
(19) United States
US 2005O132384A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0132384 A1
Morris0n et al. (43) Pub. Date: Jun. 16, 2005

(54) METHODS AND SYSTEMS FOR CREATING
AND COMMUNICATING WITH COMPUTER
PROCESSES

(75) Inventors: Conor P. Morrison, Seattle, WA (US);
Sivaprasad V. Padisetty, Redmond,
WA (US); Arvind Gopalan, Hacienda
Heights, CA (US)

Correspondence Address:
MICROSOFT CORPORATION
MICROSOFT PATENT GROUP DOCKETING
DEPARTMENT
ONE MCROSOFT WAY
BUILDING 109
REDMOND, WA 98052-6399 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 11/042,293

(22) Filed: Jan. 24, 2005

Related U.S. Application Data

(62) Division of application No. 09/872,257, filed on Jun.
1, 2001.

300 Create a process.
On source device:

304 Add a process entry
to the source's process

table.

306 Associate an event
with the process.

308 Will
the process run
on the source

device?

310 Run the process.

302 Assign a UUID to
the process,

Publication Classification

(51) Int. Cl." ... G06F 13/00
(52) U.S. Cl. 7191312; 719/313; 719/316;

719/328

(57) ABSTRACT

Disclosed are mechanisms for creating and communicating
with computer processes. An application programming
interface (API) presents Services of the System to applica
tions. The API is usable with all processes, local and remote,
and is transparent with respect to the location of processes.
A process table Stores information about processes created
using the System. The process table Supports centralized
process control and peer-to-peer process communication and
Synchronization. Each proceSS is assigned a Universally
Unique Identifier (UUID) that uniquely identifies the pro
ceSS no matter the computing device on which it runs. A
parent UUID and a group UUID may be attached to the
process and used for enforcing dependencies (e.g., for
halting the process and all of its child processes) and for
managing arbitrary, user-defined groups, respectively. A
global event is associated with each process. When a process
receives this event, it performs a controlled shutdown,
cleans up, and reports Status.

314 Send request to target
device to run the process,
include process parameters

and UUID.

Patent Application Publication Jun. 16, 2005 Sheet 1 of 5 US 2005/0132384 A1

Process 1: User Command and Control Interface
Process 2: Master Task Suite Coordinator

PrOCeSS 3: First Task
Process 4: First Communicating Peer Subtask

Process Table:
Process 1 Entry
Process 2 Entry 108
Process 3 Entry
Process 4 Entry
Process 5 Entry
Process 6 Entry t

Computing
Device 100

Computing
Device 102

Process 5: Second Communicating Peer Subtask

Process Table: 11 O
Process 5 Entry

Computing
Device 104

Process 6: Communications Monitor Subtask
Process 7: A Task Not Related to the Others

Process Table:
Process 6 Entry
Process 7 Entry

112

FIG. 1

Patent Application Publication Jun. 16, 2005 Sheet 2 of 5 US 2005/0132384 A1

204

Removable
Storage
2O6

Non-Removable
Storage

System Memory 208

Volatile Memory Processing Unit Output Devices
200 214

Non-Volatile
Memory input Devices

212

Communications
Devices
210

FIG 2

Patent Application Publication Jun. 16, 2005 Sheet 3 of 5 US 2005/0132384 A1

FIG. 3A 300 Create a process.
On Source device:

302 ASSign a UUID to
the process.

304 Add a process entry
to the source's process

table.

306 ASSOciate an event
with the process.

3O8 Will
the process run
on the source

device?

314 Send request to target
device to run the process,
include process parameters

and UUID.

310 Run the process.

Patent Application Publication Jun. 16, 2005 Sheet 4 of 5 US 2005/0132384 A1

316 Create a process.
On target device:

318 Receive request to
run the process.

320 Add a process entry
to the target's process

table.

322 Run the process.

FIG. 3B

US 2005/0132384 A1

3dAL SS3OOud
Patent Application Publication Jun. 16, 2005 Sheet 5 of 5

US 2005/0132384 A1

METHODS AND SYSTEMS FOR CREATING AND
COMMUNICATING WITH COMPUTER

PROCESSES

CROSS-REFERENCE TO RELATED

APPLICATION(S)
0001. This application is a divisional application of and
claims the benefit of U.S. patent application Ser. No. 09/872,
257, filed Jun. 1, 2001, content of which is hereby incorpo
rated by reference.

TECHNICAL FIELD

0002 The present invention relates generally to computer
operating Systems, and, more particularly, to communica
tions mechanisms for computer processes.

BACKGROUND OF THE INVENTION

0003. Often, a process running on one computing device
may need to create or communicate with a process on
another device. The use of remote devices may simply be a
convenience as, for example, when a program requires So
many resources that it cannot effectively be run on one
device. The work of the program may then be shared among
Several devices by invoking processes on the remote devices
to perform pieces of the overall task. The results produced
by the remote processes are collected in a central, coordi
nating process. In other cases, the use of remote devices is
inherent in the nature of the work at hand. For example,
communications protocols cannot be fully tested on one
device. A Script for testing a protocol may be run on a test
host device. To perform the test, the Script may start an
application on a Second device, Start a peer application on a
third device, and Start an application on a fourth device to
monitor the communications between the applications on the
Second and third devices.

0004 Methods exist for a process running on a host
computing device to create a proceSS on a remote device.
However, these methods provide much less functionality for
communicating with the remote process than is available for
processes running locally. Often, these methods only allow
the host device to Start the remote process, receive output
from it, and terminate it. The termination is uncontrolled, not
giving the remote process a chance to clean up before
exiting. Another drawback of these methods is the distinc
tion they draw between local and remote processes. This
makes it very difficult to debug a program on one device and
know that it will work correctly when it is running on
multiple devices.
0005. Even for purely local processes, current methods of
communication are in Some ways inadequate. Local pro
ceSSes may be limited in their ability to log ongoing Status
information. Termination of local processes may be as
uncontrolled as for remote processes.
0006 What is needed is a method that enhances the
communications abilities of all processes and that provides
the full functionality of local processes to processes on
remote computing devices. The method would ideally hide
the distinction between local and remote processes, allowing
all processes to be treated in the same manner.

SUMMARY OF THE INVENTION

0007. The above problems and shortcomings, and others,
are addressed by the present invention, which can be under

Jun. 16, 2005

stood by referring to the Specification, drawings, and claims.
The present invention provides mechanisms for creating and
communicating with computer processes. An application
programming interface (API) presents the Services of the
invention to applications. The API is usable with all pro
cesses, local and remote, and is transparent with respect to
the location of processes. The invention also works with
processes that do not use the API, although Some enhanced
Services are available only to processes using the API.
0008. A process table stores information about processes
created using the invention. The process table is accessible
by all processes, local and remote, and Supports centralized
process control and peer-to-peer process communication and
Synchronization. Locks are used to Synchronize access to the
process table.
0009. Each process is assigned a Universally Unique
Identifier (UUID) that uniquely identifies the process no
matter the computing device on which it runs. A parent
UUID and a group UUID may be attached to the process and
used for enforcing dependencies (e.g., for waiting for or
halting the process and all of its child processes) and for
managing arbitrary, user-defined groups, respectively.

0010) A global event is associated with each process.
When a process receives this event, it performs a controlled
shutdown, cleans up, and reports its status. Users define
other global events and assign meanings to them. Global
events form a generally useful message-passing mechanism.

0011. At frequent intervals, processes and process threads
log heartbeat entries in the process table. If a process or
thread StopS updating this field, then other processes can
assume that this proceSS or thread broke into the debugger.
A proceSS may log other information Such as the number of
its threads and the current Status of the threads.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 While the appended claims set forth the features of
the present invention with particularity, the invention,
together with its objects and advantages, may be best
understood from the following detailed description taken in
conjunction with the accompanying drawings of which:

0013 FIG. 1 is a schematic drawing of an exemplary
environment in which the invention may be practiced:
multiple computing devices running multiple processes and
communicating with each other;

0014 FIG. 2 is a block diagram generally illustrating an
exemplary computer System that Supports the present inven
tion;

0.015 FIGS. 3A and 3B are flow charts showing the steps
in creating a process using the invention; and

0016 FIG. 4 is a schematic diagram of representative
process tables.

DETAILED DESCRIPTION OF THE
INVENTION

0017 Turning to the drawings, wherein like reference
numerals refer to like elements, the invention is illustrated as
being implemented in a Suitable computing environment.
The following description is based on embodiments of the

US 2005/0132384 A1

invention and should not be taken as limiting the invention
with regard to alternative embodiments that are not explic
itly described herein.
0.018. In the description that follows, the invention is
described with reference to acts and Symbolic representa
tions of operations that are performed by one or more
computers, unless indicated otherwise. AS Such, it will be
understood that Such acts and operations, which are at times
referred to as being computer-executed, include the manipu
lation by the processing unit of the computer of electrical
Signals representing data in a structured form. This manipu
lation transforms the data or maintains them at locations in
the memory System of the computer, which reconfigures or
otherwise alters the operation of the computer in a manner
well understood by those skilled in the art. The data struc
tures where data are maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the invention is being described
in the foregoing context, it is not meant to be limiting as
those of skill in the art will appreciate that various of the acts
and operations described hereinafter may also be imple
mented in hardware.

Creating and Communicating with Local and
Remote Processes

0019. The present invention provides services for creat
ing and communicating with computer processes, whether
the processes are all running locally on one computing
device or are scattered among Several remote devices. Infor
mation about processes is gathered into data Structures
called “process tables.” The process tables are accessible by
all processes, local and remote, and Support centralized
proceSS control and peer-to-peer process communication and
Synchronization.

0020. This section provides an overview of the mecha
nisms and capabilities of the invention and includes imple
mentation details only when they are useful to illustrate the
discussion. The following Section expands on this overview
by presenting, in great detail, an exemplary embodiment of
the invention.

0021 FIG. 1 shows an exemplary environment in which
the invention may be practiced. It is a Schematic drawing
showing multiple computing devices 100, 102, and 104
running multiple processes and communicating with each
other via a LAN 106. Computing device 100 is running four
processes. The indentation is intended to Show that ProceSS
1 invokes Process 2, Process 2 invokes Process 3, and
Process 3 invokes Process 4. For purposes of illustration,
ProceSS 1 is a command and control interface program. The
user of the computing device 100 invokes other processes
through this interface. Here, the user invokes Process 2
which coordinates and Schedules jobs that may comprise
several tasks. Process 2 invokes Process 3 which is a
communications job. To do its work, Process 3 invokes
Processes 4, 5, and 6. Processes 4 and 5 communicate with
each other via the LAN 106, Process 4 running on comput
ing device 100 and Process 5 running on computing device
102. Process 6 monitors the communications between Pro
cesses 4 and 5 and runs on computing device 104. The
choice of a communications job is merely illustrative as the
invention works with all Single- or multi-proceSS jobs.
0022. Each computing device runs a service called
“SpSrv' that coordinates communications among the

Jun. 16, 2005

devices. The SpSrV Service listens for requests coming in to
a device and processes them. These requests include
requests to create a process, requests to provide updated
Status information, and requests to Send information to a
process. The SpSrV Service also sends out Status updates and
responses to enquiries. This Service generally makes com
munications details transparent So that an application can
deal with processes regardless of the device on which they
are running. Details specific to remote communications are
discussed in the section below entitled “Specific Consider
ations. When Communicating with Remote Processes.”
0023. Each computing device contains a process table
that has an entry for each process running on, or invoked by
a proceSS running on, the computing device. The process
table 108 of computing device 100 contains six entries. The
first four entries are for Processes 1 through 4 which run on
the device. In addition, the process table contains entries for
Process 5 and 6 which do not run locally but were invoked
by Process 3 which does run locally. Process table 110 on
computing device 102 contains an entry for Process 5
because that process runs locally, even though the proceSS
was invoked on another device. Similarly, process table 112
on computing device 104 contains entries for Process 6,
running locally though invoked remotely, and Process 7,
running locally. ProceSS 7 illustrates processes running on a
computing device that have nothing to do with the job run
by the user of computing device 100. Process tables are
described in greater detail with reference to FIG. 4. For the
moment, note that process tables are populated When a
process is created and contain information useful for con
trolling and monitoring the processes.
0024. The computing devices 100, 102, and 104 of FIG.
1 may be of any architecture. FIG. 2 is a block diagram
generally illustrating an exemplary computer System that
supports the present invention. The computing device 100 is
only one example of a Suitable environment and is not
intended to Suggest any limitation as to the Scope of use or
functionality of the invention. Neither should the computing
device 100 be interpreted as having any dependency or
requirement relating to any one or combination of compo
nents illustrated in FIG. 2. The invention is operational with
numerous other general-purpose or Special-purpose comput
ing environments or configurations. Examples of well
known computing Systems, environments, and configura
tions Suitable for use with the invention include, but are not
limited to, personal computers, Servers, hand-held or laptop
devices, multiprocessor Systems, microprocessor-based Sys
tems, Set-top boxes, programmable consumer electronics,
network PCs, minicomputers, mainframe computers, and
distributed computing environments that include any of the
above Systems or devices. In its most basic configuration,
computing device 100 typically includes at least one pro
cessing unit 200 and memory 202. The memory 202 may be
volatile (such as RAM), non-volatile (such as ROM, flash
memory, etc.), or Some combination of the two. This most
basic configuration is illustrated in FIG.2 by the dashed line
204. The computing device may have additional features and
functionality. For example, computing device 100 may
include additional storage (removable and non-removable)
including, but not limited to, magnetic and optical disks and
tape. Such additional storage is illustrated in FIG. 2 by
removable storage 206 and non-removable storage 208.
Computer-Storage media include Volatile and non-volatile,
removable and non-removable, media implemented in any

US 2005/0132384 A1

method or technology for Storage of information Such as
computer-readable instructions, data structures, program
modules, or other data. Memory 202, removable storage
206, and non-removable storage 208 are all examples of
computer-Storage media. Computer-Storage media include,
but are not limited to, RAM, ROM, EEPROM, flash
memory, other memory technology, CD-ROM, digital ver
Satile disks (DVD), other optical Storage, magnetic cassettes,
magnetic tape, magnetic disk Storage, other magnetic Stor
age devices, and any other media which can be used to Store
the desired information and which can accessed by device
100. Any Such computer Storage media may be part of
device 100. Device 100 may also contain communications
connections 210 that allow the device to communicate with
other devices. Communications connections 210 are
examples of communications media. Communications
media typically embody computer-readable instructions,
data Structures, program modules, or other data in a modu
lated data Signal Such as a carrier wave or other transport
mechanism and include any information delivery media.
The term "modulated data Signal” means a signal that has
one or more of its characteristics Set or changed in Such a
manner as to encode information in the Signal. By way of
example, and not limitation, communications media include
wired media, Such as wired networks (including the LAN
106 of FIG. 1) and direct-wired connections, and wireless
media Such as acoustic, RF, infrared, and other wireleSS
media. The term computer-readable media as used herein
includes both Storage media and communications media.
The computing device 100 may also have input devices 212
Such as a keyboard, mouse, pen, voice-input device, touch
input device, etc. Output devices 214 Such as a display,
Speakers, printer, etc., may also be included. All these
devices are well know in the art and need not be discussed
at length here.
0.025 The services of the present invention are presented
to applications by means of an Application Programming
Interface (API). The API can be used with all processes,
local and remote, and is transparent with respect to the
location of a process. The API returns sensible values if a
request fails because of a network problem and does not
falter if remote devices are unavailable. If a proceSS uses the
API, then the process is called a “WINDOWS Test Tech
nologies (WTT)-based process.” The name “WTT" is of
only historical interest, and the invention is not limited to
use in the testing field or to use with Microsoft’s “WIN
DOWS' operating systems. The invention works with any
combination of WTT-based and non-WTT-based processes,
although Some enhanced Services are available only to
WTT-based processes. For purposes of this discussion, the
services provided by the API are roughly divided into four
major categories of communications tasks: creating pro
cesses, monitoring processes, waiting for processes, and
Sending Signals to processes, especially termination signals.
0026. Using the API, applications can create new pro
ceSSes and run them either on the local computing device or
on a remote device. Each proceSS is tagged by a Universally
Unique Identifier (UUID) that uniquely identifies the pro
ceSS no matter the computing device on which it resides. In
addition, a parent UUID and a group UUID may be assigned
to the process and used for enforcing dependencies (e.g., for
Signaling the process and all of its child processes) and for
managing arbitrary, user-defined groups, respectively. The
proceSS table Stores information about processes created on

Jun. 16, 2005

the computing device, whether the proceSS runs locally on
the device or runs remotely. The proceSS table is created as
a memory-mapped file and is visible to all processes on the
device. A global event is associated with each process
created via the API and is used for process control and
Signaling.

0027 FIGS. 3A and 3B illustrate the steps taken when a
process is created by means of calls to the API. In step 300
of FIG. 3A, the API is called to create a process. The call is
made by a parent application running on the "Source”
computing device. Steps 302, 304, and 306 set up informa
tion associated with the new proceSS and record that infor
mation in the process table on the Source device. If desired,
a group UUID, parent UUID, or other information can be
added to the process table (not shown). Step 308 asks
whether the new process will run on the Source device or on
a remote device. If the new process is to run on the Source
device, as, for example, when Process 3 in FIG. 1 invokes
Process 4, the new process is started in step 310. Otherwise,
Step 314 Sends pertinent information about the new process
to the SpSrV Service running on the remote device, called the
“target” device, on which the process will run. This is the
case when Process 3 in FIG. 1 invokes Process 6. The
information necessary for invoking ProceSS 6 is Sent from
the source device 100 to the target device 104. FIG. 3B
illustrates what happens on the target device when it receives
a request from the Source device to run a process. After
receiving the request in Step 318, the target device creates an
entry for the process in its process table, Step 320, and runs
the process, Step 322. Note that in the case where the Source
and target devices are distinct, the proceSS table on each
device has an entry for the process. Process 6 shows up both
in the process table 108 on the source device 100 and in the
process table 112 on the target device 104. This is an
implementation detail and is not necessary for the invention,
but it helps when monitoring and controlling remote pro
cesses, as discussed further below.

0028 FIG. 4 is a schematic diagram of representative
process tables. The tables are populated to reflect the Situ
ation in FIG.1. The first field shown, the UUID assigned to
each process, is a useful key into the process tables. Next,
the Process ID is assigned by the operating System when the
process is created. Because the operating System may not
understand the UUID, the Process ID is available when
operating System calls need to be made in relation to a
process. The Parent UUID and Group UUID are optional
fields and are discussed above. Creation Time marks the
moment when the process began running. Heartbeat Time
stores the last time that a WTT-based process posted a
heartbeat update. Uses of the heartbeat timer are discussed
further below. The Source Device and Target Device fields
identify the computing device where the proceSS was
invoked and where it runs, respectively. For local processes
Such as Process 3, these fields contain the same value. The
fields also contain the same value in the process table on the
target machine, as shown by the ProceSS 6 entry in Process
Table 112. The specific semantics of these two fields are
unimportant, as long as the values uniquely identify the
devices. Some possible values are the name of the comput
ing device and its IP address. The final field shown, Process
Type, is a flag showing whether the process is aware of this
API. A Process Table may contain other fields, not shown,

US 2005/0132384 A1

and some of these other fields are discussed below. The
fields illustrated in FIG. 4 are, arguably, the basic fields used
by the API.

0029. Because a process table is accessible to all pro
ceSSes on the computing device, mechanisms exist for
coordinating access to the table. One mechanism involves
Software locks, both for the entire table and for each
individual row. For example, a process updating its heartbeat
time can lock access to its row while it writes the current
time into the Heartbeat Time field. When a process is created
or deleted, the entire process table is locked So that a row can
be added or deleted without interference.

0.030. At frequent intervals, for each process, a monitor
thread logs heartbeat entries in the Heartbeat Time field in
the local process table. Each thread in a process updates a
local heartbeat and the monitor thread keeps track of these
local heartbeats, updating the heartbeat field in the local
proceSS table if all the threads are updating their local
heartbeats. If any thread deadlocks and StopS updating its
local heartbeat, the monitor thread detects this, logs the fact,
and either breaks into the debugger or marks the proceSS as
requiring assistance. When an application wants to monitor
the heartbeat of a process, the application begins by looking
up the entry for the process in the process table on the
computing device on which the application is running. The
application reads the Target Device field to see where the
proceSS is running. Then, if the target device is the local
device, the application reads the Heartbeat Time field in the
local proceSS table. Otherwise, the target device is distinct
from the local device and the application Sends a request to
the SpSrV Service running on the target device asking it to
send the value of the Heartbeat Time of the process. For
example, if Process 3 in FIG. 1 wants to know whether
ProceSS 6 is still running normally, that is to Say, is still
logging heartbeats, Process 3 would consult Process Table
108 on its local computing device 100. Reading the entry for
Process 6, Process 3 discovers that Process 6 is running
remotely, on computing device 104. (See FIG. 4.) Process 3
formulates a request and Sends it to the computing device
104. That device reads its process table 112 and reports to
Process 3 that the Heartbeat Time field of Process 6 currently
reads “14:24:56”. Process 3 compares that heartbeat time
(adjusted, if necessary, for time Zone differences) to its local
clock and decides whether Process 6 is running or has
broken into the debugger.

0031. In addition to its heartbeat, a process may log other
information including the number of its threads, the current
Status of the threads, console output, log file output, etc. An
application wishing to monitor this output can use the same
techniques described above with respect to heartbeats. The
application can also obtain ongoing Status information by
requesting that a copy of new information written by the
proceSS be sent to the application as it is written. Using
parent and group UUIDs, an application can monitor all of
the processes in a dependency list or in a user-defined
proceSS group.

0.032 A process may wait for other processes to achieve
a specified Status, for example, to complete their initializa
tion or to terminate. The API provides a function that waits
until the processes achieve the Status or until a timeout
period elapses. The function checks the heartbeat of all
WTT-based processes and, if a process is not logging

Jun. 16, 2005

heartbeats, then the process may be assumed to have broken
into the debugger. Using the processes in FIG. 1 as an
example, assume that Process 3 calls the API function to
wait for Processes 4, 5, and 6 to complete their initialization.
Because Processes 5 and 6 run on remote computing
devices, the API function Sends a wait request to those
remote devices. Each device waits on the processes local to
it and then reports the results to Process 3. For each process
in the wait list, the returned Status may be Completed
Initialization, Still Initializing, or Heartbeat Stopped. Using
UUIDS in the Same manner as in proceSS monitoring, a
process can wait for all of the processes in a dependency list
or in a user-defined process group. Note that because non
WTT-based processes do not update their Heartbeat Time
field, it cannot be assumed that these processes broke into
the debugger.
0033. When a job is divided into discrete processes, the
processes often need to communicate among themselves to
coordinate the tasks they perform. The API provides a
generally useful Signaling mechanism for this purpose in the
form of Global Events. AS an example, one particular event
is the Controlled Shutdown. When a WTT-based process
receives this event, it releases the resources it is using,
reports its Status, and performs a controlled shutdown. Users
may define other Global Events and assign meanings to
them. When a proceSS receives an event, it responds in a
fashion appropriate to the event's meaning. However, if a
process receives an event it does not understand, it may
terminate in an uncontrolled fashion. A process may use
parent and group UUIDS to Send an event to groups of
proceSSeS.

An Exemplary Application Programming Interface

0034. The services provided by the invention as
described in the previous Section are presented again in this
Section but with more attention paid to the details of an
exemplary API. In its specific details, this embodiment is
oriented towards use with Microsoft’s “WINDOWS" oper
ating System, but the principles are applicable to other
environments. This Section begins by describing the funda
mental data structures used in this embodiment.

0035). Note that UUIDs are sometimes called GUIDs
(Globally Unique Identifiers).
0036) The variable types. TCHAR and Tstring are used in
the definitions below to provide source code compatibility
between Unicode and non-Unicode machines. If the param
eter UNICODE is defined during the build, then TCHAR is
defined to be the Unicode's basic wide character type,
“wchart,” otherwise it becomes the standard ASCII 8-bit
signed “char.” Similarly, Tstring is a string of TCHARs and
becomes either the Unicode wide string, “wstring,” or ASCII
“string.”

0037] 1 WTTPROCESSPARAM
0038. Describes the input parameters to the WTTCre
ateProcess call.

If From the winbase.h file.
#define MAX COMPUTERNAME LENGTH 31
// Type of processes: WTT-based or not.

US 2005/0132384 A1

-continued

#define WTT PROC TYPE NONWTT BASED 1
#define WTT PROC TYPE WTT BASED 2
// System processes and other non-WTT-based
processes launched outside the
// scope of the API.
#define WTT PROC TYPE SYSTEM BASED 3
typedef struct WTTPROCESSPARAM
{

If Sizeof this structure (including this field).
User needs to input a value of
| sizeof(WTTPROCESSPARAM) for this.
IN DWORD dwStructSizeOf:
// Flags. Reserved: must be zero (MBZ).
IN DWORD dwFlags;
// Flags used in WTTCreateProcess. Only
CREATE NEW CONSOLE,
// CREATE NEW PROCESS, and DETACHED PROCESS
are currently
If supported.
IN DWORD dwCreateProcessFlags;
// Is this a WTT-based process?
IN DWORD dwProcessType:
If The username and password to use when running
the process. The password
If is unencoded text but is encrypted before sending to the target device.
IN TCHAR *szUserName:
IN TCHAR *szPassword;
If The command line to execute when starting the process.
IN TCHAR *szCommand Line;
If NULL or a debugger string such as "ntsd-g”.
IN TCHAR *szDebugger;
// NULL or the UNC-style (e.g., \\machine\Share\path ...)
name of a generated
If log file.
INTCHAR *szLogFile:
// The directory where the process is created.
Can be NULL, which means use
If the current directory for launching the process.
INTCHAR *szCurrentDirectory;
If If the process was invoked remotely, then
get the GUID from the caller.
If From an external caller's perspective,
this is not provided as an input.
UUID Guid;
If This optionally identifies a group with
which the process is associated.
UUID GroupGuid;
// The GUID of the parent of this process.
There may be a chain of parent
If child processes.
UUID ParentGuid;
If The identity of the target computing device,
for example, its name or IP
ff address.
INTCHAR
szTargetMachine|MAX COMPUTERNAME LENGTH + 1);

} WTTPROCESSPARAM, *PWTTPROCESSPARAM:

0039. By associating a group GUID with a set of pro
cesses, processes can communicate with all the processes in
the set. This is similar to a “process group” in Windows NT
or Unix.

0040] 2 WTTPROCLISTINFO

0041) Defines information relating to a process.
WTTGetProcessListInfo returns this information. A pointer
to this structure is passed as an input parameter to
WTTOpenProcess. An application receives a handle to a
process by calling WTTOpenProcess and can use that handle
to monitor the process, even if the process was not created
by the application.

Jun. 16, 2005

typedef struct WTTPROCLISTINFO
{

// The GUID, Process ID, and type of the process.
The process type can be:
// WTT PROC TYPE NON WTT BASED (defined to be 1);
If WTT PROC TYPE WTT BASED (2); or
ff WTT PROC TYPE SYSTEM BASED (4).
UUID Guid;
DWORD dwPid;
DWORD dwProcType;
// These variables are meaningful only if
the process is WTT-based and is
// logging heartbeats. For non-WTT-based
processes, dwHBTime is zero and
// ulLastHBUpdateTime is the time the process was created.
DWORD dwHBTime:
ULARGE INTEGER ulLastHBUpdateTime:
// The number of seconds since the process
was created (reported as Zero for
// non-WTT-based processes).
DWORD dwElapsedSeconds;
// This is the status of the process. Its possible
values are given below in the
// section describing WTTGetProcessInfo.
For non-WTT-based processes, the
If reported status is WTTHANDLE PROCSTATUS UNDEFINED.
DWORD dwprocStatus;
// The module name (not fully qualified with path).
TCHAR SZModuleName 256:

} WTTPROCLISTINFO, *PWTTPROCLISTINFO:

0.042) 3 WTTTHREADINFO
0043 Holds information about a thread including the
Thread Identifier and a list of comments. Comments may be
pushed onto the Stack, and the most recent comment may be
popped off the Stack and examined.

typedef struct WTTTHREADINFO
{
DWORD dwThreadId;
// The Standard Template Library (STL) contains
type-parameterized classes.
// slThreadCommentStack is an STL stack of STL strings.
stack <string> slThreadCommentStack;

} WTTTHREADINFO, *PWTTTHREADINFO:

0044) 4 WTTPROCESSINFO
0045 Holds detailed process information.

typedef class WTTPROCESSINFO
{

If All members are public (can use actor and a ditor).
public:
DWORD dwProcType:
// Status of the process (initialized, debug break,
terminated, etc.). This is
If the same as in the WTTPROCLISTINFO structure.
That one is there for
// convenience only.
DWORD dwprocStatus;
UUID Guid;
DWORD dwProcPid;
DWORD dwProcExitCode:
// Time elapsed since the creation of the process.
ULARGE INTEGER ulElapsedTime;

US 2005/0132384 A1

-continued

TCHAR *pszModuleName;
TCHAR *pszCommand Line;
TCHAR *pszTargetMachine;
// Singly-linked list of thread information
(used to store elements of type
// WTTTHREADINFO).
list <PWTTTHREADINFOs slThread List:
If List of log files associated with the process.
list <string> slLogList;
If List of variations covered.
list <string> slVarnList:

public:
WTTPROCESSINFO()

pszModuleName = new TCHARIMAX PATH
pszCommand Line = new TCHARIMAX CMD LINE;
pSZTargetMachine = new
TCHARIMAX COMPUTERNAME LENGTH + 1:

} WTTPROCESSINFO, *PWTTPROCESSINFO:
5 WTTP LOG INFO

typedef struct WTTP LOG INFO
{
TCHAR SzLogFileName 128; // UNC path of log file.

} WTTP LOG INFO, *PWTTP LOG INFO

0046) 6 HWTTPROCESS
0047. This structure is opaque to the user and is used as
a handle for future operations. This proceSS-Specific handle
may be replaced by WTTHANDLE.

0048 7 WTTHANDLE
0049. This data structure is opaque to the user and is used
as a handle for future operations. This handle is capable of
handling objects no matter their type-whether processes,
events, mutexes, etc. For “WINDOWS' implementations,
this handle is similar to the handles used by Win32 pro
CCSSCS.

typedef struct WTT HANDLE

// The exit status of the process as would be
returned by a local call to the
// Win32 function GetExitCodeProcess().
DWORD dwStatus:
If The Process Identifier of a created child.
DWORD dwProcID;
// Was the process successfully created? If not, then this is set to
ff ERROR SERVICE NOT ACTIVE.
DWORD dwprocCreationStatus;
// This points to information such as the
heartbeat timer, etc. This field is
If opaque and only makes sense on the device
on which the process is created.
PWTT SHAREDINFO pShared Info:
If The current status of the process.
DWORD dwprocStatus;
// Store the following data in the process handle. While marshaling the
If parameters, the offsets are clearly defined
and the strings are put towards the
If end of the buffer.
f/ If the call comes from a remote device,
then get the GUID from the caller.
UUID Guid;
TCHAR *szCommandLine:
If The following two parameters are supplied
in case the process needs to be
If launched by a specified user.

Jun. 16, 2005

-continued

TCHAR *szUserName:
TCHAR *szPasswd:
If Both for storage in the local process table and for redirection.
TCHAR *szTargetMachineName;
TCHAR *szModule:
// The object type can be
WTT PROC OBJECT, WTT EVENT OBJECT,
fi etc.
DWORD dwObjectType;
PHANDLE hObjectHandle;

} WTT HANDLE, WTTHANDLE:

0050 Having presented the data structures used in this
implementation, the following describes the function calls
provided by the API.

0051) 8 WTTCreateProcess
0.052 Create a process, whether WTT-based or not. The
user's input parameters are passed in as part of the
WTTPROCESSPARAM structure. The returned structure
pointer (pHWTTProcess) is opaque and is used in future
calls. If UserName and Password are specified as part of the
input Structure, then the proceSS is created with the logon
credentials of the Specified user.
0053. The call is basically asynchronous in nature and
returns as Soon as possible after the process is Successfully
created or with a meaningful error value explaining why the
process creation failed.

DWORD WTTCreaterocess

(
IN OUT PWTTPROCESSPARAM pWTTProcessParam,
OUT WTTHANDLE *pHWTTProcess

0054 Parameters:
0.055 pWTTProcessParam

0056) Points to a structure of type WTTPROCESS
PARAM, which contains the input parameters. Some
of the fields in this structure are appropriately
updated to Store output values. For example, if the
passed in GUID is “NIL” (see Note on UUIDs
below), then the newly created GUID is stored when
the function returns.

0057 The following flags are supported in the
WTTPROCESSPARAM Structure's dwCreatePro
cessFlags field: CREATE NEW CONSOLE, CRE
ATE NEW PROCESS, and DETACHED PRO
CESS.

0.058 pHWTTProcess

0059 An opaque pointer used in future calls to the
API for accessing information about the process.

0060 Return Values:
0061 ERROR SUCCESS if the process is successfully
created, else Win32 error. In the latter case, the returned
handle is NOT valid.

US 2005/0132384 A1

0062)
0.063. This function assigns a GUID to the process that
uniquely identifies the process no matter the device on
which it runs. Then the function lockS access to the proceSS
table and finds an empty slot in the table. ASSigning the Slot
to the new process, this function Stores in the slot the initial
data for the process including its GUID, Parent GUID,
Group GUID, etc. The parent of the process updates the
heartbeat field and writes a Zero value into the HB field. This
makes it possible for the WTTWaitForMultipleObjects func
tion to detect a DEBUG BREAK that occurs before the
creation of the Global Event.

0064. If the process is to run on a remote device, then the
parameters of the call are marshaled over the network and
sent to the remote (target) device. The process is then created
locally on the target device.

Implementation Notes:

0065. Once the new process starts, its status in the
process table (the dwProcStatus field) is automatically
updated.

0.066 9 WTTSignalProcesses

0067 Send a signal to the processes in a set. The set may
include both WTT-based and non-WTT-based processes.
The global event handle is Set for each process. One cur
rently defined Signal is "terminate the process.” On receipt
of that Signal, a process cleans up after itself and performs
a controlled Stop. Sending a terminate Signal is Similar to
Sending a "kill’. Signal.

DWORD WTTSignalProcesses
(
INDWORD nCount,
IN WTTHANDLE *phWTTProcess,
INDWORD dwFlags

);

0068 Parameters:
0069 nGount
0070 The number of processes in the phWTTProcess
array.

0071 phWTTProcess

0.072 The set of processes to signal. This is an array of
WTTHANDLEs for WTTProcesses as returned by the
WTTCreateProcess and WTTOpenProcess functions.
0073 dwFlags

0.074 The type of signal to send:

0075 WTT SIGNAL PROCESS
0.076 Attempt a controlled stop by signaling the event
asSociated with the process. It is the responsibility of non
WTT-based processes to check the global event.

0077 WTT TERMINATE PROCESS
0078 Force-terminate the process. This cannot be com
bined with WTT SIGNAL PROCESS.
0079 WTT TERMINATE ALL CHILDREN

Jun. 16, 2005

0080. This terminates all processes in a process tree. For
every process in the process tree, internal proceSS APIs are
recursively used to terminate the children. The proceSS table
is Searched to find all the descendents So that they can be
Signaled.

0081 Return Values:
0082 ERROR SUCCESS if the signal is successfully
sent, else Win32 error.

0083)
0084. For non-WTT-based processes, the standard global
event handle is signaled. If a non-WTT-based process does
not clean up within an acceptable period of time after being
sent a WTT SIGNAL PROCESS signal, then the calling
process can send a WTT TERMINATE PROCESS signal.
0085) 10 WTTWaitForMultipleObjects

Implementation Notes:

0086 Wait for processes in a set to achieve a specified
Status, but Stop waiting if a timeout period expires. The
function checks the heartbeats of all WTT-based processes,
and if a proceSS is not logging heartbeats, then it is assumed
to have broken into the debugger. This function is often used
to wait for processes to terminate. In that case, the different
possible Scenarios on returning from this function are as
follows:

0087
0088. Some processes stopped successfully, and
Some processes broke into the debugger, and

0089. Some processes stopped successfully, some
broke into the debugger, and Some did neither but are
Still logging heartbeats.

all processes Stopped Successfully;

0090. In the last case, the function timed out before all the
processes were finished So the function returns the value
WAIT TIMEOUT.
0091 Adebug break cannot be declared for a non-WTT.
based process because this type of proceSS does not log
heartbeats.

DWORD WTTWaitForMultipleObjects
(
INDWORD nCount,
IN WTTHANDLE *phWTTProcess,
IN BOOL fWaitAll,
INDWORD dwTimeoutInSeconds,
INDWORD dwDebugTimeoutInSeconds,
INDWORD dwWaitType,
OUT DWORD *pdwSummaryStatus,
OUT DWORD *pdwSummaryIndex

)

0092 Parameters:
0.093 nCount
0094) The number of processes in the phWTTProcess
array.

0.095 phWTTProcess
0096. The set of processes stored as an array of
WTTHANDLES.

0097 fWaitAll

US 2005/0132384 A1

0098. TRUE means wait for all processes in the set.
FALSE means wait for the first process to achieve the
Specified Status.

0099 dwTimeoutInSeconds

0100. The function timeout period. The function waits no
longer than this before returning. If a process does not
achieve the specified Status (e.g., terminated) during this
period of time, its status is returned as WAIT TIMEOUT.
0101 dwDebugTimeoutInSeconds

0102) If a process has not logged a heartbeat during this
period, then the process is declared to have broken into the
debugger. The value of this parameter may be Smaller than
the value of dwTimeOutnSeconds. A value of INFINITE is
also possible which effectively ignores heartbeats.

0103) If f WaitAll is TRUE, then the value of this param
eter should be the maximum of the debug timeout values of
all the processes in the monitored Set.

01.04 dwWaitType

0105 The type of status to wait for. These values cannot
be combined. Many more statuses are possible; the follow
ing are currently implemented:

01.06 WTT PROCESS INITIALIZE
0107 Wait for the processes to complete their initializa
tion.

01.08 WTT PROCESS TERMINATE
0109) Wait for the processes to finish.
0110 pdwSummaryStatus

0111. The address to receive the first failure status of the
array (or NULL if this information is not desired). This field
is meaningful only if the return value is ERROR SUCCESS
and if f WaitAll is FALSE.

0112 pdwSummary Index

0113. The address to receive the index corresponding to
the Summary status (or NULL if this information is not
desired).

0114) Return Values:

0115 ERROR SUCCESS if all the processes success
fully achieve the Specified Status.

0116 WAIT TIMEOUT if the timeout expires before all
the processes achieve the Specified Status. In this case,
*pdwSummary Index and *pdwSummaryStatus are unde
fined.

0117 WTT ERRORDEBUG BREAK if a process
breaks into the debugger. *pdwSummaryStatus contains
WTT ERRORDEBUG BREAK and the index of that
process in the phWTTProcess array is returned in *pdw
Summary Index. There could be Several processes in Such a
State in which case pdwSummary Index points to the first
Oc.

Jun. 16, 2005

0118 Win32 if the function call fails.
0119)
0120 When processes in the set run on a distributed set
of computing devices, there may be one thread per process
(or one per computing device) which the overall thread
monitors.

0121 For non-WTT-based processes, dwLastHBUpda
teTime is the time the proceSS was created and is not
updated. No debug break can be declared for these pro
CCSSCS.

0122) 11 WTTGetProcessInfo
0123 Query the status of a process that was launched by
the WTTCreateProcess function. After reviewing the infor
mation returned, WTTFreeProcessInfo is called to release
the memory allocated by this function.

Implementation Notes:

DWORD WTTGetProcessInfo
(
INWTTHANDLE phWTTProcess,
OUT PWTTPROCESSINFO *ppWTTProcessinfo

);

0124 Parameters:
0125 phWTTProcess

0126 Process information is stored in a WTTHANDLE
structure. The handle could have been obtained either by a
call to WTTCreateProcess or by a call to WTTOpenProcess
(after a call to WTTGetProcessListInfo).
0127. Additionally, this could have a value of NULL. In
that case, the information returned pertains to the process
that called this function. This is useful when a non-WTT.
based process wishes to get GUID information about itself,
which it can then use to open a handle to the Global Event.
0128 ppWTTProcessinfo
0129. This stores information about the process being
queried. The information includes the threads present, the
Stack of thread comments for each thread, a list of log files
that this process monitors, and a list of variations completed
by the process.

0130 Return Values:
0131 ERROR SUCCESS if the request is successfully
processed, else Win32 error.
0132)
0.133 For WTT-based processes, the following informa
tion is returned:

Implementation Notes:

0134) a list of the threads present in the process;

0.135 a stack of comments stored on a per-process
basis,

0.136 a list of log files that are directly created by the
proceSS,

0.137 a list of variations covered by the process;

0138 the module name;

US 2005/0132384 A1

0139 the type of the process (WTT PROC
TYPE WTT BASED); and

0140 the current state of the process.

0.141. The data returned are stored in the form of simple
link lists or StackS. Small routines are provided to return the
size, traverse, and list the contents of the lists or StackS.
0142 For non-WTT-based process, a list of thread iden

tifiers, the module name, the type of the process, and the
current State of the proceSS are returned. The current State of
the process may not be very accurate because non-WTT.
based processes do not log heartbeats.
0143. The process statuses are:

WTTHANDLE PROCSTATUS UNDEFINED
WTTHANDLE PROCSTATUS INITIALIZED
WTTHANDLE PROCSTATUS RUNNING
WTTHANDLE PROCSTATUS GE CREATED (The Global Event is

ready for signaling.)
WTTHANDLE PROCSTATUS TERMINATED
WTTHANDLE PROCSTATUS DEBUG BREAK
WTTHANDLE PROCSTATUS HANDLE CLOSED

0144) The macro GET PROC STATUS(pWTTProcess
info->dwProcStatus) returns a string corresponding to the
proceSS Status.

0145 12 WTTFreeProcessInfo
0146 Release the memory allocated within the
WTTPROCESSINFO structure during a WTTGetProcess
Info function call.

0147 DWORD WTTFreeProcessInfo(IN
PWTTPROCESSINFO*ppWTTProcessinfo);
0148 Parameter:
0149 ppWTTProcessinfo
0150 Pointer to a pointer to a structure containing infor
mation about a process returned by a call to WTTGetPro
ceSSInfo.

0151 Return Values:
0152 ERROR SUCCESS if the allocated memory is
successfully released, else Win32 error. The pointer to the
WTTPROCESSINFO structure is not defined after a call to
this function.

0153. 13 WTTGetProcessListInfo
0154 Get the process list from the target machine's
proceSS table. The information returned varies depending
upon the values Specified in dwflags. Memory allocation is
done within the function call itself. WTTFreeProcess
ListInfo is called to release the memory after reviewing the
information returned.

DWORD WTTGetProcessListInfo
(
INLPCTSTR pszMachine,
BOOL bResolveRemote,
INDWORD dwFlags,

Jun. 16, 2005

-continued

OUT DWORD *pdwCount,
OUT PWTTPROCLISTINFO ppWTTProcessListInfo

);

O155 Parameters:
0156 pszMachine
O157 The name of the computing device from which to
retrieve the process table information.
0158 bResolveRemote
0159 TRUE means remote entries should be resolved. In
that case, extra heartbeat-related information is retrieved for
processes initiated by WTTCreateProcess on the computing
device Specified by pSZMachine. A query is made to that
remote device.

0160 dwFlags
0161 Include witt based procs
0162 Include all WTT-based processes created by WTT.
CreateProcess or otherwise.

0163)
0164. Include non-WTT-based processes created by
WTTCreateProcess.

0165 Include system procs
0166 GUID is displayed as NULL for these. WTTOpen
ProceSS cannot be called for processes of this type.
0167 pdwCount

0168 Pointer to the number of elements in the ppWT.
TProcess listInfo array.
0169 ppWTTProcessListInfo

Include non Witt based procs

0170 An array of output information for the processes.
0171 Return Values:
0172 ERROR SUCCESS if the information is success
fully retrieved, else Win32 error.
0173 Implementation Notes:
0.174 During the marshaling of parameters to a remote
device, pSZMachine is marshaled into the SZTargetMachine
field of the buffer.

0.175. This function needs to carefully check to see if a
process actually exists. If the entry for a particular proceSS
is present in the <GUID>.ini file but not present in the
process table, then the process no longer exists. There is a
problem, however, because there may be entries in the
process table for processes that have exited. This happens
only if a WTT-based process is killed with a forced kill
Signal. Even doing an OpenProcess() on the process iden
tifier (PID) is not a foolproof check as the PID could have
been recycled. The solution is to use the Phandle pointer in
the process table (on the local machine where the process
was instantiated) to wait on the Process Handle with a
timeout of Zero. If the proceSS is gone, then Phandle is
Signaled immediately.

US 2005/0132384 A1

0176 When returning the list of process information,
allocate Space for one more than the total number of entries
returned. The last entry is a “NULL': NIL for GUIDs and
ZERO for DWORDS.

0177) 14 WTTFreeProcessListInfo
0.178 Release the memory allocated during a WTTGet
ProcessListInfo function call.

DWORD WTTFreeProcessListInfo
(
IN PWTTPROCLISTINFO *ppWTTProcessListInfo

);

0179 Parameter:
0180 ppWTTProcessListInfo
0181. The array for which memory is to be released.
0182 Return Values:
0183 ERROR SUCCESS if the allocated memory is
successfully released, else Win32 error.
0184) 15 WTTTail Log
0185. Retrieve a copy of output as it is added to a log file.
The effect is that of a distributed “tail-f' command. A
callback allows this function to return asynchronously.

DWORD WTTTail Log
(
WTTHANDLE pWTTProcInfo,
WTTP LOG INFO *pWTTLogInfo,
DWORD dwBytes,
WTTPROC CALLBACK CALLBACKFUNCTION

0186 Parameters:
0187 pWTTProcInfo
0188 Information about the process of interest to be
passed over to the remote device.
0189 pWTTLogInfo

0190. This structure contains the log information. It
includes the UNC path of the log file. If this pointer is
NULL, then the first log file is used, as specified in the
<GUIDs.ini file.

0191 dwBytes

0192 The number of bytes to be retrieved. If this is set to
the value WTTPROCESS FULL LOGSIZE, then entire
log files are retrieved.
0193 CALLBACKFUNCTION
0194 Register a callback function with the spSrv service
to retrieve data (the tail of the log file) asynchronously.
0.195 Return Values:
0196) ERROR SUCCESS if the log file stream is suc
cessfully initialized, else Win32 error.

Jun. 16, 2005

0197) 16 WTTCancelTail Log
0198 Cancel the effect of a previous call to WTTTail Log.

DWORD WTTCance|Tail Log
(
WTTHANDLE pWTTProcInfo,
WTTP LOG INFO pWTTLogInfo

);

0199 Parameters:
0200 pWTTProcInfo
0201 Information about the process of interest to be
passed over to the remote device.
0202 pWTTLogInfo
0203 This structure contains the log information. It
includes the UNC path of the log file. If this pointer is
NULL, then cancel all tail logs for the process identified by
the pWTTProcInfo parameter.

0204 Return Values:
0205 ERROR SUCCESS if the cancellation is success
ful, else Win32 error.
0206 17 WTTOpenProcess
0207 Get a WTT process handle.

DWORD WTTOpenProcess
(
IN WTTPROCLISTINFO
OUT WTTHANDLE

);

*pWTTProcessInfo,
*pWTTProcInfo

0208 Parameters:
0209 pWTTProcessInfo
0210 A pointer to the element in the array retrieved by
WTTGetProcessListInfo that concerns the process of inter
eSt.

0211 pWTTProcInfo
0212. A returned pointer to a handle to the process of
interest.

0213 Return Values:
0214 ERROR SUCCESS if the handle is successfully
retrieved, else Win32 error.
0215)
0216) The handle has information like the GUID of the
process, the name of the device on which the process runs,
etc. Once the handle is received, it is more efficient to Store
its information in a local proceSS table and to then call
WTTCloseHandle to release the memory.
0217 18 WTTCloseHandle
0218 Close a WTT process handle. This releases the
memory allocated by the WTTOpenProcess call. The local
process table entry created for the process is marked as
invalid.

Implementation Notes:

US 2005/0132384 A1

0219) DWORD
WTTCloseHandle(WTTHANDLE*pWTTProcInfo);
0220 Parameter:
0221) pWTTProcInfo
0222 A pointer to a handle to the process of interest.
0223 Return Values:
0224 ERROR SUCCESS if the handle is successfully
closed, else Win32 error.
0225, 19 WTTConsoleOutput
0226 Provide console output for a process. A callback
allows this function to return asynchronously.

DWORD WTTConsoleOutput
(
WTTHANDLE pWTTProcInfo,
WTTPROC CALLBACK CALLBACKFUNCTION

);

0227 Parameters:
0228 pWTTProcInfo
0229) Process information stored in a WTTHANDLE
Structure.

0230 CALLBACKFUNCTION
0231 Register a callback function with the spSrv service
to retrieve data asynchronously

0232 Return Values:
0233 ERROR SUCCESS if the console output stream is
successfully initialized, else Win32 error.
0234 20 WTTCancelConsoleOutput
0235 Cancel the console output associated with a par
ticular process.
0236. DWORD WTTCancelConsoleOutput.(WT.
THANDLE pWTTProcInfo);
0237) Parameter:
0238 pWTTProcInfo

0239) Process information stored in a WTTHANDLE
Structure.

0240 Return Values:
0241 ERROR SUCCESS if the cancellation is success
ful, else Win32 error.
0242 21 WTTSetLogFile
0243 Add a log file to the list of log files to which a
proceSS logs.

DWORD WTTSetLogFile
(
WTTHANDLE pProcessInfo,
LPCWSTR pSZLogFile

Jun. 16, 2005

0244 Parameters:
0245 pProcessInfo
0246 Process information stored in a WTTHANDLE
Structure.

0247 pSZLogFile
0248. The name of the log file to add to the list.
0249 Return Values:
0250 ERROR SUCCESS if the log file is successfully
added to the list, else Win32 error.

0251 22 WTTPROC CALLBACK
0252) The functions WTTTail Log and WTTConsoleOut
put use callback functions to allow them to return asynchro
nously. The structure of the callback function is as follows:

typedef DWORD (WTTPROC CALLBACK)
(
SOCKET hSocket,
LPVOID pData,
DWORD dwBytes

0253) 23 Note on UUIDs
0254 UUIDs (also called GUIDs) provide unique desig
nations of objects Such as processes, interfaces, manager
entry-point vectors, and client objects. In practice, these
identifiers need only be unique within the context of their
use, that is, within the Set of communicating computing
devices. Because techniques already exist for making the
identifiers truly unique, those techniques are used here.

typedef struct GUID
{

unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data48:

} GUID;
typedef GUID UUID,

0255 Members:
0256 Data1
0257) The first eight hexadecimal digits of the UUID.
0258) Data2
0259. The first group of four hexadecimal digits of the
UUID.

0260 Data3
0261) The second group of four hexadecimal digits of the
UUID.

0262 Data4
0263. An array of eight elements. The first two elements
of the array contain the third group of four hexadecimal
digits of the UUID. The remaining six elements contain the
final twelve hexadecimal digits of the UUID.

US 2005/0132384 A1

0264) Remarks:
0265 For implementations based on Microsoft’s “WIN
DOWS' operating systems, the following standard Win32
functions are used to create, compare, and manipulate
UUIDs. Other implementation platforms provide similar
functions.

signed int RPC ENTRY UuidCompare
(
UUID *Uuid1,
UUID *Uuid2,
RPC STATUS Status

);
RPC STATUS RPC ENTRY UuidCreate(UUID *Uuid);
RPC ENTRY UuidCreateNil (UUID *Nil Uuid);
RPC STATUS RPC ENTRY UuidFromString
(

unsigned char *StringUuid,
UUID *Uld

);
RPC STATUS RPC ENTRY UuidToString
(

unsigned char **StringUuid
);

0266 24 Note on Non-WTT-Based Processes
0267 A Suitable infrastructure is provided for tagging
and monitoring non-WTT-based processes. Every non
WTT-based process created by the WTTCreateProcess func
tion is given a WTT-created GUID for tagging. The GUID
is stored in the WTT-based process handle for future track
ing purposes.

0268 A Global Event handle is present for every non
WTT-based process. The naming structure of this handle is
“Event\<GUID>” and it is present on the device on which
the process is created. When a non-WTT-based process is
created, it has the option of waiting on this event handle and
performing a clean shutdown if requested.

0269 25 Note on Locking

0270 Central to the implementation of this API is the
proceSS table. The process table has row-level eXclusive
locks and a global process table lock that over-rides the
row-level locks.

0271 There are at least six points in time when locking
comes into play:

0272 (a) When the parent process looks for an
empty slot in the process table for the new child
proceSS,

0273 (b) When the parent process reserves a slot in
the process table by writing in the GUID of the child
process, the GUID of the parent process, a Group
GUID (if any), the time the child process was
created, the Heartbeat Time, the Source Device, the
Target Device, and the Process Type (WTT-based or
non-WTT-based) (see FIG. 4 and accompanying text
for a description of these fields);

0274 (c) When the child process soon after creation
writes in its process identifier and the heartbeat time;

Jun. 16, 2005

0275 (d) When a process periodically updates the
Heartbeat Time;

0276 (e) When multiple processes are querying
either at the row level or at the process table level;
and

0277 (f) When a WTT-based process is created
outside the scope of this API. It looks for a slot in the
process table and then gives itself a GUID for
identification.

0278 Considering all these, a global lock (mutex) is
needed whenever a write affects the entire process table, as
in cases (a), (b), and (f) above. A row-level exclusive lock
is needed (after acquiring the global process table) when
updating process-specific information, as in cases (c), (d),
and (e) above.

Specific Considerations when Communicating with
Remote Processes

0279 While the invention is useful when all processes
run on the same computing device, it is also designed for the
case when Some processes run remotely. This Section dis
cuSSes Specific considerations that come into play when the
API Supports remote processes.

0280 PWTTPROCESSINFO contains a field called
SZDestMachine that holds the value of the target device on
which the process runs. If the value is NULL, then the call
is local. If not, the command and its parameters are Sent to
the target device, and the results are piped back to the
originating device. All calls are Synchronous in nature. So,
if the target device crashes during the period of passing the
command, an appropriate error is returned.
0281. The need to pass by value argues for using Remote
Procedure Calls (RPC) as a message-passing paradigm. On
the other hand, if all input parameters to a call are based on
parameters passed only by value, then interfaces (function
tables) for the call can be set up and the SpSrV Service used
to handle the commands on the remote device. Another
consideration is that if 32-bit-based machines communicate
with IA64 cluster machines, then RPC is very useful as it
takes care of architectural differences. RPC interfaces are
flexible in terms of marshaling both pointer-based and
value-based parameters.
0282) Every time a new API call is made, a new GUID
may be generated on the device that initiated the call. This
GUID is used to “track the call. The GUID is sent with the
call to the target device. The target device keeps track of the
GUID. If the target device crashes, then the target device,
after re-booting, “calls back' its parent device with the
knowledge of the GUID of the last call and the name or IP
address of the parent device.
0283 For every process created on a particular device, a
<GUIDs.ini file is created in the %windir%\WTTbin\GUID
directory. (For non-"WINDOWS” implementations, a simi
lar directory is used.) This directory Stores information about
the process, its threads, and its Stack comments. The files
Store information more persistently than can memory and
prevent having to use memory for ever-changing, bulky
data. A process is free to update the information in its file
whenever the thread comments are updated. If a query about
the State of a proceSS is made and if the process no longer has

US 2005/0132384 A1

an entry in the process table, but a <GUID>.ini file exists,
then the status of the process is updated to ERROR SER
VICE NOT ACTIVE. Due to the presence of multiple
threads possibly operating Simultaneously on this file, Syn
chronization is important. A cleanup routine removes ini
files three or more days old. This is the structure of a
<GUIDs.ini file:

GLOBAL
GGUID = nnn
PD = nnn
Status = WTT PROCESS RUNNING // Or some other status.
LogFiles
<Log1.log
<Log2.log
<ThreadId1>
Comment1
Comment2

<ThreadId2>
Comment1
Comment2

0284. For marshaling parameters for a function call, the
SpSrV Service has a function table that is used to form the
receive and Send Stubs for the SpSrV Service running on the
remote device. To form the stub for receiving data, the buffer
is as generic and as flexible as possible. It identifies the
function, determines the number of parameters, and Sets a
fixed order of parameters depending on the function. The
following structure is used. It is marshaled into a byte buffer,
Sent out the Socket, and un-marshaled on the other end.
When the call completes, the same procedure gets the
returned value of the call.

// This is the index into the function dispatch table on the remote device.
DWORD dwTestAPINum;
If This usually corresponds to nGount.
DWORD dwNumHWTTProcesses;
// Offset into the non-variable-length buffers.
DWORD dwHWTTProcOffset MAX PROCS:
// The number of processes present in the
WTTPROCESSMARSHALPARAM

If structure (see below).
DWORD dwNumMPProcesses:
// Offset into the non-variable-length buffers.
DWORD dwNumMPOffset MAX PROCS:
// The total number of bytes taken up by the buffer.
DWORD dwBytesFor Buffer;
DWORD dwNumWTTPLogInfo:
// Offset into the non-variable-length buffers.
DWORD dwNumWTTPLogOffsetMAX PROCS:
DWORD dwNumWTTProcListElem;
// Offset into the non-variable-length buffers.
DWORD dwNumWTTProcListOffset MAX PROCS:
DWORD dwWaitTimeOut:
DWORD dwFlags;
DWORD dwWaitAll;
DWORD dwBytes;
// Now for storage for the variable-length data fields.
(dwNumHWTTProcesses * sizeof(M HWTTPROCESS))
(dwNumMPProcesses * sizeof(WTTPROCESSMARSHALPARAM))
(dwNumWTTPLogInfo * sizeof(WTTP LOG INFO))
(dwNumWTTProcListElem. * sizeof (WTTPROCLISTINFO))

0285) The WTTPROCESSMARSHALPARAM structure
is based on WTTPROCESSPARAM but each instance of a

Jun. 16, 2005

TCHAR*field is replaced by a DWORD dwLen-SSS> and a
CHAR*SzStrzSSS> containing a string and a NULL charac
ter. The variable-length data are moved to the end of the
buffer so as not to affect the offsets of the non-variable
length fields. The dwen-SSS> length information is Stored
with the help of the offsets. Each GUID is converted to a
String, marshaled, and then re-converted into a GUID on the
target device. WTTPROCESSMARSHALPARAM is as fol
lows:

typedef struct

{ DWORD dwFlags; If Flags; currently a reserved
field. Input.

DWORD dwCreateProcessFlags; // Flags used in CreateProcess.
Input.

DWORD dwProcessType: // Is this a WTT-based process?
Input.

DWORD dwOffSets 25: // Offsets to the variable-length
strings.

Void *pBuf:

} WTTPROCESSMARSHALPARAM,
*PWTTPROCESSMARSHALPARAM;

0286 The variable-length strings in WTTPROCESS
MARSHALPARAM include SZUserName, SZPasswd,
StCommandLine, StDebugger, StClusterName, StLogFile,
SzGuid, SzGroupGuid, SzParentGuid, SzSourceMachine, and
SZTargetMachine.

0287. The output buffer for most calls contains the fol
lowing information: information in HWTTPROCESS, mar
shaled as M HWTTPROCESS; dwSummaryStatus; and
dwSummary Index. Variable-length data are put at the end of
the buffer. For WTTGetProcessListInfo, a list is formed of
entries containing information about the processes of inter
est. The information carried back is as follows: a list of
threads present including their thread identifiers, a list of
comments on a per-thread basis, and a list of variations
completed by the process. The data Structures useful for
marshaling this data are as follows:

Struct WTTP THREAD INFO
{

DWORD dwThread Id;
ff Offset into the comments strings for a thread.
DWORD dwCommentOffset MAX COMMENTS PER
THREAD;

Struct WTTP VARIATION INFO
{

ff Offset into the variable-length name strings.
DWORD dwVarnNameCffset MAX VARNS:

Struct WTTP LOG INFO
{

ff Offset into the log strings.
DWORD dwLogoffsetMAX LOGS PER PROC:

US 2005/0132384 A1

0288 The structure of the marshaling buffer is as follows
(no pointers are passed):

// The size of this entire buffer in bytes.
DWORD dwBuffSize:
DWORD dwThreadCount:
// All fixed-length data for threads (i.e., the thread identifier
and the offsets for the
If comments) go here while the actual comments are in the
variable-length section.
Struct WTTP THREAD INFO *pThreadInfo:
DWORD dwVariationCount:
Struct WTTP VARIATION INFO pVarnInfo:
DWORD dwLog(ount;
Struct WTTP LOG INFO *pLogInfo:

0289 (The variable-length data go here.)
0290. To be exported are the following 2 variables:

PDWORD pdwThreadCount;
PWTTPROCESS THREAD INFO *pThread Info:

0291 WTTGetProcessListInfo retrieves information
about a set of processes. Its return buffer contains the
following information:

// The size of this entire buffer in bytes.
DWORD dwBuffSize:
// The number of processes whose information is returned in this buffer.
DWORD dwProcs;
DWORD dwProcInfoOffsetWTT MAX PROCS:
DWORD dwProcessId;
DWORD dwGuidOffSet:
DWORD dwSrcMcOffset:
DWORD dwDestMcOffset:
DWORD dwProcListCount;
// The time of the last recorded heartbeat is split into two parts.
DWORD LastHBTimeHigh Dword;
DWORD LastHBTimeLowDword;
DWORD dwHeartBeat;

0292. In view of the many possible embodiments to
which the principles of this invention may be applied, it
should be recognized that the embodiments described herein
with respect to the drawing figures are meant to be illustra
tive only and should not be taken as limiting the Scope of
invention. Therefore, the invention as described herein con
templates all Such embodiments as may come within the
Scope of the following claims and equivalents thereof.

We claim:
1. A computer-readable medium having Stored thereon a

data Structure, the data Structure comprising:
a first data field containing data representing a UUID

asSociated with a process, and
a Second data field containing data representing a proceSS

identifier associated with the process by an operating
System.

14
Jun. 16, 2005

2. The data structure of claim 1, further comprising:
a third data field comprising data representing a UUID

asSociated with a parent process of the process.
3. The data structure of claim 1, further comprising:
a third data field comprising data representing a UUID

asSociated with a group comprising the process.
4. The data Structure of claim 1, further comprising:
a third data field comprising data representing a time of

creation of the process,
a fourth data field comprising data representing the most

recent time that the proceSS logged a heartbeat, and
a fifth data field comprising data representing a type of the

proceSS.
5. The data Structure of claim 1, further comprising:
a third data field comprising data representing an identity

of a computing device on which the data Structure
resides, and

a fourth data field comprising data representing an iden
tity of a computing device on which the proceSS runs.

6. The data structure of claim 5, wherein the identities of
the computing devices are represented by data in the Set:
name, IP address.

7. A computer-readable medium having Stored thereon a
data Structure, the data Structure comprising:

a first data field containing data representing a type of the
new process,

a Second data field containing data representing a UUID,
and

a third data field containing data representing a command
line to execute to initiate the process.

8. The data structure of claim 7, wherein the UUID is a
NILUUID.

9. The data structure of claim 7, further comprising:
a fourth data field comprising data representing a user
name to use when creating the process, and

a fifth data field comprising data representing a password
to use when creating the process.

10. The data structure of claim 7, further comprising:
a fourth data field comprising data representing a direc

tory in which to execute the process.
11. The data structure of claim 7, further comprising:
a fourth data field comprising data representing a UUID

of a parent of the process.
12. The data structure of claim 7, further comprising:
a fourth data field comprising data representing a UUID

of a group comprising the new process.
13. The data structure of claim 7, further comprising:
a fourth data field comprising data representing a com

puting device on which the process will run.
14. The data structure of claim 13, wherein the data

representing the computing device are in the Set: name, IP
address.

