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CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to United States Provisional Application No.
62/619,681, filed January 19, 2018, and United States Provisional Application No.
62/698,046, filed July 14, 2018, the contents of each of which are hereby incorporated by

reference in their entireties, and to which priority is claimed.

TECHNICAL FIELD
The presently disclosed subject matter relates to methods of determining a feline’s
susceptibility to developing chronic kidney disease (CKD) and to methods of preventing

and/or reducing a risk of developing CKD for a feline.

BACKGROUND

Chronic kidney disease (CKD), also known as chronic renal disease or chronic renal
failure, is a progressive loss in renal function over a period of months or years. CKD can be
caused by a variety of conditions and mechanisms, and it affects both humans and other
mammals. CKD is a common cause of illness and death in aging felines. It is important to
detect CKD as early as possible to begin treatment before significant damage occurs.

In cats suffering from renal disease, a scheme for staging CKD in cats and dogs has
been developed by the International Renal Interest Society (IRIS) (see also Elliott et al.,
Dietary therapy for feline chronic kidney disease, Encyclopedia of feline clinical nutrition,
2nd edition, 2015). Staging is based initially on fasting blood creatinine concentration,
assessed on at least two occasions in a stable cat. The cat is then substaged based on
proteinuria and blood pressure. However, there remains a need in the art for methods of

predicting, preventing and/or reducing a risk of CKD.

SUMMARY
In certain non-limiting embodiments, the presently disclosed subject matter provides a
system for identifying a susceptibility to developing chronic kidney disease (CKD) for a
feline, the system comprising: a processor; and a memory that stores code that, when
executed by the processor, causes the computer system to: receive at least one input level of
one or more biomarkers from the feline and optionally an input level of an age of the feline,

wherein at least one of the one or more biomarkers comprises information relating to a urine
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specific gravity level, a creatinine level, a urine protein level, a blood urea nitrogen (BUN) or
urea level, a white blood cell count (WBC), urine pH, or any combination thereof;, analyze
and transform the input level of the one or more biomarkers and optionally the input level of
the by organizing and/or modifying each input level to derive a probability score or a
classification label via a classification algorithm, wherein the classification algorithm
comprises code developed from a training dataset, the training dataset comprising medical
information relating to both a first plurality of biomarkers and optionally ages from a first set
of sample felines and a second plurality of biomarkers and optionally ages from a second set
of sample felines, wherein the classification algorithm is developed using a training
algorithm; wherein the classification algorithm is one of a hard classifier, which determines
the classification label of whether the feline is at risk of developing CKD, or a soft classifier,
which determines the probability score of the feline developing CKD; generate an output,
wherein the output is the classification label or the probability score; determine or categorize,
based on the output, whether the feline is at risk of developing CKD; and determine a
customized recommendation based on the determining or categorizing.

In certain embodiments, the code, when executed by the processor, further causes the
system to display the determination or categorization and customized recommendation on a
graphical user interface.

In certain embodiments, the system further comprises: a communication device for
transmitting and receiving information; wherein: the at least one input level is received from
a remote second system, via the communication device; and the code, when executed by the
processor, further causes the system to transmit the determination or categorization and
customized recommendation to the remote second system, via the communication device.

In certain embodiments, the system provides a customized recommendation of a
dietary regimen and/or further monitoring the one or more biomarkers based on the output.

In certain non-limiting embodiments, the presently disclosed subject matter provides
for a method of identifying a susceptibility to developing chronic kidney disease (CKD) for a
feline, by performing the steps of: receiving at least one input level of one or more
biomarkers from the feline and optionally an input level of an age of the feline, wherein at
least one of the one or more biomarkers comprises information relating to a urine specific
gravity level, a creatinine level, a urine protein level, a blood urea nitrogen (BUN) or urea
level, a white blood cell count (WBC), urine pH, or any combinations thereof; analyzing and
transforming the at least one input level of the one or more biomarkers and optionally the

input level of the age by organizing and/or modifying each input level to derive a probability
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score or a classification label via a classification algorithm, wherein the classification
algorithm comprises code developed from a training dataset, the training dataset comprising
medical information relating to both a first plurality of biomarkers and optionally ages from a
first set of sample felines and a second plurality of biomarkers and optionally ages from a
second set of sample felines, wherein the classification algorithm is developed using a
training algorithm; wherein the classification algorithm is one of a hard classifier, which
determines the classification label of whether the feline is at risk of developing CKD, or a
soft classifier, which determines the probability score of the feline developing CKD;
generating an output, wherein the output is the classification label or the probability score;
determining or categorizing, based on the output, whether the feline is at risk of developing
CKD; and determining a customized recommendation based on the determining or
categorizing.

In certain non-limiting embodiments, the presently disclosed subject matter provides
for a method of reducing a risk of developing chronic kidney disease (CKD) for a feline
comprising: receiving at least one input level of one or more biomarkers from the feline and
optionally an input level of an age of the feline, wherein at least one of the one or more
biomarkers comprises information relating to a urine specific gravity level, a creatinine level,
a urine protein level, a blood urea nitrogen (BUN) or urea level, a white blood cell count
(WBC), urine pH, or any combination thereof; analyzing and transforming the at least one
input level of the one or more biomarkers and optionally the input level of the age by
organizing and/or modifying each input level to derive a probability score or a classification
label via a classification algorithm, wherein the classification algorithm comprises code
developed from a training dataset, the training dataset comprising medical information
relating to both a first plurality of biomarkers and optionally ages from a first set of sample
felines and a second plurality of biomarkers and optionally ages from a second set of sample
felines, wherein the classification algorithm is developed using a training algorithm; wherein
the classification algorithm is one of a hard classifier, which determines the classification
label of whether the feline is at risk of developing CKD, or a soft classifier, which determines
the probability score of the feline developing CKD; generating an output, wherein the output
is the classification label or the probability score; and determining a customized
recommendation of a dietary regimen and/or further monitoring the one or more biomarkers

based on the output.
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In certain embodiments, the method further comprises the step of displaying the
determination or categorization and customized recommendation on a graphical user
interface.

In certain embodiments, the at least one input level is received from a remote second
system, via a communication device; and further comprising the step of: transmitting the
determination or categorization and customized recommendation to the remote second
system, via the communication device.

In certain non-limiting embodiments, the presently disclosed subject matter provides
for a computer readable medium, storing instructions that, when executed by a processor,
cause a computer system to execute the steps of any of methods disclosed herein.

In certain embodiments, the classification algorithm is developed using a supervised
training algorithm under supervision of the one or more biomarkers and optionally the ages.
In certain embodiments, the classification algorithm is developed using an unsupervised
training algorithm.

In certain embodiments, the at least one input level comprise sequential measurements
of the one or more biomarkers measured at different time points.

In certain embodiments, the first set of sample felines have been diagnosed with CKD
and the second set of sample felines have not been diagnosed with CKD. In certain
embodiments, the training dataset is stratified into 2 or more folds for cross validation. In
certain embodiments, the training dataset is filtered by a set of inclusion and/or exclusion
criteria.

In certain embodiments, the training algorithm comprises an algorithm selected from
the group consisting of logistic regression, artificial neural network (ANN), recurrent neural
network (RNN), K-nearest neighbor (KNN), Naive Bayes, support vector machine (SVM),
random forest, AdaBoost and any combination thereof. In certain embodiments, the training
algorithm comprises KNN with dynamic time warping (DTW). In certain embodiments, the
training algorithm comprises RNN with long short-term memory (LSTM).

In certain embodiments, the classification algorithm comprises a regularization
algorithm comprising 5% or more dropout to prevent overfitting.

In certain embodiments, the dietary regimen is selected from the group consisting of a
low phosphorous diet, a low protein diet, a low sodium diet, a potassium supplement diet, a
polyunsaturated fatty acids (PUFA) supplement diet, an anti-oxidant supplement diet, a

vitamin B supplement diet, a liquid diet and any combination thereof.
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In certain embodiments, the one or more biomarkers comprises information relating to
a urine specific gravity level, a creatinine level and a blood urea nitrogen (BUN) or urea
level. In certain embodiments, the one or more biomarkers comprises information relating to
a urine specific gravity level, a creatinine level, a urine protein level, a blood urea nitrogen
(BUN) or urea level, a white blood cell count (WBC) and urine pH. In certain embodiments,
the method comprises receiving at least one input level of one or more biomarkers from the
feline and an input level of an age of the feline. In certain embodiments, the method
comprises receiving input levels of biomarkers comprising information relating to a urine
specific gravity level, a creatinine level and a blood urea nitrogen (BUN) or urea level; and
an input level of an age of the feline.

In certain embodiments, in any of the methods disclosed herein, the classification
algorithm comprises a standard RNN algorithm. In certain embodiments, the input levels of
the biomarkers and the age of the feline relate to medical records of one or more visit of the
feline. In certain embodiments, the input levels of the biomarkers and the age of the feline
relate to medical records of at least 2 visits of the feline. In certain embodiments, in any of
the methods disclosed herein, the classification label or the probability score is transformed
from a combination of intermediate probability scores, each of which is determined based on
the input levels of the biomarkers and the age of the feline relating to a medical record of one
visit of the feline.

In certain embodiments, the classification label or the probability score relates to the
feline’s status of contracting chronic kidney disease (CKD) at the time of the determination
of the classification label or the probability score. In certain embodiments, the classification
label or the probability score relates to the feline’s risk of developing chronic kidney disease
(CKD) after the determination of the classification label or the probability score. In certain
embodiments, the classification label or the probability score relates to the feline’s risk of
developing chronic kidney disease (CKD) about 1 year after the determination of the
classification label or the probability score. In certain embodiments, the classification label
or the probability score relates to the feline’s risk of developing chronic kidney disease
(CKD) about 2 years after the determination of the classification label or the probability
score.

In certain embodiments, in any of the methods disclosed herein, the customized
recommendation comprises diagnosing the presence of a comorbidity in the feline. In certain
embodiments, the comorbidity is selected from the group consisting of hyperthyroidism,

diabetes mellitus, hepatopathy, underweight, murmur, arthritis, malaise, constipation,
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gastroenteritis, vomiting, inflammatory bowel disease, crystalluria, enteritis, urinary tract
infection, upper respiratory disease, urinary tract disease, obesity, inappropriate elimination,
cystitis, colitis and any combination thereof. In certain embodiments, the comorbidity is
selected from the group consisting of hyperthyroidism, diabetes mellitus, hepatopathy,
underweight, murmur and any combination thereof.

In certain non-limiting embodiments, the presently disclosed subject matter provides
for a method of identifying a susceptibility to developing chronic kidney disease (CKD) for a
feline, comprising the steps of: calculating a score based on an amount of one or more
biomarker of the feline, and determining the risk of developing CKD by comparing the score
with a threshold value; wherein at least one of the one or more biomarkers comprises urine
specific gravity level, creatinine level, urine protein level, blood urea nitrogen (BUN) or urea
level, white blood cell count (WBC), urine pH, or any combination thereof.

In certain non-limiting embodiments, the presently disclosed subject matter provides a
method of reducing a risk of developing chronic kidney disease (CKD) for a feline, the
method comprising the steps of: calculating a score based on an amount of one or more
biomarker of the feline; determining the risk of developing CKD by comparing the score with
a threshold value; and recommending a dietary regimen and/or further monitoring the one or
more biomarkers based on the risk; wherein at least one of the one or more biomarkers
comprises urine specific gravity level, creatinine level, urine protein level, blood urea
nitrogen (BUN) or urea level, white blood cell count (WBC), urine pH, or any combination
thereof.

In certain embodiments, the dietary regimen is selected from the group consisting of a
low phosphorous diet, a low protein diet, a low sodium diet, a potassium supplement diet, a
polyunsaturated fatty acids (PUFA) supplement diet, an anti-oxidant supplement diet, a
vitamin B supplement diet, a liquid diet and any combination thereof.

In certain embodiments, the score is calculated by summing a product of each
biomarker and a coefficient thereof.

In certain embodiments, the coefficient of the one or more biomarker is determined by
applying a linear discriminant analysis (LDA) to a dataset including medical records of
plurality of felines, wherein the medical records comprise measurements of the one or more
biomarker.

In certain embodiments, the threshold value is determined by applying a linear
discriminant analysis (LDA) to a dataset including medical records of plurality of felines,

wherein the medical records comprise measurements of the one or more biomarker.
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In certain embodiments, the one or more biomarker comprises creatinine, urine
specific gravity and BUN(or urea). In certain embodiments, the amounts of creatinine and
BUN(or urea) are measured in milligram per deciliter (mg/dL), the amount of urine specific
gravity is measured as aratio of the density of a urine sample to the density of water; wherein
the coefficient of creatinine is between about 0.004 to about 0.01, the coefficient of urine
specific gravity is between about -5 to about -80, the coefficient of urea is between about 0.01
to about 0.5, and the threshold value is between about -10 to about -70; and wherein the score
being greater than the threshold value indicates a risk of CKD. In certain embodiments, the
coefficient of creatinine is between about 0.005 to about 0.009, the coefficient of urine
specific gravity is between about -20 to about -50, and the coefficient of urea is between
about 0.06 to about 0.12. In certain embodiments, the threshold value is between about -20 to

about -50.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a distribution of visits per cat age at the time of the visit.

Figures 2A-2C depict a hierarchical clustering and heatmap plot of the 61,160 records
that comprise the dataset after min-max normalization and missing value imputation. Figure
2A depicts the dataset after the 1223 outliers have been removed; the 6 features that will be
used for prediction are shown in red rectangular boxes. Figure 2B depicts the heatmap of the
6 features only. Figure 2C depicts the heatmap without removing the 1223 outliers.

Figure 3 depicts a scatterplot matrix for the 6 most informative variables. Visits with
healthy and CKD cats are shown as green and red dots, respectively.

Figures 4A-4D depict PCA and t-SNE plots of healthy and CKD visits. Figure 4A
depicts a PCA 2D plot of healthy and CKD visits. Figure 4B depicts a PCA 3D plot of
healthy and CKD visits. Figure 4C depicts a t-SNE 2D plot of healthy and CKD visits.
Figure 4D depicts a t-SNE 3D plot of healthy and CKD visits.

Figure 5 depicts feature selection with Recursive Feature Elimination Top-down
wrapper method.

Figure 6 depicts optimal K parameter selection with all training data used.

Figures 7A-7B depict receiver operating characteristic curves (ROC curves) and
precision-recall curves (PR curves) for K= 3 to 17 for the sampled dataset. Figure 7A depict
PR curves for K= 3 to 17 for the sampled dataset. Figure 7B depicts ROC curves for K= 3 to
17 for the sampled dataset.
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Figures 8A-8B depict ROC curves and PR curves for each individual temporal
predictor and the Mixture of Experts (MOE). Figure 8A depicts PR curves for each
individual temporal predictor and the Mixture of Experts (MOE). Figure 8B depicts ROC
curves for each individual temporal predictor and the Mixture of Experts (MOE).

Figure 9 depicts Recurrent Neural Network architecture.

Figures 10A-10B depict schematics of machine learning processes. Figure 10A
depicts structure of the training dataset to the RNN architecture. For each RNN time slice a
vector of the six features for a unique cat are loaded. Figure 10B depicts training schema for
the single output RNN (vanilla or LSTM). At each time slice a single visit/cat is loaded and
the forward activation functions are calculated. At the last visit, the output is calculated
(probability of CKD that is converted to a binary prediction) and then compared to the real
label. Any difference between the true label and the prediction is backpropagated to refine the
weights. The procedure is repeated for several epochs, with one epoch being a full utilization
of the dataset.

Figure 11 depicts LSTM (top) and vanilla RNN (bottom) architectures with their 3
metrics. For each configuration, the first row represents the node distribution per layer and
the subsequent 3 rows the F1 score, AUC ROC and AUC PR values, respectively. The best
performers are highlighted in dark green boxes.

Figure 12 depicts F1-scores as a function of the number of nodes for LSTM and
vanilla RNN (blue and orange circles, respectively).

Figures 13A-13D depict the features of a model based on RNN-LSTM algorithm.
Figure 13A depicts RNN-LSTM architecture of the optimal configuration (3 LSTM layers, 7-
7-7 with a dense Feed Forward layer at the end). Figure 13B depicts ROC curves for the 5-
fold CV with AUC 0.93-0.96 (0.94 overall). Figure 13C depicts loss function vs. number of
epochs. Figure 13D depicts PR curves for the 5-fold CV with AUC 0.89-0.94 (0.91 overall).
Baseline performance is the prior probability of membership on the CKD class (26%) and is
depicted by a star (*).

Figures 14A-14C depict the features of a model based on vanilla RNN algorithm.
Figure 14A depicts an alternative, near-optimal implementation with a vanilla RNN
Architecture (3 RNN layers, 3-5-3 with a final dense Feed Forward). Figure 14B depicts
ROC curves for the 5-fold CV with AUC 0.93-0.95 (0.94 overall). Figure 14C depicts loss
function vs. number of epochs. Figure 14D depicts PR curves for the 5-fold CV with AUC
0.90-0.93 (0.91 overall).
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Figure 15 depicts schematic representation of recurrent neural network (RNN)
approaches. In a standard RNN the input feature data at every visit (here as an example urine
specific gravity (Urine SG), age, creatinine and blood urea nitrogen (BUN) are combined in
nonlinear ways through 2 hidden layers with 3 and 7 nodes, respectively, and merged with
the prior CKD probability — P(CKD) to yield an updated P(CKD). The weights and activation
functions that define the nonlinear pattern are the same for every visit. The model output is
P(CKD) at the last visit. A LSTM (long short-term memory) approach is conceptually similar
but has additional mechanisms to forget part of the information from prior visits when
combining these with the current visit information.

Figure 16 depicts distribution of age at evaluation (TO0), creatinine, blood urea
nitrogen and urine specific gravity in the study data set differentiated by CKD status.

Figures 17A-17H depict randomly picked electronic health records (EHRs) for
individual cats with CKD statuses showing the observations for creatinine, blood urea
nitrogen and urine specific gravity as a function of time before diagnosis (T0). A) and B)
CKD status of “No CKD.” C) and D) CKD status of “Probable CKD.” E) to H) CKD status
of “CKD”.

Figure 18 depicts F1-score as a function of model architecture for RNN and LSTM
prediction models.

Figure 19 depicts distribution of model probability outputs for the three different
groups predicted at evaluation TO in the test data set. A diagnosis probability p(CKD) of
greater than 0.5 denotes a prediction of future CKD risk, and a prediction below 0.5 predicts
low future CKD risk for that cat.

Figure 20 depicts model sensitivity with 95% confidence interval as a function of the
number of visits before the time of diagnosis. Note that confidence intervals increase as there
are less EHRs with large numbers of visits before the time of diagnosis.

Figure 21 depicts model sensitivity with 95% confidence intervals as a function of the
time before diagnosis where the prediction was made only with the data up to that point.

Figure 22 depicts model specificity with 95% confidence intervals as a function of

age at diagnosis.

DETAILED DESCRIPTION

To date, there remains a need for methods of predicting, treating and/or preventing
CKD. The present application relates to determining susceptibility of a feline to developing

chronic kidney disease (CKD) and methods of preventing and/or reducing a risk of
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developing CKD for a feline, using biomarkers and, optionally, an age of the feline, wherein

the biomarkers include, but are not limited to, urine specific gravity, creatinine, urine protein,
blood urea nitrogen (BUN) (or urea), white blood cell count (WBC) and urine pH. For clarity
and not by way of limitation, the detailed description of the presently disclosed subject matter

is divided into the following subsections:

1. Definitions;

2 Biomarkers;

3. Test methods;

4. Treatment methods; and
5 Device and system.

1. DEFINITIONS

The terms used in this specification generally have their ordinary meanings in the art,
within the context of this invention and in the specific context where each term is used.
Certain terms are discussed below, or elsewhere in the specification, to provide additional
guidance to the practitioner in describing the methods and compositions of the invention and
how to make and use them.

As used herein, the use of the word “a” or “an” when used in conjunction with the
term “comprising” in the claims and/or the specification may mean “one,” but it is also

2% <<

consistent with the meaning of “one or more,” “at least one,” and “one or more than one.”

2% <<

Still further, the terms “having,” “including,” “containing” and “comprising” are
interchangeable and one of skill in the art is cognizant that these terms are open ended terms.
The term “about” or “approximately” means within an acceptable error range for the
particular value as determined by one of ordinary skill in the art, which will depend in part on
how the value is measured or determined, i.e., the limitations of the measurement system.
For example, “about” can mean within 3 or more than 3 standard deviations, per the practice
in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more
preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively,
particularly with respect to biological systems or processes, the term can mean within an
order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value.
The term “effective treatment”™ or “effective amount™ of a substance means the
treatment or the amount of a substance that is sufficient to effect beneficial or desired results,

including clinical results, and, as such, an “effective treatment” or an “effective amount™

depends upon the context in which it is being applied. In the context of administering a

10
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composition to reduce a risk of CKD, and/or administering a composition to treat or delay the
progression of CKD, an effective amount of a composition described herein is an amount
sufficient to treat and/or ameliorate CKD, as well as decrease the symptoms and/or reduce the
likelihood of developing CKD. An effective treatment described herein is a treatment
sufficient to treat and/or ameliorate CKD, as well as decrease the symptoms and/or reduce the
likelihood of CKD. The decrease can be a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, 95%, 98% or 99% decrease in severity of symptoms of CKD, or likelihood of CKD.

An effective amount can be administered in one or more administrations. A likelihood of an
effective treatment described herein is a probability of a treatment being effective, i.e.,
sufficient to treat and/or ameliorate CKD, as well as decrease the symptoms.

As used herein, and as well understood in the art, “treatment” is an approach for
obtaining beneficial or desired results, including clinical results. For purposes of this subject
matter, beneficial or desired clinical results include, but are not limited to, alleviation or
amelioration of one or more symptoms, diminishment of extent of disease, stabilized (i.e., not
worsening) state of disease, prevention of disease, reducing the likelihood of developing
disease, delay or slowing of disease progression, and/or amelioration or palliation of the
disease state. The decrease can be a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,
95%, 98% or 99% decrease in severity of complications or symptoms. “Treatment” can also
mean prolonging survival as compared to expected survival if not receiving treatment.

The term “pet food™ or “pet food composition™ or “pet food product™ or “final pet
food product” means a product or composition that is intended for consumption by, and
provides certain nutritional benefit to a companion animal, such as a cat, a dog, a guinea pig,
a rabbit, a bird or a horse. For example, but not by way of limitation, the companion animal
can be a “domestic” dog, e.g., Canis lupus familiaris. In certain embodiments, the
companion animal can be a “domestic” cat such as Felis domesticus. A “pet food” or “pet
food composition™ or “pet food product” or “final pet food product” includes any food, feed,
snack, food supplement, liquid, beverage, treat, toy (chewable and/or consumable toys), meal
substitute or meal replacement.

As used herein, the term “predetermined reference value™ or “reference value™ refers
to a threshold level of a biomarker by comparing with which, a diagnosis of CKD can be
made. The reference value can be a threshold value or a reference range. In certain
embodiments, a reference value can be derived from ROC curve analysis, selecting the
reference value as that which maximizes sensitivity while keeping the specificity above a

user-defined threshold. A receiver operating characteristic curve, i.e. ROC curve, is a
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graphical plot that illustrates the diagnostic ability of a binary classifier system. In certain
embodiments, the reference value can be selected as that which maximizes specificity while
keeping the sensitivity above a user- defined threshold, for example, 80% sensitivity. In
certain embodiments, a reference value can be the upper limit of the range of a biomarker
levels produced from a population of healthy subjects, if the biomarker is increased in
subjects having CKD, i.e., the predetermined algorithm is positive logic. Conversely, a
reference value can be the lower limit of the range of a biomarker levels or produced from a
population of healthy subjects, if the biomarker is decreased in subjects having CKD, i.e., the
algorithm is negative logic.

The term “control population” means a control group of felines that do not have
chronic kidney disease and that have not had any variables manipulated. The selection of the
felines to be included in the control groups may be based on genetic background, average
health status, age, history of nutrition, vaccination and/or prophylactic treatment. In certain
embodiments, a control population can comprise a group of at least 3, preferably at least 10,
or, more preferably, at least 50 felines with a similar genetic background, age and/or average
health status.

The term “visit” means a meeting between a healthcare practitioner and a feline. In
certain embodiments, a medical record is generated during or after a visit. In certain
embodiments, an amount of one or more biomarkers is determined during a visit. In certain
embodiments, a diagnosis of CKD is made during a visit. The practitioner can make a visit to
the feline in a hospital and/or in a home or other location. A feline, taken by an owner, can
make a visit to the practitioner in a clinic or an office.

The term “urine specific gravity” (a.k.a. urine SG or USG) measures the ratio of urine
density compared to water density. It is a measure of the concentration of solutes in the urine,
and it provides information on the ability of a kidney to concentrate urine.

2. BIOMARKERS

In certain non-limiting embodiments, the presently disclosed subject matter provides
for biomarkers and methods of using the same to determine a feline’s susceptibility to
developing CKD.

The term “biomarker” as used herein, refers to any biological measurement,
parameter, or combination thereof related to the development of a disease of interest. In
particular, a biomarker for predicting CKD is one or more biological parameters related to the

development of CKD. The prevention and/or treatment of kidney disease may be tailored,
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depending upon the risk of developing CKD indicated by the biomarkers. The prediction of
recovery can also be determined by monitoring the biomarkers.

In certain embodiments, the biomarker comprises at least one creatinine level, at least
one at least one urine specific gravity level, at least one blood urea nitrogen (BUN) or urea
level or any combination thereof. In certain embodiments, the biomarker comprises a urine
specific gravity level, a creatinine level, a urine protein level, a blood urea nitrogen (BUN) or
urea level, a white blood cell count (WBC), a urine pH or a combination thereof.

In certain embodiments, BUN and urea measurement is interchangeable. As BUN
reflects only the nitrogen content of urea (molecular weight 28) and urea measurement
reflects the whole molecule (molecular weight 60), urea measurement is 2.14 (60/28) times of
BUN measurement.

In certain embodiments, the biomarker comprises the urine specific gravity level in a
urine sample of the feline. In certain embodiments, the biomarker comprises the total
creatinine level in the blood of the feline. In certain embodiments, the biomarker comprises
the creatinine level in the serum of the feline. In certain embodiments, the biomarker
comprises the creatinine in the plasma of the feline. In certain embodiments, the biomarker
comprises the creatinine in a urine sample of the feline. In certain embodiments, the
biomarker comprises the urine protein in a urine sample of the feline. In certain
embodiments, the biomarker comprises the total urea in the blood of the feline. In certain
embodiments, the biomarker comprises the urea in the serum of the feline. In certain
embodiments, the biomarker comprises the urea in the plasma of the feline. In certain
embodiments, the biomarker comprises the urea in a urine sample of the feline. In certain
embodiments, the biomarker comprises the blood urea nitrogen (BUN) or urea in the blood of
the feline. In certain embodiments, the biomarker comprises the white blood cell count
(WBCQ) in the blood of the feline. In certain embodiments, the biomarker comprises the urine
pH in a urine sample of the feline. In certain embodiments, a change in a level of a
biomarker is associated with an increased risk of developing CKD.

With each biomarker, an increased or a decreased level of the biomarker can give
information about a feline’s susceptibility to developing CKD, depending on the particular
biomarker. For example, in certain embodiments, a decreased level of urine specific gravity
indicates an increased risk of developing CKD. In certain embodiments, an increased level of
urine specific gravity indicates a decreased risk of developing CKD. In certain embodiments,
a lower level of urine specific gravity compared to a predetermined reference value based on

average levels of urine specific gravity in a control population indicates an increased risk of
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developing CKD. In certain embodiments, a higher level of urine specific gravity compared
to a predetermined reference value based on average levels of urine specific gravity in a
control population indicates a decreased risk of developing CKD. In certain embodiments,
the average levels of urine specific gravity in a control population is between about 1.00 and
about 1.1, between about 1.01 and about 1.09, between about 1.02 and about 1.08, or between
about 1.03 and about 1.07. In certain embodiments, the average levels of urine specific
gravity in a control population is between about 1.001 and about 1.08. In certain
embodiments, the predetermined reference value of urine specific gravity is about 100%,
about 99%, about 98%, about 97%, about 96%, about 95%, about 94%, about 93%, about
92%, about 91%, about 90%, about 89%, about 88%, about 87%, about 86%, about 85%,
about 80%, about 75%, about 70% or less, or any intermediate percentage or range of the
average level of urine specific gravity in a control population. In certain embodiments, the
predetermined reference value of urine specific gravity is between about 99.9% and about
90%, between about 95% and about 90%, or between about 99% and about 92% of the
average level of urine specific gravity in a control population. In certain embodiments, the
predetermined reference value of urine specific gravity is between about 1.001 and about
1.08, between about 1.001 and about 1.07, between about 1.001 and about 1.06, between
about 1.001 and about 1.05. or between about 1.001 and about 1.04. In certain embodiments,
a feline’s hydration status is considered to adjust the urine specific gravity level.

In certain embodiments, an increased level of creatinine indicates an increased risk of
developing CKD. In certain embodiments, a decreased level of creatinine indicates a
decreased risk of developing CKD. In certain embodiments, a higher level of creatinine
compared to a predetermined reference value based on average levels of creatinine in a
control population indicates an increased risk of developing CKD. In certain embodiments, a
lower level of creatinine compared to a predetermined reference value based on average
levels of creatinine in a control population indicates a decreased risk of developing CKD. In
certain embodiments, the average levels of creatinine in a control population is between about
0.5 mg/dL and about 5 mg/dL, between about 0.8 mg/dL and about 3 mg/dL, between about 1
mg/dL and about 2.8 mg/dL, or between about 1.2 mg/dL and about 2.2 mg/dL. In certain
embodiments, the average levels of creatinine in a control population is between about 0.8
mg/dL and about 2.4 mg/dL., In certain embodiments, the predetermined reference value of
creatinine is about 100%, about 105%, about 110%, about 115%. about 120%, about 125%,
about 130%, about 140%, about 150%, about 200%, about 250%, about 300%, about 400%,

about 500% or more, or any intermediate percentage or range of the average level of
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creatinine in a control population. In certain embodiments, the predetermined reference value
of creatinine is between about 100% and about 120%, between about 120% to about 150%,
between about 150% and about 200%, or between about 200% and about 500% of the
average level of creatinine in a control population. In certain embodiments, the
predetermined reference value of creatinine is between about 0.5 mg/dL and about 3 mg/dL,
between about 1 mg/dL and about 2.4 mg/dL, between about 1 mg/dL and about 2 mg/dL, or
between about 1.2 mg/dL and about 1.8 mg/dL.

In certain embodiments, a decreased level of urine protein indicates an increased risk
of developing CKD. In certain embodiments, an increased level of urine protein indicates a
decreased risk of developing CKD. In certain embodiments, an increased level of urine
protein indicates an increased risk of developing CKD. In certain embodiments, a decreased
level of urine protein indicates a decreased risk of developing CKD. In certain embodiments,
a lower level of urine protein compared to a predetermined reference value based on average
levels of urine protein in a control population indicates an increased risk of developing CKD.
In certain embodiments, a higher level of urine protein compared to a predetermined
reference value based on average levels of urine protein in a control population indicates a
decreased risk of developing CKD. In certain embodiments, a higher level of urine protein
indicates infection or kidney damage. In certain embodiments, a historic bout of elevated
urine protein indicates earlier infections and/or higher risk of kidney damage. In certain
embodiments, current elevation of urine protein indicates higher risk of declining renal
function and/or CKD. In certain embodiments, a feline exhibits a higher level of urine
protein compared to a predetermined reference value at present, e.g., a higher level of urine
protein is found in a current sample of the feline or in a recent medical record of the feline
(e.g., arecord made within about 1 week, about 2 weeks, about 3 weeks, about 4 weeks,
about 5 weeks, about 10 weeks, about 3 months or about 6 months before practicing any one
of the methods disclosed herein). In certain embodiments, a feline has exhibited a higher
level of urine protein compared to a predetermined reference value in the past, e.g., a higher
level of urine protein is found in a historic sample of the feline or in a historical medical
record of the feline (e.g., a record made more than about 1 week, about 2 weeks, about 1
month, about 2 months, about 3 months or about 6 months before practicing any one of the
methods disclosed herein). In certain embodiments, the average levels of urine protein in a
control population is between about 0 mg/dL and about 50 mg/dL, between about 0 mg/dL
and about 25 mg/dL, between about 0 mg/dL and about 10 mg/dL, or between about 0 mg/dL

and about 5 mg/dL. In certain embodiments, the average levels of urine protein in a control
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population is between about O mg/dL and about 20 mg/dL. In certain embodiments, the
predetermined reference value of urine protein is at least about 100%, about 110%, about
120%, about 130%, about 140%, about 150%, about 160%, about 170%, about 180%, about
190%, about 200%, about 250%, about 300%, about 400%, about 500%, about 1000%, about
2000%, about 5000%, about 10000% or more, or any intermediate percentage or range of the
average level of urine protein in a control population. In certain embodiments, the
predetermined reference value of urine protein is between about 100% and about 200%,
between about 200% and about 500%, or between about 200% and about 1000% of the
average level of urine protein in a control population. In certain embodiments, the
predetermined reference value of urine protein is between about 0.001 mg/dL and about 100
mg/dL, between about 1 mg/dL and about 80 mg/dL, between about 5 mg/dL and about 70
mg/dL, between about 10 mg/dL. and about 60 mg/dL, or between about 20 mg/dL. and about
50 mg/dL.

In certain embodiments, an increased level of BUN or urea indicates an increased risk
of developing CKD. In certain embodiments, a decreased level of BUN or urea indicates a
decreased risk of developing CKD. In certain embodiments, a higher level of BUN or urea
compared to a predetermined reference value based on average levels of BUN or urea in a
control population indicates an increased risk of developing CKD. In certain embodiments, a
lower level of BUN or urea compared to a predetermined reference value based on average
levels of BUN or urea in a control population indicates a decreased risk of developing CKD.
In certain embodiments, the average levels of BUN in a control population is between about 5
mg/dL and about 100 mg/dL, between about 10 mg/dL and about 50 mg/dL, between about
15 mg/dL and about 40 mg/dL, or between about 20 mg/dL and about 30 mg/dL. In certain
embodiments, the average levels of BUN in a control population is between about 16 mg/dL
and about 36 mg/dL. In certain embodiments, the average levels of urea in a control
population is between about 10.7 mg/dL and about 214 mg/dL, between about 21.4 mg/dL
and about 107 mg/dL, between about 32.1 mg/dL and about 85.6 mg/dL, or between about
42.8 mg/dL and about 64.2 mg/dL. In certain embodiments, the average levels of ureain a
control population is between about 34.24 mg/dL and about 77.04 mg/dL. In certain
embodiments, the predetermined reference value of BUN or urea is about 100%, about 105%,
about 110%, about 115%, about 120%, about 125%, about 130%, about 140%, about 150%,
about 200%, about 250%, about 300%, about 400%, about 500% or more, or any
intermediate percentage or range of the average level of BUN or urea in a control population.

In certain embodiments, the predetermined reference value of BUN or urea is between about
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100% and about 120%, between about 120% to about 150%, between about 150% and about
200%, or between about 200% and about 500% of the average level of BUN or ureain a
control population. In certain embodiments, the predetermined reference value of BUN is
between about 10 mg/dL and about 100 mg/dL, between about 15 mg/dL and about 90
mg/dL, between about 20 mg/dL. and about 80 mg/dL, between about 30 mg/dL and about 70
mg/dL, between about 40 mg/dL. and about 70 mg/dL, or between about 40 mg/dL. and about
60 mg/dL. In certain embodiments, the predetermined reference value of urea is between
about 21.4 mg/dL and about 214 mg/dL, between about 32.1 mg/dL and about 192.6 mg/dL,
between about 42.8 mg/dL and about 171.2 mg/dL, between about 64.2 mg/dL and about
149.8 mg/dL, between about 85.6 mg/dL and about 149.8 mg/dL, or between about 85.6
mg/dL and about 128.4 mg/dL.

In certain embodiments, a decreased level of WBC indicates an increased risk of
developing CKD. In certain embodiments, an increased level of WBC indicates a decreased
risk of developing CKD. In certain embodiments, an increased level of WBC indicates an
increased risk of developing CKD. In certain embodiments, a decreased level of WBC
indicates a decreased risk of developing CKD. In certain embodiments, WBC can be used by
a prediction model to rule out other infections. In certain embodiments, WBC can be used by
a prediction model to relate previous infections to future risk. In certain embodiments, WBC
can be used by a prediction model to understand dehydration level and normalize the values
of other biomarkers. In certain embodiments, a prediction model generated by machine
learning process can interpret the WBC count according to the visit, the current and/or
previous values of other biomarkers. In certain embodiments, a higher level of WBC
compared to a predetermined reference value based on average levels of WBC in a control
population indicates an increased risk of developing CKD. In certain embodiments, a higher
level of WBC indicates infection or kidney damage. In certain embodiments, a historic bout
of elevated WBC indicates earlier infections and/or higher risk of kidney damage. In certain
embodiments, current elevation of WBC indicates higher risk of declining renal function
and/or CKD. In certain embodiments, a feline exhibits a higher level of WBC compared to a
predetermined reference value at present, e.g., a higher level of WBC is found in a current
sample of the feline or in a recent medical record of the feline (e.g., a record made within
about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 10 weeks,
about 3 months or about 6 months before practicing any one of the methods disclosed herein).
In certain embodiments, a feline has exhibited a higher level of WBC compared to a

predetermined reference value in the past, e.g., a higher level of WBC is found in a historic
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sample of the feline or in a historical medical record of the feline (e.g., a record made more
than about 1 week, about 2 weeks, about 1 month, about 2 months, about 3 months or about 6
months before practicing any one of the methods disclosed herein). In certain embodiments,
the average levels of WBC in a control population is between about 1 x 10° /L and about 60 x
10° /L, between about 2 x 10° /L and about 50 x 10? /L, between about 5 x 10° /L and about
30 x 10° /L, between about 6 x 10° /L and about 20 x 10? /L or between about 8 x 10° /L and
about 16 x 10° /L. In certain embodiments, the average levels of WBC in a control
population is between about 5.5 x 10° /L and about 19.5 x 10° /L. In certain embodiments,
the predetermined reference value of WBC is about 100%, about 105%, about 110%, about
115%, about 120%, about 125%, about 130%, about 140%, about 150%, about 200%, about
250%, about 300%, about 400%, about 500% or more, or any intermediate percentage or
range of the average level of WBC in a control population. In certain embodiments, the
predetermined reference value of WBC is between about 100% and about 120%, between
about 120% to about 150%, between about 150% and about 200%, or between about 200%
and about 500% of the average level of WBC in a control population. In certain
embodiments, the predetermined reference value of WBC is between about 2 x 10? /L and
about 100 x 107 /L, between about 5 x 10° /L and about 80 x 10° /L, between about 10 x 10°
/L and about 70 x 10° /L, between about 20 x 10° /L and about 60 x 10° /L or between about
30 x 10% /L and about 50 x 10° /L. In certain embodiments, a lower level of WBC compared
to a predetermined reference value based on average levels of WBC in a control population
indicates a decreased risk of developing CKD. In certain embodiments, the predetermined
reference value of WBC is about 100%, about 95%. about 90%, about 85%, about 80%,
about 75%, about 70%, about 60%, about 50% or less, or any intermediate percentage or
range of the average level of WBC in a control population. In certain embodiments, the
predetermined reference value of WBC is between about 100% and about 90%, between
about 80% and about 60%, or between about 60% and about 40% of the average level of
WBC in a control population.

In certain embodiments, a decreased level of urine pH indicates an increased risk of
developing CKD. In certain embodiments, an increased level of urine pH indicates a
decreased risk of developing CKD. In certain embodiments, a lower level of urine pH
compared to a predetermined reference value based on average levels of urine pH in a control
population indicates an increased risk of developing CKD. In certain embodiments, a higher
level of urine pH compared to a predetermined reference value based on average levels of

urine pH in a control population indicates a decreased risk of developing CKD. In certain
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embodiments, the average levels of urine pH in a control population is between about 4 and
about 8.5, between about 5 and about 8, between about 5.2 and about 7.5, or between about 6
and about 7. In certain embodiments, the average levels of urine pH in a control population
is between about 5.5 and about 7.5. In certain embodiments, the predetermined reference
value of urine pH is about 100%, about 95%, about 90%, about 85%, about 80%, about 75%,
about 70%, about 60%, about 50% or less, or any intermediate percentage or range of the
average level of urine pH in a control population. In certain embodiments, the predetermined
reference value of urine pH is between about 100% and about 80%, between about 80% and
about 60%, or between about 60% and about 40% of the average level of urine pH in a
control population. In certain embodiments, the predetermined reference value of urine pH is
between about 3 and about 8, between about 4 and about 7.5, between about 4.5 and about 7,
between about 4.5 and about 6.5, between about 5 and about 6.5, or between about 5 and
about 6. In certain embodiments, a feline’s diet and the handling of the urine sample of the
feline is considered to adjust the urine specific gravity level.

In certain embodiments, an increased or a decreased level of a biomarker is detected
at present, e.g., an increased or a decreased level of a biomarker is found in a current sample
of a feline or in a recent medical record of the feline (e.g., a record made within about 1
week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 10 weeks, about 3
months or about 6 months before practicing any one of the methods disclosed herein). In
certain embodiments, a feline has exhibited an increased or a decreased level of a biomarker
in the past, e.g., an increased or a decreased level of urine protein is found in a historic
sample of the feline or in a historical medical record of the feline (e.g., a record made more
than about 1 week, about 2 weeks, about 1 month, about 2 months, about 3 months or about 6
months before practicing any one of the methods disclosed herein).

In general, the ranges of the average levels for the biomarkers can account for 80-90%
or more of the healthy, normal population. Therefore, about 5-10% of the population can
have values above the higher end of an average/normal range, and about another 5-10 % of
the population can have values below the low end of an average/normal range. However,
these values can be normal for a particular feline. In certain embodiments, the actual ranges
and validity of the biomarkers can be determined by each laboratory or testing, depending on
the machine and/or on the population of felines tested to determine an average/normal range.
Additionally, laboratory tests can be impacted by sample handling and machine

maintenance/calibration. Updates to machines can also result in changes in the normal ranges.
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Any one of these factors can be considered for adjusting the average levels and/or the
predetermined reference values of each biomarker.

In certain embodiments, the biomarker comprises at least one further biomarker. In
certain embodiments, the at least one further biomarker is a biomarker identified in Table 1 in
Example 1. In certain embodiments, the at least one further biomarker is selected from the
group consisting of phosphate and parathyroid hormone (PTH), symmetric dimethylarginine
(SDMA), systolic blood pressure, potassium, total calcium, hyaluronic acid, death receptor 5,
transforming growth factor 1, ferritin, beta globin, catalase, alpha globin, epidermal growth
factor receptor pathway substrate 8, mucin isoform precursor, ezrin, delta globin, moesin,
phosphoprotein isoform, annexin A2, myoglobin, hemopexin, serine proteinase inhibitor,
serpine peptidase inhibitor, CD14 antigen precursor, fibronectin isoform preprotein,
angiotensinogen preprotein, complement component precursor, carbonic anhydrase,
uromodulin precursor, complement factor H, complement component 4 BP, heparan sulfate
proteoglycan 2, olfactomedian-4, leucine rich alpha-2 glycoprotein, ring finger protein 167,
inter-alpha globulin inhibitor H4, heparan sulfate proteoglycan 2, N-acylshingosine
aminohydrolase, serine proteinase inhibitor clade A member 1, mucin 1, clusterin isoform 1,
brain abundant membrane attached signal protein 1, dipeptidase 1, fibronectin 1 isoform 5
preprotein, angiotensinogen preproprotien, carbonic anhydrase, uromodulin precursor,
Metalloproteinase inhibitor 2, Insulin-like growth factor-binding protein 7, Immunoglobulin
A, Immunoglobulin G1, Immunoglobulin G2, Alpha-1 antitrypsin, Serum amyloid P
component, Hepatocyte growth factor, Intercellular adhesion molecule 1, Beta-2-glycoprotein
1, Interleukin-1 beta, Neutrophil Elastase, Tumor necrosis factor receptor superfamily
member 11B, Interleukin-11, Cathepsin D, C-C motif chemokine 24, C-X-C motif
chemokine 6, C-C motif chemokine 13, C-X-C motif chemokines -1, -2, and -3, Matrilysin,
Interleukin-2 receptor alpha chain, Insulin-like growth factor-binding protein 3, Macrophage
colony-stimulating factor 1, apolipoprotein C-I, apolipoprotein C-II, fibrinogen alpha chain,
fibrinogen A-alpha chain, kininogen, Inter-Alpha Inhibitor H4 (ITIH4), keratin Type |
cytoskeletol 10 cystatin A, cystatin B, and any combination thereof. See for example U.S.
Publication No. 2012/0077690 A1, U.S. Publication No. 2013/0323751 A1, EP 3,112,871
Al, EP 2,462,445 Al, and EP 3,054,301 Al.

In certain embodiments, the at least one further biomarker is in the blood of the feline.
In certain embodiments, the at least one further biomarker is in the serum of the feline. In
certain embodiments, the at least one further biomarker is in the plasma of the feline. In

certain embodiments, the at least one further biomarker is in a urine of the feline.
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In certain embodiments, the predetermined reference value of a biomarker can be
based on an average amount of the biomarker in test samples in a control population. The
control population can be a group of at least 3, preferably at least 10, more preferred at least
50 felines with a similar genetic background, age and average health status.

In certain embodiments, a predetermined reference value of a biomarker can be less
than about 90%, about 80%, about 70%, about 60%, about 50%, about 40%, about 30%,
about 20%, about 10%, about 5%, about 2%, or about 1%, of the average level of the
biomarker in a control population. In certain embodiments, a predetermined reference value
of a biomarker can be more than about 110%, about 120%, about 130%, about 140%, about
150%, about 160%, about 170%, about 180%. about 190%, about 200%, about 250%, about
300%, about 400%, about 500%, about 600%, about 700%, about 800%, about 900% or more
of the average level of the biomarker in blood in a control population.

In certain embodiments, the amounts of the biomarkers in the feline can be detected
and quantified by any means known in the art. In certain embodiments, the level of
creatinine, urine protein, WBC, urea and/or BUN is determined by a fluorescence method or
a luminescence method. In certain embodiments, the level of creatinine, urine protein, WBC,
urea and/or BUN is determined by an antibody-based detection method, e.g., an enzyme-
linked immunosorbent assay (ELISA), e.g., a sandwich ELISA. In certain embodiments, the
level of urine protein is determined by using a urine albumin antibody. In certain
embodiments, the level of urine specific gravity can be measured by refractometry,
hydrometry and reagent strips. In certain embodiments, the level of urine pH can be
measured by a pH test strip, or a pH meter and a pH probe. In certain embodiments, the level
of WBC can be measured by flow cytometry.

In certain embodiments, other detection methods, such as other spectroscopic
methods, chromatographic methods, labeling techniques, or quantitative chemical methods
can be used. In certain embodiments, the level of a biomarker from a feline and a
predetermined reference value of the biomarker are determined by the same method.

3. TEST METHODS

The presently disclosed subject matter provides test methods for determining
susceptibility of a feline to developing chronic kidney disease (CKD) and methods of
preventing and/or reducing a risk of a feline developing chronic kidney disease (CKD).

In certain non-limiting embodiments, the method comprises: obtaining an amount of
one or more biomarkers in the feline; and comparing the amount of each of the one or more

biomarkers to a predetermined reference value. In certain embodiments, the predetermined
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reference value is based on an average amount of the biomarker in a sample in a control
population. In certain embodiments, the one or more biomarkers comprises creatinine, urine
specific gravity and BUN or urea. In certain embodiments, an amount of creatinine above a
first predetermined value, an amount of urine specific gravity below a second predetermined
reference value, and an amount of BUN or urea above a third predetermined reference value
indicate arisk of CKD. In certain embodiments, the first predetermined reference value is
between about 0.5 mg/dL and about 3 mg/dL, between about 1 mg/dL and about 2.4 mg/dL,
between about 1 mg/dL and about 2 mg/dL, or between about 1.2 mg/dL and about 1.8
mg/dL. In certain embodiments, the second predetermined reference value is between about
1.001 and about 1.08, between about 1.001 and about 1.07, between about 1.001 and about
1.06, between about 1.001 and about 1.05. or between about 1.001 and about 1.04. In certain
embodiments, when BUN measurement is used, the third predetermined reference value is
between about 10 mg/dL and about 100 mg/dL, between about 15 mg/dL and about 90
mg/dL, between about 20 mg/dL. and about 80 mg/dL, between about 30 mg/dL and about 70
mg/dL, between about 40 mg/dL. and about 70 mg/dL, or between about 40 mg/dL. and about
60 mg/dL. In certain embodiments, when urea measurement is used, the third predetermined
reference value is between about 21.4 mg/dL and about 214 mg/dL, between about 32.1
mg/dL and about 192.6 mg/dL, between about 42.8 mg/dL and about 171.2 mg/dL, between
about 64.2 mg/dL and about 149.8 mg/dL, between about 85.6 mg/dL and about 149.8
mg/dL, or between about 85.6 mg/dL and about 128.4 mg/dL.

In certain non-limiting embodiments, the one or more biomarkers comprises urine
specific gravity, creatinine, urine protein, blood urea nitrogen (BUN) or urea, white blood
cell count (WBC) and/or urine pH. In certain embodiments, an amount of creatinine above a
first predetermined value, an amount of urine specific gravity below a second predetermined
reference value, an amount of BUN or urea above a third predetermined reference value, an
amount of urine protein above a fourth predetermined value, an amount of WBC above a fifth
predetermined reference value, and an amount of urine pH below a sixth predetermined
reference value indicate a risk of CKD. In certain embodiments, the first predetermined
reference value is between about 0.5 mg/dL and about 3 mg/dL, between about 1 mg/dL and
about 2.4 mg/dL, between about 1 mg/dL. and about 2 mg/dL, or between about 1.2 mg/dL
and about 1.8 mg/dL. In certain embodiments, the second predetermined reference value is
between about 1.001 and about 1.08, between about 1.001 and about 1.07, between about
1.001 and about 1.06, between about 1.001 and about 1.05. or between about 1.001 and about

1.04. In certain embodiments, when BUN measurement is used, the third predetermined
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reference value is between about 10 mg/dL and about 100 mg/dL, between about 15 mg/dL
and about 90 mg/dL, between about 20 mg/dL and about 80 mg/dL, between about 30 mg/dL
and about 70 mg/dL, between about 40 mg/dL and about 70 mg/dL, or between about 40
mg/dL and about 60 mg/dL. In certain embodiments, when urea measurement is used, the
third predetermined reference value is between about 21.4 mg/dL and about 214 mg/dL,
between about 32.1 mg/dL and about 192.6 mg/dL, between about 42.8 mg/dL and about
171.2 mg/dL, between about 64.2 mg/dL and about 149.8 mg/dL, between about 85.6 mg/dL
and about 149.8 mg/dL, or between about 85.6 mg/dL and about 128.4 mg/dL. In certain
embodiments, the fourth predetermined reference value is between about 0.001 mg/dL and
about 100 mg/dL, between about 1 mg/dL and about 80 mg/dL, between about 5 mg/dL and
about 70 mg/dL, between about 10 mg/dL and about 60 mg/dL, or between about 20 mg/dL
and about 50 mg/dL. In certain embodiments, the fifth predetermined reference value is
between about 2 x 10° /L and about 100 x 10° /L, between about 5 x 10° /L and about 80 x
107 /L, between about 10 x 10° /L and about 70 x 10° /L, between about 20 x 10° /L and about
60 x 107 /L or between about 30 x 10° /L and about 50 x 10° /L. In certain embodiments, the
sixth predetermined reference value is between about 3 and about 8, between about 4 and
about 7.5, between about 4.5 and about 7, between about 4.5 and about 6.5, between about 5
and about 6.5, or between about 5 and about 6.

In certain non-limiting embodiments, the method of predicting a risk of chronic
kidney disease (CKD) for a feline comprises: receiving at least one input level of one or more
biomarkers from samples taken from the feline; analyzing and transforming the at least one
input level of the one or more biomarkers to derive a probability score or a classification label
via a classification algorithm; and generating an output. In certain embodiments, the method
of predicting a risk of chronic kidney disease (CKD) for a feline comprises: receiving at least
one input level of one or more biomarkers from samples taken from the feline and an input
level of an age of the feline; analyzing and transforming the at least one input level of the one
or more biomarkers and the input level of the age to derive a probability score or a
classification label via a classification algorithm; and generating an output. In certain
embodiments, the method further comprises determining a customized recommendation
based on the determining or categorizing. In certain embodiments, the code, when executed
by the processor, further causes the system to display the determination or categorization and
customized recommendation on a graphical user interface. In certain embodiments, the age

of the feline is the age when a method disclosed herein is carried out.
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In certain embodiments, the at least one of the one or more biomarkers comprises
information relating to a urine specific gravity level, a creatinine level, a urine protein level, a
blood urea nitrogen (BUN) or urea level, a white blood cell count (WBC), urine pH, or a
combination thereof. In certain embodiments, the biomarkers further comprise one or more
parameters selected from Table 1 in Example 1. In certain embodiments, the analyzing and
transforming the at least one input level of the one or more biomarkers and optionally the
input level of the age comprises organizing and modifying each input level. In certain
embodiments, the at least one input level is normalized. In certain embodiments, the at least
one input level is transformed into composite levels of one or more biomarkers. In certain
embodiments, the input level of the age is transformed into a composite level of the age. In
certain embodiments, the at least one input level is transformed and/or adjusted according to
biological information of the feline, e.g., weight, age, height, medical history, breed, etc. In
certain embodiments, the at least one input level comprises sequential measurements of the
one or more biomarkers measured at different time points.

In certain embodiments, the classification algorithm comprises code developed from a
training dataset. In certain embodiments, the classification algorithm is developed using a
machine learning technique, e.g., a training algorithm.

In certain embodiments, the classification algorithm is a hard classifier that
determines the classification label of whether the feline is at risk of developing CKD or a soft
classifier, which determines the probability score of the feline developing CKD.

In certain embodiments, the output is the classification label or the probability score.

In certain embodiments, the step of obtaining the data comprises measuring an
amount of each of the one or more biomarkers in a sample from the feline. In certain
embodiments, the step of obtaining the data from the test sample comprises receiving the data
from a third party that has measured an amount of each of the one or more biomarkers in a
sample from the feline to determine the data. In certain embodiments, the sample from the
individual is a blood sample or a urine sample.

In certain embodiments, the training dataset comprising medical information relating
to both a first plurality of biomarkers from a first set of sample felines and a second plurality
of biomarkers from a second set of sample felines. In certain embodiments, the first set of
sample felines have been diagnosed with CKD and the second set of sample felines have not
been diagnosed with CKD. In certain embodiments, the training dataset comprising amounts
of the biomarkers from felines that have been diagnosed with CKD and felines that have not

been diagnosed with CKD. In certain embodiments, the first plurality of biomarkers
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comprises at least one of a urine specific gravity level, a creatinine level, a urine protein
level, a blood urea nitrogen (BUN) or urea level, a white blood cell count (WBC), urine pH,
or any combination thereof. In certain embodiments, the first plurality of biomarkers
comprises any one of the biomarkers disclosed in the instant application. In certain
embodiments, the second plurality of biomarkers comprises at least one of a urine specific
gravity level, a creatinine level, a urine protein level, a blood urea nitrogen (BUN) or urea
level, a white blood cell count (WBC), urine pH, or any combination thereof. In certain
embodiments, the second plurality of biomarkers comprises any one of the biomarkers
disclosed in the instant application.

In certain embodiments, if the data is classified as meaning a risk of CKD, the feline
is predicted to have a greater likelihood of developing CKD as compared to if the data is
classified as meaning a low risk of CKD.

In certain non-limiting embodiments, the method of determining susceptibility of a
feline to developing chronic kidney disease (CKD) comprises:

obtaining data comprising amounts of a plurality of biomarkers in the feline and
optionally an age of the feline; and performing an analysis on the data with an analytical
algorithm, e.g., a classification algorithm, i.e., a classifier. In certain embodiments, the
classification algorithm is developed by a machine leaming algorithm. In certain
embodiments, the classification algorithm is developed from a training dataset.

In certain non-limiting embodiments, a method of determining susceptibility of a
feline to developing chronic kidney disease (CKD) comprises:

receiving at least one input level of one or more biomarkers from the feline,
optionally receiving an input level of an age of the feline, wherein at least one of the one or
more biomarkers comprises a urine specific gravity level, a creatinine level, a urine protein
level, a blood urea nitrogen (BUN) or urea level, a white blood cell count (WBC), urine pH,
or any combination thereof;

analyzing and transforming the at least one input level of the one or more biomarkers
and optionally the input level of the age, by organizing and/or modifying each input level to
derive a probability score or a classification label via a classification algorithm, wherein the
classification algorithm comprises code developed from a training dataset, the training dataset
comprising medical information relating to a first plurality of biomarkers and optionally ages
from a first set of sample felines and a second plurality of biomarkers and optionally ages
from a second set of sample felines, wherein the classification algorithm is developed using a

training algorithm;
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wherein the classification algorithm determines the classification label of whether the
feline is at risk of developing CKD or determines the probability score of the feline
developing CKD;

generating an output, wherein the output is the classification label or the probability
score;

providing a customized recommendation, e.g., a dietary regimen and/or further
monitoring the one or more biomarkers based on the output; and

displaying the output and/or customized recommendation on a graphical user
interface.

In certain embodiments, the one or more biomarkers comprises information relating to
a urine specific gravity level, a creatinine level and a blood urea nitrogen (BUN) or urea
level. In certain embodiments, the one or more biomarkers comprises information relating to
a urine specific gravity level, a creatinine level, a urine protein level, a blood urea nitrogen
(BUN) or urea level, a white blood cell count (WBC) and urine pH.

In certain embodiments, the method comprises receiving at least one input level of
one or more biomarkers from the feline and an input level of an age of the feline.

In certain embodiments, the method comprises receiving input levels of biomarkers
comprising information relating to a urine specific gravity level, a creatinine level and a
blood urea nitrogen (BUN) or urea level; and an input level of an age of the feline.

In certain embodiments, the classification algorithm comprises an algorithm selected
from: a logistic regression algorithm, an artificial neural network algorithm (ANN), a
recurrent neural network algorithm (RNN), a K-nearest neighbor algorithm (KNN), a Naive
Bayes algorithm, a support vector machine algorithm (SVM), a random forest algorithm, an
AdaBoost algorithm and any combination thereof. In certain embodiments, the classification
algorithm comprises a regularization algorithm. In certain embodiments, a regularization
algorithm prevents overfitting.

In certain embodiments, the classification algorithm comprises a standard RNN
algorithm comprising an input layer, an output layer and a hidden layer. In certain
embodiments, the RNN comprises vanilla nodes and/or layers. In certain embodiments, the
RNN comprises long short-term memory (LSTM) nodes and/or layers. In certain
embodiments, the RNN comprises about 1, about 2, about 3, about 4, about 5, about 6, about
7, about 8, about 9, about 10 or more hidden layers. In certain embodiments, the RNN

comprises between about 1 and about 3, between about 2 and about 4, between about 3 and
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about 5, between about 5 and about 10, between about 1 and about 4, between about 1 and
about 5, or between about 2 and about 6 hidden layers.

In certain embodiments, each layer comprises at least about 1, at least about 2, at least
about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at
least about 9, at least about 10, at least about 20, at least about 30, at least about 40, at least
about 50, at least about 60, at least about 70, at least about 80, at least about 90, at least about
100, at least about 150, at least about 200, at least about 250, at least about 300, at least about
400, at least about 500 nodes, or any intermediate number or range of nodes. In certain
embodiments, each layer comprises between about 2 and about 10, between about 2 and
about 20, between about 3 and about 30, between about 2 and about 50, between about 3 and
about 100, between about 4 and about 200, between about 5 and about 300, between about 10
and about 500, between about 2 and about 1000, between about 4 and about 500 nodes. In
certain embodiments, each layer comprises between about 5 and about 300 nodes. In certain
embodiments, each layer comprises between about 6 and about 250 nodes. In certain
embodiments, each layer comprises between about 7 and about 200 nodes. In certain
embodiments, a hidden layer comprises a tanh activation function.

In certain embodiments, the input levels of the biomarkers and the age of the feline
relate to medical records of one or more visit of the feline. In certain embodiments, the input
levels of the biomarkers and the age of the feline relate to medical records of at least about 2
visits, at least about 3 visits, at least about 4 visits, at least about 5 visits, at least about 6
visits, at least about 7 visits, at least about 8 visits, at least about 9 visits, at least about 10
visits or more of the feline. In certain embodiments, the input levels of the biomarkers and
the age of the feline relate to medical records of between about 1 visit to about 10 visits,
between about 2 visits to about 10 visits, between about 3 visits to about 10 visits, between
about 1 visit to about 5 visits, between about 1 visit to about 3 visits, between about 2 visits
to about 5 visits, between about 3 visits to about 5 visits of the feline.

In certain embodiments, the classification label or the probability score is transformed
from a combination of intermediate probability scores, each of which is determined based on
the input levels of the biomarkers and the age of the feline relating to a medical record of one
visit of the feline.

In certain embodiments, the classification label or the probability score relates to the
feline’s status of contracting chronic kidney disease (CKD) at the time of the determination

of the classification label or the probability score. In certain embodiments, the classification
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label or the probability score relates to the feline’s risk of developing chronic kidney disease
(CKD) after the determination of the classification label or the probability score.

In certain embodiments, the classification label or the probability score relates to the
feline’s risk of developing chronic kidney disease (CKD) about 1 month, about 2 months,
about 3 months, about 4 months, about 5 months, about 6 months, about 7 months, about 8
months, about 9 months, about 10 months, about 11 months, about 12 months or more after
the determination of the classification label or the probability score. In certain embodiments,
the classification label or the probability score relates to the feline’s risk of developing
chronic kidney disease (CKD) about 1 year, about 2 years, about 3 years, about 4 years, about
5 years or more after the determination of the classification label or the probability score.

In certain embodiments, the classification label or the probability score relates to the
feline’s risk of developing chronic kidney disease (CKD) between about 1 month and about
12 months, between about 1 month and about 6 months, between about 1 month and about 3
months, between about 3 months and about 12 months, between about 6 months and about 12
months, between about 3 months and about 6 months after the determination of the
classification label or the probability score. In certain embodiments, the classification label
or the probability score relates to the feline’s risk of developing chronic kidney disease
(CKD) between about 1 year and about 5 years, between about 1 year and about 3 years,
between about 1 year and about 2 years, between about 2 years and about 5 years, between
about 2 years and about 3 years, between about 3 years and about 5 years after the
determination of the classification label or the probability score.

In certain embodiments, the customized recommendation comprises diagnosing the
presence of a comorbidity in the feline. In certain embodiments, the comorbidity is selected
from the group consisting of hyperthyroidism, diabetes mellitus, hepatopathy, underweight,
murmur, arthritis, malaise, constipation, gastroenteritis, vomiting, inflammatory bowel
disease, crystalluria, enteritis, urinary tract infection, upper respiratory disease, urinary tract
disease, obesity, inappropriate elimination, cystitis, colitis and any combination thereof. In
certain embodiments, the comorbidity is selected from the group consisting of
hyperthyroidism, diabetes mellitus, hepatopathy, underweight, murmur and any combination
thereof.

In certain embodiments, the feline is a domestic cat.
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Training dataset

In the presently disclosed subject matter, a training dataset includes medical records
of plurality of felines. In certain embodiments, the medical records comprise an amount of a
biomarker disclosed herein and optionally an age of a feline. In certain embodiments, the
medical records comprise records of one or more visits of a feline. In certain embodiments,
the medical records comprise records of at least two visits of a feline. In certain
embodiments, the medical records comprise records of at least three visits of a feline at
different time points. In certain embodiments, the medical records comprise records of at
least four visits of a feline at different time points. In certain embodiments, the medical
records comprise records of the most recent two visits of a feline at different time points. In
certain embodiments, the medical records comprise records of the most recent three visits of
a feline at different time points. In certain embodiments, the medical records comprise
records of the most recent four visits of a feline at different time points. In certain
embodiments, the medical records comprise records of the first and the last visits of a feline
at different time points.

In certain embodiments, the medical records comprise records of at least about 100
different felines that have been diagnosed with CKD and at least about 100 different felines
that have not been diagnosed with CKD. In certain embodiments, the medical records
comprise records of at least about 200 different felines that have been diagnosed with CKD
and at least about 200 different felines that have not been diagnosed with CKD. In certain
embodiments, the medical records comprise records of at least about 500 different felines that
have been diagnosed with CKD and at least about 500 different felines that have not been
diagnosed with CKD. In certain embodiments, the medical records comprise records of at
least about 1000 different felines that have been diagnosed with CKD and at least about 1000
different felines that have not been diagnosed with CKD. In certain embodiments, the
medical records comprise records of at least about 2000 different felines that have been
diagnosed with CKD and at least about 2000 different felines that have not been diagnosed
with CKD. In certain embodiments, the medical records comprise records of at least about
5000 different felines that have been diagnosed with CKD and at least about 5000 different
felines that have not been diagnosed with CKD.

In certain embodiments, the training dataset is stratified for cross validation. Cross
validation is a process that assesses how the results (e.g., a classification algorithm) of a
training algorithm can generalize to an independent dataset. A training dataset can be divided

or stratified into 2 or more folds where one or more subsets are used to validate a
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classification algorithm trained by one or more different subsets. In certain embodiments, the
training dataset is stratified into about 2 folds. In certain embodiments, the training dataset is
stratified into about 3 folds. In certain embodiments, the training dataset is stratified into
about 4 folds. In certain embodiments, the training dataset is stratified into about 5 folds. In
certain embodiments, the training dataset is stratified into about 6, about 7, about 8, about 9,
about 10, about 15, about 20, about 30, about 40, about 50 or more folds.

In certain embodiments, the training dataset is divided into subsets for different
prediction models. In certain embodiments, a subset comprises the measures corresponding
to individuals already diagnosed CKD during a given visit. In certain embodiments, a subset
comprises the measurements corresponding to individuals diagnosed with CKD within 3
months after a given visit. In certain embodiments, a subset comprises the measurements
corresponding to individuals diagnosed with CKD within 6 months after a given visit. In
certain embodiments, a subset comprises the measurements corresponding to individuals
diagnosed with CKD within 9 months after a given visit. In certain embodiments, a subset
comprises the measurements corresponding to individuals diagnosed with CKD within 12
months after a given visit. In certain embodiments, a subset comprises the measurements
corresponding to individuals diagnosed with CKD within 2 years after a given visit. In
certain embodiments, a subset comprises the measurements corresponding to individuals
diagnosed with CKD within 3 years after a given visit. In certain embodiments, a subset
comprises the measurements corresponding to individuals diagnosed with CKD within 4
years after a given visit. In certain embodiments, a subset comprises the measurements
corresponding to individuals diagnosed with CKD within five or more years after a given
visit. In certain embodiments, the training dataset is divided into subsets comprising one or
more subsets disclosed above.

In certain embodiments, if a record of a feline lacks an amount or a level of one or
more biomarkers and/or lacks an age, the amount or level of the one or more biomarkers
and/or an age is imputed. In certain embodiments, the imputation is carried out using a
random forest implementation.

In certain embodiments, the training dataset is filtered by a set of inclusion and
exclusion criteria. In certain embodiments, a visit count of a feline is no less than 2, no less
than 3, no less than 4, or no less than 5 visits (e.g., not necessarily with any blood or urine
data). In certain embodiments, the medical history of visits covers at least about 1 month, at
least about 2 months, at least about 3 months, at least about 4 months, at least about 5

months, at least about 6 months, at least about 7 months, at least about 8 months, at least
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about 9 months, at least about 10 months, at least about 11 months, at least about 1 year, at
least about 2 years, at least about 3 years, at least about 4 years, at least about 5 or more
years, In certain embodiments, a visit age of a feline is between about 1 and about 25 years,
between about 1.5 and about 22 years, between about 2 and about 20 years (e.g., age less than
19.5 years averaged across all visits).

In certain embodiments, the breed of a feline is a predetermined breed. With respect
to cats, the breed can be domestic short hair (DSH), domestic medium-haired (DMH),
domestic long-haired (DLH), or general mixed breed cats.

In certain embodiments, the record of a feline comprises at least 2, 3, 4, 5 or more
creatinine measures across at least about 1 year, at least about 2 years, at least about 3 years,
at least about 4 years, at least about 5 or more years. In certain embodiments, the record of a
feline comprises at least one creatinine measure within about 3, about 3.5, about 4, about 4.5,
about 5, about 5.5, about 6, about 6.5, about 7, about 7.5, about 8, about 8.5, about 9 or more
years before diagnosis of CKD. In certain embodiments, the record of a feline comprises at
least one creatinine measure within about 3, about 3.5, about 4, about 4.5, about 5, about 5.5,
about 6, about 6.5, about 7, about 7.5, about 8, about 8.5, about 9 or more years of having 2
more non-diagnosed years.

Machine learning algorithm

In certain embodiments, the machine learning algorithm comprises an algorithm
having a learning style of any one or more of: supervised leaming (e.g., using logistic
regression, using back propagation neural networks), unsupervised learing (e.g., using an
Apriori algorithm, using K-means clustering), semi-supervised learning, reinforcement
learning (e.g., using a Q-learning algorithm, using temporal difference learning), and any
other suitable learning style.

In certain embodiments, the machine learning algorithm comprises any one or more
of: a regression algorithm (e.g., ordinary least squares, logistic regression, stepwise
regression, multivariate adaptive regression splines, locally estimated scatterplot smoothing,
etc.), an instance-based method (e.g., k-nearest neighbor, learning vector quantization, self-
organizing map, etc.), a regularization method (e.g., ridge regression, least absolute shrinkage
and selection operator, elastic net, etc.), a decision tree learning method (e.g., classification
and regression tree, iterative dichotomiser 3, C4.5, chi-squared automatic interaction
detection, decision stump, random forest, multivariate adaptive regression splines, gradient
boosting machines, etc.), a Bayesian method (e.g., naive Bayes, averaged one-dependence

estimators, Bayesian belief network, etc.), a kernel method (e.g., a support vector machine, a
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radial basis function, a linear discriminate analysis, etc.), a clustering method (e.g., k-means
clustering, expectation maximization, etc.), an associated rule learning algorithm (e.g., an
Apriori algorithm, an Eclat algorithm, etc.), an artificial neural network model (e.g., a
Perceptron method, a back-propagation method, a Hopfield network method, a self-
organizing map method, a learning vector quantization method, etc.), a deep learning
algorithm (e.g., a restricted Boltzmann machine, a deep belief network method, a convolution
network method, a stacked auto-encoder method, etc.), a dimensionality reduction method
(e.g., principal component analysis, partial lest squares regression, Sammon mapping,
multidimensional scaling, projection pursuit, etc.), an ensemble method (e.g., boosting,
bootstrapped aggregation, AdaBoost, stacked generalization, gradient boosting machine
method, random forest method, etc.), a condition random field algorithm and any suitable
form of algorithm.

In certain embodiments, the classification algorithm is trained using a supervised
learning algorithm. In certain embodiments, the classification algorithm is trained using the
algorithms selected from: a logistic regression algorithm, an artificial neural network
algorithm (ANN), a recurrent neural network algorithm (RNN), a K-nearest neighbor
algorithm (KNN), a Naive Bayes algorithm, a support vector machine algorithm (SVM), a
random forest algorithm, an AdaBoost algorithm and a combination thereof. In certain
embodiments, the classification algorithm is a regularization algorithm. In certain
embodiments, a regularization algorithm prevents overfitting,

In certain embodiments, the classification algorithm is trained using KNN with
dynamic time warping (DTW). In certain embodiments, the one or more biomarkers and/or
the age is selected by a filter method, e.g., using Pearson correlation coefficient. In certain
embodiments, the one or more biomarkers and/or the age is selected by a top-down wrapper
method KNN-DTW. In certain embodiments, K is 7, e.g., 7 neighbors. In certain
embodiments, the one or more biomarkers and/or the age is selected by a bottom-up wrapper.
In certain embodiments, the one or more biomarkers comprises urine specific gravity,
creatinine, urine protein, blood urea nitrogen (BUN) or urea, white blood cell count (WBC)
and/or urine pH. In certain embodiments, the one or more biomarkers comprises one or more
parameters in Tables 1 and 9. In certain embodiments, the classification algorithm is trained
using stratified subsets of a training dataset to create a predictor that predict a risk of
developing CKD after various time periods of a visit during which an amount of one or more
biomarkers is determined. In certain embodiments, a predictor is created to predict a risk of

developing CKD about 0 month, about 3 months, about 6 months, about 9 months, or about
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12 months after an amount of a biomarker is determined. In certain embodiments, a predictor
is created to predict a risk of developing CKD about 0 year, about 0.5 year, about 1 year,
about 2 years, about 3 years, about 4 years, about 5 or more years after an amount of a
biomarker is determined. In certain embodiments, a mixture of experts (MOE) approach is
employed to train the classification algorithm, wherein an ensemble of predictors is
combined, e.g., with simple voting or weighted voting. In certain embodiments, the
classification algorithm is trained using a KNN algorithm, and wherein K is at least about 7.
In certain embodiments, the classification algorithm is trained using a KNN algorithm, and
wherein K is at least about 13. In certain embodiments, the classification algorithm is trained
using a KNN algorithm, and wherein K is about 15. In certain embodiments, the
classification algorithm is trained using a KNN algorithm, and wherein K is about 17.

In certain embodiments, the classification algorithm is trained using an RNN
algorithm comprising an input layer, an output layer and a hidden layer. In certain
embodiments, the RNN comprises vanilla nodes and/or layers. In certain embodiments, the
RNN comprises long short-term memory (LSTM) nodes and/or layers. In certain
embodiments, the RNN comprises about 1, about 2, about 3, about 4, about 5, about 6, about
7, about 8, about 9, about 10 or more hidden layers. In certain embodiments, the RNN
comprises between about 1 and about 3, between about 2 and about 4, between about 3 and
about 5, between about 5 and about 10, between about 1 and about 4, between about 1 and
about 5, or between about 2 and about 6 hidden layers. In certain embodiments, each layer
comprises at least about 1, at least about 2, at least about 3, at least about 4, at least about 5,
at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least
about 20, at least about 30, at least about 40, at least about 50, at least about 60, at least about
70, at least about 80, at least about 90, at least about 100, at least about 150, at least about
200, at least about 250, at least about 300, at least about 400, at least about 500 nodes, or any
intermediate number or range of nodes. In certain embodiments, each layer comprises
between about 2 and about 50, between about 3 and about 100, between about 4 and about
200, between about 5 and about 300, between about 10 and about 500, between about 2 and
about 1000, between about 4 and about 500 nodes. In certain embodiments, each layer
comprises between about 5 and about 300 nodes. In certain embodiments, each layer
comprises between about 6 and about 250 nodes. In certain embodiments, each layer
comprises between about 7 and about 200 nodes. In certain embodiments, a hidden layer
comprises a tanh activation function. In certain embodiments, an output layer comprises a

softmax function. In certain embodiments, a binary cross-entropy can be used for loss
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calculation. In certain embodiments, the classification algorithm a regularization algorithm
to prevent overfitting. In certain embodiments, a regularization algorithm causes about 5%,
about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40% or any
intermediate percentage or range of dropout to avoid overfitting. In certain embodiments, a
regularization algorithm causes between about 5% and about 10%, between about 10% and
about 20%, between about 20% and about 30%, or between about 30% and about 40%
dropout to avoid overfitting.

In certain embodiments, subsequent steps can include assessing or validating the
machine learning algorithm. For example, the machine learning algorithm can be updated
based on the assessment/validation. In certain embodiments, the training dataset is stratified
in to about 2 folds, about 3 folds, about 4 folds, about 5 folds, about 6 folds, about 7 folds,
about 8 folds, about 9 folds, about 10 folds, about 20, about 30 folds, about 40 folds, about 50
folds or more folds, or any intermediate number of folds for cross validation.

In certain embodiments, performance of the classification algorithm is characterized
by an area under the curve (AUC) ranging from about 0.50 to about 0.99. In certain
embodiments, performance of the classification algorithm is characterized by an area under
the curve (AUC) ranging from about 0.60 to about 0.99. In certain embodiments,
performance of the classification algorithm is characterized by an area under the curve
(AUC) ranging from about 0.70 to about 0.99. In certain embodiments, performance of the
classification algorithm is characterized by an area under the curve (AUC) ranging from
about 0.80 to about 0.99. In certain embodiments, performance of the classification
algorithm is characterized by an area under the curve (AUC) ranging from about 0.80 to
about 0.95.

Linear method

In certain non-limiting embodiments, the method of predicting a risk of chronic
kidney disease (CKD) for a feline comprises: calculating a score based on an amount of one
or more biomarker of the feline and comparing the score with a threshold value. In certain
embodiments, the score is calculated by summing the product of each biomarker and a
coefficient thereof. In certain embodiments, the coefficient of the one or more biomarker is
determined by applying a linear discriminant analysis (LDA) to a dataset including medical
records of plurality of felines, wherein the medical records comprise measurements of the one
or more biomarker. In certain embodiments, the threshold value is determined by applying a
linear discriminant analysis (LDA) to a dataset including medical records of plurality of

felines, wherein the medical records comprise measurements of the one or more biomarker.
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In certain embodiments, the score being greater than the threshold value indicates a risk of
CKD. In certain embodiments, the score being smaller than the threshold value indicates a
risk of CKD.

In certain embodiments, the one or more biomarker comprises creatinine, urine
specific gravity and/or BUN or urea. In certain embodiments, the amount of creatinine is
measured in milligram per deciliter (mg/dL). In certain embodiments, the amount of urine
specific gravity is measured as a ratio of the density of a urine sample to the density of water.
In certain embodiments, the measurement of BUN or urea is measured in milligram per
deciliter (mg/dL).

In certain embodiments, the coefficient of creatinine is between about 0.000001 to
about 10, between about 0.00001 to about 1, between about 0.00005 to about 0.5, between
about 0.0001 to about 0.10 or between about 0.0005 to about 0.05. In certain embodiments,
the coefficient of creatinine is between about 0.001 to about 0.02, between about 0.002 to
about 0.015, between about 0.003 to about 0.012, between about 0.004 to about 0.01,
between about 0.005 to about 0.009, between about 0.0055 to about 0.0085, between about
0.0057 to about 0.0083 or between about 0.006 to about 0.007. In certain embodiments, the
coefficient of creatinine is about 0.0057, about 0.0058, about 0.0061, about 0.0068, about
0.0069 or about 0.0083.

In certain embodiments, the coefficient of urine specific gravity is between about -
0.01 to about -1000, between about -0.05 to about -500, between about -0.1 to about -300 or
between about -0.5 to about -200. In certain embodiments, the coefficient of urine specific
gravity is between about -1 to about -100, between about -5 to about -80, between about -10
to about -70, between about -15 to about -60, between about -20 to about -50, between about
-25 to about -45 or between about -30 to about -40. In certain embodiments, the coefficient
of creatinine is about -25.7343, about -36.9897, about -40.0563, about -44.3369, about -
47.042 or about -49.9186.

In certain embodiments, the coefficient of urea is between about 0.00001 to about
100, between about 0.0001 to about 10, between about 0.0005 to about 5, between about
0.001 to about 1 or between about 0.005 to about 0.8. In certain embodiments, the coefficient
of urea is between about 0.01 to about 0.5, between about 0.02 to about 0.4, between about
0.03 to about 0.3, between about 0.04 to about 0.2, between about 0.05 to about 0.15,
between about 0.06 to about 0.12, between about 0.07 to about 0.11 or between about 0.08 to

about 0.1. In certain embodiments, the coefficient of urea is about 0.0659, about 0.1044,
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about 0.1077, about 0.1085, about 0.1137 or about 0.1182. In certain embodiments, when
BUN measurement is used, the coefficient of urea is multiplied by 2.14 times.

In certain embodiments, the score is calculated by the formula as follows:

Score = the measurement of creatinine X the coefficient of creatinine + the
measurement of urine specific gravity X the coefficient of urine specific gravity + the
measurement of BUN or urea X the coefficient of BUN or urea.

In certain embodiments, the threshold value is between about -0.01 to about -1000,
between about -0.05 to about -500, between about -0.1 to about -300 or between about -0.5 to
about -200. In certain embodiments, the threshold value is between about -1 to about -100,
between about -5 to about -80, between about -10 to about -70, between about -15 to about -
60, between about -20 to about -50, between about -25 to about -45 or between about -30 to
about -40. In certain embodiments, the threshold value is about -38.7128, about -22.603,
about -34.8051, about -42.7709, about -45.625 or about -48.7966.

In certain embodiments, the threshold value and the coefficients of creatinine, urine
specific gravity and urea is selected according to Table 19 in Example 4. In certain
embodiments, when BUN measurement is used, the coefficient of urea is multiplied by 2.14
times.

In certain embodiments, the score being greater than the threshold value indicates a
risk of CKD. In certain embodiments, the score being smaller than the threshold value
indicates an absence of risk of CKD.

In certain embodiments, the method predicts risk of CKD about 0 month, about 3
months, about 6 months, about 9 months, about 12 months, about 18 months and/or about 24
months after an amount of a biomarker is determined. In certain embodiments, the method
predicts arisk of developing CKD about 0 year, about 0.5 year, about 1 year, about 2 years,
about 3 years, about 4 years, about 5 and/or more years after an amount of a biomarker is
determined.

4. TREATMENT METHODS

In certain non-limiting embodiments, the presently disclosed subject matter provides
methods of treating, preventing or reducing a risk of developing chronic kidney disease
(CKD) for a feline. In certain embodiments, the method comprises providing a feline owner
with a dietary regimen to treat or prevent CKD for a feline.

The compositions and methods of the presently disclosed subject matter can be useful
for a variety of feline animals, e.g. domestic cats.

In certain non-limiting embodiments, the feline is at risk of chronic kidney disease.
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In certain non-limiting embodiments, the feline is not known to be at risk of chronic
kidney disease.

In certain non-limiting embodiments, the feline has been diagnosed with chronic
kidney disease.

In certain non-limiting embodiments, the feline is not known to have chronic kidney
disease.

The presently disclosed subject matter provides methods of treating, preventing
and/or reducing a risk of developing chronic kidney disease (CKD) for a feline, wherein the
method comprises: determining whether the feline is at a risk of developing CKD using any
of the prediction methods disclosed herein, where if the feline is at a risk of developing CKD,
the method comprises a further analysis of one or more biomarkers disclosed in the instant
application. In certain embodiments, the further analysis of the one or more biomarkers
comprises determining an amount of the one or more biomarkers in a sample from the feline.
In certain embodiments, the one or more biomarkers comprises urine specific gravity,
creatinine, urine protein, blood urea nitrogen (BUN) or urea, white blood cell count (WBC)
and/or urine pH. In certain embodiments, the method further comprises a reanalysis of the
risk of developing CKD using any one of the prediction methods disclosed in the instant
application and using the newly obtained measurements of the biomarkers and optionally an
age of the feline.

In certain embodiments, the one or more biomarkers comprises symmetric
dimethylarginine (SDMA), urine specific gravity and/or creatinine. In certain embodiments,
the method further comprises diagnosing whether the feline has CKD. Any standard CKD
diagnosing method can be used, e.g., a staging method developed by the International Renal
Interest Society (IRIS) (www.iris-kidney.com; see also Elliott et al., Dietary therapy for
feline chronic kidney disease, Encyclopedia of feline clinical nutrition, 2nd edition, 2015). In
certain embodiments, the diagnosing method is according to the staging criteria described in
Example 3 and/or Table 17 below.

In certain non-limiting embodiments, the presently disclosed subject matter provides
methods of treating or preventing chronic kidney disease (CKD) for a feline, wherein the
method comprises: determining whether the feline is at a risk of developing CKD using any
of the prediction methods disclosed herein, where if the feline is determined to be at a risk of
developing CKD, the method further comprises prescribing a treatment regimen to the feline.

In certain embodiments, the treatment regimen comprises at least one treatment

regimen selected from: a dietary therapy, hemodialysis, renal replacement therapy,
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withdrawal of kidney damaging compounds, kidney transplantation, delaying or avoiding
kidney damaging procedures, modifying diuretic administration, and a combination thereof.
In certain embodiments, the treatment regimen comprises at least one treatment regimen
selected from: reducing phosphate intake, reducing protein intake, administering
polyunsaturated fatty acids, administering a phosphate binder therapy, administering
potassium, reducing dietary sodium intake, administering alkali supplements, and a
combination thereof. See for example, Jonathan D. Foster, Update on Mineral and Bone
Disorders in Chronic Kidney Disease, Vet Clin North Am Small Anim Pract. 2016
Nov:46(6):1131-49.

In certain embodiments, the treatment regimen is a dietary therapy. In certain
embodiments, the dietary therapy comprises a diet selected from: a low phosphorous diet; a
low protein diet; a low sodium diet; a potassium supplement diet; a polyunsaturated fatty acid
(PUFA, e.g., long chain omega-3 fatty acids) supplement diet; an anti-oxidant supplement
diet; a vitamin B supplement diet; a liquid diet; and a combination thereof.

In certain embodiments, a low phosphorous diet comprises between about 0.01% and
about 5%, between about 0.1% and about 2%, between about 0.1% and about 1%, between
about 0.05% and about 2%, or between about 0.5% and about 1.5% phosphorous on a weight
by weight basis of a pet food. In certain embodiments, a low phosphorous diet comprises
about 0.01%, about 0.05%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%,
about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 1.1%, about 1.2%, about
1.3%, about 1.4%, about 1.5%, about 1.6%, about 1.7%, about 1.8%, about 1.9%, about 2%,
about 3%, about 4%, about 5% phosphate, or any intermediate percentage or range of
phosphate on a weight by weight basis of a pet food. In certain embodiments, a low
phosphorous diet comprises about 0.1 g/1000 kcal, about 0.2 g/1000 kcal, about 0.3 g/1000
kcal, about 0.4 g/1000 kcal, about 0.5 g/1000 kcal, about 0.6 g/1000 kcal, about 0.7 g/1000
kcal, about 0.8 g/1000 kcal, about 0.9 g/1000 kcal, about 1.0 g/1000 kcal, about 1.1 g/1000
kcal, about 1.2 g/1000 kcal, about 1.3 g/1000 kcal, about 1.4 g/1000 kcal, about 1.5 g/1000
kcal, about 1.6 g/1000 kcal, about 1.7 g/1000 kcal, about 1.8 g/1000 kcal, about 1.9 g/1000
kcal, about 2.0 g/1000 kcal, about 2.1 g/1000 kcal, about 2.2 g/1000 kcal, about 2.5 g/1000
kecal, about 2.8 g/1000 kcal, about 3.0 g/1000 kcal, about 3.5 g/1000 kcal, about 4 g/1000
kcal, about 5 g/1000 kcal, about 10 g/1000 kcal, about 15 g/1000 kcal, about 20 g/1000 kcal,
or any intermediate percentage or range of phosphate. In certain embodiments, a low
phosphorous diet comprises between about 0.1 g/1000 kcal and about 0.5 g/1000 kcal,
between about 0.5 g/1000 kcal and about 1.0 g/1000 kcal, between about 1.0 g/1000 kcal and
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about 2.0 g/1000 kcal, between about 2.0 g/1000 kcal and about 5.0 g/1000 kcal, between
about 0.01 g/1000 kcal and about 0.1 g/1000 kcal, between about 0.05 g/1000 kcal and about
1.0 g/1000 kcal, between about 0.1 g/1000 kcal and about 1 g/1000 kcal, between about 0.1
g/1000 kcal and about 2 g/1000 kcal, between about 1 g/1000 kcal and 2 g/1000 kcal of
phosphate. In certain embodiments, a low phosphorous diet comprises about 0.5% phosphate
on a weight by weight basis of a pet food. (e.g., about 1.2 g/1000 kcal for the dry renal diet or
about 1.0 g/1000 kcal for the wet renal diet). In certain embodiments, a low phosphorous diet
comprises about 0.9 or 1% phosphate on a weight by weight basis of a pet food (e.g., about
1.8 g/1000 kcal for the dry maintenance diet or about 2.3 g/1000 kcal for the wet maintenance
diet).

In certain embodiments, a low sodium diet comprises between about 0.00001% and
about 5%, between about 0.0001% and about 1%, between about 0.001% and about 0.1%, or
between about 0.001% and about 0.05% sodium on a weight by weight basis of a pet food.

In certain embodiments, a low sodium diet comprises about 0.01%, about 0.05%, about 0.1%,
about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about
0.9%, about 1%, about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, about 1.6%,
about 1.7%, about 1.8%, about 1.9%, about 2%, about 3%, about 4%, about 5% sodium, or
any intermediate percentage or range of sodium on a weight by weight basis of a pet food. In
certain embodiments, a low sodium diet comprises about 1 mg/kg/day, about 2 mg/kg/day,
about 3 mg/kg/day, about 4 mg/kg/day, about 5 mg/kg/day, about 6 mg/kg/day, about 7
mg/kg/day, about 8 mg/kg/day, about 9 mg/kg/day, about 10 mg/kg/day, about 15 mg/kg/day,
about 20 mg/kg/day, about 30 mg/kg/day, about 40 mg/kg/day, about 50 mg/kg/day, about 60
mg/kg/day, about 70 mg/kg/day, about 80 mg/kg/day, about 90 mg/kg/day, about 100
mg/kg/day about 120 mg/kg/day, about 150 mg/kg/day, or any intermediate amount or range
of sodium. In certain embodiments, a low sodium diet comprises between about 1 mg/1000
keal and about 50 mg/1000 kcal, between about 2 mg/1000 kcal and about 20 mg/1000 kcal,
between about 5 mg/1000 kcal and about 50 mg/1000 kcal, between about 1 mg/1000 kcal
and about 10 mg/1000 kcal, between about 0.1 mg/1000 kcal and about 5 mg/1000 kcal,
between about 0.1 mg/1000 kcal and about 10 mg/1000 kcal, between about 0.1 mg/1000
kcal and about 20 mg/1000 kcal, between about 0.1 mg/1000 kcal and about 40 mg/1000
kcal, between about 10 mg/1000 kcal and 20 mg/1000 kcal of sodium. In certain
embodiments, a low sodium diet comprises about 0.4 to about 0.9 mmol/kg/day, or about 9.2
to about 20.7 mg/kg/day. In certain embodiments, a low sodium diet comprises about 2

mmol/kg/day or about 46 mg/kg/day.
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In certain embodiments, a potassium supplement diet comprises between about
0.00001% and about 5%, between about 0.0001% and about 1%, between about 0.001% and
about 0.1%, or between about 0.001% and about 0.05% potassium supplement on a weight by
weight basis of a pet food in addition to the potassium existing in the pet food. In certain
embodiments, a potassium supplement diet comprises about 0.1%, about 0.2%, about 0.3%,
about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about
1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, about 1.6%, about 1.7%, about
1.8%, about 1.9%, about 2%, about 3%, about 4%, about 5% or more potassium supplement
on a weight by weight basis of a pet food in addition to the potassium existing in the pet food,
or any intermediate percentage or range of potassium supplement in addition to the potassium
existing in a pet food on a weight by weight basis of a pet food. In certain embodiments, a
potassium supplement diet comprises about 1 mg/kg/day, about 2 mg/kg/day, about 3
mg/kg/day, about 4 mg/kg/day, about 5 mg/kg/day, about 6 mg/kg/day, about 7 mg/kg/day,
about 8 mg/kg/day, about 9 mg/kg/day, about 10 mg/kg/day, about 15 mg/kg/day, about 20
mg/kg/day, about 30 mg/kg/day, about 40 mg/kg/day, about 50 mg/kg/day, about 60
mg/kg/day, about 70 mg/kg/day, about 80 mg/kg/day, about 90 mg/kg/day, about 100
mg/kg/day or more, or any intermediate amount or range of potassium supplement in addition
to the potassium existing in a pet food. In certain embodiments, a potassium supplement diet
comprises between about 1 mg/1000 kcal and about 10 mg/1000 kcal, between about 2
mg/1000 kcal and about 20 mg/1000 kcal, between about 5 mg/1000 kcal and about 50
mg/1000 kcal, between about 1 mg/1000 kcal and about 10 mg/1000 kcal, between about 0.1
mg/1000 kcal and about 5 mg/1000 kcal, between about 0.1 mg/1000 kcal and about 10
mg/1000 kcal, between about 0.1 mg/1000 kcal and about 20 mg/1000 kcal, between about
0.1 mg/1000 kcal and about 40 mg/1000 kcal, between about 10 mg/1000 kcal and 20
mg/1000 kcal of potassium supplement in addition to the potassium existing in a pet food.

In certain embodiments, a low protein diet comprises between about 0.0001% and
about 20%, between about 0.001% and about 10%, between about 0.01% and about 5%,
between about 0.05% and about 2%, or between about 0.01% and about 1% protein on a
weight by weight basis of a pet food. In certain embodiments, a low protein diet comprises
about 0.01%, about 0.05%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%,
about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 1.1%, about 1.2%, about
1.3%, about 1.4%, about 1.5%, about 1.6%, about 1.7%, about 1.8%, about 1.9%, about 2%,
about 3%, about 4%, about 5%, about 10%, about 15%, about 20% protein, or any

intermediate percentage or range of protein on a weight by weight basis of a pet food. In

40



10

15

20

25

30

WO 2019/144081 PCT/US2019/014427

certain embodiments, a low protein diet comprises about 1 g/kg/day, about 2 g/kg/day, about
3 g/kg/day, about 4 g/kg/day, about 5 g/kg/day, about 6 g/kg/day, about 7 g/kg/day, about 8
g/kg/day, about 9 g/kg/day, about 10 g/kg/day, about 15 g/kg/day, about 20 g/kg/day or any
intermediate amount or range of protein. In certain embodiments, a low protein diet
comprises between about 1 g/kg/day and about 20 g/kg/day, between about 1 g/kg/day and
about 50 g/kg/day, between about 2 g/kg/day and about 30 g/kg/day, between about 2
g/kg/day and about 10 g/kg/day, between about 2 g/kg/day and about 8 g/kg/day, between
about 5 g/kg/day and about 20 g/kg/day or any intermediate amount or range of protein. In
certain embodiments, a low protein diet comprises about 4 to about 6 g/kg/day or about 5 to
about 5.5 g/kg/day.

In certain embodiments, a PUFA supplement diet comprises between about 0.01%
and about 30%, between about 0.1% and about 20%, between about 1% and about 10%,
between about 0.1% and about 5%, or between about 1% and about 10% PUFA supplement
in addition to the PUFA existing in a pet food on a weight by weight basis of a pet food. In
certain embodiments, a PUFA supplement diet comprises about 0.1%, about 0.2%, about
0.3%, about 0.4%, about 0.5%, about 0.6%., about 0.7%. about 0.8%, about 0.9%, about 1%,
about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, about 1.6%, about 1.7%, about
1.8%, about 1.9%. about 2%, about 3%, about 4%, about 5%, about 10%, about 15%, about
20%, about 25%, about 30% or more PUFA supplement in addition to the PUFA existing in a
pet food, or any intermediate percentage or range of PUFA supplement in addition to the
PUFA existing in a pet food on a weight by weight basis of a pet food. In certain
embodiments, a PUFA supplement diet comprises about 0.1 g/kg/day, about 0.5 g/kg/day,
about 1 g/kg/day about 1 g/kg/day, about 2 g/kg/day, about 3 g/kg/day, about 4 g/kg/day,
about 5 g/kg/day, about 6 g/kg/day, about 7 g/kg/day, about 8 g/kg/day, about 9 g/kg/day,
about 10 g/kg/day, about 15 g/kg/day, about 20 g/kg/day, about 30 g/kg/day, about 40
g/kg/day, about 50 g/kg/day, about 60 g/kg/day, about 70 g/kg/day, about 80 g/kg/day, about
90 g/kg/day, about 100 g/kg/day or any intermediate amount or range of PUFA supplement in
addition to the PUFA existing in a pet food. In certain embodiments, a PUFA supplement
diet comprises between about 0.1 g/kg/day and about 20 g/kg/day, between about 1 g/kg/day
and about 100 g/kg/day, between about 2 g/kg/day and about 200 g/kg/day, between about 5
g/kg/day and about 150 g/kg/day, between about 10 g/kg/day and about 100 g/kg/day,
between about 5 g/kg/day and about 50 g/kg/day or any intermediate amount or range of
PUF A supplement in addition to the PUFA existing in a pet food. In certain embodiments, a
PUFA supplement diet comprises n-6 PUFA (e.g., plant oils). In certain embodiments, a
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PUF A supplement diet comprises n-3 PUFA (e.g., fish oils). In certain embodiments, a PUFA
supplement diet comprises eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA).

In certain embodiments, an anti-oxidant supplement diet comprises between about
0.001% and about 5%, between about 0.01% and about 1%, between about 0.01% and about
2%, between about 0.1% and about 1%, or between about 1% and about 5% anti-oxidant
existing in a pet food on a weight by weight basis of a pet food. In certain embodiments, an
anti-oxidant supplement diet comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%,
about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 1.1%, about
1.2%, about 1.3%, about 1.4%, about 1.5%, about 1.6%, about 1.7%, about 1.8%, about
1.9%, about 2%, about 3%, about 4%, about 5% or more anti-oxidant supplement, or any
intermediate percentage or range of anti-oxidant supplement, in addition to the anti-oxidant
existing in a pet food on a weight by weight basis of a pet food. In certain embodiments, an
anti-oxidant supplement diet comprises about 1 mg/kg/day, about 2 mg/kg/day, about 3
mg/kg/day, about 4 mg/kg/day, about 5 mg/kg/day, about 6 mg/kg/day, about 7 mg/kg/day,
about 8 mg/kg/day, about 9 mg/kg/day, about 10 mg/kg/day, about 15 mg/kg/day, about 20
mg/kg/day, about 30 mg/kg/day, about 40 mg/kg/day, about 50 mg/kg/day, about 60
mg/kg/day, about 70 mg/kg/day, about 80 mg/kg/day, about 90 mg/kg/day, about 100
mg/kg/day or more, or any intermediate amount or range of anti-oxidant supplement in
addition to the anti-oxidant existing in a pet food. In certain embodiments, an anti-oxidant
supplement diet comprises between about 1 mg/kg/day and about 20 mg/kg/day, between
about 1 mg/kg/day and about 100 mg/kg/day, between about 2 mg/kg/day and about 200
mg/kg/day, between about 5 mg/kg/day and about 150 mg/kg/day, between about 10
mg/kg/day and about 100 mg/kg/day, between about 5 mg/kg/day and about 50 mg/kg/day or
any intermediate amount or range of anti-oxidant supplement in addition to the anti-oxidant
existing in a pet food. In certain embodiments, the anti-oxidant is selected from the group
consisting of vitamin E, vitamin C, taurine, carotenoids, flavanols and any combination
thereof. In certain embodiments, a flavanol can be catechin, epicatechin, epigallocatechin
galate, procyanidins, tannins or any combination thereof. In certain embodiments, the anti-
oxidant supplement diet comprises a plant that has a high flavanol concentration, e.g., cocoa,
grapes, and green tea.

In certain embodiments, a vitamin B supplement diet comprises vitamin B1
(thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin or nicotinamide riboside), vitamin B5
(pantothenic acid),vitamin B6 (pyridoxine, pyridoxal or pyridoxamine),vitamin B7

(biotin),vitamin B9 (folate),vitamin B12 (cobalamins, e.g., cyanocobalamin or
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methylcobalamin), or any combination thereof. In certain embodiments, a vitamin B
supplement diet comprises between about 0.001% and about 2%, between about 0.01% and
about 1%, between about 0.05% and about 1%, between about 0.001% and about 0.1%, or
between about 0.01% and about 0.2%, vitamin Bs in addition to the vitamin Bs existing in a
pet food on a weight by weight basis of a pet food. In certain embodiments, an vitamin B
supplement diet comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%,
about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 1.1%, about 1.2%, about
1.3%, about 1.4%. about 1.5%, about 1.6%, about 1.7%, about 1.8%, about 1.9%, about 2%
or more vitamin Bs, or any intermediate percentage or range of vitamin B supplement, in
addition to the vitamin Bs existing in a pet food on a weight by weight basis of a pet food. In
certain embodiments, a vitamin B supplement diet comprises about 1 mg/kg/day, about 2
mg/kg/day, about 3 mg/kg/day, about 4 mg/kg/day, about 5 mg/kg/day, about 6 mg/kg/day,
about 7 mg/kg/day, about 8 mg/kg/day, about 9 mg/kg/day, about 10 mg/kg/day, about 15
mg/kg/day, about 20 mg/kg/day, about 30 mg/kg/day, about 40 mg/kg/day, about 50
mg/kg/day, about 60 mg/kg/day, about 70 mg/kg/day, about 80 mg/kg/day, about 90
mg/kg/day, about 100 mg/kg/day or more, or any intermediate amount or range of vitamin B
supplement in addition to the vitamin Bs existing in a pet food. In certain embodiments, a
vitamin B supplement diet comprises between about 1 mg/kg/day and about 20 mg/kg/day,
between about 1 mg/kg/day and about 100 mg/kg/day, between about 2 mg/kg/day and about
200 mg/kg/day, between about 5 mg/kg/day and about 150 mg/kg/day, between about 10
mg/kg/day and about 100 mg/kg/day, between about 5 mg/kg/day and about 50 mg/kg/day or
any intermediate amount or range of vitamin B supplement in addition to the vitamin Bs
existing in a pet food.

In certain embodiments, the dietary therapy can be any dietary therapy in the field.
See for example, Elliott et al., Dietary therapy for feline chronic kidney disease,
Encyclopedia of feline clinical nutrition, 2nd edition, 2015, and Elliott et al., Chronic renal
disease: the importance of nutrition, Encyclopedia of feline clinical nutrition, 2nd edition,
2015.

5. Devices, Systems and Applications

In certain non-limiting embodiments, the presently disclosed subject matter also
provides a device, a system and an application for the method(s) disclosed in the instant
application, e.g., for determining susceptibility or reducing a risk of developing CKD for a
feline. The device, system and/or application enable a user, such as a caretaker or owner to

evaluate the risk of developing CKD and take action by themselves, or with the aid of a
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healthcare professional/veterinarian to evaluate risk of developing CKD for a feline and
administer suitable treatment to the feline, if needed.

In certain embodiments, a device is used to carry out the method(s) disclosed in the
instant application. In certain embodiments, the device is configured to accept a user input.
In certain embodiments, the user input comprises levels of a plurality of biomarkers in the
feline according to step of receiving input information, e.g., levels of one or more
biomarkers, of a method disclosed in the instant application, and optionally an input level of
an age of the feline. In certain embodiments, the plurality of biomarkers comprise urine
specific gravity, creatinine, urine protein, blood urea nitrogen (BUN) or urea, white blood
cell count (WBC) or urine pH. In certain embodiments, the device automatically (or on
request) performs an analysis and transformation step of a method disclosed in the instant
application, e.g., analyzing and transforming the input information of the one or more
biomarkers optionally the input level of the age to derive a probability score or a
classification label. In certain embodiments, the analysis and transformation step is
performed using a classification algorithm developed according to any methods disclosed in
the instant application. The analysis provides a classification of a risk of developing CKD in
the feline, and provides output information.

In certain embodiments, the device provides a message with the output of step (b). In
certain embodiments, the message comprises a warning, wherein the feline is determined as
at a risk of developing CKD. In certain embodiments, the results of the method(s) are
provided by the device in a user interface. In certain embodiments, the device provides a
recommendation of treatment/prevention suggestions according to a treatment/prevention
method disclosed in the instant application, e.g., a diet and/or a dietary regime.

In certain embodiments, the device may be specially constructed for the required
purposes, or it may comprise a general purpose computer selectively activated or
reconfigured by a computer program/application stored in the computer. In certain
embodiments, the computer program/application comprises code for carrying out any one of
the methods disclosed herein. Such a computer program/application may be stored in a
computer readable storage medium, such as, but is not limited to, read-only memories
(ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, magnetic
or optical cards, any type of disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, or any type of media suitable for storing electronic instructions, and

each coupled to a computer system interconnect.
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In certain embodiment, the device comprises a processor that executes an application
that directs the device to provide data fields for entry of user input relating to a step of
receiving input information and an analysis and transformation step. In certain embodiment,
the application uses the processor to evaluate the risk of the feline developing CKD in certain
period of time after a measurement of a biomarker. In certain embodiments, the application
is an easily navigable application, e.g., online, to carry out any method(s) disclosed in the
instant application.

In certain embodiment, the device is a tablet, smartphone, desktop computer, laptop
computer or personal digital assistant. In certain embodiment, the device is a mobile device,
such as a smartphone and a tablet.

In certain embodiments, a system is also provided for the method(s) disclosed in the
instant application, of determining whether am feline is at a risk of developing CKD. In
certain embodiments, the system comprises a database connected to a remotely located
device disclosed herein. In certain embodiments, the device comprises a processor executing
an analysis that evaluates a determination according to the method(s) disclosed in the instant
application. In certain embodiment, the system and/or the device further comprises a
communication device for transmitting and receiving information. In certain embodiment, at
least one input level of a biomarker and optionally an input level of an age is received from a
remote second system, via the communication device. In certain embodiment, the system
and/or the device transmits the determination or categorization and customized
recommendation to the remote second system, via the communication device.

Unless specifically stated otherwise as apparent from the following discussion, it is
appreciated that throughout the description, discussions utilizing terms such as “processing”
or “computing” or “calculating” or “determining” or “displaying” or “analyzing™ or the like,
refer to the action and processes of a computer system, or similar electronic computing
device, that manipulates and transforms data represented as physical (electronic) quantities
within the computer system’s registers and memories into other data similarly represented as
physical quantities within the computer system memories or registers or other such
information storage, transmission, or display devices.

The algorithms and displays presented herein are not inherently related to any
particular computer or other device. Various general purpose systems may be used with the
application in accordance with the teachings herein, or it may prove convenient to construct a
more specialized device to perform the required method operations. The structure for a

variety of these systems will appear from the description above. In addition, the present
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embodiments are not described with reference to any particular programming language, and
various examples may thus be implemented using a variety of programming languages. All
preferred features and/or embodiments of the methods and the diets/dietary regimes disclosed

in the instant application apply to the device, the system and the application.

EXAMPLES
The presently disclosed subject matter will be better understood by reference to the
following Example, which is provided as exemplary of the invention, and not by way of

limitation.

Example 1

A prediction model was built and validated using over 600,000 data points from more
than 70,000 cats in a veterinary database. Information from the routinely measured blood and
urine parameters was used. The model used thousands of computer cores over hundreds of
hours, to learn the patterns of blood and urine chemistry for the cats, which remained healthy
and those who developed CKD. This knowledge is then applied to each new cat which the
model sees, and it predicts if the cat has a risk of developing CKD based on whether it has

similarities with the historic Cases or Controls.

Methods

Inclusion / Exclusion Criteria

Basic inclusion criteria for data:

1. Visit Count in database is no less than 3 visits for a cat (not necessarily with
any blood or urine data);

2. Visit Duration is no less than 2 years, i.e., a cat has been seen for at least 2
years (not necessarily with blood/urine);

3. Visit Age is between 1.5 and 22 years (age less than 19.5 years averaged

across all visits);

4, Breed is domestic short hair (DSH), domestic medium-haired (DMH) or
domestic long-haired (DLH), i.e. general mixed breed cats;

5. At least 3 creatinine measures across at least 2 years (some of these measures
may not be in the dataset if they are in the last 2 vears for “healthy” cats, or after diagnoses

for CKD cases); and
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6. At least one creatinine measure within 6.5 years before diagnosis or 6.5 years

of having 2 more non-diagnosed years. This ensures that the model saw at least one creatinine

data point.
Further criteria:
1. In certain models, data was filtered to allow only cats with at least 3 visits

containing creatinine values within a 3.5 year window of the diagnosis or healthy data cut-
off. Phase 3 additionally allowed either 1 or 2 visits into the dataset to help the model predict
better with single and double visits.

2. Data of certain models used a random half of the cats in the database, and split
them randomly in half again for Training and Test.

3. The cats in certain models were randomly assigned to Training or Blind Test
set by their Pet ID in a sequential manner i.e. two from every three sequential numbers across
time become Training data. The remainder were used for the Blind Test. Certain models used
all appropriate cats in the database.

4. For certain models, around 18,500 cats have been separated from the Controls
as they have been identified as “at risk” from a combination of medical note scoring and
heuristic analysis of blood urea nitrogen (BUN), creatinine and urine specific gravity (urine
SG or USG) values. This is further detailed below. The Training data was then filtered for > 0
creatinine points between 0 and 3.5 years, and > 0 USG data points.

Cases are defined as having one of the diagnoses listed below in Table 2 at some point
during their history as recorded in the veterinary database. Cats with only a diagnosis in their
medical notes are not included as Cases at present, as there is no consistent use of the medical
notes and the numbers are far too high to manually classify the cats. Acute Renal Failure has
been included as the blood chemistry may be similar. We will test this to see if we need to
remove ARF from the data set and only train/test on CRF.

Controls are defined as cats that have not been diagnosed with the listed kidney
diseases at any point in their lives. They may have any other disease. The last two full years
of their data for the model were removed (only during training/testing) so they remained free
of CKD for two years from the last data point given to the model. This is because they could
have been developing CKD but had not yet been diagnosed, although their blood chemistry
may have been altering. Controls are then further cleaned by a heuristic approach described
below.

Blood and Urine Analytes Tested During Modelling
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The parameters in bold were selected for the current model. Additional parameters

can be checked to see if model performance improves, e.g., urine glucose.

Table 1.

PARAMETER

ALT/SGPT (ALT)

Albumin (ALB)

Alkaline Phosphatase (ALKP)
Amylase (AMYL)

Calcium (CA)
Chloride
Cholesterol (CHOL)

Eosinophil, %
Globulin (GLOB)
Glucose (GLU) - blood
Hematocrit (HCT)
Hemoglobin (HGB)

Lymphocyte, %

RBC Count (RBC)
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Segs, Neutrophil, %

Urine Protein

Urine Specific Gravity

WBC

Diagnoses Included/Excluded

The ailments in bold in Table 2 were classed as CKD diagnoses for the purpose of
certain models, even though some may be acute. “Renal Failure, Chronic” is by far the most
common of these diagnoses. The ailments not in bold in Table 2 were noted but were
included in the models as Controls if there was not also a diagnosis from the red category at
some point in the cat’s life.

During final testing of certain models, predictions were made across all these
diagnoses, and a second set of predictions was carried out using only “healthy” cats and those
with the diagnosis of “Renal Failure, Chronic” (i.e. excluding all cats which had any of the
other diseases in the table below from the Cases and Controls). It was found that the
predictions were more accurate when the other diseases were removed.

During all the training, the diagnosis status was not investigated and all cats with an
“AILMENT ID” in the bold category were assumed to be at least suspected of CKD by the
veterinarian and included in the Cases. The final stage of Testing used a refined subset of
cats which had more “confirmed” diagnoses (i.e. the diagnosis was not later marked as

“resolved”, “changed” or invalid).

Nephritis

Renal Disease, Additional Day

Renal Disease, Cystic

Renal Failure, Acute

Renal Failure, Chronic

Urinary System Trauma

Urinary Tract Disease, Feline
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Urinary Tract Infection

Datasets

Datasets have been generated, and blind testing was run. The datasets have been
produced from a cleaned and augmented copy of a veterinary database, with pet visits dating
back to 1995. Several iterations of datasets and models were built. Dataset sizes for training

are summarized in Table 3.

Table 3
Dataset Total | Cases | Controls | Percent Cases Rows of Data
Earlier versions 8,810 | 2,095 6,715 23.78 61,159
Later versions 50,408 | 11,250 | 39,158 22.32 121,703

Heuristics for Cleaning the Control Group

Cats which did not have a formal diagnosis of CKD and would have been classed as
Controls were analysed for evidence of renal issues. Levels of urine specific gravity,
creatinine and BUN across their life were analysed by the algorithm below. In addition,
certain keywords e.g. renal, K/D, azotemia, CKD were referenced from the medical notes.
The medical notes were also scored by a text analysis algorithm which had been trained on
the medical notes of Cases and Controls. The combination of these factors was used to filter
cats out of the Controls who had a risk of heading towards CKD or already had CKD but only
had it recorded in the medical notes. Cats classed as either “3” or “4” below were removed
from the training and test sets and will be assessed separately.

This algorithm is overly conservative in terms of sometimes removing cats from the
Controls who were probably true controls or had other diseases which could elevate the
parameters under investigation. However, it was deemed more important to have clean Cases
and Controls to train and test the models. It can be useful to also analyze comorbidities and
other diseases which could be mistaken for CKD.

Exemplary heuristic algorithm:
max (case when ail k. Diag Age First is not null then '0 Diagnosed CKD' else

case when ( URINE_SG_MIN < 1.025 and ( CREATININE_MAX > 2.4 or
BUN_MAX >= 36 or PREDICTION_MAX > 0.4 or RENAL NOTES TOT > 1))
or (CREATININE MAX >3 and BUN. MAX >=40)
then '3 CKD'
else case when ( URINE_SG MIN <= 1.035 and (CREATININE MAX >
1.8 or BUN MAX >=32))
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or ( CREATININE MAX > 2.4 and BUN_MAX > 36 )
or ( CREATININE MAX > 1.8 and BUN MAX >= 32 and (
PREDICTION _COUNT > 1 or RENAL NOTES TOT>1) )
then '2 CKD Risk'
else 'l Normal' end
end end) OVER (partition by enc.pet id) Renal Filter, -- Filter based on
medical notes and blood chem - select only '0 Diagnosed CKD' or 'l Normal' for modelling
datasets.
URINE_SG MIN is the lowest value of USG seen for that cat across all visits
CREATININE MAX is the highest value of creatinine seen for that cat across all visits
BUN_MAX is the highest value of BUN seen for that cat across all visits
PREDICTION_MAX is the highest score for any medical note from the scoring
algorithm used to see if CKD related words were in the notes
PREDICTION_COUNT is the number of medical notes scored as being related to CKD
RENAL NOTES TOT is the number of medical notes containing any of the words
(‘renal’, ‘K/D’, “azotemia’, ‘CKD’ ‘CRF”)
Results

Summary of the prediction model

The model uses 6 factors which were selected for their predictive rather than
diagnostic capabilities. These are: urine specific gravity, creatinine, urine protein, blood urea
nitrogen (BUN), white blood cell count (WBC), urine pH. Urine specific gravity, creatinine
and BUN are known to be diagnostic for CKD and are used in IRIS staging of the disease.
Urine protein, WBC and urine pH are more novel and help the model to predict future
disease. WBC can be used by the model in some cases to rule out other infections, and can be
used to understand dehydration level and normalize the other values.

The model looks at changes in these parameters over time. For example, it can pick
up a reduction in urine specific gravity, urine pH and WBC count over time as an indication
of reducing renal function, even if none of these factors are outside of the normal range. This
allows the veterinarian to look at the cat’s medical history in more detail and begin early
treatment or arrange further tests if needed.

Accuracy of the model

The model was validated using the historic data of tens of thousands of cats from the
veterinary database. It was shown to be effective at predicting future CKD in these cats,

without giving a high number of false positives. The model performed best with several (two
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or more) visits with blood and urine data, and became more precise with three or more visits.
Pets which had been on the Wellness plan over a period of time can get the most benefit from
this model.

The model was shown to have an accuracy of over 95% with ideal data, meaning that
its predictions on historic cats in the veterinary database were correct more than 9 out of 10
times. Its sensitivity (ability to predict the disease in cats that have it) was highest between
0.5 and 1 year before diagnosis, where it generally picked up more than 79% of the cats
which would be diagnosed in the future. However, it had good predictive power much earlier
before diagnosis, and was still able to correctly predict future diagnosis of CKD over 50% of
the time when it saw data as far as three years before the cat was finally diagnosed.
Performance up to 4 years before formal diagnosis also appears to be surprisingly good. This
ability to highlight even some of the cats which were at risk very early, combined with the
low false positive rate, can give veterinarians confidence in investigating these cats who may
not otherwise have been spotted until the problem was severe and less treatable. This can give
the opportunity to begin interventions very early for many cats which could then stabilize the
condition before it becomes more severe, potentially prolonging the cat’s healthy lifespan. It
also gives an opportunity to develop diets specifically tailored for this early phase of the
disease, which can stabilize the cat without need for other interventions.

Table 4 shows the results for the six-biomarker model run on blinded longitudinal
data (previously unseen data across multiple visits) from the veterinary database. Cats were
split into Cases and Controls based on their diagnosis, and also because they had blood and
urine data which was consistent with either IRIS Stage 0 or Stage 3+. This removed a lot of
the ambiguous cats and the model predicted extremely well on the remainder. The false
positive rate for this subset of cats was less than 1%. Prediction at 3.5 years before diagnosis

shows high accuracy. There were insufficient number of cats with 4+ years of longitudinal

data.
Table 4.
Years e e s True True False False Tota
From Sensitivit | Specificit | Accurac Positi . . .
Diagnosi y y y ositiv | Negativ | Positiv | Negativ 1
. e e e e Cats
7.01
0 99.1 99 .4 99 .4 1391 5574 32 13 0
291
1 82.9 9.1 95.9 483 2313 20 100 5
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2 68.7 994 933 244 1411 8 111 1’Z7
3 57.4 99.8 91.5 77 539 0 57 674
35 61.2 96.6 89.5 44 278 10 28 359

Table 5 shows the same analysis, but with the model only seeing single visits (i.e., cross
sectional). As there were more single visits, predictions are shown as far as 4 years before the
cats were diagnosed. The model performed extremely well on single visit data, with the
accuracy nearly as good as the multiple visits. This was partly because the single-visit data was
limited to visits with both a creatinine and USG measure, whereas the longitudinal model was
predicting on quite a lot of missing data. The longitudinal model predictions would improve
with more complete data (more Wellness visits per pet).

For reference, a Sensitivity of around 20% at random would be expected, so 47% at 4
years was far better than random, and the Specificity was extremely high (false positives

around 1%) on these cleaned data.

Table S.
Years e e s True True False False Tota
From Sensitivit | Specificit | Accurac .. . .. .

Diagnosi y y y Positiv | Negativ | Positiv | Negativ 1
. e e e e Cats
3,51

0 99.0 98.9 98.9 1094 4363 49 11 7
1 834 99.2 96.0 382 1818 15 76 2’229
1,72

2 70.2 99.0 93.2 242 1363 14 103 3
1,18

3 56.7 98.4 90.1 134 929 15 102 0
4 473 99.2 88.8 57 482 4 64 607

For completeness, the same predictions were included in Tables 6 and 7 for the whole
dataset (i.e. cats with reasonable quality data, but only based on veterinary diagnosis captured
in the database, not cleaned by blood chemistry staging). Some of these individual cats had
very high blood chemistry and sometimes low urine specific gravity. The clinicians had often
commented in the medical notes about possible kidney disease but had not necessarily made a
formal diagnosis on all of these cats because of insufficient evidence. Therefore, the model
sometimes predicted CKD in these additional cats but there was no official diagnosis of CKD.
This led to a slight increase in false positives and lower apparent accuracy across the whole
uncleaned dataset. There can also be comorbidities in some of these like hyperthyroidism

which can make diagnosis difficult.
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Results from longitudinal predictions are shown in Table 6, with all data including
Cases with lower creatinine, and Controls with high creatinine. The Controls in this dataset
contained a large percentage with Creatinine > 1.6 mg/dL (140 umol/L).
Generally the Sensitivity remained high, but the Specificity and Accuracy dropped
5  when the more ambiguous data were introduced, due to the false positive rate increasing.

However, the results remained very powerful and robust.

Table 6.
Years True True False False
From Sensitivit | Specificit | Accurac .. . . . - Total
. . Positiv | Negativ | Positiv | Negativ
Diagnosi y y y Cats
s e e e e
0 96.9 90.1 91.5 5653 21064 2303 181 29i20
21,91
1 79.3 88.8 86.9 3475 15564 1968 909 6
2 63.3 87.4 82.6 1723 9497 1371 997 1358
3 52.5 85.8 79.1 505 3309 548 458 4,820
353 54.4 85.5 79.3 87 545 93 73 797

Table 7 shows the results of cross sectional (single visit) predictions with all data

including Cases with lower creatinine, and Controls with high creatinine. The Controls in this

dataset contained a large percentage with Creatinine > 1.6 mg/dL (140 umol/L).

Table 7.
Years True True False False
From Sensitivit | Specificit | Accurac .. . . . - Total
. . Positiv | Negativ | Positiv | Negativ
Diagnosi y y y Cats
s e e e e
0 96.8 85.8 88.0 4011 14247 2365 134 20%75
17,55
1 79.8 872 85.7 2800 12257 1795 708 9
2 64.2 872 82.6 1629 8849 1295 909 12568
3 531 88.8 81.6 880 5870 741 777 8.268
4 435 85.8 77.3 347 2741 454 452 3,995
Model Building
15 Dataset
1. Raw data

A training dataset for 61,159 feline visit records for 8,806 unique cats from the

veterinary database (6,711 healthy control and 2,095 cats that have/develop CKD) was used.
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There are 35 features from demographics, blood chemistry, hematology and urine levels
(Table 8). Healthy controls have visit entries up to 2 years before the last (undiagnosed) visit,
while CKD cats have visits up to 1 month after the visit that led to the CKD diagnosis.

Table 8.
ALKALINE PH | AMYLAS [PROTEIN
VISIT AGE | WEIGHT OSPHATASE E ToTAL | BUN
CREATINI | PHOSPHOR URINE P | URINE S | POTASSIU
NE US CALCIUM ROTEIN |G M
GLUcosg | HEMATOC | yieni6GLOBIN | RBE GO | RDW ALT SGPT
RIT — —~
UNT
CHOLEST | EOSINOP | GLOBULI
ALBUMIN | BILIRUBIN | CHLORIDE EROL HIL N
LYMPHOC |, o MCHC MOV MPY MONOCYT
YTE E
PLATELET | SEGS NEU URINE_P DIAG AG
COUNT |TROPHIL |>OPIUM H WBC E FIRST

Features in the veterinary dataset. Demographic (underlined), blood/urine and age of cat

when first diagnosed with CKD, if at all (bold).

2. Pre-processing

Missing values were imputed using a Random Forest implementation [1]. Felines
missing the URINE_SG value from all visits were deleted (10.1% of records). Min-max
normalization for each feature was applied [2].

3. Data overview

Figure 1 depicts the age distribution of CKD cats, both the age first diagnosed (red) as
well as the age distribution of healthy cats (green). The median for healthy and CKD visits
are 5.8+4.17 and 13.5+3.80 respectively.

Figure 2 shows the result of hierarchical clustering (entire dataset) after min-max
normalization and missing value imputation. The presence of a few outliers masks the
variability of the data range (Figure 2C), so those extreme values were removed for
visualization purposes (1223 values). The resulting heatmap and hierarchical clustering
(agglomerative) is shown in Figure 2A. The 6 features (Urine sg, Urine proterin, Urine_pH,
WBC, Creatinine, BUN) that were found to be the most informative in feature selection are
highlighted in red and are also shown in Figure 2B. Hierarchical clustering put Creatinine and
BUN together, as well as Urine SG and Urine_pH together, arguing of the high correlation of
their values in the respective samples. Urine Protein and WBC are closer to the

Creatinine/BUN cluster.
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Figure 3 depicts the scatterplot matrix and histograms of the 6 most informative
features. The large range of each variable can be attributed to outliers, the high overlap on
variable values between healthy (green) and CKD (red) visits, which can obscure the
prediction task.

Figures 4A and 4B project the dataset into a feature space by performing PCA (linear)
and t-SNE (non-linear) dimensionality reduction, respectively. Table 9 lists ranked features
based on the PCA and t-SNE results and compares them to the ranking based on the feature
selection methods (filter, wrapper).

Supervised learning
1. Training and testing datasets

The question to be answered by the predictor was “given a cat’s record, will it have
CKD within the next 2 years?” The dataset needed to be processed further to be ready for
training and testing of the methods. It was done by first constructing a pan-cat dataset, that
was the superset of all possible visit trajectories and then creating sampled datasets by
sampling it with replacement.

For a cat with N visits, its trajectory was defined as the temporally ordered list of
visits. A reduced trajectory was defined as any ordered subset of visits, where the last K visits
were removed, where K was a number from 1 to N. In other words, if the cat’s visit history
can be thought as a string, with each element in the string corresponding to a visit, a reduced
trajectory would be any prefix of the string and there can be up to N-1 possible prefixes
(trajectories). If the original dataset were extended to include all possible reduced trajectories
for CKD cats with removed visits up to 2 years before diagnosis, then an augmented dataset
was created which was call the Pan-cat dataset.

Sampled dataset was defined as the subset of the Pan-cat dataset where a single
trajectory for each CKD cat was randomly selected. Note that the records of healthy cats were
identical to the initial dataset. A large number of sampled datasets were created by using a
random number generator with different seeds, so that a different trajectory (a different
number of visits) was chosen for each pet id (sampling with replacement).

The reason that the sampled dataset was needed to train and test the predictors was the
following: For each cat that has CKD, the initial dataset contains data from the beginning of
the pet’s history up to a month after the diagnosis. If a predictor was trained using this
dataset, the predictor would learn to identify whether an undiagnosed cat would have been

diagnosed with CKD a month ago, which had little value. However, when using a sampled
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dataset, a predictor learns the patterns for cats that would be diagnosed with CKD at any
point in the next 2 years.
2. Feature selection

Features were selected by using a filter method (Pearson Correlation Coefficient;
PCC) and a top-down wrapper method KNN-DTW with K=7 neighbors, 25% of the training
data, 3- fold cross-validation and F1-measure as the selection criterion (Figure 4). A bottom-
up wrapper for the first 6 features was also in agreement with the results [3]. As shown in
Table 9, the top features were Urine Specific Gravity, Creatinine, Urine Protein, Blood Urea
Nitrogen (BUN), WBC and Urine pH. Interestingly, visit age was highly correlated to the
output label, however the neither of the wrapper methods (top-down or bottom-up) picked it
as a significant feature. A closer examination of the data shows that this feature had similar
information (vet somewhat at a lower degree) to that in creatinine, so the inclusion of the

later rendered the former less valuable.
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Table 9.
Feature RANK  BCC  PVALUE  BCL
URINE_SG 1 “d;x;‘z ¢ A1
CREATININE 2 0131 g 0.08
URINE_PROTEIN 3 o8 59834 1006
8UN 4 0i31 g 010
WBC 5 008 B8E-17 0.00
URINE_PH 5  -114  2SE163 (008
MV 7 dos 21 0.03
AMYLASE 8 013 136147 o
PILIRUIBIN g ooy 44801 to.m
LYMPHOCYTE 0 g7 oz jou
VISIT_AGE 11 oi54 a 0.88
SEGS_NEUTROPHIL 12 oje  as3pn loar
PHOSRHORUS 13 -gos 19828 0,05
MCH 9 o0 42 0,01
ALBUMIN 15 408 SSEE 0.3
GLORULIN B 013 138155 joos
HEMATOCRIT 17 di 1vens lam
PLATELET_COUNT 1 403 43E07 i0.00
EQSINOPHIL 19 N2 LBEG 0,00
HEMOGLOBIN 2 gos 1sEed o
CALCIUM 21 oL 3LEES £0.01
WEIGHT 22 4o 1180 ino2
MCHE 23 ope 1433 o
ALT_SGPT W olE SIEM .02
RRC_COUNT 25 406 69E36 002
MONOCYTE 26 o1 52603 Hh,
CHLORIDE 703 LB 00D
ROW 28 01z e7E135 jom
SODILUM % dod 1R 0.00
PROTEIN_TOTAL 30 ops g8ess jom
POTASSIUN 31 ol 1seo2 .01
MPY 3 Qip2 298R 0,00
ALKALINE_PHOSPHATASE 33 Q01 14808 002
CHOLESTEROL 38 ojs 1822 lonz
GLUCQSE 35 Ol 12E106 00

Table 9 shows feature analysis and selection. The 35 features in the dataset were
ranked based on the Wrapper top-down elimination (1, most informative; 35, least
informative). It also shows the Pearson correlation coefficient of each feature with the CKD
output, the p-value and the weight of the feature in PC1.

3. Time-series prediction
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K-Nearest Neighbor (KNN) with Dynamic Time Warping (DTW): KNN-DTW was
used with Euclidean distance as a metric [4] [5]. 5-fold cross validation was used to find the
optimal K. To do so, the last {0,3,6,9,12,18, 24} months of the history of CKD cats (both
train and test) were removed to create predictors that answer the following question: “Will
my cat have CKD in X months from now?” A predictor was also trained and evaluated based
on the “sampled dataset”, which includes random trajectories for each cat by removing the
last {0,3,6,9,12,18, 24} months and trains the predictor to answer the original question (“Will
my cat have CKD within the next 2 years?”). As shown in Figure 6, after K=7 there was only
a slight increase on the metrics, with performance increasing asymptotically up to K=13. In
the case of sampled dataset, the runs were continued for K equal to 15 and 17 and a very
slight difference (AUC ROC is 91.0% and 91.1%, respectively) was observed. As such, the
final predictor was based on the sampled dataset with K=17 with its confusion table in Table

10 and ROC/PR shown in Figure 7.

Table 10.
Confusion Matrix for best KNN-DTW configuration with K=17
KNN-DTW Known
K=17 CKD Healthy Total
Pred CKD 1452 227 1679 86.5% Precision
Healthy 520 5213 5733 90.0% NPV
Total 1972 5440
73.6% 95.8% 13.5% 89.9% 79.5%
Sensitivity | Specificity FDR Accuracy F1

Mixture of Experts (MOE): Next, whether an Ensemble learning technique, where
each individual KNN-DTW predictor trained to predict CKD for {0, 3, 6, 9, 12, 18, 24} was

explored. An MOE meta-predictor was explored with either simple or weighted voting. The

ROC/PR results for all predictors are shown in Figure 8. While the AUC was significantly

lower than the individual predictors, the F1-measure was the highest.

Recurrent Neural Networks with Long Short-Term Memory (RNN-LSTM): the

architecture showing in Figure 9 was used for training recurrent neural networks (RNN).

Different configurations of 1-4 hidden layers and 6-250 nodes per layer were ran. Tanh was

used as activation function in the hidden layers and softmax (sigmoid here since binary
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classification) at the output layer. Binary cross-entropy was used for loss calculation and 20%
dropout was considered to avoid overfitting [6]. Backpropagation through time was used for
training with the RMSprop gradient descent optimization algorithm. In addition and on
parallel with the vanilla RNN structure, the Long Short-Term Memory (LSTM) cell structure
were explored to cope with vanishing gradients.

Figure 10 depicts the way the dataset was structured as an input to the RNN (Figure
10A) and the way the RNN was trained through time (Figure 10B). Different configurations
were explored by performing a randomized parameter sweep on the number of nodes per
layer and the number of layers (Figure 11). Figure 12 shows how the F1 measure changes as
a function of the total number of nodes. The best two configurations after 5-fold cross
validation were a 3-layer RNN- LSTM (Figure 13) and a 3-layer Vanilla RNN (Figure 14).
The confusion tables for these two implementations are shown in Tables 11 and 12. Loss
drops exponentially within the first 5 epochs and quickly saturates after that (Figure 13C,
14C). The robustness of the architectures was tested by calculating the various metrics over
the different folds. After considering all parameters, the recommendation is to proceed with

the 7-7-7 RNN-LSTM architecture.

Table 11.
Confusion Matrix for best RNN-LSTM configuration
LSTM Known
7-7-7 CKD Health Total
Predict CKD 1560 173 1733 90.0% Precision
Healthy 412 5267 5679 92.7% NPV
Total 1972 5440
79.1% 96.8% 10.0% 92.1% 84.2%
Sensitvity | Specificity | FDR Accuracy | F1
Table 12.
Confusion Matrix for best Vanilla RNN configuration
RNN Known
3-5-3 CKD Health Total
Predict CKD 1582 217 1799 87.9% Precision
Healthy 390 5223 5613 93.1% NPV
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Total 1972 5440
80.2% 96.0% 12.1% 91.8% 83.9%
Sensitvity | Specificity | FDR Accuracy | F1

Summary of Model Building

Two methods for longitudinal analysis: K- Nearest Neighbors with Dynamic Time
Warping (KNN-DTW) and Recurrent Neural Networks (RNN) either vanilla or with Long
Short-Term Memory cells (RNN-LSTM) were used. The dataset had 61,159 feline visit
records for 8,806 unique cats from the veterinary database (6,711 healthy control and 2,095
cats that have/develop CKD). There were 35 features from demographics, blood chemistry,
hematology and urine levels.

From the hundreds of predictors built, the two best were (a) KNN-DTW with K=17
neighbors (AUC ROC=0.91; AUC PR= 0.87; F1=0.795) and (b) RNN-LSTM with 3 LSTM
layers (7-7-7) and 1 dense layer (AUC ROC=0.94; AUC PR=0.91; F1=0.842). The Mixture
of Experts configuration achieved a slightly lower performance but better stability. There was
a clear separation of the data in 3D space following (non)linear dimensionality reduction. The
top 6 features were sufficient for classification. Weight was not a good predictor, nor change
in weight (absolute or relative). Interestingly, while visit age had a high correlation with the
CKD onset, it was not used in the classification.

Only 6 features were needed for gain all the information that the data can provide for
prediction: Urine SG, Creatinine, Urine Protein, BUN, WBC, Urine pH, ordered based on
their information content. A final KNN-IDT and RNN-LSTM predictors were provided. The
pre-trained RNN predictor calculated faster and performs better than the KNN predictor. The
predictors achieved 0.94 AUCROC, 0.91 AUCPR and 0.842 F1, with accuracy, precision,
recall, specificity all at high numbers. This performance was measured in a realistic scenario
when cats have CKD at a random, stratified point within the next two years. When tested
with cats that had CKD in a fixed time range, performance ranges with an accuracy of ~0.95
to ~0.83 for cats with CKD within 0-3 month to 21-24 months from now, respectively.
Further optimization was not expected to move the performance to more than 5% within this
project cycle. Higher quantity/quality of data would boost performance in the future.
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Example 2

This example was to develop a predictive modeling system of azotemia (AZO) in cats
based on urinary measures, and to implement the system in software for veterinary use. The
predictive modeling system comprises of 5 independent mathematical models, allowing
predicting the probability of azotemia 0, 90, 180, 270 and 360 days after the measurement,
respectively. These models are based on a logistic equation that predicts the probability of a
feline becoming azotemia in a given period from three blood parameters: creatinine, urine
specific gravity and urea. Each of these models is associated with a decision threshold
corresponding to the probability beyond which the individual will be predicted to be positive.
This limit was determined by the ROC curve of each model and the Youden method. The
predictive modeling system integrates a Bayesian evaluation system taking into account the
history of the measurements of each cat and making it possible to refine the predictions by
increasing the number of measurements.

In this example, data independent from those used to construct the initial models were
used to: 1) validate the initial models; 2) improve the initial models; and 3) test a supervised
neural network (ANN) approach as an alternative to the logistic equation approach.

Methods

1. Data

The new data comes from the veterinary database. The raw file has 58,292 lines
corresponding to 8422 unique individuals followed at regular intervals. Three variables are
measured: creatinine, urine specific gravity and urea. However, not all individuals

consistently displayed a value for each of the three variables. Since models were based on the
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use of all three variables simultaneously, individuals with missing values were removal from
the study. After this process, there remained 18,976 lines for 7051 individuals.
The following Table 13 shows visiting age and age of diagnosis values, before and

after removal of incomplete individuals.

Table 13.
Before removal of incomplete After removal of incomplete
individuals individuals
Age visit | AZO diagnosis age Age visit | AZO diagnosis age
min 0059 1.97 0.20 1.97
max| 2223 21.41 21.41 21.41
average 6.78 13.25 7.47 13.41
median 6.04 13.99 6.76 14.1

The removal of incomplete individuals had little influence on the age distribution
characteristics, especially regarding the age of diagnosis of the disease. In total, out of 7051
selected individuals (18,976 measurements), 5348 were never diagnosed AZO and 1703
were. Out of the 18,976 measures, 1,302 were negative and 5933 were associated with
individuals diagnosed positive during their follow-up.

The dataset was separated into two parts by random drawing to create the following:

1. A validation data set consisting of 9,469 measures, out of which 6,521 were
negative and 2,948 were associated with individuals diagnosed positive during their follow-
up. This dataset was then used both to validate initial models and to validate updated models
and ANNSs.

2. A set of learning data, consisting of 9506 measures, out of which 6521 were
negative and 2985 were associated with individuals diagnosed positive during their follow-
up. This dataset was then used to update the initial models in a new leaming phase, but also
to adjust the ANNSs. For this purpose, the data from the initial study were added to this
learning game, with 459 negative measures (170 unique individuals) and 244 measures
associated with individuals diagnosed positive during their follow-up (56 unique individuals).

Certain individuals had their measurements shared between the validation and
learning phases.

Afterwards, the learning dataset is divided into several subsets built to match the 5
models:

1. The measurements corresponding to individuals already diagnosed AZO

during a given visit;
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2. The measurements corresponding to individuals diagnosed with AZO
within 3 months after a given visit;

3. The measurements corresponding to individuals diagnosed with AZO
within 6 months after a given visit;

4, The measurements corresponding to individuals diagnosed with AZO
within 9 months after a given visit; and

5. The measurements corresponding to individuals diagnosed with AZO
within 12 months after a given visit.

To each of these subsets, the measurements corresponding to all individuals never

diagnosed with AZO (providing the negatives for the models) are added.

2. Validation of initial models

In a first phase, all the new measures were projected in the initial models. For each
measurement (visit), a prediction was made by each model (10, t3, t6, t9, t12), a search on the
data of the corresponding individual was carried out to know if it was diagnosed AZO on the
prediction period of the model (0 months, 3 months, 6 months, 9 months, 12 months). This
made it possible to measure the quality of prediction.

For example on January 1, a measurement was made, and it was negative (no CKD on
January 1). Model TO predicts a negative and Model T3 predicts however CKD. For Model
T3, there is an error if: the cat never becomes sick, or the cat becomes sick but after March 1;
and there is no mistake if: the cat becomes sick before the March 1 even if the measure of
January 1 said that it was negative.

Then, the sensitivity and specificity of the model under validation were calculated
based on the number of true and false positives and negatives.

3. Upndate of the initial models

In a second phase, the learning dataset was used to re-adjust the initial logistic models
(see original study report). Once the models were adjusted, the decision threshold to classify
an individual as predicted or non-ill patient was calculated using the Youden index. The
validation dataset was then projected into these updated models to verify matching of the
predictions by calculating the sensitivity and specificity of the models in validation.

4. Neural network approach

The general approach was the same as before: using the learning dataset to adjust the
models then projection of the validation data and calculating the sensitivity and specificity of

validation. The adjustment phase of the neural networks was based on the coupling of a
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factorial plan on the parameters of the networks with an approach by 10-folds cross-

validation.

The procedure was the following :

1. Pattern adjustment was repeated 5 times using:

The learning data subset;

All input variables;

A complete factorial design to set the best set of parameters (intrinsic to the
neural networks) for each model (model tuning);

A 10-folds partition of the dataset, generated randomly at each draw: the
technique of k- folds cross-validation consists of carrying out training based
on 9 of the 10 scores, validating the 10th partition, and then redoing this
process by exchanging validation score with a learning partition, and so on
until all partitions were used for learning and validation. Thus, it was ensured
that the model was not trained by a particular configuration of
learning/validation data. Therefore, 10 weight adjustments were obtained
which would be assembled to form an overall model with the best parameter

set of the neural network.

2. Calculation of the Youden index for validation of the models established in such a

manner, upon each repetition.

3. Selection of the best model for each repetition.

4. The final model was an overall model of the 5 best models which were composed

themselves, of 10 networks of assembled neurons. As a result, in total, the final prediction

model comprises 50 networks that were assembled to give a final prediction. The Youden

index was calculated based on the result of this assembly to form the decision threshold

during projection of the validation dataset (subset not used in this adjustment phase).

Results

Results of the projection of all new data in the initial models are shown in Table 14.

Table 14.
True True False False Sensitivity | Specificity
Positive | Negative | Positive | Negative

T o (0 days) 992 13508 4404 71 93 % 75 %
T3 (90 1149 10365 7398 63 95 % 58 %
days)

Ts 1302 12168 5366 139 90 % 69 %
(180 days)
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To 1554 12233 4978 210 88 % 71 %
(270 days)
T 12 1540 12611 4600 224 87 % 73 %
(360 days)

Restatement of sensitivity/specificity couples of the initial models during the training phase:
10 =94/91, 13 =86/97.6, 16 =83/86, T 9 =77/83, and T12 = 84/76.

Considering the fact that initial training of the models had been carried out based on
no more than 703 measurements covering 226 individuals, the results of the projection of
18,976 new measurements (7051 different individuals) which were not used to build the
model may be considered to be very good. The specificity was higher or equivalent to 90%
up to 180 days (T6) and 88 and 87% at T9 and T12, respectively. Specificity was lower,
although it remained above 70%, at TO, T9, and T12. It was 69% at T6. Only the validation
specificity of model T3 was much lower (58%). To appraise the quality of the results, it must
also be kept in mind that it was not so much the value of sensitivity or specificity alone that is
important, but rather the sensitivity-specificity couple, since the two parameters were
interdependent: once one was decreased, the other one was increased.

Results of the projection of the new validation data in the updated initial models with
the new training data are shown in Table 15. All models were improved with this subsequent
addition of new data. All “Sensitivity + Specificity” sums were improved and, in particular,

all specificity values increase.

Table 15.

True True False False Sensitivity | Specificity

Positive | Negative | Positive Negative
T o (0 days) | 507 7105 1826 31 94% 80%
Ts 589 6193 2655 32 95% 70%
(90 days)
Ts 664 6636 2109 60 92% 76%
(180 days)
To 784 6882 1697 106 88% 80%
(270 days)
T 12 839 7155 1284 191 81% 85%
(360 days)

Results of projection of new validation data in neural networks models updated with

new learning data are shown in Table 16.
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Table 16.

True True False False Sensitivity | Specificity

Positive | Negative | Positive Negative
T o (0 days) | 482 8095 836 56 90% 91%
T3 (90 575 7379 1469 46 93% 83%
days)
Ts 643 7499 1246 81 89% 86%
(180 days)
To 729 7696 883 161 82% 90%
(270 days)
T 12 779 7724 715 251 76% 92%
(360 days)

ANN results were also very satisfactory since all the models present a “Sensitivity +
Specificity” sum, which were superior one by one to those models by logistic regression. It
can be noted that it was the specificity that was significantly improved on all the models.

Discussion

Updating the data made it possible to significantly improve the quality of the models.
This improvement can be considered, at the same time, to be a quantitative improvement,
with the improvement of the sensitivity/specificity couples through the addition of new data,
and a qualitative improvement, considering that the importance of the number of new data
that were used for training should consolidate and stabilize the models.

It is recommended to explore the methodological improvement of the models based
on logistic regression (randomization of the training/validation data sets) and the construction
of a comprehensive model combining the neuron network approach and that based on logistic
regression in order to combine the strengths of the two approaches: the neuron networks

provide better specificity, and the logistic models have better sensitivity.

Example 3
This example relates to method of diagnosing CKD using baseline serum creatinine

level for cats with creatinine levels within the laboratory reference interval.
If a cat has prior visits with bloodwork (+/- urinalysis), the baseline of serum
creatinine for the cat can be established. The following criteria must be met to establish the

baseline:
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a. At the time of current visit, the cat has at least 2 creatinine results that were
obtained in the previous 2 years. If available, it is recommended to use all
creatinine results available during that time period that meet criteria (b)-(d);

b. Catis over 1 year of age during each of those visits with creatinine results;

c. Catis spayed/neutered at least 2 months before the first creatinine result to be
used in the baseline; and

d. Cat must be otherwise healthy and not have any concurrent illness (e.g.,
hyperthyroid, diabetes).

Pre-test fasting is not necessary for evaluation of serum creatinine.
Using the previous creatinine results that meet the above criteria, the baseline
creatinine level can be established by calculating the mean creatinine value.

Accordingly, diagnosis of CKD can be made using Table 17.

Table 17.

State Defined by:

At-risk If any of the criteria regarding creatinine below are met, but there
is no urine specific gravity and/or SDMA results available within
the past 30 days.

Early CKD (IRIS Creatinine < 1.6 mg/dL, but see >20% increase in serum

CKD, Stage 1) creatinine from baseline;

USG < 1.035; and

SDMA > 14 pg/dL

CKD, Stage 2 Creatinine = 1.6-2.8 mg/dL;

USG < 1.035; and

SDMA = 15-25 pg/dL

CKD, Stage 3 Creatinine = 2.8 — 5.0 mg/dL;

USG < 1.035; and

SDMA >25 pg/dL

CKD, Stage 4 Creatinine >5.0 mg/dL;

USG < 1.035; and

SDMA > 45 ng/dL

Healthy or Subclinical | Not meeting any of the above criteria
renal disease not
detected

Example 4
This example relates to simplified rules to establish a typology of cats suffering

from/not suffering from azotemia (AZO) in addition to the predictive modeling system
constructed by machine learning in Example 2.
The instant predictive modeling system consists of six models to predict azotemia in

cats. Each model is associated with the period of time which has elapsed since an initial point
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in time during which the disease can be triggered: 0 month (t0), 3 months (t3), 6 months (16),
9 months (19), 12 months (t12), and 24 months (124).

The data which served to calibrate and validate the AZO-Predict models through
neuron networks in Example 2 were used for developing the rule. The performances of the
various proposed rules were tested by calculating their AUC, their sensitivity, and their
specificity. Contrary to Example 2, no cross-validation were carried out, i.e., all data were
used to establish the rule and calculate the performances of the models.

Table 18 shows the performances of optimized AZO-Predict models constructed by
machine learning process.

Table 18. Performances of optimized ANN models selected for all repetitions. SE:
sensitivity, SP: specificity.

SE SP
t0 0.93 10.90
t3 0.91 10.84
t6 0.78 10.89
t9 0.82 10.84
t12 0.82 0.81
t24 0.73 10.83

Simplified Predictive Rule

The simplified predictive rule is based on the application of Linear Discriminant
Analysis (LDA), which provides a linear model to calculate a score designated SC1, whose
value permits predicting the disease.

Three variables measured during a visit, i.e. creatinine concentration (Creat; measured
in gm/dL), urine specific gravity (UrineSG), and urea (Urea; measured in gm/dL) were used
in the simplified predictive rule, as well as the coefficients thereof, i.e., a(Creat), b(UrineSG),
and c(Urea). These coefficients were the result of the application of the LD A on the data for
each and every time of prediction (10, t3, t6, t9, t12, t24). The values of the coefficients are
shown in Table 19 below.

Threshold coefficients were used to determine, based on the SC1 value, whether the
cat would be ill or not. The Threshold values were the result of the application of the LDA,
and the values for each and every time of prediction are shown in Table 3.

The simplified predictive rule is summarized below:
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1- SCI1 = a(Creat) x Creat + b(UrineSG) x UrinesSG + ¢(Urea) x Urea

2- If SC1 > Threshold, the cat is predicted to be ill, if SC1 < Threshold, the cat is
predicted not to be ill.
Table 19. Summary of values used and performances of the simplified predictive rule

5  for each and every time of prediction

a(Creat) b(UrineSG) |c(Urea)| Threshold | SE SP
t0 0.0068 -40.0563 0.0659| -38.7128 0.89| 0.89
t3 0.0083 -25.7343 0.1182| -22.6030 0.80| 0.87
t6 0.0069 -36.9897 0.1137| -34.8051 0.77| 0.84
9 0.0061 -44 3368 0.1077| -42.7709 0.77| 0.83
t12 0.0057 -47.0420 0.1085]| -45.6250 0.74] 0.85
t24 0.0058 -49.9186 0.1044| -48.7966 0.70| 0.84

The performances were comparable to the performances of optimized AZO-

Predict models constructed by machine leaming process shown in Table 18.

10 Example 5

The prediction model developed according to Example 1 based on six biomarkers was
further improved. The selection criteria were refined for the tens of thousands of predictions
made on the cats at different time points (i.e. with different amounts of data removed).

Table 20 shows the results for the improved model run in Longitudinal mode (across

15  multiple visits) on blinded data from the veterinary database, where the cats were split into
Cases and Controls based on their diagnosis and had blood and urine data which is consistent
with either IRIS Stage 0 or Stage 3+. This removed a lot of the ambiguous cats, and the
model predicted well on the remainder. The false positive rate for this subset of cats was less

than 1%. Prediction up to 3 years had high accuracy.

20 Table 20.
Years from Diagnosis | Sensitivity Specificity Accuracy Total Cats
0 99.1 99.4 99.4 7,010
1 82.9 99.1 95.9 2,915
2 68.7 99.4 933 1,774
3 57.4 99.8 91.5 674

Table 21 shows the results of the same analysis, but with the model only seeing single
visits. As there were more single visits the predictions out to 4 years are shown. The model

performed well on single visit data, with the accuracy comparable to the multiple visits. One
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reason was that the single-visit data were limited to having a creatinine and USG measure,
whereas the Longitudinal model was predicting on significant amount of missing data.
Therefore, the Longitudinal model would improve with more complete data (more Wellness
visits per pet). For reference, a Sensitivity of around 20% was expected at random, so 47% at
4 years was significantly better than random, and the specificity was high (false positives

around 1%).

Table 21.
Years from Diagnosis Sensitivity Specificity Accuracy Total Cats
0 99.0 98.9 98.9 5,517
1 834 99.2 96.0 2,292
2 70.2 99.0 93.2 1,723
3 56.7 98.4 90.1 1,180
4 473 99.2 88.8 607

The performance of the same predictions for the whole dataset are shown below (i.e.
cats with reasonable quality data, but only based on veterinary diagnosis captured in the
database, not cleaned by blood chemistry sense-checking). Certain individual cats had very
high blood chemistry and sometimes low urine pH. Veterinary physicians commented in
certain medical notes regarding possible kidney disease but had not necessarily made a
formal diagnosis. Therefore, the model sometimes predicts CKD in these additional cats
when there was no diagnosis of CKD. This led to a slight increase in false positives and lower
apparent accuracy across the whole uncleaned dataset. It was reckoned that certain borderline
cases were where the model can help the clinicians to make an earlier decision. There could
also be comorbidities in certain cases like hyperthyroidism which can make diagnosis
difficult.

Performance of longitudinal models with all data including Cases with lower
creatinine, and Controls with high creatinine is shown in Table 22. The Controls in this
dataset contained a large percentage with Creatinine > 1.6mg/dl (140 pmol/1).

Generally the Sensitivity remained high, but the Specificity and Accuracy dropped when the
more ambiguous data were introduced, due to the false positive rate increasing. However, the

results remained robust.
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Table 22.
Years from Diagnosis Sensitivity Specificity Accuracy Total Cats
0 96.9 90.1 91.5 29,201
1 79.3 88.8 86.9 21,916
2 63.3 87.4 82.6 13,588
3 52.5 85.8 79.1 1,820
3.5 54.4 85.5 79.3 797

The performance of cross sectional (single visit) models with all data including Cases
with lower creatinine, and Controls with high creatinine is shown in Table 23. The Controls

in this dataset contained a large percentage with Creatinine > 1.6mg/dl (140 umol/1)

Table 23

Years from Diagnosis Sensitivity Specificity Accuracy Total Cats
0 96.8 85.8 88.0 20,757

1 79.8 87.2 85.7 17,559

2 64.2 87.2 82.6 12,682

3 53.1 88.8 81.6 8,268

4 435 85.8 77.3 3,995

Example 6

Data from a second veterinary database (63,500 cats, 177,500 visits) were used to
further test and improve the prediction model. The data were processed to produce clean
‘Cases’ and ‘Controls based on either the last visit being IRIS Stage 3 and previous visits
being below IRIS Stage 3, or remaining at IRIS Stage 0 for all visits. Cats were defined as
having a lifetime (across the 2 or more years of results for them in the second veterinary
database) kidney IRIS Stage of either:

e Stage 3 if creatinine > 2.8 and urine SG <= 1.035 within a 3-day period
s Stage 0 if creatinine_max < 1.6 and urine_ SG_min >= 1.035 across all recorded visits

All other combinations of levels were staged but not included in this prediction set. It
was known that IRIS staging without other clinical signs was not perfect in terms of
diagnosis of CKD, although there was a high level of correlation. However, no other clinical

information was available for most of the cats in the second veterinary database.
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Up to the visit prior to reaching Stage 3 (when the cat was staged below 3) were given to the

model, which predicted the likelihood of the next visit being classed as stage 3. This would

give clinicians the opportunity to intervene if the risk was seen to be high.

Examples of the performance are shown below. First, the model performed well

across all major cat breeds as shown in Table 24.

Table 24.
Breed Sensitivity Specificity Accuracy Total Cats
Abyssinian 94.74 97.47 96.94 98
Himalayan 99.97 96.15 96.55 29
Maine Coon 99.9 97.87 97.91 48
Mixed Breed 93.71 98.76 98.15 2483
Other Purebred 94.07 97.61 97.04 845
Persian 99.98 100 100 55
Ragdoll 80 95.83 93.1 29
Siamese 92 98.68 97.03 101

Where there were more than one historic creatinine and USG value, the model was

predicting the future state (at an average of 6 months) with above 98% accuracy.

The accuracy dropped slightly with only one historic creatinine value, but was still above

96%.
Table 25. For cats with > 1 creatinine value and > 1 USG value
Sensitivity Specificity Accuracy Total Cats
92.36 99.25 98.33 3543
Table 26. For cats with only 1 creatinine value — USG not selected
Sensitivity Specificity Accuracy Total Cats
84.88 99.04 96.69 3506

The maximum Stage the cats had reached by the point of prediction was calculated

when predicting the progression to Stage 3 at a later visit as shown in Table 27. Of the cats

that had only reached Stage 0 at the time of prediction, 8 of the 3080 went on to get CKD (as

defined by reaching Stage 3 at the next visit). The model only predicted one of these 8. It was

reckoned that certain cases were acute failure, which advanced from Stage 0 to 3in 6t0 9

months. The model correctly predicted 3049 of the Stage Os to remain below Stage 3, and
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only falsely predicted 23. Hence an accuracy of 99% on the ones which started at Stage 0.
For the cats that were Stage 0.5 at the visit before they reached Stage 3, the model correctly
predicted 4 of the 16. Again, this can be a fast progression for CKD. For the cats that were

Stage 1 and above at the prior visit (or before), the model predicted the Cases with an

5 accuracy from 86% to 100% as the Stage at the earlier visit increased.

The intermediate stages between 0 and 3 were defined using an algorithm based on
increased creatinine and decreased USG, but with severity too low to be classified as IRIS
Stage 3. Most of them would be in the normal ranges, or only exceeding in one analyte, e.g.
Stage 2.5 has low USG, but creatinine is high in the normal range at 2.6 to 2.8. For Stage 2,

10  creatinine is 2 to 2.6 with low USG.
Table 27.
Years
Stage at Prediction | Sensitivity Specificity | Accuracy | Total Cats | from Diagnosis
0 12.5 99.25 99.03 3080 -0.74
0.5 25 25 16 -0.65
1 86.3 86.3 73 -0.58
1.5 90.74 90.74 54 0.45
2 99.07 99.06 214 -0.46
2.5 100 100 106 -0.43
Table 28 shows the same analysis, but done on cats with only one creatinine measure
before the Stage 3 visit (i.e. predicted on only 1 creatinine measure + the other analytes).
15 Table 28.
Years
Stage at Prediction | Sensitivity Specificity | Accuracy Total Cats | from Diagnosis
0 571 99.04 97.94 2959 -0.77
0.5 28.57 28.57 35 -0.95
1 79.63 79.63 108 -0.66
L5 90.28 90.28 72 -0.63
2 99,58 99.58 236 0.71
2.5 100 100 96 -0.64

To be clear, the data did not necessarily mean that every cat that was at Stage 2 would
progress to Stage 3 within 9 months. For this validation, cats were selected as being known to
reach Stage 3, then chosen for the visit prior to reaching Stage 3. Therefore, for all these

20  Cases, they were expected to reach Stage 3 at the next visit, and were used to test if the model
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would predict correctly or would predict a false negative. For the Controls, it was tested
whether it would predict a false positive.

If cats with a data point at Stage 2 were randomly chosen without specifying that the
next data point should be Stage 3, a similar ability to predict either steady state or progression
would be observed. Therefore, not all Stage 2 cats would necessarily progress to Stage 3 in a
short time (although from looking at thousands of cats, it appeared that progression was more
frequent than expected), but that the model was effective at spotting the cats that would
progress (and those that won’t) from the mid to late Stages, but understandably may not
easily spot Stage 0 or 0.5 cats that would progress rapidly to Stage 3, as the nature of the

disease in those cats was probably different.

Example 7

The prediction model based on six biomarkers described in Examples 1, 5 and 6 was
further improved with even more cats at a higher data quality level. The predictive ability on
purebred cats in the veterinary database was verified. The model performance (e.g. accuracy)
on blind data from the veterinary database has increased by around 1%. The 1% accuracy
increase represents a big reduction in false positive rate in most cases e.g. a 40% decrease
from 2.6 to 1.5% false positives.

The total cats for training was 53,590 cats, and over 300,000 visits with chemistry
data. The total cats for blind testing was 150,000 cats, and over 700,000 visits with chemistry
data.

Table 29 shows the prediction accuracy at 1 year before diagnosis for mixed breeds
and all of the common breeds in the veterinary database, using relatively uncleaned data. The
slight variations in accuracy were caused by random variation due to low numbers of cats in
certain groups (e.g. 86 Red Tabby cats compared to 25,248 DSH). Apparent accuracy on
Siamese and Himalayan cats was slightly lower due to a higher prevalence of CKD in these

breeds. However, the Sensitivity and Specificity were both high.

Table 29.
Breed Sensitivity Specificity Accuracy Total Cats
American Short Hair | 71.13 94.59 89.05 411
Bengal 61.54 97.32 89.89 188
DLH 71.2 97.77 90.06 4106
DMH 68.69 97.96 91.16 4975
DSH 69.1 98.17 91.51 25248
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Himalayan 64.49 98.37 87.84 444
Maine Coon 7222 97.14 90.55 476
Manx 76.47 100 93.75 128
Persian 65.79 98.27 89.59 711
Ragdoll 73.44 98.7 93.2 294
Red Tabby 71.43 98.61 94.19 86
Russian Blue 70.69 99.37 91.67 216
Siamese 69.6 97.52 88.4 1078
Tortoise-Shell Persian 67.44 97.7 87.69 130
Example 8

Using a new methodology to select appropriate variables for predictive modelling, a
new and simpler cat CKD model was developed, which is named CKD4. CKD4, which was
developed on data from the veterinary database, uses Creatinine, BUN, Urine Specific
Gravity and Age, and uses longitudinal data across multiple visits, though single visits can
also be used. In comparison, the CKD3 models disclosed in Examples 2 and 4 use
Creatinine, BUN and Urine Specific Gravity, and data from a single visit; and the CKD6
models disclosed in Examples 1 and 5-7 use Creatinine, BUN, Urine Specific Gravity, Urine
pH, Urine Protein and WBC count, and uses longitudinal data across multiple visits, though
single visits can also be used.

A benefit of CKD4 is that is it less demanding in terms of needing blood count data,
urine pH or urine protein. Therefore, it is applicable in many more clinics and visits where
these data have not been collected.

Comparing the performance of CKD6 and the simpler CKD4 on longitudinal blind
data (150,000 cats in the veterinary database), the models disagreed on only around 4% of
predictions. Of these predictions, CKD4 was better at predicting the Controls (83% correct
vs. 33%). CKD6 was better at predicting the Cases (77% vs. 20%). On longitudinal data
CKD4 was less than 1% worse in terms of accuracy compared to CKD6. However, CKD4
had a better positive predictive value (PPV) of 94.9% vs. 92% at 1 year from diagnosis,
which indicated that its sensitivity was slightly lower, but its specificity was higher (Table
30). CKD6 performed slightly better at more distant times before diagnosis, e.g., 2.5 years or
longer.

On single visit data, the performance was reversed. Both models only disagreed on
4.9% of predictions. Overall, CKD4 was between 2 and 3% more accurate than CKD6. At 1

year before diagnosis, where BUN, Creatinine and USG data were available from a single
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visit, CKD4 was 92% accurate with a PPV of 89% (Table 31). CKD4 performed slightly
better at more distant times before diagnosis, e.g., 2.5 years or longer.

In the tables below, “Time Split” refers to years before the official diagnosis listed in
the veterinary database, e.g., Time Split 2 indicates predicting risk 2 years before official
diagnosis. The two models were compared on blind data at each time point.

Table 30. Comparison of both models on blind longitudinal data with 2 or more visits

and creatinine measures on more than 50% of the visits, and USG measures on more than

25%.

Mode Time Split Sensitivity | Specificity Accuracy Total Cats PPV
CKD6 0 93.58 98.18 9581 44906 98.2
CKD4 0 90.85 98.89 9475 44906 98.87
CKD6 0.5 80.14 98.09 94.03 46643 92 43
CKD4 0.5 76.01 98.81 93.66 46643 94.92
CKD6 1 69.5 98.07 91.15 40592 92
CKD4 1 64.31 98.89 90.52 40592 94.9
CKD6 1.5 59.47 98.04 88.87 33336 90.43
CKD4 1.5 53.11 98.99 88.08 33336 94.25
CKD6 51.96 98.01 86.24 27549 89.97
CKD4 45 .44 98.98 85.3 27549 93.87
CKD6 2.5 42.12 97.94 83.8 22424 87.39
CKD4 2.5 35.46 99.03 82.93 22424 92.56
CKD6 3 36.34 97.99 81.01 16378 87.33
CKD4 3 28.34 98.99 79.52 16378 91.42
CKD6 3.5 31.35 97.87 78.75 7434 85.57
CKD4 3.5 23.54 99.13 77.4 7434 91.62

Table 31. Comparison of both models on blind single visit data where creatinine,

BUN and USG results are available

Mode Time Split Sensitivity Specificity Accuracy Total Cats PPV
CKD6 0 90.91 98.09 9431 27052 98.15
CKD4 0 93.39 96.7 94.96 27052 96.93
CKD6 0.5 76.06 98.23 93.93 27984 91.16
CKD4 0.5 83.75 97.2 94.59 27984 87.79
CKD6 1 63.39 98.23 90.47 25468 91.1
CKD4 1 73.09 97.49 92.06 25468 89.31
CKD6 1.5 52.18 98.53 88.71 21564 90.51
CKD4 1.5 63.21 98.02 90.65 21564 89.55
CKD6 2 44.27 98.2 85.01 18857 88.82
CKD4 54.92 98.38 87.76 18857 91.64
CKD6 2.5 37.51 98.3 83.64 15570 87.52
CKD4 2.5 48.94 98.33 86.42 15570 90.32
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CKD6 3 31.36 98.41 79.97 12714 88.17
CKD4 3 40.06 98.72 82.59 12714 92.23
CKD6 35 27.1 98.3 78.77 9944 85.73
CKD4 35 35.17 98.82 81.37 9944 91.86
CKD6 4 21.6 98.23 75.64 5858 83.63
CKD4 4 26.29 98.81 77.43 5858 90.26
Example 9

Chronic kidney disease (CKD) is defined as evidence of functional impairment or
structural damage to the kidney resulting in a reduction in glomerular filtration rate (GFR).
CKD has been described as the leading cause of mortality in cats over the age of five
(O’Neill et al. 2015), with a prevalence of between 8 and 31% reported in geriatric cats
(O’Neill et al. 2014; Lulich et al. 1992; Marino et al. 2014). The aetiology of many feline
CKD cases remains unclear, with histological investigations highlighting nephritis and renal
fibrosis that may have resulted from a range of underlying causes including toxic insults,
hypoxia, chronic glomerulonephritis, chronic pyelonephritis, upper urinary tract obstructions,
and viral infections (Brown et al. 2016). The prognosis for cats with CKD depends on the
severity of the disease at the time of diagnosis, with cats identified at IRIS stage 4 reported to
have a 9- to 25-fold shorter life expectancy than those diagnosed at IRIS stage 2 (Boyd et al.
2008; Geddes et al. 2013; Syme et al. 2006). Early detection of CKD allows the
implementation of care pathways that can slow the progression of the disease, improving
clinical outlook and quality of life, as well as the avoidance of situations that may cause
worsening of kidney function and acute kidney injury (e.g. administration of NSAIDs; Levin
and Stevens, 2011).

A single, accurate biomarker to assess renal function in clinical practice does not
currently exist (Sparks et al. 2016). While the measurement of GFR provides a direct
assessment of renal function, accepted methods are technically challenging to implement in
clinical settings. Consequently, serum creatinine remains the standard surrogate for GFR,
both as part of the initial diagnosis, as well as when staging the disease using recognised
criteria (e.g. IRIS; Finch 2014). Further traditional clinical biomarkers, including urea,
proteinuria (an elevated urine protein to creatinine ratio, UP/C), blood pressure and urine
specific gravity may also be referenced as part of the diagnosis with UP/C and blood pressure
used to substage cats when deciding on the appropriate care pathway. More recently the use
of serum symmetric dimethylarginine (SDMA) has become popular in clinical practice, due

to early evidence that it is responsive to changes in renal function sooner than serum
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creatinine, enabling the early detection of CKD in non-azotemic cats (Hall et al. 2014).
Additionally fibroblast growth factor-23 (FGF23), an important factor in the regulation of
phosphate and vitamin D metabolism, has been shown to increase in the circulation before
development of azotemia as GFR declines (Finch et al. 2013). These more recent CKD
biomarkers represent progress in the development of diagnostic tests to detect feline CKD
with greater sensitivity or at an earlier stage, but due to the complex nature of the disease,
further research is needed to fully understand the clinical value of these approaches.

In human healthcare, machine learning models have been used to assess risk and
inform practice management (Parikh et al. 2016), predict individual outcomes (Peck et al.
2012; Peck et al. 2013), length-of-stay (Gultepe et al. 2013), recommend treatments
(Tsoukalas et al. 2015), and personalized medicine (Callahan et al 2018; Pencina et al. 2016).

In this study a data set of 106,251 individual cat electronic health records (EHRSs)
from routine veterinary practice were used to train and then validate an algorithm that
predicts the risk of cats developing azotemic CKD with high specificity. The clinical use of
this algorithm for early diagnosis and the options this brings for new clinical care pathways
were discussed.

Methods
1. Data source and initial cleansing

Data were extracted from electronic health records (EHRs) of cats visiting
BANFIELD pet hospitals (Vancouver, WA, USA) between January 1, 1995 and December
31, 2017. At the close of this time period, over 1000 BANFIELD hospitals were operated
across 42 US states. Data collected from cats before the age of 1.5 and after the age of 22
years was excluded. With the further inclusion criterion of at least 3 clinic visits per cat this
yielded a sample of 910,786 cats. The sample contained domestic short, medium and long
haired cats and over 50 pedigree breeds. Extreme outliers for blood and urine tests — more
than 6 standard deviations above the maximum of the normal range — were set to missing.

Each individual EHR included patient demographic data (age, breed, body weight and
reproductive status), blood and urine test results, and clinical information (formal diagnosis
and unstructured medical notes). In total 35 types of information were selected as features for
a CKD prediction model. Data points were primarily collected during or around hospital

visits, with individual visits timestamped meaning that the data was intrinsically longitudinal.

2. CKD status and age at evaluation T0

79



10

15

20

25

30

WO 2019/144081 PCT/US2019/014427

EHRs in the study dataset were classified in 3 CKD status groups. The first group
consists of EHRs with a formally recorded CKD diagnosis (“CKD™). The age of the first
CKD diagnosis was used as the age at evaluation (T0). For this group, data collected more
than 30 days after the diagnosis was excluded (an additional 30 day window was included to
capture serum, blood or urine test data that was returned shortly after the diagnosis visit).

EHRs without a formal CKD diagnosis, but with at least two CKD-suggesting data
points from the following list: blood creatinine above normal values, urine-specific gravity
below normal values, and “CKD”, “azotemic”, “ROY AL CANIN Veterinary diet Renal” or
“Hill’s prescription diet k/d” in the medical notes were classified as “probable CKD”. While
the exact reason for a lack of a formal diagnosis remains uncertain for these EHRs, it is likely
that the veterinarian was either unsure about the diagnosis or did not fill in a formal
diagnosis. For this group the age at evaluation (TO) was set to the age at last available visit,
and the complete EHR was used.

All EHRs that were not included in the two previous groups, and that have at least 2
years of data (recorded visits) at the end of the EHR to validate absence of CKD were
assigned a “no CKD” status. For these EHRs age at evaluation (T0) was set as the age at the

last visit minus 2 years, and the last 2 years of data were removed from the EHR.

3. Data sets for model building and testing

The truncated EHRs were further filtered based on their information content by
imposing that the EHR should include at least 2 visits with accompanying blood creatinine
data. This resulted in a data set with 106,251 individual cat EHRs. This data set was
randomly split in two parts. In total 70,687 EHRs or approximately 67% of the data was used
to build the CKD prediction model. The remaining 35,564 EHRs or approximately 33% were
used as a test set to evaluate the model performance. Both data sets were kept separate
throughout the analysis to exclude any bias at the testing stage. Prior to use, missing
information in the blood and urine test data was imputed without using the CKD status
information. This was done separately for model building and test data sets to avoid any flow

of information between the two datasets.

4. Model building
Prior to use the model building dataset was filtered further ensuring that only the best
characterized EHRs were used for leaming. EHRs with status “probable CKD” were removed

as were 7,549 “CKD” and “no CKD” EHRs with “acute kidney injury” or “urinary tract
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infection” as comorbidity. This left 53,590 EHRs of which 9,586 were “CKD” and 44,004
“no CKD”. To enable the model to work for early detection of CKD, this dataset was then
augmented (Perez and Wang, 2017) by adding truncated versions of the original EHRs (last k
visits removed with k ranging from 1 to the total number of visits -1). This enriched the
dataset with EHRs having a gap of up to 2 years between the last visit seen by the model and
the time of diagnosis.

The first step towards a CKD prediction model was to select a limited set of features
to be included. Feature selection was conducted by a top-down and bottom-up wrapper
method (Tang et al., 2014) using a standard recurrent neural network (RNN, (Goodfellow et
al. 2016) Figure 15) with a 3-5-3 hidden layer structure. This RNN model was selected based
on exploratory studies (results not shown) where it outperformed alternatives such as k-
nearest neighbour with dynamic time warping (KNN-DTW) (Salvador and Stan 2007) and a
long short-term memory RNN alternative (LSTM, (Gulli and Pal 2017) , Figure 15). The
RNN was implemented with a tanh activation function in the hidden layers and softmax for
transforming the output layer into a CKD probability score. Backpropagation through time
was used for training with the RMSprop gradient optimization algorithm. Model performance
was evaluated based on the F1 cross-entropy in a 3-fold cross-validation setup. The F1 cross-
entropy was used as a metric because it balances sensitivity and specificity independent of
CKD incidence.

Next a full model architecture screen was performed with the selected features for the
above-mentioned RNN structure as well as for a LSTM alternative. For both structures,
different configurations of 1 to 5 hidden layers were tested with 3 to 200 nodes per layer. The
setup was the same as above except that 20% dropout was added to avoid overfitting
(Srivastava et al., 2014). Evaluation was based on the F1 score in a 10-fold cross-validation
setup (Powers et al, 2011). Finally the best model configuration was fine-tuned with respect

to the training time in the same cross-validation set-up.

5. Model testing

Unbiased model performance was assessed by applying the selected prediction model
to the test dataset. Predictions were performed for all EHRs in the “CKD”, “probable CKD”
and “no CKD” groups. Results were interpreted at the level of the crude model output — the
probability p of a CKD diagnosis — as well as after categorisation into “no CKD” and “CKD”
using p=0.5 as the cut-off point. Categorical results for “CKD” and “no CKD” groups were

used to compute sensitivity (proportion of true positives, “CKD” status predicted as CKD)
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and specificity (proportion of true negatives, “no CKD” predicted as no CKD) estimates,
respectively. Confidence intervals for sensitivity and specificity estimates were calculated
using the normal approximation. Odds ratio tests for the comorbidity analysis (Table 35)
were done with a standard chi-square test.

The ability for the model to predict CKD ahead of the definitive diagnosis was
evaluated by truncating the EHRSs to various time points before age at diagnosis for the
“CKD™ group.

5. Software

General data management, statistical analyses and plots were performed using R
version 3.4.3 (R Core Team, 2017) and imputation was done with the MissForest package
version 1.4 (Stekhoven et al., 2012). Machine leaming work was done using Tensorflow
version 1.3 (github.com) and interfaced from within Python using Keras Deep Learning
library version 2.0.8 (faroit.github.io) run on a 500-core, 4 GB memory per core Dell
PowerEdge R730xd cluster with dual Intel E5-2690 v3 CPUs.

Results

1. Study dataset and clinical CKD diagnosis

This study was performed on an extract of 106,251 individual cat EHRs of
BANFIELD pet hospital visits between 1995 and 2017. Demographics of this sample
differentiated by CKD status and summaries of blood and urine test data at the time of
diagnosis are shown in Table 33. The CKD prevalence in this sample was 17% when based
on the “CKD” status group only, and 42% when including “probable CKD” cats in addition.
Cats with “CKD” status were older than “no CKD” cats. The prevalence of missing data was
approximately 9% for most of the blood chemistry measures and up to 62% for urine test
results, which are not routinely measured on every visit. Results are very similar after
breakdown in a model building and test data set (Table 32) showing that these can be used as
independent samples of the same population.

Table 32. Demographics and summaries for the study data set, split by training and

test sets.
No CKD Probable CKD CKD
Training
Mean age (vears) at TO 6.6 10.7 13.1
Mean weight (kg) at TO 5.55 524 447
Mean creatinine (mg/dL) at TO 1.7 1.9 2.8
Mean Urine SG at TO 1.05 1.035 1.02
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Percent Missing Creatinine Values 7% 10% 11%
Percent Missing Urine SG Values 68% 57% 56%
Test

Mean age (vears) at TO 6.5 10.6 13.1
Mean weight (kg) at TO 5.53 5.24 4.55
Mean creatinine (mg/dL) at TO 1.7 1.9 2.9

Mean Urine SG at TO 1.05 1.036 1.02
Percent Missing Creatinine Values 7% 10% 11%
Percent Missing Urine SG Values 68% 58% 57%

Table 33. Demographics and summaries for the study data set.

No CKD Probable CKD CKD
Number of Cats 61,239 26,604 18,408
Mean visits per Cat 54 10.9 8.2
Male to Female ratio 1:0.95 1:1.14 1:0.92
Mean age (years) at TO 6.6 10.7 13.1
Mean weight (kg) at TO 5.54 524 4.49
Mean creatinine (mg/dL) at TO 1.70 1.90 2.81
Mean Urine SG at TO 1.050 1.035 1.020
Percent Missing Creatinine Values 7% 10% 11%
Percent Missing Urine SG Values 68% 57% 56%

As multiple guidelines for the diagnosis of CKD exist, and these have evolved during
the period captured in this study, how the CKD status as used in this study relates to various
diagnostic parameters routinely assessed when making CKD diagnoses was explored. Cats
with status “CKD” were generally older, have higher creatinine levels and lower USG,
compared to cats with “no CKD” status (Figure 16). These results support the quality of the
CKD diagnosis within the BANFIELD database versus accepted diagnostic criteria and
provides confidence in the background data used to build the model. For all criteria assessed
there was a significant overlap in the distributions between CKD status groups, such that any
single parameter alone does not have sufficient discriminatory power for diagnosis. This
intrinsically multifactorial nature of feline CKD presents an ideal setting for prediction
models to add clinical value.

Veterinarians refer to historical (Iongitudinal) data when making a diagnosis and
further analysis of these diagnostic parameters within the EHRs highlighted a range of
changes in these parameters, not only based on the status of the cat, but also within the status

grouping (Figure 17). This shows that a prediction model should not only consider multiple
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factors at the time of diagnosis, but also include information on these at different time points

before diagnosis as well.

2. Building a prediction model for CKD

A standard RNN with a 3-5-3 hidden layer structure was used as a starting point for a
prediction model for CKD that acknowledges both the multifactorial and temporal aspects of
CKD diagnosis. Using this type of model with 35 candidate factors or features was
impractical both for training the model as well as for using it in practice later. Therefore, the
most important features were first selected using a top-down and bottom-up feature selection
strategy on the training data set. This approach showed that model performance in terms of
the cross-entropy score improved by adding features up to 4 and plateaued thereafter (data
not shown). As a result, a prediction model with the following features: creatinine, blood urea
nitrogen, urine specific gravity and visit age was built.

With these 4 features, the best structure for the hidden layers — number of layers and
nodes per layer — for a standard RNN and a LSTM variant was determined. Results in terms
of cross-entropy score (Figure 18) and the notion that higher cross-entropy scores are better,
demonstrated that RNN models were slightly superior to LSTM models. For the RNN, the
simpler models with a small number of nodes were better than the complex ones. A two-layer
RNN with a 3-7 structure was best. Optimizing this one for training time by testing different

numbers of epochs resulted in a final RNN model with a 3-7 structure trained over 16 epochs.

3. Detecting CKD at the point of diagnosis

To understand the clinical value of the CKD model, it was applied on the test dataset
of 40,205 cat EHRs that were not used for building the model. The model (Table 34) showed
a sensitivity of 90.7% (6,418/6,943) based on the status “CKD” and a specificity of 98.9%
(22,166/23,432) based on the status “no CKD” (Table 34). Predictions for the “probable
CKD” group are split over the “CKD” and “no CKD”’ predictions.

Table 34. A comparison of diagnosed CKD status against predicted status at TO

Predicted “no CKD” Predicted “CKD” Total
Status “no CKD” 22166 1266 23432
Status “probable CKD” 4223 5608 9831
Status “CKD” 524 6418 6943
Total 26913 13292 40205
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Distributions of the raw CKD prediction model output (Figure 19) show similarly
clear pictures for “no CKD” and “CKD” status groups: positioned close to 0 for “no CKD”
and close to 1 for “CKD”. The “probable CKD” status group is more mixed with about 30%
close to 1 and the rest spread out around 0.5 possibly suggesting either diagnosis was
ambiguous or early stage cases.

Whether misclassification for “no CKD” cats was linked to specific co-morbidities by
comparing co-morbidity incidence between correctly and incorrectly classified “no CKD”
cats was also evaluated. It was found that hyperthyroidism and diabetes mellitus are clearly
overrepresented in falsely positive classified cats as are hepatopathy and underweight (Table
35).

Table 35. Incidence (%) of the 20 most common comorbidities for “No CKD” cats
differentiated by their predicted CKD status. The odds ratio for the comorbidity in “predicted
as no CKD” versus “predicted as CKD” is given with an uncorrected p-value for a hypothesis

test with odds ratio = 1 as null hypothesis.

Incidence in Incidence in
predicted no predicted

Comorbidity CKD (%) CKD (%) ODDS RATIO P value
Hyperthyroidism 3.18 22.03 0.116 <10?

Diabetes Mellitus 3.37 13.56 0.222 <10?

Hepatopathy 4.63 11.86 0.361 0.0004
Underweight 5.8 13.56 0.392 0.0006
Murmur 10.32 19.49 0.475 0.0015
Arthritis 223 6.78 0.313 0.0018
Malaise 11.08 18.64 0.544 0.0106
Constipation, Conservative 3.29 6.78 0.468 0.0403
Gastroenteritis, Conservative 5.77 10.17 0.541 0.0455
Vomiting, Conservative 8.87 13.56 0.620 0.0782
Inflammatory Bowel Discase 1.4 3.39 0.406 0.0799
Crystalluria 537 1.69 3.288 0.0957
Enteritis, Conservative 3.29 0.85 3984 0.1693
Urinary Tract Infection 8.02 5.08 1.627 0.2472
Respiratory Disease, Upper 11.51 9.32 1.265 0.4594
Urinary Tract Disease 42 3.39 1.250 0.6627
Obesity 14.12 15.25 0.913 0.7240
Inappropriate Elimination 6.4 5.93 1.085 0.8357
Cystitis 21.94 21.19 1.045 0.8442
Colitis, Conservative 6.98 6.78 1.032 0.9324

The influence of the amount of prior information (number of visits) on the prediction

sensitivity is an important consideration when evaluating the clinical implementation of such
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an approach. The general model performance data does not address this consideration
because it is based on the complete sample of EHRs that includes a range of visits from 1 to
15. Therefore, the model sensitivity was next examined by number of visits in the EHR
before the visit where the diagnosis was made. It was found that sensitivity clearly benefits
from prior information as it increases up to approximately 90% by using at least 2 visits prior
to the diagnosis (Figure 20). This shows that historical information contributes to the

diagnosis of CKD up to a horizon of 2 visits which is on average 2 years.

4. Using the model for early detection

As the model detects CKD signals around 2 years before the diagnosis, its use for
early prediction of future disease risk was evaluated. To achieve this, EHRs were truncated at
different points before diagnosis (e.g. for a 1 year early prediction, all information between
the diagnosis and 1 year before was removed) and then evaluated the ability of the model to
predict future onset of CKD. As expected, sensitivity (Figure 21) decreased when increasing
the time between prediction and diagnosis, although of the cats that went on to develop CKD
63% were correctly predicted 1 year before diagnosis and 44.2% 2 years before diagnosis.

To assess specificity in this context, truncation of the EHRs does not make sense as
cats remain “no CKD” at all earlier visits to clinic. Therefore, specificity was instead
calculated as a function of age at evaluation (Figure 22). Specificity was consistently above

98% until an age of 11 years and declined thereafter reaching 80% for an age of 15 years.

Discussion

Computational modelling approaches were applied to a large, rich data set of
electronic health records (EHRs) from routine veterinary practice to derive and then validate
an algorithm that diagnoses CKD, as well as predicting the risk of cats developing azotemic
CKD in the future. From an initial set of 35 candidate features, the model was refined down
to 4 (creatinine, blood urea nitrogen, urine specific gravity and visit age). When predicting
CKD near the point of diagnosis, the model displayed a sensitivity of 90.7% and a specificity
of 98.9%. Interestingly, prediction of CKD risk was possible with 63.0% and 44.2%
sensitivity, one and two years before diagnosis, respectively. Specificity was over 99% at
both advanced time points.

The selected model features that enable the prediction of the onset of azotemic CKD
are routinely referenced by veterinarians when CKD is suspected, and are therefore

mechanistically implicated in the disease aetiology. Creatinine and blood urea nitrogen
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concentrations are filtration markers and their retention in the circulation can indicate reduced
functional renal mass. As urea more readily crosses lipid membranes than creatinine and the
permeability of the collecting tubule and duct to urea is selectively increased by antidiuretic
hormone, urea is retained in the blood not only when functional kidney mass is reduced, but
also when the body is responding to water deficits and activating mechanisms that conserve
water. Inclusion of both creatinine and urea in this model may help the system avoid falsely
identifying acutely volume depleted felines as having CKD; under these circumstances urea
would change far more than plasma creatinine. Serial monitoring of creatinine is more
sensitive in identifying loss of kidney mass than a single one-off measurement, as creatinine
production can be influenced by non-renal factors (e.g. muscle mass; Sparkes et al. 2016).
However, the strength of the approach described here is that the algorithm identifies changes
over time in a range of diagnostic parameters that together are indicative of progressive
deterioration in renal function. These, often subtle changes over time, may be missed by a
veterinarian particularly when the laboratory values have not moved outside the normal
range.

USG is a measure of the ability of the kidney to excrete solutes (mostly waste
products) in excess of water, but as the functional kidney mass declines so does the USG. A
single urine sample from a feline with normal healthy kidneys can have varying USG
depending on whether the feline needs to conserve or excrete excess water, consequently
single assessments are difficult to interpret. Cats often retain some concentrating ability in
IRIS stages 2 and 3 CKD with the urine only approaching the isothenuric range as they
approach IRIS stage 4 CKD (Elliott et al. 2003). Interpreting serial data on USG in
combination with plasma creatinine and blood urea nitrogen likely helps the model to identify
patterns predictive of falling kidney functional mass and differentiate these from natural
fluctuations around normal or acute episodes of dehydration.

Finally, as CKD is primarily a disease of age it is not surprising that the age of the cat
was selected as a feature in the final model. As highlighted in Table 33 the age profiles of the
“no CKD” and “CKD” groups were different, but there was sufficient overlap to challenge
the model on young as well as old cats. The proportions and age distributions represent the
real distribution of cats seen by BANFIELD clinics over the last 20 years. Aging is associated
with a range of chronic conditions and CKD is commonly diagnosed before or at the same
time as hypertension, hyperthyroidism and diabetes mellitus (Conroy et al. 2018). To
understand how the model performed in situations where multiple diagnoses were present in

the EHR, whether misclassification for “no CKD” or “CKD” by the model was linked to
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specific co-morbidities was also evaluated (Table 35). Hyperthyroidism and diabetes mellitus
were overrepresented in falsely positive classified cats, most likely due to the non-specific
nature of the clinical parameters routinely employed to inform diagnoses across these
conditions. It should be noted that the relative performance of the model was mildly
influenced by these cases, but this is a challenge that veterinarians also encounter in clinical
practice.

The selection of biomarkers presented in this model represent a combination of
parameters that gave high predictive accuracy under most clinical situations. Further work
(beyond the scope of this paper) has highlighted that other biomarkers can be useful in
predicting future CKD when applied using more complex combinations of models. These
could, for example, function by reducing the loss of specificity when predicting very old cats
(Figure 22) or help to separate other comorbidities (Table 35) more accurately. The other
predictive biomarkers identified included urine protein, urine pH and white blood cell count.
The volume of missing values related to these parameters in the historic data (due to them not
being measured on all visits) has meant that they bring additional noise to the model as well
as enhancing signal. Further testing with more complete datasets may show higher predictive
power for these and other biomarkers.

Recently serum SDMA concentration has been suggested as an alternative marker of
GFR, as it has been shown to correlate closely with plasma creatinine (Jepson et al., 2008)
and plasma iohexol clearance in cats (Barff et al., 2014). Retrospective analysis of stored
longitudinal samples collected as part of the management of a colony of cats used for
nutrition studies showed that serum concentrations of SDMA increased outside of the
laboratory reference range in 17 of 21 cats that developed azotemia before an increase in
plasma creatinine was detected. On average, elevated SDMA was detected 17 months (range
1.5 to 48 months) prior to elevated creatinine (Hall et al., 2014). The small group of cats and
the retrospective nature of this study likely overestimates the sensitivity and specificity of
SDMA as a predictor of the development of azotemic CKD. SDMA was not available for
much of the time period over which the data used in the present study were collected. It is
interesting to note that the algorithms devised from these large longitudinal datasets involving
very large numbers of felines presenting to veterinary practices with a range of different
diseases were able to predict the development of azotemic CKD even 3 years prior to its
onset using data routinely collected in veterinary practice. Whether longitudinal measurement
of SDMA would improve the predictive value of the algorithms developed in the present

study warrants further research.
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Although EHR data is undoubtedly clinically relevant, using it in a scientific setting
was a challenge. As such, confirming the accuracy of the CKD diagnosis was an important
first step. Data used to build and validate this model came from a very large number of clinics
and veterinarians over a period of more than 20 years and cats with a formal CKD diagnosis
showed blood and urine patterns that are consistent with currently accepted guidelines
(Figure 16); this in itself provides confidence in the use of these data as a reference point to
develop the model. Defining the health status of the complementary set of cats without a
formal CKD diagnosis was more problematic. A subset of these, those that were classified as
“probable CKD”, had clear indications for CKD in blood and/or urine test results or
references in the medical notes that suggest CKD. This group of cats includes those where the
veterinarian was either unsure of the diagnosis (most likely because of conflicting
information) or because the cat was in an early stage of the disease, or where for formal
reasons they could not be diagnosed. This group was not included when computing
sensitivity however, and are aware that this could bias the estimates given that it could
contain the more difficult cases to predict. For the other cats without a formal CKD diagnosis
a 2-year window with observations and no CKD to be confident of their “no CKD” status was
imposed. This also could have biased the specificity estimates as some might have had very
early stage CKD.

The prognosis for cats with CKD depends on the severity of the disease at the time of
diagnosis, with cats identified at IRIS stage 4 reported to have a significantly shorter life
expectancy than those diagnosed at earlier stages (Boyd et al. 2008; Geddes et al. 2013; Syme
et al. 2006). Early detection of CKD allows the early implementation of care pathways that
can slow the progression of the disease, improving clinical outlook and quality of life, as well
as the avoidance of situations that may cause worsening of kidney function and acute kidney
injury (Levin and Stevens, 2011). Consequently work continues to develop and validate
novel diagnostic tools that support clinicians in the early diagnosis of CKD and represent an
improvement in the clinical measures routinely applied in current veterinary practice (e.g.
plasma creatinine, USG); the limitations of which are well recognized. Here significant
overlap in the distributions of a range of routinely applied diagnostic criteria between cats
with and without a CKD diagnosis was demonstrated (Figure 16). This highlights the
intrinsically multifactorial nature of CKD, meaning that a single existing clinical parameter
alone does not have sufficient discriminatory power to inform a diagnosis.

The CKD prediction model developed in this study brings several advantages for

veterinary practice. The first is to support the veterinarian in making the right diagnosis based
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on blood and urine test data currently available for a particular case. Diagnosis is complicated
by the multifactorial nature of CKD, with individual cats often displaying differences in the
evolution of these parameters (Figure 17), most likely due to subtle differences in the
aetiology and progression of the disease. One might even argue whether humans are able to
learn all possible patterns because these can be quite different between individual cats
(compare, for example, CKD cats in Figures 17E with Fig 17H). Therefore, having an
algorithm highlighting a risk for CKD can be a very helpful addition to a practicing
veterinarian’s toolkit. A second advantage is the ability of the algorithm to predict CKD risk
ahead of conventional diagnostic strategies— with a success (sensitivity) of 44.2% 2 years
before diagnosis and of 63% 1 year before diagnosis. To enable this early detection, however,
it is important that cats not only regularly (biannual or annual) visit a veterinarian, but also
that a blood and a urine sample is taken at each visit. Judging from the database this is
currently not a common occurrence (Table 33). Approaches such as this highlight the value in
preventative care, with an increased frequency of screening not only supporting the earlier
detection of CKD, but in time also presenting opportunities to proactively monitor a broader
range of conditions that are diagnosed through routine clinical measures. Finally, it is
important to develop and validate care pathways based on the early prediction of CKD, e.g.
starting a specifically formulated diet to slow down or halt disease progression.

In conclusion, here evidence for the use of machine learning to build an algorithm that
predicts cats at risk of developing CKD up to 2 years prior to diagnosis was presented. The
high specificity (>99%) of the algorithm, coupled with a sensitivity of 63%, means that out of
100 cats with a prevalence of 15%, 90 cases will be correctly predicted as either not
developing azotemia or developing azotemia in the next 12 months. A particular strength of
the current approach lies in the use of health screening data collected as part of routine
veterinary practice, meaning that this model can be rapidly implemented into hospital
practice and/or diagnostic laboratory software to directly support veterinarians in making
clinical decisions.
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Although the presently disclosed subject matter and its advantages have been
described in detail, it should be understood that various changes, substitutions and alterations
can be made herein without departing from the spirit and scope of the invention as defined by
the appended claims. Moreover, the scope of the present application is not intended to be
limited to the particular embodiments of the process, machine, manufacture, composition of
matter, means, methods and steps described in the specification. As one of ordinary skill in
the art will readily appreciate from the disclosure of the presently disclosed subject matter,
processes, machines, manufacture, compositions of matter, means, methods, or steps,
presently existing or later to be developed that perform substantially the same function or
achieve substantially the same result as the corresponding embodiments described herein can
be utilized according to the presently disclosed subject matter. Accordingly, the appended
claims are intended to include within their scope such processes, machines, manufacture,
compositions of matter, means, methods, or steps.

Patents, patent applications, publications, product descriptions and protocols are cited
throughout this application the disclosures of which are incorporated herein by reference in

their entireties for all purposes.
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WHAT IS CLAIMED IS:

1. A system for identifying susceptibility to developing chronic kidney disease (CKD)
for a feline, the system comprising:

a processor; and

a memory that stores code that, when executed by the processor, causes the computer
system to:

receive at least one input level of one or more biomarkers from the feline and
optionally an input level of an age of the feline, wherein at least one of the one or more
biomarkers comprises information relating to a urine specific gravity level, a creatinine level,
a urine protein level, a blood urea nitrogen (BUN) or urea level, a white blood cell count
(WBC), urine pH, or any combination thereof;

analyze and transform the at least one input level of the one or more biomarkers and
optionally the input level of the age by organizing and/or modifying each input level to derive
a probability score or a classification label via a classification algorithm, wherein the
classification algorithm comprises code developed from a training dataset, the training dataset
comprising medical information relating to both a first plurality of biomarkers and optionally
ages from a first set of sample felines and a second plurality of biomarkers and optionally
ages from a second set of sample felines, wherein the classification algorithm is developed
using a training algorithm;

wherein the classification algorithm is one of a hard classifier, which determines the
classification label of whether the feline is at risk of developing CKD, or a soft classifier,
which determines the probability score of the feline developing CKD;

generate an output, wherein the output is the classification label or the probability
score;

determine or categorize, based on the output, whether the feline is at risk of
developing CKD; and

determine a customized recommendation based on the determining or categorizing.

2. The system according to claim 1, wherein the code, when executed by the processor,
further causes the system to display the determination or categorization and customized

recommendation on a graphical user interface.

3. The system according to claim 1, further comprising;

a communication device for transmitting and receiving information; wherein:
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the at least one input level is received from a remote second system, via the
communication device; and

the code, when executed by the processor, further causes the system to transmit the
determination or categorization and customized recommendation to the remote second

system, via the communication device.

4, A system for identifying susceptibility to developing chronic kidney disease (CKD)
for a feline, the system comprising:

a processor; and

a memory that stores code that, when executed by the processor, causes the computer
system to:

receive at least one input level of one or more biomarkers from the feline and
optionally an input level of an age of the feline, wherein at least one of the one or more
biomarkers comprises a urine specific gravity level, a creatinine level, a urine protein level, a
blood urea nitrogen (BUN) or urea level, a white blood cell count (WBC), urine pH, or any
combination thereof;

analyze and transform the at least one input level of the one or more biomarkers and
optionally the input level of the age by organizing and/or modifying each input level to derive
a probability score or a classification label via a classification algorithm, wherein the
classification algorithm comprises code developed from a training dataset, the training dataset
comprising medical information relating to both a first plurality of biomarkers and optionally
ages from a first set of sample felines and a second plurality of biomarkers and optionally
ages from a second set of sample felines, wherein the classification algorithm is developed
using a training algorithm;

wherein the classification algorithm is one of a hard classifier, which determines the
classification label of whether the feline is at risk of developing CKD, or a soft classifier,
which determines the probability score of the feline developing CKD;

generate an output, wherein the output is the classification label or the probability
score; and

determine a customized recommendation of a dietary regimen and/or further

monitoring the one or more biomarkers based on the output.
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5. The system according to claim 1, wherein the code, when executed by the processor,
further causes the system to display the output and customized recommendation on a

graphical user interface.

6. The system according to claim 1, further comprising:

a communication device for transmitting and receiving information; wherein:

the at least one input level is received from a remote second system, via the
communication device; and

the code, when executed by the processor, further causes the system to transmit the
output and customized recommendation on a graphical user interface to the remote second

system, via the communication device.

7. A method of identifying susceptibility to developing chronic kidney disease (CKD)
for a feline, comprising the steps of:

receiving at least one input level of one or more biomarkers from the feline and
optionally an input level of an age of the feline, wherein at least one of the one or more
biomarkers comprises information relating to a urine specific gravity level, a creatinine level,
a urine protein level, a blood urea nitrogen (BUN) or urea level, a white blood cell count
(WBC), urine pH, or any combination thereof;

analyzing and transforming the at least one input level of the one or more biomarkers
and optionally the input level of the age by organizing and/or modifying each input level to
derive a probability score or a classification label via a classification algorithm, wherein the
classification algorithm comprises code developed from a training dataset, the training dataset
comprising medical information relating to both a first plurality of biomarkers and optionally
age from a first set of sample felines and a second plurality of biomarkers and optionally age
from a second set of sample felines, wherein the classification algorithm is developed using a
training algorithm;

wherein the classification algorithm is one of a hard classifier, which determines the
classification label of whether the feline is at risk of developing CKD, or a soft classifier,
which determines the probability score of the feline developing CKD;

generating an output, wherein the output is the classification label or the probability
score;

determining or categorizing, based on the output, whether the feline is at risk of

developing CKD; and
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determining a customized recommendation based on the determining or categorizing.

8. The method according to claim 7, further comprising the step of displaying the
determination or categorization and customized recommendation on a graphical user

interface.

9. The method according to claim 7, wherein the at least one input level is received from
a remote second system, via a communication device; and further comprising the step of:
transmitting the determination or categorization and customized recommendation to

the remote second system, via the communication device.

10. A method of reducing a risk of developing chronic kidney disease (CKD) for a feline,
the method comprising the steps of’

receiving at least one input level of one or more biomarkers from the feline and
optionally an input level of an age of the feline, wherein at least one of the one or more
biomarkers comprises information relating to a urine specific gravity level, a creatinine level,
a urine protein level, a blood urea nitrogen (BUN) or urea level, a white blood cell count
(WBC), urine pH, or any combination thereof;

analyzing and transforming the at least one input level of the one or more biomarkers
and optionally the input level of the age by organizing and/or modifying each input level to
derive a probability score or a classification label via a classification algorithm, wherein the
classification algorithm comprises code developed from a training dataset, the training dataset
comprising medical information relating to both a first plurality of biomarkers and optionally
ages from a first set of sample felines and a second plurality of biomarkers and optionally
ages from a second set of sample felines, wherein the classification algorithm is developed
using a training algorithm;

wherein the classification algorithm is one of a hard classifier, which determines the
classification label of whether the feline is at risk of developing CKD, or a soft classifier,
which determines the probability score of the feline developing CKD;

generating an output, wherein the output is the classification label or the probability
score; and

determining a customized recommendation of a dietary regimen and/or further

monitoring the one or more biomarkers based on the output.
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11. The method according to claim 10, further comprising the step of displaying the

output and customized recommendation on a graphical user interface.

12.  The method according to claim 10, wherein the at least one input level is received
from a remote second system, via a communication device; and further comprising the step
of:

transmitting the output and customized recommendation on a graphical user interface

to the remote second system, via the communication device.

13. A non-transitory computer readable medium, storing instructions that, when executed
by a processor, cause a computer system to execute the steps of the method of any one of

claims 7 to 12.

14. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the classification algorithm is developed using a
supervised training algorithm under supervision of the one or more biomarkers and optionally

the ages.

15. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the classification algorithm is developed using an

unsupervised training algorithm.

16. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the at least one input level comprises sequential

measurements of the one or more biomarkers measured at different time points.

17. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the first set of sample felines have been diagnosed with

CKD and the second set of sample felines have not been diagnosed with CKD.
18. The system, the non-transitory computer-readable medium or the method according to

any one of the claims above, wherein the training dataset is stratified into 2 or more folds for

cross validation.
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19. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the training dataset is filtered by a set of inclusion

and/or exclusion criteria.

20. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the training algorithm comprises an algorithm selected
from the group consisting of logistic regression, artificial neural network (ANN), recurrent
neural network (RNN), K-nearest neighbor (KNN), Naive Bayes, support vector machine

(SVM), random forest, AdaBoost and any combination thereof.

21. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the training algorithm comprises KNN with dynamic

time warping (DTW).

22. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the training algorithm comprises RNN with long short-

term memory (LSTM).

23. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the classification algorithm comprises a regularization

algorithm comprising 5% or more dropout to prevent overfitting.

24, The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the dietary regimen is selected from the group
consisting of a low phosphorous diet, a low protein diet, a low sodium diet, a potassium
supplement diet, a polyunsaturated fatty acids (PUFA) supplement diet, an anti-oxidant

supplement diet, a vitamin B supplement diet, a liquid diet and any combination thereof.

25. A system for identifying susceptibility to developing chronic kidney disease (CKD)
for a feline, the system comprising:

a processor;

a user interface;

a communication device for transmitting and receiving information; and
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a memory that stores code that, when executed by the processor, causes the computer
system to:

receive at least one input level of one or more biomarkers from the feline and
optionally an input level of an age of the feline, wherein at least one of the one or more
biomarkers comprises information relating to a urine specific gravity level, a creatinine level,
a urine protein level, a blood urea nitrogen (BUN) or urea level, a white blood cell count
(WBC), urine pH, or any combination thereof, based on an input by a user via the user
interface;

transmit the at least one input level of one or more biomarkers and optionally the
input level of the age to a remote second system, via the communication device, said remote
system determining a customized recommendation based on a determination or categorization
of whether the feline is at risk of developing CKD, based on the transmitted at least one input
level of one or more biomarkers and optionally the transmitted input level of the age;

receive the determination or categorization and customized recommendation from the
remote second system, via the communication device; and

display the determination or categorization and customized recommendation on the

user interface.

26. A system for identifying susceptibility to developing chronic kidney disease (CKD)
for a feline, the system comprising:

a processor;

a user interface;

a communication device for transmitting and receiving information; and

a memory that stores code that, when executed by the processor, causes the computer
system to:

receive at least one input level of one or more biomarkers from the feline and
optionally an input level of an age of the feline, wherein at least one of the one or more
biomarkers comprises a urine specific gravity level, a creatinine level, a urine protein level, a
blood urea nitrogen (BUN) or urea level, a white blood cell count (WBC), urine pH, or any
combination thereof, based on an input by a user via the user interface;

transmit the at least one input level of one or more biomarkers and optionally the
input level of the age to a remote second system, via the communication device, said remote
system determining a classification label of whether the feline is at risk of developing CKD,

or a probability score of the feline developing CKD, and a customized recommendation of a
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dietary regimen and/or further monitoring the one or more biomarkers, based on the
transmitted at least one input level of one or more biomarkers and optionally the transmitted
input level of the age;

receive the classification label or the probability score and the customized
recommendation of a dietary regimen and/or further monitoring the one or more biomarkers,
from the remote second system, via the communication device; and

display the classification label or the probability score and the customized

recommendation on the user interface.

27. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the one or more biomarkers comprises information
relating to a urine specific gravity level, a creatinine level and a blood urea nitrogen (BUN)

or urea level.

28. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the one or more biomarkers comprises information
relating to a urine specific gravity level, a creatinine level, a urine protein level, a blood urea

nitrogen (BUN) or urea level, a white blood cell count (WBC) and urine pH.

29. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, comprising receiving at least one input level of one or more

biomarkers from the feline and an input level of an age of the feline.

30. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, comprising receiving:

input levels of biomarkers comprising information relating to a urine specific gravity
level, a creatinine level and a blood urea nitrogen (BUN) or urea level; and

an input level of an age of the feline.
31. The system, the non-transitory computer-readable medium or the method according to

any one of the claims above, wherein the input levels of the biomarkers and the age of the

feline relate to medical records of one or more visit of the feline.
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32, The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the input levels of the biomarkers and the age of the

feline relate to medical records of at least 2 visits of the feline.

33. The system, the non-transitory computer-readable medium or the method according to
any one of the claims above, wherein the classification label or the probability score relates to
the feline’s status of contracting chronic kidney disease (CKD) at the time of the

determination of the classification label or the probability score.

34, The system, the non-transitory computer-readable medium or the method according to
any one of claims 1-32, wherein the classification label or the probability score relates to the
feline’s risk of developing chronic kidney disease (CKD) after the determination of the

classification label or the probability score.

35. The system, the non-transitory computer-readable medium or the method of claim 34,
wherein the classification label or the probability score relates to the feline’s risk of
developing chronic kidney disease (CKD) about 1 year after the determination of the

classification label or the probability score.

36. The system, the non-transitory computer-readable medium or the method of claim 34,
wherein the classification label or the probability score relates to the feline’s risk of
developing chronic kidney disease (CKD) about 2 years after the determination of the

classification label or the probability score.

37. A method of identifying susceptibility to developing chronic kidney disease (CKD)
for a feline, comprising the steps of:

calculating a score based on an amount of one or more biomarker of the feline; and

determining the risk of developing CKD by comparing the score with a threshold
value;

wherein at least one of the one or more biomarkers comprises a urine specific gravity
level, a creatinine level, a urine protein level, a blood urea nitrogen (BUN) or urea level, a

white blood cell count (WBC), urine pH, or any combination thereof.
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38. A method of reducing a risk of developing chronic kidney disease (CKD) for a feline,
the method comprising the steps of’

calculating a score based on an amount of one or more biomarker of the feline;

determining the risk of developing CKD by comparing the score with a threshold
value; and

recommending a dietary regimen and/or further monitoring the one or more
biomarkers based on the risk;

wherein at least one of the one or more biomarkers comprises a urine specific gravity
level, a creatinine level, a urine protein level, a blood urea nitrogen (BUN) or urea level, a

white blood cell count (WBC), urine pH, or any combination thereof.

39. The method according to claim 38, wherein the dietary regimen is selected from the
group consisting of a low phosphorous diet, a low protein diet, a low sodium diet, a
potassium supplement diet, a polyunsaturated fatty acids (PUFA) supplement diet, an anti-
oxidant supplement diet, a vitamin B supplement diet, a liquid diet and any combination

thereof.

40.  The method according to any one of claims 37 to 39, wherein the score is calculated

by summing a product of each biomarker and a coefficient thereof.

41.  The method according to any one of claims 37 to 40, wherein the coefficient of the
one or more biomarker is determined by applying a linear discriminant analysis (LDA) to a
dataset including medical records of plurality of felines, wherein the medical records

comprise measurements of the one or more biomarker.

42, The method according to any one of claims 37 to 41, wherein the threshold value is
determined by applying a linear discriminant analysis (LDA) to a dataset including medical
records of plurality of felines, wherein the medical records comprise measurements of the one

or more biomarker.

43.  The method according to any one of claims 37 to 42, wherein the one or more

biomarker comprises creatinine, urine specific gravity and a BUN or urea level.
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44, The method according to claim 43, wherein the amounts of creatinine and the BUN or
urea level are measured in milligram per deciliter (mg/dL), the amount of urine specific
gravity is measured as aratio of the density of a urine sample to the density of water;

wherein the coefficient of creatinine is between about 0.004 to about 0.01, the
coefficient of urine specific gravity is between about -5 to about -80, the coefficient of the
urea level is between about 0.01 to about 0.5, and the threshold value is between about -10 to
about -70; and

wherein the score being greater than the threshold value indicates a risk of CKD.
45.  The method according to claim 44, wherein the coefficient of creatinine is between
about 0.005 to about 0.009, the coefficient of urine specific gravity is between about -20 to

about -50, and the coefficient of the urea level is between about 0.06 to about 0.12,

46.  The method according to any one of claims 43 to 45, wherein the threshold value is

between about -20 to about -50.
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