woO 2007/031696 A1 |00 0 00T O OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 March 2007 (22.03.2007)

(10) International Publication Number

WO 2007/031696 Al

(51) International Patent Classification:
GOGF 12/08 (2006.01) GOGF 9/38 (2006.01)

(21) International Application Number:
PCT/GB2005/003531

(22) International Filing Date:
13 September 2005 (13.09.2005)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): ARM
LIMITED [GB/GB]; 110 Fulbourn Road, Cherry Hinton,
Cambridge CB1 9NJ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GHOSH, Mrinmoy
[IN/GB]; 31 Speedwell Close, Cambridge CB1 9YS (GB).
OZER, Emre [TR/GB]; 43 Fulbourn Old Drift Road, Cam-
bridge CB1 9ND (GB). BILES, Stuard, David [GB/GB];

Green Ginger, Teh Green, Little Thurlow, Suffolk CB9 7JH
(GB).

(74) Agents: HORNER, David, Richard et al.; D Young &

Co, 12 Holborn, London ECIN 2DY (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: CACHE MISS DETECTION IN A DATA PROCESSING APPARATUS

10
’J
CPY
(ZJO 30-1 Context Bank 60 62 64
o U P |
witch fo
Switch APSR, | | R
o | Throag e | 4272 521 2 !
¥ 44 54 RFy
E Update PG Register, | { Register Result,
! PC TID| | Value TID
H N K]
5 Fefch Decode & Execution
' 70¢] Logic Issue Logic | -] Logic
: l
) 75 80
B R L S SREEEEEEEE ' Cach Data Data,
Instruction | { Instruction, :M?SCSQ Adar| |W Hit/
Addr | | HitMiss 1 Indication Miss
Level 1 E Level 1
] Instrugtion ' Data
90 Cache 100 95 Cache
. - CMIL - Line
Line| Line, L—f——l /{\.&f&e e
105 Addr THitiMiss Replacement, Linefill Info ' Miss
Level 2 Cache
DataAddr, | | Data,
113 DataReq| | Response
Memory

(57) Abstract: A data processing apparatus and method are pro-
vided for detecting cache misses. The data processing apparatus
has processing logic for executing a plurality of program threads,
and a cache for storing data values for access by the processing
logic. When access to a data value is required while executing
a first program thread, the processing logic issues an access re-
quest specifying an address in memory associated with that data
value, and the cache is responsive to the address to perform a
lookup procedure to determine whether the data value is stored
in the cache. Indication logic is provided which in response to
an address portion of the address provides an indication as to
whether the data value is stored in the cache, this indication be-
ing produced before a result of the lookup procedure is available,
and the indication logic only issuing an indication that the data
value is not stored in the cache if that indication is guaranteed to
be correct. Control logic is then provided which, if the indica-
tion indicates that the data value is not stored in the cache, uses
that indication to control a process having an effect on a program
thread other than the first program thread.

WO 2007/031696 A1 | DA 00 0 0000000 0 00

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, For two-letter codes and other abbreviations, refer to the "Guid-
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gagzette.

Published:

— with international search report

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

CACHE MISS DETECTION IN A DATA PROCESSING APPARATUS

FIELD OF THE INVENTION

The present invention relates to the use of cache miss detection techniques in a

data processing apparatus.
BACKGROUND OF THE INVENTION

A data processing apparatus will typically include processing logic for executing

sequences of instructions in order to perform processing operations on data items. The
instructions and data items required by the processing logic will generally be stored in
memory, and due to the long latency typically incurred when accessing memory, it is
known to provide one or more levels of cache within the data processing apparatus for
storing some of the instructions and data items required by the processing logic to allow a
quicker access to those instructions and data items. For the purposes of the following
description, the instructions and data items will collectively be referred to as data values,
and accordingly when referring to a cache storing data values, that cache may be storing
either instructions, data items to be processed by those instructions, or both instructions
and data items. Further, the term data value is used herein to refer to a single instruction
or data item, or alternatively to refer to a block of instructions or data items, as for
example is the case when referring to a linefill process to the cache.

Significant latencies can also be incurred when cache misses occur within a
cache. In the article entitled “Just Say No: Benefits of Early Cache Miss Determination”
by G Memik et al, Proceedings of the Ninth International Symposium on High
Performance Computer Architecture, 2003, a number of techniques are described for
reducing the data access times and power consumption in a data processing apparatus
with multi-level caches. In particular, the article describes a piece of logic called a
“Mostly No Machine” (MNM) which, using the information about blocks placed into and
replaced from caches, can quickly determine whether an access at any cache level will
result in a cache miss. The accesses that are identified to miss are then aborted at that
cache level. Since the MNM structures used to recognise misses are significantly smaller
than the cache structures, data access time and power consumption is reduced.

The article entitled “Bloom Filtering Cache Misses for Accurate Data Speculation
and Prefetching” by J Peir et al, Proceedings of the Sixteenth International Conference of

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

2

Supercomputing, Pages 189 to 198, 2002, describes a particular form of logic used to
detect whether an access to a cache will cause a cache miss to occur, this particular logic
being referred to as a Bloom filter. In particular, the paper uses a Bloom filter to identify
cache misses early in the pipeline of the processor. This early identification of cache
misses is then used to allow the processor to more accurately schedule instructions that
are dependent on load instructions that are identified as resulting in a cache miss, and to
more precisely prefetch data into the cache. Dependent instructions are those which
require as a source operand the data produced by the instruction from which they depend,
in this example the data being loaded by a load instruction.

The article entitled “Fetch Halting on Critical Load Misses” by N Mehta et al,
Proceedings of the 22nd International Conference on Computer Design, 2004, also makes
use of the Bloom filtering technique described in the above article by Peir et al. In
particular, this article describes an approach where software profiling is used to identify
instructions which are long latency instructions having many output dependencies, such
instructions being referred to as “critical” instructions. In particular, the software
profiling techniques are used to identify load instructions that will be critical instructions.
For any such load instructions, when those instructions are encountered in the processor
pipeline, the Bloom filter technique is used to detect whether the cache lookup based on
that load instruction will cause a cache miss to occur, and if so a fetch halting technique is
invoked. The fetch halting technique suspends instruction fetching during the period
when the processor is stalled by the critical load instruction, which allows a power saving
to be achieved in the issue logic of the processor. .

From the above discussion, it will be appreciated that indication logic has been
developed which can be used to provide an early indication of a cache miss when
accessing data, with that indication then being used to abort a cache access, and
optionally also to perform particular scheduling or power saving activities in situations
where there are dependent instructions, i.e. instructions that require the data being
accessed.

SUMMARY OF THE INVENTION

Viewed from a first aspect, the present invention provides a data processing

apparatus comprising: processing logic operable to execute a plurality of program

threads; a cache operable to store data values for access by the processing logic, the

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

processing logic being operable when access to a data value is required whilst executing a
first program thread to issue an access request specifying an address in memory
associated with that data value, and the cache being operable in response to the address to
perform a lookup procedure to determine whether the data value is stored in the cache;
indication logic operable in response to an address portion of the address to provide an
indication as to whether the data value is stored in the cache, said indication being
produced before a result of the lookup procedure is available, and the indication logic
being operable to only issue an indication that the data value is not stored in the cache if
that indication is guaranteed to be correct; and control logic operable, if the indication
indicates that the data value is not stored in the cache, to use said indication to control a
process having an effect on a program thread other than the first program thread.

In accordance with the present invention, indication logic is used to provide an
indication as to whether the data value is stored in the cache, with this indication being
produced before a result of the lookup procedure is available. Further, the indication
logic is of the type which will only issue an indication that the data value is not stored in
the cache if that indication is guaranteed to be correct. It should be noted that this does
not necessarily mean that the converse will always be correct. Hence, whilst if the
indication indicates that the data value is not stored in the cache, it will be the case that
the cache lookup would result in a cache miss, if instead the indication does not identify
that the data value is not stored in the cache, it does not necessarily mean that the data
value will be in the cache, and it is still the case that a cache miss may occur. Hence, the
indication can produce a safe indication for a cache miss, but will not necessarily produce
a safe indication for a cache hit. An example of a technique that can be used to
implement the indication logic is the earlier-mentioned Bloom filter technique.

The address portion used by the indication logic may be the entire address of the
access request or some subset of the address bits.

In accordance with the present invention, the processing logic is operable to
execute a plurality of program threads, and control logic is provided which, if the
indication produced by the indication logic for an access request of a first thread indicates
that the data value is not stored in the cache, uses that indication to control a process

having an effect on a program thread other than the first program thread.

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

4

Hence, in accordance with the present invention, the early indication of a cache
miss produced by the indication logic in relation to an access request of a particular
program thread can be used by the control logic to influence the handling of other
program threads, which can lead to significant performance improvements in such multi-
threaded systems.

In one embodiment, the data processing apparatus further comprises additional
control logic operable in response to said indication to control a process having an effect
on the first program thread. In one particular embodiment, this additional control logic is
lookup control logic operable in response to said indication to abort the lookup procedure
if the indication indica;ces that the data value is not stored in the cache. Hence, in such
embodiments, the data processing apparatus makes multiple uses of the indication
produced by the indication logic. In particular, the lookup control logic will abort the
lookup procedure if the indication indicates that the data value is not stored in the cache,
which can result in significant power savings due to the fact that the indication is
produced before the result of the lookup procedure is available. In some embodiments,
the indication will be produced before the lookup procedure has even been initiated,
whilst in other embodiments the cache may have received the access request and have
begun the lookup procedure, but power savings can still be achieved by abortion of the
lookup procedure prior to completion. In addition to this use of the indication, if the
indication indicates that the data value is not stored in the cache, the earlier-mentioned
control logic uses that indication to have an effect on a program thread other than the first
program thread. This two-fold approach/can produce both power savings and significant
performance improvements within the multi-threaded system.

The data processing apparatus can be arranged to handle the multiple program
threads in a variety of ways. In one embodiment, the control logic is operable, if the
indication indicates that the data value is not stored in the cache, to cause the processing
logic to perform a context switch operation in order to switch execution between the first
program thread and another program thread. In such embodiments, the early detection of
the cache miss when handling the access request of the current thread can be used to
invoke an early initiation of a context switch operation, thereby improving the
performance of the data processing apparatus by early switching to another program

thread in situations where the first program thread is going to incur a latency from the

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

detected cache miss. An example of a data processing apparatus where such an
implementation will produce significant performance benefits is in a coarse-grained
multi-threading apparatus (also known as “block multi-threading”), where the entirety of
the processing resources of the processing logic are switched to the other program thread
by the context switch operation.

In another embodiment, the processing logic comprises a number of shared
resources, each shared resource being allocatable to one of the program threads, and the
control logic is operable, if the indication indicates that the data value is not stored in the
cache, to cause the processing logic to perform a reallocation of at least one shared
resource. In such embodiments the shared resources can be shared amongst the program
threads, and the way in which these resources are allocated amongst the threads can be
varied. A processor operating in such a manner is often referred to as a simultaneous
multi-threading (SMT) processor. In accordance with this embodiment of the present
invention, the control logic is arranged, if the indication indicates that the data value is
not stored in the cache, to cause the processing logic to perform a reallocation of at least
one shared resource. Hence, if the indication logic determines for an access request of a
particular thread that a cache miss is going to occur, that information can be used by the
control logic to cause a reallocation of at least one of the shared resources, and hence for
example this can be used to fres-up that shared resource for use by one or more of the
other threads. Since the indication produced by the indication logic occurs before the
result of the lookup procedure is available, this reallocation of resources can occur at a
relatively early stage. This can lead to significant performance improvements through
improved resource utilisation.

In another embodiment, the processing logic comprises a plurality of processors
each sharing access to the cache, and each being operable when access to a data value is
required to issue an access request specifying an address in memory associated with that
data value; the plurality of program threads are distributed across the plurality of
processors; the indication logic is operable in response to at least some of the access
requests to provide said indication; and the control logic comprises arbitration logic
operable to perform an arbitration process to arbitrate access to the cache between the
plurality of processors, and being arranged to use the indications provided by the

indication logic when performing said arbitration process.

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

6

In accordance with this embodiment, a plurality of processors share access to the
cache and the plurality of program threads are distributed across the plurality of
processors. Hence, for example, certain program threads may be executed by one
processor, whilst other program threads are executed by another processor. Arbitration
logic is used to arbitrate access to the cache between the plurality of processors, and the
indications generated by the indication logic are routed to the arbitration logic for use
when performing the arbitration process. There are a number of ways in which these
indications could be used by the arbitration logic. However, as an example, an indication
that a particular access request will result in a cache miss in the cache can be used to
cause the arbitration logic to ignore that particular access request on the basis that it will
be aborted, or at the very least to reduce the priority associated with that access request.
As aresult, the input of the indications from the indication logic into the arbitration logic
can significantly reduce contention for access to the cache, and thereby increase the
available bandwidth for access to the cache.

In such embodiments, it will be appreciated that the cache can take a variety of
forms. For example, in one embodiment, the cache may be a multi-ported cache
consisting of multiple cache banks, and in such instances the arbitration logic can be
replicated for each cache bank.

In addition, whilst the indication logic may be a single piece of logic used to
provide an indication for access requests issued by any of the plurality of processors, in
alternative embodiments the indication logic comprises a plurality of indication units,
each indication unit being associated with one of said processors and being operable in
response to the address portion of an access request issued by the associated processor to
provide said indication as to whether the data value is stored in the cache; the control
logic being operable to use the indications provided by each of the indication units when
performing said arbitration process.

The indication logic can take a variety of forms. In one embodiment, the
indication logic comprises: counter logic having a plurality of counter entries, each
counter enfry containing a count value; vector logic having a vector entry for each
counter entry in the counter logic, each vector entry containing a value. which is set
when the count value in the corresponding counter entry changes from a zero value to a

non-zero value, and which is cleared when the count value in the corresponding counter

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

7

entry changes from a non-zero value to a zero value; index generation logic operable to
generate from an address portion of an address at least one index, each index identifying a
counter entry and associated vector entry; the index generation logic being operable
whenever a data value is stored in, or removed from, the cache to generate from the
address portion of the associated address said at least one index, and to cause the count
value in each identified counter entry to be incremented if the data value is being stored
in the cache or decremented if the data value is being removed from the cache; the index
generation logic further being operable for at least some access requests to generate
from the address portion of the associated address said at least one index, and to cause the
vector logic to generate an output signal based on the value in each identified vector
entry, the output signal indicating if the data value of the access request is not stored in
the cache.

The actual incrementing or decrementing of the relevant count value(s) can take
place at a variety of times during the storage or removal process. For example, the
relevant count value(s) can be incremented at the time of allocating a data value to the
cache or at some time later when the actual data value is stored as a result of the linefill
procedure. Similarly, the relevant count value(s) can be decremented at the time when a
data value has been chosen for eviction or at some time later when the data value is
overwritten as a part of the linefill process following the eviction.

In accordance with this embodiment, separate counter logic and vector logic are
provided within the indication logic, the counter logic being updated based on data values
being stored in, or removed from, the cache. In particular, index generation logic
generates from an address portion of an address at least one index, with each index
identifying a counter entry. The count values in those counter entries are then
incremented if data is being stored in the cache or decremented if data is being removed
from the cache. The corresponding vector entries in the vector logic can then be queried
for access requests using that address portion, in order to generate an output signal which
indicates if the data value of the access request is not stored in the cache.

In one embodiment, each index is generated from the address portion using a hash
function, and in some embodiments multiple hash functions can be used to generate

multiple indexes from a single address portion. However, in one embodiment, a single

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

hash function is used, resulting in the generation of a single index for each address
portion.

In one embodiment, a memory hierarchy exists within the data processing
apparatus having a number of memory levels, the cache being provided at one of said
memory levels, and when processing access requests memory levels higher in the
hierarchy being accessed before memory levels lower in the hierarchy; and whilst the
vector logic and the counter logic are both associated with the cache, the vector logic is
accessible separately to the counter logic and from a different level in the memory
hierarchy to that memory level from which the counter logic is accessible. Through
such an approach the vector logic can be located within a different part of the data
processing apparatus to that in which the counter logic is located. Whilst in one
embodiment the index generation logic can be shared between the counter logic and the
vector logic, in an alternative embodiment the index generation logic is replicated for
both the counter logic and the vector logic, which assists in facilitating the placement of
the vector logic at a different location within the data processing apparatus to that in
which the counter logic is located.

It should be noted that to generate the output signal indicating if the data value of
an access request is not stored in the cache, only the vector logic needs to be accessed.
The vector logic is typically significantly smaller than the counter logic, and hence by
arranging for the vector logic to be accessible separately to the counter logic and from a
different level in the memory hierarchy, this enables the output signal to be generated
relatively quickly, and with relatively low power. Furthermore, it is typically the case
that the counter logic will be updated more frequently than the vector logic, since a vector
entry in the vector logic only needs updating when the count value in the corresponding

counter entry changes from a zero value to a non-zero value, or from a non-zero value to

~azero value. Hence, by enabling the vector logic to be accessed separately to the counter

logic and from a different level in the memory hierarchy, this enables the counter logic to
be run at a lower frequency than that at which the vector logic is run, thus producing
power savings. Running of the counter logic at a lower frequency is acceptable since the
operation of the counter logic is not time critical.

Viewed from a second aspect, the present invention provides a data processing

apparatus comprising: processing logic; a cache operable to store data values for access

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

by the processing logic, the processing logic being operable when access to a data valuq
is required to issue an access request specifying an address in memory associated with
that data value, and the cache being operable in response to the address to perform a
lookup procedure to determine whether the data value is stored in the cache; counter logic
having a plurality of counter entries, each counter entry containing a count value; vector
logic having a vector entry for each counter entry in the counter logic, each vector entry
containing a value which is set when the count value in the corresponding counter entry
changes from a zero value to a non-zero value, and which is cleared when the count value
in the corresponding counter entry changes from a non-zero value to a zero value; index
generation logic operable to generate from an address portion of an address at least one
index, each index identifying a counter entry and associated vector entry; the index
generation logic being operable whenever a data value is stored in, or removed from, the
cache to generate from the address portion of the associated address said at least one
index, and to cause the count value in each identified counter entry to be incremented if
the data value is being stored in the cache or decremented if the data value is being
removed from the cache; the index generation logic further being operable for at least
some access requests to generate from the address portion of the associated address said
at least one index, and to cause the vector logic to generate an output signal based on the
value in each identified vector entry, the output signal indicating if the data value of the
access request is not stored in the cache; wherein a memory hierarchy exists within the
data processing apparatus having a number of memory levels, the cache being provided at
one of said memory levels, and when processing access requests memory levels higher in
the hierarchy being accessed before memory levels lower in the hierarchy; and whilst the
vector logic and the counter logic are both associated with the cache, the vector logic is
accessible separately to the counter logic and from a different level in the memory
hierarchy to that memory level from which the counter logic is accessible.

In accordance with this aspect of the present invention, a novel form of
indication logic is provided consisting of counter logic, vector logic and index
generation logic. The vector logic is accessible separately to the counter logic and
from a different level in the memory hierarchy, and when generating an output signal
indicating if the data value of the access request is not stored in the cache, only the

vector logic needs to be accessed. As mentioned earlier, the output signal from the

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

10

vector logic can hence be generated quickly and with low power, and the counter logic
can be run at a lower frequency than the vector logic, thereby producing power
savings. Running of the counter logic at a lower frequency is acceptable since the
operation of the counter logic is not time critical.

By such an approach, the indication logic can implement the functionality of a
bloom filter type technique, by producing a safe indication of a cache miss, but in a
more power efficient and flexible manner. In addition to the power and speed savings
mentioned above, the provision of the vector logic separately to the counter logic
enables the vector logic to be located in a different part of the data processing
apparatus to the counter logic, which can give rise to a number of benefits as will be
discussed later.

In one embodiment the index generation logic comprises first index generation
logic associated with the counter logic and second index generation logic associated with
the vector logic; whenever a data value is stored in, or removed from, the cache the first
index generation logic being operable to generate from the address portion of the
associated address said at least one index identifying one or more counter entries in the
counter logic; and for at least some access requests the second index generation logic
being operable to generate from the address portion of the associated address said at
least one index identifying one or more vector entries in the vector logic.

The use of separate index generation logic for the counter logic and for the
vector logic provides increased flexibility in the separation of the counter logic and the
vector logic.

In one embodiment, the data processing apparatus further comprises lookup
control logic operable in response to said output signal from the vector logic to abort
the lookup procedure if the output signal indicates that the data value is not stored in
the cache. Preferably, the vector logic can be accessed such that the output signal is
produced before the result of the lookup procedure is available, and hence abortion of
the lookup procedure if the output signal indicates that the data value is not stored in
the cache can result in significant power savings.

The output signal generated by the vector logic can be used in a variety of
ways. However, in one embodiment, the processing logic is operable to execute a

sequence of instructions in order; and if the output signal from the vector logic

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

11

indicates that the data value is not stored in the cache, the processing logic is operable
to perform an energy management process to reduce energy consumption of the
processing logic whilst waiting for the data value to be accessed. Since in such
embodiments the instructions are executed in order, then a cache miss is likely to stall
the processing logic for a significant period of time, and by accessing the vector logic
a fast and efficient indication of a cache miss can be obtained which enables an early
invocation of the energy management process to reduce energy consumption within
the processing logic. The energy management process may involve a number of
different measures being put in place, and hence for example may involve running the
processing logic at a lower processing speed, or fully or partially shutting down
elements of the processing logic until such time as the data value has been accessed.

In one embodiment, the data processing apparatus further comprises: an
additional cache, if on issuance of the access request by the processing logic a lookup
is performed in the additional cache resulting in a miss in the additional cache, the
cache being operable to perform said lookup procedure; and if the output signal from
the vector logic indicates that the data value is not stored in the cache, at least one of
the cache and additional cache being operable to perform an energy management
process to reduce energy consumption whilst waiting for the data value to be accessed.
Hence, in such embodiments the energy consumption in one or both of the cache and
the additional cache can be reduced dependent on the output signal produced by the
vector logic. Given the provision of the vector logic separately to the counter logic,
the output signal can be generated in a particularly quick and efficient manner, hence
enabling the power savings achieved by such an early invocation of the energy
management process to be significant. The energy management process applied to the
cache(s) can take a variety of forms. However, as an example, the caches can be put in
a “drowsy” mode of operation, where the state of the cache, and hence the data stored
therein, is retained, but the caches are not accessible whilst in the drowsy mode. This
can for example be achieved by reducing the voltage supplied to the caches. To access
the cache again, it will typically be necessary to exit the drowsy mode first.

In one embodiment employing an additional cache, the cache and additional
cache exhibit inclusive behaviour, and if the output signal from the vector logic

indicates that the data value is not stored in the cache the lookup in the additional

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

12

cache is aborted. Hence, in such embodiments, the cache and additional cache exhibit
inclusive behaviour, and hence any data stored in the additional cache will be
replicated in the cache. Accordingly, an indication of a miss in the cache will also
indicate that a miss will occur in the additional cache. By provision of vector logic
separate to the counter logic it is possible to produce the output signal from the vector
logic at an early enough stage to enable the cache lookup in the additional cache to be
aborted, in addition to any abortion of the lookup in the cache. Hence, significant
energy savings can be realised by avoiding lookups in multiple caches. It will be
appreciated that this approach can be used when there are more than two levels of
cache in the system assuming inclusive behaviour is exhibited between the caches,
thereby potentially enabling multiple cache lookups to be aborted, resulting in
significant power savings.

In one embodiment, the vector logic is accessible prior to the access request
being processed by the memory level in which the cache is provided. Due to the
provision of the separate vector logic and counter logic, it is possible in such
embodiments to locate the vector logic so that it is accessible before the access request
is processed by the memory level in which the cache is provided. This allows a
particularly early generation of the output signal and hence enables any actions taken
in dependence on that output signal to be initiated at a particularly early stage, thereby
increasing the benefits to be realised in terms of power saving, performance
improvement, etc.

In one embodiment, the data processing apparatus further comprises an
additional cache at a higher memory level than said cache, if on issuance of the access
request by the processing logic a lookup is performed in the additional cache resulting in
a miss in the additional cache, said cache being operable to perform said lookup
procedure; and the vector logic being accessed in response to a cache miss signal
issued by the additional cache in the event of a cache miss in the additional cache,
thereby causing the vector logic to generate said output signal. Hence, in such
embodiments the cache miss signal issued by the additional cache is used to trigger the
vector logic to generate the output signal. This can enable the subsequent access to the

cache to be aborted at an early stage, and can also in some embodiments enable power

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

13

management processes to be instigated within the processing logic and the various
levels of cache earlier than would otherwise be possible.

In one embodiment having an additional cache at a higher memory level than
said cache, said cache and said additional cache exhibit inclusive behaviour, and the
vector logic is located within the processing logic and is accessed for every access
request, thereby causing the vector logic to generate said output signal. Hence, for
embodiments where the caches exhibit inclusive behaviour, the locating of the vector
logic within the processing logic enables the output signal to be generated for every
access request prior to that access request being issued to the caches within the
memory hierarchy. Hence, this enables the cache lookups within those caches to be
avoided in situations where the output signal indicates that there will be a cache miss
in the cache.

In one embodiment, the processing logic comprises a plurality of processors,
each processor being operable when access to a data value is required to issue an access
request specifying an address in memory associated with that data value; the cache
comprises a plurality of cache portions, each cache portion associated with one of said
processors, and each cache portion being accessible by said plurality of processors;
separate counter logic, vector logic and index generation logic being provided in
association with each cache portion; the vector logic associated with at least one cache
portion being accessed for access requests issued by a processor with which the at least
one cache portion is not associated.

In such embodiments, the cache comprises of plurality of cache portions and
separate counter logic, vector logic and index generation logic is provided in
association with each cache portion. The cache portions may be separate cache banks
within a cache, or instead may be physically separate. In accordance with this
embodiment, the vector logic associated with at least one cache portion is arranged so
that it can be accessed for access requests issued by a processor with which the at least
one cache portion is not associated. Hence, this processor can get an early indication
of a cache miss with a single and fast access to the relevant vector logic. Since in this
embodiment each processor can access the cache portions associated with other
processors, there is likely to be a significant contention for access to the cache

portions, and by adopting the above technique, the number of access requests being

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

14

propagated to the cache can be reduced, thereby reducing such contention.

The way in which the vector logic is arranged to be accessible by multiple
processors can be implemented in a variety of ways. However, in one embodiment the
vector logic is replicated for each processor. This will result in each processor having
accessing to multiple instances of vector logic, and in such cases these multiple
instances of the vector can be accessed simultaneously using the same index
generation logic. Hence, with a single access using a single index generation logic, the
processing logic will know which cache portions, including the cache portion
associated with it, will result in a cache miss, and this information can be used to
reduce the number of access to the cache portions.

In one embodiment the cache has a plurality of potential locations where the
data value the subject of the access request may reside, when performing the lookup
procedure the cache being operable to perform a sequence of lookups, each lookup
relating to a subset of said potential locations; and if the output signal from the vector
logic indicates that the data value is not in the cache, the sequence of lookups being
terminated.

There are many examples of caches where a sequence of lookups needs to be
performed in order to look in each of the potential locations where the data value may
reside. For example, in a high way set associative cache, the cache may be unable to
look in all ways in the same cycle, and accordingly will need to perform a sequence of
lookups in order to determine whether the data value is in the cache. By using the
vector logic of embodiments of thé present invention, the early indication produced by
the vector logic can be used to terminate the sequence of lookups if the output signal
indicates the data value is not in the cache, i.e. is not in any of the potential locations.
This can result in a saving of much of the cache energy that would otherwise be
consumed in performing the sequence of lookups. As another example, caches that are
accessed using virtual addresses (often referred to as virtual caches) may require a
sequence of lookups to take place in order to perform a lookup in each of the potential
locations where the data value may reside. This results from the possibility of multiple
virtual addresses mapping to the same physical address, often referred to as the
synonym problem. Again, the early indication from the output signal can be used to

terminate the sequence of lookups early if it is determined that the data value is not in

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

15

the cache.

Viewed from a third aspect, the present invention provides a method of
operating a data processing apparatus having processing logic for executing a plurality of
program threads, and a cache for storing data values for access by the processing logic,
the method comprising the steps of: when access to a data value is required whilst the
processing logic is executing a first program thread, issuing an access request specifying
an address in memory associated with that data value; in response to the address,
performing a lookup procedure in the cache to determine whether the data value is stored
in the cache; in response to an address portion of the address, employing indication logic
to provide an indication as to whether the data value is stored in the cache, said indication
being produced before a result of the lookup procedure is available, and the indication
logic only issuing an indication that the data value is not stored in the cache if that
indication is guaranteed to be correct; and if the indication indicates that the data value is
not stored in the cache, using said indication to control a process having an effect on a
program thread other than the first program thread.

Viewed from a fourth aspect, the present invention provides a method of
operating a data processing apparatus, the data processing apparatus comprising
processing logic, a cache for storing data values for access by the processing logic,
counter logic associated with the cache and having a plurality of counter entries, each
counter entry containing a count value, and vector logic associated with the cache and
having a vector entry for each counter entry in the counter logic, each vector entry
containing a value which is set when the count value in the corresponding counter entry
changes from a zero value to a non-zero vélue, and which is cleared when the count value
in the corresponding counter entry changes from a non-zero value to a zero value, the
method comprising the steps of: when access to a data value is required by the processing
logic, issuing an access request specifying an address in memory associated with that data
value; in response to the address, performing a lookup procedure in the cache to
determine whether the data value is stored in the cache; whenever a data value is stored
in, or removed from, the cache, generating from the address portion of the associated
address at least one index, each index identifying a counter entry, and causing the count
value in each identified counter entry to be incremented if the data value is being stored

in the cache or decremented if the data value is being removed from the cache; for at

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

16

least some access requests, generating from the address portion of the associated address
at least one index, each index identifying a vector entry, and causing the vector logic to
generate an output signal based on the value in each identified vector entry, the output
signal indicating if the data value of the access request is not stored in the cache; wherein
a memory hierarchy exists within the data processing apparatus having a number of
memory levels, the cache being provided at one of said memory levels, and when
processing access requests memory levels higher in the hierarchy being accessed before
memory levels lower in the hierarchy; and said method further comprising the step of
accessing the vector logic separately to the counter logic and from a different level in
the memory hierarchy to that memory level from which the counter logic is accessible.
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described further, by way of example only, with

reference to embodiments thereof as illustrated in the accompanying drawings, in which:

Figure 1 is a block diagram illustrating application of an early miss indication
technique in a coarse grained multithreaded processor in accordance with one
embodiment;

Figure 2 is a block diagram illustrating application of the early cache miss
indication technique in a simultaneous multi-threaded processor of one embodiment;

Figure 3 is a block diagram illustrating application of the early cache miss
indication technique in a chip multi-processor of one embodiment;

Figure 4 is a block diagram schematically illustrating the use of a segmented
counting bloom filter in a data processing apparatus in accordance with one embodiment;

Figure 5 is a diagram schematically illustrating in more detail the segmented
counting bloom filter of Figure 4;

Figure 6 is a block diagram illustrating in more detail the data processing
apparatus of Figure 4 in accordance with one embodiment;

Figure 7 is a block diagram illustrating in more detail the data processing
apparatus of Figure 4 in accordance with an alternative embodiment;

Figure 8 is a diagram schematically illustrating the operation of the hash function

illustrated in Figure 5 in accordance with one embodiment;

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

17

Figure 9 is a diagram schematically illustrating the application of the segmented
bloom filter of one embodiment in association with a virtually indexed physically tagged
cache;

Figure 10 is a diagram schematically illustrating the application of the segmented
bloom filter of one embodiment in association with a virtually indexed virtually tagged
cache;

Figure 11 is a block diagram illustrating a cross-firing technique used with a
segmented bloom filter in accordance with one embodiment; and

Figure 12 is a diagram schematically illustrating the cross-firing technique
employed in a further embodiment.

DESCRIPTION OF EMBODIMENTS

Figure 1 is a block diagram of a data processing apparatus in accordance with one

embodiment. In particular Figure 1 illustrates a coarse grained multi-threaded processor
10 which includes a processing pipeline consisting of fetch logic 70, decode and issue
logic 75 and execution logic 80. At any point in time, this processing pipeline is used to
execute a particular program thread. A context bank 30 is provided for maintaining the
context for a number of different program threads, and for the particular program thread
being handled by the processing pipeline, the various elements of the processing pipeline
can obtain the relevant information pertaining to that thread from the context bank 30.
Hence, the context bank 30 will include multiple program counter values 40, 42, 44 for
the various program threads, multiple program status registers 50, 52, 54 for the various
program threads, and multiple register banks 60, 62, 64 for storing the data required when
executing instructions of the various program threads.

The fetch logic 70 can then access the relevant program counter value 40, 42, 44
for the particular program thread being executed, and can issue updated program counter
values back to the context bank 30. Similarly, the decode and issue logic 75 can output to
the context bank 30 a source register identifier and a thread identifier (TID), to cause the
required register in one of the register banks 60, 62, 64 to be accessed and for the value in
that register to be returned to the decode and issue logic for routing to the execution logic
80. The result value produced by the execution logic can then be routed back to the
context bank 30 along with the relevant TID to cause the data value to be stored in the
relevant register of the appropriate register bank 60, 62, 64.

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

18

The CPU 10 also includes thread switch logic 20 which is used to determine
which thread should execute and to cause the appropriate context switch to occur when
switching between program threads.

When the fetch logic 70 wishes to retrieve an instruction, it issues an access
request identifying an instruction address to the level 1 instruction cache 90. If the
instruction is found in that cache, then this is returned to the fetch logic, along with a
control signal indicating that there has been a hit. However, if the instruction is not in
the cache, then a miss signal is returned to the fetch logic, and the appropriate address for
a linefill to the level 1 instruction cache 90 is output to the level 2 cache 105. If there is a
hit in the level 2 cache, then the relevant line of instructions is returned to the level 1
instruction cache 90 along with a control signal indicating a hit in the level 2 cache.
However, if there is a miss in the level 2 cache, then a miss signal is returned to the level
one instruction cache 90, and the line address is propagated from the level 2 cache 105 to
memory 110. This will ultimately result in the line of instructions being returned to the
level 2 cache and propagated on to the fetch logic 70 via the level 1 instruction cache 90.

Similarly, when the execution logic 80 executes a load or a store instruction,
the address of the data to be accessed will be output from the execution logic to the
level 1 data cache 95. In the event of a store operation, this will also be accompanied
by the write data to be stored to memory. The level 1 data cache 95 will issue a
hit/miss control signal to the execution logic 80 indicating whether a cache hit or a
cache miss has occurred in the level 1 data cache, and in the event of a load operation
which has hit in the cache will also return the data to the execution logic 80. In the
event of a cache miss in the level 1 data cache, the line address will be propagated onto
the level 2 cache 105, and in the event of a hit the line of data values will be accessed
in the level 2 cache. For a load this will cause the line of data values to be returned to
the level 1 data cache 95 for storing therein. In the event of a miss in the level 2 cache
105, the line address will be propagated onto memory 110 to cause the line of data to
be accessed in the memory. |

In accordance with the embodiment described in Figure 1, cache miss
indication logic 100 is provided which receives any line addresses output by either the
instruction cache 90 or the data cache 95, and in response to that line address

information determines whether a miss in the level 2 cache 105 will occur. The

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

19

indication produced by the cache miss indication logic 100 will be produced before the
result of the lookup procedure in the level 2 cache 105 is available, and that cache miss
indication will be routed to the thread switch logic 20 within the CPU 10. If the cache
miss indication indicates that a miss will occur in the level 2 cache 105 then the thread
switch logic 20 is arranged to perform a context switch operation in order to switch
execution between the current program thread and another program thread. As a
result, it will issue a control signal to the context bank 30 to cause the context of the
current thread to be saved, after which the pipeline processing logic will start
executing the designated new thread.

The early cache miss indication produced by the cache miss indication logic
100 can hence be useful in starting the process of a context switch earlier than may
otherwise be possible, thereby improving the performance of the processor by starting
the next thread earlier.

The cache miss indication logic 100 can take a variety of forms, but is arranged
to provide a safe indication of a cache miss. Accordingly, if the cache miss indication
indicates that there will be a cache miss in the level 2 cache, then this is guaranteed to
be correct, as opposed to being a mere prediction. However, in one embodiment, if the
cache miss indication is unable to determine that there will be a cache miss, this does
not necessarily mean that there will not be a cache miss, and accordingly the cache
miss indication logic does not provide a safe indication of a cache hit.

In one embodiment, the cache miss indication logic 100 uses a bloom filter
technique and maintains information which is updated each time a data value is stored
in, or removed from, the level 2 cache 105, based on replacement and linefill
information routed to the cache miss indication logic 100 from the level 2 cache 105.
More details of one particular embodiment of the cache miss indication logic 100 will
be discussed in detail later.

Whilst the cache miss indication logic 100 has been shown in Figure 1 as being
accessed based on the line addresses issued by the level 1 instruction cache 90 or data
cache 95, it could instead be located so as to be accessed based on the instruction
address issued by the fetch logic 70 and/or the data address issued by the execution
logic 80. This may for example be an appropriate location if the level 1 and level 2

caches employ inclusive behaviour, such that an indication of a miss in the level 2

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

20

cache will also indicate a miss in the level 1 cache. In such instances, the cache miss
indication produced by the cache miss indication logic 100 can produce an earlier
indication for routing to the thread switch logic 20.

Figure 2 is a block diagram of a data processing apparatus in accordance with
an alternative embodiment of the present invention, where the CPU 200 takes the form
of a simultaneous multi-threaded (SMT) processor. The core 200 consists of fetch,
decode and rename logic 205, an issue queue 210, issue logic 220, execution logic
225, and retire logic 230. A number of these logic blocks have resources that are
shared by multiple program threads. Examples of such shared resources are the fetch
queue in the fetch, decode and rename logic 205, the issue queue 210 and a shared
register file within the retire logic 230. For simplicity, figure 2 only illustrates the
sharing of the issue queue 210 in detail for a two-way SMT processor.

As illustrated in Figure 2, the issue queue 210 has a partition 215 to divide
entries of two threads for the two-way SMT. For an n-way SMT, the issue queue 210
would have n-1 partitions. The arrows illustrated next to the partition 215 in Figure 2
illustrate that the location of the partition 215 can be varied. In particular, the partition
can be moved in either direction to increase or decrease entries allocated to each
thread.

The instruction cache 90, data cache 95, level 2 cache 105, memory 110 and
cache miss indication logic 100 operate in an analogous manner to that described
earlier with reference to Figure 1. However, in the example of Figure 2, the cache
miss indication from tfle cache miss indication logic 100 is routed to the fetch, decode
and rename logic 205, the issue queue 210 and the retire logic 230 to control
reallocation of the shared resources therein. In particular, if for a particular thread a
cache miss indication is produced indicating that an access request of that thread will
cause a cache miss in the level 2 cache 105, that indication can be used by these
various logic elements to control repartitioning of the shared resources. Considering
by way of example the issue queue 210, if the cache miss indication from the cache
miss indication logic 100 indicates that an access for thread 0 is going to result in a
level 2 cache miss 105, the issue queue 210 may use this information to slide the

partition 215 so as to allocate more of the shared resource to thread 1. Similar

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

21

processes can also take place within the fetch, decode and rename logic 205 in relation
to the fetch queue, and within the retire logic 230 in relation to the shared register file.

Whilst the cache miss indication logic 100 has been illustrated in Figure 2 as
being responsive to the line address outputs from the level 1 instruction cache 90 and
data cache 95, in an alternative embodiment the cache miss indication logic 100 may
be located between the CPU 200 and the level 1 caches, and accessed based on the
instruction address issued by the fetch, decode and rename logic 205 or the data
address issued by the execution logic 225.

For either placéinent of the cache miss indication logic 100, the early cache
miss indication produced by the cache miss indication logic 100 can be used to cause
an early re-allocation of shared resources, thereby helping in freeing-up resources for
use by other threads. This can lead to significant performance improvements within
the SMT system.

Whilst not explicitly shown in Figure 1 or Figure 2, the cache miss indication
produced by the cache miss indication logic 100 can also be routed to the level 2 cache
to cause the associated access request to be aborted within the level 2 cache if the
cache miss indication indicates that a cache miss will occur.

Figure 3 is a block diagram of an alternative embodiment of the present
invention where the data processing apparatus has multiple processor cores 300, 310,
each having their own level 1 caches 305, 315, respectively, but each sharing access to
a level 2 cache. Such a system will be referred to herein as a chip multi-processor
(CMP) system. Whilst only two cores 300, 310 are shown in Figure 3, the techniques
illustrated can be used for a CMP system having any number of cores.

As shown in Figure 3, each core 300, 310 has an associated level 1 cache 305,
315 and in the event of a miss in the level 1 cache, an access request is propagated
onto the level 2 cache via the arbiter logic 320. The job of the arbiter logic 320 is to
arbitrate between multiple access requests seeking access to the level 2 cache.

For the purposes of illustration, the level 2 cache is shown as a multi-ported
cache having multiple cache banks 350, 352, 354, 356, each cache bank having its
associated tag portion and data portion. Within the arbiter logic 320, separate
arbitration logic 340, 342, 344, 346 is provided for each cache bank. Routing logic

330, 335 within the arbiter 320 is arranged based on the received access requests to

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

22

route those access requests to the appropriate arbitration logic 340, 342, 344, 346,
dependent on which cache bank 350, 352, 354, 356 is to be accessed.

Cache miss indication logic 325 is provided within the arbiter logic 320 which,
based on the address information associated with each access request routed to the
arbiter 320, determines if a cache miss in the level 2 cache will occur, and outputs that
cache miss indication to one or more of the arbitration logic units 340, 342, 344, 346.
Each arbitration logic then takes that cache miss indication information into account
when arbitrating access to the associated cache bank.

Hence, by way of example, if the arbitration logic 340 is seeking to arbitrate
between an access request issued by the core 300 and an access request issued by the
core 310, and the cache miss indication logic 325 indicates that the access request from
the core 300 will result in a cache miss in the level 2 cache bank 350, then the
arbitration logic 340 will be arranged to grant access to the cache bank 350 to the
access request issued by the core 310. This can be achieved in a variety of ways. For
example, the arbitration logic 340 may be arranged to merely ignore the access request
issued by the core 300.

As shown in Figure 3, the cache miss indication logic 325 receives from the
level 2 cache the replacement and linefill information used to maintain the necessary
information within the cache miss indication logic required to produce the cache miss
indication.

Whilst in Figure 3 the cache miss indication logic 325 is shown residing within
the arbiter 320, in an alternative embodiment separate cache miss indication logic can
be provided in association with each core 300, 310, and in particular can be arranged
to review any access requests output to the arbiter 320 from the associated core in
order to produce the corresponding cache miss indication. The cache miss indications
output by each cache miss indication logic can then be routed to the relevant
arbitration logic units 340, 342, 344, 346 within the arbiter 320.

The use of the cache miss indication logic 325 as shown in Figure 3 can
significantly reduce the number of accesses to the level 2 cache, and for a particular
modelled example has been shown to reduce the accesses by about 30%. Hence, it can
be seen that such an approach reduces contention for the level 2 cache, and as a result

can increase the available bandwidth for accessing the level 2 cache.

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

23

The cache miss indication logic 100, 325 shown in Figures 1, 2 and 3 can be
implemented in a variety of ways, but its main purpose is to produce the indication
before a result of the lookup procedure in the level 2 cache is available, and
furthermore the indication logic will only issue an indication that the data value is not
stored in the cache if that indication is guaranteed to be correct, i.e. an indication of a
cache miss is a safe indication, rather than merely a prediction. In one particular
embodiment, the cache miss indication logic uses a Bloom filter technique.

Bloom Filters were named after Burton Bloom for his seminal paper entitled
“Space/time trade-offs in hash coding with allowable errors”, Communications of the
ACM, Volume 13, Issue 4, July 1970. The purpose was to build memory efficient
database applications. Bloom filters have found numerous uses in networking and
database applications in the following articles:

A. Border and M. Mitzenmacher, “Network application of Bloom Filters: A
Survey”, in-40th Annual Allerton Conference on Communication, Control, and
Computing, 2002;

S. Rhea and J. Kubiatowicz, "Probabilistic Location and Routing", IEEE
INFOCOM'02, June 2002;

S. Dharmapurikar, P. Krishnamurthy, T. Sproull and J. Lockwood, “Deep
Packet Inspection using Parallel Bloom Filters”, IEEE Hot Interconnects 12, Stanford,
CA, August 2003;

A. Kumar, J. Xu, J. Wang, O. Spatschek, L. Li, “Space-Code Bloom Filter for
Efficient Per-Flow Traffic Meaéurement”, Proc. IEEE INFOCOM, 2004;

F. Chang, W. Feng and K. Li, “Approximate Caches for Packet Classification”,
IEEE INFOCOM'04, Mar. 2004; “

S. Cohen and Y. Matias, “Spectral Bloom Filters”, Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, 2003; and

L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable wide-
area Web cache sharing protocol,” IEEE/ACM Transactions on Networking, vol. 8,
no. 3, pp. 281-293, 2000.

For a generic Bloom filter, a given address portion in N bits is hashed into % hash
values using k different random hash functions. The output of each hash function is an

m-bit index value that addresses a Bloom filter bit vector of 2™. Here, m is typically

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

24

much smaller than N. Each element of the Bloom filter bit vector contains only 1 bit
that can be set. Initially, the Bloom filter bit vector is zero. Whenever an N-bit
address is observed, it is hashed to the bit vector and the bit value hashed by each m-
bit index is set.

When a query is to be made whether a given N-bit address has been observed
before, the N-bit address is hashed using the same hash functions and the bit values are
read from the locations indexed by the m-bit hash values. If at least one of the bit
values is 0, this means that this address has definitely not been observed before. If all
of the bit values are 1, then the address may have been observed but this cannot be
guaranteed. The latter case is also called a false hit.

As the number of hash functions increases, the Bloom filter bit vector is
polluted much faster. On the other hand, the probability of finding a zero during a
query increases if more hash functions are used.

Recently, Bloom filters have been used in the field of computer micro-
architecture. Sethumadhvan et al in the article “Scalable Hardware Memory
Disambiguation for High ILP Processors”, Proceedings of the 36th International
Symposium for Microarchitecture pp.399-410, 2003, uses Bloom Filters for memory
disambiguation to improve the scalability for load store queues. Roth in the article
“Store Vulnerability Window (SVW): Re-Execution Filtering for Enhanced Load
Optimization”, Proceedings of the 32" International Symposium on Computer
Architecture (ISCA-05), June 2005, uses a Bloom filter to reduce the number of load
re-executions for load/store queue optimizations. Akkary et al in the article
“Checkpoint Processing and Recovery: Towards Scalable Large Instruction Window
Processors”, Proceedings of the 36th International Symposium for Microarchitecture,
Dec., 2003, also uses a Bloom filter to detect the load-store conflicts in the store
queue. Moshovos et al in the article “JETTY: Snoop filtering for reduced power in
SMP servers”, Proceedings of International Symposium on High Performance
Computer Architecture (HPCA-7), Jan 2001, uses a Bloom filter to filter out cache
coherence requests or snoops in SMP systems.

In the embodiments described herein the Bloom filter technique is employed for
the purpose of detecting cache misses. In one particular embodiment, a counting

Bloom filter technique is used. The counting Bloom Filter has one counter

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

25

corresponding to each bit in the bit vector of a normal Bloom Filter. The counting
Bloom Filter can be arranged to track addresses entering and leaving a cache.
Whenever there is a line fill in the cache, the counters corresponding to the hashes for
the address are incremented. In the case of a cache replacement, the corresponding
counters are decremented. If the counter is zero, the address has never been seen
before. If the counter is greater than one, the address may have been encountered.

In one particular embodiment, a segmented counting Bloom filter design is used.
In accordance with this novel segmented approach, the cache miss indication logic has
counter logic and separate vector logic as illustrated schematically in Figure 5. The
counter logic 510 has a plurality of counter entries, with each counter entry containing
a count value, and the vector logic 520 has a vector entry for each counter entry in the
counter logic 510, each vector entry containing a value (preferably a single bit) which
is set when the count value in the corresponding counter entry changes from a zero
value to a non-zero value, and which is cleared when the count value in the
corresponding counter entry changes from a non-zero value to a zero value.

Whenever a data value is stored in, or removed from, the cache, a portion of the
associated address is provided to the hash function 500 which generates an m-bit index
identifying a particular counter in the counter logic 510. This counter value is then
incremented if a data value is being stored in the cache, or is decremented if a data
value is being removed from the cache. For certain access requests, the cache miss
indication logic can then be accessed by issuing the relevant address portion to the
hash function 530 to cause an index to be generated identifying a particular vector
entry in the vector logic 520. If the value in that vector entry is not set, then this
indicates that the data value is not present in the cache, and accordingly a cache miss
indication can be generated indicating that the data value is not stored in the cache. If
in contrast the vector entry is set, then the data value may or may not be in the cache.

Multiple hash functions can be provided so as to cause multiple counter entries
or multiple vector entries to be accessed dependent on each address. However, in one
embodiment, only a single hash function is used to form the index generation logic
used to generate the index into the either the counter logic or the vector logic, but this
index generation logic is replicated separately for the counter logic and the vector

Jogic, thereby facilitating placement of the vector logic in a part of the apparatus

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

26

separate to the counter logic. It has been found that having one hash function produces
false hit rates (i.e. indications which are inconclusive) similar to the rates achieved
when having more than one hash function. The number of bits “L” provided for each
counter in the counter logic depends on the hash functions chosen. In the worst case,
if all cache lines map to the same counter, the bit-width of the counter must be at most
log,(# of cache lines). One form of hash function that can be used in one embodiment
involves bitwise XORing of adjacent bits. A schematic of this hash function which
converts a 32 bit address to a m bit hash is shown in Figure 8.

As shown in Figure 8, each pair of m bits in the address is passed through an
XOR function 610, 620, 630 so as to ultimately reduce the address 600 to a single m-
bit index 640.

Another simplistic hash function that may be chosen uses the lower log,(N) bits
of the block address (N is the size of the bloom filter). It can be proven with this hash
function that the number of bits per counter is equal to logx(Associativity of cache).
Other simple hash functions could be chosen, such as Hash = Addr % Prime, where
Prime is the greatest prime number less than M.

As mentioned earlier, the segmented design provides separate counter logic
510 and bit vector logic 520. There are several benefits realised by such a segmented
design. Firstly, to know the outcome of a query to the Bloom filter, only the bit vector
logic 520 needs to be accessed, and its size is smaller than the counter logic 510.
Keeping the bit vectors separate hence enables faster and lower power accesses to the
Bloom Filter. In addition, updates to the counter logic 510 are much more frequent
than updates to the bit vector logic 520. Thus segmenting the counter logic and the bit
vector logic allows the counter logic to be run at a much lower frequency than the bit
vector logic, which is acceptable since the operation of the counter logic is not time
critical. In particular, the bit vector logic only needs updating if a particular counter
entry in the counter logic changes from a non-zero value to a zero value, or from a
zero value to a non-zero value.

Hence, the use of such a segmented design to form the cache miss indication
Jogic 100 used in the embodiments of Figures 1 to 3 leads to a particularly efficient
approach for generating an early cache miss indication for use by the data processing

apparatus embodiments illustrated in those figures.

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

27

Whilst the embodiments of Figures 1 to 3 all involve the use of the indication
produced by the cache miss indication logic to control a process having an effect on a
program thread other than a program thread whose access request caused the
indication to be generated, it has also been found that the particular segmented
counting Bloom filter technique described above can provide particularly beneficial
results when employed within a data processing apparatus irrespective of whether
multiple program threads are being executed or not. Figure 4 illustrates a general data
processing apparatus in which the segmented counting Bloom filter 420 of one
embodiment can be used. In this example, a CPU 400 is shown coupled to external
memory 440 via two levels of cache, namely the level 1 (L1) cache 410, which may be
a unified cache or may provide separate instruction and data caches, and the level 2
(L2) cache 430, which again may provide separate instruction and data caches, but
more usually will be formed as a unified cache.

- The increasing complexity and frequencies of present day microprocessors has
led to energy becoming an important design constraint. Techniques to save energy
may be applied at the circuit level or at the architecture level. The embodiment
illustrated schematically with reference to Figure 4 describes an architecture level
technique to save energy in the core and the caches of a microprocessor by early
detection of a miss in the L2 Cache.

In one embodiment, energy in an in-order microprocessor can be saved without
loss of performance. In an in-order processor, severe stalls in the core 400 may occur
due to an L2 Cache miss on a load operation. This is because after a data access
misses the L2 cache 430, it accesses the DRAM memory 440. Since a DRAM
memory is much slower than caches, a memory access may take more than 100 cycles
depending on the processor frequency before the data returns. A good way to save
energy here would be to use the event of an L2 Cache miss as a trigger to perform an
energy management process on the core. However such a trigger may only be
obtained after it is known that the access would miss the L2 Cache. The time taken to
access a 1.2 Cache depends on the size and whether the cache in on chip or off chip. A
typical estimate of an L2 cache access time is more than 10 cycles.

However, in accordance with the embodiment used in Figure 4, the segmented

counting Bloom filter 420 can be used to produce an early indication of the level 2

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

28

cache miss by snooping all accesses to the level 2 cache 430 from the level 1 cache
410. As discussed earlier, the Bloom filter 420 can provide an indication which will
either identify that the data value associated with the address is definitely not present
in the level 2 cache 430, or instead may identify that the data value the subject of the
address may be in the level 2 cache. As shown schematically by the dotted lines in
Figure 4, if the segmented counting Bloom filter 420 can determine that the data value
is definitely not present in the level 2 cache, then energy can be saved by doing one or
more of the following:

i) performing an energy management process on the processor core

400;

ii) turning the level 1 cache 410 and the level 2 cache 430 drowsy, i.e.

putting them into a low power state preserving mode; and/or

iiiy preventing the level 2 cache 430 access at an early stage.

By early detection of the cache miss it is also possible to reduce the bus activity
between the level 1 and level 2 caches and therefore reduce the bus power.

There will be some overhead incurred as a result of turning on and turning off
the various logic units. However, this overhead would typically not be much of a
concern because the turn-off period happens during a memory access that may take
hundreds of cycles. Also, since it is known exactly when the data would return from
memory, the structures which have been turned off may be turned on slowly in stages
o save energy.

Figure 6 is a block diagram illustrating in more detail one particular
embodiment of the apparatus of Figure 4. As can be seen from Figure 6, the CPU 400
can issue an access request to the level 1 cache, which in Figure 6 is shown as
consisting of a separate instruction cache 500 and data cache 510. The bit vector
segment 520 of the segmented counting Bloom filter 420 is located between the level 1
cache and the level 2 cache 430, and in the event of a miss in the level 1 cache, the bit
vector segment is arranged to snoop the address output from the level 1 cache to the
level 2 cache, and can signal in a single cycle if the level 2 cache does not have the
cache line indicated by that address. This cache miss indication can then be routed via
the OR gate function 540 to the CPU 400 to cause the CPU 400 to implement an

energy management process, and similarly this cache miss indication can be routed via

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

29

the OR gate function 540 to the level 1 cache 500, 510 and the level 2 cache 430 to
implement an energy management process, for example putting the caches into a
drowsy mode of operation. The access to the level 2 cache can also be aborted.

As also shown in Figure 6, the counter segment of the segmented counting
Bloom filter 420 can be considered as existing at the same level of the memory
hierarchy as the level 2 cache 430, and is updated based on the linefill and eviction
activities occurring between the level 2 cache 430 and the memory 440. Whenever a
particular entry in the counter segment 530 changes from a non-zero value to a zero
value, or from a zero value to a non-zero value, the relevant vector entry in the bit
vector segment 520 is updated.

As also shown in Figure 6, an actual miss in the level 2 cache 430 can result in
a signal being routed via the OR gate logic 540 to implement an energy management
process in the CPU 400, and a corresponding energy management process in the
caches.

Figure 7 illustrates an alternative design where the bit vector segment 520
resides within the CPU 400 itself, this design being useful for embodiments where the
caches exhibit inclusive behaviour. Since the bit vector segment 520 is relatively
small, it can be retained within a register or set of registers within the CPU 400. In
this embodiment, the bit vector segment can monitor all accesses issued to the level 1
cache. If it is determined that such accesses will miss in the level 2 cache then it is
also clear that the access will miss in the level 1 cache, if the inclusion property holds.
Thus, in such embodiments, the access to both the level 1 cacﬁe and the level 2 cache
can be aborted, providing further energy savings. The design of figure 7 can also be
used for embodiments where the caches do not exhibit inclusive behaviour, since the
cache miss indication logic will be used prior to the level 1 cache access, and in the
event of a miss in the level 1 cache there is no need to propagate the request to the
level 2 cache, thereby achieving power and performance benefits.

Hence, as is clear from Figures 6 and 7, by adopting the segmented approach,
the bit vector segment 520 can reside between the level 1 and the level 2 caches, or
even inside the core. Since the bit vector segment is much smaller than the counter
segment 530, it provides a fast access time, whereas the larger counter segment 530

can be run at a lower frequency to save energy (which is acceptable since the operation

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

30

of the counter segment is not time critical). The only additional overhead of this
segmented approach is the duplication of the hash function hardware used to access the
counter segment 530 and the bit vector segment 520. However, as discussed earlier, in
one embodiment a single hash function can be used in that hardware, which simplifies
the implementation and reduces the impact of the duplication of the hardware.

For some implementations of cache, there may be a plurality of potential
locations where the requested data value the subject of an access request could reside,
and not all of these potential locations may be searchable via a single lookup in the
cache. In such instances, when performing the lookup procedure the cache may be
arranged to perforfn a sequence of lookups with each lookup relating to a subset of the
potential locations. One particular example of a cache where this may occur is the so-
called virtual cache, where the cache is accessed using a virtual address. Figures 9 and
10 illustrate how the segmented counting Bloom filter approach of one embodiment
can be used in association with two such virtual caches, in particular Figure 9 showing
a virtually indexed, physically tagged cache, and Figure 10 illustrating a virtually
indexed virtually tagged cache.

An advantage of using a virtual cache is that the cache access time can be
improved, since it is unnecessary to translate the virtual address to a physical address
using table lookaside buffer (TLB) logic 730 to translate the virtual address to a
physical address before the lookup takes place. However, one identified problem with
virtual caches is the so-called synonym problem, which results from the possibility that
multiple virtual addresses can map to the same physical address. The synonym
problem occurs when the cache index bits use some of the bits from the virtual page
number or superset bits for Whl.(;h the TLB address translation has not yet been
performed. In such cases, an address tag can be located in multiple cache lines, so the
tag lookup may need to be performed in multiple cache lines for direct-mapped caches
and in multiple cache sets for set-associative caches. The superset bits determine the
number of synonym sets.

One of the basic approaches for handling synonyms in virtual caches is to keep
only a single copy in the cache. When there is a cache miss, the access request is sent
to the lower level memory and all cache lines in every set in the superset are looked up

for a potential synonym. For virtually-indexed physically-tagged caches, all physical

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

31

tags in the superset are looked up for a synonym, and the access request is aborted and
the cache line is moved to the indexed set if a synonym is found. The situation gets
worse in virtually-indexed virtually-tagged caches, where every virtual tag must be
translated into a physical tag and then each must be compared with the tag of the
missed cache address in order to detect a synonym. When a synonym is found, the
memory request is aborted and the cache line is remapped or retagged and the line can
also be moved to the indexed set.

Thus, detecting synonyms is very slow and consumes power due to a
potentially large number of tag lookups. The lookup speed will drop and the power
will increase as the cache size and associativity gets larger. Given this problem, the
segmented Bloom filter approach of embodiments of the present invention can be used
to filter out several tag lookups and accordingly save energy. In particular, if the
segmented Bloom filter can identify that there will be a miss in the cache, then the
lookups can be aborted at an early stage. Since the segmented Bloom filter is only
looking at physical addresses, it can quickly detect synonyms and save a lot of tag
lookup power. In particular, it can determine from only checking a single bit location
in the bit vector logic if a synonym is not present, since if that lookup indicétes that the
data value is not in the cache, then there will also be no synonym in the cache. In
particular, use of the segmented Bloom filter approach has the possibility of
eliminating (w x n) tag lookup comparisons, where w is the cache associativity and n
is the number of supersets, in situations where the segmented Bloom filter detects that
there is no synonym.

As shown in Figure 9, for virtually-indexed physically-tagged caches the bit
vector logic 720 of the segmented Bloom filter keeps track of physical addresses
translated by the TLB 730 rather than tracking virtual addresses. During a linefill, the
counter logic 710 is accessed by the address of the linefill, which is the physical
address sent by the lower level memory. Similarly, during a cache line eviction, the
counter logic 720 is accessed by the physical index of the linefill and the physical tag
of the evicted line since the tags in the cache are physical. When a cache miss occurs,
the bit vector logic 720 is accessed by the physical address of the line, which is
obtained from the TLB 730. If the output from the vector logic 720 indicates that there

will be a cache miss, this means that there is no synonym in the cache 700 associated

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

32

with the physical address. Accordingly, a significant number of lookups can be
avoided in such situations. A

As shown in Figure 10, for virtually-indexed virtually-tagged caches, the
counter logic 710 is accessed by the physical address of the linefill during the linefill
process. However, for evictions the evicted address must be translated into the
physical address by the TLB 730 before the counter logic 710 is accessed. The dirty
evicted lines are already translated by the TLB before sending to the physical memory.
Hence, the only extra TLB translaﬁons required are in association with clean evicted
lines. When a cache miss occurs, the bit vector logic 720 is accessed by the physical
address acquired from the TLB logic 730 in a similar way to that described earlier for
the virtually-indexed physically tagged caches, and if the bit vector logic 720 indicates
that there is a cache miss in the cache 750, then this means that there is no synonym in
the cache associated with the physical address, and accordingly a significant number of
lookups can be avoided.

Figure 11 illustrates another application of the segmented Bloom filter design
in the context of a CMP system in which the level 2 cache is distributed amongst the
various processor cores. This means that each processor core 800, 810 has a particular
level 2 cache portion 820, 830, respectively, associated with it, but can also access the
level 2 cache portions associated with other cores. Hence, by way of example, the
core 800 has the level 2 cache portion 820 associated with it, but can also access the
level 2 cache portion 830 associated with the core 810. Hence, the core 800 can
allocate data within the level 2 cache portion 830 without replicating that data within
its own level two cache portion 820. An analogous situation exists for the other core
810. In accordance with this model, victims from one level 2 cache can also be placed
into other level 2 caches to increase the effective level 2 cache size.

Each level 2 cache portion has associated counter logic and vector logic
forming a segmented Bloom filter design. Hence, the level 2 cache portion 820 has
associated therewith the counter logic 840 and the bit vector logic 845 and similarly
the level 2 cache portion 830 has associated therewith the counter logic 850 and the bit
vector logic 855. However, as shown in Figure 11, each core has access to the bit
vector segments associated with level 2 cache portions other than the level 2 cache

portion associated with that core. Hence, as shown, the core 8300 has access to the bit

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

33

vector logic 855 associated with the level 2 cache 830. Similarly, the core 810 has
access to the bit vector logic 845 associated with the level 2 cache 820. The counter
segments 840, 850 are updated in the usual manner, and are caused to update their
associated bit vector segments as required when individual counter entries change
from a zero to a non-zero value or from a non-zero value to a zero value. A core can
then detect misses in the level 2 cache portions other than its associated level 2 cache
portion early by performing an appropriate lookup in the relevant bit vector logic.

Since each core can access the various level 2 caches other than its own
associated level 2 cache portion via the bus arbiter 860, the traffic through the bus
arbiter 860 can potentially be very high. However, the bus congestion, arbiter queue
size and the number of level 2 ports can be reduced by this cross-firing design
illustrated in Figure 11, since if the output from the bit vector logic indicates that a
cache miss will occur, the cache access can be aborted early. Hence, as a particular
example, if the core 800 wishes to issue an access request to the level 2 cache 830 via
the bus arbiter 860, but the bit vector logic 855 issues an output signal indicating that a
cache miss will occur, then that cache access can be aborted thereby reducing bus
congestion.

Whilst in Figure 11 only two cores are shown, it will be appreciated that the
technique described therein can be generalised for an n-core model as well.

In an alternative embodiment illustrated in Figure 12, each core can also have
the bit vector segment associated with its own cache portion to further decrease access
to the level 2 cache. Hence, core 800 can be provided with bit vector logic 870
associated with the level 2 cache 820, and core 810 can be provided with bit vector
logic 880 associated with the level 2 cache 830. In this design, it should be noted that
only the bit vector logic is replicated, and in contrast the counter logic is shared
between the cross-firing and the local bit vector logic units. The various bit vector
logic units accessible via a particular core can be accessed simultaneously using the
same index generation logic 890, 895. Hence, with a single access using the index
generation logic, a particular core can identify which level 2 portions, including its
own, will result in a cache miss, thereby enabling an early abortion of those cache

lookups.

10

15

WO 2007/031696 PCT/GB2005/003531

34

It should noted that the demand for level 2 bandwidth will increase if each core
also has an n-way SMT design. Hence, this will further complicate the design of the
bus arbiter 860 and the level 2 caches with multiple ports, thereby increasing their
cost. This cost can be mitigated by using the cross-firing design of segmented Bloom
filter illustrated schematically in Figures 11 and 12.

From the above description of various embodiments, it will be appreciated that
the cache miss indication logic designs described herein enable a number of power
saving and performance improvements to be realised. The segmented Bloom filter
design enables lookups to the vector logic to be fast and consume low power. Further,
the flexibility to place the vector logic at locations within the data processing apparatus
separate to the associated counter logic produces further flexibility which can result in
further efficiencies.

Although a particular embodiment has been described herein, it will be
appreciated that the invention is not limited thereto and that many modifications and
additions thereto may be made within the scope of the invention. For example, various
combinations of the features of the following dependent claims could be made with the
features of the independent claims without departing from the scope of the present

invention.

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

35

CLAIMS

1. A data processing apparatus comprising: A

processing logic operable to execute a plurality of program threads;

a cache operable to store data values for access by the processing logic, the
processing logic being operable when access to a data value is required whilst executing a
first program thread to issue an access request specifying an address in memory
associated with that data value, and the cache being operable in response to the address to
perform a lookup procedure to determine whether the data value is stored in the cache;

indication logic operable in response to an address portion of the address to
provide an indication as to whether the data value is stored in the cache, said indication
being produced before a result of the lookup procedure is available, and the indication
logic being operable to only issue an indication that the data value is not stored in the
cache if that indication is guaranteed to be correct; and

control logic operable, if the indication indicates that the data value is not stored
in the cache, to use said indication to control a process having an effect on a program
thread other than the first program thread.

2. A data processing apparatus as claimed in Claim 1, further comprising additional
control logic operable in response to said indication to control a process having an effect

on the first program thread.

3. A data processing apparatus as claimed in Claim 1 or Claim 2, wherein:
the control logic is operable, if the indication indicates that the data value is not
stored in the cache, to cause the processing logic to perform a context switch operation in

order to switch execution between the first program thread and another program thread.

4. A data processing apparatus as claimed in Claim 1 or Claim 2, wherein:
the processing logic comprises a number of shared resources, each shared

resource being allocatable to one of the program threads; and

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

36

the control logic is operable, if the indication indicates that the data value is not
stored in the cache, to cause the processing logic to perform a reallocation of at least one

shared resource.

5. A data processing apparatus as claimed in Claim 1 or Claim 2, wherein:

the processing logic comprises a plurality of processors each sharing access to the
cache, and each being operable when access to a data value is required to issue an access
request specifying an address in memory associated with that data value;

the plurality of program threads are distributed across the plurality of processors;

the indication logic is operable in response to at least some of the access requests
to provide said indication; and

the control logic comprises arbitration logic operable to perform an arbitration
process to arbifrate access to the cache between the plurality of processors, and being
arranged to use the indications provided by the indication logic when performing said

arbitration process.

6. A data processing apparatus as claimed in Claim 5, wherein the indication logic
comprises a plurality of indication units, each indication unit being associated with one of
said processors and being operable in response to the address portion of an access request
issued by the associated processor to provide said indication as to whether the data value
is stored in the cache;

the control logic being operable to use the indications provided by each of the

indication units when performing said arbitration process.

7. A data processing apparatus as claimed in any preceding claim, wherein the
indication logic comprises:

counter logic having a plurality of counter entries, each counter entry containing a
count value;

vector logic having a vector entry for each counter entry in the counter logic,
each vector entry containing a value which is set when the count value in the

corresponding counter entry changes from a zero value to a non-zero value, and which is

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

37

cleared when the count value in the corresponding counter entry changes from a non-zero
value to a zero value;

index generation logic operable to generate from an address portion of an address
at least one index, each index identifying a counter entry and associated vector entry;

the index generation logic being operable whenever a data value is stored in, or
removed from, the cache to generate from the address portion of the associated address
said at least one index, and to cause the count value in each identified counter entry to be
incremented if the data value is being stored in the cache or decremented if the data value
is being removed from the cache;

the index generation logic further being operable for at least some access
requests to generate from the address portion of the associated address said at least one
index, and to cause the vector logic to generate an output signal based on the value in
each identified vector entry, the output signal indicating if the data value of the access

request is not stored in the cache.

8. A data processing apparatus as claimed in Claim 7, wherein:

a memory hierarchy exists within the data processing apparatus having a number
of memory levels, the cache being provided at one of said memory levels, and when
processing access requests memory levels higher in the hierarchy being accessed before
memory levels lower in the hierarchy; and

whilst the vector logic and the counter logic are both associated with the cache,
the vector logic is accessible separately to the counter logic and from a different level
in the memory hierarchy to that memory level from which the counter logic is

accessible.

9. A data processing apparatus comprising:

processing logic;

a cache operable to store data values for access by the processing logic, the
processing logic being operable when access to a data value is required to issue an access
request specifying an address in memory associated with that data value, and the cache
being operable in response to the address to perform a lookup procedure to determine

whether the data value is stored in the cache;

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

38

counter logic having a plurality of counter entries, each counter entry containing a
count value;

vector logic having a vector entry for each counter entry in the counter logic,
each vector entry containing a value which is set when the count value in the
corresponding counter entry changes from a zero value to a non-zero value, and which is
cleared when the count value in the corresponding counter entry changes from a non-zero
value to a zero value;

index generation logic operable to generate from an address portion of an address
at least one index, each index identifying a counter entry and associated vector entry;

the index generation logic being operable whenever a data value is stored in, or
removed from, the cache to generate from the address portion of the associated address
said at least one index, and to cause the count value in each identified counter entry to be
incremented if the data value is being stored in the cache or decremented if the data value
is being removed from the cache;

the index generation logic further being operable for at least some access
requests to generate from the address portion of the associated address said at least one
index, and to cause the vector logic to generate an output signal based on the value in
each identified vector entry, the output signal indicating if the data value of the access
request is not stored in the cache;

wherein a memory hierarchy exists within the data processing apparatus having a
number of memory levels, the cache being provided at one of said memory levels, and
when processing access requests memory levels higher in the hierarchy being accessed
before memory levels lower in the hierarchy; and

whilst the vector logic and the counter logic are both associated with the cache,
the vector logic is accessible separately to the counter logic and from a different level
in the memory hierarchy to that memory level from which the counter logic is

accessible.

10. A data processing apparatus as claimed in Claim 9, wherein:
the index generation logic comprises first index generation logic associated with

the counter logic and second index generation logic associated with the vector logic;

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

39

whenever a data value is stored in, or removed from, the cache the first index
generation logic being operable to generate from the address portion of the associated
address said at least one index identifying one or more counter entries in the counter
logic; and

for at least some access requests the second index generation logic being
operable to generate from the address portion of the associated address said at least one

index identifying one or more vector entries in the vector logic.

11. A data processing apparatus as claimed in Claim 9 or Claim 10, further
comprising lookup control logic operable in response to said output signal from the
vector logic to abort the lookup procedure if the output signal indicates that the data value

is not stored in the cache.

12. A dataprocessing apparatus as claimed in any of claims 9 to 11, wherein:
the processing logic is operable to execute a sequence of instructions in order; and
if the output signal from the vector logic indicates that the data value is not stored
in the cache, the processing logic is operable to perform an energy management process
to reduce energy consumption of the processing logic whilst waiting for the data value to

be accessed.

13. A data processing apparatus as claimed in Claim 12, further comprising:

an additional cache, if on issuance 6f the access request by the processing logic a
lookup is performed in the additional cache resulting in a miss in the additional cache, the
cache being operable to perform said lookup procedure; and

if the output signal from the vector logic indicates that the data value is not stored
in the cache, at least one of the cache and additional cache being operable to perform an
energy management process to reduce energy consumption whilst waiting for the data

value to be accessed.

14. A data processing apparatus as claimed in any of claims 9 to 11, further

comprising:

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

40

an additional cache, if on issuance of the access request by the processing logic a
lookup is performed in the additional cache resulting in a miss in the additional cache, the
cache being operable to perform said lookup procedure, the cache and additional cache
exhibiting inclusive behaviour; and

if the output signal from the vector logic indicates that the data value is not stored

in the cache the lookup in the additional cache being aborted.

15. A data processing apparatus as claimed in any of claims 9 to 11, wherein:
the vector logic is accessible prior to the access request being processed by the

memory level in which the cache is provided.

16. A data processing apparatus as claimed in Claim 15, further comprising:

an additional cache at a higher memory level than said cache, if on issuance of the
access request by the processing logic a lookup is performed in the additional cache
resulting in a miss in the additional cache, said cache being operable to perform said
lookup procedure; and

the vector logic being accessed in response to a cache miss signal issued by the
additional cache in the event of a cache miss in the additional cache, thereby causing the

vector logic to genérate said output signal.

17. A dataprocessing apparatus as claimed in Claim 15, further comprising:

an additional cache at a higher memory level than said cache, if on issuance of the
access request by the processing logic a lookup is performed in the additional cache
resulting in a miss in the additional cache, said cache being operable to perform said
lookup procedure, said cache and said additional cache exhibiting inclusive behaviour;
and

the vector logic being located within the processing logic and being accessed for

every access request, thereby causing the vector logic to generate said output signal.

18. A data processing apparatus as claimed in any of claims 9 to 17, wherein:

10

15

20

25

30

WO 2007/031696 PCT/GB2005/003531

41

the processing logic comprises a plurality of processors, each processor being
operable when access to a data value is required to issue an access request specifying an
address in memory associated with that data value;

the cache comprises a plurality of cache portions, each cache portion associated
with one of said processors, and each cache portion being accessible by said plurality of
Processors;

separate counter logic, vector logic and index generation logic being provided in
association with each cache portion;

the vector logic associated with at least one cache portion being accessed for
access requests issued by a processor with which the at least one cache portion is not

associated.

19. A data processing apparatus as claimed in Claim 18, wherein the vector logic is

replicated for each processor.

20. A dataprocessing apparatus as claimed in any of claims 9 to 19, wherein:

the cache has a plurality of potential locations where the data value the subject of
the access request may reside, when performing the lookup procedure the cache being
operable to perform a sequence of lookups, each lookup relating to a subset of said
potential locations; and

if the output signal from the vector logic indicates that the data value is not in the

cache, the sequence of lookups being terminated.

21. A method of operating a data processing apparatus having processing logic for
executing a plurality of program threads, and a cache for storing data values for access by
the processing logic, the method comprising the steps of:

when access to a data value is required whilst the processing logic is executing a
first program thread, issuing an access request specifying an address in memory
associated with that data value;

in response to the address, performing a lookup procedure in the cache to

determine whether the data value is stored in the cache;

WO 2007/031696 PCT/GB2005/003531

10

15

20

25

30

42

in response to an address portion of the address, employing indication logic to
provide an indication as to whether the data value is stored in the cache, said indication
being produced before a result of the lookup procedure is available, and the indication
logic only issuing an indication that the data value is not stored in the cache if that
indication is guaranteed to be correct; and

if the indication indicates that the data value is not stored in the cache, using said
indication to confrol a process having an effect on a program thread other than the first

program thread.

22. A method of operating a data processing apparatus, the data processing apparatus
comprising processing logic, a cache for storing data values for access by the processing
logic, counter logic associated with the cache and having a plurality of counter entries,
each counter entry containing a count value, and vector logic associated with the cache
and having a vector entry for each counter entry in the counter logic, each vector entry
containing a value which is set when the count value in the corresponding counter entry
changes from a zero value to a non-zero value, and which is cleared when the count value
in the corresponding counter eniry changes from a non-zero value to a zero value, the
method comprising the steps of:

when access to a data value is required by the processing logic, issuing an access
request specifying an address in memory associated with that data value;

in response to the address, performing a lookup procedure in the cache to
determine whether the data value is stored in the cache;

whenever a data value is stored in, or removed from, the cache, generating from
the address portion of the associated address at least one index, each index identifying a
counter entry, and causing the count value in each identified counter entry to be
incremented if the data value is being stored in the cache or decremented if the data value
is being removed from the cache;

for at least some access requests, generating from the address portion of the
associated address at least one index, each index identifying a vector entry, and causing
the vector logic to generate an output signal based on the value in each identified vector
entry, the output signal indicating if the data value of the access request is not stored in

the cache;

10

15

WO 2007/031696 PCT/GB2005/003531

43

wherein a memory hierarchy exists within the data processing apparatus having a
number of memory levels, the cache being provided at one of said memory levels, and
when processing access requests memory levels higher in the hierarchy being accessed
before memory levels lower in the hierarchy; and

said method further comprising the step of accessing the vector logic separately
to the counter logic and from a different level in the memory hierarchy to that memory

level from which the counter logic is accessible.

WO 2007/031696 PCT/GB2005/003531

10
/J
CPU
r%o 30”1 Context Bank 60 62 64
40- PC4 50-1 PSR | c__/ /
Tread | swichto | oo [eRy] | e
K 4451 PG | 5451 PSRy RFy
| Update | Register, T | Register 1 Result,
PC
! PC TID | | Value TID
: A * ¥ ‘v
; Fetch » Decode & .| Execution
! 707 Logic :F Issue Logic e Logic
\ X 75 80 X
e R EEE LT L R s \Cache Data Data,
Instruction | | Instruction, :M?Scse Addr| |W Hit/
Addr | | Hit/Miss \ Indication Miss
Y 1 Yy
Level 1 E Level 1
s Instruction . 1 Data
90 Cache 1 OHO : 95 Cache
§ ' }
e e T |
105 AAUr| JHINISS popjacemen, Linefilinfo” | | Miss

Level 2 Cache

A

Data Addr, ‘ Data,

110 DataReq| | Response
H \
Memory
Fig. 1

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531

2/12

200
rJ
CPU
l
Issue Queue
¥
Entries For
Thread 0 | 210
205 ‘T\ /"‘215
N v - 220 225 230
-~ - ~
Fetch, Decode Issue Execution || Retire
&R > ; — >
L((a)g?cme Entries For |[<= | ogic Logic N Logic
Thread 1 .
K T ?
' Cache Data Data,
Instruction | | Instruction, ' Miss Addr| |W Hit/
Addr | | Hit/Miss Indication Miss
Y : Y ¥
Level 1 : Level 1
1 [Instruction ! S Data
90 Cache 10£ ! 95 Cache
A A
r" HitMiss Replacement, Linefill Info Addrv Miss
Level 2 Cache
A H
Data Addr, | | Data, 105
110 DataReq | | Response
H Y
Memory
Fig. 2

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696

PCT/GB2005/003531
3/12
300 310
- i
Core Core
305
L1Cache | 3 Canre
320
fJ
Arbiter 325 .
> CMIL - J
E Routing

3(’?’0 Cache Miss Indication Logic
Routing| | r--------F---- R R taietataleley
Logic | : : :
| v v y '

Arbitration Logic| |Arbitration Logic| |Arbitration Logic| |Arbitration Logic
N N N N
Replacement/ 340 342 344 346
Linefill info
'—— i i I
Tag: Data Tag 1 Data Tag : Data Tag @ Data
1 2 Cache ! g
r r I ~
350 352 354 356
360
(J
Memory
Fig. 3

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531

4/12

| -400

410

A

Segmented
Counting
Bloom Filter

l R 430
v ~

\d

L2 Cache

A

440
fJ

A\

Memory

Fig. 4

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531
Bloom Filter
L-bit Counters Bit Vector
_____ > 0
e | 1
AddiDelete 500 530 Query
Address ~ ~ Addr_ess
[Nbits] | Hash |m bits) Hash |, [Nbits]
Function " A Function
_____ > om_4
\— _/ - /
Y v
Counter Segment Bit Vector Segment
Fig. 5

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531

6/12

,,,,,,,

............ . CPU Power Down Signal
=5 CPU s 400

L1/L2 Ceiicihe Drowsy Signal ﬁ 7
i LI Cache-]f 200
L1 D Cache
¥ - 510

L1 Cache Miss Address

e

b Bit Vector
""" Segment
Updat BtV t ~
pdate Bit Vector ::
y T . 430
R P SR L2 Cache
i+ | Counter Segment
= ¥ ZON
/T 530 L2 Cactie Miss
l Line Fill/Evicted Address
A4
Memory 440

Fig. 6

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531

712

5%0 CPU Power Down Signal
-
I 400
S S / 5/20 CPU 4
—>| Bit VectoréS:egment
L1/L2 Cacbé Drowsy Signal ﬁ
1L 111 Cache|500
i::::::::::::> L1 D Cache
¥ - 510
Update|Bit Vector
| AV
530 i 430
c i L2 Cache -
Counter Segment
AN\ H AN
L2 Cache Miss
""""""""""" Line Fill Evicted Address
N
Memory 440

Fig. 7

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696

8/12

32 Bits

PCT/GB2005/003531

Y

Y

--------- m bits

m bits

m bits

U

@ 610

m bits

U

m bits

630

m bits

640

Fig. 8

SUBSTITUTE SHEET (RULE 26)

(9

5600

WO 2007/031696

9/12

PCT/GB2005/003531

VA
700
710 S
H Y
VIP
BF 730
Counters Cache TLB 4
A A A PA 720
Y -
_ Physical
Physical Evicted > BF Bit vector
Linefill | Address
Address \
Memory l
\ Synonym/No synonym
Miss signal
Fig. 9

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531

10/12

VA
750
710 N v
\ V/V A\ 4
BF 730
Counters Cache e
A f A PA 720
Physical v ~
Evicted
Physical Address > BF Bit vector
Linefill
Address v
Memory 1
\ Synonym/No synonym
Miss signal
Fig. 10

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531

11/12

800 810
855 845
~ o ~ ~
BF Bit BF Bit
Coren Vectorg Vectorp Coreg
L1 L1
— 805 8157 L ——
: 820 830, .
L2 BF BF 128
Countersp Countersg
) r
840 850

Bus Arbiter

Fig. 11

SUBSTITUTE SHEET (RULE 26)

WO 2007/031696 PCT/GB2005/003531

12/12
890 895
800 = 855 845 = 810
) IGL s CofleL 9,
BF Bit Vectorg BF Bit Vectory
Corep . . Coreg
BF Bit Vectorp BF Bit Vectorg
\ 4 A / .
L1 870 880 L1
A \\ H A
Self-| Cross- Self-
805 fiing 815
: 820 830~ :
L24 BF BF 125
Countersp Countersg
) r
840 850
Bus Arbiter
Fig. 12

SUBSTITUTE SHEET (RULE 26)

ro nal application No

INTERNATIONAL SEARCH REPORT
PCT/GB2005/003531

CLASSIFICATION OF SUBJECT MATTER

NS G06F 12708 - GOGFO/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation 10 the exient that such documents are included in the fields searched

Electronic data base constlted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X PEIR J-K ET AL: "BLOOM FILTERING CACHE 1-3,21
MISSES FOR ACCURATE DATA SPECULATION AND
PREFETCHING™

CONFERENCE PROCEEDINGS OF THE 2002
INTERNATIONAL CONFERENCE ON
SUPERCOMPUTING. ICS’02. NEW YORK, NY, JUNE
22 - 26, 2002, ACM INTERNATIONAL
CONFERENCE ON SUPERCOMPUTING, NEW YORK, NY
: ACM, US,

vol. CONF. 16, 22 June 2002 (2002-06-22),
pages 189-198, XP001171515

ISBN: 1-58113-483-5

cited in the application

Y abstract 4,7,8
page 191, right-hand column, line 7 - line
23

)/

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of ciled documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document bul published on or after the international
filing date

L. document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
tater than the priority date claimed

"T* later document published after the international filing date
or priority date and not in conflict with the application but
clted to Understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
mttarr:ts, ﬁuch combination being obvious to a person skilled
in the art.

& document member of the same patent family

Date of the actual compietion of the international search

22 August 2006

Date of mailing of the international search report

29/08/2006

Name and malling address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nielsen, 0

Form PCT/ASA/210 (second shest) (Aprit 2005)

INTERNATIONAL SEARCH REPORT

Ir ional application No

PCT/GB2005/003531

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant 1o claim No.

X

US 6 907 520 B2 (PARADY BODO K)

14 June 2005 (2005-06-14)

column 6, 1ine 36 - line 50

column 9, line 20 - line 55; figures 1,3,5
US 6 272 520 B1 (SHARANGPANI HARSHVARDHAN
ET AL) 7 August 2001 (2001-08-07)

column 4, Tine 56 - column 5, Tine 5

US 2005/060457 A1l (OLUKOTUN KUNLE A)

17 March 2005 (2005-03-17)

paragraph [0010] - paragraph [0011]

MEMIK G ET AL: "Just say no: benefits of
early cache miss determination”
HIGH-PERFORMANCE COMPUTER ARCHITECTURE,
2003. HPCA-9 2003. PROCEEDINGS. THE NINTH
INTERNATIONAL SYMPOSIUM ON.8-12 FEB. 2003,
PISCATAWAY, NJ, USA,IEEE,

8 February 2003 (2003-02-08), pages
307-316, XP010629523

ISBN: 0-7695-1871-0

cited in the application

page 307, right-hand column; figures 1,8
page 309, left-hand column, line 32 -
right-hand column, Tine 4

page 311, left-hand column, Tine 28 -
right-hand column, Tine 31

MOSHOVOS A ET AL: "JETTY: filtering
snoops for reduced energy consumption in
SMP servers"

HIGH~-PERFORMANCE COMPUTER ARCHITECTURE,
2001. HPCA. THE SEVENTH INTERNATIONAL
SYMPOSIUM ON MONTERREY, MEXICO 19-24 JAN.
2001, LOS ALAMITOS, CA, USA,IEEE COMPUT.
S0C, US, 19 January 2001 (2001-01-19),
pages 85-96, XP010531677

ISBN: 0-7695-1019-1

cited in the application

page 90, left-hand column, line 16 - line
28; figure 3c

1-3,21

5,6

8-20,22

7-20,22

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

jational application No.

INTERNATIONAL SEARCH REPORT PCT/6B2005/003531

Box Il Observations where certain claims were found unsearchable {Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such
an extent that no meaningful International Search can be carried out, specifically:

3. D Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box Il Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

. m As all required additional search fees were timely paid by the applicant, this International Search Report covers all
searchable claims.

™

As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.

3. [:l As only some of the required additional search fees were timely paid by the applicant, this International Search Report
covers only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest.

No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)

International Application No. PCT/GB2005 /003531

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 21(Q

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-6 21

program thread control

2. clajms: 7-20 22

cache miss indication circuitry comprising separately
accessible vector logic

INTERNATIONAL SEARCH REPORT

Ir = onal application No
.nformation on pate i .
nf t n patent family members PCT/GBZOOS/003531 |
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6907520 B2 14-06-2005 US 2002091915 Al 11-07-2002
US 6272520 Bl 07-08-2001 NONE
US 2005060457 Al 17-03-2005 EP 1656615 A2 17-05-2006
WO 2005020079 A2 03-03-2005

Form PCT/ISA/210 {patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - wo-search-report
	Page 59 - wo-search-report
	Page 60 - wo-search-report
	Page 61 - wo-search-report
	Page 62 - wo-search-report

