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Method for Analyzing Mass Spectra

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent
Application Nos. 60/249,835 filed November 16, 2000 and 60/254,746 filed
December 11, 2000. These U.S. Provisional Patent Applications are herein

incorporated by reference in their entirety for all purposgs.
FIELD OF THE INVENTION

~ Embodiments of the invention relate to methods for analyzing mass

spectra.

BACKGROUND OF THE INVENTION

Recent advances in genomics research have led to the identification of
numerous genes associated with various diseases. However, while genomics research
can identify genes associated with a genetic predisposition to disease, there is still a
need to characterize and identify markers such as proteins. A “marker” typically
refers to a polypeptide or some other molecule that differentiates one biological status
from another. Proteins and other marlkers are important factors in disease states. For
example, proteins can vary in association with changes in biological states such as
disease. They can also signal cellular responses to disease, toxicity, or other stimuli.
‘When disease strikes, some proteins become dormant, while others become active.
Prostate Specific Antigen (PSA), for example, is a circulating serum protein that,
when elevated, correlates with prostate cancer. If the changes in protein levels could
be rapidly detected, physicians could diagnose diseases early and improve treatments.

Identifying novel markers is one of the earliest and most difficult steps
in the diagnostics and drug discovery processes. One way to discover if substances
are markers for a disease is by determining if they are “differentially expressed” in
biological samples from patients exhibiting the disease as compared to samples from
patients not having the disease. For example, FIG. 1(a) shows one graph 100 of a

plurality of overlaid mass spectra of samples from a group of 18 diseased patients.




10

15

20

25

30

WO 03/031031 PCT/US01/44972

The diseased patients could have, for example, prostate cancer. Another graph 102 is
shown in FIG. 1(b) and illustrates a plurality of overlaid mass spectra of samples from
a group of 18 normal patients., In each of the graphs 100, 102, signal intensity is
plotted as a function of mass-to-charge ratio. The intensities of the signals shown in
the graphs 100, 102 are proportional to the concentrations of markers having a
molecular weight related to the mass-to-charge ratio A in the samples. As shown in
the graphs 100, 102, at the mass-to-charge ratio A, a number of signals are present in
both pluralities of mass spectra. The signals include peaks that represent potential
markers having molecular weights related to the mass-to-charge ratio A.

When the signals in the graphs 100, 102 are viewed collectively, it is
apparent that the average intensity of the signals at the mass-to-charge ratio A is
higher in the samples from diseased patients than the samples from the normal
patients. The marker at the mass-to-charge ratio A is said to be “differentially
expressed” in diseased patients, because the concentration of this marker is, on
average, greater in samples from diseased patients than in samples from normal
patients.

In view of the data shown in FIGS. 1(2) and 1(b), it can be generally
concluded that the samples from diseased patients have a greater concentration of the
marker with the mass-to-charge ratio A than the samples from normal patients. Since
the concentration of the marker is generally greater in samples from discased patients
than in the normal samples, the marker can also be characterized as being
“up-regulated” for the disease. If the concentration of the marker was generally less
in the samples from diseased patients than in the samples from normal patients, the
protein could be characterized as being “down-regulated”.

Once markers are discovered, they can be used as diagnostic tools. For
example, with reference to the example described above, an unknown sample from a
test patient may be analyzed using a mass spectrometer and a mass spectrum can be
generated. The mass spectrum can be analyzed and the intensity of a signal at the
mass-to-charge ratio A can be determined in the test patient’s mass spcctrum, The
signal intensity can be compared to the average signal intensities at the
mass-to-charge ratio A for diseased patients and normal patients, A prediction can
then be made as to whether the unknown sample indicates that the test patient has or
will develop cancer. For example, if the signal intensity at the mass-to-charge ratio A

in the unknown sample is much closer to the average signal intensity at the
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mass-lo-charge ratio A for the diseased patient spectra than for the normal patient
spectra, then a prediction can be made that the test patient is more likely than not to
develop or have the disease.

While the described differential expression analysis is useful, many
improvements could be made. For instance, analyzing the amount of a single marker
such as PSA in a patient’s biological sample is many times not sufficiently reliable to
monitor disease processes. PSA is considered to be one of the best prostate cancer
markers presently available. However, it does not always correctly differentiate
benign from malignant prostate disease. While the concentration of a marker such as
PSAina biologicalvsample provides some ability to predict whether a test patient has
a disease, an analytical method with a greater degree of reliability is desirable.

Also, when a large number of mass spectra of a large number of
biological samples are analyzed, it is not readily apparent which signals represent
markers that might differentiate between a diseased state and a non-diseased state. A
typical mass spectrum of a biological sample has numerous potential marker signals
(e.g., greater than 200) and a significant amount of noise, This can make the
identification of potentially significant signals and the identification of average signal
differentials difficult. Consequently, it is difficult to identify and quantify potential
markers. Unless the potential markers exhibit strong up-regulation or strong
down-regulation, the average signal differential between samples from diseased
patients and samples from normal patients may not be easily discernable. For
example, it is often difficult to visually determine that a cluster of signals at a given
mass value in one group of mass spectra has higher or lower average signal intensity
than a cluster of signals from another group of mass spectra. In addition, many
potentially significant signals may have low intcnsity values. The noise in the spectra
may obscure many of these potentially significant signals. The signals may go
undiscovered and may be inadvertently omitted from a differential expression
analysis.

It would be desirable to have better ways to analyze mass spectra. For
cxample, it would be desirable to provide for a more accurate method for discovering
potentially useful markers. It would also be desirable to provide an improved
classification model that can be used to predict whether an unknown sample is
associated or is not associated with a particular biological status.

Embodiments of the invention address these and other problems.

3-
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SUMMARY OF THE INVENTION

Embodiments of the invention relate to methods for analyzing mass
specira. In embodiments of the invention, a digital computer forms a classification
model that can be used to differentiate classes of samples associated with different
biological statuses. The classification model can be used as a diagnostic tool for
prediction. It may also be used to identify potential markers associated with a
biological status. In addition, the classification model can be formed using a process
such as, for example, a neural nelwork analysis.

One embodiment of the invention is directed to a method that analyzes
mass spectra using a digital computer, The method comprises: entering into a digital
compuler a data set obtained from mass spectra from a plurality of samples, wherein
each sample is, or is to be assigned to a class within a class set comprising two or
more classes, each class characterized by a different biological status, and wherein
each mass spectrum comprises data representing signal strength as a fumction of
mass-to-charge ratio or a value derived from mass-to-charge ratio, and is formed
using a laser desorption ionization process; and b) forming a classification model
which discriminates between the classes in the class set, wherein forming comprises
analyzing the data set by executing code that embodies a classification process.

Another embodiment of the invention is directed to a method that
analyzes mass specira using a digital computer. The method comprises: a) enteting
into a digital computer a data set obtained from mass spectra from a plurality of
samples, wherein each sample is, or is to be assigned to a class within a class set
comprising two or more classes, cach class characterized by a different biological
status, and wherein each mass spectrum comprises data representing signal strength as
a function of time-of-flight or a value derived from time-of-flight, and is formed using
a laser desorption ionization process; and b) forming a classification model which
discriminates between the classes in the class set, wherein forming comprises
analyzing the data set by executing code embodying a classification process,

Another embodiment is directed to a computer readable medium. The
computer readable medium comprises: a) code for entering data derived from mass
spectra from a plurality of samples, wherein each sample is, or is to be assigned to a

class within a class set of two or more classes, each class characterized by a different
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biological status, and wherein each mass spectrum comprises data representing signal
strength as a function of time-of-flight or a value derived from time-of-flight, or mass-
to~charge ratio or a value derived from mass-to-charge ratio, and is formed using a
laser desorption ionization process; and b) code for forming a classification model
using a classification process process, wherein the classification model discriminates
between the classes in the class set.

Another embodiment of the invention is directed to a method for
classifying an unknown sample into a class characterized by a biological status using
a digital computer. The method comprises: a) entering data obtained from a mass
spectrum of the unknown sample into a digital computer; and b) processing the mass
speclrum data using a classification model {o classify the unknown sample in a class
characterized by a biological status. The classification model may be formed using,
for example, a neural network analysis.

Another embodiment of the invention is directed to a method for
estimating the likelihood that an unknown sample is accurately classified as belonging
to a class characterized by a biological status using a digital computer. The method
comprises: a) entering data obtained from a mass spectrum of the unknown sample
into a digital computer; and b) processing the mass spectrum data using a
classification model to estimate the likelihood that the unknown sample is accurately
classified into a class characterized by a biological status. The classification model
may be formed using a classification process, and is formed using a data set obtained
from mass spectra of samples assigned to two or more classes with different
biological statuses.

In embodiments of the invention, the mass spectra being analyzed may
be pre-existing mass spectra which, for example, may have been created well before
the classification model is formed. Alternatively, the mass spectra data may have
been created substantially contemporaneously with the formation of the classification
model.

These and other embodiments of the invention are described with

reference to the Figures and the Detailed Description.

-5-




10

15

20

25

30

WO 03/031031 PCT/USD1/44972

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1(A) shows overlaid mass spectra for samples from diseased
patients.

FIG. 1(B) shows overlaid mass spectra for samples from normal
patients.

FIG. 2 illustrates a flowchart of a method for creating mass spectra
according to an embodiment of the invention.

FIG. 3 shows a graph of log normalized intensity as a function of
identified peak clusters. The signal intensities from mass spectra from two different
groups of samples are shown in the graph,

FIG. 4 shows a flowchart illustrating some preferred mass spectra
preprocessing procedures according to an embodiment of the invention.

FIG. 5 shows a flowchart illustrating some preferred mass spectra
preprocessing procedures and classification model formation procedures according to
an embodiment of the invention. ’

FIG. 6 shows a block diagram of a system according to an embodiment
of the invention.

FIG. 7 shows a classification and regression tree according to an
embodiment of the invention.

FIG. 8 shows a table showing the variable importance of different
predictor variables.

FIG. 9 shows gel views obtained from different samples from cancer
patients and normal patients.

FIG. 10 show spectral views obtained from different samples from

cancer and normal patients.

DETAILED DESCRIPTION

In embodiments of the invention, a data set obtained from mass spectra
is entered info a digital computer to form a classification model. The mass spectra are
preferably obtained from biological samples having known characteristics. In
preferred embodiments, the data set used to form the classification model is

characterized as a “known” data set, because the biological statuses associated with
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the biological samples are known before the data set is used to form the classification
model. In comparison, an “unknown” data set includes data that is obtained from
mass spectra of samples where it is unclear if the samples are associated with the
biological statuses which are discriminated by the classification model when the mass
spectra are formed. Unknown data may be derived from a biological sample from a
test patient who is to be diagnosed using the classification model. In some
environments, the known data set is referred to as “training data”.

For purposes of illustration, many of the examples described below
refer to using a known data set to form a classification model. However, in some
embodiments of the invention, the data set used to form the classification model may
be an unknown data set. For example, in a cluster analysis, mass spectra of unknown
biological samples may be grouped together if they have similar patterns. Samples
corresponding to each group may be analyzed to see if they have a biological status in
common. If so, then the samples in the group may be assigned to a class associated
with the biological status. For example, after forming a group of mass spectra having
coﬁ‘lmon patterns, it may be determined that all spectra in the group were obtained
from biological samples that were all exposed to radiation. The samples in the group
may then be assigned to a class that is associated with the status “radiation exposed”.
Samples in other groupings can be assigned to classes characterized by other
biological statuses common to the samples in the respective groupings. A
classification model can thus be formed and unknown spectra may be classified using
the formed classification model.

In embodiments of the invention, cach samplc used is, or is to be
assigned to a class of a set of two or more classes, and each class is charactetized by a
different biological status. For example, a first class of samples may be associated
with a biological status such as a diseased state. A second class of mass spectra of
samples may be associated with a biological status such as a nbn-discased state. The
samples in the first and second classes may form the class sct. The mass spectra from
each of the respective classes can contain data that differentiates the first and the
second classes.

In embodiments of the invention, each mass spectrum in the analyzed
mass spectra could comprise signal strength data as a function of time-of-flight, a
value derived from time-of-flight (c.g. mass-to-charge ratio, molecular weight, etc.),

mass-to-charge ratio, or a value derived from mass-to-charge ratio (e.g., molecular

-7-
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weight). Asknown by those of ordinary skill in the art, mass-to-charge ratio values

obtained from a time-of-flight mass spectrometer are derived from time-of-flight

- values, Mass-to-charge ratios may be obtained in other ways. For example, instead

of using a time-of-flight mass spectrometer to determine mass-to-charge ratios, mass
spectrometers using quadrupole analyzers and magnetic mass analyzers can be used to
determine mass-to-charge ratios.

In preferred embodiments, each mass spectrum comprises signal
strength data as a function of mass-to-charge ratio. In a typical spectral view-type
mass spectrum, the signal strength data may be in the form of “peaks” on a graph of
signal intensity as a function of mass-to-charge ratio. Each peak may have a base and
an apex, where peak width narrows from the base to the apex. The mass-to-charge
ratio generally associated with the peak corresponds to the apex of the peak. The
intensity of the peak is also generally associated with the apex of the peak.

Generally, the mass-to-charge ratio relates to the molecular weight of a
potential marker. For example, if a potential marker bas a charge of +1, then the
mass-to-charge ratio is equal to the molecular weight of the potential marker
represented by the signal. Thus, while some mass specira plots may show signal
intensity as a function of molecular weight, the molecular weight parameter is in fact
derived from mass-to-charge ratios.

While many specific embodiments of the invention discussed herein
refer to the use of mass-to-charge ratios, it is understood that time-of-flight values, or
other values derived from time-of-flight values, may be used in place of
mass-to-charge ratio values in any of the specifically discussed exerplary
embodiments.

Although each mass spectrum in the analyzed mass spectra can
comprise signal strength data as a function of time of flight, the use of mass spectra
having signal strength data as a function of mass-to-charge ratio is generally
preferred. Time-of-flight values for ions are machine dependent, whereas
mass-to-charge ratio values are machine independent. For example, in a
time-of-flight mass spectrometry process, the time-of-flight values obtained for ions
can depend on the length of the free flight tube in the particular mass spectrometer
used. Different mass spectrometers with different free flight tube lengths can produce
different time-of-flight values for the same ion. This is not the case for

mass-to-charge ratios, since a mass-to-charge ratio is simply the ratio of the mass of
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an ion to the charge of the ion. Classification models created using mass-to-charge
ratio values can also be independent of the particular mass spectrometer used to create
them.

The data set may comprise any suitable data and may be entered
automatically or manually into a digital computer. The data may be raw or
preprocessed before being processed by the classification process run on the digital
computer. For example, the raw intensities of signals at predetermined
mass-to-charge ratios in the mass spectra may be used as the data set. Alternatively,
the raw data may be preprocessed before the classification model is formed. For
example, in some embodiments, the log values of the intensities (e.g., base 2) of the
signals in the mass spectra may be used to form the data set.

The data set is entercd into the digital computer. Computer code that
embodies a classification process uses the data set to form a classification model.
Exemplary classification processes include hierarchical classification processes such
as a classification and rogression tree process, multivariate statistical analyses such as
a cluster analysis, and non-linear processes such as a neural network analysis. In
preferred embodiments, the data set is processed using a classification and regression
tree process to produce a classification model such as a classification and regression
tree. These and other classification processes and classification models are described
in greater detail below.

The created classification imodel may be predictive or descriptive. For
example, the model can be used to predict whether an unknown test biological sample
is or is not associated with a particular biological status. Alternatively or additionally,
the classification model may be interrogated to identify features in the data that
diffcrentiate the biological status(s) being analyzed. A feature includes any aspect of
the mass spectra data that can differentiate the particular classes being analyzed.
Suitable features that can be identified include, but are not limited to, signal
intensities or signal intensity ranges at one or more mass-to-charge ratios, signal
shapes (e.g., peak shapes), signal areas (e.g., peak areas), signal widths (e.g., peak
widths such as at the bottom of a peak), the number of signals in each mass spectrum,
etc. In a typical example, the classification model may indicate that a feature such as
a particular signal intensity at a given mass-to-charge ratio differentiates diseased
samples from non-diseased samples, In yet another example, the classification model

ay indicate that a combination of features differentiates diseased samples from
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non-diseased samples. For example, signal intensity ranges for two or more signals at
different mass-to-charge ratios may differentiate a diseased state from a non-discased
state.

In another example, a suitable feature that may be identified as
differentiating the different sample classes may be the frequency that signals occur at
a particular mass-to-charge ratio within a class. For example, for a diseased class
having 100 samples and a normal class having 100 samples, a signal of intensity Y at
a mass-to-charge ratio X may be present in the mass spectra of 90 diseased class
samples, but may be present in only in 10 samples from the normal class samples.
Even though the average intensity of the signals is the same in both the diseased class
and the normal class (i.e,, an average intensity of Y), the higher number of
occurrences of the signal in the cancer patient class indicates that the feature
differentiates the diseased class from the normal class. A frequency feature such as
this can be identified using the classification model.

Any suitable biological samples may be used in embodiments of the
invention. Biological samples include tissue (e.g., from biopsies), blood, serum,
plasma, nipple aspirate, uﬁne, tears, saliva, cells, soft and hard tissues, organs, semen,
feces, urine, and the like. The biological samples may be obtained from any suitable
organism including eukaryotic, prokaryotic, or viral organisms.

The biological samples may include biological molecules including
macromolecules such as polypeptides, proteins, nucleic acids, enzymes, DNA, RNA,
polynucleotides, oligonucleotides, nucleic acids, carbohydrates, oligosaccharides,
polysaccharides; fragments of biological macromolecules set forth above, such as
nucleic acid fragments, peptide fragments, and protein fragments; complexes of
biological macromolecules set forth above, such as nucleic acid complexes,
protein-DNA complexes, receptor-ligand complexes, enzyme-substrate, enzyme
inhibitors, peptide complexes, protein complexes, carbohydrate complexes, and
polysaccharide complexes; small biological molecules such as amino acids,
nucleotides, nucleosides, sugars, steroids, lipids, metal ions, drugs, hormones, amides,
amines, carboxylic acids, vitamins and coenzymes, alcohols, aldehydes, ketones, fatty
acids, porphyrins, carotenoids, plant growth regulators, phosphate esters and
nucleoside diphospho-sugars, synthetic small molecules such as pharmaceutically or
therapeutically effective agents, monomers, peptide analogs, steroid analogs,

inhibitors, mutagens, carcinogens, antimitotic drugs, antibiotics, ionophores,

-10-
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antimetabolites, amino acid analogs, antibacterial agents, transport inhibitors,
surface-active agents (surfactants), mitochondrial and chloroplast function inhibitors,
electron donors, carriers and acceptors, synthetic substrates for proteases, substrates
for phosphatases, substrates for esterases and lipases and protein modification
reagents; and synthetic polymers, oligomers, and copolymers. Any sﬁitable mixture
or combination of the substances specifically recited above may also be included in
the biological samples.

As noted above, the biological samples from which the data set is
created are assigned to a class in a set of two or more classes. Each class is
characterized by a different biological status. Preferably, there are only two classes
and two biological statuses; one for each of the two classes. For example, one class
may have a biological status such as a diseased state while the other biological status
may have a status such as a non-diseased state.

As used herein, “biological status” of a sample refers to any
characterizing feature of a biological state of the sample or the organism or source
from which the sample is derived. The feature can be a biological trait such as a
genotypic trait or a phenotypic trait. The feature can be a physiological or disease
trait, such as the presence or absence of a particular disease, including infectious
disease. The feature also can be a condition (environmental, social, psychological,
time-dependent, etc.) to which the sample has been exposed.

Genotypic traits can include the presence or absence of a particular
gene or polymorphic form of a gene, or combination of genes. Genetic traits may be
manifested as phenotypic traits or exist as susceptibilities to their manifestation, such
as a susceptibility to a particular disease (e.g., a propensity for certain typbs of cancer
or heart disease).

Phenotypic traits include, for example, appearance, physiological
fraits, physical traits, neurological conditions, psychiatric conditions, response traits,
e.g., or response or lack of response to a particular drug. Phenotypic traits can include
the presence of absence of so-called “normal” or “pathological” traits, including
disease traits. Another status is the presence or abscnce of a particular disease. A
status also can be the status of belonging to a particular person or group such as
different individuals, different families, different age states, different species, and

different tissue types.

A11-

14-




10

15

20

25

30

WO 03/031031 PCT/USD1/44972

In some embodiments, the biological statuses may be, for example, one
or more of the following in any suitable combination: a diseased state, a normal
status, a pathological status, a drug state, a non-drug state, a drug responder state, a
non-drug responder state, and a benign state. A drug state may include a state where
patient who has taken a drug, while a non-drug state may include a state where a
patient has not taken a drug. A drug responder state is a state of a biological sample
in response to the use of a drug, Specific examples of disease states include, e.g.,
cancer, heart disease, autoimmune disease, viral infection, Alzheimer's disease and
diabetes. More specific cancer statuses include, e.g., prostate cancer, bladder cancer,
breast cancer, colon cancer, and ovary cancer. Biological statuses may also include
beginning states, intermediate states, and terminal states. For example, different
biological statuses may include the beginning state, the intermediate state, and the
terminal state of a disease such as cancer.

Other statuses may be associated with different environments to which
different classes of samples are subjected. Illustrative environments include one or
more conditions such as treatment by exposure to heat, electromagnetic radiation,
exercise, diet, geographic location, etc. For example, a class of biological samples
(e.g., all blood samples) may be from a group of patients who have been exposed to
radiation and another class of biological samples may be from a group of patients who
have not been exposed to radiation. The radiation source may be an intended
radiation source such as an x-ray machine or may be an unintended radiation source
such as a cellular phone. In another example, one group of persons may have been on
a particular diet of food, while another group may have been on a different diet.

In other embodiments of the invention, the different biological statuses
may correspond to samples that are associated with respectively different drugs or
drug types. In an illustrative example, mass spectra of samples from persons who
were treated with a drug of known effect are created. The mass spectra associated
with the drug of known effect may represent drugs of the same type as the drug of
known effect. For instance, the mass spectra associated with drugs of known effect
may represent drugs with the same or similar characteristics, structure, or the same
basic effect as the drug of known effect. Many different analgesic compounds, for
example, may all provide pain relief to a person. The drug of known effect and drugs

of the same or similar type might all regulate the same biochemical pathway in a

-12-

-15-




10

15

20

25

30

WO 03/031031 PCT/USD1/44972

person to produce the same effect on a person. Characteristics of the biological
pathway (e.g., up- or down-regulated proteins) may be reflected in the mass spectra.
A classification model can be created using the mass spectra associated
with the drug of known effect and mass spectra associated with different drugs,
different drug types, or no drug at all. Once the classification model is created, a
mass spectrum can then be created for a candidate sample associated with a candidate
drug of unknown effect. Using the classification model, the mass spectrum associated
with the candidate sample is classified. The classification model can determine if the
candidate sample is associated with the drug of known effect or another drug of a
different type. If, for example, the classification model classifies the candidate
sample as being associated with the drug of known effect, then the candidate drug is
likely to have the same effect on a person as the drug of known effect. Accordingly,
embodiments of the invention can be used, among other things, to discover and/or

characterize drugs.

]. Obtaining Mass Spectra

The mass spectra may be obtained by any suitable process. For
example, the mass spectra may be retrieved (e.g., downloaded) from a local or remote
server computer having access to one or more databases of mass spectra. The
databases may contain libraries of mass spectra of different biological samples
associated with different biological statuses. Alternatively, the mass spectra may be
generated from the biological samples. Regardless of how they are obtained, the mass
spectra and the samples used to create the classification model are preferably
processed under similar conditions to ensure that any changes in the spectra are due to
the samples themselves, and not differences in processing. The mass spectra might be
created specifically with a particular classification process in mind, or might be
created without reference to a particular classification process used on the data.

In embodiments of the invention, a gas phase ion spectrometer mass
may be used to create mass spectra. A “gas phase ion spectrometer” refers to an
apparatus that measures a parameter that can be translated into mass-to-charge ratios
of ions formed when a sample is ionized into the gas phase. This includes, e.g., mass

spectrometers, ion mobility spectrometers, or total ion current measuring devices.
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The mass spectrometer may use any suitable ionization technique. The
ionization techniques may include for example, an electron ionization, fast atom/ion
bombardment, matrix-assisted laser desorption/ionization (MALDI), surface enhanced
laser desorption/ionization (SELDI), or electrospray ionization.

In some embodiments, an ion mobility spectrometer can be used to
detect and characterize a marker. The principle of ion mobility spectrometry is based
on the different mobility of ions. Specifically, ions of a sample produced by
ionization move at different rates due to their difference in, e.g., mass, charge, or
shape, through a tube under the influence of an electric field. The ions (typically in
the [orm of a current) are registere‘d at a detecior and the output of the detector can
then be used to identify a marker or other substances in the sample. One advantage of
ion mobility speclrometry is that it can be performed at atmospheric pressure.

In preferred embodiments, a laser desorption time-of-flight mass
spectrometer is used to create the mass spectra. Laser desorption spectrometry is
especially suitable for analyzing high molecular weight substances such as proteins.
For example, the practical mass range for a MALDI or a surface enhanced laser
desorption/ionization process can be up to 300,000 daltons or more. Moreover, laser
desorption processes can be used to analyze complex mixtures and have high
sensitivity. In addition, the likelihood of protein fragmentation is lower in a laser
desorption process such as a MALDI or a surface enhanced laser
desorption/ionization process than in many other mass spectrometry processes. Thus,
laser desorption processes can be used to accurately characterize and quantify high
molecular weight substances such as proteins.

In a typical process for creating a mass spectrum, a probe with a
marker is introduced into an inlet system of the mass spectrometer. The marker is
then ionized. After the marker ions are generated, the generated ions are collected by
an ion optic assembly, and then a mass analyzer disperses and analyzes the passing
ions. The ions exiting the mass analyzer are detected by a detector. Ina
time-of-flight mass analyzer, ions are accelerated through a short high voltage field
and drift into a high vacuum chamber. At the far end of the high vacuum chamber,
the accelerated ions strike a sensitive detector surface at different times. Since the
time-of-flight of the ions is a function of the mass-to-charge ratio of the ions, the

elapsed time between ionization and impact can be used to identify the presence or

‘absence of molecules of specific mass-to-charge ratio.
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The time of flight data may then be converted into mass-to-charge
ratios to generate a spectrum showing the signal strength of the markers as a function
of mass-to-charge ratio. FIG. 2 shows a flowchart illustrating an exemplary method
for converting mass spectra based on time-of-flight data into mass-to-charge ratio
data. First, time of flight specira are collected (step 16). Then, a smoothing filter is
applied to the time of flight spectra (step 18). Typically, a significant amount of high
frequency noise is present in the initially generated spectra. Various filters are
applicd to reduce noise without corrupting the underlying signal. Then, a baseline is
calculated (step 20). This removes a characteristic upward shift that can be
characteristic of, for example, a MALDI or a surface enhanced laser
desorption/ionization process,

“Surface enhanced” desorption/ionization processes refer to those
processes in which the substrate on which the sample is presented to the energy
source plays an active role in the desorption/ionization process. In these methods, the
substratc, such as a probe, is not merely a passive stage for sample presentation.
Several types of surface enhanced substrates can be employed in a surface enhanced
desorption/ionization process. In one example, the surface comprises an affinity
material, such as anion exchange groups or hydrophilic groups (e.g., silicon oxide),
that preferentially bind certain classes of molecules. Examples of such affinity
materials include, for example, silanol (kydrophilic), C8 or C16 alkyl (hydrophobic),
immobilized metal chelate (coordinate covalent), anion or cation exchangers (ionic)
or antibodies (biospecific). The sample is exposed to a substrate bound adsorbent so
as to bind analyte molecules according to the particular basis of attraction. Typcially
non-binding molecules are washed off. When the analytes are biomolecules, an
energy absorbing material, e.g., matrix, is typically associated with the bound sample,
Then a laser is used to desorb and ionize the analytes, which are detected with a
detector.

In another version, the substrate surface comprises a bound layer of
energy absorbing molecules, obviating the need to mix the sample with a matrix
material, as in MALDI. Surface enhanced desorption/ionization methods are
described in, e.g., U.S. Patent 5,719,060 (Hutchens and Yip) and WO 98/59360
(Hutchens and Yip) (U.S. Patent 6,255,047). When a laser desorbs a matrix including
an energy absorbing material, some of the matrix material can also be desorbed along

with the sample material being analyzed. The baseline calculation adjusts the spectra
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to take into account the presence of the signal duc to desorbed matrix material. Once
a baseline is calculated, a time of flight/mass transformation takes place (step 22). In
this step, the time of flight data is converted into mass-to-charge ratios. Local noise
values are then calculated (step 24). At low mass-to-charge ratios, a significant
amount of noise is generated due to the desorbed matrix material. In an ionization
desorption process, desorption of the matrix material is less likely at higher
mass-to-charge ratios than at lower mass-to-charge ratios. Noise is therefore more
likely at lower mass-to-charge ratios than at higher mass-to-charge ratios.

Adjustments to the spectra can be made to correct for this effect. Afier these

" corrections are made, the spectra update is complete (step 26). By processing mass

spectra according to the method shown in FIG. 2, the signal-to-noise ratio of the mass
spectrum is improved, allowing better quantitation and comparison of potential
markers.

Mass spectra data generated by the desorption and detection of markers
can be preprocessed using a digital computer after or before generating a mass specira
plot. Data analysis can include the steps of determining the signal strength (e.g.,
height of signals) of a detected marker and removing “outliers” (data deviating from a
predetermined statistical distribution). For example, the observed signals can be
normalized, Normalization is a process whereby the height of each signal relative to
some reference is calculated. For example, a reference can be background noise
generated by instrument and chemicals (e.g., an energy absorbing molecule) which is
set as zero in the scale. Then, the signal strength detected for each marker or other
substances can be displayed in the form of relative intensities in the scale desired
(e.g., 100). Alternatively, a standard may be admitted with the sample so that a signal
from the standard can be used as a reference to calculate relative intensities of the
signals observed for each marker or other markers detected.

The digital computer can transform the resulting data into various
formats for display. In one format, referred to as “spectrum view or retentate map,” a
standard spectral view can be displayed. The spectral view depicts the quantity of
marker reaching the detector at each particular molecular weight. In another format,
referred to as “peak map,” only the peak height and mass information are retained
from the spectrum view, yielding a cleaner image and enabling signals representing
markers with nearly identical molecular weights to be more easily seen. In yet

another format, referred to as “gel view,” each mass from the peak view can be
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converted into a grayscale image based on the height of each peak, resulting in an
appearance similar to bands on electrophoretic gels. In yet another format, referred to
as “3-D overlays,” several spectra can be overlaid to study subtle changes in relative
peak heights. In yet another format, referred to as a “difference map view,” two or
more spectra can be compared, conveniently highlighting signals representing
markers and signals representing markers that are up- or down-regulated between
samples. Marker profiles (spectra) from any two samples may be compared visually
on one plot. Data that can be used to form the data set may be obtained from these

and other mass spectra display formats.
I Forming the data set

Once the mass spectra are obtained, a data set such as a known data set
is formed. The data set comprises data that is obtained from the mass spectra of the
class sot of biological samples. The mass spectra data forming the data sef can be
raw, unprocessed data. For example, raw signal intensity values at identified mass
values from the mass spectra may be used to form the data set. In another example,
raw signal patterns from mass spectra may be used to form the data set.

In alternative embodiments, data may be preprocessed before it is used
to form the classification model. The mass spectra may then be processed in any
suitable marmer before being used to form the classification model. For example, the
signals in the mass spectra may be processed by taking the log values of the signal
intensities, removing outliers, removing signals which are less likely to be associated
with potential markers, removing signals which have low intensities, etc.

In some embodiments, the data set may comprise raw or preprocessed
pattern data that relates to the particular pattern of each mass spectrum. For example,
for a mass spectrum comprising many signal peaks, the pattern of the signal peaks
may constitute a fingerprint for the biological sample used to create the mass
spectrum. The classification process can classify the different spectra according to
patterns or pattern segments that may be common to the spectra in the respectively
different classes differentiated by the classification model. A computer program such
as a neural network program, for example, can receive plural mass spectra of known
samples associated with known biological statuses. The neural network can be

trained with the mass spectra data so that it can differentiate between mass spectra
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patterns belonging to the respectively different classes. The trained neural network
can then be used to classify a mass spectrum associated with an unknown sample
based on the pattern in the mass spectrum.

In other embodiments, the data set comprises data relating to the
intensities of the signals in the mass spectra. In these embodiments, some or all of the
signals in each mass spectrum may be used to form the data set. For example, the

intensities of less than all of the signals (e.g., peaks) in a specira view type mass

spectrum can be used to form the data set. In preferred embodiments, mass-to-charge

ratios are identified, and the identified mass-to-charge ratios are used to select signals
from the mass spectra. The intensities of these selected signals can be used to form
the data set. By using data from less than all signals in each mass spectrum to form
the data set, the number of data points that will be processed is reduced so that data
processing occurs more rapidly. Data of signals that have a low likelihood of
representing acceptable markers may be excluded from the data set.

Mass-to-charge ratios may be identified in any number of ways. For
example, the mass-to-charge ratios may be identified by comparing the mass spectra
of different classes having different biological statuses. The mass-to-charge ratios of
signals that are likely to differentiate the classes may be selected. The comparison
may be performed manually (e.g., by a visual comparison) or may be done
automatically with a digital combuter. For example, mass spectra associated with
different classes of samples can be visually compared with each other to determine if
the intensity of a signal at a mass-to-charge ratio in a mass spectrum from one sample
class is significantly greater than or less than a signal at the same mass-to-charge ratio

in a mass spectrum from a different sample class, thus indicating potential differential

expression. Mass-to-charge ratios where these signal differences occur may be

selected.

FIG. 3, for example, shows a graph of log (2) normalized intensity vs.
the identified peak clusters. This plot displays the log base 2 normalized intcnsity
values. Each intensity value in a peak cluster has the average intensity value
subtracted so a value of zero represents no change from the average. Each unit on the
y-axis represents a two-fold difference from the cluster average. Significantly up and
down regulated proteins can be identified using a plot such as the one shown in FIG.
3. FIG. 3 shows a graph of log normalized intensity as a function of different signal

clusters. The signal intensities from mass spectra from two different groups of
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samples are shown in the graph. For example, the peak cluster 22 (on the x-axis) in
FIG. 3 shows a wide variation between the data points from Group A and Group B.
This indicates that the mass-to-charge ratio associated with peak cluster 22 can be
identified as a candidate marker location.

Alternatively or additionally, certain predefined criteria may be
provided to first select certain signals or signal clusters. The selected signal clusters
may then be used to identify particular mass-to-charge ratios. For example, signals or
signal clusters having a signal intensity or average signal intensity above or below a
certain signal intensity threshold may be automatically selected. Mass-to-charge
ratios associated with these sclected signals or signal clusters may then be identified.

Preferred methods including collecting mass spectra data,
preprocessing the data, and processing the preprocessed mass spectral data to form a
classification model can be described with reference to FIGS. 4 and 5. With reference
to FIG. 4, mass spectra of samples associated with different biological statuses are
collected (step 27). The number of samples collected is preferably large. For
example, in embodiments of the invention, the number of collected samples may be
from about 100 to about 1000 (or more or less than these values). Preferably, all
samples used to create the spectra are created under similar conditions so that
differences between the saniples are reflected in the spectra.

. Signﬂs corresponding to the presence of a potential marker are
identified in each spectrum. Each such signal is assigned a mass value. Signals
above a predetermined signal-to-noise ratio in each mass spectrum in the first group
of mass spectra are then detected (step 28). In a typical example, signals with a
signal-to-noise ratio greater than a value S may be detected. The value S may be an
absolute or a relative value. Then, signals at the mass-to-charge ratios in the mass
spectra are clustered together (step 30). Signal clusters that meet predetermined
criteria are then selected. For example, in one embodiment, signal clusters having a
predetermined number of signals can be selected (step 32). Clusters having less than
the predetermined number are discarded. In a typical example, if the number of
signals in a cluster is less than 50% of the number of mass spectra, then the signal
cluster can be discarded. In some embodiments, the selection process results in
anywhere from as few as about 20 to more than about 200 selected signal clusters.
Once the signal clusters are selected, the mass-to-charge ratios for these signal

clusters can be identified (step 34).
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Once the mass-to-charge ratios are identified, “missing signals” for the
mass-to-charge ratios can be determined. Some of the mass spectra may not exhibit a
signal at the identified mass-to-charge ratios. This group of mass spectra or the
samples associated with the mass spectra can be re-analyzed to determine if signals do
in fact exist at the identified mass-to-charge ratios (step 36). Estimates are added for
any missing signals (step 38). For spectra where no signal is found in a cluster, an
intensity value is estimated from the trace height or noise value. The estimated
intensity value may be user selectable.

With reference to FIG. 5, once mass-to-charge ratios are identified,
intensity values are determined for each signal at the identified mass values for all
mass spectra (step 46). The intensity value for each of the signals is normalized from
0 to 100 to remove the effects of absolute magnitude (step 48). Then, the logarithm
(e.g., base 2) is taken for each normalized signal intensity (step 50). Taking the
logarithm of the signal intensities removes skew from the measurements.

The log normalized data set is then processed by a classification
process (step 52) that is embodied by code that is executed by a digital computer.
After the code is executed by the digital computer, the classification model is formed
(step 54). Additional details about the formation of the classification model are

provided below.

II. Forming the Classification Model

A classification process embodied by code that is executed by a digital
computer can process the data set. The code can be executed by the digital computer
to create a classification model. The code may be stored on any suitable computer
readable media. Examplos of computer readable media include magnetic, clectronic,
or optical disks, tapes, sticks, chips, otc. The code may also be written in any suitable
computer programming language including, C, C--+, ete.

The digital computer may be a micro, mini or large frame computer
using any standard or specialized operating system such as a Windows™ based
operating system. In other embodiments, the digitial computer may simply be a one
or more microprocessors The digital computer may be physically separate from the
mass spectrometer used to create the mass spectra. Alternatively, the digital computer

may be coupled to or physically incorporated into the mass spectrometer. Mass
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spectra data can be transmitted from the mass spectrometer to the digital computer
manually or automatically. For example, in one embodiment, a known data set may
first be obtained from a plurality of mass spectra. The known data set may then be
manually entered into a digital computer running code that embodies a classification
process. In another embodiment, the generation and/or collection of mass spectra
data, the preprocessing of the data, and the processing of the preprocessed data by a
classification process may be performed using the same physical computational
apparatus.

In some embodiments, the ]oJOWn data set can be characterized as a
training set which can “train” a precursor to the classification model or a previously
formed classification model. The classification model may be trained and learn as it
is formed. For example, in a neural network, the known data set can be used to train
the neural network to recognize differences between the classes of duta that are
entered into the neural network. After an initial classification model is formed, a
larger number of samples can be used to further train and refine the classification
model so that it can more accurately discriminate betweeﬁ the classes used to form the
classification model.

In embodiments of the invention, additional data may be used to form
the classification model. The additional data may or may not relate to mass specira.
For instance, in some embodiments, pre-existing marker data may be used in addition
to a known data set to form the classification model. For example, mass spectra for a
class of prostate cancer patient samples and a class of non-prostate cancer patient
samples may be obtained. A known data set may be formed using the mass spectra.
A classification model may be formed using the known data set and pre-existing
marker data such as pre-existing PSA diagnostic data (e.g., PSA clinical assay data).
The additional pre-existing PSA diagnostic data can be used to help differentiate the
mass spectra to form the classification model. For example, each mass spectrum may
be evaluated to see if a signal at the mass-to-charge ratio corresponding to PSA is
more closely associated with a signal intensity characteristic of prostate cancer or a
signal intensity characteristic of non-prostate cancer. This information can be uscd to
help assign the mass spectrum and its corresponding sample to a prostate cancer or a
non-prostate cancer class. In other embodiments, non-mass spectra data such as the
sex, age, etc. of the persons from which the biological samples were taken may also

be used to form 2 classification model. For example, if men are more likely to have a
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particular disease than women, then this information can also be used to help classify
samples and form a classification model.

Any suitable classification process may be used in embodiments of the
invention. For example, the classification process may be a hierarchical classification
process such as a classification and regression tree process or a multivariate statistical
analysis. A multivariate statistical analysis looks at pattems of relationships between
several variables simultaneously. Examples of multivariate statistical analyses
include well known processes such as discriminate function analysis and cluster
analysis. Discriminant function analysis is a statistical method of assigning
observations to groups based on previous observations from each group. Cluster
analysis is a method of analysis that represents multivariate variation in data as a
series of sets. In biology, for example, the sets are often constructed in a hierarchical
manner and shown in the form of a tree-like diagram called a dendrogram. Some
types of cluster analyses and other classification processes are described in the article
by Jain ¢t al., “Statistical Pattern Recognition: A Review”, IEEE Transactions on
Pattern-Analysis and Machine Intelligence, Vol. 22, No. 1, January 2000. This article
is incorporated herein by reference in its entirety.

Alternatively, the classification process may use a non-linear
classification process such as an artificial neural network analysis. An artificial
neural network analysis can be trained using the known data set. In general, an
artificial neural network can predict the value of an output variable based on input
from several other input variables that can impact it. The prediction is made by
selecting from a set of known patterns the one that appears most relevant in a
particular situation. An artificial neural network conceptually has several neuron
elements (units) and connections between them. These units are categorized into
three different layers or groups according to their functions. A first'group forms an
input layer that receives the data entered into the system. A second group forms an
output layer that delivers the output data representing an output pattern. A third group
comprises a number of intermediate layers, also known as hidden layers that convert
the input pattern into an output.

Tlustratively, a neural network can be trained to differentiate between
laser desorption mass spectra associated with a diseased state and a non-diseased
state. Then, a mass spectrum of a test biological sample can be created by a laser

desotption process and data relating to this mass spectrum can be input into the
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trained neural network, The trained neural network can determine if the test
biological sample is associated with the diseased state or non-diseased state.

In embodiments of the invention, the classification process preferably
includes a hierarchical, recursive partitioning process such as a classification and
regression tree process, In embodiments of the invention, the classification and
regression tree process is embodied by computer code that can be executed by a
digital computer. An exemplary classification and regression {ree program is CART
4.0 commercially available from Salford Systems, Inc. (www.salford-systems.com).

Oue specific classification and regression iree process is a binary
recursive partitioning process. The process is binary because parent nodes are always
split into exactly two child nodes and recursive because the process can be repeated
by treating each child node as a parent. To partition a known data set, questions are
asked of the known data set. In embodiments of the invention, the data being
partitioned are the mass spectra corresponding to the class set of biological samples.
Each mass spectrum can be considered an “instance” to be classified. An exemplary
question that may be used to partition the instances may be “Is the signal intensity of
the signal at the mass-to-charge ratio X greater than Y?” Each question subdivides
the known data set into two groups of more homogeneous composition. Once a best
split is found, the classification and regression tree process repeats the search process
for each child node, continuing recursively until further splitting is impossible or
stopped. Splitting is impossible if only one case remains in a particular node or if all
the cases in that node are of the same type.

The questions asked of the data sel may be determined by a uéer or
may be automatically determined by a digital computer, In some embodiments, the
questions can be arbitrarily generated by a digital computer and the quality of the data
splitting determines if the question is acceptabie. For example, a question may be
asked of the data. If the partitioning results in a statistically significant split of the
instances, the question may be kept and used to form the classification and regression
tree. The classification and regression tree process identifies the optimal number of
questions required to classify the data, compensating for the effects of random error in
each sumple observation.

The classification and regression tree process looks at all possible
splits [or all predictor variables included in the analysis. For example, for a data set

with 215 instances and 19 predictor variables, the process considers up to 215 times
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19 splits for a total of 4085 possible splits. Typically, all such splits are considered
when forming a classification and regression tree. Consequently, the formed
classification and regression tree process takes into account many different predictor
variables in forming the classification model. For example, in a typical embodiment,
data of signals at over 100 mass-to-charge ratios in all mass spectra for the class set
are taken into account when forming the classification model. In comparison, the
differential expression analysis described above takes only one predictor variable into
account. Consequently, the classification and regression tree embodiments can
provide more accurate classification accuracy than other classification methods since
more data from each mass spectrum is used to form the classification model.

To check the accuracy of the model, the classification and regression
tree process may employ a computer-intensive technique called cross validation, Ina
typical cross-validation process, a large tree is grown and is then pruned back, The
data set is divided into 10 roughly equal parts, each containing a similar distribution
for the biological statuses being analyzed. The first 9 parts of the data are used to
construct the largest possible tree. The remaining 1 part of data is used to obtain
initial estimates of the error rate of selected sub-trees. The same process is then
repeated (growing the largest possible tree) on another 9/10 of the data while using a
different 1/10 part as the test sample. The process continues until each part of the
data has been held in reserve one time as a test sample. The results of the 10 mini-test
samples are then combined to form error rates for trees of each possible size. These
error rates are applied to the tree based on the entire data set. Cross validation
provides fairly reliable estimates of the independent predictive accuracy of the tree.
Even if an independent test sample is not available, a prediction can be made as to
how accurately the tree can classify completely fresh data (e.g., data from a plurality
of unknown samples).

The classification and regression tree that is created provides a
representation of which of the predictor variables (if any) are responsible for the
differences between sample groups. The classification and regression tree can be
used for classification (predicting what group a case belongs to) and also be used for
regression (predicting a specific value). It can also be used to identify features that
may be important in discriminating between the classes being analyzed. For example,

the classification model may indicate that one or more signal intensity values at
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specific mass-to-charge ratios, alone or in combination, are important features that
differentiate the classes being analyzed.

The classification and regression tree graphically displays the
relationships found in data. One primary output of the classification and regression
tree process is the tree itself. The tree can serve as one aspect of a classification
model that can be visnally analyzed by a user. Unlike non-linear techniques such as a
neural network analysis, the visual presentation provided by the tree makes the
classification analysis very easy to understand and assimilate. As a result, users tend
to trust the results of decision trees more than they do “black box” classification
models such as those characteristic of trained neural networks. This makes the
classification and regression tree a desirable classification model for various health
care and regulatory personnel (e.g., the Food and Drug Admjnistratioﬁ), and patients,
who may want to have a detailed understanding of the analysis used to create the
classification model. The trees can also be used to discover previously unknown
connections between the data and the biological statuses being analyzed.

The classification and regression tree process has other advantages
over classification processes such as a neural network analysis. For example,
classification and regression tree programs are more efficient than neural networks,
which typically require a large number of passes of the training set data, sometimes
numbering in the thousands. The number of passes required to build a decision tree,
however, is no more than the number of levels in the tree. There is no predetermined
limit to the number of levels in the tree, although the complexity of the tree as
measured by the depth and breadth of the tree generally increases as the number of
predictor variables increases.

Also, using the classification and regression tree model, features that
may discriminate between the classes may be identified. The identified features in the
data may be characteristic of the biological status(s) being analyzed. For example, the
classification model may indicate that a combination of features is associated with a
particular biological status. For example, the model may indicate that specific signal
intensities at different mass-to-charge ratios differentiate a diseased state from a
non-discased state. In comparison to conventional differential analysis processes, in
embodiments of the invention, many different variables may be analyzed. The
classification model can identify a single predictor variable or can identify multiple

predictor variables that may differentiate the biological statuses being analyzed.
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1V. Using the Classification Model

The classification model may be used to classify an unknown sample
into a biological status. In this method the mass spectrum of a test sample can be
compared to the classification model associated with a particular biological status to
determine whether the sample can be properly classified with the biological status. A
mass spectrum of the unknown biological sample can be obtained, and data obtained
from a mass spectrum of the unknown sample can be entered into a digital computer.
The entered data may be processed using a classification model. The classification
model may then classify the unknown sample into a particular class. The class may
have a particular biological status associated with it, and the person can be diagnosed
as having that particular biological status.

This method has particular use for clinical applications. For example,
in the process of drug discovery, one may wish to determine whether a candidate
molecule produces the same physiological result as a particular drug or class of drugs
(e.g., the class of seratonin re-uptake inhibitors) in a biological system. A
classification model is first developed that discriminates biological systems based on
exposure to the drug or class of drugs of interest (e.g., persons or test animals). Then,
the biological system is exposed to the test molecule and a mass spectrum of a sample
from the system is produced. This spectrum is then classified as belonging or not
belonging to the classification of known drug or group of drugs against which it is
being tested. If the candidate molecule is assigned to the class, this information is
useful in determining whether to perform further research on the drug.

In another application, a classification model is developed that
discriminates various toxic and non-toxic biological statcs. Toxic status can result
from, e.g., exposure to a drug or class of drugs. That is, a classification model can be
developed that indicates whether or not a drug or class of drugs produces a toxic
response in a biological system (e.g., in vivo or in vitro model systems including liver
toxicity). Then, a drug that is in development or in clinical trials can be tested oh the
system to determine whether a spectrum from a sample from the system can be
classified as toxic or not. This information also is useful in toxicity studies during

drug development.
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In another application, a classification model is developed that
discriminates between persons who are responders and non-responders to a particular
drug. Then, before giving a drug to a person who is not known to be a responder or
non-responder, a sample from the person is tested by mass spectrometry and assigned
to the class of responders or non-responders to the drug.

In another application, a classification model is developed that
distinguishes person having a disease from those who do not have the disease. Then a
person undergoing diagnostic testing can submit a sample for classification into the
status of having the disease and not having the disease. Thus, this method is useful
for clinical diagnostics.

One embodiment is directed to analyzing cancer. Pathologists grade

" cancers according to their histologic appearance. Features of low-grade cancers

include enlarged nuclei with a moderate increase in nuclear/cytoplasmic ratio, small
number of mitoses, moderate cytologic heterogeneity, and retention of generally
normal architecture. Features of high-grade cancers include enlarged, bizarre looking
nuclei with a high nuclear/cytoplasmic ratio; increased number of mitoses, some of
which may appear atypical; and little or no resemblance to normal architecture. It is
useful to develop a classification model that distinguishes a biological sample coming
from un-diseased, low-grade cancer, and high-grade cancer, since this diagnosis often
dictates therapeutic decisions as well as can predict prognosis‘. The sample can be a
solid tissue biopsy or a fine needle aspirate of the suspected lesion. However, in
another embodiment, the samples can derive from more easily collected sources from
the group of individuals being tested, such as urine, blood or another body fluid. This
is particularly useful for cancers that secrete cells or proteins into these fluids, such as
bladder cancer, prostate cancer and breast cancer, Upon establishment of the
classification model for these states, the model can be used to classify a sample from a
person subject to diagnostic testing. In another application, a classification model is
developed that discriminates between classes of individuals having a particular
physical or physiological trait that is not pathologic. Then, individuals unknown to
have the trait can be classified by testing a sample from the individual and classifying
a spectrum into the class having the trait, or outside the class having the trait,

The classification model can also be used to estimate the likelihood
that an unknown sample is accurately classified as belonging to a class characterized

by a biological status. For instance, in a classification and regression tree, the
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likelihood of potential misclassification can be determined. Illustratively, a
classification and regression tree model that differentiates a diseased state from a
non-diseased state classifies an unknown sample from a patient. The model can
estimate the likelihood of misclassification. If, for example, the likelihood of disease
misclassification is less than 10%, then the patient can be informed that there is a 90%

chance that he has the disease.

V. Systems including computer readable media

Some embodiments of the invention are directed to systems including a
computer readable medium. A block diagram of an exemplary system incorporating a
computer readable medium and a digital computer is shown in FIG. 6. The system 70
includes a mass spectrometer 72 coupled to a digital computer 74. A display 76 such
as a video display and a computer readable medium 78 may be operationally coupled
to the digital computer 74. The display 76 may be used for displaying output
produced by the digital computer 74. The computer readable medium 78 may be used
for storing instructions to be executed by the digital computer 74.

The mass spectrometer can be operably associated with the digital
computer 74 without being physically or electrically coupled to the digital computer
74. For example, data from the mass spectrometer could be obtained (as described
above) and then the data may be manually or automatically entered into the digital
computer 74 using a human operator, In other embodiments, the mass spectrometer
72 can automatically send data to the digital computer 74 where it can be processed.
For example, the mass spectrometer 72 can produce raw data (e.g., time-of-flight
data) from one or more biological samples. The data may then be sent to the digital
computer 74 where it may be pre-processed or processed. Instructions for processing
the data may be obtained from the computor rcadable medium 78. After the data from
the mass spectrometer is processed, an output may be produced and displayed on the
display 76.

The computer readable medium 78 may contain any suitable
instructions for processing the data from the mass spectrometer 72. For example, the
computer readable medium 78 may include computer code for entering data obtained
from a mass spectrum of an unknown biological sample into the digital computer 74.

The data may then be processed using a classification model. The classification
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model may estimate the likelihood that the unknown sample is accurately classified
into a class characterized by a biological status.

Although the block diagram shows the mass spectrometer 72, digital
computer 74, display 76, and computer readable medium 78 in separate blocks, it is
understood that one or more of these components may be present in the same or
different housings. For example, in some embodiments, the digital computer 74 and
the computer readable medium 76 may be present in the same housing, while the
mass spectrometer 72 and the displgy 76 are in different housings. In yet other

embodiments, all of the components 72, 74, 76, 78 could be formed into a single unit.
EXAMPLE

A plurality of mass spectra was generated [rom biological samples
from a set of biological samples. The set included a first class of serum from normal
patients and a second class of serum from patients with prostate cancer. A serum
sample from each patient was run through a surface enhanced laser
desorption/ionization system commercially available from Ciphergen Biosystems,
Inc. of Fremont, California. Ciphergen Biosystem’s ProteinChip® technology was
also used in this example. Additional details about ProteinChip® technology can be
found at the Website www.ciphergen.com. The resulting output for each sample was
amass spectrum plot of signal intensity vs. mass-to-charge ratio. Discrete peaks
represented the signals in the mass spectra.

The intensities of the signals at the particular mass-to-charge ratios
corresponded to the amount of proteins having the particular mass-to-charge ratios.
For example, high signal intensities indicate high concentrations of proteins. Signals
in each mass spectrum were located, quantified, and selected. In this example,
segments of a mass spectrﬁm were considered acceptable signals if they had intensity
values at least twice as great as the surrounding noise level. Signals in the mass
spectra at approximately the same mass-to-charge tatios were clustered together in all
mass spectra. After clustering, about 250 signal clusters were identified and were
labeled P1 through P250. Each signal cluster, P1 through P250, corresponded to a
specific mass-to-charge ratio and was characterized as a “predictor variable”,

The signal intensities at the identified mass-to-charge ratios for each

mass spectrum formed the known data set. These signal intensities were entered into
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a classification and regression tree program, CART 4.0, commercially available from

Salford Systems, Inc. (www.salford-systems.com). The program was executed by a

digital computer. The digital computer formed a classification and regression tree. Using
the data, each sample was classified as normal or cancer.

After the mass spectra data was input, the digital computer produced a tree such as
the one shown in FIG. 7. In this example, class 0 is normal while class 1 is cancer. Each
mass spectrum can be characterised as an “instance” which is classified in the tree.

Each box in the tree represents a “node”. The top node, Node 1, is called the root
node. The decision tree grows from the root node, splitting the data at each level to form
new nodes. Branches connect the new nodes. Nodes that do not experience further
splitting are called terminal nodes. The terminal nodes in the tree shown in FIG. 7 are
labelled Terminal Nodes 1 to 7. As will be explained in further detail below, Terminal
Nodes 1 to 7 can be used to classify an unknown sample and can thus be used for
prediction.

In each node, the majority sets the classification for the entire node. For example,
Terminal Node 1 has four patients. Of these four patients, all four patients have cancer.
Terminal Node 1 is therefore characterised as a cancer node. Because all instances have
the same value (cancer), this node is characterised as “pure” and will not be split further.
If Terminal Node 1 included three cancer patients and one normal patient, the node would
still be characterised as a cancer node since a majority of the patients are cancer patients.
In this example, the one normal patient would be considered incorrectly classified.

In FIG. 7, each node contains information about the number of instances at that
node, and about the distribution of the biological status, cancer. The instances at the root
node (Node 1) are all of the instances in the mass spectra data set. Node 1 contains 194
instances, of which 96 are normal and 98 are cancer. Node 1 is split into two new nodes,
Node 2 and Node 5. The data split is determined by determining whether the average
signal intensity for the cluster P127 is less than or equal to 3.2946. The average signal
intensities, as well as the value 3.2946 were on a relative scale. If the answer to this
question is yes, then the corresponding instances are placed in Node 2. If the answer to
this question is no, then the corresponding instances are placed in Node 5. In this
example, the mass spectra of 85 cancer patients and 11 normal patients had a signal

intensity less than or equal to 3.2946 at
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the mass-to-charge ratio associated with the predictor variable P127 and were placed
in Node 2. The mass spectra of 85 normal patients and 13 cancer patients had a signal
intensity greéter than 3.2946 at the mass-to-charge ratio associated with the predictor
variable P127 and were placed in Node 5. Similar partitioning using different
splitting rules occurred at the other nodes to form the tree.

The prediction performance of the classification and regression tree

can be described with reference to the Tables 1 and 2.

Table 1 - Misclassification for Learn Data

Class N Cases ) N Misclassified Percent Error
0 (Normal) 96 0 0
1 (Cancer) 98 ' 0 0

Table 2 - Misclassification for Test Data

Class N Cases N Misclassified Percent Error
0 (Normal) 96 9 9.38
1 (Cancer) 98 11 11.22

The classification and regression tree program divided the known data set into two
groups. About 90% of the data was used as a learning set and about 10% was used as
a test set. A classification and regression tree is initially formed using the learning set
data. After the tree was formed, it was tested with the remaining 10% test data to see
how accurately the classification and regression tree classifies data. With reference to
Table 1, all of the learning set data was corrected classificd using the formed
classification and regression tree. With reference to Table 2, the percent error rates
for classifying the normal casc and the cancer case test data were 9.38% and 11.22%,
respectively. Conversely, the classification success rate was 90.62% and 88.78 % for
the normal cascs and the cancer cases, respectively. '

Classification success rates such as these indicate that the classification
and rcgression tree is a highly accurate model for classifying unknown biological
samples. In the classification process, multiple predictor variables are considered in
the classification scheme. Much more data can be used from a mass spectrum to

classify the sample associated with the mass spectrum than the previously described
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differential analysis procedure, which only uses average signal intensities at a single
mass-to-charge ratio to classify a test patient. Accordingly, the classification model can
be more accurate in classifying a test patient than many conventional classification
models.

Once grown, the tree can be used to classify an unknown sample by starting at the
root (top) of the tree and following a path down the branches until a terminal node is
encountered. The path is determined by imposing the split rules on the values of the
predictor variables in the mass spectrum for the unknown sample. For example, if a mass
spectrum of an unknown serum sample from a test patient has signals with intensities of
1.0, 0.05, and 0.9 at the mass-to-charge ratios of predictor variables P127, P193, and P187
respectively, then the test patient would be classified in Node 1, Node 2, Node 3, and then
finally Terminal Node 1. Terminal Node 1 is a cancer node and the patient would be
classified as being a cancer patient.

FIG. 8 shows a table of variable importance of each of some of the predictor
variables (e.g., signal clusters). The variable importance table ranks the predictor
variables by how useful they were in building the classification and regression tree. If a
specific predictor variable strongly differentiates the mass spectra data, then it is
important in building the classification tree. To calculate a variable importance score,
CART looks at the improvement measure attributable to each variable in its role as a
surrogate to a primary split. The values of these improvements are summed over each
node and totalled, and are scaled relative to the best performing variable. The variable
with the highest sum of improvements is scored 100, and all other variables will have a
lower score ranging downwards towards zero.

In FIG. §, the classification model indicates that the predictor variables P36, P127,
and P90 are more important than other predictor variables in forming the classification
and regression tree. They are consequently more important than other predictor variables
in discriminating between the classes, cancer and non-cancer. The mass-to-charge ratios
associated with these predictor variables are also associated with potential markers that
differentiate prostate cancer samples from non-prostate cancer samples. Accordingly, the
classification model can be used to identify one or more markers that may discriminate
between classes being analysed.

The effectiveness of the tree model can be confirmed with reference to FIGS. 9 and
10. The views in FIG. 9 are gel views while the views in FIG. 10 are trace views. The
spectra are zoomed into the signal represented by P127 at a mass-to-charge ratio of 5075

daltons (charge = +1). FIGS. 9 and 10 show that markers in samples from six prostate
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cancer patients and six non-prostate cancer patients are differentially expressed at the
mass value of 5075 daltons corresponding to the predictor variable P127. As shown in
the tree in FIG. 7, the predictor variable P127 is the first node in the tree. Also, as shown
in FIG. 8, the predictor variable P127 was shown to be more effective in differentiating
the prostate cancer class of samples from the non-prostate cancer patient class of samples
than most other predictor variables.

While the foregoing is directed to certain preferred embodiments of the present
invention, other and further embodiments of the invention may be devised without
departing from the basic scope of the invention. Such alternative embodiments are
intended to be included within the scope of the present invention. Moreover, the features
of one or more embodiments of the invention may be combined with one or more features
of other embodiments of the invention without departing from the scope of the invention.

All publications (e.g., Websites) and patent documents cited in this application are
incorporated by reference in their entirety for all purposes to the same extent as if each
individual publication or patent document were so individually denoted. By their citation
of various references in this document Applicants do not admit that any particular

reference is “prior art” to their invention.
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WHAT IS CTLATMED IS:

1, A method that analyzes mass specira using a digital computer, the method
comprising:

a) entering into a digital computer a data set obtained from mass specira
from a plurality of samples, wherein each sample is, or is to be assigned to a class
within a class set comprising two or more classes, each class characterized by a
different biological status, and wherein each mass spectrum comprises data
representing signal strength as a function of time-of-flight, mass-to-charge ratio, or a
value derived from time-of-flight or mass-to-charge ratio, and is created using a laser
ionization desorption process; and

b) forming a classification model which discriminates between the classes
in the class set, wherein forming comprises analyzing the data set by executing code

that embodies a classification process.

2. The method of claim 1 wherein the mass spectra are selected from the group
consisting of MALDI spectra, surface enhanced laser desorption/ionization spectra,
and electrospray ionization spectra.

3. The method of claim 1 wherein the class set consists of exactly two classes.

4. The method of claim 1 wherein the samples comprise biomolecules selected

from the group consisting of polypeptides and nucleic acids.

5, The method of claim 1 wherein the samples are derived from a eukaryote, a

prokaryote or a virus.

6. The method of claim 1 wherein the different biological statuses comprise a

normal status and a pathological status.

7. The method of claim 1 where the different biological statuses comprise

un-diseased, low grade cancer and high grade cancer.
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8. The method of claim 1 whercin the different biological statuses comprise a

drug treated state and a non-drug treated state.

9. The method of claim 1 wherein the different biological statuses comprise a

drug-responder state and a drug-non-responder state.

10.  The method 6f claim 1 wherein the different biclogical statuses comprise a

toxic state and a non-toxic state.

11, The method of claim 10 wherein the toxic state results from exposure to a
drug.

12.  The method of claim 1 wherein the data set is a known data set, and each
sample is assigned to one of the classes before the data set is entered into the digital

computer,

13. The method of claim 1 wherein forming the classification model comprises

using pre-existing marker data to form the classification model.

14, The method of claim 1 wherein the data set is formed by:

detecting signals in the mass specira, each mass spectrum comprising
data representing signal sirength as a function of mass-to-charge ratio;

clustering the signals having similar mass-to-charge ratios into signal
clusters; k

selecting signal clusters having at least a predetermined number of
signals with signal intensities above a predetermined value; »

identifying the mass-to-charge ratios corresponding to the selected
signal clusters; and

forming the data set using signal intensities at the identified

mags-to-charge ratios.

15, The method of claim 1 wherein forming the classification model comprises at
least one of identifying features that discriminate between the different biological

statuses, and learning.
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16,  The method of claim 1 wherein the classification process comprises a neural network

analysis.

17. The method of claim 1 further comprising:
c) interrogating the classification model to determine if one or more features

discriminate between the different biological statuses.

18. The method of claim 1 further comprising;

c) repeating a) and b) using a larger plurality of samples.
19. The method of claim 1 wherein the classification process is a cluster analysis.

20 The method of claim 1 further comprising forming the data set, wherein forming the
data set comprises obtaining raw data from the mass spectra and then preprocessing the raw

mass spectra data to form the data set.

21 The method of claim 1 wherein the different classes are selected from exposure to a
drug, exposure to one of a class of drugs and lack of exposure to a drug or one of a class of
drugs.

22.  The method of claim 1 wherein the sach mass spectrum comprises data representing
signal strength as a function mass-to-charge ratio or a value derived from mass-to-charge

ratio.

23. A method for classifying an unknown sample into a class characterized bya
biological status using a digital computer, the method comprising:

a) entering data obtained from a mass spectrum of the unknown sample into a
digital computer; and

b) processing the mass spectrum data using the classification model formed by
the method of claim I to classify the unknown sample in a class characterized by a biological

status.

24, The method of claim 23 wherein the class is characterized by a disease status.
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25. The method of claim 23 wherein the different biological statuses comprise

un-diseased, low grade cancer and high grade cancer.

26.  The method of claim 23 wherein the class is characterized by exposure to a drug of

one of a class of drugs.
27.  The method of claim 23 wherein the class is characterized by response to a drug.
28.  Themethod of claim 23 wherein the class is characterized by a toxicity status.

29, Amethod for estimating the likelihood that an unknown sample is accurately
classified as belonging to a class characterized by a biological status using a digital computer,
the method comprising:

a) entering data obtained from a mass spectrum of the unknown 'sample into a
digital computer; and

b) processing the mass spectrum data using the classification model formed by
the method of claim 1 to estimate the likelihood that the unknown sample is accurately

classified into a class characterized by a biological status.

30. A computer readable medium comprising:

a) code for entering data obtained from a mass spectrum of an unknown sample
into a digital computer; and

b) code for processing the mass spectrum data using the classification model
formed by the method of claim 1 to classify the unknown sample in a class characterized by a

biological status.

31. A system comprising;
a gas phase ion spectrometer;
a digital computer adapted to process data from the gas phase ion spectrometer; and
the computer readable medium of claim 30 in operative association with the digital -

computer.

32.  The system of claim 31 wherein the gas phase ion spectrometer is adapted to perform

a laser desorption ionization process.
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33. A computer readable medium comprising:
a) code for entering data obtained from a mass spectrum of an unknown sample
into a digital computer; and
b) code for processing the mass spectrum data using the classification model
formed by the method of claim 1 to estimate the likelihood that the unknown sample is

accurately classified into a class characterized by a biolo gical status.

34, Asystem comprising:
a gas phase jon spectrometer;
a digital computer adapted to process data from the gas phase ion spectrometer; and
the computer readable medium of claim 33 in operative association with the digital

computer. .

35.  The system of claim 34 wherein the gas phase ion spectrometer is adapted to perform

a laser desorption ionization process.

36. A computer readable medium comprising:

a) code for entering data derived from mass spectra from a plurality of samples,
wherein each sample is, or is to be assigned to a class within a class set of two or more
classes, each class characterized by a different biological status, and wherein each mass
spectrum comprises data representing signal strength as a function of time-of-flight, mass-to-
charge ratio or a value derived from mass-to-charge ratio or time-of-flight, and is created
using a laser desorption ionization process; and
b) code for forming a classification mode] using a classification process, wherein the

classification model discriminates between the classes in the class set.

37.  The computer readable medium of claim 36 wherein the classification process

comprises a neural network analysis.
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38. A system comprising:
a gas phase ion spectrometer;
a digital computer adapted to process data from the gas phase ion spectrometer; and
the computer readable medium of claim 36 in operative association with the digital

computer.

39.  The system of claim 38 wherein the gas phase ion spectrometer is adapted to perform

a laser desorption ionization process.
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40. A method that analyses mass spectra using a digital computer which method
is as defined in claim 1 and substantially as herein described with reference to the
Figures.

41. A method that analyses mass spec.:tra using a digital computer which method

s is as defined in claim 1 and substantially as herein described with reference to the
Example and the Figures.

42. A system as defined in claim 30 and substantially as herein described with
reference to the Figures.

43. A computer readable medium as defined in claim 29 and substantially as

10 herein described with reference to the Figures.

Dated 5 October, 2006
Ciphergen Biosystems, Inc.
and
Eastern Virginia Medical School

s Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON
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