77024937 A1 I L0 0 00 O A

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f 11”11

) IO O 0 T OO

International Bureau

(43) International Publication Date
1 March 2007 (01.03.2007)

(10) International Publication Number

WO 2007/024937 Al

(51) International Patent Classification:
GOG6F 12/12 (2006.01) GOG6F 12/10 (2006.01)

(21) International Application Number:

PCT/US2006/032902
(22) International Filing Date: 22 August 2006 (22.08.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/210,526 23 August 2005 (23.08.2005) US

(71) Applicant (for all designated States except US): QUAL-
COMM Incorporated [US/US]; 5775 Morehouse Drive,
San Diego, California 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AUGSBURG, Vic-
tor Roberts [US/US]; 304 Versailles Drive, Cary, North
Carolina 27511 (US). DIEFFENDERFER, James Norris
[US/US]; 4000 Inkberry Court, Apex, North Carolina
27539 (US). BRIDGES, Jetfrey Todd [US/US]; 3513
Timberwood Court, Raleigh, North Carolina 27606 (US).
SARTORIUS, Thomas Andrew [US/US]; 1600 Olde
Chimney Court, Raleigh, North Carolina 27614 (US).

(74) Agents: OGROD, Gregory D. et al.; 5775 Morehouse
Drive, San Diego, California 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

(34)

[Continued on next page]

(54) Title: TLB LOCK INDICATOR

LOTLB
n-1 -
) REALLOCATION
FLOOR REG. 3 /
2 2, LOCKED
1 TLB
- 101 0 ENTRIES

(57) Abstract: A processor includes a hierarchical Translation Lookaside Buffer (ILB) comprising a Level-1 TLB and a small,
& high-speed Level-0 TLB. Entries in the LO TLB replicate entries in the .1 TLB. The processor first accesses the LO TLB in an
& address translation, and access the L1 TLB if a virtual address misses in the LO TLB. When the virtual address hits in the L1 TLB,
& the virtual address, physical address, and page attributes are written to the 1.0 TLB, replacing an existing entry if the 1.0 TLB is
full. The entry may be locked against replacement in the 1.O TL.B in response to an 1.0 Lock (L.OL) indicator in the 1.1 TLB entry.
Similarly, in a hardware-managed 1.1 TLB, entries may be locked against replacement in response to an L1 Lock (I.1L.) indicator in

the corresponding page table entry.

WO 2007/024937 A1 | NINIAI] DA 000 0T 000000 000000 0

— asto the applicant’s entitlement to claim the priority of the ~ For two-letter codes and other abbreviations, refer to the "Guid-
earlier application (Rule 4.17(iii)) ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

WO 2007/024937 PCT/US2006/032902

TLB LOCK INDICATOR

BACKGROUND

[0001] The present invention relates generally to the field of processors and in particular to
a system and method of locking entries in one or more Translation Lookaside Buffers against
replacement.

[0002] Microprocessors perform computational tasks in a wide variety of applications,
including portable electronic devices. In most cases, maximizing processor performance is a
major design goal, to permit additional functions and features to be implemented in portable
electronic devices and other applications. Also, in many applications, some computational tasks
have priority over others, and it would be advantageous for the system to guarantee that
computational resources are reserved for high-priority tasks.

[0003] Many programs are written as if the computer executing them had a very large
(ideally, unlimited) amount of fast memory. Most modern processors simulate that ideal
condition by employing a hierarchy of memory types, each having different speed and cost
characteristics. The memory types in the hierarchy vary from very fast and very expensive at
the top, to progressively slower but more economical storage types in lower levels. A typical
processor memory hierarchy may comprise registers (gates) in the processor at the top level;
backed by one or more on-chip caches (SRAM); possibly an off-chip cache (SRAM); main
memory (DRAM); disk storage (inagnetic media with electro-mechanical access); and tape or
CD (magnetic or optical media) at the lowest level. Most portable electronic devices have
limited, if any, disk storage, and hence Iﬁain memory, often limited in size, is the lowest level in
the memory hierarchy.

[0004] In a computer memory hierarchy, each lower level maintains a full (but possibly
stale) copy of the data resident in higher layers. That is, the data stored in higher levels
replicates that in the lower levels. Since smaller, higher level storage may map to multiple

locations in the larger, lower level memory, a mapping scheme is required to translate addresses

WO 2007/024937 PCT/US2006/032902
2

between hierarchy layers. Most processors operate in a very large, conceptually contiguous
virtual address space. Main memory is accessed in a physical address space that is constrained
by hardware and system parameters. Caches — high-speed memories interposed between the
processor core and main memory — may be accessed completely by virtual addresses,
completely by physical addresses, or in combination (such as by using a virtual index and a
physical tag). Regardless of the cache configuration, however, addresses must be translated
from virtual address space to physical address space.

[0005] The mapping and translation of many large virtual address spaces (one per running
program or ¢ontext) to one limited physical memory address space is known as memory
management. Memory management by the operating system ensures proper performance by
preventing programs from overwriting each other’s data; provides security by disallowing one
user from accessing another’s data; and promotes reliability by disallowing user-level programs
from accessing supervisor-level data structures, such as operating system allocation tables and
parameters.

[0006] Memory may be managed in fixed-size segments called pages, which may for
example comprise 4K bytes. The upper, or most-significant, portion of an address, called the
page number, identifies a particular memory page. The page number is translated from virtual to
physical address space. The lower, or least-significant portion of the address, called a page
offset, is an offset into the page that is the same for virtual and physical addresses; page offset
bits are not translated. As an example, for a 32-bit address with 4K pages, the page number

would comprise address bits [31:12] and the page offset, bits [11:0]:

31 page number 12 | 11 page offset O
Table 1. Page Fields of Address

[0007] The mapping of virtual to physical page numbers is controlled by the operating
system software, in one or more Qata structures called page tables. A page table may be a single
table, or a hierarchical or tree-like series of tables, each mapping a portion or segment of the
virtual page number to a corresponding range of physical memory. The page tables additionally

store attributes of the physical pages, such as read, write and execute permissions, whether the

WO 2007/024937 - PCT/US2006/032902
3

page is shared or dedicated to a single process, and the like. Initially, the processor must
“walk,” or traverse the page tables to translate a new virtual address to a corresponding physical
address, to access main memory (or cache memory, if it is physically indexed or tagged).
Subsequent address translations may be speeded by storing the virtual and physical page
numbers, and the page attributes, in a TLB. A TLB may store address translations and page
attributes for both data and instruction pages. Additionally, an instruction TLB (ITLB), which
may comprises a subset of a unified TLB, may separately store address translations and page
attributes for instructions.

[0008] A TLB may comprise a Content Addressable Memory (CAM) and associated
Random Access Memory (RAM), each having a fixed number of entries, such as for example
32, 64, or 128. The CAM performs a parallel comparison of a virtual page number presented
for translation, against all stored, previously translated virtual page numbers. The output of the
CAM is the location of the stored virtual page number that matches the applied virtual page
number. This location indexes the RAM, which provides the stored physical page number
corresponding to the virtual page number, as well as the page attributes. The physical address
applied to the cache and/or main memory is then the physical page number retrieved from the
TLB, concatenated with the page offset from the virtual address.

[0009] When a new virtual page number is presented for translation, a TLB miss occurs,
and the processor must traverse the page tables to perform a translation. When the page table
walk is complete, the virtual and physical page numbers and page attributes are stored in an
empty location in the TLB. If the TLB is full, an existing entry must be replaced with the new
entry.. A variety of replacement algorithms are known in the art, such as random, round-robin,
not recently used, First In — First Out (FIFO), second-chance FIFO, least recently uséd, not
frequently used, aging, and the like. For memory pages associated with critical tasks, many
TLB implementations allow the operating system to lock one or more TLB entries against
replacement, to ensure that the entries always reside in the TLB to perform fast translation for
the critical tasks. Locked TLB entries do not participate in the TLB replacement algorithm

when a TLB entry must be replaced. However, not all processor instruction sets include TLB

WO 2007/024937 PCT/US2006/032902
4

management instructions, such as instructions to lock TLB entries against replacement. In these
cases, the TLB is managed by hardware, and the operating system may lack any way to directly
lock TLB entries.

[0010] For higher performance, a processor may include a smaller, faster TLB having, e.g.,
4,8, or 16 entries, called a Level-0 or LO TLB (with the main TLB referred to as a Level-1 or
L1 TLB). The LO TLB is also known in the art as a micro TLB. The LO TLB stores the few
most recently used address translations, capitalizing on the temporal and spatial locality
principle of most programs, that instructions or data from a memory page recently accessed are
likely to be fetched again. To translate a virtual address, the processor first presents the virtual
page number to the LO TLB. If the virtual page number hits in the LO TLB, a corresponding
physical page number and page attributes are provided. If the virtual page number misses in the
LO TLB, the virtual page number is presented to the L.1 TLB for translation.

[0011] Generally, the LO TLB is a hardware implementation that is not recognized or
directly controlled by software. That is, software cannot directly read and write LO TLB entries;
management of the LO TLB is performed by hardware. One consequence of this is that the
operating system cannot designate entries in the LO TLB as locked against replacement. The
ability to lock one or more LO TLB entries against replacement would be advantageous, as it

would ensure that the fastest translation is always available for critical tasks.

SUMMARY

[0012] In one embodiment, for a hardware managed L1 TLB, page table entries include an
indicator, such as a L1 Lock (L.1L) bit, that indicate whether a corresponding entry should be
locked against replacement when stored in a .1 TLB. In another embodiment, where an L1
TLB is managed by the operating system (and includes the ability to lock entries), the L1 TLB
entries include an indicator, such a LO Lock (LOL) bit, that indicate whether the entry should be
lécked against replacément Whén stored in a LO TLB. In this embodiment, when a virtual

address misses in the LO TLB and hits in the L1 TLB, the virtual address, physical address and

WO 2007/024937 PCT/US2006/032902
5

page attributes are written to the LO TLB. The entry is locked against replacement in the 1.0
TLB, or not, in response to the LOL bit in the L1 TLB entry.

[0013] One embodiment relates to a method of managing a hierarchical Translation
Lookaside Buffer (TLB). An entry from an upper level TLB is replicated to a lower level TLB.
The entry in the lower level TLB is locked against replacement in response to an indicator in the
upper level TLB entry.

[0014] Another embodiment relates to a processor. The processor includes an instruction
execution pipeline and a hierarchical Translation Lookaside Buffer (TLB) comprising a higher
level TLB and a lower level TLB. Entries in the lower level TLB replicate entries in the higher
level TLB. The processor also includes a TLB controller operative to first access the lower
level TLB in an address translation, énd to access the higher level TLB if a matching entry is not
found in the lower level TLB. The controller is further operative to lock an entry in the lower
level TLB in response to an indicator in the corresponding entry in the higher level TLB.
[0015] Another embodiment relates to a method of translating a virtual address to a
physical address in a processor. A memory access instruction is executed to generate a virtual
address. A Level-0 Translation Lookaside Buffer (LO TLB) is accessed with a portion of the
virtual address. If the virtual address misses in the LO TLB, a Level-1 TLB (L.1 TLB) is
accessed with a portion of the virtual address. If the virtual address hits in the L1 TLB, a
portion of a physical address and page attributes are obtained from the L1 TLB, a Level-0 Lock
(LOL) indicator in the L1 TLB entry is inspected, a portion of the virtual address, a portion of
the physical address and the page attributes are written as an entry in the L0 TLB, and the LO
TLB entry is locked against replacement in response to the LOL indicator.

[0016] Another embodiment relates to a method of managing a Translation Lookaside
Buffer (TLB). Upon a TLB miss for a virtual address, a page table walk is performed to obtain
a corresponding physical address and lock indicator. An entry comprising at least the virtual .
and physical addresses is written to the TLB. The entry in the TLB is locked against

replacement in response to the lock indicator.

WO 2007/024937 PCT/US2006/032902
6

BRIEF DESCRIPTION OF DRAWINGS

[0017] Figure 1 is a functional block diagram of a LO TLB, L1 TLB and page table.

[0018] Figure 2 is a functional block diagram depicting entry locking in a LO TLB.

[0019] Figure 3 is a functional block diagram of a processor.
[0020] Figure 4 is a flow diagram of a virtual to physical address translation.
DETAILED DESCRIPTION

[0021] Figure 1 is a functional block diagram depicting a O TLB 100, aL1 TLB 102 and a
page table 104. The L.O TLB 100 and I.1 TLB 102 are circuits in a processor and the page table
104 is a logical data structure in memory. A virtual address, or part of a virtual address, such as
the page number, is presented to the L0 TL.B 100. If the virtual address hits, the LO TLB 100
provides a corresponding physical address and page attributes, and the cache or main memory
access may continue. This is the fastest address translation, and hence is preferred for high
performance.

[0022] If the virtual address misses in the LO TLB 100, the L1 TL.B 102 is accessed. Due to
its larger size, the 1.1 TLB 102 access takes longer than an LO TLB 100 access. If the virtual
address hits in the .1 TLB 102, the corresponding physical address and page attributes are
provided, and are written to the LO TLB 100, replacing an existing entry in the LOTLB 100
according to whatever replacement algorithm the LO TLB 100 operates under.

10023] If the virtual address misses in the L1 TLB 102, the page table 104 is accessed to
ascertain the virtual to physical mapping. While depicted as a single functional block in Fig. 1,
the page table 104 may comprise multiple page tables in a nested data structure, and the full
page table 104 traversal may comprise several iterative accesses. When the page table 104
traversal is complete, the physical address and page attributes are written to the L.1 TLB 102,
replacing an existing L1 TLB 102 entry, if necessary, according the currently operative
replacement algorithm. If address translation information is not found in the page table 104, an

error is generated.

WO 2007/024937 PCT/US2006/032902
7

[0024] Following the page table 104 walk and writing the entry to the L1 TLB 102, the
instruction generating the address translation may be re-executed, and the virtual address will
miss in the LO TLB 100 and hit in the L1 TLB 102. The L.1 TLB 102 provides a physical
address and page attributes, which are written with the virtual address as an entry into the LO
TLB 100. In some implementations, the physical address and page attributes may be written
directly to the LO TLB upon completion of the page table walk, in parallel with writing the entry
to the L1 TLB. This is indicated in Fig. 1 by a dashed line.

[0025] When a virtual address misses in the LO TLB 100 and hits in the L.1 TLB 102, the
entry is written to the LO TLB 100. If the 1O TLB 100 is full, an entry must be replaced. It
would be advantageous to be able to lock one or more entries in the LO TLB 100 against
replacement, to ensure maximum performance by certain critical tasks. However, in prior art
processors, operating system software has no direct access to the LO TLB 100, and no way to
stipulate which — or that any — L0 TLB 100 entries should be locked against replacement. A
similar situation occurs with a hardware-fnanaged L1 TLB, where the operating system has no
way to lock L1 TLB entries against replacement.

{0026] According to one embodiment, a LO LOCK, or LOL, indicator is added to L1 TLB
102 entries. The LOL indicator may comprise, for example, a bit. The state of the LOL bit
communicates to the processor whether or not the entry should be locked against replacement in
the 1O TLB 100. The LOL bit may be maintained along with the page attributes in the page
table 104. Alternatively, in implementations where the operating system writes entries directly
to the L1 TLB 102, software may set the LOL bit or not when an L1 TLB 102 entry is created
and stored. When a virtual address misses in the LO TLB 100 and hits in the L1 TLB 102
(including after an update of the L1 TLB 102 resulting from a page table 104 traversal), the LOL
bit is inspected to determine whether the entry should be locked in the 1O TLB 100. If the LOL
bit is set, the entry is written to the L0 TLB 100 and locked against replacement.

[0027] Similarly, in a processor with a hardware-managed I.1 TLB 102, a L1 LOCK, or
L1L, indicator is maintained in the page table, and indicates whether the corresponding entry

should be locked in the L1 TLB 102. In general, all discussion herein regarding locking LO

WO 2007/024937 PCT/US2006/032902
8

TLB 100 entries against replacement applies to locking 1.1 TLB 102 entries against replacement
in the case of a hardware-managed L.1 TLB 102.

[0028] Figure 2 is a functional block diagram depicting a means of locking LO TLB 100
entries, when indicated by a LOL bit in the L1 TLB 102 entry, according to one embodiment.
The LO TLB 100 includes n entries, numbered from 0 to n-1. A FLOOR register 101 holds the
entry number that represents the “floor” of the LO TLB 100, or the lowest LO TLB 100 eniry
available for normal allocation. 1O TLB 100 entries below the floor are not available for
replacement, and are hence “locked.” If no entries are locked, the FLOOR register 101 contains
a 0, and the replacement algorithm operates throughout the LO TLB 100. If, as depicted in Fig.
2, the bottom two entries are locked in response to an LOL bit in the corresponding L1 TLB 102
entries, the processor will have incremented the FLOOR register 101 to two, the first LO TLB
100 entry available for reallocation. The normal cache reallocation algorithm in this case
operates in the portion of the 1O TLB 100 from the “floor,” or two, to the top of the LO TLB
100, n-1. Entries may be unlocked by decrementing the FLOOR register 101.

[0029] Grouping the locked LO TLB 100 entries in one place simplifies the replacement
algorithm. For example, if LO TLB 100 entries are replaced on a round-robin basis, only the
“rollover” point is affected by the locked entries (i.e., when incrementing past r-1, the next
entry is that pointed to by the FLOOR register 101 rather than 0). There are no non-contiguous,
locked entries scattered across the 1O TLB 100 space that must be “skipped over” by a round-
robin allocation. Note that the FLOOR method of grouping and locking LO TLB 100 entries is
representative only, and is not limiting. L.O TLB 100 entries may be locked against reallocation
according to a broad variety of methods. Similarly, entries may be locked in the L1 TLB 102,
under software control or as dictated in the page table 104, using a FLOOR register, or in other
ways, as known in the art.

[0030] Figure 3 depicts a functional block diagram of a representative processor 10,
employing a pipelined architecture and a hierarchical memory structure. The processor 10
executes instructions in an instruction execution pipeline 12 according to control logic 14. The

pipeline includes various registers or latches 16, organized in pipe stages, and one or more

WO 2007/024937 PCT/US2006/032902
9

Arithmetic Logic Units (ALU) 18. A General Purpose Register (GPR) file 20 provides registers |
comprising the top of the memory hierarchy.

[0031] The pipeline fetches instructions from an Instruction Cache (I-cache) 22, with
memory addressing and permissions managed by a Level-0 Instruction-side Translation
Lookaside Buffer (LO ITLB) 24, and a L1 ITLB 25. Data is accessed from a Data Cache (D-
cache) 26, with memory addressing and permissions managed by a main LO TLB 100 and L1
TLB 102. In various embodiments, the L1 ITLB 24 may comprise a copy of part of the .1 TLB
102. Alternatively, the L1 ITLB 24 and L1 TLB 102 may be integrated. Similarly, in various
embodiments of the processor 10, the I-cache 22 and D-cache 26 may be integrated, or unified.
Misses in tk}e I-cache 22 and/or the D-cache 26 cause an access to main (off-chip) memory 32,
under the control of a memory interface 30. Page table 104 is stored in memory 32.

[0032] The processor 10 may include an Input/Output (I/O) interface 34, controlling access
to various peripheral devices 36. Those of skill in the art will recognize that numerous
variations of the processor 10 are possible. For example, the processor 10 may include a
second-level (1.2) cache for either or both the I and D caches 22, 26. In addition, one or more of
the functional blocks depicted in the processor 10 may be omitted from a particular
embodiment.

[0033] Figure 4 is a flow diagram depicting a memory address translation process,
indicated generally at 200, according to one embodiment. A memory access instruction is
executed (block 202), and a virtual address or portion thereof is presented to the LO TLB 100
(block 204). If the virtual address hits in the O TLB 100 (block 206), the L.O TLB 100 provides
a physical address or portion thereof, and page attributes (block 208) and the cache 22, 26 or
main memory 32 access continues (not shown). If the virtual address misses in the LO TLB 100
(block 206), the virtual address is presented to the L1 TLB 102 for translation.

[0034] If the virtual address hits in the L1 TLB 102 (block 212), the LOL bit in the L1 TLB
102 entry is checked (block 214). If the LOL bit is not set, the entry is added to the LO TLB 100

(block 216) and the physical address and page attributes are provided (block 208). If the LOL

WO 2007/024937 PCT/US2006/032902
10

bit is set, the entry is added to the L0 TL.B 100 and locked in the O TLB 100 against
replacement (block 218) and the physical address and page attributes are provided (block 208).
[0035] If the virtual address misses in the L1 TLB 102 (block 212), the page table(s) 104 is
accessed (block 220) to obtain an address translation. If a translation is not found in the page
table 104 (block 222), and error is generated (block 224). If a translation is obtained from the
page table 104 (block 222), the translation is written as an entry to the L1 TLB 102 (block 226),
including a LOL bit indicating whether the entry should be locked against replacement in the LO
TLB 100. The memory access instruction 202 is then re-executed (block 202) to re-start the
address translation process. This time, the virtual address will miss in the LO TLB 100 (block
206) and hit in the L1 TLB 102 (block 212). The entry will then be written to the LO TLB 100
and locked or not, depending on the state of the LOL bit in the L1 TLB 102 entry (blocks 214,
216, 218). While the flow diagram of Fig. 4 depicts the steps as sequential, in one embodiment
the LO TLB 100 and L1 TLB 102 accesses occur in parallel.

[0036] Defining one or more LOL bits in the L1 TLB 102 entries provides a means for the
operating system to designate which entries should be locked against replacement in the LO
TLB 100. This allows the operating system to ensure the fastest possible memory address
translations for certain critical tasks, without having direct access to the LO TLB 100. Similarly,
in the case of a hardware-managed L1 TLB 102, a L1L bit may be maintained in the page table
104, indicating whether the corresponding L1 TLB 102 entry should be locked against
replacement.

[0037] Although the present invention has been described herein with respect to particular
features, aspects and embodiments thereof, it will be apparent that numerous variations,
modifications, and other embodiments are possible within the broad scope of the present
invention, and accordingly, all variations, modifications and embodiments are to be regarded as
being within the scope of the invention. The present embodiments are therefore to be construed
in all aspects as illustrative and not restrictive and all changes coming within the meaning and

equivalency range of the appended claims are intended to be embraced therein.

WO 2007/024937 PCT/US2006/032902

11
CLAIMS
What is claimed is:
1. A method of managing a hierarchical Translation Lookaside Buffer (TLB) comprising:

replicating an entry from an upper level TLB to a lower level TLB; and
Jocking the entry in the lower level TLB against replacement in response to an indicator

in the upper level TLB entry.

2. The method of claim 1 wherein the indicator is a bit in the upper level TLB entry.

3. The method of claim 1 wherein the upper level TLB entry, including the indicator, is set
by software.

4. The method of claim 1 wherein the indicator is set by software in a memory page table,

and wherein the indicator is set in the upper level TLB entry during a hardware page table

expansion operation.

5. The method of claim 1 wherein the lowe? level TLB is an instruction TLB.

6. The method of claim 1 wherein the lower level TLB is a data TLB.

7. The method of claim 6 further comprising replicating the upper level TLB entry to a

lower level instruction TLB and locking the lower level instruction TLB entry against

replacement in response to the indicator.

WO 2007/024937 PCT/US2006/032902
12

8. A processor, comprising:

an instruction execution pipeline;

a hierarchical Translation Lookaside Buffer (TLB) comprising a higher level TLB and a
lower level TLB, entries in the lower level TLB replicating entries in the higher
level TLB; and

a TLB controller operative to first access the lower level TLB in an address translation,
and to access the higher level TLB if a matching entry is not found in the lower
level TLB, the controller further operative to lock an entry in the lower level

TLB in response to an indicator in the corresponding entry in the higher level

TLB.

9. A method of translating a virtual address to a physical address in a processor,
comprising:
executing a memory access instruction to generate a virtual address;
accessing a Level-0 Translation Lookaside Buffer (LO TLB) with a portion of the virtual
address;
if the virtual address misses in the LO TLB, accessing a Level-1 TLB (L1 TLB) with a
portion of the virtual address; and
if the virtual address hits in the L1 TLB,
obtaining a portion of a physical address and page attributes from the L1 TLB,
inspecting a Level-0 Lock (LOL) indicator in the L1 TLB entry,
writing a portion of the virtual address, a portion of the physical address and the
page attributes as an entry in the LO TLB, and

locking the 1O TLB entry against replacement in response to the LOL indicator.

WO 2007/024937 PCT/US2006/032902
13

10. The method of claim 9 further comprising, if the virtual address misses in the 1.1 TLB:
performing a page table traversal to obtain a physical address and page attributes
associated with the virtual address; and
writing a portion of the virtual address, a portion of the physical address, the page

attributes and a LOL indicator as an entry in the 1.1 TLB.

11. A method of managing a Translation Lookaside Buffer (TLB) comprising:
upon a TLB miss for a virtual address, performing a page table walk to obtain a
corresponding physical address and lock indicator;
writing an entry to the TLB comprising at least the virtual and physical addresses; and

locking the entry in the TLB against replacement in response to the lock indicator.

12. The method of claim 12 wherein the TLB is a L1 TLB, and wherein the lock indicator is

a1l LOCK (L1L) indicator.

WO 2007/024937

VIRTUAL
ADDRESS

PCT/US2006/032902

1/4
100
/—
HIT ~ PHYSICAL
LO > ADDRESS,
> TLB MISS PAGE
ATTRIBUTES
I A
1
L — -
- T\ :
1
]
|
102 — HIT :
A L1 .
> TLB MISS |
:
A :
1
-t T\]
1
1
104
Y HIT
~ PAGE
> TABLE MISS
ERROR

FIG. 1

WO 2007/024937 PCT/US2006/032902

2/4
/ 100
LOTLB
n-1 .
) REALLOCATION
FLOOR REG. 3 \//
2 2, LOCKED
1 TLB
\- 101 0 ENTRIES

FIG. 2

WO 2007/024937 PCT/US2006/032902

3/4
10
/—
PROCESSOR o4 o
LO
ITLB -
1$
25—~ L1
ITLB
! c1? 100 103
/_14 PIPELINE 0
——11° TLB TLB
CONTROL
CONTROL > y 16 X
TLLB
\-102
L~ 20 18 |26
GPR - i <> D§
——— 1 y\
, Y —-16 i
I/F) \-30
A
32
Y MEMORY
TABLE

FIG. 3

WO 2007/024937

4/4

PCT/US2006/032902

Y —202
EXECUTE MEMORY ACCESS
INSTRUCTION
PRESENT T\g RLTOU1,_ALLBADDRESS WRITE ENTRY
TOL1TLB
A
206
HIT HIT IN
LOTLB?
v /‘208
—210
PROVIDE PRESENT VIRTUAL ADDRESS
PHYSICAL TO L1 TLB
ADDRESS
AND PAGE
ATTRIBUTES
A
7 220
ACCESS PAGE
TABLE
224
ERROR a
y 216 y 218
ADD ENTRY ADD ENTRY
TOLOTLB TO LO TLB AND
LOCK ENTRY
AGAINST
REPLACEMENT
Y

FIG. 4

INTERNATIONAL SEARCH REPORT

international application No

PCT/US2006/032902

. CLASSIFICATION OF SUBJECT MATTER

A
INV. GO6F12/12 GO6F12/10

According to International Patent Classification (IPC) ot to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation fo the exient that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X EP 1 204 029 A2 (FUJITSU LTD [JP]) 1-12

8 May 2002 (2002-05-08)

figure 1
paragraph [0031]

paragraph [0038] - paragraph [0048];

X US 4 727 485 A (KESHLEAR WILLIAM M [US] ET 11,12

abstract; figures 1,2

AL) 23 February 1988 (1988-02-23)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A* document defining the general state of the ast which is not
considered to be of particular relevance

"E* earlier document but published on or afier the international
filing date

L document which may throw doubts on priofity claim(s) or
which is ciled to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
ar priority date and not in conflict with the application but
cited to understand the principle or theotry underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, ﬁuch combination being obvious to a person skilled
inthe art.

*&" document member of the same patent family

Date of the actual completion of the international search

15 December 2006

Date of mailing of the international search report

22/12/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nielsen, Ole

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent famity members

International application No

PCT/US2006/032902

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 1204029 A2 08-05-2002 JP 2002149490 A 24-05-2002
us 6553477 Bl 22-04-2003
US 4727485 A 23-02-1988 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - wo-search-report
	Page 21 - wo-search-report

