«» UK Patent Application .,GB ,2551490

(13)A

(43)Date of A Publication 27.12.2017
(21) Application No: 1610416.8 (51) INT CL:
GOG6F 9/445 (2006.01) B63G 8/00 (2006.01)
(22) Date of Filing: 15.06.2016

(71) Applicant(s):
Saab Seaeye Limited
(Incorporated in the United Kingdom)
20 Brunel Way, Segensworth, Farnham, Hampshire,
PO15 5SD, United Kingdom

(72) Inventor(s):
Andrew Crosher
Carl Pettit
Mark Pettit

(74) Agent and/or Address for Service:
Reddie & Grose LLP
The White Chapel Building,
10 Whitechapel High Street, London, E1 8QS,
United Kingdom

(56) Documents Cited:
WO 2013/126058 A1
US 7480907 B1
US 20040034861 A1

(58) Field of Search:
INT CL GO6F

WO 2011/075139 A1
US 20050160257 A1

Other: WPI, EPODOC, TXTA, Internet

(54) Title of the Invention: Method and apparatus for updating software on remotely operated vehicle
Abstract Title: Updating Computer Executable Instructions in an Underwater Remotely Operated Vehicle

(ROV)

(57) A method of updating computer executable instructions
(e.g. software or firmware) for one or more functional
modules in an underwater remotely operated vehicle
(ROV) comprises: receiving updated instructions at a
functional module of the ROV from a surface control
computer over a communication link; storing the updated
computer executable instructions in a first portion of a
non-volatile memory that is accessible by the processor
of the functional module; and subsequently writing the
updated computer executable instructions from the first
portion of the non-volatile memory to a second portion of
a non-volatile memory wherein the functional module is
configured such that the processor executes computer
executable instructions stored in the second portion of
non-volatile memory. Determining whether updated
instructions are stored in the first portion comprises
executing predetermined instructions according to an
“action” code stored in a portion of non-volatile memory
accessible by the processor which indicates whether
updated instructions are stored; if successful, this causes
the updated instructions to be written to the second
portion of non-volatile memory; or, if instructions are not
stored, the action code causes the processor to execute
pre-existing code in the second memory portion.

Identify the node(s) connected and their current
firmware versions

!

Identify the latest firmware versions on the
updates server / local updates source

i

Identify which firmware needs to be downloaded
from the updates server / local updates source

i

Alert the user that the updates are available and
schedule the approved updates

!

Download firmware image(s) from the updates
server for the approved updates

i

| Send the firmware file(s) to the target node(s)

i

317

Mark the node(s) as unavailable to the system.
‘Upon successful download reboot the node(s).

Check the node(s)
have rebooted successfully and
have the update loaded

Mark the
successful
node(s) as
available

| Mark the node(s) as available

le

]

FIG. 3

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

vV 06¥169¢ 99

1409 17

1/7
101

Surface Power
Supply Unit/l()9

117
i D
0
é g é =0 o0 103 Launch & Recovery
B 8 System (LARS)
:::::o Armoured
NIEEE Deck Cable
i 105
| " Gesx 5 | I
0958° 3 =
°0 ’ []
<— External U
Power T 111 T
Hand controller ROV Lift A" Frame
(incorporates T.M.S. Winch Armoured —
tether cable bale Lift
in/out control) Umbilical
A/

Tether Management
System (T.M.S.)
\A
107 Tether Cable

FIG. 1

2/7

Updates
Server

Surface Power
Supply Unit/lo9

Pt
é\/

117
D ooo
20 oooal] — Launch & Recovery
103 System (LARS)

OOOOO
OOOOO

(138802

Armoured
Deck Cable

1409 17

</
. I o \ @;" ! 10
<4— External u
Power T 111 T
Hand controller ROV Lift A" Frame
(incorporates T.M.S. Winch Armoured —
tether cable bale Lift
in/out control) Umbilical
A/
115
Tether Management
System (T.M.S.)
~a
107 Tether Cable

e

1409 17

3/7

Identify the node(s) connected and their current
firmware versions

v

Identify the latest firmware versions on the
updates server / local updates source

!

Identify which firmware needs to be downloaded
from the updates server / local updates source

v

Alert the user that the updates are available and
schedule the approved updates

!

Download firmware image(s) from the updates
server for the approved updates

—~~—309

!

Send the firmware file(s) to the target node(s)

!

Mark the node(s) as unavailable to the system.
Upon successful download reboot the node(s).

317

2

Check the node(s)
have rebooted successfully and
have the update loaded

315

—>

Notify user
of the errors

No

!

Mark the node(s) as available

Mark the
successful
node(s) as
available

)

FIG.

319

3

- ~

No

e . .
401 o Is store firmware newer ™
. H H e
~. than application? P
\\ o
\\ //
e 7
N e
\\g/
Yes
‘% No
// \\

<// IsStore ™
405 “~.Checksum o] g

~. -~
-~
~. -

\E/
Yes

v

407 CopyStoreto |
Application Space |

Download
411 | Payload loader
via DATP

X

v
L N

o \'\
7 IsStored ™

. Checksum 0K~
N -
~.
~_

Y

Yes

TN
- ~
-
- N

// ‘\\\
415 -~ 1s code boot™
S code?

~ o

413

~ e
~.

Copy store to No
417 boot space

FIG. 5
5/7

Power up reset
Hard reset
Soft reset

400 Bootloader

419
Application

space
updated?

421

Applications
scheduler

423

Application
“Update
Bootloader”
just run?

No

Yes

~
P

(Soft reset)

FIG. 6
6/7

// Maintenance >,
if’software discovers\

firmware version =g
\ mismatch during /

\\Qtart-up routing/

Alert user that
updated code
is available
with reason

605
i ~.

e \\
. _~Update now or~.,

o later? 7
~ -
~ s

for change

601

Overwrite the
application data and

615 | Preserve the internal |

603

~o P

Load new
application
and PIC
EEPROM data
into the
external 12C
EEPROM

609

¥
Set the action
code into
external
EEPROM

611

N

7 613
Yes _~Action Byte 5\

PIC data on the
Communication PIC
(master)

Overwrite the
application and the

internal PIC EEPROM
619

~ -
\\\ 0x55 ///
~ -
~.. e
N~

No

4

.,
- ~.
-~ .

Voo 617
"~ Action Byte =~

data on the
Communication PIC
(master)

. Overwrite the
i application code on
623 o <

>
o
. Ox66 -
-
~. -
~. -
. P
S

No

-
- N

Yes _action Byte \=\6 21

Commutation PIC |
(slave)

S OXT7

\\\ ///
; No
T ™.

/ _— 3\
{ Finish]
AN

~- -

FIG. 7
7/7

,/""User will get\\\
{ another alert }
lon subsequent]
\\ start-ups /

/
607

Intellectual
Property
Office

Application No. GB1610416.8 RTM Date :18 July 2016

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

Windows

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

10

15

20

25

30

35

1

METHOD AND APPARATUS FOR UPDATING SOFTWARE ON REMOTELY OPERATED
VEHICLE

Technical Field

The present invention relates to underwater remotely operated vehicles, and particularly to
methods and apparatus for updating the software used by components of remotely
operated vehicles.

Background

Remotely operated vehicles (ROVs) are underwater vehicles controlled by an operator on

the surface, e.g. on a vessel or other suitable control platform.

Figure 1 shows an example of a known ROV system 101. The main components in a ROV
system are a surface power supply unit (109), a control unit (103), a tether (105), and the
ROV (107) itself. The control unit (103) is shown with user control interface(s) (111). The
tether (105) contains power and data/communication cables that connect to the ROV.

The power supply unit may be connected to an external power supply and provides the
system with the various supplies required. The control unit is connected to the power
supply unit and contains at least some of the control electronics for the system. The controf
unit may also provide the outputs from video, sonar and other sensors that may be fitted to
the ROV. A video monitor (117) or video suite including a video switcher, video recorders
and monitors may be connected to the control unit so that outputs from the ROV systems

can be viewed by users on the surface.

ROVs can be "free swimming”, in which case the tether connects directly to the ROV.
Alternatively a TMS (Tether Management System) (115) may be used, which provides a
garage for the ROV and manages the tether to the ROV as it operates. The TMS may be
controlled via the control unit (103). The TMS may comprise a remotely controlled tether
cable spooling mechanism fitted into the top section of a side entry garage for containing
the ROV. The TMS is lowered to the required working depth where the ROV can be flown
out of its garage to the extent of its tether cable. A TMS allows various advantages, such

as operations to greater depths.

The system comprises several computers, which may range from the control unit through
to specific functional modules comprising one or more microcontrollers. The ROV (107) is

10

15

20

25

30

35

2

laden with multiple different functional modules in the form of components such as
propulsion thrusters, cameras, sensors and tools. All of these functional modules
communicate with the surface control system via the tether. For example, camera functions
such as pan and/or tilt, autopilot functions, thruster trim controls, speed, direction, dive,
surface and lighting intensity are controlled via the tether from the surface. Spare capacity

for additional control functions may also be included.

The microcontrollers, and other control electronics, for a given functional module may be
Incated within an electronics pod (EPOD) on dedicated hardware, such as one or more
conirol cards or control boards, which are connected to the surface control system via a
communications bus. The EPOD is a watertight pod, which may also keep the electronics
under vacuum or within a fluid such as oil. The EPOD has standardised electrical
connections to service the rest of the on-board components with power and
communications. Not all of the functional modules need to include control electronics within
the EPOD.

Upgrading the software on an ROV is problematic. As a real-world example, to change
firmware in the traditional manner would require the EPOD to be physically removed, the
relevant processor cards removed from the EPOD, the ROM(s) reprogrammed, and then
the system reassembled. A similar procedure would be required for functional modules
within the TMS. Further work is required for components that work in vacuum, or under
pressure in oil filled enclosures and the environmental issues that might be caused. This
work can only be done at the surface under cover, and can take up to 2-hours under

normal conditions.

During use, the ROV can be thousands of meters beneath the sea surface for weeks at a
time, and the time to travel between the surface and the working depth is significant and
thus expensive. System down time in genera! is expensive and should be avoided where

possible.

An improved way of updating the software on ROV functional modules is required.
Howsever, the present inventors have appreciated that such an update mechanism should
be resistant to code corruptions caused by unexpected power outages during the update

process.

Summary of the Invention

10

15

20

25

30

35

3

The invention is defined in the independent claims to which reference is now directed.

Preferred features are detailed in the dependent claims.

Accoarding to a first aspect of the present invention there is provided a method of updating
computer executable instructions for one or more functional modules in an underwater
remotely operated vehicle (ROV). The method comprises: receiving updated computer
executable instructions at a functional module of the ROV from a surface control computer
over a communication link; storing the updated computer executable instructions in a first
partion of non-volatile memory that is accessible by the processor of the functional module;
and subsequently writing the updated computer executable instructions from the first
portion of the non-volatile memory to a second portion of non-volatile memory wherein the
functional module is configured such that the processor executes computer executable

instructions stored in the second portion of non-volatile memory.

By providing a first portion of memory to which the updated computer executable
instructions are written before they are actually written to the second memory portion, e.g.
a flash ROM, from which the processor fetches its executable code, it is possible to ensure
that the updated code has been received in its entirely before there is a possibility of the
processor executing it. This prevents the processor attempting to execute incomplete or
corrupted code. As such, if a power outage occurs during the process of downloading the
updated executable code, or instructions on how to update the existing code, the functional
module will always have the pre-existing executable code already loaded in the firmware

memory.

Optionally, the method further comprises determining whether updated computer
executable instructions are stored in the first portion of non-volatile memory, wherein: if
updated computer executable instructions are stored, then the update procedure proceeds
by writing the updated executable code from the first memory portion to the second
memory portion; and if updated computer executable instructions are not stored, the
method further comprises controlling the processor to execute pre-existing executable code
in the second memory portion. Optionally, determining whether updated computer
executable instructions are stored in the first portion of non-volatile memory comprises:
executing, on the processor, first predstermined instructions according to an "action” code
stored in a portion of non-volatile memory accessible by the processor, the action code
being indicative of whether updated computer executable instructions are stored, whersin:
if updated computer executable instructions are stored then the action code causes the
processor to update the computer executable instructions by writing the executable code
from the first portion of the non-volatile memory to the second portion of non-volatile

10

15

20

25

30

35

4

memory; and if updated computer executable instructions are not stored then the action
code causes the processor to execute pre-existing executable code in the second memory
portion. Optionally the method may further comprise setting the action code to cause the
processor to execute pre-existing executable code in the second portion of memory only
when updating the computer executable instructions has completed.

The check for updated executable code actually involves the processor looking to the first
portion of non-volatile memory. For example, this may happen automatically upon boot of
the processor. The instructions contained within, or identified by, the first portion of memory
cause the processor to either over-write the executable code in the second portion of
memory (e.g. the firmware flash ROM) if there is an update to apply, or to proceed as

normal and to execute existing executable code if there is no new update to apply.

Furthermore, the update process can be controlled by setting the action code as
appropriate, such that booting to, or executing, updated executable code will only occur
once the updated executable code has been completely written to the second memory
portion (and optionally verified). Otherwise, the processor will attempt to retrieve updated
code from the first memory portion. By ensuring that the action code is only set to cause
execution of the executable code in the second portion of memory once writing from the
first memory portion to the second memory portion has completed it is ensured that the
pracessor will not attempt to execute corrupted code. If a power outage occurs during the
update process, particularly when the executable code on the second memory portion is
being over-written, the update procedure will simply resume when power is restored, with
the processor looking again to the first memory portion fo see if new code is available. In
this way, the processor will always execute either completely updated executable code or

an earlier version of the executable code, and will not attempt to execute corrupted code.

Optionally the method may further comprise performing a first check to verify the updated
computer executable instructions stored in the first portion of non-volatile memory. If the
first check fails then writing of the updated computer executable instructions from the first
portion of the non-volatile memory to the second portion of non-volatile memory may be
prevented. After the first check fails, the method may further comprise repeating the steps
of receiving the updated computer executable instructions at the functional module, storing
the updated computer executable instructions in the first portion of non-volatile memory,
and checking the updated computer executable instructions according to the first check;
whereby writing of the updated executable code from the first portion of the non-volatile
memory to the second portion of non-volatile memory is permitted only when the first check
is passed. The check is performed using a cyclic redundancy check (CRC) method for

example.

10

15

20

25

30

5

By performing a check to verify the updated executable code stored in the first portion of
non-volatile memory it is possible to ensure that the correct, uncorrupted, updated
executable code has been received before it is loaded into the firmware memory (i.e. the
second memory portion). By preventing the writing of code from the first memory portion to
the second memory portion until the verification of the downloaded code is satisfied, it is
possible to ensure that the received code has not been corrupted, e.g. due {o a power
outage, during the download process. If the check fails then repeating the download of
code, storing it to the first portion of memory and checking it, until the check passes,
ensures that code will only be downloaded into the firmware memory when download has

been successful, preventing the processor frying to execute corrupt code.

Optionally, the ROV comprises multiple functional modules, and the method further
comprises updating one functional module at a time by sending the entire set of updated
computer executable instructions from the surface control computer to each module in turn.
Alternatively, the method may further comprise updating the multiple functional modules
simultaneously by sending portions of the updated computer executable instructions from
the surface control computer, each portion addressed to a respective functional module, in
a predetermined sequence. Alternatively the method may further comprise updating
multiple functional modules simultaneously by broadcasting the updated computer

executable instructions to multiple functional modules of the same type.

Optionally the first memory portion contains multiple versions of computer executable
instruction sets, and the method further comprises selecting which of the sets of multiple
versions of computer executable instructions is to be written to the second portion of
memory. The sets of multiple versions of computer executable instructions may be
selectable by: executing, on the processor, first predetermined instructions according to an
"action” code stored in the first portion of non-volatile memory, the action code being
indicative of the version of the executable code to be selected, wherein: the action code
causes the processor to write the selected executable code from the first portion of the
non-volatile memery to the second portion of non-volatile memory for subsequent
execution by the processor. This allows different versions of firmware to be loaded,
providing different functional settings depending on the operational requirements of the
ROV.

Optionally, each of the one or more functional modules is a node that communicates with
the control computer according to a communication protocol and is a single addressable

end point.

10

15

20

25

30

6

Optionally, at least one of the one or more functional modules is a master functional
module coupled to one or more slave modules, and the methed further comprises: writing
updated computer executable instructions from the first portion of the non-volatile memory
to a third portion of non-volatile memory, wherein the slave module is configured such that
a processor of the slave module executes computer executable instructions stored in the
third portion of non-volatile memory. Optionally the method further comprises selting an
action code to cause the processor of the master module to execute pre-existing computer
executable instructions in the second portion of memory only when writing the updated
computer executable instructions from the first portion of the non-volatile memory to the

third portion of non-volatile memory has completed.

Optionally the first portion of non-volatile memory is on a first non-volatile memory unit and
the second portion of non-volatile memory is on a second distinct non-volatile memory unit.
The first memory may be one of an EEPROM or an SD card. The second memory portion
may be a flash ROM.

The computer executable instructions may be firmware or boot code.

Optionally the communication link includes a wired connection that passes through a tether
connecting the surface control computer to the ROV or to a Tether Management System,

the tether containing power and data cables.
Optionally the communication link includes a wireless connection.

A corresponding functional module for an underwater remotely operated vehicle (ROV}
may also be provided, along with an underwater remotely operated vehicle (ROV)
comprising one or more such functional modules, and a system comprising a control

computer and a corresponding ROV.

A computer program may also be provided that when executed on a functional module
causes it to carry out the methods described herein.

A surface control computer may also be provided that provides updates to one or more

functional modules in-an underwater ROV,

Where functional modules are provided in the TMS, any embodiments described herein

may be applied equally to those functional modules.

Brief Description of the Drawings

10

15

20

25

30

35

7

Examples of the invention will now be described in more detail with reference to the

accompanying drawing in which:

Figure 1 is an overview example of a known ROV system;

Figure 2 is an overview example of an ROV system in accordance with embodiments of the

invention;

Figure 3 is an example of the primary computer control system flow for the update
procedure, showing an example of how to send the firmware update to the appropriate
functional modules;

Figure 4 is an example update procedure for application code/firmware;

Figure 5 is an example update procedure for boot code;

Figure 8 is an example update procedure for updating either firmware or boot code; and

Figure 7 is an example update procedure using action codes or bytes.

Figure 2 shows an example of an ROV system 201 used in accordance with embodiments
of the present invention. Components in common with Figure 1 are given the same

reference numerals.

To improve upgrades to ROV systems a DATP (Data and Application Transfer Protocol} is
provided. The DATP enables software and configurations to be transferred via telemetry to
ROV components over the tether communication lines without the need to remove the
components from the ROV, or even bring the ROV to the surface.

in embodiments of the invention a software or firmware update may be transferred using a
sub-protocol embedded within the system’s existing telemetry. The transfer is sent over
telemetry and stored on a first portion of non-volatile menﬁory, where it may be verified and
checked, and if it is a different version from that installed then the firmware will be read
from the first portion of memory and installed to a second portion of memory from which the
processor executes executable code. The first portion of non-volatile memory may be an
external media such as an SD card, 12C EEPROM, and so on. The second portion of

10

15

20

25

30

35

8

memory may be the firmware memory, such as a flash memory, from which the processor
executes code when the system reboots.

A control computer (113) is provided, which acts as the control hub for the whole system.
As before, the system comprises several computers, which may range from PCs (personal
computers) such as the primary control computer, through to specific functional modules

comprising one or more microcontrollers.

Any of the electronic/electromechanical components on the ROV (207), ranging from
lamps, hydraulic pumps, cameras, control arms and communication modules, could have
one or more microcontrollers inside. Any module that contains intelligence for carrying out
one or more ROV functions may be considered a functional module. Functional modules, in
most practical embodiments, will be implemented as a programmed board of some

description having a microcontrolier.

Any ROV functional module which hosts a communication protocol allowing communication
between the functional module and the control system via the tether may be referred to as
a "node". A node may, in particular, form a single end point that the control system can
address, or to which the conirol system can communicate. The nodes are all connected
via a commeon communication network and protocol. For example, the nodes may be
connected over a mix of physical interfaces using the UDP (User Datagram Protocol)

transport layer.

Each node may have a unigue 1D number which can be used to address it. The control
computer (113) may then maintain a list of node IDs in the system. Third party or peripheral
components may still be addressed as a node by virtue of an interface PCB being fitted.

Each of the nodes includes one or more microcontrollers having one or more processors
for executing executable code to cause the node to carry out its function within the ROV,
The control electronics for a given node may be housed within an EPOD of the ROV, or
they may be housed elsewhere on the ROV. A given EPOD for an ROV may, for example,
contain around 30 nodes. The control electronics may be provided on one or more control

cardsor controbboards.

Each of the nodes has non-volatile memory provided specifically for the purpose to
download updated executable code into. The updated executable code may be a new

firmware image for example. This makes the upgrade robust ggainst the updated

10

15

20

25

30

35

9

executable code being corrupted and leaving the microcontrolier with an incomplete or

corrupted firmware from which it could not recover.

Figure 3 shows an example of the primary computer control system flow for the DATP. The
method shown in Figure 3 allows the control computer (113) to send the firmware update to

the appropriate functional modules.

At step 301 the control computer identifies the node(s), or functional modules, connected
within the ROV and their current firmware versions. At step 303 the control computer then

identifies the latest firmware versions available.

The firmware updates may be provided to the control computer in a number of different
ways. For example, updates may be provided from an updates server (119) over the
internet and/or one or more local area networks. Alternatively, or in addition, the updates
could be provided locally to the control computer via one or more local update sources
{121).

At step 305 the control computer identifies which firmware an update is available for, and
therefore needs to be downloaded from the updates server/local updates sources. The
user may then be alerted that updates are available, and approved updates scheduled.

Alternatively, the update process may be automatic.

At step 309 the required firmware is obtained from the updates server, or the local updates

sources, as required.

At step 311 the relevant firmware files are sent to the target functional modules over the

communication network, via the tether communication line(s) of the tether (105).

The target functional modules then implement their local update procedure, which will be
detailed further below. During this procedure, after the update file(s) have been sent to the
target functional modules the relevant target functional modules are marked as unavailable
to the ROV system (101) by the control computer. After a successful update procedure
each of the target functional modules is rebooted. At step 315 a check is made by the
control computer that each of the target functional modules has successfully rebooted, and
that the update has successfully loaded into the firmware memory. If this check proves to
be negative then, at step 317, the user is notified of the errors and any functional modules
where the update was successful are marked as available. If all the functional modules are

successfully updated then they are all marked as available at step 321.

10

15

20

25

30

35

10

The procedure carried out at each functional module will now be described. In general,

three steps are carried out during the update.

in a first step, the firmware update file is stored in an external memory such as EEPROM
on the control card of the functional module. A check, such as a CRC or checksum, may
also be performed as part of the first step. Only when the first step is complete does the

second step commence.

In a second step the microcontrolier, e.g. a Programmable Intelligent Computer (PIC), of
the functional module is reset. This may be a software reset, since the purpose of the reset

is simply to cause a re-boot.

in a third step, during re-boot, the booticader of the microcontroller causes the
microcontroller to perform a check for a new update in the EEPROM. This check may be
based upon firmware version numbers, although in some embodiments the check is
performed by either executing an instruction to update from EEPROM, or executing an
instruction to boot from existing firmware, with the instruction being specified by a reference
or code within the EEPROM. If new firmware has been received then it is copied to the
internal memory, e.g. a flash memory, of the functional module that stores the firmware

executed during operation.
Two example methods will be used to describe example embodiments.

According to a first method, Figure 4 shows an example of the boot process, employed by
the bootloader. The bootloader is the first code to run after reset or power-up. ltis
designed to be very small and limited in function, in the hope that it will never change and

is bug free.

The bootloader can be used to update application code/firmware by copying the code
stored in the external memory to the internal memory used for the application code. The
application code cannot do this as it would be overwriting itself. The application code can

then be run if applicable.

At step 401 a check is performed to determine whether the stored firmware stored on the
EEPROM is a later version of the firmware currently stored on the firmware flash memory
of the functional module. [f the stored firmware is not newer than that already loaded into

the flash memory then the previously stored existing firmware is executed at step 403.

10

15

20

25

30

35

11

if a new version of the firmware is stored in the EEPROM then a verification step may be
performed, such as a check sum or CRC at step 405. If the verification fails then the pre-
stored firmware already loaded into the functional modules flash is executed. If the check
passes then the updated firmware is copied from the EEPROM fo the flash memory of the
functional module that stores the firmware executed during operation. Atstep 409 the
functional module microprocessor then reboots. After reboot the process may return to
step 401, whereby after an update to the latest firmware version the procedure will move to
step 403 and the newly updated firmware will be executed.

The steps of Figure 4 are performed in one or more functional modules/nodes of the

system as appropriate.

Figure 5 shows an example of a process that may be used to update the boot loader. This
process may be used in conjunction with the process described for Figure 4, and may be
performed by an application executing on the functional module/node.

The payload, containing the bootloader update code, is downloaded at step 411 to external
memory/EEPROM. A check 413 may be performed, e.g. using a checksum, in order to
confirm that the code was downloaded correctly.

At step 415 a check is performed to determine whether the received payload includes boot
code, as opposed to other types of code. If the code received is boot code then the code is
copied, at step 417, to the boot space memory portion from which the node/module

processor executes boot code.

Figure 6 shows an example of the overall process that might be implemented upon power-
up or reset of a given functional module or node, which provides a way of updating both

application firmware and boot code.

Step 400 represents the bootloader process, whereby application software updates may be
checked for and applied as necessary. An example of the process 400 is given in Figure 4,

and describad above;

A check may be performed at step 419 to determine whether the application storage space
that stores the firmware/application code executed during operation has been updated with
new application firmware/software. Where this is the case, a reset or restart may be

applied and the relevant checks performed again.

10

15

20

25

30

35

12

The Application Scheduler 421 is the process by which all the application code is run. The
Application Scheduler determines when individual applications run. Examples of
Applications could include: Flash LED, receive serial message, send serial message,
interpret message and an “Update Bootloader” application, an example of which is shown

in, and described in relation to, Figure 5.

When the Application Scheduler determines that the “Update Bootloader” application
described in relation to Figure 5 is to be run, for example due to an appropriate command
(e.g. a DATP command) being detected, the application runs and in the first 2 steps of
Figure 5, the new boot image is downloaded. An advantage of doing this at application
level is that the hardware interface to the communication ports and the external memory
(e.g. the EEPROM) may use the application library functions and leave the bootioader very

simple.

On successful completion, as deseribed for Figure 5, the process then checks 415 if the
received code is boot code for the bootloader. This should be a rare occurrence. [fitis
then it copies 417 the bootloader from external memory to internal memory. It can do this

as this process is running in application space so the bootloader is free to be over-written.

if the downloaded code is not boot code then the module processor is rebooted / reset.
This takes the method back to the bootloader process, which detects if there is a valid
newer version of the application spaceffirmware in the external memory (e.g. EEPROM)
and copies this to the internal application space of the functional module that stores the
firmware executed during operation. The process reboots or restarts one more time, after
which the bootloader will not find a new version of application code (if no further updates
have issued), and so then immediately runs the main application scheduler to run other

applications.

As an example, the method described in relation to Figure 4, Figure 5 and/or Figure 6 may
be applied in relation to a particular example system architecture, referred to as “digital’,
which is effectively a serial full duplex, direct command strings, protocol between the
surface control computer and a computer/microcomputer within the ROV, The ROV
computer then communicates directly via serial lines to the functional module endpoints in
the ROV. This is an example of a single end to end architecture, in which all ROV
processing may be performed on a single subsea processor, in which al control algorithms

(e.g. auto-heading, auto-depth, auto-altitude, gyro response etc) are executed subsea.

10

15

20

25

30

35

13

Figure 7 shows the DATP flow according to a second exemplary method. Al steps 601 to
607 a series of steps may optionally be performed depending upon whether updates are to
occur manually, under instruction from a user. At step 601 software executing on the
control computer identifies firmware mismatches between the latest available firmware and
the firmware loaded on one or more functional modules. At step 603 an alert may
optionally be provided to the user indicating that an update to the firmware is available. At
step 605 a decision is taken, by the user or otherwise, fo update now or at a later date. fa
later update is requested then the user will get a further alert 607 on subsequent start ups
of the system indicating that updates are still available.

At step 609 the downloaded firmware updates are loaded into respective first memories
(e.g. EEPROMS) located on each of the respective functional modules that are being
updated. Inthe case of step 609 the system performs the step of storing the code into the
first portion of memory (e.g. the external EEPROM). Upon successful completion there is a

command to set one or more aclion codes.

The one or more action codes may be used to determine the actions carried out by the
functional module processor. At step 611 the action code or codes is/are set into the first
portion of memory (e.g. the external EEPROM). The action codes may be separate

commands provided in a manner other than the firmware update download.

The action codes are tokens to indicate the action that is required to happen next. The
action codes are automatically read by the functional module processor, e.g. at steps 613,
817 or 621 in Figure 7, for example upon boot up. A valid action could include, for
example, to overwrite the firmware/application code. The action codes may be stored in
the first portion of memory, e.g. the EEPROM, although they could be stored in any
accessible non-volatile memory that is not going to be overwritten. The action codes may
be numeric values. The action codes may identify code stored in the second portion of
memory (e.g. the flash memory) that causes the processor to execute the action
associated with the action codes.

Three examples of relevant action codes are given in Figure 7. One or more of these
action codes may be used in combination to achieve the desired updating of application
code and/or boot code in relation to a master or slave processor. Examples of action

codes are provided below.

If the action code is the sort indicated by the action byte identified at step 613 then this will
cause, at step 615, the functional module processor to overwrite the firmware data from the

10

15

20

25

30

35

14

EEPROM to the flash memory. However, the communication protoco! data used by the
functional module may be handled separately, ouiside the bootloader program, and so
therefore may be specifically preserved rather than being overwritten when a firmware

update oceurs.

if the action code is that identified by the action byte of the sort shown in step 617 then, at
step 619, both the bootloader used by a master functional module is overwritten on the
flash memory of the master functional module, as well as, optionally, the application code.

If the action code is that identified by the action byte at step 621 then, at step 623, the

firmware or application on a slave functional module is overwritten.

As mentioned above, the action codes, which may be used in any embodiments of the
invention, may be provided in the code stored in the first portion of non-volatile memory,
e.g. the EEPROM. The processor, when performing a boot, will automatically look to the
action code on the EEPROM. The action code may provide executable code, or a
reference to/address for executable code within the boot loader to carry out a particular
task. The task may be for the processor to boot from, or execute the firmware already
contained in, the functional module's flash memory. Alternatively the action code may be
set to cause the processor to overwrite the firmware and/or boot code in the flash memory.

The action code can be set accordingly so that the processor carries out the desired
function upon boot. it is only when the firmware has been overwritten into the flash
memory that the action code is changed such that upon subsequent boots the processor
does not look to the EEPROM for updated firmware, but instead looks to its own flash
memory. By updating the action code last, after the firmware has been written to the flash
memory, the module processor is prevented from attempting to run corrupt code that has
not fully been received (for example when power is lost during transfer).

The second exemplary method may be applied within an architecture that uses a control
system application running on an operating system, such as Windows (TM) on the control

computer {113}

The architecture of the second exemplary method may be a “multidrop” nodal architecture,
in which each node handles its own functions. All control algorithms (e.g. auto-heading,
auto-depth, auto-altitude, gyro response etc) may be executed from the surface control
computer processor. An example of such an architecture may be referred to as iCON

{Intelligent Control of Nodes).

10

15

20

25

30

35

15

The application software used in the second exemplary method may be provided using a
framework and a kit of software programs that can be assembled to form a user interface
and high-level control system of an ROV system. The various programs are selected as
needed to develop the desired functionality and cover a wide variety of functions such as
Ul graphical representations of components, a program that allocates thrust demands to
the thrusters, a program to read data from a sensor, and so on. The programs are
configured to form subsystems, e.g. by means of configuration files. The framework is
responsible for loading and managing the required components. Communication within the
various sub-systems may be performed using the OPS (Open Publish-Subscribe) protocol
for example. As an example, the functional modules/nedes of the ROV may run an
embedded application layer for most of the functions (thrusters, lights, power channels etc).
Translation from the protocol used for communication between the various sub-systems
and the embedded application layer for the nodes may be provided as appropriate. For
example, a Castle embedded application layer may be used for the functional nodes, which
may then be translated to by another layer (e.g. a Rasputin layer) from OPS on the control
computer (113). It should be noted, however, that translation is not always required, for
example some fraffic can go directly from the control computer (113) through OPS,

bypassing Rasputin, directly to the nodes.

In any embodiment any of the functional modules/nodes may be arranged in a
master/slave arrangement, whereby a given functional module has one or more slave

functional modules that look to a master functional module.

An example of a master/slave arrangement would be thruster functional modules, in which
the master functional module communicates with various sensors on the ROV thrusters
and the slave is configured simply to drive the thruster motors. In this context the master
functional module may send signals to the slave functional module indicating how fast the
slave should spin the motor. The slave controls the motor to spin at the desired rate, and
communicates back to the master to tell it how fast it is spinning. Other data may also be

shared such as fault conditions.

In order to update the slave firmware the master functional unit's processor may overwrite
data from the first portion of non-volatile memory, e.g. the EEPROM, on the master
functional node to the flash memory on the slave functional node, without the slave
functional node requiring its own EEPROM (although it is also a possibility that the slave
would have its own EEPROM, or equivalent, and update in the other manners described

hergin).

10

15

20

25

30

35

16

Optionally, when updating a slave module using a method involving action codes, such as
the method described in relation to Figure 7, action codes may not be changed in the
master EEPROM from a first action code, that causes the processor to overwrite the
firmware on the flash memory, to a second action code, that causes the processor {o
execute firmware stored in the flash memory, until overwriting of the updated firmware on

the flash memory of the slave functional module is complete.

in the case of a functional module or node having muitiple microcontrollers, one
microcontroller can act as a master to several slave microcontroller devices to update the

firmware.

Generally, where the ROV comprises multiple functional nodes, only one node at a time, or
one set of nodes of a particular type (e.g. thrusters) at a time, may be updated with new
application/boot code. The method may then further comprise updating one functional
module, or a set of functional modules of the same type, at a time by sending the entire
updated executable code from the surface control computer to each module, or set of

modules: in turn.

Alternatively, a plurality of nodes of different types may be updated simultaneously by
sending different portions of code over the same transmission, with different portions being
sent to different nodes. In particular, portions of the updated executable code may be sent
from the surface confrol computer, each portion addressed {o a respective functional

module, in a predetermined sequence.

As an alternative method, the update data may be broadcast to multiple nodes/modules of
the same type (e.g. thrusters), so that they receive the same executable code and are
updated together. Because the update data is a broadcast, the modules cannot
acknowledge the messages and some may fail silently. Optionally, the surface control
computer may poll each functional module at the end of the broadcast to determine
whether the update was successfully received and/or applied. Any failed updates can then
be fixed individually if necessary. Embodiments employing such an update strategy are of
most use when there are many devices/modules of the same type, as they all can be

updated in a time frame slightly greater than that needed to update a single module.

Throughout the detailed description the example of performing a firmware update has been

used. it will be appreciated that the methods described herein can be applied to any type

10

15

20

25

30

35

17

of executable code stored on a memory for execution by a functional module, also

including the bootloader.

Embodiments of the invention have generally been described using different memories for
the first and second memory portions, the first portion being provided to receive updated
code or instructions, and the second being the internal memory used to store instructions
executed by the processor of the functional module. If is, however, possible to instead use
a single memory for both purposes if a large enough memory can be provided. Where a
single memory is used, a first dedicated memory portion is provided for storing updated
code or instructions, and a second dedicated memory portion is provided for storing

processor instructions.

Embodiments of the invention have been generally described that use a communication
bus, or more generally a communication link, that passes through the tether connecting the
surface control computer to the ROV, or to the tether management system or ROV garage.
However, it is also possible for the ROV to operate wirelessly, whereby all or part of the
communication link is a wireless connection. For example, the ROV may communicate
with an underwater communication system that provides a communication link to the
surface (e.g. via tether). The communication between the ROV and the communication
systemn may be via a wireless communication link, using short range light modems and/or
acoustic modems to a modem head, or receiver, for example. The communication system
may also function as an underwater, or seabed, docking station. The docking station may
allow the ROV to dock to recharge, and may also provide a direct high speed
communication link to the surface computer. The docking station may be linked by & high
data rate physical medium to a local surface structure or vessel, e.g. an oil rig, where the

usual-syrface control is available.

Embodiments have generally been described in which computer executable instructions
are received at, or written to, a first memory portion for copying across to a second memory
portion in order to update pre-existing computer exscutable instructions on an ROV
functional module. However, according to another aspect of the invention, for some ROV
functional modules the process of updating the functional module may instead comprise
following a set of instructions to reprogram a programmable device to do so according to
an update file. Therefore, rather than necessarily receiving updated computer executable
instructions from a surface control computer, instead an update file to update the functional
module may be received at the functional module of the ROV from the surface control
computer over the communication link and stored in the first memory portion. The update
file, when executed by a module processor, causes the update of the functional module.

10

15

20

25

30

35

18

in general, according to this aspect, @ method of updating one or more functional modules
in an underwater remotely operated vehicle (ROV) is provided, the method comprising:
receiving an update file at a functional module of the ROV from a surface control computer
over a communication link; storing the update file in a first portion of non-volatile memory
that is accessible by the processor of the functional module; and subsequently writing the
update file from the first portion of the non-volatile memory to a second portion of non-
volatile memory, wherein the functional module is configured such that a reconfigurable
device is updated as specified by the update file. This aspect may be combined with the
various optional features described above for the embuodiments in which executable code,
or firmware, is replaced with new code to perform the update. The reconfigurable device
may be updated using the update file in the second memory portion, for example by the
functional module processor, or another processor of the module, accessing the update file
in the second portion and performing the updating according to the update file information.

As an example, the functional modules to be updated may include programmable logic
devices, or reconfigurable devices, such as FPGAs (Field Programmable Gate Arrays),
CPLDs (Complex Programmable Logic Devices), PLCs (Programmable Logic Controllers)
and so on. For these types of programmable devices, machine instructions might not be
loaded for execution, but rather fuses, or equivalent, are programmed to configure the logic
of the device as required by the update file.

Such embodiments can be implemented in the same ways as providing updated
executable code as described above, but the data accompanying the executable code
{which might inciude look-up tables, configuration settings or fonts for example) includes
relevant update data such as fuse data for FPGAs elc.

The update file may be received at the functional module. The update file may, in the case
of a FPGA for example, be a fuse file indicating which fuses to aclivate to cause the
desired changes to the FPGA functionality. For example, for FPGAs the fuses are usually
arranged in a linear list that define some or all fuses to be set. These may be one time

fuses, or the fuses may be RAM based.

The update file may be downloaded to the first memory portion (e.g. the EEPROM}), and
then be transferred to a second memory portion (e.g. the processor flash memory).
Alternatively, the update file may be transferred to another memory portion dedicated to the

programmable device, such as a flash dedicated fo the FPGA.

19

The programmable device, such as an FPGA, might therefore have its own memory
portion, such as an external or internal EEPROM. The boot loader might program it directly
based on the update file. The update file (e.g. fuse file) may be provided to the FPGA
EEPROM directly, or may be provided to the module processor’s first memory portion {e.g.
EEPROM) as described above, and then provided to the dedicated memory portion of the
programmable device for subsequent update.

10

20

25

30

20

CLAIMS

1. A method of updating computer executable instructions for one or more functional
modules in an underwater remotely operated vehicle (ROV), the method comprising:

- receiving updated computer executable instructions at a functional module

of the ROV from a surface control computer over a communication link;

- storing the updated computer executable instructions in a first portion of
non-volatile memory that is accessible by the processor of the functional module; and

- subsequently writing the updated computer executable instructions from the
first portion of the non-volatile memory to a second portion of non-volatile memory wherein
the functional module is configured such that the processor executes computer executable

instructions stored in the second portion of non-volatile memory.

2. The method of claim 1 further comprising determining whether updated computer

executable instructions are stored in the first portion of non-volatile memory, wherein:

- if updated computer executable instructions are stored, then the update
procedure proceeds by writing the updated executable code from the first memory portion

to the second memory portion; and

- if updated computer executable instructions are not stored, the method
further comprises controlling the processor to execute pre-existing executable code in the

second memory portion.

3. The method of claim 2 wherein determining whether updated computer executable

instructions are stored in the first portion of non-volatile memory comprises:

- executing, on the processor, first predetermined instructions according to an
"action” code stored in a portion of non-volatile memory accessible by the processor, the
action code being indicative of whether updated computer executable instructions are

stored, wherein:

- if updated computer executable instructions are stored then the
action code causes the processor to update the computer executable instructions by
writing the executable code from the first portion of the non-volatile memory to the second

portion of non-volatile memory; and

10

15

20

25

30

21

- if updated computer executable instructions are not stored then the
action code causes the processor to execute pre-existing executable code in the second

memory portion.

4, The method of claim 3 further comprising setting the action code to cause the
processor to execute pre-existing executable code in the second portion of memory only

when updating the computer executable instructions has completed.

5. The method of any preceding claim further comprising performing a first check to
verify the updated computer executable instructions stored in the first portion of non-volatile

memory.

8. The method of claim 5 wherein if the first check fails then writing of the updated
computer executable instructions from the first portion of the non-volatile memory to the

second portion of non-volatile memory is prevented.
7. The method of claim 6 wherein the method further comprises:

- after the first check fails, repeating the steps of receiving the updated
computer executable instructions at the functional module, storing the updated computer
executable instructions in the first portion of non-volatile memory, and checking the

updated computer executable instructions according to the first check;

- whereby writing of the updated executable code from the first portion of the
non-volatile memory to the second portion of non-volatile memory is permitted only when

the first check is passed.

8. The method of any of claims 5 to 7 wherein the check is performed using a cyclic
redundancy check (CRC) method.

9, The method of any preceding claim wherein the ROV comprises multiple functional
modules, the method further comprising updating one functional module at a time by
sending the entire set of updated computer executable instructions from the surface conirol

computer to each module in turn.

10. The method of any of claims 1 to 8 wherein the ROV comprises multiple functional
modules, the method further comprising updating the multiple functional modules
simultaneously by sending portions of the updated computer executable instructions from
the surface control computer, each portion addressed to a respective functional module, in

a predetermined seguence.

10

15

20

25

30

22

1. The method of any of claims 1 to 8 wherein the ROV comprises multiple functional
modules, the method further comprising updating multiple functional modules
simultaneously by broadcasting the updated computer executable instructions to multiple

functional modules of the same type.

12. The method of any preceding claim wherein the first memory portion contains
multiple versions of computer executable instruction sets, the method further comprising
selecting which of the sets of multiple versions of computer executable instructions is to be

written to the second portion of memory.

13. The method of claim 12 wherein the sets of multiple versions of computer

executable instructions are selectable by:

- executing, on the processor, first predetermined instructions according to an
"action” code stored in the first portion of non-volatile memory, the action code being
indicative of the version of the executable code to be selected, wherein:

- the action code causes the processor to write the selected executable code
from the first portion of the non-volatile memory to the second portion of non-volatile

memory for subsequent execution by the processor.

14. The method of any preceding claim wherein each of the one or more functional
modules is a node that communicates with the control computer according to a

communication protocol and is a single addressable end point.

15. The method of any preceding claim wherein at least one of the one or more
functional modules is a master functional module coupled to one or more slave modules,

the method further comprising:

- writing updated computer executable instructions from the first portion of the
non-volatile memory to a third portion of non-volatile memory, wherein the slave module is
configured such that a processor of the slave module executes computer executable
instructions stored in the third portion of non-volatile memory.

186. The method of claim 15 further comprising setting an action code to cause the
processor of the master module to execute pre-existing computer executable instructions in
the second portion of memory only when writing the updated computer executable
instructions from the first portion of the non-volatile memory to the third portion of non-

volatile memory has completed.

10

15

20

25

23

17. The method of any preceding claim wherein the first portion of non-volatile memory
is on a first non-volatile memory unit and the second portion of non-volatile memory is ona

second distinct non-volatile memory unit.

18. The method of claim 17 wherein the first memory is one of an EEPROM or an 8D

card.

19. The method of any of claims 17 or 18 wherein the second memory portion is a flash
ROM.

20. The method of any preceding claim wherein the computer executable instructions

are firmware or boot code.

21. The method of any preceding claim wherein the communication link includes a
wired connection that passes through a tether connecting the surface control computer to
the ROV or to a Tether Management System, the tether containing power and data cables.

22. The method of any preceding claim wherein the communication link includes a

wiraless conrection.

23. A functional module for an underwater remotely operated vehicle (ROV), the

functional module comprising:

one or more processors configured to access a first memory portion;

3

- a second memory portion that stores computer executable instructions, the
one or more processors being further configured to execute computer executable
instructions stored in the second memory portion in order to carry out one or more

functions on the ROV,

the functional module being further configured to carry out the method of any of claims 1 to
22.

24, An underwater remotely operated vehicle (ROV) comprising one or more functional

modules according to claim 23.
25, A system comprising a control computer and an ROV according to claim 24,

26. A computer program that when executed on a functional module causes it to carry

out the method of any of claims 1 to 22.

10

15

20

25

24

27. A surface control computer that provides updates to one or more functional

modules in an underwater ROV according to claim 23, the computer being configured to:

- identify and obtain the latest version of a set of computer executable

instructions for the one or more modules;

- send updated computer executable instructions to the one or more

functional modules of the ROV overa communication link;
- identify the one or more functional modules as unavailable;

- determine when the one or more modules have successfully updated the

computer executable instructions; and

- mark each of the one or more modules as available when it is determined

that they have successfully updated the computer executable instructions.

28. A method, functional module, RQV or surface control computer as hereinbefore

described and with reference to the accompanying figures.

29, A method of updating one or more functional modules in an underwater remotely
operated vehicle (ROV), the method comprising:

- receiving an update file at a functional module of the ROV from a surface

control computer over a communication link;

- storing the update file in a first portion of non-volatile memory that is

accessible by the processor of the functional module; and

- subsequently writing the update file from the first portion of the non-volatile
memory {0 a second portion of non-volatile memory, wherein the functional module is
configured such that one or more reconfigurable devices are updated as specified by the

update file.

30. A method according to claim 29 wherein the one or more reconfigurable devices
include one or more of a FPGA (Field Programmable Gate Arrays), a CPLD (Complex
Programmable Logic Devices), and a PLC (Programmable Logic Controllers).

31. A functional module for an underwater remotely operated vehicle (ROV), the

functional module being configured to carry out the method of any of claims 29 or 30,

10

15

25

32. Anunderwater remotely operated vehicle (ROV) comprising one or more functional

modules according to claim 31.
33. A system comprising a control computer and an ROV according to claim 32,

34. A computer program that when executed on a functional module causes it to carry

out the method of any of claims 29 or 30.

35. A surface control computer that provides updates to one or more functional
modules in an underwater ROV according to claim 32, the computer being configured to:

“ identify and obtain the latest version of an updaie file for the one or more

modules;

- send an updated update file to the one or more functional modules of the

ROV over a communication link;
- identify the one or more functional modules as unavailable;
~ determine when the one or more modules have successfully updated; and

- mark each of the one or more modules as available when it is delermined

that they have successfully updated.

Intellectual

Property
Office

Intellectual Property Office is an operating name of the Patent Office

Application No:

Claims searched:

26

GB1610416.8 Examiner: Mr Andrew Stephens

1-35 Date of search: 18 July 2016

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
X 1-35 WO 2011/075139 Al
(HEWLETT-PACKARD DEVELOPMENT COMPANY); See whole
document - particularly paragraphs [0015]-[0018], [0024], [0043]-
[0046], [0060] & [0061] and Figs. 1-5
X 1-35 US 2005/0160257 A1l
(DELL PRODUCTS); See whole document - particularly paragraphs
[0015]-[0019] and Figs. 3 & 4
X 1-35 US 2004/0034861 Al
(BALLAI); See whole document - particularly paragraphs [0009],
[0010] & [0018]-[0020]
X 1-35 WO 2013/126058 Al
(HEWLETT-PACKARD DEVELOPMENT COMPANY); See whole
document - particularly paragraphs [0015]-[0017], [0025]-[0031] &
[0035]-[0040] and Figs. 1-6
X 1-35 US7480907 B1
(HEWLETT-PACKARD DEVELOPMENT COMPANY); See whole
document - particularly col. 11,1n 44 - col. 12,1n 15
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC

| GO6F

The following online and other databases have been used in the preparation of this search report

| WPI, EPODOC, TXTA, Internet

www.gov.uk/ipo

27

Intellectual
Property
Office

International Classification:

Subclass Subgroup Valid From
GO6F 0009/445 01/01/2006
B63G 0008/00 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

	Front Page
	Drawings
	Description
	Claims
	Search Report

