_4$ O $_1$ $_5$ からなる第1 異方形状粉末を用いて、Sr Ti O $_3$ からなる異方形状粉末を合成する場合、イオン交換反応用原料として、1 モルのSr Bi $_4$ Ti $_4$ O $_1$ $_5$ に対して、Sr原子 4 モルに相当するSr 含有化合物を添加すればよい。このような組成を有する第1 異方形状粉末及びイオン交換反応用原料に対して適当なフラックスを加え、適当な温度に加熱すると、Sr Ti O $_3$ からなる異方形状粉末と、Bi $_2$ O $_3$ を主成分とする余剰成分が生成する。

[0073]

また、例えば、Bi $_4$ Ti $_3$ O $_1$ $_2$ 、Sr Bi $_4$ Ti $_4$ O $_1$ $_5$ 等のビスマス層状ペロブスカイト型化合物からなる第 1 異方形状粉末を強酸と共にオートクレーブ中で加熱すると、第 1 異方形状粉末中の Biが Hに置換され、 Bi $_2$ O $_3$ を主成分とする余剰成分が生成する。次いで、水素置換された第 1 異方形状粉末と、 Sr 含有化合物とをオートクレーブ中で加熱すると、第 1 異方形状粉末中の Hが Sr に置換され、 Sr Ti O $_3$ からなる異方形状粉末が得られる。他の組成の場合も同様である。

[0074]

次に、除去工程について説明する。「除去工程」は、イオン交換工程で得られた混合物から必要に応じて湯せん等によりフラックスを取り除いた後、第1異方形状粉末から排出された余剰成分を熱的又は化学的に除去する工程である。ここで、「余剰成分を熱的に除去する」とは、第2のペロブスカイト型化合物からなる異方形状粉末と余剰成分との混合物を加熱し、余剰成分を融液又気体として除去することをいう。この方法は、第2のペロブスカイト型化合物と余剰成分の融点又は蒸気圧の差が大きい場合に有効な方法である。

[0075]

例えば、余剰成分が酸化ビスマス(Bi₂O₃)単相である場合、イオン交換工程で得られた混合物を大気中又は減圧雰囲気下において、800 以上1300 以下で加熱するのが好ましい。加熱温度は、さらに好ましくは、1000 以上1200 以下である。加熱時間は、加熱雰囲気、加熱温度等に応じて、最適な温度を選択する。

[0076]

また、「余剰成分を化学的に除去する」とは、イオン交換工程で得られた混合物を余剰成分のみを侵蝕させる性質を有する処理液中に入れ、余剰成分を溶解させることをいう。この方法は、処理液に対する第2のペロブスカイト型化合物と余剰成分との溶解度の差が大きい場合に有効な方法である。

[0077]

10

20

30

例えば、余剰成分が酸化ビスマス(Bi₂O₃)単相である場合、処理液は、硝酸、塩酸等の酸溶液を用いるのが好ましい。特に、硝酸は、酸化ビスマスを主成分とする余剰成分を化学的に抽出する処理液として好適である。

[0078]

次に、本発明に係る異方形状粉末の製造方法の作用について説明する。第2のペロブスカイト型化合物は、結晶格子の異方性が小さいので、直接、異方形状粉末を合成するのは困難である。また、擬立方{100}面を発達面とする異方形状粉末を直接、合成することも困難である。

[0079]

これに対し、層状化合物は、結晶格子の異方性が大きいので、形状異方性を有する粉末を直接合成するのは容易である。また、層状化合物の内、ある種の化合物からなる第1異方形状粉末の発達面は、第2のペロブスカイト型化合物の{100}面との間に良好な格子整合性を有している。さらに、第2のペロブスカイト型化合物は、一般に、層状化合物に比して熱力学的に安定である。

[0800]

そのため、層状化合物からなり、かつ、その発達面が第2のペロブスカイト型化合物の特定の結晶面と格子整合性を有する第1異方形状粉末とイオン交換反応用原料とを、適当な溶液又は融液中で反応させると、第1異方形状粉末が反応性テンプレートとして機能し、第1異方形状粉末の配向方位を承継した第2のペロブスカイト型化合物からなる異方形状粉末を容易に合成することができる。

[0081]

また、第1異方形状粉末(AB)及びイオン交換反応用原料(C)の組成を最適化すると、両者の間でイオン交換反応が起こり、目的とする第2のペロブスカイト型化合物(AC)と、余剰成分(B)との混合物が得られる。そのため、実質的に、余剰成分(B)を含まない第2のペロブスカイト型化合物(AC)からなる異方形状粉末を合成することができる。

[0082]

特に、第1異方形状粉末が(3)式に示すビスマス層状ペロブスカイト型化合物からなる場合には、イオン交換反応時に第1異方形状粉末からBiが排出され、Bi $_2$ О $_3$ を主成分とする余剰成分が生成する。しかも、Bi $_2$ О $_3$ を主成分とする余剰成分は、熱的又は化学的な除去が極めて容易である。そのため、得られた反応物から余剰成分を除去すれば、実質的にBiを含まず、第2のペロブスカイト型化合物からなり、かつ、擬立方 $\{100\}$ を発達面とする異方形状粉末が得られる。

[0083]

次に、本発明に係る結晶配向セラミックスの製造方法について説明する。本発明に係る結晶配向セラミックスの製造方法は、混合工程と、成形工程と、焼結工程とを備えている

[0084]

初めに、混合工程について説明する。「混合工程」とは、異方形状粉末と、マトリックス化合物粉末とを混合する工程をいう。また、「異方形状粉末」とは、上述したように、(2)式で表される第2のペロブスカイト型化合物からなり、その発達面が擬立方{100}面からなるものをいう。

[0085]

なお、成形時における異方形状粉末の配向を容易化するためには、異方形状粉末は、少なくともその厚さ(t_a)に対する発達面の最大長さ(W_a)のアスペクト比(W_a / t_a)が2以上が好ましい点、及び、少なくともその最大長さ(W_a)は、100 μ m以下が好ましい点は、上述したとおりである。また、混合工程においては、このような条件を満たす1種類の異方形状粉末を用いても良く、あるいは、2種以上を組み合わせて用いても良い。さらに、異方形状粉末は、作成しようとする結晶配向セラミックスと同一組成を有するものであっても良く、あるいは、作成しようとする結晶配向セラミックスを構成す

10

20

30

40

る端成分のいずれか1以上と同一組成を有するものであっても良い。

[0086]

「マトリックス化合物粉末」とは、異方形状粉末と反応し、又は反応することなく、(1)式で表される第1のペロブスカイト型化合物となるものをいう。マトリックス化合物粉末の組成は、異方形状粉末を構成する第2のペロブスカイト型化合物の組成、及び、作製しようとする第1のペロブスカイト型化合物の組成に応じて定まる。また、また、マトリックス化合物粉末の形態は、特に限定されるものではなく、酸化物粉末、複合酸化物粉末、水酸化物粉末、炭酸塩、硝酸塩、シュウ酸塩等の塩、アルコキシド等を用いることができる。

[0087]

例えば、 $SrTiO_3$ からなる結晶配向セラミックスを作製する場合において、異方形状粉末として、 $SrTiO_3$ からなる板状粉末を用いるときには、マトリックス化合物粉末として、 $SrTiO_3$ からなる微粉末を用いても良い。あるいは、SrDびTiの少なくとも 1 つの元素を含む化合物からなる微粉末の混合物であって、これらが固相反応することによって $SrTiO_3$ が生成するように、化学量論比で配合されたものを用いても良い。

[0088]

また、例えば、(Sr、Pb)TiO $_3$ からなる結晶配向セラミックスを作製する場合において、異方形状粉末として、SrTiO $_3$ からなる板状粉末を用いるときには、マトリックス化合物粉末として、PbTiO $_3$ からなる微粉末を用いても良い。あるいは、Sr、Ti及びPbの少なくとも1つの元素を含む化合物からなる微粉末の混合物であって、これらと異方形状粉末とが固相反応することによって(Sr、Pb)TiO $_3$ が生成するように、化学量論比で配合されたものを用いても良い。他の組成を有する結晶配向セラミックスを作製する場合も同様である。

[0089]

なお、異方形状粉末を構成する第2のペロブスカイト型化合物と、結晶配向セラミックスを構成する第1のペロブスカイト型化合物の組成が異なる場合、マトリックス化合物粉末中に、第1のペロブスカイト型化合物からなる微粉末が含まれていても良い。また、混合工程においては、所定の比率で配合された異方形状粉末及びマトリックス化合物粉末に対して、さらに、焼結助剤(例えば、CuO等)を添加しても良い。出発原料に対して、第1のペロブスカイト型化合物からなる微粉末や焼結助剤を添加すると、焼結体の緻密化がさらに容易化するという利点がある。

[0090]

また、異方形状粉末とマトリックス化合物粉末とを混合する場合において、異方形状粉末の配合比率が小さくなりすぎると、擬立方 { 100} 面の配向度が低下する場合がある。従って、異方形状粉末の配合比率は、要求される焼結体密度及び配向度に応じて、最適な比率を選択するのが好ましい。

[0091]

擬立方 { 100 } 面の配向度が 20%以上である結晶配向セラミックスを得るためには、異方形状粉末の配合比率は、結晶配向セラミックスに含まれる第1のペロブスカイト型化合物の B サイトイオンの 0 . 1 a t %以上が、異方形状粉末から供給されるような比率とするのが好ましい。異方形状粉末の配合比率は、好ましくは、B サイトイオンの 2 a t %以上であり、さらに好ましくは、B サイトイオンの 5 a t %以上である。

[0092]

さらに、異方形状粉末及びマトリックス化合物粉末、並びに、必要に応じて配合される 焼結助剤の混合は、乾式で行っても良く、あるいは、水、アコール等の適当な分散媒を加 えて湿式で行っても良い。さらに、この時、必要に応じてバインダ及び/又は可塑剤を加 えても良い。

[0093]

次に、成形工程について説明する。成形工程は、混合工程で得られた混合物を、異方形

10

20

30

40

20

30

40

50

状粉末の発達面が配向するように成形する工程である。この場合、異方形状粉末が面配向するように成形しても良く、あるいは、軸配向するように成形しても良い。

[0094]

成形方法については、異方形状粉末を配向させることが可能な方法であれば良く、特に限定されるものではない。異方形状粉末を面配向させる成形方法としては、具体的には、ドクターブレード法、プレス成形法、圧延法等が好適な一例として挙げられる。また、異方形状粉末を軸配向させる成形方法としては、具体的には、押出成形法、遠心成形法等が好適な一例として挙げられる。

[0095]

また、異方形状粉末が面配向した成形体(以下、これを「面配向成形体」という。)の厚さを増したり、配向度を上げるために、面配向成形体に対し、さらに積層圧着、プレス、圧延などの処理(以下、これを「面配向処理」という。)を行っても良い。この場合、面配向成形体に対して、いずれか1種類の面配向処理を行っても良く、あるいは、2種以上の面配向処理を行っても良い。また、面配向成形体に対して、1種類の面配向処理を複数回繰り返り行っても良く、あるいは、2種以上の配向処理をそれぞれ複数回繰り返し行っても良い。

[0096]

次に、焼結工程について説明する。焼結工程は、成形工程で得られた成形体を加熱し、焼結させる工程である。異方形状粉末とマトリックス化合物粉末とを含む成形体を所定の温度に加熱すると、異方形状粉末がテンプレートとして機能し、第1のペロブスカイト型化合物からなる異方形状結晶が生成及び成長し、これと同時に、生成した第1のペロブスカイト型化合物の焼結が進行する。

[0097]

加熱温度は、異方形状結晶の成長及び / 又は焼結が効率よく進行し、かつ、目的とする組成を有する化合物が生成するように、使用する異方形状粉末、マトリックス化合物粉末、作製しようとする結晶配向セラミックスの組成等に応じて最適な温度を選択すればよい

[0098]

最適な加熱温度は、第1のペロブスカイト型化合物の組成に応じて異なる。例えば、 $SrTiO_3$ からなる異方形状粉末及び $SrTiO_3$ からなるマトリックス化合物粉末を用いて $SrTiO_3$ からなる結晶配向セラミックスを製造する場合、加熱温度は、900以上1300以下が好ましい。また、加熱は、大気中、酸素中、減圧下又は真空下のいずれの雰囲気下で行っても良い。さらに、加熱時間は、所定の焼結体密度が得られるように、加熱温度に応じて最適な時間を選択すればよい。

[0099]

加熱方法は、常圧焼結法、あるいは、ホットプレス、ホットフォージング、HIP等の加圧焼結法のいずれを用いても良く、結晶配向セラミックスの組成、用途等に応じて、最適な方法を選択することができる。

[0100]

なお、バインダを含む成形体の場合、焼結工程の前に、脱脂を主目的とする熱処理を行っても良い。この場合、脱脂の温度は、少なくともバインダを熱分解させるに十分な温度であれば良い。但し、原料中に揮発しやすい物(例えば、Na化合物)が含まれる場合、脱脂は、500 以下で行うのが好ましい。

[0101]

また、配向成形体の脱脂を行うと、配向成形体中の異方形状粉末の配向度が低下したり、あるいは、配向成形体に体積膨張が発生する場合がある。このような場合には、脱脂を行った後、熱処理を行う前に、配向成形体に対して、さらに静水圧(CIP)処理を行うのが好ましい。脱脂後の成形体に対して、さらに静水圧処理を行うと、脱脂に伴う配向度の低下、あるいは、配向成形体の体積膨張に起因する焼結体密度の低下を抑制できるという利点がある。また、焼結体密度及び配向度をさらに高めるために、熱処理後の焼結体に

対してさらにホットプレスを行う方法も有効である。

[0102]

次に、本発明に係る結晶配向セラミックスの製造方法の作用について説明する。異方形状粉末及びマトリックス化合物粉末を混合し、これを異方形状粉末に対して一方向から力が作用するような成形方法を用いて成形すると、異方形状粉末に作用するせん断応力によって異方形状粉末が成形体中に配向する。このような成形体を所定の温度で加熱すると、異方形状粉末とマトリックス化合物粉末とが反応し、又は反応することなく、第1のペロブスカイト型化合物が生成する。

[0103]

この時、異方形状粉末の発達面と第1のペロブスカイト型化合物の擬立方 { 100} 面との間には格子整合性があるので、異方形状粉末の発達面が、生成した第1のペロブスカイト型化合物の擬立方 { 100} 面として承継される。そのため、焼結体中には、擬立方 { 100} 面が一方向に配向した状態で、第1のペロブスカイト型化合物からなる異方形状結晶が生成する。

[0104]

層状化合物からなる異方形状粉末を反応性テンプレートとして用いて、ペロブスカイト型化合物を生成させる従来の方法は、異方形状粉末及びその他の原料に含まれるすべてのAサイト元素及びBサイト元素を含むペロブスカイト型化合物からなる結晶配向セラミックス又は異方形状粉末のみが製造可能である。

[0105]

一方、反応性テンプレートとして用いる異方形状粉末の材質は、結晶格子の異方性の大きく、かつ、ペロブスカイト型化合物との間に格子整合性を有するものであることが必要であるが、作製しようとするペロブスカイト型化合物の組成によっては、このような条件を満たす材料が存在しないか、あるいは、その探索に著しい困難を伴う場合がある。従って、従来の方法では、得られる結晶配向セラミックスの組成制御、特に、Aサイト元素の組成制御には限界があった。

[0106]

これに対し、まず、異方形状粉末の合成が容易な層状化合物からなる第1異方形状粉末を合成し、この第1異方形状粉末を反応性テンプレートとして用い、かつ、これと反応させるイオン交換反応用原料の組成を最適化すると、不要なAサイト元素を含まない第2のペロブスカイト型化合物からなり、かつ擬立方{100}面を発達面とする異方形状粉末を合成することができる。次いで、このようにして得られた異方形状粉末を成形体中に配向させ、所定の温度で加熱すると、不要なAサイト元素を含まない第1のペロブスカイト型化合物からなり、かつ擬立方{100}面が配向した結晶配向セラミックスが得られる

[0107]

本発明に係る製造方法は、通常のセラミックスプロセスをそのまま利用できるので、結晶格子の異方性の小さい第1のペロブスカイト型化合物であっても、擬立方{100}面が高い配向度で配向した結晶配向セラミックスを容易かつ安価に製造することができる。また、このようにして得られた結晶配向セラミックスは、多結晶体であるので、単結晶に比べて、強度、破壊靱性等に優れている。

[0108]

また、異方形状粉末として、作製しようとする結晶配向セラミックスと同一又は類似の結晶構造を有しているものを用いているので、異なる結晶構造を有する異方形状粉末を反応性テンプレートとして用いた場合に比べて、容易に高い配向度を有する結晶配向セラミックスが得られる。すなわち、異方形状粉末の配合比率が相対的に少ない場合であっても、高い配向度を有する結晶配向セラミックスが得られる。

【実施例1】

[0109]

化学量論比でSrBi₄Ti₄O₁₅(以下、これを「SBIT」という。)組成とな

20

10

30

40

るように、 $SrCO_3$ 粉末(平均粒径: $0.5\mu m$)、 Bi_2O_3 粉末(平均粒径: $0.5\mu m$)及び TiO_2 粉末(平均粒径: $0.5\mu m$)を秤量し、これらを湿式混合した。次いで、この原料に対して、フラックスとして KClessims Estims Estims

[0110]

次に、このSBIT板状粉末に対して、SrTiO $_3$ 及び余剰成分であるBi $_2$ О $_3$ を生成させるのに必要な量のSrCО $_3$ を加えて混合し、さらに、この原料に対して、フラックスとしてKC1を50wt%添加した。次いで、この混合物を白金るつぼに入れ、950 ×8hの条件下で加熱した。これにより、トポケミカル結晶変換(以下、これを「TMC(Topochemical Mycrocrystal Conversion)変換」という。)が起こり、白金るつぼ中には、SrTiО $_3$ とBi $_2$ О $_3$ の混合物が生成した。

[0111]

次に、TMC変換によって得られた反応物からフラックスを取り除いた後、これを2. $5\,N\,O\,H\,N\,O_3$ 中に1h浸漬し、余剰成分として生成したBi $_2\,O_3$ を溶解させた。さらに、この溶液を濾過してSrTi O_3 粉末を分離し、80 のイオン交換水で洗浄した。得られたSrTi O_3 粉末は、擬立方{100}面を発達面とし、アスペクト比(Wa/ta)が約10、発達面の最大長さ(Wa)が約5μmである板状粉末であった。次の化1の式に、SrTi O_3 板状粉末の合成反応式を示す。

[0112]

【化1】

SrTiO3板状粉末合成反応式 (3ステップ合成)

① 板状粒子合成

$$SrC03 + 2Bi2O3 + 4TiO2 \xrightarrow{1100°C 4h} SrBi4Ti4O15 + CO2 ↑$$

TMC変換

③ 不純物除去

[0113]

図1(a)及び図1(b)に、それぞれ、合成されたSBIT板状粉末及びSrTiO $_3$ 板状粉末のSEM写真を示す。図1より、本発明に係る方法により、アスペクト比の大きな板状粉末が得られていることがわかる。また、図2(a)及び図2(b)に、それぞれ、合成されたSBIT板状粉末及びSrTiO $_3$ 板状粉末の $_4$ 経回折パターンを示す。図2より、SBIT板状粉末からペロブスカイト型結晶構造を有するSrTiO $_4$ 単相粉末が得られていることがわかる。なお、SBIT板状粉末及びSrTiO $_4$ 板状粉末の発達面の結晶面は、キャスト法により、それぞれ、 $_4$ 001 $_4$ 面及び擬立方 $_4$ 1 00 $_4$ 面であることを確認した。

【実施例2】

[0114]

10

30

20

40

20

30

40

50

化学量論比でBi $_4$ Ti $_3$ O $_1$ 2(以下、これを「BIT」という。)組成となるように、Bi $_2$ O $_3$ 粉末(平均粒径:0.5 μ m)及びTiO $_2$ 粉末(平均粒径:0.5 μ m)を秤量し、これらを湿式混合した。次いで、この原料に対して、フラックスとしてNaCl50wt%-KCl50wt%混合物を50wt%添加し、これらを乾式混合した。次に、得られた混合物を白金るつぼに入れ、1100 ×2hの条件下で加熱し、BITの合成を行った。冷却後、反応物から湯せんによりフラックスを取り除き、BIT粉末を得た。得られたBIT粉末は、{001} 面を発達面とし、アスペクト比(W $_b$ /t $_b$)が約10、発達面の最大長さ($_b$)が約10 $_\mu$ mである板状粉末であった。

[0115]

次に、このBIT板状粉末に対して、SrTiO₃及び余剰成分であるBi₂O₃を生成させるのに必要な量のSrCO₃粉末(平均粒径:0.5 μ m)を加えて混合し、さらに、この原料に対して、フラックスとしてKClを50 μ mと添加した。次いで、この混合物を白金るつぼに入れ、950 μ mを分割した。これにより、TMC変換が起こり、白金るつぼ中には、SrTiO₃とBi₂O₃の混合物が生成した。

[0116]

次に、TMC変換によって得られた反応物からフラックスを取り除いた後、これを2. $5\,N\,O\,H\,N\,O_3$ 中に1h浸漬し、余剰成分として生成したBi $_2\,O_3$ を溶解させた。さらに、この溶液を濾過してSrTi O_3 粉末を分離し、80 のイオン交換水で洗浄した。得られたSrTi O_3 粉末は、擬立方{100}面を発達面とし、アスペクト比(Wa/ta)が約10、発達面の最大長さ(Wa)が約7μmである板状粉末であった。次の化2の式に、SrTi O_3 板状粉末の合成反応式を示す。

[0117]

【化2】

SrTiO3板状粉末合成反応式(3ステップ合成)

① 板状粒子合成

② TMC変換

Bi4Ti3012 + 3SrC03
$$\frac{950^{\circ}\text{C} \text{ 8h}}{\text{KCl75y2}}$$
 3SrTi03 + 2Bi203 + 3C02 ↑

③ 不純物除去

[0118]

図3(a)及び図3(b)に、それぞれ、合成されたBIT板状粉末及びSrTiO3板状粉末のSEM写真を示す。図3より、本発明に係る方法により、アスペクト比の大きな板状粉末が得られていることがわかる。また、図4(a)及び図4(b)に、それぞれ、合成されたBIT板状粉末及びSrTiO3板状粉末のX線回折パターンを示す。図4より、BIT板状粉末からペロブスカイト型結晶構造を有するSrTiO3単相粉末が得られていることがわかる。なお、BIT板状粉末及びSrTiO3板状粉末の発達面の結晶面は、キャスト法により、それぞれ、 ${001}$ 面及び擬立方 ${100}$ 面であることを確認した。

[0119]

(比較例1)

フラックス法を用いて、SrTi03粉末を合成した。すなわち、化学量論比でSrT

i O $_3$ 組成となるように、SrCO $_3$ 粉末(平均粒径:0.5 μ m)及びTiO $_2$ 粉末(平均粒径:0.5 μ m)を秤量し、これらを湿式混合した。次いで、この原料に対して、フラックスとしてKClを50 wt%添加し、これらを乾式混合した。次に、得られた混合物を白金るつぼに入れ、1100 ×4hの条件下で加熱した。冷却後、反応物から湯せんによりフラックスを取り除き、SrTiO $_3$ 粉末を得た。次の化3の式に、SrTiO $_3$ 粉末の合成反応式を示す。

[0120]

【化3】

フラックス合成法

10

SrC03 + Ti02
$$\frac{1100^{\circ}\text{C}}{\text{KCIフラックス中}}$$
 SrTi03 + C02 ↑

[0121]

図 5 に、合成された S r T i O $_3$ 粉末の S E M 写真を示す。図 5 より、得られた S r T i O $_3$ 粉末は、平均粒径が約 0 . 5 μ m、アスペクト比が約 1 である等方性の粉末であることがわかる。

【実施例3】

[0122]

図 6 に示す手順に従い、SrTiO $_3$ からなる結晶配向セラミックスを作製した。まず、TMC変換により得られた実施例 1 のSrTiO $_3$ 板状粉末(テンプレート粉末)と、フラックス法により得られた比較例 1 の等方性 SrTiO $_3$ 粉末とを、ボールミルで 5 時間湿式混合した。なお、分散媒には、トルエン(5 8 wt%)+ エタノール(4 2 wt%)混合溶媒を用いた。また、テンプレート粉末の配合量は、Bサイトイオンの 1 0 at% がテンプレート粉末から供給される量とした。

[0123]

スラリーに対してバインダ(積水化学(株)製、エスレック(登録商標)BH-3)及び可塑剤(フタル酸ブチル)を、出発原料に含まれる全粉末合計量に対して、それぞれ、6wt%及び6wt%加えた後、さらに2時間混合した。

[0124]

[0125]

得られた焼結体について、テープ面と平行な面について X線回折を行った。図 7 に、その X線回折パターンを示す。図 7 より、擬立方 { 1 0 0 } 面が、テープ面に対して平行に、かつ高い配向度で配向していることがわかる。本実施例の場合、ロットゲーリング法による擬立方 { 1 0 0 } 面の平均配向度 F (1 0 0) は、9 9 . 3 3 % であった。

[0126]

(比較例2)

出発原料として、比較例 1 で得られた等方性 S r T i O $_3$ 粉末のみを用いた点、及び、焼結条件を 1 3 5 0 、 1 4 0 0 又は 1 4 5 0 × 1 h とした以外は、実施例 3 と同の手順に従い、 S r T i O $_3$ からなる焼結体を作製した。図 8 に、得られた焼結体のテープ面と平行な面について測定された X 線回折パターンを示す。図 8 より、得られた焼結体は、無配向であることがわかる。比較例 2 で得られた焼結体の場合、ロットゲーリング法

20

30

40

による擬立方 { 1 0 0 } 面の平均配向度 F (1 0 0) は、すべて 0 % であった。

【実施例4】

[0127]

焼結条件を1450 ×1hとした以外は、実施例3と同様の手順に従い、SrTiO ₃からなる結晶配向セラミックスを作製した。

【実施例5】

[0128]

 $SrTiO_3$ 板状粉末の配合量を、B サイトイオンの 5at% 相当とし、焼結条件を $1450 \times 1h$ とした以外は、実施例 3 と同様の手順に従い、 $SrTiO_3$ からなる結晶配向セラミックスを作製した。

10

【実施例6】

[0129]

 $SrTiO_3$ 板状粉末の配合量を、B サイトイオンの 1 a t % 相当とし、焼結条件を 1 4 5 0 x 1 h とした以外は、実施例 3 と同様の手順に従い、 $SrTiO_3$ からなる結晶配向セラミックスを作製した。

【実施例7】

[0130]

焼結条件を $1 3 5 0 \times 1 h$ とした以外は、実施例 3 と同様の手順に従い、 SrTiO $_3$ からなる結晶配向セラミックスを作製した。

20

【実施例8】

[0131]

SrTiO₃ 板状粉末の配合量を、Bサイトイオンの5at%相当とし、焼結条件を1400 × 1hとした以外は、実施例3と同様の手順に従い、SrTiO₃からなる結晶配向セラミックスを作製した。

[0132]

図9~図13に、それぞれ、実施例4~8で得られた焼結体のテープ面と平行な面について測定されたX線回折パターンを示す。図9~図13より、実施例4~8得られた焼結体は、いずれも、擬立方{100}面がテープ面に対して平行に、かつ高い配向度で配向していることがわかる。また、図11より、テンプレート量がBサイトイオンの僅か1at%であったも、配向度72.88%の高い配向度を有する結晶配向セラミックスが得られていることがわかる。

30

【実施例9】

[0133]

SrTiO₃ 板状粉末の配合量をBサイトイオンの10at%とし、焼結条件を1400 × 1 h とした以外は、実施例3と同様の手順に従い、SrTiO₃からなる結晶配向セラミックスを作製した。得られた結晶配向セラミックスの擬立方 $\{100\}$ 面の平均配向度F(100)は、92.64%であった。

【実施例10】

[0134]

 $SrTiO_3$ 板状粉末の配合量を、B サイトイオンの 1 a t %又は 5 a t %とした以外は、実施例 3 と同様の手順に従い、 $SrTiO_3$ からなる結晶配向セラミックスを作製した。得られた結晶配向セラミックスの擬立方 $\{100\}$ 面の平均配向度 F(100)は、それぞれ、 82.39 %及び 90.15 %であった。

40

[0135]

(比較例3)

比較例として、特開平10-139552号公報に従い、結晶配向セラミックスを作製した。層状化合物の一種であるS r_3 T i $_2$ O $_7$ 板状粉末を反応性テンプレートとして用いて、結晶配向セラミックスを作製した。まず、フラックス法を用いて、S r_3 T i $_2$ O $_7$ 板状粉末を合成した。得られたS r_3 T i $_2$ O $_7$ 板状粉末は、 { 0 0 1 } 面を発達面とし、かつ、アスペクト比は約10、発達面の最大長さは、約10 μ mであった。

[0136]

次に、合成されたSrgTigOg板状粉末と、比較例1で得られた等方性SrTiO 3 粉末と、Ti〇 2 粉末(平均粒径: 0 . 5 µm)とを所定量秤量した以外は、実施例 3 と同様の手順に従い、結晶配向セラミックスを作製した。なお、SrュTi₂Oァ板状粉 末の配合量は、 B サイトイオンの 1 0 a t %、 3 0 a t % 又は 6 7 a t % が 板 状 粉 末 か ら 供給される量とした。

[0137]

次の化4の式に、TMC変換により得られた板状粉末をテンプレートとして用いた結晶 成長法(TMC-TGG法)によるセラミックス作製ルート(実施例3)、通常法による セラミックス作製ルート(比較例2)、及び反応性テンプレートを用いた結晶成長法(R TGG法)によるセラミックス作製ルート(比較例3)を示す。また、表1に、実施例3 ~ 1 0 及び比較例 2 、 3 で得られた焼結体の焼結条件と配向度との関係を示す。

10

[0138]

【化4】

SrTiO3配向セラミックス作製ルート

実施例3 TMC-TGG法:

(1-x) SrTiO3 + x SrTiO3 (TMC-テンプ レート) ---> SrTiO3

20

② 比較例2 通常法:

(1-x) SrTiO3 + x SrTiO3(等方粒子) ----> SrTiO3

③ 比較例3 RTGG法:

(1-x) SrTi03 + x/3 Sr3Ti207 (テンプ レート) + x/3 Ti02 - SrTi03

[0139]

20

30

40

【表1】

	比較例	実施例	実施例	実施例	実施例
力法	RTGG	TMC-TGG	TMC-TGG	TMC-TGG	TMC-TGG
車	Sr3Ti207	SrTi03	SrTi03	SrTi03	SrTi03
燒結時間 (h)	10	-	-	-	10
焼結温度 (°C)	1350	1350	1400	1450	1450
テンプレート量 (a t %)	配向度 (%)	配向度 (%)	配向度 (%)	配向度 (%)	配向度 (%)
0	0	0	0	0	0
1	I	I	1	72.88	82.39
5	I	1	71.98	84.02	90.15
1 0	21.00	91. 11	92.64	97.63	99.33
3 0	46.00	1	1	1	Î
6.7	62.00	1	1	1	ı

[0140]

さらに、図14(a)及び図14(b)に、実施例3~10及び比較例3で得られた各結晶配向セラミックスのテンプレート量と、擬立方{100}面の配向度との関係を示す。RTGG法の場合、テンプレート量が10at%の場合、擬立方{100}面の配向度は、約20%であった。また、RTGG法の場合、テンプレート量が30at%及び67at%であるときの擬立方{100}面の配向度は、それぞれ、46%及び62%であった。

[0141]

これに対し、TMC-TGG法を用いた場合、極めて少量のテンプレート量で高い配向度が得られた。すなわち、焼結温度を 1450 とした場合において、テンプレート量が 1at%であるときには、配向度は、70%を超えた。また、テンプレート量が 5at% であるときには、配向度は 80%を越えた。また、テンプレート量が 10at% であるときには、配向度は、95%を越えた。さらに、テンプレート量を 10at% とした場合、焼結温度によらず、擬立方 $\{100\}$ 面の配向度は、いずれも 90% を超えた。

【実施例11】

[0142]

0.95 P b T i O $_3$ - 0.05 S r T i O $_3$ 組成となるように、実施例 1 で得られた S r T i O $_3$ 板状粉末(テンプレート粉末)と、固相法により合成した等方性 P b T i O $_3$ 粉末とを秤量した以外は、実施例 3 と同様の手順に従い、結晶配向セラミックスを作製した。

[0143]

(比較例4)

0.95 P b T i O $_3$ - 0.05 S r T i O $_3$ 組成となるように、比較例 1 で得られた等方性 S r T i O $_3$ 板状粉末と、固相法による合成した等方性 P b T i O $_3$ 粉末とを秤量した以外は、実施例 3 と同様の手順に従い、焼結体を作製した。

[0144]

[0145]

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。例えば、上記実施例では、結晶配向セラミックスを製造するに際し、常圧焼結法が用いられているが、他の焼結法(例えば、ホットプレス法、HIP処理等)を用いても良い。

[0146]

また、上記実施例では、主として、ペロブスカイト型化合物単相からなる結晶配向セラミックス及びその製造方法について主に説明したが、第1のペロブスカイト型化合物に対して適当な副成分及び / 又は副相を添加すれば、熱電特性やイオン伝導特性を付与することができる。そのため、本発明に係る製造方法を応用すれば、熱電材料やイオン伝導材料等として好適な結晶配向セラミックスであっても製造することができる。

【産業上の利用可能性】

[0147]

本発明に係る結晶配向セラミックスは、加速度センサ、焦電センサ、超音波センサ、電界センサ、温度センサ、ガスセンサ、ノッキングセンサ、ヨーレートセンサ、エアバックセンサ、圧電ジャイロセンサ等の各種センサ、圧電トランス等のエネルギー変換素子、圧電アクチュエータ、超音波モータ、レゾネータ等の低損失アクチュエータ又は低損失レゾネータ、キャパシタ、バイモルフ圧電素子、振動ピックアップ、圧電マイクロホン、圧電点火素子、ソナー、圧電ブザー、圧電スピーカ、発振子、フィルタ等に用いられる圧電材料、あるいは、コンデンサ並びに積層コンデンサ等に用いられる誘電材料、熱電変換材料、イオン伝導材料等として使用することができる。

[0148]

また、本発明に係る異方形状粉末は、本発明に係る結晶配向セラミックスを作製するためのテンプレートとして特に好適であるが、本発明に係る異方形状粉末の用途はこれに限定されるものではなく、圧電ゴム複合材料用の粉末等としても用いることができる。

【図面の簡単な説明】

40

10

20

30

20

[0149]

【図1】図1(a)及び図1(b)は、それぞれ、実施例1で合成されたSrBi₄Ti ₄O₁₅板状粉末及びSrTiO₃板状粉末のSEM写真である。

【図2】図2(a)及び図2(b)は、それぞれ、実施例1で合成されたSrBi₄Ti ₄O₁₅板状粉末及びSrTiO₃板状粉末のX線回折パターンである。

【図3】図3 (a)及び図3 (b)は、それぞれ、実施例2で合成されたBi₄ Ti₃ O₁ っ板状粉末及びSr TiO₃ 板状粉末のSE M写真である。

【図4】図4(a)及び図4(b)は、それぞれ、実施例2で合成されたBi $_4$ Ti $_3$ O $_1$ っ板状粉末及びSrTiO $_3$ 板状粉末のX線回折パターンである。

【図5】比較例1で合成された等方性SrTiO。粉末のSEM写真である。

【図6】本発明に係る結晶配向セラミックスの製造方法を示す工程図である。

【図7】実施例3で得られた結晶配向セラミックスのX線回折パターンである。

【図8】比較例2で得られた無配向セラミックスのX線回折パターンである。

【図9】実施例4で得られた結晶配向セラミックスのX線回折パターンである。

【図10】実施例5で得られた結晶配向セラミックスのX線回折パターンである。

【図11】実施例6で得られた結晶配向セラミックスのX線回折パターンである。

【図12】実施例7で得られた結晶配向セラミックスのX線回折パターンである。

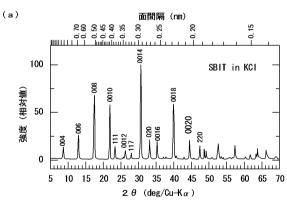
【図13】実施例8で得られた結晶配向セラミックスのX線回折パターンである。

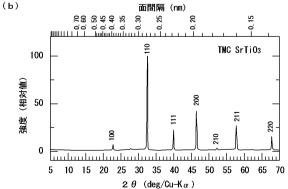
【図14】実施例3~10及び比較例3で得られた結晶配向セラミックスのテンプレート量と擬立方{100}mの配向度との関係を示す図である。

【図15】図15(a)及び図15(b)は、それぞれ、実施例11で得られた結晶配向セラミックス及び比較例4で得られた無配向セラミックスのX線回折パターンである。

【図1】

19XV S. 01XR Z. Top EST.

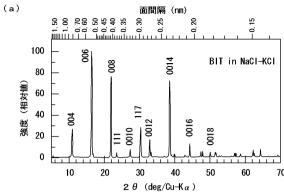

9

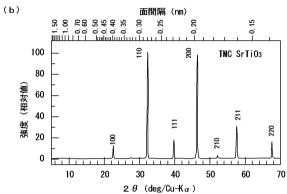

SrTiO3 {100}ペロブスカイト板状粒子

SrBi4Ti4015 板状粒子

【図2】

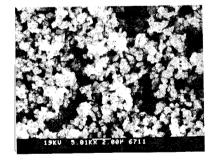
a

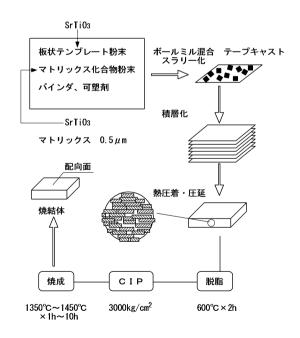

【図3】



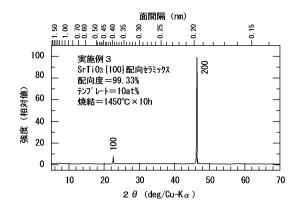
(**q**)

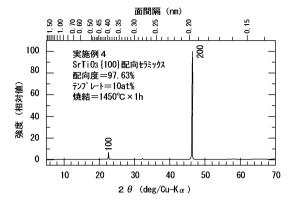
【図4】

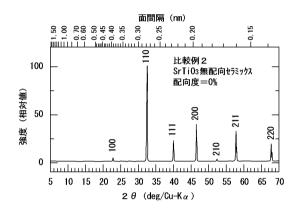


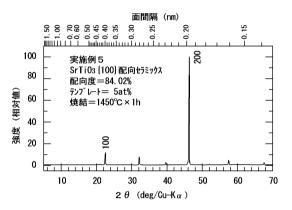

【図5】

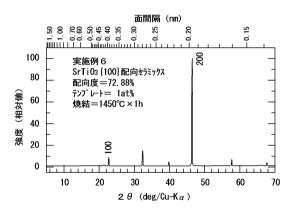
(a)

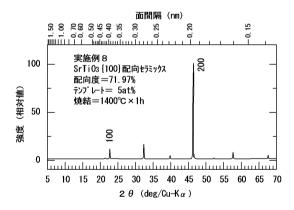

フラックス合成法

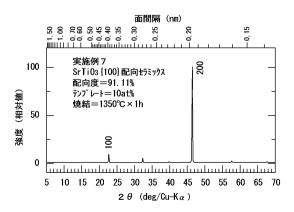

【図6】

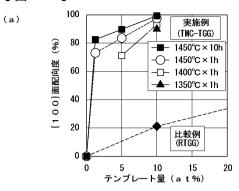

【図7】

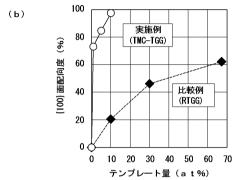

【図9】


【図8】

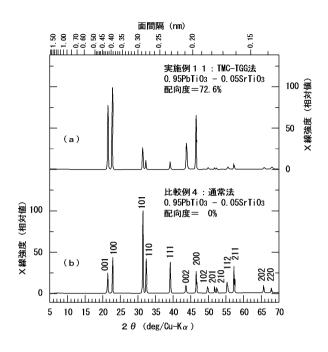

【図10】


【図11】


【図13】



【図12】



【図14】

【図15】

フロントページの続き

(51) Int.CI.			FΙ		
H 0 1 L	41/18	(2006.01)	H 0 1 L	41/18	1 0 1 B
H 0 1 L	41/24	(2006.01)	H 0 1 L	41/18	101C
C 0 1 G	23/00	(2006.01)	H 0 1 L	41/18	101D
C 0 1 G	29/00	(2006.01)	H 0 1 L	41/18	101Z
			H 0 1 L	41/22	Α
			C 0 1 G	23/00	C
			C 0 1 G	29/00	

(56)参考文献 特開平11-060333(JP,A)

特開2000-034194(JP,A)

特開平10-053465(JP,A)

M.E.Ebrahimi et al., Synthesis of Platelet SrTiO3 by Epitaxial Growth on Sr3Ti2O7 Core Particles, Proceedings of the 13th IEEE International Symposium on Application of Fer roelectrics, 2 0 0 2 年, pp.239-242

(58)調査した分野(Int.CI., DB名)

C 0 4 B 3 5 / 4 6 H 0 1 L 3 5 / 2 2 H 0 1 L 3 5 / 3 4 H 0 1 L 3 7 / 0 2 H 0 1 L 4 1 / 1 8 - 4 1 / 1 8 7 H 0 1 L 4 1 / 2 4