«» UK Patent Application .,GB .,2520942

(43)Date of A Publication

(13)A

10.06.2015

(21) Application No: 1321307.9

(22) Date of Filing: 03.12.2013

(71) Applicant(s):
International Business Machines Corporation
New Orchard Road, Armonk 10504, New York,
United States of America

(72) Inventor(s):
Christian Jacobi
Matthias Pflanz
Kai Webber
Stefan Schuh
Jens Dittrich

(74) Agent and/or Address for Service:
IBM United Kingdom Limited
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

(51) INT CL:
GO6F 12/08 (2006.01)

(56) Documents Cited:
GB 2503437 A

(58) Field of Search:
INT CL GO6F
Other: EPODOC, WPI, TXTE.

US 20090198955 A

(54) Title of the Invention: Data Processing system and method for data processing in a multiple processor

system

Abstract Title: Multi-processor cache system with a page mover including a data processing engine.

(57) Disclosed is a multi-processor system 1 with a multi-level cache L1, L2, L3, L4 structure between the processors
10, 20, 30 and the main memory 60. The memories of at least one of the cache levels is shared between the
processors. A page mover 50 is positioned closer to the main memory and is connected to the cache memories of
the shared cache level, to the main memory and to the processors. In response to a request from a processor the
page mover fetches data of a storage area line-wise from one of the shared cache memories or the main memory,
while maintaining cache memory access coherency. The page mover has a data processing engine that performs
aggregation and filtering of the fetched data. The page mover moves processed data to the cache memories, the
main memory or the requesting processor. The data processing engine may have a filter engine that filters data by
comparing all elements of a fetched line from a source address of a fetched line from a source address of the
shared cache level or main memory with filter arguments to create a bitmask buffer of the target storage area.

FIG. 1 1
/
10 2 30
/
CPU CcPU cpry /
| L1 | | L1 | | L1 |)
L3
L \
o [Z XI5\ =
N’
Page Cache (L4) Page T
Mover [*%] [**1 Mover
40
Main Memory

60

vV ¢¥60¢5¢ 89

112 1

10 20

N CPU CPU cpu !

5Oi [AN I 25N\ 9

S
W Cache (L4) N 1
Page Page
Mover [** > Mover
40
Main Memory

FIG. 1

2/12

Cache Coherency

l

50

Page Mover Data Fetch /
+_ //100
5 l Data Processing Engine !
> Data Data Mask Data Data Mask
' Data Filter Aggregation Engine
Mover Engine
AN
N
l 1 110 1
Data to Mask Data Data to
Memory to Memory Memory
Mutiplexer
N
: N
Result Store 58

\

y

54

Cache Coherency

FIG. 2

312

FIG. 3

Mask Store
Fetch Adress L4 L4 Address
8 //32 /}10 /t32 /: 8
Filter Engine 112

/ Next

Mask Buffer Mask

111 Store
8l 8] 8| 8 Address

/ 4 A »
, 113 K

Parallel Compare] / 14
4Bit
< | Incrementer
115 3 7y
\< 116 117 /1/18
N\ext Fetch ° Low N High Count ’
Address Bound Bound
8 138 18 2 ! 138
v
Page Start Upper Bound Count
Address Lower Bound Bounds Handling Mask Address

4/12

FIG. 4

Mask Fetch
Fetch Adress L4 L4 Address
A . /32 /}20 //32 :: 8
Aggregation Engine 122
v I Next
Mask Buffer Mask
191 Fetch
8l 8] 8| 8 Address
e 44 f K
5 Way Adderg, < 123
J 124
8 Result
125 D Buffer
\< 8 A
,/
N\ext Fetch
Address 8
8 48
Page Start Result Mask Address
Address

Filter Arguments
Target Information(Bit Mask)

[
»

10

L1

60

N |

N
) Status Information

FIG. 5

First Source Information (Data)

Second Source Information (Bit Mask)

Target Information
Aggregation Command

\ 4

10 A

1 |3

z ;
L1

N |

N

) Aggregation Result
Status Information

FIG. 6

4KB Page 4KB Page
Bit
Mask
Mask f 4kB Page | 4KB Page
DATA
< » 4KB Page 4KB Page
60
50
/ 4KB Page 4KB Page
~ DATA
_ Bit
~ Mask
4KB Page 4KB Page
Result
«—| 4KBPage | 4KB Page

6/12

First Source Information (Mask DATA A)

10

2

10

Second Source Information (Mask DATA B) 60
Target Information 50
Aggregation Command -
g / Mask 4KB Page | 4KB Page
[DATAA
e .
L2 “Mask
L1 DATAB | 4KBPage | 4KB Page
— M z Result -
N | L4 p »| 4KBPage | 4KB Page
N
) Aggregation Result
Status Information
First Source Information (Data Page A)
Second Source Information (Data Page B)
Third Source Information (Bit Mask) 60
Target Information
Aggregation Command 50
> / 4KB Page | 4KB Page
_ 4 :DATA A
13— DATAB
L2 ~ Bit
L1 "~ Mask | 4KBPage | 4KB Page
][] Y Result
N i «—| 4KBPage | 4KB Page
N
) Result

FIG. 8

7112

Mask M
Page A %
200
\ \ Select /
Page C
(Masked Data
Page A)
FIG. 9
Mask M
Page A %
210
é\ :
\ Aggregation /
Page C
(Masked

Aggregation Data

FIG. 10 Pageh)

8/12

Masked
Data Page
B

Masked
Data Page
B

Masked
Data Page 220
A
\ Arith?netic
Operation
v
Page C
(Arithmetic
Operation
F| G 1 1 Result)
Masked
Data Page 230
: ?
\
\ Boolean
Operation
L
Page C
(Boolean
Operation
Result)

FIG. 12

9/12

(Start)

v

S100
\\

Software receives Request to access a
Storage Area

\ 4

$110—_

Fetching Data of a Storage Area line-wise
from Cache Memories of the at least one
| shared Cache Level and/or the Main
Memory to the at least one Page Mover
maintaining Multiple Processor Cache

Memory Access Coherency

\ 4

5120

Performing Aggregation and/or filtering of
L the fetched Data in the at least one Page
Mover

\ 4

S130

Moving processed Data from the Page

Mover to the Cache Memories of the at

~ least one shared Cache Level and/or to
the Main memory and/or to the requesting
Processor maintaining Multiple Processor

Cache Memory Access Coherency

FIG. 1

\ 4

(Stop)

3

10/12

S200
\\ Software receives Request to filter a
Storage Area
521 y
0\‘Sof’[ware issues Instruction to filter a Page
8220\ ¥
~ CPU sends Command to Filter Engine
S230 J
[. . .
Filter Engine fetches Line
$240 y
\ Filter Engine compares all Elements of
™ the Line with an upper and lower Bound
v
S250
"™J_ Filter Engine puts the Results in the
Bitmask Buffer and increments Count

Bitmask Buffer full? =

YES

5260
\

< Filter Engine ensures no other CPU works
on the Cacheline of the Bitmask Address

v

8270\

Filter Engine stores Bitmask Buffer at the

Bitmask Address and increments Address

Last Line in Page?

YES

5280 ~

- Software adds Count to Running Sum

5285

FIG. 14

Last Page in NO

5255

Storage Area?

11/12

A

A

YES

5300 \\Software receives Request to conditionally sum
up a Storage Area
$310 v
\\ Software issues Instruction to conditionally sum
up a Page
S320\ |
~ CPU sends Command to Aggregation Engine
S330\ v
~ Aggregation Engine fetches Mask
S340 v
\:‘ Aggregation Engine fetches Line
S350 y
"\ Aggregation Engine sums up all Qualifying
Elements of the Line
5355
Mask exhausted?
S360 NO
YES |
8370\

Software adds Page Sum to Running Sum

NO

Last Page in

Storage Area?

S380
\

Software returns Sum to CPU

FIG. 15

12/12

5400 \\ Software receives Request to sum up a
Storage Area
v
S410
- Software issues Instruction to sum up a Page |e

) 4
~ CPU sends Command to Aggregation Engine

5430 Y
N Aggregation Engine fetches Line <

\ 4

S440
[Aggregation Engine sums up all Elements of

the Line
$450 !
% in Page? NO
YES |

S46
0\\ Software adds Page Sum to Running Sum

S47

Last Page in NO

Storage Area?

5480
\

~ Software returns Sum to CPU

\

(Stop)

FIG.

16

DESCRIPTTION

DATA PROCESSING SYSTEM AND METHOD FOR DATA PROCESSING IN A

MULTIPLE PROCESSOR SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates in general to the field of
multiprocessor system with hierarchical cache structure, and in
particular to a data processing system comprising multiple
processors with a hierarchical cache structure comprising
multiple levels of cache between the processors and a main
memory; and a method for data processing in a multiple processor
system. Still more particularly, the present invention relates
to a data processing program and a computer program product for

data processing in a multiple processor system.

Description of the Related Art

Known data processing systems comprising multiple processors
with hierarchical processor caches and a main memory share at
least one processor cache between the processors. In such data
processing systems the bandwidth between memory and processors
is the new bottleneck. To increase the payload the known data
processing systems comprise page mover functionality for moving
data blocks from one memory location to another memory location
without involving the corresponding processor that has initiated

the data moving process.

In the Patent Application Publication US 2011/0320730 Al “NON-
BLOCKING DATA MOVE DESIGN” by Blake et al. a mechanism for data
buffering is disclosed. A portion of a cache is allocated as

buffer regions, and another portion of the cache is designated

as random access memory. One of the buffer regions 1s assigned
to a processor. A data block is stored form the one of the

buffer regions of the cache to the memory.

Summary of the Invention

The technical problem underlying the present invention is to
provide a data processing system and a method for data
processing in a multiple processor system, which are able to

increase the payload of the system.

According to the present invention this problem is solved by
providing a data processing system having the features of claim
1, a method for data processing in a multiple processor system
having the features of claim 6, a data processing program for
data processing in a multiple processor system having the
features of claim 14, and a computer program product for data
processing in a multiple processor system having the features of
claim 15. Advantageous embodiments of the present invention are

mentioned in the subclaims.

Accordingly, in an embodiment of the present invention a data
processing system comprises multiple processors with a
hierarchical cache structure comprising multiple levels of cache
and a main memory. AL least cache memories of one cache level
are shared between the processors. Further, at least one page
mover 1s positioned closer to the main memory and connected to
the cache memories of the at least one shared cache level, the
main memory and to the multiple processors to move data between
the cache memories of the at least one shared cache level, the
main memory and the processors. In response to a request from
one of the processors the at least one page mover fetches data
of a storage area line-wise from at least one of the following
memories: The cache memories of the at least one shared cache

level and the main memory maintaining multiple processor cache

memory access coherency; wherein the at least one page mover
comprises a data processing engine which performs at least one
of the following data processing operations: Aggregation and
filtering of the fetched data. The page mover moves processed
data to at least one of the following components: Cache memories
of the at least one shared cache level, the main memory and the
requesting processor maintaining multiple processor cache memory

access coherency .

In further embodiments of the present invention, the data
processing engine comprises at least one filter engine filtering
data of a storage area line-wise by comparing all elements of a
fetched line from a source address of the at least one shared
cache level and/or the main memory with filter arguments to
create a bitmask, and writing comparison results as bitmask data
in a bitmask buffer of a target storage area located at a target
address of the at least one shared cache level and/or the main
memory based on a corresponding request from one of the
processors containing a filter command with the filter arguments

and source and target information.

In further embodiments of the present invention, the data
processing engine comprises at least one filter engine moving
data of a storage area corresponding with bitmask data of the
bitmask buffer line-wise from a source address to a target
address to create a bitmask data set based on a corresponding
request from one of the processors containing a move command and

bitmask and source and target information.

In further embodiments of the present invention, the data
processing engine comprises at least one aggregation engine
performing arithmetic or Boolean operations with data of at
least one storage area fetched from a corresponding source
address having a corresponding bitmask data set and sending a

data processing result to a storage area at a target address of

the at least one shared cache level and/or the main memory or to
a requesting processor based on a corresponding request from one
of the processors containing a aggregation command and bitmask

and source and target information.

In further embodiments of the present invention, at least one
aggregation engine performs arithmetic or Boolean operations
with data of a first storage area fetched from corresponding
source addresses having a corresponding first bitmask data set,
and data of a second storage area fetched from corresponding
source addresses having the corresponding bitmask set, and sends
a data processing result to a storage area at target addresses
of the at least one shared cache level and/or the main memory or
to a requesting processor based on a corresponding request from
one of the processors containing an aggregation command and

bitmask and source and target information.

In another embodiment of the present invention, a method for
data processing in a multiple processor system with a
hierarchical cache structure comprising multiple levels of cache
between the processors and a main memory, wherein at least cache
memories of one cache level are shared between the processors
and at least one page mover is positioned closer to the main
memory and connected to the cache memories of the at least one
shared cache level, the main memory and to the multiple
processors to move data between the cache memories of the at
least one shared cache level, the main memory and the
processors; wherein in response to a request from one of the
processors the method performs the steps of: Fetching data of a
storage area line-wise from at least one of the following
memories: The cache memories of the at least one shared cache
level and the main memory; to the at least one page mover
maintaining multiple processor cache memory access coherency;
performing at least one of the following data processing

operations in the at least one page mover: Aggregation and

filtering of the fetched data; and moving processed data from
the page mover to at least one of the following components:
Cache memories of the at least one shared cache level, the main
memory and the requesting processor (10, 20, 30) maintaining

multiple processor cache memory access coherency.

In further embodiments of the present invention, data of a
storage area is moved line-wise from a source address of the at
least one shared cache level and/or the main memory to a target
address of the at least one shared cache level and/or the main
memory based on a corresponding request from one of the
processors containing a move command and source and target

information.

In further embodiments of the present invention, based on a
corresponding request from one of the processors containing a
filter command with the filter arguments and source and target
information data of a storage area are filtered line-wise by
comparing all elements of a fetched line from a source address
of the at least one shared cache level and/or the main memory
with filter arguments, wherein comparison results are written in
a bitmask buffer located at a target address of the at least one

shared cache level and/or the main memory.

In further embodiments of the present invention, based on a
corresponding request from one of the processors containing a
aggregation command and source and target information arithmetic
or Boolean operations are performed with data of at least one
storage area fetched from a corresponding source address of the
at least one shared cache level and/or the main memory, wherein
a data processing result is send to a storage area at a target
address of the at least one shared cache level and/or the main

memory or to a requesting processor.

In further embodiments of the present invention, at least one
aggregation engine performs arithmetic or Boolean operations
with data of a first storage area and a masked or unmasked
second storage area fetched from corresponding source addresses

of the at least one shared cache level and/or the main memory.

In another embodiment of the present invention, a data
processing program for execution in a data processing system
comprises software code portions for performing a method for
data processing in a multiple processor system when the program

is run on the data processing system.

In yet another embodiment of the present invention, a computer
program product stored on a computer-usable medium, comprises
computer-readable program means for causing a computer to
perform a method for data processing in a multiple processor

system when the program is run on the computer.

All in all, embodiments of the present invention are focused on
a page mover functionality comprising a data processing engine
connected to the shared processor cache and each processor to
aggregate and/or filter data from the shared processor cache in

response to a request from one of the processors.

The key of the innovation is to perform specific operations like
filtering and/or aggregation operations closer to the memory.
This is suitable to increase payload for online analytical

processing (OLAP) in business environments.

Fmbodiments of the present invention interpret a page of memory
data as a vector of 8, 16, 32 or 64 bit scalars, for example;
and aggregate (sum, min, max) such a vector and return the
result in a register. Further embodiments of the present

invention create bit masks (filters) by comparing vector

elements against register contents passed to the page mover

functionality.

Embodiments of the present invention read and interpret a page
of memory as a vector of 8, 16, 32 or 64 bit scalars, read one
or two 256 bytes cache lines and interpret them as a bit vector,
and aggregate (sum, min, max) data under mask and return the

result in a register
The above, as well as additional purposes, features, and
advantages of the present invention will become apparent in the

following detailed written description.

Brief Description of the Drawings

Preferred embodiments of the present invention, as described in

detail below, are shown in the drawings, in which

FIG. 1 is a schematic block diagram of a data processing system,

in accordance with an embodiment of the present invention;

FIG. 2 is a schematic block diagram of a page mover used in the

data processing system shown in FIG. 1;

FIG. 3 i1s a schematic block diagram of a filter engine used in

the page mover shown in FIG. 2;

FIG. 4 i1s a schematic block diagram of an aggregation engine

used in the page mover shown in FIG. 2;

FIG. 5 to 8 are schematic block diagrams of the data processing
system shown in FIG. 1, performing different data filtering and
data aggregation operations, in accordance with an embodiment of

the present invention;

FIG. 9 to 12 are schematic block diagrams showing different
implementations of data filtering and data aggregation
operations performed by the page mover shown in FIG. 2, in

accordance with an embodiment of the present invention;

FIG., 13 is a schematic flow diagram of a method for data
processing in a multiple processor system, in accordance with an

embodiment of the present invention;

FIG. 14 is a schematic flow diagram of data filtering operation
performed by the page mover shown in FIG. 2, in accordance with

an embodiment of the present invention;

FIG. 15 is a more detailed flow diagram of a masked summing
operation performed by the page mover shown in FIG. 2, in

accordance with an embodiment of the present invention; and
FIG. 16 is a more detailed flow diagram of a summing operation
performed by the page mover shown in FIG. 2, in accordance with

an embodiment of the present invention.

Detailed Description of the Preferred Embodiments

As will be appreciated by one skilled in the art, aspects of the
present invention may be embodied as a system, method or
computer program product. Accordingly, aspects of the present
invention may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining software

and hardware aspects that may all generally be referred to

rr w rr

herein as a “circuit, module” or “system.” Furthermore,
aspects of the present invention may take the form of a computer
program prcoduct embodied in one or more computer readable
medium(s) having computer readable program code embodied

thereon.

Any combination of one or more computer readable medium(s) may
be utilized. The computer readable medium may be a computer
readable signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or any
suitable combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having one
or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash memory),
an optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device, or
any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use by
or in connection with an instruction execution systen,

apparatus, or device.

A computer readable signal medium may include a propagated data
signal with computer readable program code embodied therein, for
example, in baseband or as part of a carrier wave. Such a
propagated signal may take any of a variety of forms, including,
but not limited to, electro-magnetic, optical, or any suitable
combination thereof. A computer readable signal medium may be
any computer readable medium that is not a computer readable
storage medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction

execution system, apparatus, or device.

Program code embodied on a computer readable medium may be

transmitted using any appropriate medium, including but not

10

limited to wireless, wireline, optical fiber cable, RF, etc., or

any suiltable combination of the foregoing.

Computer program code for carrying out operations for aspects of
the present invention may be written in any combination of one
Oor more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such as the
"C" programming language or similar programming languages. The
program code may execute entirely on the user's computer, partly
on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer or
other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart

and/or block diagram block or blocks.

11

These computer program instructions may also be stored in a
computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram

block or blocks.

The computer program instructions may also be loaded onto a
computer, other programmable data processing apparatus, or other
devices to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other devices
to produce a computer implemented process such that the
instructions which execute on the computer or other programmable
apparatus provide processes for implementing the functions/acts

specified in the flowchart and/or block diagram block or blocks.

FIG. 1 shows a data processing system 1, in accordance with an
embodiment of the present invention; FIG. 2 shows a page mover
50 used in the data processing system 1; FIG. 3 shows a filter
engine 110 used in the page mover shown in FIG. 2; and FIG. 4
shows an aggregation engine 120 used in the page mover shown in
FIG. 2. FIG. 9 to 12 show different implementations of data
filtering and data aggregation operations performed by the page
mover 50, in accordance with an embodiment of the present

invention.

Referring to FIG. 1 to 4, the shown embodiment of the data
processing system 1 comprises multiple processors 10, 20, 30
with a hierarchical cache structure comprising multiple levels
of cache L1, L2, L3, L4 between the processors 10, 20, 30, a
main memory 60 and at least one page mover 50, here two page
movers 50 are used. In the shown embodiment four levels of cache

L1, L2, L3, L4 are used and cache memories of at a second cache

12

level L2, a third cache level L3 and a fourth cache level are
shared between the processors 10, 20, 30. The at least one page
mover 50 is connected to the cache memories of the different
shared cache levels L2, L3, L4, to the main memory 60 and to the
multiple processors 10, 20, 30 to move data between the cache
memories of the shared cache levels L2, L3, L4, the main memory
60 and the processors 10, 20, 30. Each page mover 50 is
positioned closer to the main memory 60 as the processors 10,
20, 30. In response to a request from one of the processors 10,
20, 30 the corresponding page mover 50 fetches data of a storage
area line-wise from the cache memories of the shared cache
levels L2, L3, L4 or the main memory 60 maintaining multiple
processor cache memory access coherency. Each page mover 50
comprises a data processing engine 100 which performs at least
one of the following data processing operations: Aggregation and
filtering of the fetched data; and each page mover 50 moves
processed data to the cache memories of the shared cache levels
L2, L3, L4 and/or to the main memory 60 and/or to the requesting
processor 10, 20, 30 maintaining multiple processor cache memory

access coherency .

Referring to FIG. 2, each page mover 50 further comprises a data
fetch functionality 52 performing the above mentioned data fetch
process, a standard data moving functionality 56 for moving data
blocks from one memory location to another memory location, a
multiplexer 58 multiplexing the output data of the data
processing engine 100 and the standard data moving functionality
56 to a result store functionality 42 performing the above

mentioned data store process.

Referring to FIG. 2 to 4, the data processing engine 100
comprises at least one filter engine 110 and at least on
aggregation engine 120. The at least one filter engine 110
comprises in the shown embodiment a parallel comparing unit 111,

a mask buffer 112, holding data to be written to a corresponding

13

mask store address, an incrementing block 113, a first address
buffer 114 holding the next mask store address, a second address
buffer 115 holding the next fetch address, a low bound buffer
116, a high bound buffer 117, and a count buffer 118. The at
least one filter engine 110 filters data of a storage area line-
wise by comparing all elements of a fetched line from a source
address of the at least one shared cache level L2, L3, L4 and/or
the main memory 60 with filter arguments to create result, and
writing comparison results to a target storage area located at a
target address of the at least one shared cache level L2, L3, L4
and/or the main memory 60 based on a corresponding request from
one of the processors 10, 20, 30 containing a filter command
with the filter arguments and source and target information. The
at least one aggregation engine 110 comprises in the shown
embodiment an adder 121, a mask buffer 122, holding data read
from a corresponding mask fetch address, a result buffer 123, a
first address buffer 124 holding the next mask fetch address,
and a second address buffer 115 holding the next fetch address.
The at least one aggregation engine 110 performs arithmetic or
Boolean operations with data of at least one storage area of the
cache memories of the shared cache levels L2, L3, L4 and/or the
main memory 60; and writes the result to at least one storage
area of the cache memories of the shared cache levels L2, L3, L4
and/or to the main memory 60 and/or to the requesting processor

10, 20, 30.

Referring to FIG. 5, the at least one filter engine 110 of the
data mover 50 filters data of a storage area line-wise by
comparing all elements of a fetched line from a source address
of the at least one shared cache level L2, L3, L4 and/or the
main memory 60 with filter arguments to create a bitmask (Rit
Mask), and writing comparison results as bitmask data (Mask
DATA) in a bitmask buffer of a target storage area located at a
target address of the at least one shared cache level L2, L3, L4

and/or the main memory 60 based on a corresponding request from

14

one of the processors 10, 20, 30 containing a filter command
with the filter arguments and source and target information. In
the shown embodiment, status information is provided

additionally to the requesting processor 10.

Referring to FIG. 6, the at least one aggregation engine 120 of
the data mover 50 performs aggregation operations with data
(DATA) of at least one storage area of the at least one shared
cache level L2, L3, L4 and/or the main memory 60 having a
corresponding bitmask data set (Bit Mask) fetched from a
corresponding source address. The data mover 50 sends the
aggregation result (Result) to a storage area at a target
address of the at least one shared cache level L2, L3, L4 and/or
the main memory 60 or to a requesting processor 10 based on a
corresponding request from one of the processors 10, 20, 30
containing a aggregation command and bitmask and source and
target information. In the shown embodiment, status information

is provided additionally to the requesting processor 10.

Referring to FIG. 7, the at least one aggregation engine 120 of
the data mover 50 performs aggregation operations with data
(Mask DATA A) of a first storage area of the at least one shared
cache level L2, L3, L4 and/or the main memory 60 having a
corresponding first bitmask data set fetched from corresponding
source addresses, and data (Mask DATA B) of a second storage
areca of the at least one shared cache level L2, L3, L4 and/or
the main memory 60 having the corresponding bitmask set fetched
from corresponding source addresses. The data mover 50 sends the
data aggregation result (Result) to a storage area at target
addresses of the at least one shared cache level L2, L3, L4
and/or the main memory 60 or to a requesting processor 10 based
on a corresponding request from one of the processors 10, 20, 30
containing an aggregation command and bitmask and source and
target information. In the shown embodiment, status information

is provided additionally to the requesting processor 10.

Referring to FIG. 8, the at least one aggregation engine 120 of
the data mover 50 performs aggregation operations with data
(DATA A) of a first storage area of the at least one shared
cache level L2, L3, L4 and/or the main memory 60 fetched from
corresponding source addresses, and data (DATA B) of a second
storage area of the at least one shared cache level L2, L3, L4
and/or the main memory 60 fetched from corresponding source
addresses, according to a corresponding bitmask set (Bit Mask)
fetched from corresponding source addresses of a storage area of
the at least one shared cache level L2, L3, L4 and/or the main
memory 60. The data mover 50 sends the data aggregation result
(Result) to a storage area at target addresses of the at least
one shared cache level L2, L3, L4 and/or the main memory 60 or
to a requesting processor 10 based on a corresponding request
from one of the processors 10, 20, 30 containing an aggregation
command and bitmask and source and target information. In the
shown embodiment, status information is provided additionally to

the requesting processor 10.

Referring to FIG. 9, the at least one filter engine 110 of the
data mover 50 performs a select and move operation 200 and
selects data (Page A) of a storage area corresponding with
bitmask data (Mask M) of the bitmask buffer line-wise from a
source address and moves the data to a target address (Page C)
to create masked data of page A based on a corresponding request
from one of the processors 10, 20, 30 containing a move command

and bitmask and source and target information.

Referring to FIG. 10, the at least one aggregation engine 110 of
the data mover 50 aggregates data (Page A) of a storage area
from a source address according to bitmask data (Mask M) of the
bitmask buffer line-wise to a target address (Page C) to create
masked aggregation data of page A based on a corresponding

request from one of the processors 10, 20, 30 containing a move

16

command, an aggregation command and bitmask and source and

target information.

Referring to FIG. 11, the at least one aggregation engine 110 of
the data mover 50 performs line-wise arithmetic operations 220
with masked data (Masked Data Page A) of a first page from a
source address of a storage area and with masked data (Masked
Data Page B) of a second page from a source address of a storage
area and writes the result (Arithmetic Operation Result) of the
arithmetic operations 220 to a storage area of a target address
(Page C) based on a corresponding request from one of the
processors 10, 20, 30 containing an aggregation command and

source and target information.

Referring to FIG. 12, the at least one aggregation engine 110 of
the data mover 50 performs line-wise Boolean operations 230 with
masked data (Masked Data Page A) of a first page from a source
address of a storage area and with masked data (Masked Data Page
B) from a source address of a second page of a storage area and
writes the result (Boolean Operation Result) of the Boolean
operations 230 to a storage area of a target address (Page C)
based on a corresponding request from one of the processors 10,
20, 30 containing an aggregation command and source and target

information.

FIG. 13 shows a method for data processing in a multiple
processor system 1, in accordance with an embodiment of the
present invention; FIG. 14 shows a data filtering operation, in
accordance with an embodiment of the present invention; FIG. 15
shows a masked summing operation, in accordance with an
embodiment of the present invention; and FIG. 16 shows a summing
operation, in accordance with an embodiment of the present

invention.

17

Referring to FIG. 13, in step S100 software of the page mover 50
receives request to access a storage Area. In step S110 data of
the storage area is fetched line-wise from cache memories of the
at least one shared cache level L2, L3, L4 and/or the main
memory 60 to the at least one page mover 50 maintaining multiple
processor cache memory access coherency. In step S120
aggregation and/or filtering of the fetched data is performed in
the at least one page mover 50. In step S130 the processed data
is moved from the page mover to the cache memories of the at
least one shared cache level L2, L3, L4 and/or the main memory
60 and/or to the requesting processor 10, 20, 30 maintaining

multiple processor cache memory access coherency.

Referring to FIG. 14, in step 5200 software of the data
processing system 1 receives request to filter a storage area.
In step 5210, the software of the data processing system 1
issues instruction to filter a page to one of the processors 10,
20, 30. In step S220 the corresponding processor 10, 20, 30
sends a filter command to the filter engine 110 of the
corresponding page mover 50. In step S230, the filter engine 110
fetches a line from the corresponding storage area. In step S240
the filter engine 110 compares all elements of the line with an
upper and lower bound. In step $S250 the filter engine 110 puts
the results in the bitmask buffer 112 and increments the count
unit 118. In step S255, it is checked, if the bitmask buffer 112
is full. If the bitmask buffer 112 is full, the filter engine
110 ensures in step 5260 that no other processor 10, 20, 30
works on the cache-line of the bitmask address. In step S270 the
filter engine 110 stores the content of the bitmask buffer 112
at the bitmask address and increments the address. If the
bitmask buffer 112 is not full, the process continuous directly
with step S275. In step S275 it is checked, if the last line of
the page 1is reached. If not, the process repeats steps S230 to
5275, If yes, the software adds the current count value to a

running sum in step S280. In step S285 it 1s checked, if the

18

last page in the storage area is reached. If not, the process

repeats steps S210 to S285. If yes, the process ends.

Referring to FIG. 15, in step S300 software of the data
processing system 1 receives request to conditionally sum up a
storage area. In step 35310, the software of the data processing
system 1 issues instruction to conditionally sum up a page to
one of the processors 10, 20, 30. In step S320 the corresponding
processor 10, 20, 30 sends a conditionally sum up command to the
aggregation engine 120 of the corresponding page mover 50. In
step S330, the aggregation engine 120 fetches a mask from the
corresponding storage area to the bitmask buffer 122. In step
S340 the aggregation engine 120 fetches a line of the
corresponding page. In step S350 the aggregation engine 120 sums
up all qualifying elements of the line based on the mask in the
bitmask buffer 122. In step $355, it is checked, if the mask in
the bitmask buffer 122 is exhausted. If the mask in the bitmask
buffer 122 is exhausted, the aggregation engine 120 repeatls
steps S330 to 8355. If not, the process continues with step
S360. In step S360 it is checked, if the last line of the page
is reached. If not, the process repeats steps S340 to $360. If
yves, the software adds the current page sum to a running sum in
step S370. In step S375 it is checked, i1if the last page in the
storage area is reached. If not, the process repeats steps S310
to S375. If yes, the software returns the sum to the requesting

processor 10, 20, 30 in step S380 and the process ends.

Referring to FIG. 16, in step 5400 software of the data
processing system 1 receives request to sum up a storage area.
In step $410, the software of the data processing system 1
issues instruction to sum up a page to one of the processors 10,
20, 30. In step S420 the corresponding processor 10, 20, 30
sends a sum up command to the aggregation engine 120 of the
corresponding page mover 50. In step S430, the aggregation

engine 120 fetches a line of the corresponding page. In step

19

S440 the aggregation engine 120 sums up all elements of the
line. In step S450, it is checked, if the last line of the page
is reached. If not, the process repeats steps S430 to $S450. If
yves, the software adds the current page sum to a running sum in
step S460. In step S470 it is checked, i1if the last page in the
storage area 1is reached. If not, the process repeats steps S410
to S470. If yes, the software returns the sum to the requesting

processor 10, 20, 30 in step S480 and the process ends.

The flowchart and block diagrams in the Figures illustrate the
architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of code,
which comprises one or more executable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer

instructions.

The descriptions of the various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be apparent to

those of ordinary skill in the art without departing from the

20

scope and spirit of the described embodiments. The terminology
used herein was chosen to best explain the principles of the
embodiments, the practical application or technical improvement
over technologies found in the marketplace, or to enable others
of ordinary skill in the art to understand the embodiments

disclosed herein.

21

CLAIMS

What i1is claimed is:

1.

A data processing system comprising multiple processors

(10, 20, 30) with a hierarchical cache structure
comprising multiple levels of cache (L1, L2, L3, L4)
between said processors (10, 20, 30) and a main memory
(60),

wherein at least cache memories of one cache level (L2,
L3, L4) are shared between said processors (10, 20, 30);
wherein at least one page mover (50) is positioned closer
to said main memory (60) and is connected to said cache
memories of said at least one shared cache level (L2, L3,
L4), said main memory (60) and to said multiple
processors (10, 20, 30) to move data between said cache
memories of said at least one shared cache level (L2, L3,
L4), said main memory (60) and said processors (10, 20,
30);

wherein in response to a request from one of said
processors (10, 20, 30) said at least one page mover (50)
fetches data of a storage area line-wise from at least
one of the following memories: Said cache memories of
said at least one shared cache level (L2, L3, L4) and
said main memory (60) maintaining multiple processor
cache memory access coherency;

wherein said at least one page mover (50) comprises a
data processing engine (100) which performs at least one
of the following data processing operations: Aggregation
and filtering of said fetched data; and

wherein said page mover (50) moves processed data to at
least one of the following components: Cache memories of
said at least one shared cache level (L2, L3, L4), said

main memory (60) and said requesting processor (10, 20,

22

30) maintaining multiple processor cache memory access

coherency.

The system according to claim 1, wherein said data
processing engine (100) comprises at least one filter
engine (110) filtering data of a storage area line-wise
by comparing all elements of a fetched line from a source
address of said at least one shared cache level (L2, L3,
L4) and/or said main memory (60) with filter arguments to
create a bitmask, and writing comparison results as
bitmask data in a bitmask buffer of a target storage area
located at a target address of said at least one shared
cache level (L2, L3, L4) and/or said main memory (60)
based on a corresponding request from one of said
processors (10, 20, 30) containing a filter command with

sald filter arguments and source and target information.

The system according to claims 1 or 2, wherein said data
processing engine (100) comprises at least one filter
engine (110) moving data of a storage area (Page A)
corresponding with bitmask data (M) of said bitmask
buffer line-wise from a source address to a target
address to create a bitmask data set based on a
corresponding request from one of said processors (10,
20, 30) containing a move command and bitmask and source

and target information.

The system according to c¢laim 3, wherein said data
processing engine (100) comprises at least one
aggregation engine (120) performing arithmetic or Boolean
operations with data of at least one storage area fetched
from a corresponding source address having a
corresponding bitmask data set and sending a data
processing result to a storage area at a target address

of said at least one shared cache level (L2, L3, L4)

23

and/or said main memory (60) or to a requesting processor
(10, 20, 30) based on a corresponding request from one of
sald processors (10, 20, 30) containing a aggregation

command and bitmask and source and target information.

The system according to claim 3, wherein at least one
aggregation engine (120) performs arithmetic or Boolean
operations with data of a first storage area fetched from
corresponding source addresses having a corresponding
first bitmask data set, and data of a second storage area
fetched from corresponding source addresses having said
corresponding bitmask set, and sends a data processing
result to a storage area at target addresses of said at
least one shared cache level (L2, L3, L4) and/or said
main memory (60) or to a requesting processor (10, 20,

30) based on a corresponding request from one of said
processors (10, 20, 30) containing an aggregation command

and bitmask and source and target information.

method for data processing in a multiple processor system
with a hierarchical cache structure comprising multiple
levels of cache (L1, 12, L3, L4) between said processors
(10, 20, 30) and a main memory (60), wherein at least
cache memories of one cache level (L2, L3, L4) are shared
between said processors (10, 20, 30) and at least one
page mover (50) is positioned closer to said main memory
(60) and connected to said cache memories of said at
least one shared cache level (L2, L3, L4), saild main
memory (60) and to said multiple processors (10, 20, 30)
to move data between said cache memories of said at least
one shared cache level (L2, L3, L4), said main memory

(60) and said processors (10, 20, 30); wherein in
response to a request from one of said processors (10,

20, 30) said method performs the steps of:

24

Fetching data of a storage area line-wise from at least
one of the following memories: Said cache memories of
said at least one shared cache level (L2, L3, L4) and
sald main memory (60) to said at least one page mover
(50) maintaining multiple processor cache memory access
coherency;

performing at least one of the following data processing
operations in said at least one page mover (50):
Aggregation and filtering of said fetched data; and
moving processed data from said page mover (50) to at
least one of the following components: Cache memories of
said at least one shared cache level (L2, L3, L4, said
main memory (60) and said requesting processor (10, 20,
30) maintaining multiple processor cache memory access

coherency.

The method according to c¢laim 6, wherein data of a storage
area 1s moved line-wise from a source address of said at
least one shared cache level (L2, L3, L4) and/or said
main memory (60) to a target address of said at least one
shared cache level (L2, L3, L4) and/or said main memory
(60) based on a corresponding request from one of said
processors (10, 20, 30) containing a move command and

source and target information.

The method according to claim 6 or 7, wherein based on a

corresponding request from one of said processors (10,
20, 30) containing a filter command with said filter
arguments and source and target information data of a
storage area are filtered line-wise by comparing all
elements of a fetched line from a source address of said
at least one shared cache level (L2, L3, L4) and/or said
main memory (60) with filter arguments, wherein

comparison results are written in a bitmask buffer

25

located at a target address of said at least one shared

cache level (L2, L3, L4) and/or said main memory (60).

9. The method according to one of the preceding claims 6 to 8,
wherein based on a corresponding request from one of said
processors (10, 20, 30) containing a aggregation command
and source and target information arithmetic or Boolean
operations are performed with data of at least one
storage area fetched from a corresponding source address
of said at least one shared cache level (L2, L3, L4)
and/or said main memory (60), wherein a data processing
result is send to a storage area at a target address of
sald at least one shared cache level (L2, L3, L4) and/or
sald main memory (60) or to a requesting processor (10,

20, 30).

10. The method according to c¢laim 9, wherein at least one
aggregation engine (120) performs arithmetic or Boolean
operations with data of a first storage area and a masked
or unmasked second storage area fetched from
corresponding source addresses of said at least one
shared cache level (L2, L3, L4) and/or said main memory

(60) .

11. A data processing program for execution in a data
processing system comprising software code portions for
performing a method for data processing in a multiple
processor system according to one of the preceding claims
6 to 10 when said program is run on said data processing

system.

12. A computer program product stored on a computer-usable
medium, comprising computer-readable program means for
causing a computer to perform a method for data

processing in a multiple processor system according to

26

one of the preceding claims 6 to 10 when said program is

run on said computer.

R 27
R g

Intellectual
Property
Office

Application No: GB1321307.9 Examiner: Mr David Maskery
Claims searched: 1-12 Date of search: 20 May 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
AE - GB 2503437 A
(IBM) See accelerator part 30 fig 3.
A - US 2009/0198955 A
(ARIMILLI et AL) See AMM mover part 220 fig 2.
Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
earlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKc® :

Worldwide search of patent documents classified in the following areas of the IPC

[GOGF |
The following online and other databases have been used in the preparation of this search report
| EPODOC, WPI, TXTE. |
International Classification:
Subclass Subgroup Valid From
GO6F 0012/08 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

