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(57) Abstract: Methods and systems for pain assessment are disclosed. The methods and systems include: obtaining a trained first,
second, and third artificial intelligence (AI) models; obtaining sensor data for each modality of multiple modalities for a sequence
length; determining a latent feature space in the sequence length for each modality of the multiple modalities based on the first Al model
and the sensor data for each modality; generating a common latent space based on the second Al model and the latent feature space of
each modality of the multiple modalities, generating a reconstructed latent space for each modality of the multiple modalities based on
the common latent space and the second Al model; and determining a pain indication and/or a level of intensity based on the third Al
model. Other aspects, embodiments, and features are also claimed and described.
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ATTENTIONAL GENERATIVE MULTIMODAL NETWORK FOR PAIN
ESTIMATION

CROSS-REFERENCE TO RELATED APPLICATION(S)
[0001] This application claims the benefit of U.S. Provisional Patent Application Serial
No. 63/399,563, filed August 19, 2022, the disclosure of which is hereby incorporated by

reference in its entirety, including all figures, tables, and drawings.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0002] This invention was made with government support under R2INR018756 awarded

by the National Institutes of Health. The government has certain rights in the invention.

SUMMARY

[0003] The following presents a simplified summary of one or more aspects of the present
disclosure, to provide a basic understanding of such aspects. This summary is not an
extensive overview of all contemplated features of the disclosure and is intended neither
to identify key or critical elements of all aspects of the disclosure nor to delineate the
scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts
of one or more aspects of the disclosure in a simplified form as a prelude to the more
detailed description that is presented later.

[0004] In some aspects of the present disclosure, methods, systems, and apparatus for
assessing neonatal postoperative pain are disclosed. These methods, systems, and
apparatus may include steps or components for: obtaining a trained first artificial
intelligence (AI) model, a trained second Al model, and a trained third AI model,
obtaining sensor data for each modality of multiple modalities for a sequence length;
determining a latent feature space in the sequence length for each modality of the multiple
modalities based on the first Al model and the sensor data for each modality; generating
a common latent space based on the second Al model and the latent feature space of each
modality of the multiple modalities; generating a reconstructed latent space for each
modality of the multiple modalities based on the common latent space and the second Al

model; and determining a pain indication and/or a level of intensity based on the multiple
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latent feature spaces, the common latent space, and the reconstructed latent spaces for
modalities, and the third Al model.

[0005] These and other aspects of the disclosure will become more fully understood upon
a review of the drawings and the detailed description, which follows. Other aspects,
features, and embodiments of the present disclosure will become apparent to those skilled
in the art, upon reviewing the following description of specific, example embodiments of
the present disclosure in conjunction with the accompanying figures. While features of
the present disclosure may be discussed relative to certain embodiments and figures
below, all embodiments of the present disclosure can include one or more of the
advantageous features discussed herein. In other words, while one or more embodiments
may be discussed as having certain advantageous features, one or more of such features
may also be used in accordance with the various embodiments of the disclosure discussed
herein. Similarly, while example embodiments may be discussed below as devices,
systems, or methods embodiments it should be understood that such example

embodiments can be implemented in various devices, systems, and methods.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a block diagram conceptually illustrating a system for pain assessment
according to some embodiments.

[0007] FIG. 2A is a flow diagram illustrating an example process for pain assessment
according to some embodiments, and FIG. 2B is a flow diagram illustrating another
example process for pain assessment according to some embodiments.

[0008] FIG. 3 is a flow diagram illustrating an example process for pain assessment
system training according to some embodiments.

[0009] FIG. 4 is an example conceptual framework for pain assessment according to
some embodiments.

[0010] FIG. 5 shows t-distributed stochastic neighbor embedding (t-SNE) projection of
spatio-temporal features using perplexity of 40.

[0011] FIG. 6 is an example influence function-based method integrated into a pain

classification model according to some embodiments.

DETAILED DESCRIPTION
[0012] The detailed description set forth below in connection with the appended drawings

is intended as a description of various configurations and is not intended to represent the
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only configurations in which the subject matter described herein may be practiced. The
detailed description includes specific details to provide a thorough understanding of
various embodiments of the present disclosure. However, it will be apparent to those
skilled in the art that the various features, concepts and embodiments described herein
may be implemented and practiced without these specific details. In some instances, well-
known structures and components are shown in block diagram form to avoid obscuring
such concepts.

[0003] FIG. 1 shows an example 100 of a system for pain assessment in accordance with
some embodiments of the disclosed subject matter. As shown in FIG. 1, a computing
device 110 can receive runtime sensor data (e.g., images, audio signals, etc.) 130 for each
modality during a sequence length for pain assessment using first, second, and third Al
models. In further examples, the computing device 110 can receive training sensor data
130 for each modality to train the first Al model and/or the second Al model. In non-
limiting scenarios, facial images of the sensor data 130 in the sequence length can be one
modality, body images of the sensor data 130 in the sequence length can be another
modality, and audio data of the sensor data 130 in the sequence length can be another
modality.

[0004] In further examples, the computing device 110 can receive the runtime/training
sensor data 130 over a communication network 140. In some examples, the
communication network 140 can be any suitable communication network or combination
of communication networks. For example, the communication network 140 can include
a Wi-Fi network (which can include one or more wireless routers, one or more switches,
etc.), a peer-to-peer network (e.g., a Bluetooth network), a cellular network (e.g., a 3G
network, a 4G network, a 5G network, etc., complying with any suitable standard, such
as CDMA, GSM, LTE, LTE Advanced, NR, etc.), a wired network, etc. In some
embodiments, communication network 140 can be a local area network, a wide area
network, a public network (e.g., the Internet), a private or semi-private network (e.g., a
corporate or university intranet), any other suitable type of network, or any suitable
combination of networks. Communications links shown in FIG. 1 can each be any suitable
communications link or combination of communications links, such as wired links, fiber
optic links, Wi-Fi links, Bluetooth links, cellular links, etc.

[0005] In further examples, the computing device 110 can be any suitable computing
device or combination of devices, such as a desktop computer, a laptop computer, a

smartphone, a tablet computer, a wearable computer, a server computer, a computing



WO 2024/040268 4 PCT/US2023/072593

device integrated into a vehicle (e.g., an autonomous vehicle), a camera, a robot, a virtual
machine being executed by a physical computing device, etc. In some examples, the
computing device 110 can train and run the first Al model, the second Al model, and/or
third Al mode. In other examples, the computing device 110 can train training the first Al
model, the second AI model, third Al mode and/or sub-Al models. In the examples,
another computing device can run the first Al model, the second Al model, and/or third
Al model. In further examples, the computing device 110 can include a first computing
device for the first Al model, a second computing device for the second Al model, and a
third computing device for the third Al model. It should be appreciated that the training
phase and the runtime phase of any combination of the first Al model, the second Al
model, and the third Al model can be separately or jointly processed in the computing
device 110 (including physically separated one or more computing devices). Although
the system described here references three AT models (first, second, and third), alternative
realizations of the system could be in the form of a sequence of one or more Al models
or a hierarchy of Al models for pain assessment.

[0006] In further examples, the computing device 110 can include a processor 112, a
display 114, one or more inputs 116, one or more communication systems 118, and/or
memory 120. In some embodiments, the processor 112 can be any suitable hardware
processor or combination of processors, such as a central processing unit (CPU), a
graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field-
programmable gate array (FPGA), a digital signal processor (DSP), a microcontroller
(MCU), etc. In some embodiments, the display 114 can include any suitable display
devices, such as a computer monitor, a touchscreen, a television, an infotainment screen,
etc. In some embodiments, the input(s) 116 can include any suitable input devices and/or
sensors that can be used to receive user input, such as a keyboard, a mouse, a touchscreen,
a microphone, etc.

[0007] In further examples, the communications system(s) 118 can include any suitable
hardware, firmware, and/or software for communicating information over
communication network 140 and/or any other suitable communication networks. For
example, the communications system(s) 118 can include one or more transceivers, one or
more communication chips and/or chip sets, etc. In a more particular example, the
communications system(s) 118 can include hardware, firmware and/or software that can
be used to establish a Wi-Fi connection, a Bluetooth connection, a cellular connection, an

Ethernet connection, etc.
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[0008] In further examples, the memory 120 can include any suitable storage device or
devices that can be used to store image data, instructions, values, Al models, etc., that can
be used, for example, by the processor 112 to perform pain assessment/prediction task to
present content using display 114, to receive image sources via communications
system(s) 118, etc. The memory 120 can include any suitable volatile memory, non-
volatile memory, storage, or any suitable combination thereof. For example, memory 310
can include random access memory (RAM), read-only memory (ROM), electronically-
erasable programmable read-only memory (EEPROM), one or more flash drives, one or
more hard disks, one or more solid state drives, one or more optical drives, etc. In some
embodiments, the memory 120 can have encoded thereon a computer program for
controlling operation of computing device 110. For example, in such embodiments, the
processor 112 can execute at least a portion of the computer program to perform one or
more data processing and identification tasks described herein and/or to train/run Al
models based on sensory data 130 described herein, present content to the display 114,
transmit/receive information via the communications system(s) 118, etc. As another
example, processor 112 can execute at least a portion of processes 200A, 200B, and/or

300 described below in connection with FIGs. 2 and/or 3.

[0009] FIG. 2A is a flow diagram illustrating an example process 200A for pain
assessment in accordance with some aspects of the present disclosure. As described
below, a particular implementation can omit some or all illustrated features/steps, may be
implemented in some embodiments in a different order, and may not require some
illustrated features to implement all embodiments. In some examples, an apparatus (e.g.,
computing device 110) in connection with FIG. 1 can be used to perform the example
process 200A. However, it should be appreciated that any suitable apparatus or means for
carrying out the operations or features described below may perform the process 200A.
The process 200A is generally directed to a runtime stage using one or more trained
artificial intelligence (AI) models. Training the Al models is described in connection with
FIG. 3. In a non-limiting scenario, the process 200A can be used for postoperative pain
assessment and/or intensity. However, the process 200A can be used for any other suitable
purposes (e.g., preoperative pain assessment, pain prediction, etc.).

[0010] At step 212A, the process can obtain a trained first Al model, a trained second Al
model, and a trained third AT model corresponding to three stages (e.g., stage 1: spatio-

temporal feature detection, stage 2: joint feature distribution detection, and stage 3:
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attentional feature fusion). In some examples, step 212A can be performed on a different
apparatus (e.g., a different processing resource) than the apparatus used to perform other
steps in FIG. 2. In another example, step 212A as well as other steps in FIG. 2 can be
performed on the same apparatus. The training of the Al models is further described in
connection with FIG. 3.

[0011] At step 214A, the process can optionally obtain a video including a subject for a
sequence length. In some examples, a subject can be a neonate. However, the subject is
not limited to a neonate. The subject can be a non-neonate (e.g., baby, child, adult). In
further examples, the sequence can indicate a group of data (e.g., frames/images, audio
signals, etc.) in a sequence length or a predetermined period of time (e.g., 10 seconds, 20
seconds, 30 seconds, 1 minute, 10 minutes, 1 hour, 5 hours, 24 hours, or any other suitable
period of time). In some embodiments, the duration of each sequence of data may overlap
(e.g., a 30 second window overlaps by 20 seconds with the immediately prior window, a
10 second window overlaps by 5 seconds with the prior window, a 1 hour window
overlaps by 59 minutes, 30 minutes, etc. with the prior window). The duration of each
window may correspond to medical standards, such as the duration of monitoring for
neonatal pain by medical professionals. In some embodiments, the process may
dynamically alter the degree of overlap of the windows based upon frame rate and quality
of the video acquisition, so that the process can be agnostic to the capabilities of the
hardware used to acquire the video sequences. In certain embodiments, the video
acquisition may be a constant feed, with windows been determined in real time as the
video data stream is processed; whereas in other embodiments where processing, batter,
or other resources may be constrained (or where a real time feed is not necessary), the
sequences may arrive as individual files/packets. A video can include multiple frames or
images in the sequence length.

[0012] At step 216A, the process can optionally preprocess the video data to generate
multiple different types of data corresponding to different sensing modalities. For
example, the process can extract visual (face and body) frames or images and extract
audio data from the video. In some examples, the process can detect a facial region of a
subject from the images (e.g., using an R-CNN or YOLO-based face detector, or other
object detection algorithm trained to detect regions in an image or video stream that
correspond to a face). In further examples, the process can detect the body region from
the images (e.g., using another R-CNN or YOLO-based detector, or other object detection

algorithm trained to detect regions in an image or video stream that correspond to a body).
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Then, the process can optionally resize all images/frames (e.g., 224 x 224) to provide a
consistent data flow in the multimodal network. In some examples, facial images in the
sequence length can be one modality, and body images in the sequence length can be
another modality. In the case of the audio modality, the process can convert the audio data
in the video stream to an isolated audio data stream with a predetermined sampling rate
(e.g., 16K mono signals). In some scenarios, the process might not detect a face or a body
in some images in the sequence due to the partial occlusion of the neonate’s face or body.
This may lead to a different number of frames belonging to face and body modalities. To
fix this issue and remove repetitive frames, the process can extract the salient frames from
these sequences with an equal time distribution. In some examples, the process can divide
each sequence/window of video data into N equal segments. From each segment, F-
number of frames can be chosen. In a non-limiting instance, the process can choose the
value of N and /" as 10 and 1, respectively; in other instances, N may be 30 and /" may be
15, or other ratios. This frame selection can be random within equal length slots. For
example, at first, N equal length segments can be chosen from the entire sample. Then
randomly F frames can be chosen from each slot repeatedly during the training/testing
phase. In some examples, the selection can be truly random or choose the best frames
(e.g., select frames based on highest quality or pose, etc.). In some scenarios, the random
selection of frames can be used in the training phase while specific frame selection can
be used in the run-time phase. In other scenarios, the random selection of frames can be
used in the training and run-time phases. In other scenarios, the specific frame selection
can be used in the training and run-time phases.

[0013] At step 218A, the process can obtain multiple types of sensor data corresponding
to one or multiple sensing modalities, for the sequences/windows for which video data
was acquired in step 216A. (Note, steps 216A and 218A could occur simultaneously or
in opposite order). For example, the process can receive multiple visual samples in the
video, and each sample corresponding to the sequence can include » number of facial
images and body images, i.e., S;=f1, /2, 5, . . ., f» where S; € §. For the auditory modality,
S; can be just one audio signal. In further examples, sensor data for the face modality can
include facial images of the subject (e.g., neonate) produced from the video for the
sequence length (e.g., 10 seconds). Sensor data for the body modality can include body
images of the subject produced from the video for the sequence length. Sensor data for
the auditory modality can include audio data from the subject produced from the video

for the sequence length. In further examples, sensor data is not limited to facial image,
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body image, an audio data. Sensor data can include other suitable time-series data for the
sequence length. For example, sensor data for another modality can include vital signs
(e.g., body temperature, blood pressure, respiration rate, pulse rate, etc.), environmental
factors (e.g., ambient noise, temperature, room/scene lighting, humidity), and other states
of a neonate such as wet/dry diaper, time since last feeding, etc. In other examples, the
process can obtain multiple sensor data for multiple modalities without performing steps
216A and 218A. For example, the process can separately receive facial images, body
images, and audio data for the sequence length from any suitable source (e.g., a server, a
cloud, etc.). In some examples, the process can obtain sensor data of the multiple data
modalities corresponding to the time period. In some examples, data of multiple data
modalities can be determined base don the sensor data of the multiple data modalities and
multiple sub-Al models. In some examples, the process can obtain the data of multiple
data modalities corresponding to a time period. In some examples, the data of the multiple
data modalities includes multiple intermediate feature corresponding to the multiple data
modalities. For examples, the multiple intermediate features can be produced from
multiple sub-Al models where the multiple intermediate features correspond to the
multiple sub Al models (e.g., R-CNN or YOLO-based detector, FaceNet-based model,
Google’s VGGish model, etc.). The multiple data modalities can include at least one of a
face modality, a body modality, or an auditory modality, and the sensor data of the
plurality of data modalities can includes at least one of: multiple facial images for the face
modality, multiple body images for the body modality, or audio data for the auditory
modality.

[0014] Steps 220A—228A describe certain three-stage pain assessment techniques based
on Al models. FIG. 4 shows an example conceptual framework 400 for pain assessment
according to some embodiments. In some examples, the framework 400 can include three
stages 410, 430, 450 to generate a pain score of the subject. The first stage, second, and
third stages 410, 430, 450 are described in steps 220A, 222A-226A, and 228A,
respectively.

[0015] At step 220A, the process can determine a latent feature space 420 in the sequence
for each modality 416 based on the trained first Al model 412, 414. For example, the first
Al model 412, 414 can produce intermediate features (e.g., spatial/audio features) in the
sequence/window length for each modality and produce a spatio-temporal latent space for
each modality based on the intermediate features for a respective modality. Training the

first Al model is further described below in connection with FIG. 3.
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[0016] In some examples, the first Almodel 412, 414 can include multiple sub-Al models
414 to capture one or more intermediate features 418 (e.g., spatial/audio features) of
sensor data for each modality 416. For example, a first sub-Al model 414 corresponding
to the face modality 416 can extract one or more spatial features 418 (i.e., intermediate
features) from each facial image of the sensor data in the sequence length. In a non-
limiting scenario, the first sub-Al model 414 can include a FaceNet-based model or any
other suitable model (such as various types of CNNs) to extract one or more spatial
features 418 for the facial modality 416. In further examples, a second sub-Al model 414
corresponding to the body modality 416 can extract one or more spatial features 418 (i.e.,
intermediate features) from each body image of the sensor data in the sequence length. In
a non-limiting scenario, the second sub-Al model can include a Resnet18-based model or
any other suitable model to extract the one or more spatial features 418 for the body
modality 416. In even further examples, a third sub-Al model 414 corresponding to the
auditory modality 416 can extract one or more audio features 418 (i.e., intermediate
features) from each audio signal of the sensor data for the audio modality. In a non-
limiting scenario, the third sub-Al model 414 can include a VGGish model or any other
suitable model to extract one or more audio features 418 for the auditory modality 416. It
should be appreciated that other sub-Al models 414 can be used to capture other features
418 of other modalities 416.

[0017] In further examples, the first Al model can further include an autoencoder neural
network (e.g., long short-term memory (LSTM)-based autoencoder (AE)) 412. In some
examples, the autoencoder neural network 412 can include two layers (e.g., an encoder
and a decoder). It should be appreciated that the first Al model can be any other suitable
neural networks (e.g., Hopfield, Boltzmann, RBM, Stacked Boltzmann, Helmholtz, etc.)
trained in an unsupervised manner. In addition, the first Al model is not limited to
unsupervised neural networks. The first Al model can include an artificial neural network
(ANN), a convolutional neural network (CNN), a recurrent neural network (RNN), and
any other suitable supervised neural networks.

[0018] In even further examples, the trained first Al model 412 (e.g., an LSTM-based
autoencoder) can receive the one or more intermediate features 418 (spatial/audio
features) of each modality 416. The trained first AI model 412 can generate a latent
feature or latent feature space 420 (e.g., spatio-temporal latent space) for each modality
416. In some examples, the latent feature for each modality of the plurality of data

modalities can include an output of an encoder in the autoencoder neural network. For
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example, an encoder (e.g., RNN encoder) of the first Al model 412 can receive the one
or more intermediate features (i.e., X,inz L2-M where m € M: face modality (F), body
modality (B), audio modality (A), i is indicative of an index of a frame in the sequence
and » 1s indicative of the sequence length) for each modality 416 and generate a latent
feature or latent feature space 420 (i.e., zX where R represents RNN encoder/decoder) for
each modality 416, which can be used in the second Al model 430 and the third AT model
450. Here, the latent feature or latent feature space 420 can be a spatio-temporal latent
feature space or a fixed size latent feature space for each modality. Thus, the process can
extract a latent feature space (zX) for each modality (e.g., face, body, audio, etc.) based
on the first Al model 410.

[0019] At step 222 A, the process can determine if one or more modalities 432 are missing
or one or more sensor data are missing in the sequence length. In some examples, a
missing modality can indicate that entire sensor data corresponding the missing modality
is missing or a substantial amount of the entire sensor data corresponding the missing
modality is missing to consider the substantial amount as an input for the model.
However, in other examples, a missing modality can include a part of the entire sensor
data. For example, a neonate can be wrapped in blanket for the sequence length or a part
of the sequence length in the video. Then, the whole or part of the sensor data for the body
modality does not exist in the sequence length. In another example, a neonate does not
face a camera for a few seconds or for the entire sequence length. Then, the process might
not detect the face in frames/images for the few seconds or entire seconds during the
sequence length and consider the frames or images as missing sensor data. In a further
example, the neonate can be in a room with noise (e.g., music). Then, the process might
not accurately detect the whole audio data or a part of the audio data in the sequence
length from the neonate. In further examples, the process can determine the one or more
missing modalities and/or missing senor data for a modality if a part of sensor data for a
modality does not exist while other corresponding signals for other modalities in the
timeline of the sequence are detected and exist. Once the process determines one or more
missing modalities 432 and/or missing sensor data, the process can move to step 224A. If
there is no missing modality, the process can move to step 228A.

[0020] At step 224A, the process can generate a common latent space 436 (z};) based on
the trained second Al model 434 and the latent feature or latent feature spaces 420 for

modalities. For example, the second AI model 434 can include a variational autoencoder
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(VAE) neural network (e.g., multilayer perceptron (MLP) encoder-decoder). In some
examples, the second AT model can include four encoder layers (e.g., 128 = 128 = 128
= 64) and four decoder layers (e.g., 64 = 128 = 128 - 128) for each modality.
However, it should be understood that any other suitable neural networks can be used for
the second Al model 434. In further examples, the second Al model 434 can include a
generative model () and an inference model (¢). In some examples, the process can
generate a probability distribution of the latent feature for each modality of the plurality
of data modalities based on an inference model of the variational autoencoder neural
network, and generate a joint-posterior distribution based on the probability distribution
for each modality of the plurality of data modalities. In some examples, the common latent
space can be generated based on the joint-posterior distribution. The process can estimate
the probability distribution (i, o) 440 of the latent feature space 420 for each modality (£
B, A) using the parameterized inference model (¢). Then, the process can generate the
common latent space 436 (z};, where ' represents the VAE model) based on the estimated
probability distribution (u, 6) 440. In some examples, the common latent space (zz;) 436
can include a joint-posterior distribution. For example, the model is trained in such a way
(combination of different modalities) so that when the modality is missing, the model
knows how to generate the common latent space (e.g., using the concept of POE).

[0021] At step 226A, the process can generate a reconstructed latent space 438 for a
missing modality based on the common latent space and the trained second Al model. In
some examples, the reconstructed latent space 438 can be generated from an output of the
decoder of the second Al mode. In further examples, each modality based on the common
latent space 436 and the second Al model 434. For example, the process uses the decoder
434 of the second Al model 434 to generate the reconstructed latent space 438 for each
modality or a missing modality based on the common latent space 436. In some examples,
the encoder can encode and generate z, the decoder can receive z as input and generate Z,
which is the reconstructed feature representing the encoder input. Thus, the reconstructed
latent space 438 for each modality can include one or more missing modalities and/or
missing sensor data of modalities.

[0022] At step 228A, the process can determine a pain indication and/or a level of
intensity based on the multiple latent feature spaces, the common latent space, and the
reconstructed latent spaces for the missing modality or the modalities, and the third
trained Al model. In some examples, the process can stack the latent feature for each

modality of the multiple data modalities and the reconstructed latent feature of the missing
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modality, generate multiple attentive features based on the trained third Al model and the
stacked latent feature for each modality of the multiple data modalities with the
reconstructed latent feature, and concatenate the multiple attentive features for a final
feature vector where the pain indication can be determined based on the final feature
vector. In some examples, the pain indication can include at least one of: a pain
classification or a level of pain intensity. For example, after generating the latent feature
space (zX) and reconstructing missing modality (2},) from the common latent space (z5;)
in steps at 220A (stage 1) and 224 A and 226A (stage 2), the process can stack the latent
features 452 of F, B, and A4 sensor data. In some examples, the process can use the trained
third AI model to generate a pain indication (e.g., classification) and/or a level of intensity
of the pain 456 based on the latent features 452. In some examples, the third AI model
can include a transformer encoder 454. In further examples, the transformer encoder 454
can include a transformer encoder layer with 2 multi-heads to initially perform the scale-

dot-product attention. In further examples, the process can apply an attentional fusion
T

using the third Al model 454 as follows: Attention(Q,K,V) = sof tmax(%)V, where
k

0O, K, V, and d are the query, key, value matrix, and the scaling factor, respectively. Then,
the process can select the latent feature space (zX) or reconstructed latent space (2y,) for
each modality. z is the common generative space which represents combined features of
all modalities, whereas Z is the individual modality features. Z can be used to analyze
individual modality in the next stage. Then, the process can stack the selected features,
and the third AI model can generate attentive features based on the selected features. The
process can concatenate the attentive features and use the concatenated attentive features
as a final feature vector. The process can determine the pain indication and the level of
intensity based on the final feature vector. In some examples, a sigmoid function can be
used for pain and no-pain classes. For the level of intensity, the third Al can include an
MLP layer (e.g., following 384 = 256 = 128 = Y). Y = 1 can be a linear point for pain
intensity estimation. In some scenarios, the third Al model can be trained as a regression
problem. Then, the third AI model can estimate any continuous number in the range, for
example, here, an example range (e.g., 0—7 and 0—4) can be reported. Thus, the third Al
model can predict a continuous number within the range. In the scenarios, the system can
additionally determine whether the pain exists when the continuous number is more than

a predetermined threshold (e.g., 4 in 0—7 range or any other suitable threshold number).
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In other scenarios, the third AI model can be trained to produce a classification result
(e.g., pain or no-pain).

[0023] In some examples, the process can constantly update the first, second, and third
Al models based on the outputs of the first, second, and third AI models and post-
administration effects or results, which are ground truth data. For example, the process
can update the third AT model based on the predicted pain indication and the pain intensity
level from the third Al model and the ground truth pain indication and intensity level

determined by a medical practitioner.

[0024] FIG. 2B is a flow diagram illustrating another example process 200B for pain
assessment in accordance with some aspects of the present disclosure. As described
below, a particular implementation can omit some or all illustrated features/steps, may be
implemented in some embodiments in a different order, and may not require some
illustrated features to implement all embodiments. In some examples, an apparatus (e.g.,
computing device 110) in connection with FIG. 1 can be used to perform the example
process 200B. However, it should be appreciated that any suitable apparatus or means for
carrying out the operations or features described below may perform the process 200B.
The process 200B is generally directed to a runtime stage using one or more trained
artificial intelligence (AI) models. Training the Al models is described in connection with
FIG. 3. In a non-limiting scenario, the process 200B can be used for postoperative pain
assessment and/or intensity. However, the process 200B can be used for any other suitable
purposes (e.g., preoperative pain assessment, pain prediction, etc.).

[0025] At step 212B, the process can obtain a trained first artificial intelligence (AI)
model, a trained second Al model, and a trained third Al model. Step 212B is substantially
similar to step 212A in FIG. 2A.

[0026] At step 214B, the process can obtain data of multiple data modalities
corresponding to a time period. In some examples, the data of the multiple data modalities
can include multiple intermediate features corresponding to the multiple data modalities.
In some examples, the multiple intermediate features can be produced from multiple sub-
Al models where the multiple intermediate features correspond to the multiple sub-Al
models. In some examples, the process can obtain sensor data of the plurality of data
modalities corresponding to the time period, and the data of the plurality of data
modalities can be determined based on the sensor data of the plurality of data modalities

and the plurality of sub-Al models. In some examples, the multiple data modalities can
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include at least one of: a face modality, a body modality, or an auditory modality. Further,
the sensor data of the plurality of data modalities can include at least one of’ a plurality
of facial images for the face modality, a plurality of body images for the body modality,
or audio data for the auditory modality. Step 214B is substantially similar to step 214A,
214A, and/or 216A in FIG. 2A.

[0027] At step 216B, the process can generate a latent feature of the data for each
modality of the plurality of data modalities based on the trained first AI model and the
data for each modality of the plurality of data modalities. In some examples, the trained
first AI model can include an autoencoder neural network. Further, the latent feature for
each modality of the plurality of data modalities comprises an output of an encoder in the
autoencoder neural network. Step 216B is substantially similar to step 220A in FIG. 2A.

[0028] At step 218B, the process can generate a common latent space based on the trained
second Al model and the latent feature space of each modality of the plurality of data
modalities. In some examples, the trained second Al model comprises a variational
autoencoder neural network. In some examples, the process can further generate a
probability distribution of the latent feature for each modality of the plurality of data
modalities based on an inference model of the variational autoencoder neural network,
and generate a joint-posterior distribution based on the probability distribution for each
modality of the plurality of data modalities. The common latent space can be generated
based on the joint-posterior distribution. Step 218B is substantially similar to step 224A
in FIG. 2A.

[0029] At step 220B, the process can generate a reconstructed latent feature for a missing
modality based on the common latent space and the trained second Al model. In some
examples, a decoder or generative model of the trained second Al model can produce the
reconstructed latent feature for the missing modality based on the common latent space.
Step 220B is substantially similar to step 226A in FIG. 2A.

[0030] At step 222B, the process can determine a pain indication based on the latent
feature for each modality of the plurality of data modalities, the reconstructed latent
feature for the missing modality, and the trained third Al model. In some examples, the
trained third Al model can include a transformer encoder neural network. In further
examples, the process can further stack the latent feature for each modality of the plurality
of data modalities and the reconstructed latent feature of the missing modality, generate
multiple attentive features based on the trained third AI model and the stacked latent

feature for each modality of the plurality of data modalities with the reconstructed latent
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feature, and concatenate the multiple attentive features for a final feature vector. In some
examples, the pain indication can be determined based on the final feature vector. Further,
the pain indication can include at least one of: a pain classification or a level of pain
intensity. Step 222B is substantially similar to step 228A in FIG. 2A.

[0031] In further example, the process can obtain a vital sign and produce a sepsis
indication based on the pain indication and the vital sign. In some examples, the vital
sign can include at least one of: a body temperature, a pulse rate, a respiration rate, or a
blood pressure. In some examples, an early sign of sepsis can be diagnosed based on a
body temperature (e.g., being higher than 100.4 °F), a pulse rate (e.g., being 90 beats per
minute), and/or a respiration rate (e.g., being greater than 20 breaths per minute)
with/without a low blood pressure. In addition to the vital sign, a pain indication (e.g., a
pain score being greater than a threshold pain score) can increase the accuracy to predict
the sepsis. In some example, the sepsis indication can include a level or a stage of severity
of sepsis, a classification of sepsis diagnoses (e.g., yes or no) or any other suitable
indications. In other embodiments, a prediction of sepsis and/or a classification of sepsis
severity can be made in parallel with the monitoring of a patient as described herein. For
example, heart rate variability (HRV) can be utilized to assess severity of illness, poor
outcomes, and mortality in patients having sepsis or suspected of having sepsis. Thus, in
some embodiments, a system for monitoring a patient for purposes of pain assessment
and prediction (as described herein) can be augmented by monitoring a patient’ vital signs.
An algorithm may be running in real time that receives signals reflecting a patient’s vital
signs. If that algorithm makes a sepsis determination , the system can generate an alert
to the patient’s caregiver via the same medical records system and/or patient monitor
display that is used to normally communicate with the care team. This determination of
sepsis may also be utilized as an input to the model that makes pain predictions and pain
medication suggestions. In such circumstances, if a patient is in a severe state of sepsis
or is predicted to be in a state of sepsis, the model may forego suggesting a pain
medication dosage. For example, the system may thereby avoid a scenario in which a
patient with sepsis has a delayed diagnosis or treatment due to symptoms being masked
by pain medication.

[0032] FIG. 3 is a flow diagram illustrating an example process for pain assessment
system training according to some embodiments. As described below, a particular
implementation can omit some or all illustrated features and may not require some

illustrated features to implement all embodiments. In some examples, an apparatus (e.g.,
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computing device 110) in connection with FIG. 1 can be used to perform the example
process 300. However, it should be appreciated that any suitable apparatus or means for
carrying out the operations or features described below may perform the process 300. The
process 300 is generally directed to a training stage of a first Al model and a second Al
model for pain assessment.

[0033] Steps 312-316 are substantially the same as steps 214A—218A, respectively. For
example, at step 312, the process can obtain a video including a subject for a sequence
length. At step 314, the process can preprocess the video to generate multiple sensor data
for corresponding modalities. In some examples, steps 312 and 314 can be optional. At
step 316, the process can obtain multiple sensor data for corresponding modalities for the
sequence length. For example, the process can obtain sensor data (e.g., facial images) for
a face modality, sensor data (body images) for a body modality, and sensor data (audio
data) for an auditory modality for the sequence length. In some examples, sensor data is
not limited to facial image, body image, an audio data. Sensor data can include other
suitable time-series data for the sequence length. For example, sensor data for another
modality can include vital signs (e.g., body temperature, blood pressure, respiration rate,
pulse rate, etc.). In further examples, the process can perform augmentation of the sensor
data by random rotation (+30) and horizontal flip. However, it should be appreciated that
the sensor data augmentation is not limited to random rotation and horizontal flip. It could
include scaling, translation, cropping, adding noise, contrast, saturation, brightness, etc.
This augmentation can be applied to all frames of a particular sequence dynamically
during the training time. In some examples, to obtain the training data of multiple data
modalities, the process can obtain unfiltered data of the plurality of data modalities
corresponding to the time period; and selecting the training data among the unfiltered data
by an influence score of each of the training data being equal or higher than a threshold
score.

[0034] In some examples, the process can calculate the influence score for each of the

training data based on an equation defined by:

def dL es r’ge,z AT - )
Iup,loss(zr Ztest) = % |€=0 = _VL(Ztestr 9) H§ 1V9L(Z, 9)7

def

. .. . = . 1 .
where z s a training instance, 8 = argming_ ;Z?ﬂ L(z;, 0). Thus, the process can train

the first, second, and third Al models with fewer training data by dropping harmful

training data without decreasing the accuracy. These harmful training data or low
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influence scored training data can be removed to create a more compact dataset without
degrading the model’s performance.

[0035] At step 318, the process can train or obtain multiple sub-Al models corresponding
to the multiple modalities to extract intermediate features of sensor data of each modality.
In some examples, the first Al model 412, 414 can include multiple sub-Al models 414
to extract features (e.g., intermediate features 418 of FIG. 4) from the sensor data of
multiple corresponding modalities. In some examples, the process can train a first sub-Al
model 414corresponding to the face modality 416 to extract one or more spatial features
418 (i.e., intermediate features) from each facial image of the sensor data in the sequence
length. In other examples, the process can obtain a pre-trained first sub-Al model 414
(e.g., pre-trained on the VGGFace2 dataset) to extract one or more spatial features 418 of
a facial image. In some instances, the spatial features 418 in the sequence length for the
face modality can include a spatial feature vector. In a non-limiting scenario, the first sub-
Al model 414 can include a FaceNet-based model or any other suitable model to extract
spatial features 418 for the facial modality 416.

[0036] In further examples, the process can train a second sub-Al model 414
corresponding to the body modality 416 to extract one or more spatial features 418 (i.e.,
intermediate features) from each body image of the sensor data in the sequence length. In
other examples, the process can obtain a pre-trained second sub-Al model 414 (e.g., pre-
trained on the ImageNet dataset). In some instances, the spatial features 418 in the
sequence length for the body modality can include another spatial feature vector. In a non-
limiting scenario, the second sub-Al model can include a Resnet18-based model or any
other suitable model to extract spatial features 418 for the body modality 416.

[0037] In even further examples, the process can train a third sub-Al model 414
corresponding to the auditory modality 416 to extract one or more audio features 418 (i.e.,
intermediate features) from each audio signal of the sensor data for the audio modality.
In other examples, the process can obtain a pre-trained third sub-Al model 414 (e.g., pre-
trained with YouTube-8M dataset) to extract one or more audio features 418. In a non-
limiting scenario, the third sub-Al model 414 can include a VGGish model or any other
suitable model to extract one or more audio features 418 for the auditory modality 416. It
should be appreciated that other sub-Al models 414 can be used to capture other features
418 of other modalities 416.

[0038] At step 320, the process can train the first Al model in an unsupervised manner

based on the intermediate features (X,inz 1’2""’n) 418 of the sensor data of each modality.



WO 2024/040268 18 PCT/US2023/072593

The intermediate features obtained at step 318 can be used to train the first Al model 412
(e.g., LSTM-based AE as noted at step 220A of FIG. 2) in an unsupervised manner, where
the encoder learns a compressed spatio-temporal feature representation from the deep

features. For an intermediate feature X%, with d, feature-length and n sequence length,

the first Al model can map the sequence as follows: Ez : X ¥**™ - zR and Dg: zR —
X,lnz L2-m where m € M, F and D are the RNN encoder and decoder functions of the first

Al model, respectively, z& is the fixed size latent feature space of the first Al model (e.g.,
RNN AE), and X are the reconstructed features. Based on the reconstructed features (X)

and the input intermediate features (X), the process can calculate the loss function (L)
using the mean square error (MSE) as follows: Ly = % n (XL — XE)?. Based on the

loss function, the process can train the first Al model to learn the feature reconstruction.
It should be appreciated that the first Al model is not limited to unsupervised training. In
some examples, the first ATl model can be trained in a supervised manner with given
ground truth data.

[0039] At step 322, the process can train the second Al model 434 in an unsupervised
manner based on the latent feature spaces 420 from the first Al model 412 of each
modality. For example, the process can train the second Al model 434 using a loss
function based on a common latent feature space (z%) and a latent feature (i.e., z%, zE,
and z&) for each modality generated by the first AI model 412. In some examples, the
second Al model 434 can be trained with the trained first Al model 412. Thus, after
training the first Al model 412, the process can extract the latent feature space or vector
(zR) 420 for each modality, and the second AI model 434 can generate a common latent
feature space 436 based on the latent feature space 420 of each modality. The second Al
model 434 can include a VAE to learn the joint probability distribution of the vectors. In
a non-limiting scenario, the VAE can include a generative model (8) and an inference
model (¢), and the VAE can be optimized through Evidence Lower Bound (ELBO). The
process can estimate the probability distribution (i, o) 440 of the latent feature space 420
for each modality (F, B, 4) using the parameterized inference model (¢).

[0040] In some examples, the process can use a product of expert approximation (POE)
to generate a joint-posterior distribution. The POE can act as a common parameterized
inference model to estimate the final probability distribution of the joint latent space.
ELBO can be defined based on the combination of the likelihood and Kullback-Leibler

(KL) divergence as follows:
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ELBO(zy,) i= Eg & [110gpg(zm|2")] — BKL[qy (2" |z7), p(2")] ,where zjj and 2’
are the observation and the latent space, respectively; pg(zf|z") and q4(z"|zf,) are the

generative model and inference model respectively; p(z") is the prior; /4 and f can be the
controlled parameters. The process can incorporate the POE over multiple sensor data of
multiple modalities as follows:

ELBO(2f) 1= Eq, 8 [Smem Am 108 P (Z512)] = BKLIqg(2¥ |25), p(z")] . Tn some
examples, the process can optimize ELBO of the joint signals instead of individual
signals. In further examples, the process can pass Null values for the ELBO of the
individual signals, and can define the joint learning loss (Lv) from the second Al model
as follows:

Ly = ELBO(zR) + ELBO(zR) + ELBO(z§) + ELBO(zX). Thus, the second AI model
434 can be trained under different missing data conditions based on a common latent
feature space (z&) 436 and a latent feature (i.e., zE, zE, and z}, one or more of the latent
features can be null value for training) for each modality generated by the first Al model
412. Specifically, if any sensor data is missing, the second Al model (e.g., POE) can
create the generative probability distribution, which is used to generate the common latent
features (zX) that acts as a common joint feature for all signals. In some examples, the
process can use MSE as the loss function. It should be appreciated that the second Al
model is not limited to unsupervised training. The second Al model can be trained in a
supervised manner with given ground truth data.

[0041] At step 324, the process can train a third Al model 454 in a supervised manner
based on the multiple latent feature spaces 420 from the first Al model 412, a common
latent space 436, and multiple reconstructed latent spaces 438 for modalities from the
second Al model 434. In some examples, when there is no missing modality or sensor
data, the process can receive the multiple latent feature spaces 420 from the first Al model
412. In other examples, the third Al model 454 can receive the multiple latent feature
spaces 420 from the first Al model 412, a common latent space 436, and multiple
reconstructed latent spaces 438 for modalities from the second Al model 434. Then, the
process can stack the incorporated latent spaces 452 to input the stacked latent spaces 452
to the third Al model 454. For example, the incorporated latent spaces 438 can include a
matrix. The matrix can include a row for each modality and three columns for a latent
space (z&) 420 from the first Al model 412, a common latent space (z};) 436 from the

second Al model 434, and a reconstructed latent space (Z;,) 438 from the second Al model
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434. For example, a row of the matrix for the face modality can include the latent space
(zR) 420 for the face modality, the common latent space (z};), and the reconstructed latent
space (2 ) for the face modalituy, which can be expressed, in some scenarios, as follows:
{zB, zY;, 2V} Similarly, other rows for the body modality and the auditory modality in
the matrix can be expressed as follows: {z&, z};, 25} and {zE, z};, 2}, respectively. It
should be appreciated that other rows can exist for other suitable modalities.

[0042] In some examples, the third Al model 454 can receive the incorporated latent
spaces 452. In some examples, the third Al model 454 can include a transformer encoder
454. In further examples, the transformer encoder 454 can include a transformer encoder
layer with 2 multi-heads to initially perform the scale-dot-product attention. In further

examples, the process can apply an attentional fusion using the third AI model 454 as
T

follows: Attention(Q,K,V) = so ftmax(%)V, where O, K, V, and dj. are the query,
k

key, value matrix, and the scaling factor, respectively. Then, the process can select the
latent feature space (zZ) or reconstructed latent space (2),) for each modality. Then, the
process can stack the selected features, and the third AI model can generate attentive
features based on the selected features. The process can concatenate the attentive features
and use the concatenated attentive features as a final feature vector. The process can
determine the pain indication and the level of intensity based on the final feature vector.
In some examples, a sigmoid function can be used for pain and no-pain classes. For the
level of intensity, the third AI can include an MLP layer (e.g., following 384 = 256 =
128 2 Y). Y =1 can be a linear point for pain intensity estimation.

[0043] In some examples, the process can train the third Al model 454 based on the
predicted result (the pain/no-pain class and/or the pain intensity level) and a ground truth
label (the pain/no-pain class and/or the pain intensity level). In some examples, an
individual ground truth label can be provided based on the observation of the entire
modality, not per frame. In further examples, a final ground truth can be provided based
on all sensor data. This final ground truth can be indicative of pain or no-pain along with
an intensity score. In some examples, the final ground truth can include a pain
classification indication to indicate the binary classification of pain and no-pain . The pain
classification indication can include .a bit, a number, a letter, a symbol, or any other
suitable indication. In further examples, the final ground truth can further include a pain
intensity level to indicate a level the pain intensity. The pain intensity level can include a

byte, a letter, a symbol, or any other suitable indication.
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[0044] The evaluation of the disclosed example approach (three stages) and the
performance of both pain classification and intensity estimation is presented. The
accuracy, F-1 score, area under the receiver operating characteristic curve (AUC) was
used to report the performance of binary classification and mean squared error (MSE) and
mean absolute error (MAE) to report the performance of intensity estimation. All the
models were developed based on PyTorch environment using a GPU machine (Intel core
17-7700K@4.20 GHz, 32 GB RAM, and NVIDIA® GV100 TITAN V 12 GB GPU).

[0045] Dataset: The University of South Florida Multimodal Neonatal Pain Assessment
Dataset (USF-MNPAD-I) neonatal pain dataset was used, which is the only publicly
available neonatal postoperative pain dataset for research use. This dataset has 36 subjects
recorded during acute procedural pain, and 9 subjects during postoperative pain. Each
subject has videos (face and body) and audios (crying and background noises) recorded
in the neonatal intensive care unit (NICU) of a local hospital. Each video and audio
contain pain and no-pain segments that are labeled with two manual pain scales: neonatal
infant pain scale (NIPS) scale for procedural pain and neonatal pain, agitation, and
sedation (N-PASS) scale for postoperative pain. The procedural part of the dataset was
used to learn the spatio-temporal features. The postoperative part was used to learn the
joint feature distribution and reconstruct the missing modalities.

Table 1. Performance of the following approach and previous works when all signals are

present.

Approach Accuracy | Precision | Recall Fl-score | TPR FPR AUC

CNN-LSTM | 0.7895 0.7913 0.7805 | 0.7863 | 0.8761 03243 | 0.8791
EmbraceNet | 0.7921 0.7919 0.7921 0.7920 | 08182 | 0.2405 | 0.8790
Disclosed 0.8230 0.8230 0.8202 | 0.8207 | 0.8080 | 0.1646 | 0.9055

[0046] Network Architectures and Training: In Stage 1, the state-of-the-art models were
used to extract spatio-temporal feature vectors with 512-d, 512-d, and 128-d length from
I, B, A signals, respectively. For temporal learning, an individual long short-term memory
autoencoder (LSTM AE) with 2 layers was used, taking the respective spatial feature
vector of input sequences to produce a spatio-temporal 128-d latent space. As mentioned

above, the video has a sequence length of =10 s. In Stage 2, the multilayer perceptron

(MLP) encoder-decoder following 128 — 128 — 64 and 64 — 128 — 128 — 128 encoder
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and decoder layers for each sensory signal was used. In Stage 3, a transformer encoder
layer with 2 multi-heads had been used to initially perform the scale-dot-product

attention. After that, all the features were concatenated (128 + 128 + 128 = 384). Next,

an MLP layer following 384 —256 — 128 — Y wasused. In case of binary classification,

a sigmoid function was used for pain and no-pain classes. As for estimation, ¥ =1 is just
a linear point for pain intensity estimation. A total of 218 postoperative videos (50% pain)
were included in the following experiments. Following previous approaches, a leave-
onesubject-out (LOSO) evaluation was performed. For the spatio-temporal training, the
procedural dataset to learn the spatio-temporal features until convergence was used. For
recurrent neural networks (RNN) autoencoder, Adam optimizer with 0.001 learning rate
and 16 batch size was used. In the joint learning and attentional feature learning, LOSO
and used Adam optimizer with 0.0001 learning rate and batch size of 8 was followed.

[0047] Visualization of Spatio-temporal Features: Spatio-temporal features were
computed using FaceNet (face), ResNet18 (body), and VGGish (sound). To evaluate the
quality of the extracted features, the t-SNE projections for all modalities was generated,
as shown in FIG. 5. In some examples, all modalities are trained on the procedural pain
set (unsupervised) and tested on the postoperative set. From FIG. 5, the feature points are
scattered in the first row, which shows the baselines for face, body, and sound is observed.
The baseline for face and body signals are the raw pixels obtained from the video modality
while the baseline for the sound is the mel frequency cepstral coefficients (MFCCs)
calculated from the auditory modality. On the contrary, the second row shows the feature
points, which are generated by stage 1, grouped into clusters indicating a good
differentiation capability of the extracted features.

Table 2. Performance of the proposed approach and when dropping each modality.

Approach Modalities | Reconstruction? | Accuracy fclo-re TPR {FPR {AUC
CNN-LSTM : DropFace  {No 0.7719  :0.7522:0.9897:0.5135: 0.8763
DropBody  i{No 0.6901 {0.6703:0.8866:0.5676{0.8396
DropSound {No 0.7076  10.6630i1.0000:0.6757:0.8353
Disclosed  {Droplace {Yes 0.7921 10.7928:0.7576:0.1646: 0.9022
DropBody {Yes 0.8258 10.8257:0.8485:0.2025:0.9086
DropSound :Yes 0.6854 10.6374:0.9899:0.6962:0.8028

Table 3. Ablation study of the attentional feature fusion.
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Approach Accuracy |Precision | Recall F1-Score {TPR :{FPR [AUC
ST + JF 0.5229 0.7559 0.5229 0.3824 0.9999:0.9541:0.5757
ST +JF + AF {0.7890 0.7899 0.7890 0.7888 0.7615:0.1835:0.8870

* ST = Spatio-Temporal, JF = Joint Features, AF = Attentional Fusion
[0048] Pain Assessment without and with Missing Modalities: The disclosed example
classifier was compared with convolutional neural networks- long short-term memory
(CNN-LSTM) approach and another multimodal approach named EmbraceNet. In this
experiment, pain assessment in a subset of USF-MNPAD-I that has all the sensory signals
present (F,B,A) was performed. From Table i, the disclosed example approach

outperformed and achieved 0.820 accuracy and 0.906 AUC is observed. Although the

approach outlined achieved a lower true positive rate (TPR) as compared to the existing

CNN-LSTM, it improved the false positive rate (FPR) (0.165) by almost 50%. Similarly,

this approach significantly outperformed EmbraceNet (p < 0.01). To evaluate the

performance of the following approach and the novel reconstruction method, each
sensory signal was completely dropped (100%), the features of the dropped signal were
reconstructed, combined with the features of other signals, and the performance of
multimodal pain classification was reported. The pain assessment performance using

CNN-LSTM was also reported, as it is the most recent work in the literature that uses

USF-MNPAD-I dataset. It is noted the existing CNN-LSTM discarded missing modalities

when making a final assessment. It is duly considered that missing a sensory signal is

common in clinical practices due to several factors including sensor failure, swaddling,
or intubation, among others. The following model can classify any case with missing
modalities as it can reconstruct these modalities and integrate them into the assessment.

From Table 2, it is observed that reconstructing the features of face and body using the

following approach improved the performance as compared to CNN-LSTM. The lower

performance of sound suggests that sound reconstruction has a higher impact on the final
pain/no-pain decision, which is consistent with a similar trend observed in Salekin’s
previous work.
[0049] Multimodal Assessment with Attentional Feature Fusion: Unlike other
approaches, an attentional fusion to examine the cross-modal influence on the decision
was used. To evaluate this fusion approach, an ablation study was performed, in which

the performance of pain classification with and without attentional fusion was reported.

In Table 3, it is observed that the proposed attentional fusion (ST + JF + AF) improved
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the pain classification performance by a large margin, demonstrating the effectiveness of
this fusion approach.

[0050] As the pain intensity in USF-MNPAD-I dataset ranges from O to 7, a regression-
based training to generate the intensity score was performed. An MSE of 3.95 and an
MAE of 1.73 was found, which are reasonable for this relatively small and challenging
dataset. The intensity range was further minimized and found better results which are 0—
4 (MSE 0.75, MAE 0.73) and 0-1 (MSE 0.13, MAE 0.27). It was also found that the
proposed approach is capable of understanding the no-pain/pain/no-pain transitions while
estimating pain intensity with a success rate of 71.15%.

[0051] FIG. 6 is an example of an embodiment in which an influence function-based
method is integrated into a pain classification model. In some examples, an influence-
based approach for explaining the output of a model as described herein for estimating
and/or predicting pain may be helpful for health care staff to have greater confidence in
the output of the model, and promotes human involvement before making important
decisions about healthcare. In some embodiments, a embodiment may provide an output
(e.g., a pain score or a pain prediction) as described above, together with an influence-
based explanation. For example, a model may output a pain score via a patient monitor
display screen, and at the same time display on that screen that the score is heavily based
upon a crying sound analysis. This not only improves transparency and explainability of
the pain classification/prediction model, but helps an involved healthcare individual
ascertain whether an error may have occurred (e.g., the patient is not crying, but a similar
sound was present, or an undetected external factor caused brief crying). For example, in
some instances, a model may predict future pain and suggest a dosage of a pain
medication. However, the interface used by the healthcare provided may require them to
first verify that the factors influencing the prediction appear accurate (e.g., crying was
actually detected, no soiled diaper, etc.) before the system will dispense the suggested
quantity of pain medication. Thus, the patient’s medical record will reflect a consensus
of both the human caregiver and the model.

[0052] In alternative embodiments, the human caregiver may disagree with the model
and intervene by inputting an indication that the factors influencing a given pain
prediction are not actually present or are not a cause of pain. In this case, the system may
be programmed to continue monitoring the patient and determine whether the model’s
prediction was correct or whether the human caregiver’s intervention was correct. If the

model’s prediction was incorrect, then a notice may be sent to developers responsible for
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the model to indicate that a new potential training case should be utilized to re-train the
model or that other de-bugging should take place. If the model’s prediction was correct,
then the system may automatically update the caregiver.

[0053] Thus, after obtaining the pain indication from the process of FIG. 2A or 2B, this
influence-based explainable artificial intelligence (XAI) method may be utilized to
leverage an understanding of the reasoning behind the model’s assessment or prediction.
Although the example influence function-based method described above is based on a
crying sound, the example influence function-based method can be used any other
modality (e.g., face modality, body modality, etc.).

[0054] In some examples, the first step 610 can involve converting the original audio
signal into spectrogram images followed by the second step 620 to send the spectrogram
images to the CNN for pain classification/estimation/detection. Then, the cosine
similarity 630 and influence scores 640 can be calculated between the test and train
images. Finally, the outcome of our explanation method is assessed by a human evaluator
650.

[0055] Data Preparation and Augmentation: In some examples, the audio signals can be
extracted from videos of infants experiencing postoperative pain. Then the extracted
signals can be converted into a frequency representation image known as the spectrogram
image. Spectrogram images can lead to better performance as spectrogram images can
suppress the noise in the audio signal.

[0056] As the dataset has a limited number of crying sound segments (218 segments), the
dataset can be enlarged as follows. Each raw audio signal can be augmented by altering
the fundamental frequency fat three levels (f/3,/2,2f3), adding six various levels of noise
(0.001,0.003,0.005,0.01,0.03,0.05), and combining both noise and frequency; e.g., /3
with noise 0.003 or 3 with noise 0.005. The augmentation generates a total of 27
segments per audio signal; i.e., 3 for frequency variation, 6 for noise addition, and 18
(3x6) for the combination of frequency and noise. The augmented signals are then
converted to spectrogram images. These images are used to fine-tune a pre-trained
(ImageNet weights) VGG-16 architecture.

[0057] Responsible Training Instances Identification: The influence function is used to
explain a given pain segment by identifying the most important training instances that
impact the model’s performance. Algorithm 1 details the steps of using the influence
function to identify the responsible training instances. To calculate the influence score

Lup,i0ss(2,z1est) that each training instance has on the model’s prediction for the test instance
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Zrest, this equation:
o AL(ZtestDe ) _ AT -1 A
Iupmloss(zr Ztest) = 256 = |6=0 - _VL(Ztestrg) H§ VQL(ZIQ)

is used. This enables to determine which training instance has the most positive or
negative influence on that test instance; the most helpful training instance has the highest
influence score, and the most harmful training instance has the lowest score.

Algorithm 1: Audio Modality Explanation
Input: Dataset S, Training data z;, Test data z;

Output: Influence Score
Procedure KeyTrainData (S, zi, Ztes)
for each z; € S do
Calculate influence /ip, 1oss (Zrest, z) using the equation above
Obtain influence score for the training data (z;)
Sort and identify the training data as helpful/harmful for the test data zses
end
for each z; € S do
Calculate the cosine similarity using cos(¢(Zsest), ¢(z))
Play each test instance zs.srand perform the human evaluation
end
return /nfluence score, responsible data index

[0058] To distinguish between the training instances that improve the model’s
performance and those that degrade the performance, various percentages of the harmful
and helpful training instances can be further dropped. Finally, a human-grounded
evaluation is applied to verify whether the influence function produced the expected
results; 1.e., a trained graduate student evaluated the results, which were further verified
by a senior researcher in our lab. The mapping to the high-dimensional feature space
results in a dense feature vector, where each vector dimension has a non-zero value. There
are several methods (e.g., CNN-based, autoencoder-based, hand-crafted feature-based,
and transformer-based) for obtaining a dense vector representation.

[0059] In this work, a CNN-based method is used as the embeddings obtained through
CNNs are rich in spatial and semantic information. Specifically, the last layer of a VGG-
16 model is selected to reduce the image dimension while keeping the most important
information. The final layer of VGG-16 provides a feature vector ¢(z) of 512 values. Once
the feature vectors is given for the training (¢4(z;)) and test images (¢(z)), the cosine
similarity of images can be computed as follows: cossin = cos(¢(z:),¢(z:)). The similarity
measurement is 1 or close to 1 when the test image is identical or very similar to the

training image. Finally, the obtained similarity score is contrasted with the influence score
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to evaluate the outcome of our approach. If the test image is similar to a specific training
image, the influence score of that training image should be high; i.e, the model’s

performance will degrade significantly when that training image is removed.

[0060] In some examples, the processes 200A, 200B, and/or 300 can be used for
automatic and real-time neonatal postoperative pain assessment. The processes 2004,
200B, and/or 300 are proven to be effective in constructing and accounting for missing
data/signals, which is a common situation in neonatal intentional care unit (NICU)
settings. In addition, the processes 200A, 200B and/or 300 are proven to be effective in
enhancing multimodal pain assessment. In other words, more robust and more accurate
assessments can be achieved through use of multiple modalities of sensing (facial
expression, body movement, environmental factors, vital signs, etc.)

[0061] Given that a robust and accurate pain assessment can be automatically made using
the techniques provided herein, further advances can be made in terms of employing
systems to help manage and predict pain treatment for subjects. In some embodiments, a
prediction can be made of future pain intensity, based upon measurements made of a
subject (e.g., existing pain intensity) over time elapsed since a given even such as post-
surgery/post-operation, and taking into account time since last pain medication delivery.
In further embodiments, the method can be used to provide a continuous pain prediction
signal. The only difference here is during training, input-output will be current-future. If
the signal crosses the pain threshold (clinical practice range) for a certain amount of time
(window prediction), it can alert the system to take necessary steps to control the pain and
bring it back to the below threshold. For example, an algorithm may be trained to predict
when a given level of pain intensity will be experienced by a neonate, based upon time-
series measurements of pain intensity from other, similar subjects in similar situations. In
a different non-limiting scenario, the third AI model can be trained with sensor data at
time 7 and a ground truth data at time 7 +/ (e.g., a future time) or at multiple future times
i+1,i+ Db, .. . . i+ I, wherein each increment / represents a future length of time period
(e.g., 10 seconds, 30 seconds, 1 minute, 5 minutes, 10 minutes, 30 minutes, 1 hour, etc.)
and » can be any number selected by a user that is possible given the duration of time
series training data. In some embodiments, a confidence score for each increment of / may
be provided, to designate to users that the confidence in pain intensity in a more imminent
timeframe will likely be higher than the confidence in pain intensity in more distant

timeframes. Based on the trained third Al, the third Al can predict the pain classification
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indication and/or the pain intensity at a future time based on the current sensor data. In
other embodiments, the third Al model may comprise both a pain classification/intensity
model that determines current pain level as well as a prediction model that determines a
future pain level curve. In some embodiments the model used to predict future pain
intensity may comprise a Recurrent Neural Network or similar deep learning technique,
or may include statistical methods such as an ARIMA-based method. For example, an
expected pain curve may be initially set for each subject based upon factors such as age,
weight, type of operation, etc. The curve could be presented visually to caregivers in a
hospital setting, and would continually update as pain assessments are made for the
subject at the cadence/periodicity determined per the techniques described above. The
expected pain curve, being a form of multivariate time series prediction, could also depict
confidence levels for future time internals: For example, the visualization may indicate a
90% likelihood of a 2/10 pain intensity during the next 10 minutes, an 80% likelihood of
a 3/10 pain intensity during the subsequent 10 minutes, and so forth.

[0062] Using the expected pain curve, a software system can be implemented that would
assist caregivers in determining optimal times to provide minimal pain treatment, thereby
improving outcomes for neonates. In other words, the processes 200A, 200B, and/or 300
can be relied upon for implementing a system for suggesting timing, dosage, and
medication type for pain relief medication treatment, through automatic and real-time
pain assessment. In some embodiments, the system can alert caregivers (e.g., by audible
alarm, push notifications, messaging platforms, etc.) if the neonate is experiencing or
about to experience pain above a given threshold, such that immediate intervention by
medication is needed. Additionally, and perhaps more advantageously, the system can
alert caregivers of an optimal time to provide a minimal pain intervention, such as a time
to provide acetaminophen or ibuprofen, or other non-opiate, to prevent the subject from
reaching a pain level that would require a higher degree of intervention. In this sense, the
multivariate time-series model can be trained to take into account effect of medication
treatment on the expected pain curve, to keep neonates from having an intensity of pain
that would necessitate opiates.

[0063] In further examples, the process 200A, 200B, and/or 300 can reduce the length of
stay in NICU by effectively controlling pain relief medications. In further examples, the
process 200A, 200B, and/or 300 can predict pain and avoid a neonate getting into
meaningful pain in the first place. Furthermore, the process 200A, 200B, and/or 300 can
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perform individual pain predictions for different states (sleeping, hungry, wet diaper, etc.)
based on different modalities and training data.

[0064] In even further examples, this example approach could be used for assessing and
predicting pain for other populations of people unable to verbally respond to pain, either
due to physical (e.g., stroke, traumatic brain injury), mental (e.g., Down's syndrome), or
cognitive (e.g., dementia) disabilities.

[0065] In the foregoing specification, implementations of the disclosure have been
described with reference to specific example implementations thereof. It will be evident
that various modifications may be made thereto without departing from the broader spirit
and scope of implementations of the disclosure as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded in an illustrative sense rather

than a restrictive sense.
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CLAIMS

WHAT IS CLAIMED IS:

1. A method for pain assessment comprising:

obtaining a trained first artificial intelligence (AI) model, a trained second Al
model, and a trained third AI model,

obtaining data of a plurality of data modalities corresponding to a time period;

generating a latent feature of the data for each modality of the plurality of data
modalities based on the trained first Al model and the data for each modality of the
plurality of data modalities;

generating a common latent space based on the trained second Al model and the
latent feature space of each modality of the plurality of data modalities;

generating a reconstructed latent feature for a missing modality based on the
common latent space and the trained second Al model; and

determining a pain indication based on the latent feature for each modality of the
plurality of data modalities, the reconstructed latent feature for the missing modality, and

the trained third AI model.

2. The method of claim 1, wherein the data of the plurality of data modalities
comprises a plurality of intermediate features corresponding to the plurality of data
modalities, the plurality of intermediate features produced from a plurality of sub-Al
models, the plurality of intermediate features corresponding to the plurality of sub-Al

models.

3. The method of claim 2, further comprising:

obtaining sensor data of the plurality of data modalities corresponding to the time
period,

wherein the data of the plurality of data modalities is determined based on the

sensor data of the plurality of data modalities and the plurality of sub-Al models.

4. The method of claim 3, wherein the plurality of data modalities comprises

at least one of: a face modality, a body modality, or an auditory modality.
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5. The method of claim 4, wherein the sensor data of the plurality of data
modalities comprises at least one of’ a plurality of facial images for the face modality, a

plurality of body images for the body modality, or audio data for the auditory modality.

6. The method of claim 1, wherein the trained first Al model comprises an
autoencoder neural network, and
wherein the latent feature for each modality of the plurality of data modalities

comprises an output of an encoder in the autoencoder neural network.

7. The method of claim 1, wherein the trained second Al model comprises a
variational autoencoder neural network,
wherein the method further comprises:
generating a probability distribution of the latent feature for each modality
of the plurality of data modalities based on an inference model of the variational
autoencoder neural network; and
generating a joint-posterior distribution based on the probability
distribution for each modality of the plurality of data modalities,
wherein the common latent space is generated based on the joint-posterior

distribution.

8. The method of claim 1, wherein the trained third AI model comprises a
transformer encoder neural network,
wherein the method further comprises:
stacking the latent feature for each modality of the plurality of data
modalities and the reconstructed latent feature of the missing modality;
generating a plurality of attentive features based on the trained third Al
model and the stacked latent feature for each modality of the plurality of data modalities
with the reconstructed latent feature; and
concatenating the plurality of attentive features for a final feature vector,

wherein the pain indication is determined based on the final feature vector.

9. The method of claim 1, wherein the pain indication comprises at least one

of: a pain classification or a level of pain intensity.
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10. The method of claim 1, further comprising:
obtaining a vital sign; and

producing a sepsis indication based on the pain indication and the vital sign.

11. A method for pain assessment artificial intelligence (AI) model training
comprising:

obtaining training data of a plurality of data modalities corresponding to a time
period;

obtaining a ground truth pain indication for the training data;

training a first AI model based on the training data of the plurality of data with
unsupervised learning, the first Al model configured to generate a latent feature of the
training data for each modality of the plurality of data modalities;

training a second Al model based on the second Al model and the latent feature
space of each modality of the plurality of data modalities with unsupervised learning, the
second Al model configured to generate a common latent space and a reconstructed latent
feature for a missing modality; and

training a third Al model based on the latent feature for each modality of the
plurality of data modalities, the reconstructed latent feature, and the ground truth pain
indication for the missing modality, the third AI model configured to generate a pain
indication.

12. The method of claim 11, wherein the training data of the plurality of data
modalities comprises a plurality of intermediate features corresponding to the plurality of
data modalities, the plurality of intermediate features produced from a plurality of sub-Al
models, the plurality of intermediate features corresponding to the plurality of sub-Al

models.

13. The method of claim 12, further comprising:

obtaining sensor data of the plurality of data modalities corresponding to the time
period,

wherein the data of the plurality of data modalities is determined based on the

sensor data of the plurality of data modalities and the plurality of sub-Al models.

14. The method of claim 13, wherein the time period comprises a plurality of

segments, each segment having a same time duration,
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wherein the method further comprises:

selecting a same amount of the sensor data for each segment

15. The method of claim 13, wherein the sensor data of the plurality of data
modalities comprises at least one of’ a plurality of facial images for the face modality, a

plurality of body images for the body modality, or audio data for the auditory modality.

16. The method of claim 11, wherein the first Al model comprises an
autoencoder neural network,

wherein the latent feature for each modality of the plurality of data modalities
comprises an encoder output of an encoder in the autoencoder neural network, and

wherein the first Al model is trained based on a difference between the encoder

output of the encoder and a decoder output of a decoder in the autoencoder neural network.

17. The method of claim 11, wherein the second Al model comprises a
variational autoencoder neural network, and

wherein the second AI model is trained based on an inference output of an
inference model in the variational autoencoder neural network and a generative output of

a generative model in the variational autoencoder neural network.

18. The method of claim 17, wherein second Al model is configured to:
generate a probability distribution of the latent feature for each modality
of the plurality of data modalities based on an inference model of the variational
autoencoder neural network; and
generate a joint-posterior distribution based on the probability distribution
for each modality of the plurality of data modalities,
wherein the common latent space is generated based on the joint-posterior

distribution.

19. The method of claim 11, wherein the third AI model comprises a
transformer encoder neural network,
wherein the method further comprises:
stacking the latent feature for each modality of the plurality of data

modalities and the reconstructed latent feature of the missing modality;
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generating a plurality of attentive features based on the third Al model and
the stacked latent feature for each modality of the plurality of data modalities with the
reconstructed latent feature; and
concatenating the plurality of attentive features for a final feature vector,
wherein the pain indication is determined based on the final feature vector, and
wherein the third Al model is trained based on the pain indication and the ground

truth pain indication.

20. The method of claim 1, wherein the obtaining of the training data
comprises:

obtaining unfiltered data of the plurality of data modalities corresponding to the
time period; and

selecting the training data among the unfiltered data by an influence score of each

of the training data being equal or higher than a threshold score.
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