20167178764 A1 |1 0000 OO0 O OO 0

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/178764 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

Applicant: FASTLY, INC. [US/US]; P.O. Box 78266,
San Francisco, California 94107 (US).

Inventor: O'DELL, Devon; c¢/o Fastly, Inc., P.O. Box
78266, San Francisco, California 94107 (US).

Agents: ROCHE, Stephen S. et al.; 14694 Orchard Park-
way, Building A, Suite 200, Westminster, Colorado 80023

(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

10 November 2016 (10.11.2016) WIPO | PCT
International Patent Classification:
GO6F 9/44 (2006.01)
International Application Number:
PCT/US2016/025978
International Filing Date:
5 April 2016 (05.04.2016) (84)
Filing Language: English
Publication Language: English
Priority Data:
14/702,057 1 May 2015 (01.05.2015) Us

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: RACE CONDITION TESTING VIA A SCHEDULING TEST PROGRAM

CONCURRENT
PROCESS 110

CONCURRENT
PROCESS 111

Arst time
period

first time 120

period
12¢

first time
period
iz0

seeond Hme B
perind 127

CONCURRENT
PROCESS 112

%, confinue o

TEST
PROCESS 1158

first time
period
126

STATE
130 .

FIGURE 1

el for process 112

(57) Abstract: Disclosed herein are methods, systems, and software to enhance the testing of race conditions in programs. In one ex-
ample, a method of testing race conditions in a target program with one or more concurrent processes includes generating a schedul -
ing program based on race conditions identified in the target program, wherein the scheduling program includes order of operation
o rules for the one or more concurrent processes. The method further provides initiating execution of the scheduling program, and ex-
ecuting the target program based on the order of operation rules for the one or more concurrent processes.

WO 2016/178764 PCT/US2016/025978

RACE CONDITION TESTING VIA A SCHEDULING TEST PROGRAM

TECHNICAL BACKGROUND

0801} A race condition is a behavior of a software system where the behavior of a
program is dependent on the sequence or timing of other uncontrollable events. When the
events do not happen in the order that the programamer or developer intended, the program
may vicld undesirable results. These undesirable results may include providing an incorrect
response to a query, hanging the program preventing the program from determining 3 result,
or other similar undesirable consequences.

16062] in the past, applications and services have been developed that allow a user or
developer of a program to test the program to determine locations of race conditions within
the code. These applications, such as ThreadSanitizer, are usefu] in identifying races, but
cannot guarantee that a race condition occurs each time the code is executed. Accordingly,
the programmer may be unable to replicate a race condition to determine what results are
yielded when a race occurs, and may further be unable to determine if a race condition is

fixed by a modification to the code.

OVERVIEW

[80G63] The technology disclosed herein enhances how race conditions are {ested in a
target program. fn one example, a method of operating a computing system to test race
conditions of a target program includes executing a scheduler program, the scheduler
program comprising order of gperation rules for the target program based on the race
conditions. The method further provides inttiating execution of the target program, wherein
the target program comprises one or more concurrent processes. The method also includes
executing each concurrent process in the one or more concurrent processes based on the order
of operation rules for the target program.

[B80684] In another tmplementation, an apparatus to perform testing of race conditions
on a target program inclides one or more computer readable media. The apparatus further
iclades processing instructions stored on the one or more computer readable media that,
when executed by a processing system, direct the processing system to execute a scheduler
program, the scheduler program comprising order of operation rules for the target program
based on the race conditions. The processing instructions further direct the processing
system to initiate execution of the target program, wherein the target program comprises one

1

WO 2016/178764 PCT/US2016/025978

or more concurrent processes, and execute each concurrent process in the one or more
concurrent processes based on the order of operation rules for the target program.

[8665] In a further implementation, a method of testing race conditions in a target
program with one or more concurrent processes includes generating a scheduling program
based on race conditions identified in the target program, wherein the scheduling program
mcludes order of operation rules for the one or more concurrent processes. The method
further provides inifiating execution of the scheduling program, and executing the target

program based on the order of operation rules for the one or more concurrent processes.

BRIEF DESCRIPTION OF THE DRAWINGS

[66066] The following description and associated figures teach the best mode of the
invention. For the purpose of teaching inventive principles, some conventional aspects of the
best mode can be simplified or omitied. The following claims specity the scope of the
mvention. Note that some aspects of the best mode cannot fall within the scope of the
imvention as specified by the claims. Thus, those skilled in the art will appreciate variations
from the best mode that fall within the scope of the invention. Those skilled in the art will
appreciate that the features described below can be combined in various ways to form
multiple variations of the invention. As a result, the invention is not limited to the specific
examples described below, but only by the claims and their equivalents.

86687} Figure 1 illustrates an operational scenario of implementing a test program o
test race conditions in a target program according to one implementation,

[6G08] Figure 2 illustrates a method of operating a computing system 1o test race
conditions of a target program according o one implementation.

[6669] Figure 3 ithustrates an operational scenario of executing a test program with a
target program according to one implementation.

16614] Figure 4 illustrates an overview of applying a test program to a target program
according to one implementation.

8611} Figure § illastrates an operational scenario of implementing a test program o
test race conditions on a target program according to one implementation,

{8612} Figure 6 illustrates a computing sysiem to implement a test program on a target

program according to one implementation.

]

WO 2016/178764 PCT/US2016/025978

DESCRIPTION

{8613} In various situations, a program developer may find it necessary to test race
conditions within a target program or application. To test race conditions, that are previously
known or identified within the program, the developer may employ a test or scheduling
program that specifies an order of operations for various concurrent processes within the
application. These order of operations ensure that each of the concurrent processes within the
application execute in an order specified by the developer of the test program.

[6G14] For cxample, a target program or application may include one or more
concurrent processes that are dependent on one another for proper execution of the target
program. These concurrent processes, of which parallel processing threads are one example,
may share resources belonging to the program as a whole, but execute as independent
operations on the processing system. These resources may include variables, data stores, or
other similar resources. Because the concurrent processes may share resources and data, the
concurrent processes may rely on timing to ensure that the proper data is accessible to each of
the concurrent processes in the program. However, if the timing is improper, the program
may yield undesirable results.

[8615] To remedy this issue, a developer may generate, via aser input, a test program
for the target program to ensure that known race conditions within the target program are
tested on each execution of the target program. This test or scheduling program, which may
comprise code written in a separate language from the target program, identifies states of
interest within the target program, and manages the execution of the concurrent processes in
the target program based on states of interest. For instance, when a particular concurrent
process reaches a state of interest, the test program may pause the particular concurrent
process, while operations by other concurrent processes continue. By enforcing the order of
operation and state rules, the developer may ensure that a race condition occurs in the target
program and may determine the effect of the race condition on the operation of the target
program. In particular, the test program may ensure that a race condition is repeatable for the
target program for testing and development.

[6G16] Referring now to Figure 1, Figure 1 illustraies an operational scenario 100 of
executing a test program with a target program according {o one implementation.

Operational scenario 100 includes concurrent processes 110-112, which are representative of
concurrent processes for a target program, and further includes test process 115, which is
representative of a process for a test or scheduling program. The target program may be
written in C, C++, C#, Java, or some other similar programming language. The test program

3

WO 2016/178764 PCT/US2016/025978

may be written in the same programming language as the target program, or may be written
in a different programming language, including a language dedicated to providing state rules
for race conditions. Although described as separate programs, in some implementations, it
should be understood that that test program might be implemented as a distinet test process
within the target program.

8017} As described herein, programimers and developers may identify possible race
conditions within a target program, and require a method of duplicating the race conditions
for testing purposes. To provide this duplication functionality, the programmer may develop
a test program that executes in parallel with the target program to ensure that the race
conditions occur diring each execution of the target program. This test program may include
order of operation rules for each of the concurrent processes in the target program. In some
implementations, states of interest may be defined within each of the concurrent processes,
wherein the test program enforces particular operations at the states of interest. Accordingly,
the test program may cause various concurrent processes in the target program to pause,
continue, delay, or implement soime other operational function based on the current state,
{6618} In the present example, test process 115, which may execute as a separate test
thread on a computing system, executes in paraliel with concurrent processes 110-112.
Concurrent processes 110-112 are representative of processes of a target program, which
share processing resources such as data and variables, but execute independently of one
another in a processing system. Accordingly, concurrent process 110 may use at leasta
subset of the same variables as concurrent process 112, although the concurrent processes
operate independently of each other on the processing system. Becanse cach of the
concurrent processes may share variables or other processing data, race conditions may occur
when one concurrent process does not complete an operation on the data before a second
concurrent process. Consequently, any results generated during the execution of the program
may be undesired when the wrong data is used.

8619} As illastrated in Figure 1, state 130 is defined by a developer of the target
program as a state of interest within concurrent processes 110-112. This state of interest may
be defined in cach process of concurrent processes 110-112 using a function call, an arbitrary
state flag, or some other state identifier in each of the processes. Onee state 130 is defined
for each process of concurrent processes 110-112, test process 115 may implement order of
operation rules for concurrent processes 110-112 based on state rules and the state identifiers
for state 130, In pasticular, test process 115 is used to pause concurrent processes 110-111

when they reach state 130, allowing concurrent process 112 to also reach state 130 before

4

WO 2016/178764 PCT/US2016/025978

continuing the operation of the concurrent processes. For example, upon initiation of
concurrent processes 110-112, concurrent processes 110-111 may reach state 130 within first
time pertod 120, while concurrent process 112 fails to reach state 130 within the first time
period. However, the developer of the program may require concurrent processes 110-112 1o
all reach state 130 to ensure that a race condition occurs. Accordingly, rather than permitting
concurrent processes 110-111 1o continue execution, the concurrent processes may be held
using test process 115 until all of the concurrent processes 110-112 reach state 130, By
implementing order of operation rules with the test program, race conditions may be forced
withowut relying a on a particular set of data or input valaes.

[6628] To further demonstrate the use of a test program in conjunction with a target
program to force the occurrence of race conditions, Figure 2 is provided. Figure 2 illustrates
a method 200 of operating a computing system to test race conditions of a target program
according to one implementation. As described in Figure 1, a developer may identify one or
more race conditions that exist within a target program, and generate a test or scheduler
program 1o be executed concurrently with the target program to force the occurrence of the
race conditions. Onee the scheduler program is generated, a computing system may execute
the test or scheduler program, wherein the scheduler program comprises order of operation
rules for the target program based on race conditions in the target program (201). The order
of operation rules may comprise state rules corresponding fo states of interest identified
within the target program. For example, based on the states of interest identified in
concurrent processes of the target program, the state rules may direct each of the concurrent
processes to be paused, continued, delaved for a period of time, or some other similar action
o enforce a desired order of operation for the concurrent processes.

(8621} In addition to executing the scheduler program, the method also initiates
execution of the target program, wherein the target program comprises one or more
concurrent processes {202). Once the target program and the scheduler program are initiated,
gach concurrent process of the target program is executed based on the order of operation
rules for the target program (203). In some implementations, states of interest may be
detined to ensure that the concurrent processes are executed in a manner that forces a race
condition to occur. For example, to force a race condition, a first concurrent process may be
required to reach a first state before a second concarrent process reaches a second state,
Accordingly, the order of operation rules in the scheduler program may pause the second
concurrent process, enabling the first concurrent process to reach the first state. Once the
first concurrent process reaches the first state, the second concurrent process may continge

5

WO 2016/178764 PCT/US2016/025978

until it reaches the second state. By implementing a scheduler program, the developer of the
application may ensure that the identified race condition occurs on each execution of the
target application.

[0822] Referring to Figure 1 as an example, the race condition requires all of
concurrent processes 110-112 {o reach the same state before the program is allowed to
continue operation. As a result, although concurrent processes 110-111 reach state 130
before concurrent process 112, the concurrent processes are paused or held until concurrent
process 112 reaches the same state. By forcing specific order of operations for cach of the
concurrent processes, race conditions are no longer reliant on input data and variables within
the target program. This allows a developer to readily replicate a race condition, without
requiring a particular set of input conditions.

16623) Although illustrated in Figure 1 with three concurrent processes, it should be
understood that any number of concurrent processes might execute as part of the target
program. For example, in the case of a single concurrent process, wherein multiple
operations within the process may share data and other resources, the single concurrent
process may execute reads or writes out of order cansing a race condition to oceur,
Accordingly, a developer may define states within the target program, and implement a test
program that ensures specific read and write operations within the concurrent process to force
the race condition.

(8624} Referring now to Figure 3, Figure 3 illustrates an operational scenario 300 of
executing a test program with a farget program according to one implementation.
Operational scenario 300 includes target program 310, test program 320, processing system
330, and behavior 340. Target program 310 comprises a program written in any
programming language to perform a desired operation, such as C, C++, Java, or some other
programming language. Target program 310 includes concurrent processes 311-313, which
together provide the operation for target program 310. Test program 320 comprises a
program to enforce order of operation rules for target program 316, and may be written in the
same language as target program 310, or in a separate language configared for enforcing
states in programs with concurrent processes. Processing system 330 may comprise one or
more microprocessors and other circuitry capable of compiling and execuling target program
310 in parallel with test program 320 to generate behavior 340. Behavior 340 may inclade
visual outputs, processing behaviors, storage behaviors, or any other behavior in relation fo

target program 310 and test program 320, Although programs in the present example, in

WO 2016/178764 PCT/US2016/025978

some implementations, it should be understood that that test program may be implemented as
a distinct test process within the target program.

[86625] In operation, target program 310 is created to perform a particular operation,
but may include one or more race conditions that, when encountered, generate undesirable
behavior for target program 310, To assist in eliminating the race conditions and to monitor
the effectivencss of changes in the code of target program 310, a developer of target program
310 may generate test program 320 that enforces order of operation procedures on target
program 310. In particular, when test process 321 is executed by processing system 330, test
process 321 may control the operational states of concurrent processes 311-313,

186626] In some examples, the user may define specific states within target program
310 that are of particular interest to the administrator. These states may be defined using
flags, function calls, and the like within the concurrent processes to ensure the occurrence of
a race condition. For example, test process 321 may be used to ensure that concurrent
processes 311-313 wait for one another at a predefined state in the processing instructions of
concurrent processes 311-313. Once all three of the concurrent processes reach the defined
state of interest in the processing instructions, test process 321 may permit one or more of the
concurrent processes to continue execution, ensuring that a race condition occurs.

16627] in some implementations, a developer may use a race detection fool, such as
ThreadSanitizer, to determine where race conditions occur within target program 310. Based
on the results of the race detection tool, the developer may generate test program 320 to force
the race conditions to occur during each execution of the application. This forcing of the race
conditions allows the developer to test changes in the target program and ensure that the race
conditions are eliminated before the program is deployed.

[60328] In some examples, the administrator may define the states manually within the
target program by using function calls or other similar atiributes to identify states of interest
in each of the concurrent processes. These function calls, placed within the target
application, may be active when test application is initiated, but may provide no operation
{(no-op) in the target program when the test program is inactive. In some implementations,
the test program may be called from within the target program during execution.
Accordingly, if the target program does not call the test program during execution, any state
identifiers within the processing mmstructions of the target program will be bypassed as no-
ops.

16629] As illustrated in Figure 3, processing system 330 generates behavior 340, This
behavior may include information generated by target program 310, as well as information

7

WO 2016/178764 PCT/US2016/025978

for test program 320. For example, test program 320 may cause a panic or other flags to
occur when undesired actions occur within target program 318. This may occur when a
concurrent process reaches a siate at an undesired time, if the concurrent process never
reaches a particular state, or some other issue that might be flagged by test program 320. In
gither example, the developer may be able to identify undesirable resulis that occur in
response to race conditions within the application. Once the results of the condition are
identified, the developer may atiempt to fix the code in target program, and execute the test
and target programs again to determing if the issue is resolved.

[8G3G] Figure 4 illustrates an overview 400 of applying a test program 1o a target
program according to one implementation. Overview 400 includes target program 410, test
program 420, and behavior 440. Target program 410 includes concurrent processes 411-413,
of which parallel processing threads are one example. Concurrent processes 411-413 may
share one or more resources, such as variables or data structures, but execute independently
of another on a processing system, Test program 420 includes test thread 421, which s used
to monitor target program 410, and enforce developer-defined order of operation rules on
target program 410.

16631} In operation, a developer may identify one or more race conditions that exist
within target program 410. These race conditions may be based on user knowledge of the
processing instructions in target program 410, or may be defined by executing a race
condition detector, such as ThreadSanitizer. Once the race conditions are determined, test
program 420 may be generated based on the identified race conditions. In particular, test
program 420 may be used to define order of operation procedures for farget program 410,
The order of operation procedures may comprise state rules or definitions for each of
concurrent processes 411-413. For example, a state rule for target program 410 may include
ensuring that concurrent process 411 holds execution at a predefined point in the code unti}
concurrent processes 412-413 reach other predefined points in the code. Once the concurrent
processes reach the predefined points, concurrent process 411 may continue its normal
operation.

16632] By managing the operation of each of the individual concurrent processes of
the application, the developer may ensure that the necessary conditions are present for a race
condition to oceur. Accordingly, rather than relying on specific variables to force the race
condition, the developer may implement delays or other similar features within the program
to ensure that the race condition cccurs each time the program is executed. The developer

may then monitor behavior 440 to determine the possible issues associated with the race

8

WO 2016/178764 PCT/US2016/025978

conditions. For example, results may be inaccurate because a variable was not received on
time, or the program may hang as a result of the order of gperations, which is undesirable for
the developer of the program. Once the behavior is determined for the race condition
situations, the developer may modify the code of target program 410 and reapply test
program 420 to concurrent processes 411-413 to determine if the issue 1s eliminated.

[6033] Referring now to Figure 5, Figure 5 illustrates an operational scenario 500 of
implementing a test program to test race conditions on a target program according to one
implementation. Operational scenario 500 includes concurrent processes 510-512, test
process 515, time line 517, and state 530, Concurrent processes 510-512 are representative
of concurrent processes for a target program. Test process 513 is representative of a process
used for a test or scheduling program that can be processed concurrently with the target
program to enforce developer-defined order of operation rules. Although described asa
separate program for some examples, in some implementations, test process 5185 may reside
as a testing process within the target program.

[6G34] As described herein, programs may include multiple concurrent processes to
more efficiently process the necessary data for the application. These concurrent processes
share one or more resources, but operate independently of one another in the processing
system to provide the desired operation. For example, the concurrent processes may share
one or more variables, or require one concurrent process to retrieve a particular data object
before it can be processed by another concurrent process in the program. Here, concurrent
processes 510-512 are included to provide the desired operation of the developer, but may
include one or more race conditions that yield undesirable behavior. To remedy the race
conditions that exist within the target program and corresponding concurrent processes 510-
512, the developer may generate a test program that can be executed concurrently with the
target progrant.

18035] In particular, to define where the race conditions are in the target program, the
developer may use their knowledge of the program to identify where, in the processing
mstractions for each of the concurrent processes, race conditions could occur. In addition to
or in place of the user identified race condition locations, a race condition identifying tool,
such as ThreadSanitizer, Microsoft CHESS, or some other similar tool may be executed on
the program to determine the locations of race conditions within the processing instructions.
Once the race conditions are wdentified, the developer may provide user input 1o generate a
test or scheduling program that ensures one or more of the race conditions occur when the
application is executed. This test program may include state rules for each concurrent

9

WO 2016/178764 PCT/US2016/025978

process that is part of the target application, wherein the rules include pausing certain
concurrent processes, continuing certain concurrent processes, initiating certain actions in
concurrent processes, delaying certain concurrent processes, or any other similar action based
on the state of the concurrent processes in the program. For example, to force a race
condition in a program, state identifiers may be defined within each of the concurrent
processes of the program. These state identifiers may be used to define states, such as state
530, and may comprise function calls, conumands, or some other flag within the processing
mstructions of the concurrent process. Once defined, state rules with the test process may
manage the order of operation of each of the concurrent processes based on the defined state
identifiers and the state rules.
16036} Referring still to Figure §, concurrent process 510 and concurrent process 511
are contigured by test process 515 to wait until they both have reached state 530. Once
concurrent processes 510 and 511 reach state 5330, they are allowed to continue execution.
Meanwhile, the operation of concurrent process 512 is not dependent on the states of
concurrent processes 510-511, and continues operation independently of concurrent
processes 510-511 and state 530. To define state 530, the developer may flag or identify a
spectfic point in each concurrent process and associale the point with state 530. For example,
state 530 may be defined for concurrent process 510, when the execution of concurrent
process 510 reaches a particular function call. Similarly, state 530 may be defined for
concurrent process 511 when the execution of concurrent process S11 reaches a separate
function call. Pseudocode to implement the test program and test process 515 is illustrated in
the example below.
18637} when staie 530

concurrent process S1{: wait

concurrent process S11: wait

concurrent process 512: continue

end

[60G38] Specifically, the code described above defines that concurrent process 510 and
concurrent process S11 must wait until the other has reached state 530. Once both have
reached state 530, concurrent processes 510-511 may be permitted to continue execution.
Here, although concurrent process 510 reaches state 530 in first time period 520, concurrent

process 510 must wait a second time period 521 before it can continue execution.

10

WO 2016/178764 PCT/US2016/025978

[6G39] Although the example of Figure 5, includes a single state of interest for the
target program it should be understood that the test program might define any namber of
states of interest. As a result, even if the program included a plurality of race conditions,
each of the conditions may be tested by defining a plurality of state conditions that force the
race conditions to occur independent of the variables input for the program. Further, despite
being iltustrated in Figure 5 with three concurrent processes, it should be understood that any
number of concurrent processes might execute as part of the target program. For example, in
the case of a single concurrent process, wherein multiple operations within the process may
share data and other resources, the single concurrent process may execute reads or writes out
of order causing a race condition to occur. Accordingly, a developer may define states within
the target program, and implement a test program that ensures specific read and write
operations within the concurrent process o force the race condition

(8061} Turning to Figure 6, Figure 6 illustrates a computing system 600 to implement
a test program for race conditions on a target program according to one implementation.
Computing system 600 is representative of a computing sysiem that may be employed in any
computing apparatus, system, or device, or collections thereeof, 1o suitably execute target
programs and related concurrent processes, as well as scheduling test programs and related
concurrent processes described herein. Computing systern 600 comprises conununication
interface 601, user interface 602, and processing system: 603. Processing system 603 is
communicatively linked to communication interface 601 and user interface 602. Processing
system 603 includes processing circuitry 605 and memory device 606 that stores operating
software 607.

[8662] Communication interface 601 comprises components that communicate over
communication links, such as network cards, ports, radio frequency (R¥) transceivers,
processing circuitry and software, or some other communication devices. Communication
interface 601 may be configured to communicate over metallic, wireless, or optical links,
Commumication interface 601 may be configured o use internet protoco! (IP}, Ethernet, time-
division multiplexing (TDM), optical networking, wireless protocols, communication
signaling, or some other communication format — including combinations thereof.

[8663] User interface 602 comprises componentis that interact with a user. User
mterface 602 may inchude a keyboard, display sereen, mouse, touch pad, or some other user
mput/output apparatus. User interface 602 may be omifted in some examples.

18040} Processing circuifry 605 comprises microprocessor and other circuitry that

retrieves and executes operating software 607 from memory device 636. Memory device 606

11

WO 2016/178764 PCT/US2016/025978

comprises a non-transitory storage medium, such as a disk drive, flash drive, data storage
circuitry, or some other memory apparatus, but in no case is the storage medium a propagated
signal. Operating software 607 comprises computer programs, firmware, or some other form
of machine-readable processing instructions. Operating software 607 includes target program
608 and test program 6039, Operating softiware 607 may further include an operating system,
utilities, drivers, network interfaces, applications, or some other type of software. When
executed by circuitry 6035, operating sottware 607 directs processing system 603 {o operaie
computing system 600 as described herein,

(8041} In one implementation, target program 608 comprises a program that includes
one or more race conditions that are undesirable for a developer. These race conditions occur
when concurrent processes for target program 608 require a proper sequence to access data
and perform the desired operation for the developer. For example, a first concurrent process
for target program 608 executing on processing system 633 may require an operation on a
data object before it is provided to a second concurrent process for target program 608
executing on processing system 603, However, for a variety of different reasons, the second
concurrent process may require the data object before it has been operated on by the first
concurrent process. These reasons may include the second concurrent process executing
faster than expected by the developer, the first concurrent process executing slower than
expected by the developer, or any other race inducing reason. Accordingly, target program
608 may not perform the desired operation.

[6042] In some examples, the developer may desire to guarantee that the race
conditions occur each time that the targel program is executed to assist the developer in
eliminating race conditions from the code of target application 6(8. To identify the locations
of race conditions, the developer may use experience or knowledge of the code to flag
potential race conditions in target program 608, or may use a race condition identifying
process to tlag locations of possible races within the code of target program 608. Once the
race conditions are determined within the code of target program 608, the developer may
generate test program 609, which may be in a separate programming language than target
program 608. Test program 609 includes order of operation rules for target program 608 that
ensure that particular concurrent process operations oceur at desired times to force the
occurrence of the race conditions.

[60643] In particular, the developer may define states of interest within concurrent
processes of target program 608 that are relevant to the race conditions. These states may be

used to ensure a particelar order of events occurs for the various concarrent processes that

12

WO 2016/178764 PCT/US2016/025978

comprise target program 608. For example, the states could be used to ensure that a first
concurrent process executes a first portion of code before a second concurrent process
executes a second portion of code. In addition to the state identifiers within target program
608, test program 609 is used to define state rules for the state identifiers within target
program 608.

[8044] For example, a plorality of state identifiers may be defined within the
processing instructions of target program 608 and the corresponding concurrent processes.
Using the state identifiers, state rules for each concurrent process of target program 608 may
be defined to provide a desired order of operations. For instance, a developer may desire to
have all concurrent processes of target program 608 reach a certain state before the
concurent processes continue execution.

[6045] Once test program 609 is generated and the states are identified in target
program 608, processing system 603 may initiate execution of target program 608 and test
program 609, Upon inifiating execution of target program 608 and test program 609, target
program 608 executes based on the order of operation rules defined in test program 609,
[6046] In some implemeniations, to initiate test program 609, a call may be placed in
target program 608 for test program 609. Once called, target program 608 will pause while a
thread is initiated for the test program. Once the thread is initiated, test program 609 may
execute in parallel with target program 608, implementing the requested order of operations
on each of the concurrent processes of target program 608. In some examples, when the call
is not requested from target program 608, any code that was included in target program 608
to define states of the various concurrent processes may be treated as “no-ops,” allowing
execution of target program 608 {o continoe without interference from the test program.
180347} The included descriptions and figures depict specific implementations to teach
those skilled in the art how to make and use the best mode. For the purpose of teaching
inventive principles, some conventional aspects have been simplified or omitted. Those
skilled in the art will appreciate variations from these implementations that fall within the
scope of the invention. Those skilled in the art will also appreciate that the features deseribed
above can be combined in various ways to form muliiple implementations. As a result, the
imvention is not limited o the specific implementations described above, but only by the

claims and their equivalents.

13

WO 2016/178764 PCT/US2016/025978

CLAIMS
What is claimed is:
1. A method of operating 2 computing system to test race conditions in a target program,
the method comprising:

executing a scheduler program, the scheduler program comprising order of operation
rules for the target program based on the race conditions in the target program;

initiating execution of the target program, wherein the target program comprises one
or more concurrent processes; and

executing each concurrent process in the one or more concurrent processes based on

the order of operation rules for the target program.

2. The method of claim 1 wherein the order of operation rules for the target program

comprises state rules for the one or more concurrent processes.

3. The method of claim 2, wherein the target program further comprises state identifiers
for the one or more concurrent processes, and wherein executing each concurrent process in
the one or more concurrent processes based on the order of operation rules for the target
program comprises executing each concurrent process in the one or more concurrent

processes based on the state rules and the state identifiers.

4, The method of claim 2 wheren the state rules for the one or more concurrent

processes comprise rules to hold, continue, or delay concurrent processes.

5. The method of claim 1 further comprising receiving user input to generate the
scheduler program.
6. The method of claim 1 wherein executing the scheduler program comprises initiating

a thread for the scheduler program.

7. The method of claim 1 wherein executing the scheduler program comprises executing

the scheduler program in response to initiating the execution of the target program.

14

WO 2016/178764 PCT/US2016/025978

g. The method of claim 7 wherein executing the scheduler program in response to
mitiating the execution of the target program comprises:
identifying a call from the target program to execute the scheduler program; and

in response to the call, executing the scheduler program.

9. The method of claim 8 farther comprising:
in response to identifying the call, holding execution of the target program; and
in response to executing the scheduler program, continuing execution of the scheduler

programn,

10. An apparatus to perform testing of race conditions in a target program, the apparatus
comprising:
one or more computer readable media; and
processing instructions stored on the one or more computer readable media that, when
executed by a processing system, direct the processing sysiem to:
execute a scheduler program, the scheduler program comprising order of
operation rules for the target program based on the race conditions in the target program;
nitiate execution of the target program, wherein the target program comprises
one O more concurrent processes; and
execute each concurrent process in the one or more concurrent processes

based on the order of operation rules for the target program.

11. The apparatus of claim 10, wherein the order of operation rules for the target program

comprises state rules for the one or more concurrent processes.

12. The apparatus of claim 11, wherein the target program further comprises state
identifiers for the one or more concurrent processes, and wherein the processing instructions
to execute each concurrent process in the one or more concurrent processes based on the
order of operation rules for the target program direct the computing system to execute each
concurrent process in the one or more concurrent processes based on the state roles and the

state identifiers.

13, The apparatus of claim 11, wherein the state rules for the one or more concurrent

processes comprise rules to hold, continue, or delay concurrent processes.

15

WO 2016/178764 PCT/US2016/025978

14. The apparatus of claim 10, wherein the processing instructions further direct the

computing system to receive user input to generate the scheduler program.

15. The apparatus of claim 10, wherein the processing instructions to execute the

scheduler program direct the processing system to inttiate a thread for the scheduler program.

16

PCT/US2016/025978

WO 2016/178764

oo ¥

L
i
e
o«

lllllllllllllllllllll
||||||||
prs

0Zi
pouad
SUHI IS

Gl SS300%d
1S3l

L JaNSid

.
o

OET opeis™,
O} BNURUCD

ZLE §83004d
LNIHHNAONCD

...
.
Se,
.
S,

IZT pouad
BLL] pUCISS

oct
pousd
SLMY 184

11T 883004d
INTHENONOD

~—.
.
..
-
~.
-

0zi
pousad
DU Js4

O1F $8320Yd
ANZEHNONOD

0zZi
poted
SUHT jS

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/025978

WO 2016/178764

ooz ¥

¢ FHNOId

WY RO
L3DHVL FHL HOd ST NOLLYXMZJHO A0 A3GHO
AHL NO 04574 S388300Hd INFHHNONGOD FHOW HO
ANC FHL NI 8S300Hd LNJdHNONOD HOVE 34Nn03X3

- 208

ﬁ

S388300dHd INIHHNONOS FHOW €O
ANO STISRIGNOD NVHDOH 1396V L SHL NiZxH3aHW
WYNMDOMd LIDMVYL V 40 NOILNDIXT JLVILIN

|- 202

1

WVHOOMd 13DV JHL 04 SN NOLLVYHEdO
40 HICHO SASKHSNOD WVHOOHd 43 1NA3HOS
AHL NIFEIHW 'NYHO0Md HFTNA3HOS V ILN03IXE

- i8¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/025978

WO 2016/178764

oFe
HOINYHIE

i TIE $5300Nd |
A < SIS I7IE | ss300Md | "
Lssmcomaasmr i L5l paicas e EZE..SSE0O0M
- ONISSIOONd { TIT ssIooMd |

WYNDOH 1831 S

oie
WYHDOHd LFOUVL

SUBSTITUTE SHEET (RULE 26)

oog ¥

PCT/US2016/025978

WO 2016/178764

¥ JeNoid

0177

HOIAYHIY

KT N

iy
SS8AD0Ud INFHHNONQOD

| 27

SSHE00Hd

oy

WYAHOO0xd £S31L

4573
SE8A00Hd INFHHNONOD

Al/lv

ooy ¥

1i¥
SEE00UHd INZFHHNONOD

[5157%
WYHOOHA 1J9DdVL

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/025978

WO 2016/178764

S FHNSId

A

LLg

$S80040 10 Hem

cscccncasscsnansncasadp

128
pouad

0ES
21838 0] posoosd

0zs
pousad

DU PUCOSS

DU 1S4

OES
4ivis

oz2%g
poLad
DL 154

OLs

$53004d

715 GiG 455 1S
INET IWNLL S8300Hd S81300Hd S543004Hd
1S3 INIHENONOD INTHHEOONOD INIHLENONOD

oos Y

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/025978

WO 2016/178764

9 JHNODId

009 WILSAS ONILNGWNOD

909 ADIAZCA AMOWIW
zZ09
609 809 ADVAMILNI
WY HOOM WYHDON H3SN
1831 LIONVL
00 BYYMLAOS
109
S09
FOVANETALNI
AHLINOMID ANOD
£09 WILSAS DNISSIDOH

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/25978

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOSF 9/44 (2016.01)
CPC - GO6F 11/3466; GOGF 11/3688; GOGF 2201/865

According to International Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

IPC(8): GOGF 9/44 (2016.01)
CPC: GO6F 11/3466; GOBF 11/3688; GOGF 2201/865

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 717/131; 717/127; 717/133 (Keyword limited; terms below); IPC(8): GO6F 9/44 (2016.01) (Keyword limited; terms below); CPC:

GO6F 11/3466, GO6F 11/3688; GO6F 2201/865; GO6F 11/3664; GO6F 11/3409 (Keyword limited; terms below)

PatBase; Google (Scholar, Patents, Web)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Terms used: "race condition" test function application execution thread scheduler "order of operation” rule

C. DOCUMENTS CONSIDERED TO RE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No,
X US 2008/0098207 A1 (REID et al.), 24 April 2008 (24.04.2008), entire document, especially 1-15
Abstract; para [0017], [0051]), [0156], [0319], [0385]-[0393], [0411}-[0412], [0415], {0418], [0478),
[0487]
A US 2007/0245312 A1 (QADEER et al.), 18 October 2007 (18.10.2007), entire document 1-15
US 2008/0071853 A1 (MOSIER et al.), 20 March 2008 (20.03.2008), entire document 1-16
A US 2013/0007415 A1 (BABAYAN el al.), 03 January 2013 (03.01.2013), entire document 1-15

D Further documecnts arc listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing datc but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

12 June 2016

Date of mailing of the international search report

15JUL 2016

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: §71-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report

