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METHOD FOR PREDICTING BATTERY 
LIFE 

FIELD 

[ 0001 ] The present application relates to methods per 
formed in conventional motor vehicles , hybrid vehicles , and 
electric vehicles for estimating the remaining life of a 
battery that is commonly implemented to start the vehicle 
and support electrical loads when the ignition is turned off . 
Such a battery is commonly referred to as a Starting 
Lighting - And - Ignition - Battery ( or SLI - Battery ) in the litera 
ture . The basic method described herein may also be applied 
to propulsion batteries used in hybridized or electric vehicles 
based on Li - Ion or other technologies . 

BACKGROUND AND SUMMARY 
[ 0002 ] Vehicle engines include an energy storage device , 
such as a lead - acid battery , for powering a starter motor as 
well as to support electrical load transients . Such a battery 
is commonly referred to as an SLI - battery in the literature . 
A propulsion battery may also be included in a hybrid 
electric vehicle to power an electric motor coupled to the 
driveline . Batteries degrade over time and have to be ser 
viced or replaced . The rate of degradation of a battery may 
be affected by multiple parameters , such as the rate of 
battery usage , the age of the battery , temperature conditions , 
the nature of the battery , etc . 
[ 0003 ] Various approaches have been developed to predict 
the state of health of a vehicle system battery . One example 
approach is shown by Uchida in U . S . Pat . No . 8 , 676 , 4825 . 
Therein the health of the battery of a hybrid vehicle is 
predicted based on a decrease in the fuel economy of the 
vehicle . Another example approach is shown by Kozlowski 
et al . in US 20030184307 . Therein the state of health of a 
system battery is predicted based on the frequency of battery 
charging and discharging and its effects on battery param 
eters such as impedance , electrolyte state , etc . The battery 
health is then indicated in terms of a number of remaining 
useful cycles . 
[ 0004 ] However the inventors herein have identified vari 
ous issues with such approaches . As one example , there may 
be various mechanisms that affect a battery ' s health , some of 
which are interdependent , while others are independent of 
each other . The example approaches discussed above may 
not account for different battery characteristics that influence 
the battery state of health being affected at different rates 
based on vehicle operating conditions . For example , a 
battery ' s internal resistance may be affected more signifi 
cantly during conditions that increase battery corrosion 
while a battery ' s overall capacity may be affected more 
significantly during conditions that increase battery sulfation 
or loss of active mass . Further , the effect of some of these 
conditions may be reversible . For example , the level of 
battery sulfation may increase or decrease . Furthermore , 
some of the characteristics may be significantly affected by 
temperature while others are temperature independent . If the 
battery end of life is predicted without accounting for all 
these effects , a functional battery may be required to be 
serviced earlier than expected . Alternatively , a degraded 
battery may not be sent for servicing at the right time . In 
either case , driver satisfaction may reduce due to the battery 
not starting and a resulting loss of mobility , degraded 

electrical functionality affecting driving performance ( such 
as loss of electric assistance to power steering or electri 
cally - boosted brakes ) , etc . 
[ 0005 ] The issues may be further exacerbated in an 
autonomous vehicle wherein the battery ( e . g . , a 12V SLI 
battery ) supports essential operating systems and safety 
critical systems in some modes of operation . Therein , the 
autonomous functions of the vehicle may be disabled or 
curtailed if the battery is defective or nearing its end of life . 
Disabling autonomous functions abruptly may cause cus 
tomer dissatisfaction and inconvenience , especially if the 
vehicle cannot be driven manually . 
[ 0006 ] In one example , some of the above issues may be 
addressed by a method for a battery coupled to a vehicle , 
comprising : predicting a state of degradation of a vehicle of 
a plurality of battery metrics , derived from sensed vehicle 
operating parameters , relative to corresponding thresholds , 
the thresholds determined based on past driving history data 
including the past history of each of the plurality of battery 
metrics ; and converting the predicted state of degradation 
into a remaining time or duration estimate based on a rate of 
convergence towards a threshold defining the end of life for 
display to a vehicle operator . In this way , the remaining 
useful life of a vehicle battery may be more accurately 
predicted and the information may be conveyed to the 
vehicle operator in a timely manner . 
[ 0007 ] As an example , a vehicle system may include a 
battery whose end of life is predicted using statistical and 
experimental methods . Based on the nature of the battery 
( e . g . , based on the chemical composition of the battery ) , a 
plurality of battery attributes ( such as a subset of all the 
battery attributes ) that may be monitored to measure battery 
degradation may be identified . Further , methods for mea 
suring the selected battery attributes , online , during vehicle 
operation , may be determined , including identifying the 
required battery sensors , sampling frequency , and algo 
rithms required to calculate signals or metrics . For example , 
in the case of a lead - acid battery , at least a battery internal 
resistance and a battery capacity may be monitored , the 
battery internal resistance measured based on changes in 
battery voltage and current during vehicle operation , and the 
battery capacity measured based on internal battery resis 
tance at low states of charge and or changes in the minimum 
and maximum achievable open circuit voltage ( OCV ) com 
puted when the battery is completely discharged and fully 
charged . The measured characteristics may be normalized to 
temperature and battery state of charge ( SOC ) to account for 
the different effect of temperature on each battery charac 
teristic at a given state of charge . Thresholds may then be 
defined , off - line , for each of the selected battery attributes 
based on statistical parameterization methods , past history 
of the given battery , vehicle driving history , battery service 
history , fleet data , etc . The thresholds may be temperature 
independent calibratable thresholds that are also normalized 
to a predefined temperature and state of charge ( e . g . , nor 
malized to 25° C . and 100 % SOC ) . Based on a speed of 
convergence of the measured battery attributes towards their 
respective thresholds , an end of life of the battery may be 
predicted . The remaining battery life may then be displayed 
to the vehicle operator as a remaining number of miles of 
vehicle operation , a remaining number of vehicle starts , a 
remaining number of fuel tank refill events , etc . 
[ 0008 ] In this way , the remaining life of a vehicle battery 
may be accurately predicted without relying on computa 
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tionally intensive algorithms . By using data sensed on - board 
the vehicle , in association with vehicle and fleet driving 
statistics , the state of health of the battery may be calculated 
more accurately . For example , the internal resistance and 
capacitance of the battery may be better determined by 
accounting for temperature effects . The technical effect of 
defining thresholds for each battery characteristic based on 
statistical , machine - learning , and empirical methods , and 
estimating the battery end of life based on a trajectory of 
each battery characteristic towards the corresponding 
threshold is that the different mechanisms of battery degra 
dation may be accounted for . For example , battery degra 
dation due to corrosion effects may be accounted for differ 
ent from battery degradation due to sulfation effects , and an 
overall battery health may be more reliably computed . By 
converting the sensed state of health into an estimate of a 
remaining time or duration of vehicle operation before 
component servicing is required , a vehicle operator may be 
better notified of the condition of the component . As a result , 
timely component servicing may be ensured , improving 
vehicle performance . In addition , where the battery charac 
teristic is affected by operating driving behavior , the timely 
notification may enable the operator to adjust their driving 
behavior to extend the battery life . By predicting the remain 
ing life of a vehicle component via a recursive estimation of 
statistical features , the remaining life of the component may 
be predicted with less computation intensity , without com 
promising on the accuracy of prediction . This enables a 
margin to be provided that better ensures healthy operation 
of the component for the estimated remaining life . The 
prognostics feature may provide an early indication of the 
remaining life of the battery to help a customer plan for 
maintenance ahead of time and avoid component failure . In 
addition , the convenience of online estimation may be 
provided in an easy to implement package . 
[ 0009 ] It should be understood that the summary above is 
provided to introduce in simplified form a selection of 
concepts that are further described in the detailed descrip 
tion . It is not meant to identify key or essential features of 
the claimed subject matter , the scope of which is defined 
uniquely by the claims that follow the detailed description . 
Furthermore , the claimed subject matter is not limited to 
implementations that solve any disadvantages noted above 
or in any part of this disclosure . 

[ 0016 ] FIG . 6 depicts an example determination of a speed 
of convergence of a battery characteristic towards its thresh 
old . 
[ 0017 ] FIG . 7 shows a high level flow chart of an example 
method that may be used to update an EOL threshold based 
on vehicle performance metrics . 
[ 0018 ] FIG . 8 shows example intermediate EOL thresh 
olds that may be implemented during a battery end of life 
prediction . 
[ 0019 ] FIG . 9 shows a high level flow chart of an example 
method that may be used to update provide notifications to 
a vehicle operator and limit autonomous vehicle functions as 
intermediate EOL thresholds are crossed . 
[ 0020 ] FIG . 10 shows example adjustments to an EOL 
threshold for a battery capacity during battery end of life 
prediction . 
10021 ] FIG . 11 shows a high level flow chart of an 
example method that may be used to update a battery charge 
voltage responsive to an intermediate EOL threshold being 
crossed . 
[ 0022 ] FIG . 12 shows example prognostic - diagnostic 
architecture that may be used for data processing and 
threshold calculation . 
[ 0023 ] FIG . 13 shows an example communication strategy 
for a failing battery . 
[ 0024 ] FIG . 14 shows a generic communication strategy 
for a failing battery . 
0025 ] FIG . 15 shows an example mode limitation control 
strategy for autonomous vehicles . 
100261 FIG . 16 shows a control strategy for limiting an 
electrically actuated anti - roll control function of a vehicle 
using EOL - criteria of a battery . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0010 ] FIG . 1A schematically depicts an example embodi 
ment of a vehicular low - voltage electrical power supply . 
[ 0011 ] FIG . 1B shows an example embodiment of an 
electrical power supply system including a conventional 
12V - Based alternator with a single lead - acid battery and 
associated battery monitoring sensor . 
[ 0012 ] FIG . 2 shows an example end of life estimation 
profile for a vehicle battery . 
[ 0013 ] FIG . 3 shows a high level flowchart for performing 
prognostics and diagnostics of a vehicle battery using sensed 
data and statistical estimations . 
[ 0014 ] FIG . 4 shows a high level flow chart of an example 
method that may be used to predict the remaining life of a 
vehicle battery . 
[ 0015 ] FIG . 5 shows example adjustments to an EOL 
threshold for a battery resistance during battery end of life 
prediction . 

DETAILED DESCRIPTION 
[ 0027 ] The following description relates to systems and 
methods for predicting the remaining life of a battery of a 
vehicle system , such as the example vehicle system of FIG . 
1A including the battery architecture of FIG . 1B . An on 
board controller may be configured perform a control rou 
tine , such as the example routines of FIGS . 3 - 4 , to use 
statistical and measured data to predict the remaining life of 
a vehicle battery . The controller may compare estimated 
battery characteristics to corresponding thresholds , as shown 
at FIG . 2 . Further , the controller may estimate a speed of 
convergence of the estimated battery characteristic to the 
corresponding threshold , as shown at FIG . 6 , to predict the 
end of life of the battery . The thresholds may be calibrated 
based on data received from the given vehicle as well as 
other vehicle data , as explained at FIGS . 5 , 7 , 10 , and 12 . In 
addition , multiple intermediate thresholds preceding the 
EOL may be selected . Various notifications may be sent and 
control actions may be undertaken as each intermediate 
threshold is crossed , as explained at FIGS . 8 - 9 , 11 , and 
13 - 16 . In this way , regular battery servicing may be better 
ensured and battery warranty issues may be reduced . 
[ 0028 ] FIG . 1A depicts an example of a combustion cham 
ber or cylinder of internal combustion engine 10 . Engine 10 
may be coupled in a propulsion system for on - road travel , 
such as vehicle system 5 . In one example , vehicle system 5 
may be a hybrid electric vehicle system . 
[ 0029 ] Engine 10 may be controlled at least partially by a 
control system including controller 12 and by input from a 
vehicle operator 130 via an input device 132 . In this 
example , input device 132 includes an accelerator pedal and 
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a pedal position sensor 134 for generating a proportional 
pedal position signal PP . Cylinder ( herein also " combustion 
chamber " ) 14 of engine 10 may include combustion cham 
ber walls 136 with piston 138 positioned therein . Piston 138 
may be coupled to crankshaft 140 so that reciprocating 
motion of the piston is translated into rotational motion of 
the crankshaft . Crankshaft 140 may be coupled to at least 
one drive wheel of the passenger vehicle via a transmission 
system . Further , a starter motor ( not shown ) may be coupled 
to crankshaft 140 via a flywheel to enable a starting opera 
tion of engine 10 . 
[ 0030 ] Cylinder 14 can receive intake air via a series of 
intake air passages 142 , 144 , and 146 . Air received via 
intake air passage 142 may be filtered via air filter 135 
before the air moves into air passages 144 , 146 . Intake air 
passage 146 can communicate with other cylinders of engine 
10 in addition to cylinder 14 . In some examples , one or more 
of the intake passages may include a boosting device such as 
a turbocharger or a supercharger . For example , FIG . 1A 
shows engine 10 configured with a turbocharger including a 
compressor 174 arranged between intake passages 142 and 
144 , and an exhaust turbine 176 arranged along exhaust 
passage 148 . Compressor 174 may be at least partially 
powered by exhaust turbine 176 via a shaft 180 where the 
boosting device is configured as a turbocharger . However , in 
other examples , such as where engine 10 is provided with a 
supercharger , exhaust turbine 176 may be optionally omit 
ted , where compressor 174 may be powered by mechanical 
input from a motor or the engine . A throttle 162 including a 
throttle plate 164 may be provided along an intake passage 
of the engine for varying the flow rate and / or pressure of 
intake air provided to the engine cylinders . For example , 
throttle 162 may be positioned downstream of compressor 
174 as shown in FIG . 1A , or alternatively may be provided 
upstream of compressor 174 . 
[ 0031 ] Exhaust passage 148 can receive exhaust gases 
from other cylinders of engine 10 in addition to cylinder 14 . 
Exhaust gas sensor 128 is shown coupled to exhaust passage 
148 upstream of emission control device 178 . Sensor 128 
may be selected from among various suitable sensors for 
providing an indication of exhaust gas air / fuel ratio such as 
a linear oxygen sensor or UEGO ( universal or wide - range 
exhaust gas oxygen ) , a two - state oxygen sensor or EGO ( as 
depicted ) , a HEGO ( heated EGO ) , a NOX , HC , or CO 
sensor , for example . Emission control device 178 may be a 
three way catalyst ( TWC ) , NOx trap , various other emission 
control devices , or combinations thereof . 
[ 0032 ] Each cylinder of engine 10 may include one or 
more intake valves and one or more exhaust valves . For 
example , cylinder 14 is shown including at least one intake 
poppet valve 150 and at least one exhaust poppet valve 156 
located at an upper region of cylinder 14 . In some examples , 
each cylinder of engine 10 , including cylinder 14 , may 
include at least two intake poppet valves and at least two 
exhaust poppet valves located at an upper region of the 
cylinder . 
10033 ] Intake valve 150 may be controlled by controller 
12 via actuator 152 . Similarly , exhaust valve 156 may be 
controlled by controller 12 via actuator 154 . During some 
conditions , controller 12 may vary the signals provided to 
actuators 152 and 154 to control the opening and closing of 
the respective intake and exhaust valves . The position of 
intake valve 150 and exhaust valve 156 may be determined 
by respective valve position sensors ( not shown ) . The valve 

actuators may be of the electric valve actuation type or cam 
actuation type , or a combination thereof . The intake and 
exhaust valve timing may be controlled concurrently or any 
of a possibility of variable intake cam timing , variable 
exhaust cam timing , dual independent variable cam timing 
or fixed cam timing may be used . Each cam actuation system 
may include one or more cams and may utilize one or more 
of cam profile switching ( CPS ) , variable cam timing ( VCT ) , 
variable valve timing ( VVT ) and / or variable valve lift 
( VVL ) systems that may be operated by controller 12 to vary 
valve operation . For example , cylinder 14 may alternatively 
include an intake valve controlled via electric valve actua 
tion and an exhaust valve controlled via cam actuation 
including CPS and / or VCT . In other examples , the intake 
and exhaust valves may be controlled by a common valve 
actuator or actuation system , or a variable valve timing 
actuator or actuation system . 
( 0034 ) Cylinder 14 can have a compression ratio , which is 
the ratio of volumes when piston 138 is at bottom center to 
top center . In one example , the compression ratio is in the 
range of 9 : 1 to 10 : 1 . However , in some examples where 
different fuels are used , the compression ratio may be 
increased . This may happen , for example , when higher 
octane fuels or fuels with higher latent enthalpy of vapor 
ization are used . The compression ratio may also be 
increased if direct injection is used due to its effect on engine 
knock . 
[ 0035 ] In some examples , each cylinder of engine 10 may 
include a spark plug 192 for initiating combustion . Ignition 
system 190 can provide an ignition spark to combustion 
chamber 14 via spark plug 192 in response to spark advance 
signal SA from controller 12 , under select operating modes . 
However , in some embodiments , spark plug 192 may be 
omitted , such as where engine 10 may initiate combustion 
by auto - ignition or by injection of fuel as may be the case 
with some diesel engines . 
[ 0036 ] In some examples , each cylinder of engine 10 may 
be configured with one or more fuel injectors for providing 
fuel thereto . As a non - limiting example , cylinder 14 is 
shown including two fuel injectors 166 and 170 . Fuel 
injectors 166 and 170 may be configured to deliver fuel 
received from fuel system 8 . Fuel system 8 may include one 
or more fuel tanks , fuel pumps , and fuel rails . Fuel injector 
166 is shown coupled directly to cylinder 14 for injecting 
fuel directly therein in proportion to the pulse width of signal 
FPW - 1 received from controller 12 via electronic driver 168 . 
In this manner , fuel injector 166 provides what is known as 
direct injection ( hereafter referred to as “ DI ” ) of fuel into 
combustion cylinder 14 . While FIG . 1A shows injector 166 
positioned to one side of cylinder 14 , it may alternatively be 
located overhead of the piston , such as near the position of 
spark plug 192 . Such a position may improve mixing and 
combustion when operating the engine with an alcohol 
based fuel due to the lower volatility of some alcohol - based 
fuels . Alternatively , the injector may be located overhead 
and near the intake valve to improve mixing . Fuel may be 
delivered to fuel injector 166 from a fuel tank of fuel system 
8 via a high pressure fuel pump , and a fuel rail . Further , the 
fuel tank may have a pressure transducer providing a signal 
to controller 12 . 
[ 0037 ] Fuel injector 170 is shown arranged in intake 
passage 146 , rather than in cylinder 14 , in a configuration 
that provides what is known as port injection of fuel ( here 
after referred to as “ PFI ” ) into the intake port upstream of 
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cylinder 14 . Fuel injector 170 may inject fuel , received from 
fuel system 8 , in proportion to the pulse width of signal 
FPW - 2 received from controller 12 via electronic driver 171 . 
Note that a single driver 168 or 171 may be used for both 
fuel injection systems , or multiple drivers , for example 
driver 168 for fuel injector 166 and driver 171 for fuel 
injector 170 , may be used , as depicted . 
[ 0038 ] In an alternate example , each of fuel injectors 166 
and 170 may be configured as direct fuel injectors for 
injecting fuel directly into cylinder 14 . In still another 
example , each of fuel injectors 166 and 170 may be con 
figured as port fuel injectors for injecting fuel upstream of 
intake valve 150 . In yet other examples , cylinder 14 may 
include only a single fuel injector that is configured to 
receive different fuels from the fuel systems in varying 
relative amounts as a fuel mixture , and is further configured 
to inject this fuel mixture either directly into the cylinder as 
a direct fuel injector or upstream of the intake valves as a 
port fuel injector . As such , it should be appreciated that the 
fuel systems described herein should not be limited by the 
particular fuel injector configurations described herein by 
way of example . 
[ 0039 ] Fuel may be delivered by both injectors to the 
cylinder during a single cycle of the cylinder . For example , 
each injector may deliver a portion of a total fuel injection 
that is combusted in cylinder 14 . Further , the distribution 
and / or relative amount of fuel delivered from each injector 
may vary with operating conditions , such as engine load , 
knock , and exhaust temperature , such as described herein 
below . The port injected fuel may be delivered during an 
open intake valve event , closed intake valve event ( e . g . , 
substantially before the intake stroke ) , as well as during both 
open and closed intake valve operation . Similarly , directly 
injected fuel may be delivered during an intake stroke , as 
well as partly during a previous exhaust stroke , during the 
intake stroke , and partly during the compression stroke , for 
example . As such , even for a single combustion event , 
injected fuel may be injected at different timings from the 
port and direct injector . Furthermore , for a single combus 
tion event , multiple injections of the delivered fuel may be 
performed per cycle . The multiple injections may be per 
formed during the compression stroke , intake stroke , or any 
appropriate combination thereof . 
[ 0040 ] Fuel injectors 166 and 170 may have different 
characteristics . These include differences in size , for 
example , one injector may have a larger injection hole than 
the other . Other differences include , but are not limited to , 
different spray angles , different operating temperatures , dif 
ferent targeting , different injection timing , different spray 
characteristics , different locations etc . Moreover , depending 
on the distribution ratio of injected fuel among injectors 170 
and 166 , different effects may be achieved . 
[ 0041 ] Fuel tanks in fuel system 8 may hold fuels of 
different fuel types , such as fuels with different fuel qualities 
and different fuel compositions . The differences may include 
different alcohol content , different water content , different 
octane , different heats of vaporization , different fuel blends , 
and / or combinations thereof etc . One example of fuels with 
different heats of vaporization could include gasoline as a 
first fuel type with a lower heat of vaporization and ethanol 
as a second fuel type with a greater heat of vaporization . In 
another example , the engine may use gasoline as a first fuel 
type and an alcohol containing fuel blend such as E85 
( which is approximately 85 % ethanol and 15 % gasoline ) or 

M85 ( which is approximately 85 % methanol and 15 % 
gasoline ) as a second fuel type . Other feasible substances 
include water , methanol , a mixture of alcohol and water , a 
mixture of water and methanol , a mixture of alcohols , etc . 
[ 0042 ] In still another example , both fuels may be alcohol 
blends with varying alcohol composition wherein the first 
fuel type may be a gasoline alcohol blend with a lower 
concentration of alcohol , such as Eli ) ( which is approxi 
mately 10 % ethanol ) , while the second fuel type may be a 
gasoline alcohol blend with a greater concentration of alco 
hol , such as E85 ( which is approximately 85 % ethanol ) . 
Additionally , the first and second fuels may also differ in 
other fuel qualities such as a difference in temperature , 
viscosity , octane number , etc . Moreover , fuel characteristics 
of one or both fuel tanks may vary frequently , for example , 
due to day to day variations in tank refilling . 
[ 0043 ] Controller 12 is shown in FIG . 1A as a microcom 
puter , including microprocessor unit 106 , input / output ports 
108 , an electronic storage medium for executable programs 
and calibration values shown as non - transitory read only 
memory chip 110 in this particular example for storing 
executable instructions , random access memory 112 , keep 
alive memory 114 , and a data bus . Controller 12 may receive 
various signals from sensors coupled to engine 10 , in 
addition to those signals previously discussed , including 
measurement of inducted mass air flow ( MAF ) from mass 
air flow sensor 122 ; barometric pressure from BP sensor 
137 ; engine coolant temperature ( ECT ) from temperature 
sensor 116 coupled to cooling sleeve 118 ; a profile ignition 
pickup signal ( PIP ) from Hall effect sensor 120 ( or other 
type ) coupled to crankshaft 140 ; throttle position ( TP ) from 
a throttle position sensor ; and absolute manifold pressure 
signal ( MAP ) from sensor 124 . Engine speed signal , RPM , 
may be generated by controller 12 from signal PIP . Manifold 
pressure signal MAP from a manifold pressure sensor may 
be used to provide an indication of vacuum , or pressure , in 
the intake manifold . The controller 12 receives signals from 
the various sensors of FIG . 1A and employs the various 
actuators of FIG . 1A to adjust engine operation based on the 
received signals and instructions stored on a memory of the 
controller . For example , based on a pulse - width signal 
commanded by the controller to a driver coupled to the 
direct injector , a fuel pulse may be delivered from the direct 
injector into a corresponding cylinder . Example routines that 
may be executed by the controller are shown with reference 
to FIGS . 3 - 4 . 
[ 0044 ] As described above , FIG . 1A shows only one 
cylinder of a multi - cylinder engine . As such , each cylinder 
may similarly include its own set of intake / exhaust valves , 
fuel injector ( s ) , spark plug , etc . It will be appreciated that 
engine 10 may include any suitable number of cylinders , 
including 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 , or more cylinders . Further , 
each of these cylinders can include some or all of the various 
components described and depicted by FIG . 1A with refer 
ence to cylinder 14 . 
[ 0045 ] In some examples , vehicle 5 may be a hybrid 
vehicle with multiple sources of torque available to one or 
more vehicle wheels 55 . In other examples , vehicle 5 is a 
conventional vehicle with only an engine , or an electric 
vehicle with only electric machine ( s ) . In the example shown , 
vehicle 5 includes engine 10 and an electric machine 52 . 
Electric machine 52 may be a motor or a motor / generator . 
Crankshaft 140 of engine 10 and electric machine 52 are 
connected via a transmission 54 to vehicle wheels 55 when 
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one or more clutches 56 are engaged . In the depicted 
example , a first clutch 56 is provided between crankshaft 
140 and electric machine 52 , and a second clutch 56 is 
provided between electric machine 52 and transmission 54 . 
Controller 12 may send a signal to an actuator of each clutch 
56 to engage or disengage the clutch , so as to connect or 
disconnect crankshaft 140 from electric machine 52 and the 
components connected thereto , and / or connect or disconnect 
electric machine 52 from transmission 54 and the compo 
nents connected thereto . Transmission 54 may be a gearbox , 
a planetary gear system , or another type of transmission . The 
powertrain may be configured in various manners including 
as a parallel , a series , or a series - parallel hybrid vehicle . 
[ 0046 ] Electric machine 52 receives electrical power from 
a traction battery 58 to provide torque to vehicle wheels 55 . 
Electric machine 52 may also be operated as a generator to 
provide electrical power to charge battery 58 , for example 
during a braking operation . 
[ 0047 ] In some examples , a battery management system 
( BMS ) may be present on - board the vehicle , where the BMS 
is electrically and thermally coupled to the battery and 
communicates with the vehicle controller . The Battery 
Monitor Sensor ( BMS ) monitors and calculates the actual 
battery condition ( State of charge ( SOC ) , state of health 
( SOH ) and state of function ( SOF ) ) . It consists of hardware 
and software . The hardware includes a single chip solution 
to measure battery voltage , battery current and temperature . 
These inputs are used to calculate the actual battery state . 
The BMS learns the battery state of the connected battery 
over time and keeps the actual battery state in RAM and 
periodically saves the learned and adapted battery param 
eters to non - volatile memory ( NVM ) . 
[ 0048 ] Battery 58 may also be used for various engine 
operation related functions . For example , battery 58 may be 
coupled to a starter motor ( not shown ) that is used to crank 
the engine during an engine start . Battery 58 may be 
implemented with Li - Ion technology . The methods 
described herein for predicting end of life and the associated 
control and communication strategies may be adapted to 
propulsion batteries of this type and to chemistries other 
than those used in lead - acid batteries as well . A battery 
monitoring sensor ( BMS ) 184 may be coupled to battery 58 
for estimating one or more conditions associated with a state 
of degradation of the battery . Based on input from the BMS 
184 , controller 12 may calculate an inferred end of life of the 
battery , as elaborated at FIGS . 3 - 4 . 
0049 ] In an alternate embodiment , such as where the 
vehicle is a conventional gasoline fueled engine , the engine 
system may include an electrical architecture such as the 
example architecture of FIG . 1B . Electrical system of FIG . 
1B shows a conventional 12V based alternator 186 coupled 
to a single lead - acid battery 188 . The battery may be used to 
power one or more conventional 12V electrical loads 182 , 
such as an electrically assisted power steering system 
( EPAS ) , electrically boosted brakes , anti - roll control , etc . 
Battery 188 may be coupled to a battery monitoring sensor 
( BMS ) 184 . As elaborated herein , a state of degradation of 
the battery may be inferred via the BMS . In addition , a 
battery end of life may be calculated based on data received 
from the BMS . It will be appreciated that in some examples , 
the system of FIG . 1B may also be included in the vehicle 
system of FIG . 1A . 
[ 0050 ] Batteries may need to be periodically serviced and 
diagnosed . In addition , based on their service or degradation 

history , the remaining life of a battery may vary . Unexpected 
battery failure may occur due to an incorrect estimation of 
the battery ' s end of life ( EOL ) . For example , if a battery 
health monitor is not accurate , a battery ' s EOL may be 
predicted to be later than actually occurs . This can cause 
customer dissatisfaction due to loss of mobility ( such as 
when the vehicle or engine does not start ) as well as 
degraded electrical functionality affecting driving perfor 
mance ( such as when there is loss of assist to the EPAS ) . If 
a battery ' s end of life can be accurately predicted , the battery 
can be replaced before failure occurs . This may be particu 
larly advantageous in the case of a vehicle system where a 
central controller coordinates various vehicle systems to 
minimize electrical power requirements . For example , in the 
case of an autonomous vehicle system , where there is 
limited interaction between a vehicle operator and the 
vehicle controller , the autonomous functionality may be 
selectively activated only if a redundant power source 
supplied by the battery is available . Autonomous function 
ality may be disabled or curtailed if a degraded battery is 
identified or if the end of life of the battery is predicted to 
occur within a short predefined time period . For example , 
battery low - voltage conditions may cause an electrically 
assisted power steering system to lower the steering assist it 
provides , or to deactivate electrical functions that are not 
safety - critical . Other battery related issues may include 
excessive battery gassing which can cause disagreeable 
odors to be generated during vehicle operation , as well as in 
the garage in the case of plug - in vehicles that are charged in 
a garage . 
[ 0051 ] In addition to the issues associated with the incor 
rect prediction of a battery ' s end of life , where the EOL is 
predicted to occur later than it actually occurs , there may be 
other issues associated with the incorrect prediction of a 
battery ' s end of life , where the EOL is predicted to occur 
earlier than it actually occurs . For example , an onboard 
battery health monitor may aggravate customers if they are 
alerted to a defective battery that turns out to be healthy 
when the vehicle is brought in for service . 
[ 0052 ] The inventors herein have recognized that current 
battery health monitoring methodologies may only assess 
battery characteristics such as voltage response or internal 
resistance . However , batteries may fail due to multiple 
causes based on their use history , temperature constraints , 
and issues associated with the chemical nature of the battery . 
For example , a lead acid battery may degrade due to 
corrosion , sulfation , loss of active mass , etc . By using an 
EOL prediction methodology that assesses multiple battery 
characteristics associated with battery degradation , as elabo 
rated with reference to the routines of FIGS . 3 - 4 , reliability 
of the EOL prediction is improved . In addition , the scope of 
failure mechanisms that can be detected is expanded by 
relying on multiple parallel paths for failure prediction . In 
addition , interaction of the different characteristics can be 
also be accounted for ( such as the effect of a rate of corrosion 
on a rate of sulfation of the battery , and vice versa , a rate of 
sulfation on the rate of corrosion of the battery ) . The 
performance of a battery in a vehicle is a function of a 
multitude of characteristics . If the end of life is only defined 
for each characteristic without taking other characteristics 
into account , the end time to the end of life may be 
over - estimated , because small degradations in multiple char 
acteristics may cause significant degradation in total battery 
performance . For example , doubling the internal resistance 
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of a battery may result in a vehicle not starting due to low 
voltage at the starter . Halving the battery capacity may also 
result in a vehicle not starting due to depletion from key - off 
loads . However , increasing the internal resistance by only 
50 % and decreasing the capacity by 25 % may also hinder a 
vehicle from starting . It is therefore beneficial to define end 
of life with respect to multiple battery characteristics as 
illustrated in FIG . 6 . 
[ 0053 ] For example , the controller may identify one or 
more battery characteristics affecting battery health that can 
be measured . The controller compares the data pertaining to 
those characteristics , collected during vehicle operation , to 
corresponding thresholds . As elaborated with reference to 
FIGS . 3 - 4 , the vehicle controller may define the thresholds 
based on battery history as well as statistical data collected 
from various sources such as fleet data , dealership vehicle 
data , warranty laboratory data , etc . The controller may be 
configured to use an algorithm that estimates the rate of 
convergence of the measured data to the defined thresholds , 
and uses the estimated rate in addition to a previous history 
of degradation behavior of the battery , sensed data for 
parameters relating to the battery , as well as based on 
mapped vehicle driving statistics ( such as real - time vehicle 
driving statistics , or those compiled over a current vehicle 
drive cycle ) , to make a statistical prediction regarding the 
remaining life of the battery . The controller may then 
provide meaningful information regarding the battery life to 
the vehicle operator , such as in the form of a distance to 
service or time to service estimate . As a result , the remaining 
life expectancy of a battery may be estimated via an 
approach that runs online in a vehicle and whose accuracy 
may be enhanced by periodic parameter adaptation using 
battery data obtained from a fleet of vehicles in the road and 
batteries replaced in the service . 
[ 0054 ] In this way , the components of FIGS . 1A - 1B 
enable a vehicle system comprising an alternator driven by 
an engine ; a battery , sensors for measuring battery voltage 
and current ; and a controller . The controller may be config 
ured with computer - readable instructions stored on non 
transitory memory for : predicting a state of degradation of 
the battery based on change in capacity and internal resis 
tances . 
[ 0055 ] FIG . 2 shows an example map 200 that may be 
used by a vehicle controller to monitor the end of life of a 
vehicle battery , such as a lead - acid battery . The approach 
applied in FIG . 2 may represent a minimal solution imple 
mentation of the method of FIG . 3 , relying on only 2 of a 
plurality of measurable characteristics of the lead - acid bat 
tery but it will be appreciated that the method may be 
expanded to include additional characteristics . 
[ 0056 ] In the example of FIG . 2 , a battery internal resis 
tance ( R ) and a battery capacity ( Q ) are monitored . The 
battery resistance is defined as the ratio of the change in 
voltage to the current as measured during cranking or other 
events resulting in significant voltage and current transient . 
The battery capacity , on the other hand , is defined as the 
amount of charge it can deliver at rated discharge current and 
temperature such that the battery terminal voltage is above 
a defined threshold . The starting ability of a battery could 
degrade due to corrosion which typically manifests as an 
increase in internal resistance or decrease in cold cranking 
amperage . Similarly , a battery could lose charging capability 
if it becomes sulfated or experiences a loss of active mass , 
both of which may manifest as a loss in capacity . Thus , by 

monitoring the change in internal resistance and overall 
capacity , a battery health can be monitored . As the battery 
ages , the resistance of the battery is expected to increase 
while the capacity is expected to decrease . 
[ 0057 ] Map 200 depicts an algorithm 202 receiving input 
regarding a battery ' s internal resistance 204 , BCBattRiT 
Nom , that is normalized at 100 % battery SOC and 25° C . 
Algorithm 202 may be stored in the memory of a vehicle 
controller , such as in a battery management module . The 
algorithm 202 also receives input regarding a battery ' s 
capacity 206 , BCBattQCapAhTNom , that is normalized at 
100 % battery SOC and 25° C . The normalized capacity 
represents the amount of charge that can be removed from 
the battery at 25° C . when discharged from 100 % battery 
SOC at a nominal current of 120 . 120 is defined as the current 
magnitude obtained by dividing nominal capacity by 20 . In 
one example , the data may be received from a battery 
management system ( BMS ) on - board the vehicle , the BMS 
coupled to the battery and communicatively coupled to the 
vehicle controller . BMS measures current , voltage and may 
also measure battery terminal temperature . It may use a 
built - in model , such as an equivalent circuit model , to infer 
the battery SOC , capacity and capacity loss due to sulfation 
and loss of active mass . Data may be collected during 
specific circumstances to estimate specific battery charac 
teristics . For example , internal resistance may only be 
estimated when discharges occur with changes in current 
over time that are greater than a threshold , and loss of 
capacity due to sulfation may be only calculated when 
voltage measurements are taken when the battery has been 
fully charged and allowed to rest without charges and 
discharges of a minimum amount of time . A plausibility 
strategy may be put into place that only transmits estimates 
of battery characteristics after measurement has occurred 
multiple times , or an average of estimates over a defined 
moving time horizon may be transmitted . Some battery 
monitoring sensors may use extended Kalman filters to 
remove outliers from estimates of battery characteristics and 
provide stable values . 
[ 0058 ] The normalized internal resistance 204 and nor 
malized capacity 206 are plotted on map 210 to determine a 
current position of the battery on map 210 . Further , resis 
tance and capacity thresholds are determined to identify a 
region of map 210 where the battery is in a useable state of 
health ( e . g . , where a battery health monitor mass pass ) . For 
example , the controller may define a region 212 on map 210 , 
region 212 bounded by resistance threshold 214 ( R ) and 
capacity threshold 216 ( Q . ) . As elaborated at FIG . 3 , the 
thresholds may be determined based on various factors 
including sensed data , statistical data , battery service his 
tory , vehicle driving history , data retrieved from other 
vehicles in a fleet , other vehicles at a dealership , etc . In the 
depicted example , based on the data it is determined that the 
battery state of health is within region 212 , at location 218 , 
at a distance 220 from the resistance threshold 214 and a 
distance 222 from the capacity threshold 216 . 
10059 ) . Also based on the sensed and statistical data , and 
via an algorithm discussed at FIG . 3 , the controller may 
estimate a speed of convergence of each parameter to the 
corresponding threshold , such as a speed at which the 
internal resistance is changing from location 218 towards 
resistance threshold 214 , and the speed at which the internal 
capacity is changing from location 218 towards capacity 
threshold 216 . Based on the estimated location and speed of 
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convergence , the algorithm may determine a battery state of 
health 224 including whether the battery monitor has passed 
or failed ( e . g . , whether the battery will result in a start or 
non - start of the vehicle ) as well as a remaining battery life 
( e . g . , a predicted end of life estimate ) . The estimated battery 
state of health is then displayed to a vehicle operator . 
[ 0060 ] It will be appreciated that while FIG . 2 depicts 
battery capacity monitored as a function of sulfation and 
active mass loss , in further examples , additional signals may 
be used to monitor capacity loss due to sulfation distinct 
from capacity loss due to active mass loss . This is because 
the effect of sulfation can be reversed . Further , while R , and 
Qo are depicted herein as temperature - independent calibrat 
able thresholds that are normalized to predefined tempera 
tures and states of charge , in other examples , the thresholds 
for battery characteristics may be temperature - independent . 
Turning now to FIG . 3 , an example method 300 is shown for 
predicting the end of life ( EOL ) of a vehicle battery . 
Instructions for carrying out method 300 and the rest of the 
methods included herein may be executed by a controller 
based on instructions stored on a memory of the controller 
and in conjunction with signals received from the battery 
monitoring sensor as illustrated in FIGS . 1A - 1B . The con 
troller may employ actuators of the vehicle system and 
engine system to diagnose battery state of health , according 
to the methods described below . The method enables the 
predicting of a state of degradation of a vehicle battery based 
on a rate of change in value of a metric associated with the 
vehicle battery , from an initial value of the metric at a time 
of installation in the vehicle system , over a duration of 
vehicle travel . The predicting is further based on a distance 
traveled by the vehicle over the duration , the metric derived 
from a sensed vehicle operating parameter . The method 
further enables the converting of the predicted state of 
degradation into an estimate of time or duration remaining 
before the vehicle battery needs to be serviced ( or replaced ) 
for display to a vehicle operator . The method includes a 
learning - based high - level approach that can be applied to all 
types of automotive batteries including lead - acid and 
lithium - ion batteries . The equivalent circuit parameters are 
identified regularly , at fixed intervals , and are assumed to 
explicitly depend on the battery temperature and state of 
charge ( SOC ) . In the depicted method , two generic perfor 
mance metrics are applied for battery diagnostics / prognos - 
tics . They are calculated using the statistics associated with 
batteries that are replaced and batteries causing vehicles to 
break down . The metrics are used to adapt the threshold 
defining end of life ( EOL ) for each battery feature . After a 
threshold has been adapted , the performance metrics are 
used to determine whether the adaptation was sufficient . 
Because the battery statistics only converge to a stable value 
after a representative amount of batteries have been evalu 
ated over a sufficient amount of time , a monitoring period is 
associated with each metric . Once the metric has been 
evaluated over at least the associated monitoring period , it 
may be used to quantify system performance and calculate 
further adaptations to the EOL thresholds . Other metrics to 
measure system performance and facilitate parameter adap 
tion may be applied as well . Those described here may be 
used as prototypes for new metrics as new requirements on 
the battery diagnostic / prognostic system emerge . 
[ 0061 ] At 302 , the method includes selecting one or more 
battery characteristics ( from a plurality of possible battery 
characteristics ) for battery EOL prediction . The character 

istics may include battery attributes that can be used to 
measure battery degradation . The characteristics may be 
selected based on the nature or configuration of the battery , 
computation power available on - board the vehicle for EOL 
prediction , as well as time constraints for EOL prediction . 
As an example , when the battery is a lead - acid battery , the 
selected characteristics may include , at a minimum , internal 
resistance and capacity of the battery . If additional compu 
tation power or time for estimation is available , additional 
lead - acid battery characteristics may be added , such as 
battery sulfation level distinct from loss of active mass of the 
battery . As another example , when the battery is a lithium 
ion battery , the selected characteristics may include battery 
impedance or Li ion charge concentration estimated by 
embedded models . Additional characteristics may also be 
added to the prediction algorithm to include additional 
failure mechanisms . For example , as novel battery technolo 
gies emerge , and / or as previously unknown degradation 
mechanisms for existing batteries are discovered , additional 
characteristics may be selected . In other words , the predic 
tion algorithm may not restricted to only use two features 
such as internal resistance and capacity . Additional features 
may be added as more information about end of life batteries 
is collected and as the state of the art changes . For example , 
additional features may be added to include new battery 
monitoring techniques , new battery sensors , and new infor 
mation correlating battery features to battery end of life . 
[ 0062 ] By increasing the number of features , when com 
putation power is not a constraint , the accuracy of EOL 
prediction may be increased . Additional features that may 
extend the prediction may include , for example , a battery 
gassing rate ( e . g . , in grams H , per hour ) . Lead - acid cells 
give off oxygen and hydrogen when overcharged . It may be 
that a battery has sufficient capacity to start a plug - in vehicle 
but still gasses heavily in a garage when it is plugged in . As 
another example , a battery water loss rate ( in water lost in 
grams / min ) may be incorporated . Lead - acid cells give off 
oxygen and hydrogen and experience water loss when 
overcharged . When the water level of a battery gets too low , 
it may fail due to diminished capacity and high internal 
resistance . As yet another example , the occurrence of an 
internal short may be assessed ( such as via a flag being set ) . 
An internal short is characterized by a severe drop in the 
battery ' s open - circuit voltage after the vehicle ' s power 
supply is switched off . This symptom may be accompanied 
by a high internal resistance corresponding to battery volt 
age and average discharge current . As still another example , 
loss of capacity due to sulfation may be characterized ( e . g . , 
in terms of loss of capacity in Ah due to sulfation ) . Sulfation 
is a process that causes the capacity of a battery to depreciate 
and a voltage level , with respect to state of charge , to sink . 
It is reversible to a degree by charging at a high voltage over 
a sustained period of time . 
100631 . As vet another example , loss of Active Mass may 
be characterized ( e . g . , in terms of Loss of capacity in Ah due 
to loss of active mass ) . Loss of active mass causes the 
battery capacity to depreciate . As a further example , a 
battery Time in Service may be characterized ( e . g . , in terms 
of battery time in running vehicle expressed in hours ) . 
Statistical distributions of the life expectancy of batteries in 
specific vehicles may be used to predict the distance to end 
of life . The prediction may be improved by using statistics 
of specific vehicles operated in specific regions to define end 
of life as a function of vehicle usage . For instance , the same 
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batteries may degrade quicker due to corrosion and water 
loss in a warm / hot environment versus a cold climatic 
condition . As still another example , charge throughput 
weighted with respect to Depth of Discharge may be char 
acterized ( e . g . , in terms of Loss of battery capacity in Ah ) . 
Charge throughput may be weighted with respect to battery 
depth of discharge and integrated over time to estimate aging 
defined as loss of battery capacity . 
10064 ] Selecting the characteristics may further include 
selecting a method of measuring the characteristics , a sam 
pling frequency , identifying one or more algorithms required 
to calculate signals or metrics from the collected data , as 
well as required calculation power and time . For example , if 
it is found that many batteries were failing due to lack of 
water , new advanced algorithms that measure water loss or 
even a water - loss sensor may be implemented . On the other 
hand , if many batteries fail due to grid corrosion , an equiva 
lent circuit model may be implemented to track corrosion . 
The progress of corrosion in the positive electrode is cor 
related to changes in the values of the resistance and 
capacitance of an RC - pair in a standard Randle ' s equivalent 
circuit model . The RC - pair is associated with a time constant 
that falls in a defined range . The sampling period for voltage 
and current measurements may be chosen to sufficiently 
sample those values for an algorithm that estimates the 
values of the RC - pair . Those values would then be used to 
track corrosion . 
10065 ] It will be appreciated that the battery may be 
periodically assessed , such as based on a time or distance of 
vehicle travel elapsed since a last assessment of the battery . 
In other examples , the selection of the characteristics to 
assess the battery may be based on an active request received 
from the operator . This may be in addition to , or independent 
of , the periodic assessment . For example , an operator may 
request prognosis of a system battery before embarking on 
a planned travel route . 
[ 0066 ] At 304 , the method includes measuring the selected 
characteristics online during vehicle operation . For example , 
the selected characteristics may be measured via one or 
more battery sensors at the determined sampling frequency . 
For example , internal resistance of the battery may be 
measured with a hall - based or shunt - based current measure 
ment and a voltage sensor at sampling frequencies greater 
than 1 kHz . As another example , a loss in battery capacity 
due to sulfation may be measured with a single voltage 
measurement after the battery has been fully charged and has 
been allowed to rest without charging or discharging for a 
number of hours . The change in open - circuit voltage of the 
fully charged battery as it ages is a metric for the capacity 
loss due to sulfation . As another example , internal shorts 
( and a severity of the short ) may be identified based on a 
degree of voltage relaxation . At 306 , the method includes 
normalizing the collected data for temperature and state of 
charge . For example , the data may be normalized to 25° C . 
and 100 % SOC . In this way , data sensed on - board the 
vehicle may be used to determine the state of health of the 
battery . For example , where the determined metric is one or 
more of a battery resistance and a battery capacity , the 
sensed vehicle operating parameters may include one or 
more of a battery current and a battery voltage . In some 
examples , after sensing the one or more parameters associ 
ated with battery degradation , the controller may compare 
the sensed data on a current iteration of the routine to data 
sensed on a previous iteration of the routine to update the 

rate of degradation of the battery ( from a base rate ) in 
real - time . For example , the controller may predict a state of 
degradation of a vehicle battery based on a determined 
metric derived from a sensed vehicle operating parameter , 
including a past history of the determined metric . 
[ 0067 ] At 308 , the method includes defining thresholds for 
each of the selected battery characteristics . These are thresh 
olds for the metrics defining the battery EOL . EOL thresh 
olds may be determined from one or more sources including 
battery experts , vehicle electrical requirements cascading 
feature requirements to battery requirements , a fixed set of 
aged battery data describing features , as well as iteratively 
with online monitoring of feature data from end of life 
batteries replaced at dealerships . As one example , it may be 
required that a vehicle be able to be started after parking for 
30 days given an initially fully charged battery with capacity 
CNew . After 30 days , a known battery charge is consumed by 
key off loads ( CKOL ) . End of life is determined to occur 
when the capacity is diminished such that C < CNew - CROL 
For example , when loss of capacity is the only battery 
characteristic that is deteriorating , end of life may be defined 
when the battery capacity diminishes by 30 % from its new 
value . The ability of a cold battery to start a vehicle may be 
hampered by high internal resistance . End of life may be 
identified if the internal resistance increases by 75 % from 
the new value , or it may be identified if it reaches a value 
such as 9 milliohms . 
[ 0068 ] FIG . 5 shows an example of using a statistical 
representation of a battery feature to define a corresponding 
threshold during EOL prediction . In map 500 , a statistical 
spread of the normalized internal resistance of batteries 
replaced by a dealership is depicted . A controller may select 
a threshold ( dashed arrow ) to correspond to a defined 
percentile of the population based on warranty and customer 
satisfaction models . For example , a resistance that corre 
sponds to 10 percentile of the batteries replaced in a deal 
ership may be used to identify end of life . In that case , many 
batteries that actually still have some service life may be 
replaced , but the number of customer ' s vehicles that do not 
start due to a defective battery will be small . On the other 
hand , a resistance corresponding to 90 percentile of batteries 
replaced in a dealership would be higher than a 10 - percentile 
resistance . Choosing this value would result in allowing 
some batteries to continue service in vehicles even though 
they may fail , and as a result , the number of vehicles that are 
stranded due to defective batteries may increase . However , 
warranty costs may be lower , because batteries that are still 
able to remain in service would not be replaced unneces 
sarily . Adjusted EOL thresholds are depicted at maps 510 
and 520 , and described later with reference to the EOL 
threshold updating routine of FIG . 7 . 
[ 0069 ] Returning to FIG . 3 , machine learning techniques 
for pattern recognition may also be implemented to define 
the thresholds . For example , pattern learning within a 
machine - learning framework , also referred to as Supervised 
Learning , may be applied . Supervised learning may define 
“ N best category labels " for a given set of features , given the 
associated probabilities of each category with associated 
confidence levels . Category labels used with supervised 
learning for battery end of life prediction may include 
“ Before ( outside of ) End of Life ” and “ At ( within ) End of 
Life . ” More than one feature may be used for category 
identification with supervised learning . One example output 
of supervised learning algorithm may include “ There is a 
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78 % probability that the battery is at end of life , there is a 
22 % probability that it is not , and the confidence level for 
this prediction is 90 % ” . 
[ 0070 ] There may be different classes of supervised learn 
ing algorithms for threshold calculation . For example , there 
may be parametric algorithms that are linear , quadratic , or 
rely on maximum entropy calculation . As another example , 
there may be Non - parametric algorithms such as those using 
Neural Networks or Support Vector Machines . As such , any 
of these algorithms may be used to calculate thresholds 
defining end of life . For example , a linear parametric algo 
rithm of type Linear Discriminant Analysis may be used . 
[ 0071 ] Thresholds and calibration parameters may also be 
updated if they are found to not deliver targeted accuracy 
requirements for prediction . In one example , this may occur 
if changes in battery technology or vehicle electrical system 
technology change the battery or the character of battery 
failure modes . An advanced architecture may use data from 
a large central data bank ( e . g . , cloud ) as a source of updated 
thresholds and calibration parameters . 
[ 0072 ] In order to adaptively optimize parameters of a 
diagnostic / prognostic system , it is necessary to have an 
infrastructure in place that facilitates measuring the charac 
teristics of batteries that are replaced or fail in vehicles . The 
measurements are analyzed , and an algorithm may recalcu 
late the thresholds defining end - of - life using performance 
metrics . 
[ 0073 ] It will be appreciated that the algorithms may run 
in the cloud or on a hand - held device without a continuous 
data stream . 
[ 0074 ] Various implementations of this architecture may 
be possible . A first example of such as an architecture is 
shown at embodiment 1200 of FIG . 12 . Embodiment 1200 
illustrates a generic form of the architecture where battery 
characteristics are collected and processed by a central entity 
outside of the vehicle . In the depicted example , the thresh 
olds may be calculated at a central location ( e . g . , a data 
bank , such as in the cloud ) and transmitted to the vehicle . 
The thresholds may be calculated at the data bank based on 
input received from the data bank sources ( such as a vehicle 
BMS , dealer battery tests , warranty analysis laboratories , 
etc . ) . The thresholds are then transmitted to the on - board 
algorithm on the vehicle which also receives inputs from the 
various on - board battery monitoring sensors . The algorithm 
estimates the battery life further based on feature gradients 
stored in the controller ' s memory . 
[ 0075 ] Another example is shown at embodiment 1210 of 
FIG . 12 , wherein battery characteristics may be gathered in 
the central location and processed . Then , parameters 
describing battery data and feature statistics ( e . g . , mean , 
standard deviation , etc . , of given characteristics ) may be 
transmitted to the vehicle , and the calculation of parameters 
and thresholds may take place locally on - board the vehicle . 
Therein , pattern recognition , supervised learning , or simple 
characteristic of feature statistical parameterization ( such as 
percentile ) is used to determine parameters of the feature , 
such as mean and standard deviation of each selected battery 
characteristic . The parameters may be calculated at the data 
bank based on input received from the data bank sources 
( such as a vehicle BMS , dealer battery tests , warranty 
analysis laboratories , etc . ) . The parameters are then trans 
mitted to the vehicle controller where the on - board algo 
rithm is used to calculate the thresholds locally . 

[ 0076 ] Transmission of thresholds or parameters to the 
vehicle may be carried out via on - board modem , through a 
diagnostics port , wireless communication , or through re 
flashing the on - board controller ( or ECU ) where the predic 
tion algorithm runs . 
[ 0077 ] As discussed above , the data bank may receive 
inputs from various data bank sources . For example , data 
may be received from a Vehicle Battery Monitoring System 
( BMS ) including a battery monitoring sensor . Therein , 
before a battery is replaced by a dealership , a service 
personnel may trigger a data collection routine that saves 
battery feature data . This represents a fingerprint of a battery 
at its end of life . The data is then transmitted to a cloud via 
an on - board modem or by downloading it from a diagnostic 
port . 
[ 0078 ] As another example , data may be sources from 
Dealer Battery Testers . Therein , when a battery tester diag 
noses a defective battery , a routine may be triggered that 
saves the information used for the diagnosis and possibly 
causes the tester to collect further information . The infor 
mation is then transmitted to the cloud via a modem or by 
other means . 
100791 As yet another example , data may be sourced from 
Warranty Analysis Laboratories . Therein , a subset of batter 
ies that are replaced in a dealership may be analyzed and 
torn down by laboratories for quality control . Information 
collected during the analysis may be transmitted to the cloud 
via the internet or by other means . 
[ 0080 ] At 310 , the method includes estimating a speed of 
convergence of the normalized battery data to the corre 
sponding threshold ( s ) . This allows the controller to infer 
how quickly or slowly the battery is approaching its end of 
life . At 312 , a battery EOL may be estimated based in the 
speed of convergence . As an example , where the normalized 
internal resistance of the battery is the battery feature being 
monitored , the EOL threshold may be set to 6 mOhm for a 
given battery . The degradation of the battery as a function of 
rate of convergence of the internal resistance may be 
described by a gradient : 

a RiNorm 
— = V dt 

[ 0081 ] The distance to the EOL may then be described by 
the equation Threshold - RiNorm = x . 

[ 0082 ] The remaining life may then be estimated as : 
[ 0083 ] With reference to the example of FIG . 2 , the 
present condition or state of the battery may be defined by 
location 218 . Resistance threshold 214 ( R ) and capacity 
threshold 216 ( Q . ) may be calibratable thresholds for inter 
nal resistance and battery capacity , as identified from aged 
battery data and / or advice from battery experts . The distance 
of the present capacity at position 218 from the threshold , 
herein referred to as xl ( and depicted at FIG . 2 as 222 ) is 
defined as : x1 = 0 . - Q . The rate at which the capacity is 
approaching the threshold ( that is , the speed of convergence ) 
is then determined as : 
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dx1 
dt 

[ 0084 ] Likewise , the distance of the present internal resis 
tance at position 218 from the threshold , herein referred to 
as x2 ( and depicted at FIG . 2 as 222 ) is defined as : x2 = R . - R . 
The rate at which the resistance is approaching the threshold 
( that is , the speed of convergence ) is then determined as : 

dx2 
dt 

The derivatives describing the speed of convergence to a 
threshold may also be referred to herein as a gradient ( of a 
corresponding feature ) . 
[ 0085 ] Since a battery can fail due to either low capacity 
or high resistance , the End of life ( EOL ) of the battery is 
defined as the earliest time of failure due to either mecha 
nism . In other words , 

EOL = Min ( 123 ) 
[ 0086 ] The prediction algorithm can likewise be extended 
to multiple features , as shown with reference to FIG . 6 . 
While the end - of - life ( EOF ) prediction algorithm for lead 
acid batteries depicted at FIG . 2 measures battery charac 
teristics or features and compares them with thresholds 
defining the end - of - life values for the features ( specifically , 
the features " normalized battery internal resistance ” and 
“ normalized capacity ” ) , map 600 of FIG . 6 depicts the same 
for generic features . 
[ 0087 ] As shown at map 600 , the end of life thresholds for 
prediction with multiple features may not necessarily be 
linear bounds in the " feature space ” ( such as was the case in 
FIG . 2 , see linear feature space 212 ) . Instead , a shape of the 
feature space 612 may be determined by the pattern recog 
nition / supervised learning algorithm used for their defini 

[ 0090 ] The prediction of time to the end of life is defined 
as the the time remaining until the end of life of the battery 
is reached . It is calculated by dividing the length of the 
orthonormal | | X | | by the speed of convergence v along the 
orthonormal x . The length of the orthonormal | | | | may be 
interpreted as the distance to the end of life threshold as 
illustrated in FIG . 6 . The direction of may be parallel to the 
direction of a specific feature as illustrated in FIG . 2 , or as 
illustrated in FIG . 6 , it may progress in another direction . In 
that case , it may be assumed that battery degradation is 
captured by multiple features . 
[ 0091 ] The thresholds may be initially estimated when the 
battery diagnosic / prognostic system is implemented . In 
order to monitor it ' s performance , metrics may be defined 
using the characteristics of batteries that are replaced during 
maintenance and vehicle break - down statistics . The thresh 
olds may be adjusted adaptively if the metrics indicate that 
the system is not performing adequately . 
[ 0092 ] Returning to FIG . 3 , in some examples , the speed 
of convergence may be further updated based on the deg 
radation or service history of the battery . For example , the 
speed of convergence may be further adjusted as a function 
of a time or duration elapsed since the battery was first 
installed or operated in the vehicle . As another example , the 
time or duration elapsed since the battery was last serviced , 
repaired , or reset may be taken into account . In addition , the 
service history may include details regarding a rate of 
degradation of the battery prior to the most recent service 
event , a base rate of degradation of the battery , an average 
rate of degradation of the battery over the life of the vehicle , 
and any diagnostic codes associated with the battery that 
were enabled over the life of the vehicle . 
[ 0093 ] In still further examples , the speed of convergence 
may be further updated based on vehicle driving statistics . 
The vehicle driving statistics may include , for example , a 
distance covered over the life of the vehicle ( e . g . , based on 
an odometer reading ) , a number and frequency of service 
events that have occurred over the life of the vehicle ( e . g . , 
how many oil services have occurred , what frequency they 
were performed , what odometer reading they were per 
formed at ) , average fuel economy of the vehicle , average 
speed of the vehicle , average transmission gear usage of the 
vehicle , average number of miles covered each day , average 
tire pressure of the vehicle , etc . The vehicle driving statistics 
may further include , for example , operator specific driving 
patterns and habits . For example , this may include an 
operator ' s preference for fuel economy versus performance , 
frequency and degree of pedal application and depression 
( e . g . , whether the operator is " lead footed ” ) , how aggres 
sively the operator tends to drive , average speed at which the 
operator drives , etc . Vehicle driving statistics may further 
include details regarding weather conditions in which the 
vehicle is typically driven , such as whether the vehicle is 
typically operated in rain or snow , dry or humid conditions , 
etc . The vehicle driving characteristics may reflect driving 
tendencies of the operator and average conditions experi 
enced by the vehicle battery which may affect the speed of 
convergence of one or more of the selected characteristics at 
different rates . 
[ 0094 ] In the case of monitoring a propulsion battery in a 
hybridized or electric vehicle and predicting it ' s time to end 
of life , a future ( e . g . , predicted ) driving pattern may be taken 
into account , such as the terrain , ambient altitude and 

tion . 
[ 0088 ] The feature - state represents the values of the fea 
tures { Featurel , Feature2 , . . . } or { fi ( t ) , f2 ( t ) , fz ( t ) , . . . , 
fu ( t ) } that are being used to determine the life expectancy of 
the battery . They may be internal resistance and capacity or 
other characteristics . Each axis of feature - space corresponds 
to the values of a specific feature . Measurements of features 
at a point in time correspond to a point in feature - space . The 
point f ( t ) = { f? ( t ) , fz ( t ) , fz ( t ) , . . . , fy ( t ) } , and fi ( t ) . . . fu ( t ) 
represents the values of the features of the battery at time t . 
[ 0089 ] Map 600 also includes the gradient of the features 
of the battery . The gradient 

describes the change in the feature - state ( in feature - space ) of 
the battery af with respect to time in the direction of the 
orthonormal x ( shortest path ) to the end - of - life threshold in 
feature space . 
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temperature , predicted pedal events , and inclines / declines 
that are expected along a selected navigational route . For 
example , if the operator applies the accelerator and brake 
pedals frequently ( or is expected to in view of the selected 
travel route ) , the battery may experience higher than average 
charge throughput . A battery would only drain in those 
conditions if it was used for propulsion in an electric vehicle . 
In other vehicle configurations , traffic predictions may be 
used to estimate charge throughput in all types of vehicles , 
and charge throughput may be directly correlated to battery 
deterioration and aging . As another example , if the operator 
drives aggressively , the battery may heat up faster , and wear 
due to higher average battery temperatures . Accordingly , the 
speed of convergence may be increased indicating that due 
to the vehicle driving statistics , the battery can be expected 
to degrade faster . 
[ 0095 ] In one example implementation , the end of life 
prediction may be implemented in a vehicle with a display 
on the dashboard indicating the remaining battery life . 
Therein , the end of life thresholds and other calibration 
parameters may be flashed in the vehicle on the assembly 
line and may only be updated during irregular service visits , 
if at all . Feature data may come from the battery monitoring 
sensor and any battery monitoring algorithms or controller 
running in the vehicle ' s control module or another on - board 
ECU . The feature gradients describing the speed of conver 
gence of a given feature to the corresponding threshold may 
be calculated online and stored in the body control module 
or another ECU . 
[ 0096 ] In another implementation , the prediction algo 
rithm may run externally with battery parameters transmit 
ted from the vehicle to a cloud , or to an external device 
where the algorithm runs . The external device may include , 
for example , a handheld device such as a smart phone or 
tablet . Further , the algorithm may be configured as an 
application running on the device . If the algorithm runs in a 
cloud , battery parameters may be transmitted continuously 
or may be scheduled for transmission during regular inter 
vals . Transmission may also be triggered by operational 
modes such as key - on , key - off or the initialization of service 
routines at a dealership . If the algorithm runs on an external 
device , transmission of data will occur when a wired or 
wireless link is established with the vehicle . This may occur 
at any time , but will usually occur when the vehicle is being 
serviced . 
[ 0097 ] In some examples , instead of computing the EOL 
of the battery , a state of health ( SOH ) of the battery may be 
output , wherein the SOH of a battery can be expressed as a 
percent of remaining life that varies from 100 % for new 
batteries to 0 % for dead batteries . As the battery ages , its 
internal resistance increases , its internal capacity decreases , 
and correspondingly its SOH decreases . 
[ 0098 ] At 318 , the method includes converting the esti 
mated EOL or SOH of the battery to an EOL estimate that 
can be easily understood by the vehicle operator , such as a 
remaining time of distance of vehicle operation remaining 
before complete battery degradation ( when the battery dies ) . 
At 320 , the remaining time or distance may be displayed to 
the vehicle operator . For example , the estimated time / dis 
tance remaining before degradation of the battery may be 
displayed to the vehicle operator on a display screen of a 
central console of the vehicle . 
10099 ] In one example , the controller may use an algo - 
rithm to convert the state of health into an estimate of 

time / distance remaining before degradation of the compo 
nent occurs . For example , the controller may convert the 
predicted state of degradation into a remaining time or 
duration estimate for display to a vehicle operator based on 
past driving history data and predicted future driving , 
including the past history of the determined metric . In 
addition , the predicted state of degradation may be con 
verted into a remaining number of fuel tank refilling events 
for display to the vehicle operator based on the past driving 
history data and predicted future driving . 
[ 0100 ] For example , it may be displayed that “ the battery 
will need to be replaced in 120 miles ” . This may provide the 
operator with a more comprehensible estimate of when the 
battery needs to be serviced . In addition , the displayed 
estimate may prompt the vehicle operator to adjust their 
driving pattern , for example , the operator may be prompted 
to drive less aggressively . 
[ 0101 ] In some examples , determining the end of life 
using pattern recognition also enables the controller to 
determine if a battery belongs to a particular set of failed 
batteries given its features and their speed of convergence 
( or trends in their speed of convergence ) . This data may be 
used by a dealership or a fleet controller to schedule servic 
ing for other batteries for other vehicles in the same fleet . 
Similarly , an individual vehicle owner could also use the 
provided information to plan a trip and appropriate repairs or 
service schedule . For example , the EOL prediction dis 
played to a vehicle operator may include “ There is a 73 % 
probability that the battery belongs in the set of failed 
batteries . The confidence level of this assignment is 95 % . " 
[ 0102 ] Various communication strategies may be used to 
alert the driver and maintenance personnel to an imminent 
battery failure , the various strategies taking marketing , cus 
tomer satisfaction , warranty costs , and other factors into 
account . Generally , the strategy may communicate directly 
with the maintenance personnel and with the driver on 
separate occasions when corresponding thresholds are 
passed . The communications may be triggered repeatedly 
during a count - down until the end of life is reached . 
[ 0103 ] In further examples , such as where the vehicle is an 
autonomous vehicle , the controller may also limit or curtail 
autonomous functions of the vehicle based on the predicted 
EOL . For example , autonomous operation limitation may 
come into effect if the predicted EOL of the battery is 
predicted to be within a predefined amount of time . 
[ 0104 ] In some examples , the various alerts , communica 
tions and control strategies , that send messages to the 
driver / maintenance personnel and curtail functionality , may 
be executed in a step - wise manner as the predicted end of 
life of the battery becomes shorter . As an example , vehicle 
drivers may be warned of an imminent battery failure and to 
expect loss of assist in the steering system or periodic 
shut - down of climate control or entertainment systems as 
corresponding EOL thresholds are reached . An example of 
the step - wise providing of notifications and the step - wise 
limiting of an autonomous vehicle ' s functionality is shown 
with reference to FIG . 9 . At 322 , after learning the perfor 
mance characteristics , the EOL thresholds may be updated , 
as elaborated at FIGS . 7 - 8 . 
f0105 ] An example implementation of the method of FIG . 
3 is shown at FIG . 4 . Method 400 represents a base or 
minimal implementation with only two features being 
assessed . 
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[ 0106 ] At 402 , an engine is started . At 404 , battery resis - 
tance and capacity are read , such as based on the output of 
a battery voltage and current sensor . At 406 , entry conditions 
for the diagnostic routine are confirmed . In one example , 
entry conditions are confirmed when there are no flags set 
associated with the battery resistance or capacity measure 
ment . For example , it may be confirmed based on the flags 
and other diagnostic codes that the data provided by the 
voltage and current sensors is accurate and reliable . If entry 
conditions are not met , execution of the routine is delayed 
until conditions are met . 
[ 0107 ] At 408 , thresholds corresponding to the measured 
battery characteristics are retrieved , such as from a control 
ler ' s memory , or via establishing communication to an 
external device or cloud where the thresholds are computed . 
At 410 , a difference to the corresponding threshold is 
computed . For example , the distance of the resistance to the 
threshold is determined as x , = Ro - R and the distance of the 
capacity to the threshold is determined as x2 = 0 . - Q . 
[ 0108 ] At 412 , a rate of convergence of each of the battery 
and the resistance to the corresponding thresholds is deter 
mined . At 414 , a minimum of the two rates is selected and 
used for predicting the EOL . The determined EOL is then 
displayed to the user at 416 . The user may be the vehicle 
operator , a fleet owner , dealership , etc . At 418 , the EOL is 
compared to a threshold life . The threshold life is a non - zero 
calibratable threshold . In one example , the threshold life is 
set at 75 % of the reserved capacity or is defined based upon 
the vehicle requirements that have to be fulfilled by the 
battery . If the determined EOL is less than the threshold life , 
then at 420 , the battery is flagged for warranty . For example , 
a malfunction indicator light ( MIL ) may be illuminated 
asking the vehicle operator to take the battery to a service 
station or to the dealership for servicing . 
[ 0109 ] It will be appreciated that the above - described 
approach may be used to predict the remaining life of a 
number of battery types in various implementation sce 
narios . For example , the method may be implemented for 
lead - acid starting - lighting and ignition ( SLI ) batteries in 
conventional , hybrid and electric vehicles , for propulsion 
batteries based on Li - Ion or other technologies in hybridized 
vehicles and electric vehicles , and for batteries of any type 
used in boats , aircraft or stationary power applications . 
Other scenarios may include running the battery health 
prediction algorithm on - board a vehicle , displaying battery 
health and end of life prediction on a vehicle dashboard , 
transmitting the health assessment and end of life prediction 
for readout on an external device ( e . g . , a hand - held device 
without a continuous data stream or otherwise ) , running the 
prediction algorithm externally , and transmitting the param 
eters to an external device with display or cloud where the 
algorithm runs . 
[ 0110 ] In one example , a vehicle controller may define the 
generic battery in service metric as : 

batteries in the field that are monitored by the diagnostic / 
prognostic system with respect to feature f and fall within 
the group G . The group definition may define battery sizes 
and may also include vehicle types , electrical content ( op 
tions ) and other constraints . The performance metric is 
designed to measure and improve system performance for 
the vehicles or platforms defined by G . Once the EOL 
thresholds are adjusted , the population of batteries in the 
field may be monitored over a sufficiently long time span for 
new failures to occur despite or with the updated thresholds . 
The monitoring period Tf is associated with a given feature 
and may be chosen analytically to guarantee a maximum 
possible variation of the metric over several monitoring 
periods or by other means . 
[ 0111 ] A metric BISFMf may be used to define the per 
centage of battery failures that occur by mechanisms that are 
identifiable by feature f . High diagnostic / prognostic system 
performance may occur with a low - valued performance 
metric , and minimum acceptable performance may be 
defined by a threshold BISFThf . If the metric exceeds this 
threshold , it may be assumed that the EOF thresholds are not 
sensitive enough , and too many batteries are failing in 
vehicles without warning . 
[ 0112 ] Accordingly a false replacement metric ( FRM ) is 
determined that measures the performance of the battery 
diagnostic / prognostic algorithm in avoiding excessive bat 
tery replacement due to false positives or over - sensitivity 
due to the calibration of the associated performance thresh 
old . In one example , the generic false replacement metric 
( FRF ) may be defined as : 

FRM ) = N ( S , G ) ' 

where I ( f ) represents the number of batteries that fulfill the 
following conditions : ( 1 ) Battery identified as failed due to 
the value associated with feature f and the associated EOF 
threshold ; and ( 2 ) bench tests or laboratory investigations 
into the battery ' s state of health indicate that it is only 
discharged and that replacement was or is not necessary . 
N ( f , G ) maintains the same definition as above . It represents 
the total number of batteries in the field that are monitored 
by the diagnostic / prognostic system with respect to feature 
f and fall within the group G . A monitoring period Tf may 
be associated with a given feature and may be chosen 
analytically to guarantee a maximum possible variation of 
the metric over several monitoring periods or by other 
means . Hence , the calculated value of FRMf may only be 
used if the feature is monitored over a period Tf . 
[ 0113 ] . For the performance metrics defined above , unac 
ceptable performance may occur when the metric exceeds its 
associated threshold . The EOL - thresholds may therefore be 
adapted to improve performance . If no system knowledge 
exists that maps a change in the EOL threshold to a change 
in performance , a small incremental change in the EOL 
threshold AEOLThf may be applied . If the relation between 
a change in the EOL - threshold EOLThf and the generic 
performance PM , exists for a given feature f , it may be 
expressed as a transfer function of the form : APM > h 
( AEOLTh . ) . In case no transfer function is available , the 
application of an initial incremental change to the EOL 
threshold may be used as the basis of creating a transfer 
function for future use . The process of estimating a neces 

BISFM = F ( f ) 
ISFM , = N ( F , G ) 

where F ( f ) represents the number of batteries that failed in 
vehicles fulfilling the following conditions : ( 1 ) The failure 
mechanism ( s ) of the batteries is ( are ) associated with feature 
f ; and ( 2 ) the value of feature f identifies a healthy battery 
at the end of life . N ( f , G ) represents the total number of 
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sary change in the EOL - threshold to obtain a desired change 
in the performance metric APM * may defined by the inverse 
function of the form : AEOLTh > h ( APM * : ) . The use of a 
transfer function to adaptively update an EOL - threshold is 
referred to as a smart adaptation , and is elaborated with 
reference to the examples of FIG . 5 and the routine of FIG . 
1 . 
[ 0114 ] Turning now to FIG . 7 , method 700 shows an 
example end of life adaptation process for a specific battery 
feature . 
[ 0115 ] At 702 , the method includes initiating the adaptive 
diagnostic / prognostic system operation including starting a 
timer . At 704 , it may be determined if the elapsed time is 
greater than a defined monitoring period . For example , it 
may be confirmed that the population of vehicles with the 
battery system have been monitored for at least the defined 
monitoring period . In one example , the monitoring period is 
a duration over one year ( and has a value of 12 months ) in 
order to cover each of the seasons . If the defined period has 
not elapsed , then the method returns to monitoring the 
system and comparing the output of the timer to the defined 
monitoring period . In other words , the method enables the 
system performance metric to be updated only after the 
population of vehicles with the system are monitored for at 
least the designated monitoring period . 
[ 0116 ] Upon confirming that the defined period has 
elapsed , at 706 , the method includes comparing the perfor 
mance metric of the system feature ( e . g . , the batteries in 
service metric BISFf or false replacement metric FRMf ) to 
a corresponding threshold . The threshold applied here may 
be selected as a function of the features whose performance 
is being assessed . Thus a battery resistance threshold used 
for a battery performance metric may be distinct from a 
battery capacity threshold used for the battery performance 
metric . For the performance metric , unacceptable perfor 
mance may occur when the metric exceeds its corresponding 
threshold . Therefore if satisfactory performance is identi 
fied , such as when the performance metric does not exceed 
the corresponding threshold , the method resumes the moni 
toring . Else , if satisfactory performance is not identified , 
such as when the performance metric does exceed the 
corresponding threshold , the method proceeds to update the 
EOL threshold . Specifically , at 708 , it may be determined if 
a transfer function mapping incremental change in the 
EOL - threshold to the performance metric is available . If it 
is available , then at 714 , the method includes using the 
available transfer function mapping to estimate the smart 
adaptation of the EOL - threshold . Else , at 710 , a calibrated 
initial value is used . The sign of the adaptation of the 
EOL - threshold may depend on the specific feature and 
metric that is being monitored , and a change in the EOL 
threshold for one feature may cause the need for changes to 
the threshold of a second feature . Examples cases are 
illustrated in reference to FIG . 5 . 
[ 0117 ] At FIG . 5 , map 500 depicts a probability distribu 
tion function of measured internal resistance values of failed 
batteries ( e . g . , of a vehicle fleet , or at a dealership ) and EOL 
thresholds . Herein , the initial choice of the EOL - threshold 
for the internal resistance of the battery may be too high or 
low , depending on the metrics under consideration . A first 
example of an initial EOL - threshold 502 with respect to the 
probability distribution of internal resistance values 
observed in a large sample of failed batteries is shown at 
map 500 . 

[ 0118 ] Water loss and corrosion are failure mechanisms 
that are correlated to high internal battery resistance . 
Assume that a diagnostic / prognostic system is in place that 
monitors normed internal battery resistance ( RiTNom ) , and 
that it follows the process described in FIG . 7 . Assume 
further that monitoring has occurred for at least the pre 
scribed monitoring period TRITNom . If the BISF - metric 
corresponding to water loss indicates that the percentage of 
vehicles in the field that have starting failures due to water 
loss is too high , the EOL failure threshold must be made 
smaller so that it includes a larger percentile of batteries are 
diagnosed as having degraded batteries . This is illustrated at 
map 510 as the adapted EOL threshold 504 . By updating the 
EOL threshold , more failing batteries are brought to the 
attention of owners and service personal , so they could be 
exchanged before a vehicle becomes stranded . 
[ 0119 ] In one example , the change in the EOL - threshold 
may be made using a transfer function that estimates the 
change in a performance metric with respect to the change 
in an EOL - threshold . If this is not available , the magnitude 
of the change may be estimated . For the example here , if the 
adaption of the EOL - threshold was not made using an 
accurate transfer function , the adaptation may be excessive 
or too little . This must be determined after the vehicles in the 
field are observed for at least another minimum monitoring 
period TRITNom after the adaptation from initial EOL 
threshold 502 to updated EOL threshold 504 . If the adap 
tation was excessive , it may be that too many vehicles are 
diagnosed with failing batteries . This would lead to exces 
sive warranty costs and possible owner dissatisfaction due to 
the unnecessary work done on the vehicle . Misdiagnosis of 
healthy batteries would be flagged by the FRMf - metric 
exceeding its performance threshold . If this occurs , the EOL 
threshold may be adapted once again by slightly increasing 
the threshold as illustrated at map 520 . Specifically , the 
updated threshold 504 may be further adjusted to updated 
threshold 506 wherein updated threshold 506 is closer to the 
initial threshold 502 than updated threshold 504 . A magni 
tude of the second adaptation ( that , the adaptation from 
threshold 504 to threshold 506 ) may use information from 
the first adaptation ( that is , the adaptation from threshold 
502 to threshold 504 ) to better ensure that it is not excessive 
and that the percentage of undiagnosed problems defined by 
the BISF - metric does not again become excessive . This is 
part of the smart adaptation algorithm described at FIG . 7 . 
Changes in performance metrics with respect to EOL 
thresholds may be logged and used for future adaptions . In 
one example , in the context of control theory , the adaptation 
may include a model predictive control algorithm with 
adaptive model parameters . 
10120 ] One example scenario where the battery EOL 
threshold may be updated includes a situation where battery 
water loss occurs . Battery water loss is a significant degra 
dation mechanism for a group of batteries comprising a 
specific vehicle platform and battery size . If the number of 
undiagnosed problems , as reflected by the BISF - metric , is 
too high , the failure mechanism ( water loss ) may be dealt 
with directly by lowering the charge voltage set - point of the 
battery at high temperatures . This will lower the number of 
failures due to this mechanism , and the value of the perfor 
mance index will sink proportionally . However , lowering 
the charge voltage may induce sulfation , which will effec 
tively reduce the capacity of the battery over time . It may 
cause the batteries to fail due to a loss of capacity instead of 
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[ 0123 ] As discussed above , the EOL threshold may be 
determined by analyzing degraded or failed batteries , using 
aging models , or other approaches . The threshold may then 
be represented as a set of linear boundaries , such as those 
depicted at FIG . 2 . Alternatively , the threshold may be 
represented by a curve or manifold , as illustrated at FIG . 8 . 
In some examples , the controller may also define one or 
more intermediate thresholds , as discussed with reference to 
maps 800 , 810 , and 820 of FIG . 8 . 
[ 0124 ] In map 800 , h represents the value of the EOL 
curve for a generic feature . One or more intermediate 
thresholds may be selected that define a predicted time until 
the end of life is reached . The intermediate thresholds may 
be introduced between the current state of the battery f ( t ) and 
the end - of - life threshold . The distance to the intermediate 
end - of - life threshold | | X | | IntThresh depends on the conver 
gence speed v and the chosen intermediate time threshold 
TintThresh as defined by the relation : 

1511 bithresth = T ' niThresh 

an increase in internal resistance . Such failures would occur 
when the vehicle is parked and the battery is depleted 
unusually quickly due to the key - off load . This failure 
mechanism may be monitored by the battery feature 
“ normed battery capacity ” ( QCapAhTNom ) . Lowering 
charge voltage would increase vehicle failures in a large 
population of vehicles due to sulfation to some degree . If the 
number of undiagnosed vehicle failures becomes excessive 
as a result of the change , the BISF - metric corresponding to 
battery capacity will exceed its performance threshold . 
Thus , the adaptation of a threshold for a first feature may 
affect the adaptation of a threshold for a second , different 
feature . Following the process illustrated in FIG . 7 , the 
BISF - metric for battery capacity may only be updated after 
the population of vehicles outfitted with the diagnostic / 
prognostic system are monitored for at least the designated 
monitoring period after the change in set - point control 
occurs . After this monitoring period , the BISF - metric for 
battery capacity is compared with its corresponding thresh 
old . If it is found to be excessive , the EOL - threshold for the 
feature “ normed capacity ” may be lowered as illustrated in 
map 1000 of FIG . 10 , from initial EOL threshold 1002 to 
updated EOL threshold 1004 in a similar manner as the 
change in the EOL - threshold for internal resistance 
described with reference to FIG . 5 . As in the case with water 
loss , several adaptations may be required to achieve accept 
able performance with respect to all performance metrics , 
and new technology may be applied to mitigate the failure 
mechanisms associated with loss of battery capacity . 
[ 0121 ] The performance of the diagnostic / prognostic sys 
tem may also be affected by changes to the set of vehicles 
being monitored . Changes may be seen as noise factors and 
classified into several categories . These changes may cause 
the shape of the distribution functions of battery parameters 
to evolve , and EOL - thresholds may need to be adapted to 
maintain acceptable levels of performance . Technology 
changes that may affect performance include new battery 
charging strategies or changes to the packaging of the 
battery that affect operating temperature . Changes in this 
category may also include improvements in the battery 
design . 
[ 0122 ] Changes in battery operation in a group of vehicles 
may also affect performance . Such changes include 
upgrades in electrical content of a vehicle ( e . g . , more 
entertainment devices operated in key - off conditions ) , or if 
the group of vehicles is sold in a new market with extreme 
ambient temperatures ( e . g . , in a new environment that is 
much cooler or much hotter ) . This may occur if vehicles 
designed for operation in a temperate market are sold in a 
land with very hot or cold average temperatures . System 
performance may also be affected if battery monitoring 
techniques change . New battery monitoring techniques for 
the basic features like internal resistance or capacity may 
cause the distribution of values of a given feature at EOL to 
change as well . Every vehicle and electrical system can be 
expected to be subject to these changes as they evolve . For 
this reason , system performance should be continuously 
monitored and refined using EOL - threshold adaptation . Per 
formance thresholds should also be periodically reviewed in 
order adjust them with respect to the state of the art in 
diagnostic capability and warranty goals . They may be 
defined to drive the system to be as accurate as possible 
without causing excessive warranty costs . 

[ 0125 ] Communication and control activities may be trig 
gered when the state of the battery reaches predefined times 
before the predicted end of life or predefined distances to 
failure . In the case of thresholds defined in time , as shown 
at map 810 of FIG . 8 , triggers may occur if the battery state 
is within a given number of hours , days or weeks of failing . 
For example , a first communication or control activity may 
be triggered when the battery feature is at a first intermediate 
threshold Tyr , at a first duration from the predicted EOL ( h ) . 
A second communication or control activity may be trig 
gered when the battery feature is at a second intermediate 
threshold Tyr ) at a second duration from the predicted EOL 
( h ) , the second duration smaller than the first duration , and 
therefore closer to h . 
[ 0126 ] In the case of thresholds defined by distance to 
failure , triggers may be defined to occur if certain battery 
features degrade . As an example , if battery internal resis 
tance is a feature under surveillance , a trigger may be 
activated if the internal resistance comes within a calibrated 
distance to the internal resistance corresponding to end of 
life , as illustrated at map 820 of FIG . 8 . Therein threshold | | 
X | | IT1 defines a first intermediate internal resistance thresh 
old , | | X | | IT2 defines a second intermediate internal resistance 
threshold , and h represents the threshold at the predicted end 
of life . A first communication or control activity may be 
triggered when the battery feature is at the first intermediate 
threshold while a second communication or control activity 
may be triggered when the battery feature is at the second 
intermediate threshold , the second threshold closer to h than 
the first threshold . 
[ 0127 ] The distance to failure may be defined by multiple 
features . If battery capacity is a second feature under sur 
veillance , a trigger may occur depending on both internal 
resistance and capacity . A trigger may occur if battery 
resistance or battery capacity loss exceeds separate thresh 
olds , or if battery resistance and battery capacity loss exceed 
separate thresholds , or if the values of battery resistance and 
capacity in “ feature space ” come within a predefined dis 
tance to the end of life threshold as illustrated in FIG . 6 . In 
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this way , the end of life threshold in feature - space may be 
augmented by intermediate thresholds that represent specific 
times until end of life is reached or distances to end of life . 
As such , the distances to end of life may be interpreted as 
distances to failure of the component . 
[ 0128 ] When an intermediate threshold approaching the 
end of life representing a distance or time to failure is 
passed , a communication strategy may be triggered . Com 
munication may be directed to the driver , and to entities such 
as the vehicle manufacturer . Additionally , communication 
may be directed to a local car dealership or fleet owner if a 
radio data link ( e . g . , modem ) is implemented for commu 
nication with the outside world . In addition to the commu 
nication , one or more actions may be recommended in view 
of the imminent EOL of the battery . 
[ 0129 ] Because the 12V accessory battery in the autono 
mous vehicle supports safety critical systems in some modes 
of operation , autonomous functions may be disabled if a 
defective battery or a battery nearing its end of life is 
identified . Disabling autonomous functions abruptly may 
cause customer dissatisfaction and inconvenience , espe 
cially if the vehicle cannot be driven manually . Therefore it 
is imperative to warn the driver and service personnel of an 
imminent battery failure before it occurs so that the battery 
could be replaced . For this reason , predicting the time until 
the battery reaches its end of life has a special importance in 
autonomous vehicles . 
[ 0130 ] On top of customer satisfaction issues , it has been 
suggested that autonomous functions may be disabled or 
curtailed if the end of life of the battery is eminent but has 
not yet been reached . In this case limitations would come 
into effect if the EOL of the battery is predicted to be within 
a predefined of time . 
[ 0131 ] Accordingly , a communication strategy may be 
used to alert the driver and maintenance personnel to an 
eminent battery failure while taking marketing , customer 
satisfaction , warranty costs and other facets into account . 
Generically , the strategy may communicate directly with the 
maintenance personnel and with the driver in separate 
occasions when corresponding thresholds are passed . The 
communications may represent a kind of count - down until 
the end of life is reached . Similarly , autonomous functions 
may be limited in a step - wise fashion as the end of life of the 
battery is approached . Each time a threshold is passed , the 
limitations may be stepped up until the vehicle is no longer 
allowed to drive itself , and manual driving may also be 
curtailed . 
[ 0132 ] These types of communication and control strate 
gies that send messages to the driver and maintenance 
personnel and curtail functionality in a step - wise manner as 
the predicted end - of - life of the battery may be applied to 
conventional vehicles as well . Drivers may be warned of an 
imminent battery and to expect loss of assist in the steering 
system or periodic shut - down of climate control or enter 
tainment systems . Both of these types of events are symp 
toms of a failing 12V accessory battery . 
[ 0133 ] When an intermediate threshold approaching the 
end of life representing a distance or time to failure is 
passed , a communication strategy , such as the example 
communication strategy of method 1300 of FIG . 13 may be 
triggered . Communication may be directed to the driver , and 
to entities such as the vehicle manufacturer or car if a radio 
data link is implemented for communication with the outside 
world . In addition , communication may take the form of 

flags written into non - volatile memory in the vehicle that 
indicate when thresholds have been passed . Such flags may 
be read by service personnel in order to facilitate testing and 
replacement of the battery . 
10134 ] Communication to the driver himself may take the 
form of a warning light or text on the dashboard , an email 
or SMS sent to the driver ' s account , or a notice sent to an app 
on a driver ' s mobile device . The communication strategy 
may trigger new or different communication means to the 
driver or outside world as the thresholds coming closer to the 
predicted end if life are passed . For example , if the time to 
failure is estimated to be within three months , an indicator 
on the dashboard may be activated . If the battery is not 
changed and a time to failure within less than two months is 
predicted , a text message may appear on the dashboard when 
the vehicle is started . Passing subsequent thresholds may 
trigger emails to the driver and an alert to the dealership . 
[ 0135 ] In FIG . 13 , TTF represents the estimated time to 
failure ( time to end of life ) , and Tr? . . . Tyr4 represent 
intermediate thresholds expressed in time . The communica 
tion strategy may be activated whenever the vehicle is 
driving or periodically when the vehicle is parked . When a 
first intermediate threshold is passed at 1302 , an indicator on 
the dashboard may be activated at 1302 . When a second 
intermediate threshold is passed at 1306 , a text message may 
appear on the dashboard or an alternate multifunction dis 
play when the vehicle is started at 1308 . When a third 
intermediate threshold is passed at 1310 , the controller may 
send an email to alert the driver at 1312 . When a fourth 
intermediate threshold is passed at 1314 , the controller may 
send an alert to the dealership . It will be appreciated that the 
communication actions written in the blocks of FIG . 13 may 
include additional complex tasks that are not described in 
FIG . 13 . For example the actions " Send eMail to Owner " or 
“ Send eMail to Dealership ” may include further logic to 
only enable an email to be set once a day . 
[ 0136 ] Alternatively , the controller may use a generic 
communication strategy , such as illustrated at method 1400 
of FIG . 14 . Therein , the thresholds | | X | | xzx are expressed with 
respect to distance to failure . Thresholds that are defined 
with respect to time may be redefined with respect to 
distance to failure using the equation : 

TintThresh | | * | | IntThresh = - 

[ 0137 ] Doing so allows the definition of communication 
strategies that are defined by both time to failure and 
distance to failure . For example , a strategy may trigger 
communication when the time to failure is less than a 
threshold or the internal resistance rises to a defined level . 
[ 0138 ] The communication strategy of FIG . 14 may be 
activated whenever the vehicle is driving or periodically 
when the vehicle is parked . When a first intermediate 
threshold is passed at 1402 , a first communication Com1 is 
transmitted at 1402 . When a second intermediate threshold 
is passed at 1406 , a second communication Com2 is trans 
mitted at 1408 . When a third intermediate threshold is 
passed at 1410 , a third communication Com3 is transmitted 
at 1412 . When a fourth intermediate threshold is passed at 
1414 , a fourth communication Com4 is transmitted at 1416 . 
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[ 0139 ] The communication actions in FIG . 14 are generi - 
cally designated as Coml . . . Com 4 . As in the strategy 
illustrated in FIG . 13 , the individual communication actions 
may be complex and have internal controls to modify or 
delay their transmission depending on external factors . For 
example , they may only communicate once a day or at 
vehicle key - off . 
10140 It will be appreciated that communication may take 
various forms including those described above as well as 
others . 
[ 0141 ] In a similar fashion to communication strategies , 
different control strategies may be activated when interme 
diate thresholds representing a distance or time to failure are 
passed . As examples , a set of control strategies may be put 
in place to limit the autonomous operation of a vehicle or to 
limit or deactivate individual systems or functions in a 
vehicle with active suspension as a function of the passed 
intermediate thresholds . As an example , if a vehicle operates 
autonomously , steering , braking and powertrain control 
functions can be realized by electrical actuators . These may 
be servos that steer the vehicle ( as with steer by wire 
systems ) and electrical pumps and valves that actuate the 
brakes . Beyond actuation , control is done by a micropro 
cessor that also relies on electrical power for operation . 
Electrical actuators are usually characterized by high current 
transients when they are switched on or when they are 
controlled to exert high forces . The primary electrical power 
supplies of modern vehicles may be alternators or generators 
when an internal combustion engine is used for propulsion 
or a high - voltage battery and DC - DC converter when the 
vehicle has an electric propulsion system . In either case , 
alternators , generators or DC - DC converters are usually not 
capable of supplying the transients drawn by active chassis 
systems . For that reason , 12V SLI batteries are implemented 
in parallel with the ( low - voltage ) power distribution network 
in order to provide electrical power when the primary power 
source is saturated . 
[ 0142 ] When these batteries degrade and are no longer 
able to source sufficient power upon demand , actuation may 
be limited or not occur at all . This means that steering and 
braking may occur slowly and or not achieve desired actua 
tion levels . While actuation is occurring with degraded 
batteries , the voltage on the power distribution network may 
decrease to significant levels , which may deactivate or reset 
the microprocessors that control the vehicle and not allow 
other actuators to operate properly . The degradation of 
actuation and critical voltage levels on the power distribu 
tion network may cause the vehicle to leave its desired path 
and cause a safety hazard . For that reason , 12V SLI batteries 
may be classified as safety - critical components in autono 
mous vehicles . Control strategies may be put in place to 
limit autonomous functionality if the time before the pre 
dicted end of life of the battery or the distance to failure 
becomes smaller than defined thresholds . 
[ 0143 ] In one example , 6 levels of vehicle automation may 
be defined ( e . g . , numbered 0 through 5 ) . For example , the 
Society of Automotive Engineers ( SAE ) has defined 6 levels 
of vehicle automation that are numbered through 5 . As the 
levels increase , the vehicle becomes more automated . In 
level 3 ( half - way point ) , the vehicle may be controlled 
autonomously without human intervention , but it is required 
that the driver is always prepared to take control of the 
vehicle in case of problems or in case the limits of the 
control system is exceeded . In level 4 , complete autonomy 

is possible in certain driving modes . In these modes it is not 
necessary that a driver be ready to perform control opera 
tions at all times . Level 5 is the highest level , and in this 
level no human intervention is required in any phase of 
vehicle operation . If the battery time or distance to failure 
falls below calibrated thresholds , autonomous functionality 
may be limited along the lines of the levels of vehicle 
automation as defined above . In other words , a vehicle that 
is capable of level 4 or 5 operation may be limited to level 
3 if the time or distance to failure falls between a calibrated 
amount . Under such a policy , only functionality with driver 
supervision would be allowed . This would be communicated 
to the driver and possibly require his acknowledgement 
before a drive begins . If a control strategy is defined along 
these lines , operation of an autonomous vehicle may be 
limited to level 3 if the battery time or distance to failure 
falls below a calibrated intermediate threshold . If the time or 
distance to failure falls below a second intermediate thresh 
old that is closer to the EOL - prediction , functionality may be 
limited to lower levels of functionality . 
101441 One example control strategy is illustrated with 
reference to method 1500 of FIG . 15 . Therein , the controller 
may use thresholds that activate control modes expressed 
with respect to predicted time to failure . As in the case with 
communication strategies ( FIG . 13 - 14 ) , the thresholds may 
also be defined with respect to distance to failure , as well as 
mixed strategies using both types of thresholds . In the case 
of a control strategy that limits autonomous vehicle func 
tionality , it may be expected that limitations in functionality 
may only be applied at the beginning of a drive when the 
driver has an opportunity to see and acknowledge them . 
Therefore in one example , the strategy illustrated in FIG . 15 
may be activated when the vehicle is keyed on . The control 
strategy of FIG . 15 that limits a vehicle ' s autonomous 
functionality may be coordinated with the communication 
strategy of FIG . 13 or 14 to explain the cause of the 
limitation to the driver and communicate this and additional 
pertinent information to the dealership ’ s service personnel . 
[ 0145 ] The control strategy of FIG . 15 may be activated 
whenever the vehicle is keyed - on . When a first intermediate 
threshold is not passed at 1502 , the controller may allow 
unlimited AV functionality for the autonomous vehicle at 
1512 . If the first intermediate threshold is passed but a 
second intermediate threshold is not passed at 1504 , then the 
method moves to 1506 where the controller activates a 
message in the multifunction display ( e . g . , on the dash 
board ) indicating AV level 2 limitation being applied . If 
driver acknowledgement is not received at 1508 after acti 
vating the message , then the method returns to 1506 to 
continue displaying the message . Else , after receiving driver 
acknowledgement , at 1510 , AV functionality is limited to 
level 2 ( of the 0 - 5 levels defined by the SAE ) . 
[ 014 ] If the first and the second intermediate thresholds 
are both passed at 1502 and 1504 , then the method moves to 
1514 where the controller activates a message in the mul 
tifunction display ( e . g . , on the dashboard ) indicating AV 
level 3 limitation being applied . If driver acknowledgement 
is not received at 1516 after activating the message , then the 
method returns to 1514 to continue displaying the message . 
Else , after receiving driver acknowledgement , at 1516 , AV 
functionality is limited to level 3 ( of the 0 - 5 levels defined 
by the SAE ) . 
0147 ] As described above , active chassis components that 
exert high mechanical forces in chassis systems may draw 
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large power transients when they are activated , or when their 
output force is controlled to step up quickly . Examples of 
active chassis components include electrically - assisted 
power steering ( EPAS ) , electric brakes and electrically 
activated anti - roll control ( EARC ) . The functional limitation 
of some non - essential active chassis systems may be carried 
out on conventional or autonomous vehicles in order to 
maintain functionality of those that are essential for safety . 
If these components are supplied by the 12V power distri 
bution network , they may produce large voltage dips when 
they are activated unless the network is supported by a 
well - charged SLI battery . If the battery is at the end of its 
life , high internal resistance and diminished capacity along 
with internal short circuits and other age - related failure 
mechanisms may limit its ability to support these loads . 
Non - essential active chassis systems may be deactivated in 
order to favor functionality of systems that are deemed more 
critical for safety . In a vehicle with EPAS , electric brakes 
and electric roll control , the roll control may be deactivated 
if the time or distance to the battery ' s end of life is smaller 
than a threshold . 
[ 0148 ] An example of such a control strategy is shown at 
method 1600 of FIG . 16 . As in the case with communication 
and control strategies for autonomous vehicles , the thresh 
olds may also be defined with respect to distance to failure 
| | X | | , and mixed strategies using both types of thresholds may 
be used . The strategy illustrated in FIG . 16 is a specific 
implementation of a generic control strategy that may limit 
or deactivate any non - essential high - power load if the bat 
tery reaches its end of life . 
10149 ) The control strategy of FIG . 16 may be activated 
whenever the vehicle is keyed - on . When a first intermediate 
threshold is not passed at 1602 , all settings are maintained . 
If the first intermediate threshold is passed , at 1604 , the 
controller activates a message in the multifunction display 
( e . g . , on the dashboard ) indicating that the electrically 
activated anti - roll control eARC is about to be deactivated . 
At 1606 , after activating the message , the ARC is deacti 
vated . In this way , as intermediate thresholds are passed , 
non - essential vehicle systems may be deactivated in order to 
favor functionality of systems that are deemed more essen 
tial ( e . g . , critical for safety ) . Another type of control action 
that may occur at a battery ' s end of life is to increase the 
charge voltage to help maintain a high state of charge in the 
limited capacity that remains . Such a control strategy is 
illustrated in at method 1100 of FIG . 11 . Method 1100 starts 
at 1102 by confirming a key - on event . If a key - on event is 
not confirmed , the method ends . At 1104 , it is determined if 
an intermediate threshold time or duration has elapsed . In 
the depicted example , it is determined if threshold duration 

T has elapsed . If not , the battery charge voltage is defined 
by function Z1 having a lower voltage . Else , if the threshold 
duration has elapsed , the battery charge voltage is defined by 
function Z2 having a higher voltage . Herein , Z1 and Z2 
represent temperature - dependent charge - voltage curves . In 
this example , the voltages defined by Z2 would be higher 
than the voltages defined by Z1 to facilitate charging the 
battery . 
[ 0150 ] While FIGS . 13 - 16 depict distinct communication 
and control action strategies , in still other examples , the 
communication and control action strategies may be com 
bined , such as in the example strategy of FIG . 9 . As with the 
independent control and communication strategies , method 
900 of FIG . 9 uses intermediate thresholds . Therein TTF 

represents the estimated time to failure ( time to end of life ) , 
and T771 - T174 represent intermediate thresholds expressed in 
time . The communication strategy may be activated when 
ever the vehicle is driving or periodically when the vehicle 
is parked . While the intermediate thresholds T2 - T174 are 
depicted at method 900 as time thresholds , it will be 
appreciated that in alternative examples , intermediate dis 
tance thresholds | | X | | IT1 - IT4 may be similarly applied with 
out departing from the scope of the invention . In the 
depicted example , the method is for battery monitoring for 
an autonomous vehicle ( AV ) configured with autonomous 
driving capabilities . 
0151 ] At 902 , the method includes initiating battery 
monitoring . At 904 , the method includes if a first interme 
diate threshold ( e . g . , first time or distance threshold ) has 
been reached . If the first threshold has not been reached , at 
920 , vehicle operation may continue without undertaking 
any limiting actions . For example , unlimited functionality of 
the autonomous vehicle may be allowed . 
[ 0152 ] If the first intermediate threshold has been reached , 
then at 905 , the method includes performing a first commu 
nication action ( generically represented as Coml ) such as by 
activating a dashboard indicator . For example , the first 
communication to the driver may take the form of a warning 
light or text on the dashboard . Optionally , at 906 , it may be 
determined if an acknowledgement has been received , such 
as may be confirmed when the vehicle operator actuates a 
button or interacts with a touch display on the vehicle ' s 
dashboard . Upon confirmation , at 907 , a first action may be 
undertaken . Else , the method may move to 908 directly . The 
first action may include , for example , the autonomous 
functionality of the vehicle being limited by a first amount 
to a first level , lower than the full autonomous functionality 
level . Limiting the autonomous functionality to the first 
level may include , for example , limiting autonomous func 
tionality to the “ Conditional Automation " corresponding to 
level 3 of the levels of vehicle automation published by the 
Society of Automotive Engineers ( SAE Standard J3016 
from Sep . 22 , 2016 ) . Alternatively , one or more non - essen 
tial functions of the vehicle ( such as eARC for roll control ) 
may be disabled . 
[ 0153 ] The method then moves to 908 to determine if a 
second intermediate threshold ( e . g . , second time or distance 
threshold ) has been reached , the second threshold closer to 
the EOL threshold ( h ) of the component than the first 
threshold . In other examples , the method may move from 
905 to 908 directly and the limiting of the autonomous 
functionality to the first level may be included with the first 
communication to the driver at 905 . 
10154 ] . If the second intermediate threshold has been 
reached , then at 909 , the method includes performing a 
second communication action ( generically represented as 
Com2 ) such as by displaying a text message in a multi 
function display of the vehicle . For example , the second 
communication to the driver may take the form of text 
displayed on the dashboard , an SMS sent to the driver ' s 
account , or a notice sent to an application running on a 
driver ' s mobile device . Optionally , at 910 , it may be deter 
mined if an acknowledgement has been received . Upon 
confirmation , at 911 , a second action may be undertaken . 
Else , the method may move to 912 directly . The second 
action may include , for example , the autonomous function 
ality of the vehicle being limited by a second amount , larger 
than the first amount , to a second level , lower than the first 
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level . Limiting the autonomous functionality to the second 
level may include , for example limiting autonomous func 
tionality to the “ Partial Automation ” corresponding to level 
2 of the levels of vehicle automation published by the 
Society of Automotive Engineers . Alternatively , one or more 
additional non - essential functions of the vehicle may be 
disabled . The method then moves to 912 to determine if a 
third intermediate threshold ( e . g . , third time or distance 
threshold ) has been reached , the third threshold closer to the 
EOL threshold ( h ) of the component than the first or second 
threshold . In other examples , the method may move from 
909 to 912 directly and the limiting of the autonomous 
functionality to the second level may be included with the 
second communication to the driver at 909 . 
[ 0155 ] If the third intermediate threshold has been 
reached , then at 913 , the method includes performing a third 
communication action ( generically represented as Com3 ) 
such as by sending an email to the driver ' s account or to an 
application running on the driver ' s mobile device . Option 
ally , at 914 , it may be determined if an acknowledgement 
has been received . Upon confirmation , at 915 , a third action 
may be undertaken . Else , the method may move to 916 
directly . The third action may include , for example , the 
autonomous functionality of the vehicle being limited by a 
third amount , larger than the second amount , to a third level , 
lower than the second level . Limiting the autonomous func 
tionality to the third level may include , for example , all 
autonomous functionality may be disabled and the vehicle 
may only be manually driven if that is possible . Alterna 
tively , all non - essential functions of the vehicle may be 
disabled . 
[ 0156 ] The method then moves to 916 to determine if a 
fourth intermediate threshold ( e . g . , fourth time or distance 
threshold ) has been reached , the fourth threshold closer to 
the EOL threshold ( h ) of the component than any of the first , 
second , or third threshold . In other examples , the method 
may move from 913 to 916 directly and the limiting of the 
autonomous functionality to the third level may be included 
with the second communication to the driver at 913 . 
[ 0157 ] If the fourth intermediate threshold has been 
reached , then at 917 , the method includes performing a 
fourth communication action ( generically represented as 
Com4 ) such as by sending an email to the dealership . In 
addition , at 918 , a fourth , final action may be undertaken . 
The fourth action may include , for example , disabling the 
vehicle completely . Else , at 918 , the method may include 
continuing to operate the vehicle with the limited autono 
mous functionality . While the method depicts four interme 
diate thresholds , in other examples , a smaller or larger 
number of intermediate thresholds may be included . 
[ 0158 ] In this way , a controller may predict the time to end 
of life for vehicle batteries , such as lead - acid 12V SLI 
batteries that are commonly used in vehicles for starting , 
running accessories when the motor is not running , and 
support high - power load transients . Any of the methods and 
strategies discussed herein may apply to autonomous 
vehicles , as well as conventional gasoline or hybrid electric 
vehicles . Generic forms of the control and communication 
strategies described here may be applied to any vehicle that 
uses an SLI battery . In general these strategies trigger 
communication and control actions when the predicted time 
to end of life is smaller than a calibrated threshold . The 
nature of the communication and control actions may 
change as the predicted time to end of life decreases . 

Progressively increasing warnings as the end of life 
approaches through dashboard messages and emails may be 
applied to any vehicle . The same may be said for the control 
strategies . For example , as the end of life approaches , the 
charge voltage may be increased in steps , and the battery 
charging strategy may be modified to prolong the ability of 
the battery to provide basic functionality . The methods used 
herein to predict the end of life of SLI batteries may also be 
applied to traction batteries or other batteries as well . This 
may require the choice of new battery features to charac 
terize the end of life condition . Any method that predicts the 
time to the end of life of a component may be used in 
conjunction with the generic control and communication 
strategies described here . 
[ 0159 ] It will be further appreciated that while the meth 
ods disclosed herein predict the life expectancy of a vehicle 
battery , the methods may be similarly used to predict the life 
expectancy of a number of components in a road vehicle , 
such as tires , filters and lubricants . 
[ 0160 ] In this way , a prognostics - based approach for 
assessing the remaining useful life of a vehicle battery is 
provided . The prognostics approach may be used to comple 
ment any existing prognostics feature by estimating the time 
left and / or the distance left before the battery degrades . By 
defining thresholds for each battery characteristic that affects 
battery life based on changes in its internal properties ( such 
as resistance and capacity ) , a diagnosis of the present state 
of the battery and a prognosis of its health in the future 
including an estimate of the time to a battery end of life may 
be achieved . By relying on the estimated speed of conver 
gence of a sensed battery characteristic to the corresponding 
threshold , the differing effects of different mechanisms of 
battery degradation ( such as corrosion versus sulfation ) can 
be accounted for . In addition , the trajectory of each charac 
teristic can be used to better estimate the end of life of the 
battery . By more accurately estimating the remaining life of 
the component may providing it to the vehicle operator as a 
more comprehensible metric , warranty issues are reduced , 
and customer satisfaction is improved . 
[ 0161 ] In one example , a method for a vehicle comprises : 
predicting a state of degradation of a vehicle battery based 
on a rate of convergence of a plurality of battery metrics , 
derived from sensed vehicle operating parameters , towards 
corresponding thresholds , the thresholds determined based 
on past driving history data including the past history of each 
of the plurality of battery metrics ; and converting the 
predicted state of degradation into a remaining time or 
duration before battery end of life for display to a vehicle 
operator . In the preceding example , additionally or option 
ally , the plurality of battery metrics include a battery resis 
tance and a battery capacity , and the sensed vehicle operat 
ing parameters includes one or more of a battery current , a 
battery voltage , and a battery terminal temperature . In any or 
all of the preceding examples , additionally or optionally , the 
predicting includes predicting a higher state of degradation 
as the rate of convergence of any one of the plurality of 
battery metrics increases . In any or all of the preceding 
examples , additionally or optionally , the method further 
comprises updating the corresponding thresholds based on 
vehicle performance following the converting . In any or all 
of the preceding examples , additionally or optionally , the 
method further comprises : comparing the predicted state of 
degradation to an end of life threshold and one or more 
intermediate thresholds in between a current state of degra 
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dation and the end of the life threshold ; and limiting one or 
more vehicle functions based on the comparing . In any or all 
of the preceding examples , additionally or optionally , the 
vehicle is an autonomous vehicle and wherein the limiting 
includes : when the predicted state of degradation is lower 
than each of the one or more intermediate thresholds and the 
end of life threshold , operating the vehicle without limiting 
any autonomous vehicle functionality ; when the predicted 
state of degradation is higher than a first of the one or more 
intermediate thresholds , operating the vehicle with a first 
degree of limiting of autonomous vehicle functionality ; 
when the predicted state of degradation is higher than a 
second of the one or more intermediate thresholds , larger 
than the first of the one or more intermediate thresholds , 
operating the vehicle with a second degree of limiting of 
autonomous vehicle functionality , higher than the first 
degree ; and when the predicted state of degradation is higher 
than each of the one or more intermediate thresholds and the 
end of life threshold , operating the vehicle without all 
autonomous vehicle functionality limited . In any or all of the 
preceding examples , additionally or optionally , the sensed 
vehicle operating parameter is sensed during transient and 
steady - state vehicle operating conditions , and the parameter 
sensed during transient operating conditions is weighted 
different from the parameter sensed during steady - state 
operating conditions . In any or all of the preceding 
examples , additionally or optionally , the method further 
comprises estimating a value of the determined metric as a 
function of a most recent estimate of the determined metric 
retrieved from the past history of the determined metric , and 
a distance traveled by the vehicle since the most recent 
estimate of the determined metric . In any or all of the 
preceding examples , additionally or optionally , the method 
further comprises , estimating a value of the determined 
metric as a function of an initial estimate of the determined 
metric , retrieved from the past history of the determined 
metric at a time of installation of the component in the 
vehicle . In any or all of the preceding examples , additionally 
or optionally , the method further comprises converting the 
predicted state of degradation into a remaining number of 
engine start events for display to the vehicle operator based 
on the past driving history data and predicted future driving . 
In any or all of the preceding examples , additionally or 
optionally , the thresholds are determined off - board the 
vehicle while the rate of convergence is determined on 
board the vehicle . In any or all of the preceding examples , 
additionally or optionally , the vehicle is one of a plurality of 
vehicles of a fleet , the method further comprising : estimat 
ing the plurality of battery metrics for each vehicle of the 
fleet over at least a threshold duration , and predicting the 
state of degradation of the vehicle battery responsive to the 
estimating . In any or all of the preceding examples , addi 
tionally or optionally , the method further comprises , updat 
ing each of the end of life threshold and the one or more 
intermediate thresholds of the vehicle responsive to perfor 
mance of each vehicle of the fleet following the predicting . 
[ 0162 ] Another example method for predicting battery 
health for a vehicle , comprises : monitoring at least one 
battery health parameter in real - time using one or more 
onboard battery monitoring sensors ; determining a threshold 
of the monitored battery health parameter based on infor 
mation gathered from vehicle communication network and 
vehicle operating conditions ; defining a battery end - of life 
prediction algorithm based on a speed of convergence of the 

monitored battery health parameter to the determined thresh 
old ; and estimating an end of life of the battery based on the 
prediction algorithm . In any or all of the preceding 
examples , additionally or optionally , the method further 
comprises , limiting one or more autonomous functions of 
the vehicle based on the estimating , a degree of the limiting 
based on the estimated end of life relative to an end of life 
threshold . In any or all of the preceding examples , addition 
ally or optionally , the method further comprises , limiting 
one or more non - essential functions , such as an electrically 
actuated anti - roll control system of the vehicle , based on the 
estimating , a degree of the limiting based on the estimated 
end of life relative to an end of life threshold . In any or all 
of the preceding examples , additionally or optionally , the 
vehicle is one of a plurality of vehicles in a vehicle fleet , and 
wherein determining the threshold includes determining the 
thresholds based on battery end - of - life information gathered 
from each of the plurality of vehicles of the fleet and 
received via the vehicle communication network . 
[ 0163 ] An example vehicle system comprises : a battery ; 
one or more sensors coupled to the battery ; a motor driven 
using electrical power drawn from the battery ; an engine ; a 
network communicatively coupling the vehicle system to 
one or more additional vehicles of a fleet ; a display ; and a 
controller with computer readable instructions for : predict 
ing a duration remaining until an end of life of the battery 
based on a rate of convergence of a plurality of sensed 
battery parameters towards corresponding parameter thresh 
olds , the thresholds determined based on battery history for 
the vehicle system and each of the one or more additional 
vehicles of the fleet ; comparing the predicted duration to a 
threshold end of life , and limiting one or more functions of 
the vehicle based on comparison . In any or all of the 
preceding examples , additionally or optionally , the control 
ler includes further instructions for : when the predicted 
duration is higher than the threshold end of life , displaying 
the predicted duration to a vehicle operator on the display 
and limiting an autonomous functionality of the vehicle . In 
any or all of the preceding examples , additionally or option 
ally , limiting one or more functions of the vehicle based on 
the comparison includes limiting one or more of a powered 
steering assist , climate control , and entertainment system 
operation . In any or all of the preceding examples , addition 
ally or optionally , controller includes further instructions for 
updating the threshold end of life based on vehicle perfor 
mance for the vehicle system and each of the one or more 
additional vehicles of the fleet following the predicting , the 
threshold end of life lowered responsive to a drop in the 
vehicle performance . 
[ 0164 ] Note that the example control and estimation rou 
tines included herein can be used with various engine and / or 
vehicle system configurations . The control methods and 
routines disclosed herein may be stored as executable 
instructions in non - transitory memory and may be carried 
out by the control system including the controller in com 
bination with the various sensors , actuators , and other 
engine hardware . The specific routines described herein may 
represent one or more of any number of processing strate 
gies such as event - driven , interrupt - driven , multi - tasking , 
multi - threading , and the like . As such , various actions , 
operations , and / or functions illustrated may be performed in 
the sequence illustrated , in parallel , or in some cases omit 
ted . Likewise , the order of processing is not necessarily 
required to achieve the features and advantages of the 
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example embodiments described herein , but is provided for 
ease of illustration and description . One or more of the 
illustrated actions , operations and / or functions may be 
repeatedly performed depending on the particular strategy 
being used . Further , the described actions , operations and / or 
functions may graphically represent code to be programmed 
into non - transitory memory of the computer readable stor 
age medium in the engine control system , where the 
described actions are carried out by executing the instruc 
tions in a system including the various engine hardware 
components in combination with the electronic controller . 
( 0165 ) It will be appreciated that the configurations and 
routines disclosed herein are exemplary in nature , and that 
these specific embodiments are not to be considered in a 
limiting sense , because numerous variations are possible . 
For example , the above technology can be applied to bat 
teries used for starting , supporting transient loads or pro 
pulsion with a variety of chemistries . The subject matter of 
the present disclosure includes all novel and non - obvious 
combinations and sub - combinations of the various systems 
and configurations , and other features , functions , and / or 
properties disclosed herein . 
[ 016 ] . The following claims particularly point out certain 
combinations and sub - combinations regarded as novel and 
non - obvious . These claims may refer to " an " element or “ a 
first " element or the equivalent thereof . Such claims should 
be understood to include incorporation of one or more such 
elements , neither requiring nor excluding two or more such 
elements . Other combinations and sub - combinations of the 
disclosed features , functions , elements , and / or properties 
may be claimed through amendment of the present claims or 
through presentation of new claims in this or a related 
application . Such claims , whether broader , narrower , equal , 
or different in scope to the original claims , also are regarded 
as included within the subject matter of the present disclo 
sure . 

1 . A method for a vehicle , comprising : 
predicting a state of degradation of a vehicle battery based 
on a rate of convergence of a plurality of battery 
metrics , derived from sensed vehicle operating param 
eters , towards corresponding thresholds , the thresholds 
determined based on past driving history data including 
the past history of each of the plurality of battery 
metrics ; and 

converting the predicted state of degradation into a 
remaining time or duration before battery end of life for 
display to a vehicle operator . 

2 . The method of claim 1 , wherein the plurality of battery 
metrics include a battery resistance and a battery capacity , 
and the sensed vehicle operating parameters includes one or 
more of a battery current , a battery voltage , and a battery 
terminal temperature . 

3 . The method of claim 2 , wherein the predicting includes 
predicting a higher state of degradation as the rate of 
convergence of any one of the plurality of battery metrics 
increases . 

4 . The method of claim 1 , further comprising updating the 
corresponding thresholds based on vehicle performance 
following the converting . 

5 . The method of claim 1 , further comprising : 
comparing the predicted state of degradation to an end of 

life threshold and one or more intermediate thresholds 
in between a current state of degradation and the end of 
the life threshold ; and 

limiting one or more vehicle function as based on the 
comparing . 

6 . The method of claim 5 , wherein the vehicle is an 
autonomous vehicle and wherein the limiting includes : 
when the predicted state of degradation is lower than each 

of the one or more intermediate thresholds and the end 
of life threshold , operating the vehicle without limiting 
any autonomous vehicle functionality ; 

when the predicted state of degradation is higher than a 
first of the one or more intermediate thresholds , oper 
ating the vehicle with a first degree of limiting of 
autonomous vehicle functionality ; 
when the predicted state of degradation is higher than 

a second of the one or more intermediate thresholds , 
larger than the first of the one or more intermediate 
thresholds , operating the vehicle with a second 
degree of limiting of autonomous vehicle function 
ality , higher than the first degree ; and 

when the predicted state of degradation is higher than 
each of the one or more intermediate thresholds and 
the end of life threshold , operating the vehicle with 
out autonomous vehicle functionality . 

7 . The method of claim 1 , further comprising , estimating 
a value of the determined metric as a function of a most 
recent estimate of the determined metric retrieved from the 
past history of the determined metric , and a distance traveled 
by the vehicle since the most recent estimate of the deter 
mined metric . 

8 . The method of claim 1 , further comprising , estimating 
a value of the determined metric as a function of an initial 
estimate of the determined metric , retrieved from the past 
history of the determined metric at a time of installation of 
the component in the vehicle . 

9 . The method of claim 1 , further comprising , converting 
the predicted state of degradation into a remaining number 
of engine start events for display to the vehicle operator 
based on the past driving history data and predicted future 
driving . 

10 . The method of claim 1 , wherein the thresholds are 
determined off - board the vehicle while the rate of conver 
gence is determined on - board the vehicle . 

11 . The method of claim 6 , wherein the vehicle is one of 
a plurality of vehicles of a fleet , the method further com 
prising : 

estimating the plurality of battery metrics for each vehicle 
of the fleet over at least a threshold duration ; and 

predicting the state of degradation of the vehicle battery 
responsive to the estimating . 

12 . The method of claim 11 , further comprising , updating 
each of the end of life threshold and the one or more 
intermediate thresholds of the vehicle responsive to perfor 
mance of each vehicle of the fleet following the predicting . 

13 . A method for predicting battery health for a vehicle , 
comprising : 
monitoring at least one battery health parameter in real 

time using one or more onboard battery monitoring 
sensors ; 

determining a threshold of the monitored battery health 
parameter based on information gathered from vehicle 
communication network and vehicle operating condi 
tions ; 
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defining a battery end - of life prediction algorithm based 
on a speed of convergence of the monitored battery 
health parameter to the determined threshold ; and 

estimating an end of life of the battery based on the 
prediction algorithm . 

14 . The method of claim 13 , further comprising , limiting 
one or more autonomous functions or safety - related func 
tions requiring electrical power of the vehicle based on the 
estimating , a degree of the limiting based on the estimated 
end of life relative to an end of life threshold . 

15 . The method of claim 13 , further comprising , limiting 
one or more non - essential electrical power requiring systems 
of the vehicle based on the estimating , a degree of the 
limiting based on the estimated end of life relative to an end 
of life threshold , the one or more non - essential electrical 
power requiring systems of the vehicle including an elec 
trically - actuated anti - roll control system . 

16 . The method of claim 13 , wherein the vehicle is one of 
a plurality of vehicles in a vehicle fleet , and wherein 
determining the threshold includes determining the thresh 
olds based on battery end - of - life information gathered from 
each of the plurality of vehicles of the fleet and received via 
the vehicle communication network . 

17 . A vehicle system , comprising : 
a battery ; 
one or more sensors coupled to the battery ; 
a motor driven using electrical power drawn from the 

battery ; 
an engine ; 
a network communicatively coupling the vehicle system 

to one or more additional vehicles of a fleet ; 

a display ; and 
a controller with computer readable instructions for : 

predicting a duration remaining until an end of life of 
the battery based on a rate of convergence of a 
plurality of sensed battery parameters towards cor 
responding parameter thresholds , the thresholds 
determined based on battery history for the vehicle 
system and each of the one or more additional 
vehicles of the fleet ; 

comparing the predicted duration to a threshold end of 
life ; and 

limiting one or more functions of the vehicle based on 
the comparing . 

18 . The system of claim 17 , wherein the controller 
includes further instructions for : 
when the predicted duration is higher than the threshold 

end of life , displaying the predicted duration to a 
vehicle operator on the display and limiting an autono 
mous functionality of the vehicle . 

19 . The system of claim 17 , wherein limiting one or more 
functions of the vehicle based on the comparing includes 
limiting one or more of a powered steering assist , climate 
control , and entertainment system operation . 

20 . The system of claim 17 , further comprising a battery 
life predicting system communicatively coupled to the con 
troller and the one or more sensors , wherein the controller 
includes further instructions for updating the threshold end 
of life based on a performance of the battery life prediction 
system that monitors each of the one or more additional 
vehicles of the fleet following the predicting , the threshold 
end of life lowered responsive to a drop in the prediction 
system performance . 


