«» UK Patent Application «GB 2311882 .. A

(43) Date of A Publication 08.10.1997

(21} Application No 9607153.5

(22) Date of Filing 04.04.1996

(71) Applicant(s})

Videologic Limited
(Incorporated in the United Kingdom)

Home Park Estate, KINGS LANGLEY, Herts, WD4 8LX,
United Kingdom
(72) Inventor(s)
James Robert Whittaker
Paul Rowland
(74) Agent and/or Address for Service
Reddie & Grose
16 Theobalds Road, LONDON, WC1X 8PL,
United Kingdom

(51) INTCLS
GO6F 9/46

(52) UK CL (Edition O)
G4A AFN

(56) Documents Cited
US 5307496 A

(58) Field of Search

UK CL (Edition O) G4A AFGN AFN
INT CL® GO6F 9/46

(54) Data processing management system with programmable routing operations

(57) The system comprises one or more data inputs 34, one or more data outputs 42, one or processing units
50, data storage 12 and a control core 2. The control core 2 routes data between the inputs 34, the outputs 42,
the storage 12 and the processors 50 in one or more programmable routing operations. The control core 2 can
initiate predetermined data processing operations and is also able to determine which routing operations and
which data processing operations are capable of being performed, and can execute the said operations.

VIDEO IN AUDIO IN VIDEO OUT AUDIO OUT
] o] oo]
42 T T
38/‘Lposmnocsss 40‘1 POST-PROCESS 46-—| POST-PROCESS [POST-PROCESS 48
6+ l 2 T 50
\‘ ’
l MEDIA PlPEUNEH SECONDARY CORE MAIN CONTROL CORE H DAC CORE HEC PIPELINE H I
10 ¢ 8
MAIN CACHE BANKS
Y
ADDRESS b 64
| BOCTRONM TRANSLATE
ROM v .| PeriPHERAL FRAME BUFFER |_- 58
INTERFACE INTERFACE SYSTEM BUS "\60 INTERFACE |

FIG. 3

SCALEABLE MULTIMEDIA PROCESSOR BLOCK DIAGRAM

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

V ¢881lLEC 9O

115

FIG. 1

BASE ARCHITECTURE >
4) / DATA PROCESSING UNITS
e T 8
REAL TIME : DATA ’
pAaTA [> pRggERSéS'NG —> pIPELINE |*_10
. n
8" :
4 Y EEE --- -f ------- -
/ T T -6
REAL TIME . DATA /
DATA [¢—>] MEDIA CONTROL CORE f¢—» PRggER?ES':NG —> PIPELINE | 10
8- X
Aol A .6
REAL TIME ‘ DATA v
DATA [«——>{ PROCESSING PIPELINE L 10
: CORE n
) 8{ - ..I
J ! §
12— I 1
MULTI-BANK CACHE
14 14 || 14 || 14 14 14
INSTRUCTION
CONTROL BIT TIMING BITS FROM
FROM MICROCODE MICROCODE
l_ 92 + 5
CONDITION jm 1 OF 4 DECODE |— 90
CODE — |
94 94 94
— D D D CONTROL
L BITTO
— 3 > > BANK
.06 ~~96 ~96 96
98
CLOCK

FIG. 4

CONTROL UNIT INSTRUCTION PIPELINE

2/5

S140d
o101

9c

1O3INNODYHILNI VLiva OO

/ vN/ NN/ ON/
SANvE SHNVE SHNVE A
1Nd1NO i somaay | | 3318000
1NdNI NYH90YUd

|

8l
SLINN S3HOVO
ALEM [XNVYEILTNIN
/avay [e—> oL

I~ SNg T104LNOD OO

j

8¢

1INN TOHLNOD

SNg SNLvisS OO

013 SN1VLS Nda |_

SN1V1S 140d Ol

A

9l

WOY 3a0J0HIIN

_—¢CC

WYY 3A000HJIN

¢ Ol

3/5

WVH9OVIA XD018 40SS300¥d VIA3IWILTNN 379VvITvOS

€ 9ld

J0V4Y3ILNI

IVY3IHdIN3d Y

ERVANEILY _
1 1
JIVISNVHL
Y9~ gsayaav
cl
/. r
VoA |- 29 >
SYNVE IHOVD NIvin

f S

30V4d3LNI
WOy

1

WOY 1008

Ova [€——] 3NIN3dId OVA [¢] IHOD OVA [¢—— FHOD TOHULNOD NIV |—»{ JHOD AHVYANOD3S ¥ 3ININ3dId VIa3n

0S [4
| F—

I e [T 1 T

— 0 | SS3004d-1S0Od

_-8€

\om %

87— SS300Ud-1S0d SS320¥d-1S0d - 9% SS300¥d-1S0d
} | 2 f
] 4
1N0 olany 1N0O O3AaIn NI OlgNnyv

NI O3aiA

e

4/5

FROM MCC
DATA BUS
Y 78
IN
G
76
E———

CONTROLBITS v 3| RreGisTER |72

FROM
MICROCODE R1 ’ FILE
2 ——»
—» H STATUSBITS
A L 5 S TO MCC
L 5 STATUS BUS
74 z
FIG. 5 el
DATA BANK TO MCC
DATA BUS
S
m
: z
o m e
2 = c 3
> > jon | -
S 2 & & & 5 5 T &K
3 3 o) = O z a) w
> > @ X = o o) S 2 &
o fos] w w Z X m T Z O
> > > > ® m o 4 X A
4 Z < Z @) O m nw n ou
23 2% ¢ ¢ 8 g4¢
INSTRUCTION o 9 o o #F F T E E E 80 82
BUFFERS 3 = 33 3 © © © n n o
- — -~ - - ~ m /
THREAD 1 T 1T T 1T T ||
| RESOURCE |
CHECK
THREAD 2 | | | [[| |]
1 RESOURCE N PRIORITY
CHECK SELECTION
THREAD n [I] l | I I] & ¢ l
| RESOURCE | |
CHECK

FIG. 6

RESOURCE CHECKING AND PRIORITY

5/5

JF4NLO31IHOYY FHOVO AdIINVE

L Ol

ANVE JHOVD

>>\w; OH <q >>\~; DH <>

H31igyv

3¥0I ONISS300dd

Y¥NVE JHOVO MNVE JHOVD
\<<m; n_H v ﬁ
— V6
HILIgYY ¥3L199Y
A
~
|
|
|
~ |
N
—saa
HOLVI0TVY HOL1YD0T1 Y
3LIHM avay ~— 98
v a A4
LINN 3L18M 1INN av3y
06 88

10

15

20

25

2311882

-1 -

A_DATA PROCESSING MANAGEMENT SYSTEM

This invention relates to a data processing
management system of the type which can be used with
real time multimedia inputs and processing.

BACKGROUND TO THE INVENTION

The user interface to computers has continually
evolved from teletypes to keyboard and character
terminals to the (graphical user interface) GUI which
is currently the standard interface for the majority
of computer users. This evolution is continuing with
sound and 3D graphics increasingly common and 3D
sound and virtual reality emerging. It's common
thread is an increase in the complexity of the human
computer interface achieved by an accompanying
increase in the types of data presented to the user.
(personal computer) PC applications are taking
advantage of this shift and are increasingly relying
on the availability of sound and 3D graphics in order
to achieve their full potential.

This has resulted in chip and board suppliers
offering products with combined functionality
designed to handle more than one data type e.g. 2D
graphics and sound or 2D and (motion picture experts
group) MPEG playback. It is important to note that
these products to date use separate functional units
for each data type.

More recently, programmable SIMD (Single
Instruction Multiple Data) architectures (e.g.

Chromatics MPACT) have emerged. These architectures

10

15

20

25

-2 -

use identical processing elements executing the same
instruction to perform the same processing on a
number of blocks of data in parallel. This approach
works well for data which can be easily partitioned
to allow a common function to be performed e.g. block
processing in data compression such as MPEG, but are
not flexible enough to execute a complete general
algorithm which often requires conditional flow
control within the data processing.

DSP (digital signal processor) vendors have also
sought to address this market with MIMD (Multiple
Instruction Multiple Data) devices (e.g. Texas
Instruments' TI320C80) which offer the required
flexibility to process the varied data types. However
since the architecture replicates general purpose DSP
cores which retain a far greater degree of
flexibility than required for the application, the
resulting chip is a high cost device, too high for
general PC and consumer .use.

CPU (central processing unit) vendors promoting
fast RISC CPUs for both general purpose programs and
multimedia processing are unable (and do not wish) to
compromise their architecture in order to support
more than a few multimedia specific instructions and
therefore do not achieve the required performance
levels at a reasonable cost. As the CPU is also
typically being used to run a non-real-time operating
system, it is also unable to provide low latency

processing.

10

15

20

25

-3 -

Dedicated multimedia CPUs (e.g. Philips'
Trimedia) using VLIW (very long instruction words)
instructions controlling multiple processing units
are unable to make efficient use of their processing
power because each instruction is dedicated to a
single task (and data type) and therefore unable to
make optimal use of all the processing units
available. For example a VLIW instruction dedicated
to a 3D graphics operation is unable to take
advantage of hardware designed for MPEG motion
estimation. The number of processing units, and
therefore scale-ability; is also limited by the VLIW
word length. ‘

SUMMARY OF THE INVENTION

Preferred embodiments of the present invention
address the requirement for a device which processes
all multimedia data types in a manner that minimises
system costs and provides for future developments in
multimedia and the related industry standards. They
provide an architecture which is scalable in
processing power, real-time I/O support and in the
number of concurrent activities which can be
undertaken.

All multimedia data types may be viewed as
streams of data which lend themselves to a vector
processing approach. Some of these streams will be
real time (e.g. from an audio or video input) and as
such either require dedicated buffering or low

latency processing to avoid data loss. Each data

10

15

20

25

30

- 4 -

stream also requires some hardware resource so that
it may be processed.

A preferred embodiment of the invention includes
a low latency real-time processing core responsible
for data IO and task scheduling only. This avoids the
need for unnecessary and costly buffering. It also
includes a method of dynamic resource checking to
ensure that only tasks with the required resources
available are run.

The balance between host processing power,
memory costs and silicon costs is also continually
changing. This means that the optimal division of
work between a host processor and multimedia
coprocessor alsc changes over time. This device is
programmable to allow the division of work to be
altered as required. .

Scale-ability of parallel processing devices is
a problem for both hardware design and supporting
software. As more processing units are added to a
device the distribution of tasks between the
processing units becomes more difficult resulting in
either a diminishing return or an exponential growth
in the number of inter-connects between functional
units. Such changes also typically result in
alterations to the programming model for the device
requiring wholesale changes to the supporting
software. Preferred embodiments of the invention
address these issues by a consistent scalable
architecture, where all the elements may be scaled

without creating an explosion of inter-connects

10

15

20

25

30

-5 -

between functional units and without changing the
programming model presented to software interfacing
to the device.

Figure 1 shows the base architecture of the
device.

The device has been conceived as a
re-configurable engine qble to match all the current
and future algorithms required to process multimedia
data. The work done by it is split into two
categories. Both real time scheduling and IO
processing are performed by a Media Control Core
whilst computationally intensive data processing is
performed by one or more additional data processing
units.

This division of work is one of the
architecture's fundamental characteristics.

Data processing consists of a number of steps:

Parameter fetching and setup
Data fetching and processing
Data storage

In order to efficiently achieve high data
processing throughput a processor needs to perform
the above operations on a reasonably large set of
data. If the data set is too small the processor
spends too high a proportion of it's power on context
switching between tasks and the resulting need to
save and restore a thread's state.

Because the Media Control Core is required only
to service requests to move data between IO ports ahd

memory (to allow data processing to be performed) it

10

15

20

25

30

- 6 -

can context switch every clock cycle, this then
removes the need for large data buffers to support
real time IO. Data processing units are able to
process data efficiently by performing a key part of
an algorithm on data without interruption.

These processing elements are supported by a
scalable multibank cache which supports efficient
data movement and processing by caching sets of data
required for the active algorithms being run.

The invention is defined in its various aspects
with more precision in the appended claims to which
reference should now be made.

A preferred embodiment of the invention will now
be described in detail, by way of example, with
reference to the figures in which:

Figure 1 shows a block diagram of an embodiment
of the invention;

Figure 2 shows a block diagram of the Media
Control Core of Figure 1;

Figure 3 is a block diagram of a second
embodiment of the invention;

Figure 4 is a block diagram of the control unit
instruction pipeline the Media Control Core;

Figure 5 is a block diagram of the internal
architecture of one of the data banks of Figure 4;

Figure 6 shows in block form how resource
checking and thus process selection is performed by
the Media Control Core; and

Figure 7 is a block diagram showing how access

is made to the banked cache memory of Figure 1.

10

15

20

25

30

-7 -

The base architecture of the embodiment of the
invention is shown in Figure 1. The centre of the
system is a media control core (MCC) 2. This is a
fine grained multithreading processor. This has a
plurality of inputs and outputs which can be coupled
to real time data input and output devices 4. These
can be, for example, video sources, audio sources,
video outputs, audio outputs, data sources, storage
devices etc. In a simple example only one input and
one output would be provided.

Also coupled to the media control core 2 are a
plurality of data processing units 6. Each of these
comprises a data processing core 8 which controls the
processing of data via data pipeline 10. The core 8
decodes and sequences microinstructions for the
pipeline 10.

Also coupled to the media control core 2 is a
multibanked cache memory 12 from which data may be
retrieved by the media qontrol core 2 and data
processing units 6 and into which data may be written
by the media control core, the data processing units
6.

The media control core is a fine grained
multithreading processing unit which directs data
from inputs to data processing cores or to storage
and provides data to outputs. It is arranged so that
it can switch tasks on every clock cycle. This is
achieved by, on every clock cycle checking which of
the possible operations it could perform have all the

resources available for those tasks to be executed

10

15

20

25

30

-8 -

and, of those, which has the highest priority. It
could be arranged to commence operation of more than
one operation on each clock cycle if sufficient
processing power were provided.

This resource checking ensures that everything
required to perform a particular task is in place.
This includes external resources such as whether or
not data is available at an input port (EG video
data) or whether a data storage device or output is
available. It also includes internal resources such
as data banks for temporary storage, available
processing cores which are not currently working on
other data or previously processed data required for
a particular new processing operation. The media
control core operates to direct data from an input to
an appropriate data processing unit 6 for processing
to take place and routes data to an output when
required making use of the cache as necessary. Once
execution of a set of instructions has commenced on a
processing unit the MCC can lock again at the various
threads it can run and ghe resources available for
these whilst the program continues to run on the data
processing unit.

The resource and priority checking of the media
control core means that tasks which serve as real
time data such as video input are able to be
performed without the large memory buffers which are
usually required in current real time inputs. 1In
operation such as video input the media control core

will look to see whether data is available at the IO

10

15

20

25

30

-9 -

port and, if it is, wili receive that data and send
it either to a portion of the multibanked cache or to
data storage registers in preparation for processing
by the one of the data processing unit 6.

The data processing units 6 are all under the
control and scheduling of the media control core 2.
In the example shown in Figure 1 the units consist of
a processing pipeline (data pipeline 10) which will
be made up of a number of processing elements such as
multipliers, adders, shifters etc under the control
of an associated data processing core 8 which runs a
sequence of instructions to perform a data processing
algorithm. Each of these data processing cores will
have its own microinstruction ROM and/or RAM storing
sequences of instructions to perform a particular
data processes. The media control core invokes the
data processing unit 6 to perform its particular
operation sequence by, for example, passing an
address offset into its microinstruction ROM and
instructing it to commence execution. It will then
perform a particular process on either data from the
multibanked cache or data passed to it from one of
the inputs to the media control core until completed
when it will signal to the media control core that
its processing is complete.

The multibanked cache 12 of Figure 1 is used for
memory accesses and these are all cached through this
bank. The cache is divided into a plurality of banks
14 each of which can be programmed to match the

requirements of one of the data processing tasks

10

15

20

25

30

- 10 -

being undertaken. For example, a cache bank might be
dedicated to caching texture maps from main memory
for use in 3D graphics rendering. Using this
programmability of the cache banks allows the best
possible use of on chip memory to be made and allows
dynamic cache allocation to be performed thereby
achieving the best performance under any particular
conditions.

Furthermore, the use of multiple cache banks
allows the cache to be non-blocking. That is to say,
if one of the cache banks is dealing with a request
which it is currently unable to satisfy, such as a
read instruction where that data is not currently
available, then another processing thread which uses
a separate cache bank may be run.

The entire device as shown in Figure 1 is
scalable and may be constructed on a single piece of
silicon as an integrated chip. The media control
core 2 is scalable in a manner which will be
described below with reference to Figure 2. As the
size of the media control core is increased it is
able to support further data processing units 6
whilst using the same programming model for the media
control. More cache banks may also be added to
support the further data processing units thereby
increasing the effectiveness of the data throughput
to the media control core and the data processing
units. Because the programming model of the device
is not changed this enaBles a high degree of

backwards compatibility to be attained.

10

1S

20

25

30

- 11 -

The media control core is shown in more detail
with reference to Figure 2. It is composed of a
control unit 16, a set of read/write units 18, a set
of program counter banks 20, a set of address banks
22, a set of data banks 24, and a set of input/output
banks 26. These banks are all coupled together by a
media control core status bus 28 a media control core
control bus 29 and a media control core data
interconnect 30. The media control core data
interconnect is used for sending data between the
various different banks and the status bus provides
data such as the input/output port status and the
status of data processing units to which the media
control core can send instructions and data.

In addition, a memory block 32 storing microcode
instructions in ROM and RAM is coupled to the control
unit 16 the units 18 to 26 listed above.

All the core components, 18 to 26, with the
exception of the control unit have the same basic
interface model which allows data to be read from
them, written to them and operations performed
between data stored in them. Each bank consists of a
closely coupled local storage register file with a
processing unit or arithmetic logic (ALU).

The control unit 16 is used to control the
execution of the media control core. On each clock
cycle it checks the availability of all resources
(e.g. input/output port status, data processing units
status, etc) using status information provided by

the media control status bus 28 against the resources

10

15

20

25

- 12 -

required to run each program under its control. It
then starts execution of the instruction for the
highest priority program thread which has all its
resources available.

The program counter bank is used to store
program counters for each processing thread which is
supported by the media control core. It consists of
a register for each of the processing threads which
the media control core is capable of supporting and
an ALU which performs all operations upon the program
counters for program progression, looping, branching,
etc. The data banks 24 -are used for general purpose
operations on data to control program flow within the
media control core. They are a general resource
which can be used as required by any processing
thread which is running on the MCC.

The address banks 22 are used to store and
manipulate addresses for both instructions and data
and are also a general MCC resource in a similar
manner to the data banks 24.

The input/output banks 26 provide an interface
between the media control core and real time data
streams for input/output which are supported by the
MCC. Their status indiqates the availability of data
at a port, eg. video input, or the ability of a port
to take the data for output. They can, as an option,
include the ability to transform data as it is
transferred in or out, for example bit stuffing of a

data stream.

10

15

20

25

30

- 13 -

The read/write banks 18 provide an interface
between the media control core and memory (via the
multibank cache). As more than one processing thread
can be run at any one time more than one read/write
unit is required to avoid the blocking of memory
requests.

The media control core is scalable in all
important respects. Because it is constructed from
banks which localise storage (register files) and
processing (ALU) additional banks can be added
without creating any unmanageable routing and
interconnection problems. The number of processing
threads which could be supported can be increased by
adding registers to the program counter bank and
modifying the control unit accordingly. The number
of input/output streams which can be supported by
the MCC can be increased by adding further IO banks.

The data throughput can be increased by adding
further read/write units 18 and the MCC processing
power overall can be increased by adding further
data and address banks, 24 22.

A block diagram of a specific implementation of
the data processing management system is shown in
Figure 3. The MCC in this serves as a plurality of
real time data input/output ports and controls data
processing units to process data received from them
and output to them.

In the figure is shown a video input 34 and
audio input 36 coupled to the media control core via

associated preprocessors 38 and 40. A corresponding

10

15

20

25

30

- 14 -

video output 42 and audio output 44 are coupled to
the media control core 2 via respective post
processors 46 and 48. The video and audio inputs and
outputs may be digital inputs and outputs.

As in Figure 1 the media control core 2 is
coupled to a multibanked cache 12 in this case
referred to as the main cache bank. A data
processing unit 6 comprising a secondary core 8 and a
data (media) pipeline 10 are coupled directly the
media control core and are used for processing of
data supplied to them.

Also coupled to the media core 2 is a processing
unit 50 comprising a digital to analog converter feed
core (DAC feed core) 52 and a DAC feed pipeline 54
which supplies data to a digital to analog converter
56. The purpose of this is to provide a graphics
output. To this end, the processing unit 50 fetches
data via the frame buffer interface 58 and system bus
60 for the host computer video graphics adaptor (VGA
62) is retained for compatibility only. Thus, real
time data is supplied on the video and audio inputs
and can be sent out on the video and audio outputs
whilst graphics output can be sent by the DAC 56.

Data for graphics output can be generated by
processing non-real time data from a source such a
graphics frame buffer, a connection to which is shown
in Figure 3 via the frame buffer interface 58, 3D
data, or real time video.

The secondary core 8 and media pipeline 10 is an

example of a data processing unit which is able to

10

15

20

25

30

- 15 -

process audio, 3D, 2D, video scaling, video decoding
etc. This could be formed from any type of general
processor.

The DAC feed core and DAC feed pipeline is
dedicated to processing data from a number of frame
buffers for the generation of RGB data for a DAC. It
can switch between source buffers on a pixel by pixel
basis, thus converting data taken from a number of
video formats including YUV and combining source data
from multiple frame buffers by blending or by colour
or chroma keying.

Each core will have an associated microcode
store formed f;om ROM and RAM which for the purposes
of clarity are not shown here, but which stores
instructions to be executed by the processor. The
cache banks 12 interface to the media control core
and the data processing units 6 and 50. They also
interface to the system bus via an address
translation unit 64. They are also linked to the
frame buffer interface 58 for writing data to an
reading data from one or more frame buffers.

A data bank 24 is illustrated in Figure 5. It
comprises a register file 72, an ALU 74, and a
multiplexed input 76. The operation of the data bank
is controlled by a number of bits in a micro-
instruction which are labelled WE, W, R1, and R2 and
which are input to the register file. The result of
the micro-instruction which is performed by the ALU
is made available as status bits H S Z which are

routed to the control unit of the media control core

10

15

20

25

- 16 -

to implement branches and conditional instructions.

The register file is constructed to allow two
operands to be fetched from the input and one operand
to be written to the output on each clock cycle. The
data input port 78 and the data output port 80 allow
communication with other data via the media control
core data bus 30 to which they are connected. Thus,
the data flow in Figure 5 is vertically down through
the diagram whilst the flow of control information is
from left to right being formed of control bits from
the control unit and status bits sent back to the
control unit reflecting the status of the data bank.

A plurality of these data banks are used and
each is in the same form, that is to say each has its
own register file closely coupled to an ALU as shown
in Figure 5. This arrangement, using a plurality of
closely coupled registers and ALU’s, preferably in a
one to one relationship, differs from prior art
embodiments of multiple ALU’s where complex
multiplexing between register banks and multiple
ALU’s was required.

Generally, these data banks perform general
purpose operations on data thereby controlling
program flow within the MCC and can be used by any
processing thread which is running on the MCC.

The address banks 22, the program counter banks
20, and the IO banks 26, and the read/write units 18
are all constructed and operate in a similar manner

but are provided in separate units to allow their

10

15

20

25

30

- 17 -

implementation to be optimised, thereby reflecting
the way in which they are used.

The address banks store and manipulate addresses
for data accesses into memory (not illustrated).

They are slightly simpler than the data banks in that
they use unsigned accumulators and do not generate
any condition codes to send back to the control unit
16 via the status bus.

The program counter bank is used to store the
program counter for each processing thread supported
by the media control core. Thus, the number of
registers in the bank of the type shown in Figure 5
will be equiva;ent to the number of processing
threads which the MCC can support. As with the
address banks the ALU is used to program counter
operations and is unsigned. It does not generate
conditions codes to send back to the control unit 2.

The IO banks are used to interface to IO ports,
and contain no registers or ALU’s. They interface
with real time data streams supported by the MCC. A
status signal indicates the availability of data at a
port, or the ability of a port to take data. They
can optionally include the ability to transform the
data as it is transferred.

The read/write units interface to the cache bank
12. They have no registers or ALU’s. A read unit
accepts an address and, when the data is returned,
sets a data valid status bit. A write unit accepts
addresses and data. Multiple read and write units

are used to ensure that if one cache access blocks

10

15

20

25

30

- 18 -

then another thread can be continued running through
another read/write unit.

An instruction buffer with the control unit (not
illustrated) for each data processing thread stores
that thread's next microinstruction and instruction
operands. The instruction and operands include bits
which describe the resources required to execute that
instruction. These resource requirements are fed into
the control unit's resource checking logic along with
status bits describing the current status of the
Media Control Core 2, egternal IO ports 20 and data
processing units 6,50. Simple combinatorial logic
such as an array of logic gates determines whether an
instruction can run or not and a fixed priority
selector in the control unit 16 then launches the
highest priority runnable thread into the data path
control pipeline (shown in Figure 4) to start
execution of that program thread. The threads task
could be ‘receive video data’, process stored audio
dataf etc.

Normally an instruction will request its
thread’s next instruction to be read from memory when
it is run. The instruction is read from memory
(pointed to by the program counter) which contains an
instruction opcode and operands. The opcode field of
the instruction is used to index into the microcode
ROM to retrieve the next instruction and the
resultant microinstruction is stored into the
thread's instruction buffer together with the

instruction operand fields.

10

1s

20

25

30

- 19 -

The resource checking and priority is
illustrated fully in Figure 6. For the three threads
illustrated, global status information is received
from the necessary data banks, the necessary address
banks, routing control data from the control unit,
control status information from control unit 16, and
execution dependency data from other processes on
which a particular thread is dependent. All this
information is sent to a resource checker 80 which
combines it with data from IO ports, the various
pipeline data bank status, and the status of the
various data processing'units. This happens for each
possible threaq. If it is possible to run that data
processing thread then an output is generated to a
priority selector 82. This has information about the
priority of each of the data processing threads
supported and, as a result, can select for execution
the thread with highest priority. For example, a
real time data input such a video would be given a
high priority and this would take precedence over a
background processing operation.

Because the next instruction for a thread is
already provided in an instruction buffer that
instruction is always available for resource checking
and priority selection. Thus, there is no loss of
execution time by checking the status of every clock
cycle.

The data path control pipeline shown in Figure 4
operates by allowing fields of a microinstruction

word to be placed into a pipeline at different

10

15

20

25

- 20 -

depths. This allows a microinstruction to control the
flow of data through the pipeline over a number of
clocks and hence to control the pipelined processing
of data.

The circuitry of Figure 4 comprises a 1 to 4
decoder 90 which on its enable input receives the
output of an AND gate 92. The inputs to this are a
control bit from the microcode instruction and a
condition code used for conditional execution of
instructions. A pair of timing bits from the
microcode instruction which are the output selection
inputs to the decoder 90. The four outputs of the
decoder 90 form inputs via OR gates 94 to four D-type
flip-flops 96 arranged as a shift register. The
outputs from decoder 90_are ORed in gates 94 with the
outputs of the previous flip-flop 96 in the register
(output from the first flip-flop 96). Bits are
clocked along the register by a clock 98 unitl they
emerge as an output control bit which commences
execution of the microcode instruction.

Thus a control bit is inserted into the correct
position in its scheduling pipeline such that it
arrives at the destination bank on the required clock
cycle. Conceptually such an instruction bit pipeline
exists for all microcode control bits but in order to
limit the amount of logic needed to implement the
control pipeline, there are limitations on the clock
cycles on which some fields of the microcode can be

placed.

10

i5

20

25

- 21 -

Conditional execution is achieved by specifying
a conditional operation and generating the condition
bit. Two types of conditional operation are
supported. This first is to qualify the write enable
pulse to a bank with the condition code from the same
or another bank. The second is to specify that a
microinstruction word would be run again (rather than
the next instruction from the program counter) if a
certain condition code is true. In order to limit the
number of possibilities for condition codes, only
data bank condition codes can be used in these
conditional operations.

Example Microinstruction Format

The follo&ing gives an example of a
microinstruction format for this architecture and
explains how it is used to achieve multithreading on
a cycle by cycle basis.

In Figure 6 a number of thread's
microinstructions are shown. Each contains the
following:

Control fields for each bank e.g. Register
select bits and ALU control bits;

Instruction timing bits for each bank - these
are explained below;

Routing control bits which control routing of
data between banks;

Core control bits such as whether the
instruction should be conditionally repeated and

whether it contains immediate data operands.

10

15

20

25

- 22 -

For performance, instructions are allowed to
execute over a number of clock cycles. The time at
which parts of the instruction executes is set by
delay bits within the bank control field which
control the position that the control bits are placed
in the Control Unit Instruction Pipeline (Figure 6).

Because the control bits have been placed in the
Instruction Pipeline which represents the future
state of the Media Control Core, the control unit
logic is able to ensure.that the instruction delay is
catered for when resource checking and that an
instruction will cause no conflicts on any of the
clock cycles in which it is executing.

Execution Dependencies

In order to keep the hardware design complexity
down, instructions are allowed to execute over a
number of clock cycles. The time at which parts of
the instruction executes is controlled by delay bits
within the bank control field.

In order to ensure both that this instruction
delay 1is catered for each clock when the resource
checking is undertaken and that the operation happens
on the correct cycle the op-code corresponding to the
delay bits is fed into a set of latches which are
clocked each cycle. The outputs of these latches
represent the future state of the data pipeline and
are fed into the resource checking logic to ensure
that an instruction will cause no conflicts on any of

the clock cycles in which it is executing.

10

15

20

25

- 23 -

Banked Cache

The multibanked cache is formed from a number of
cache banks and interfaces to processing units and
memory as shown in Figure 7. In order to support an
arbitrarily scalable device a multiplicity of cache
banks are used. The use of each bank is controlled
by a cache allocator 86 associated with a cache user
such a read unit, or a write unit. These may be
programmably controlled to use the cache banks in
different configurations. For example, one bank may
be used for command data, another for 3D texture
maps, and a third for 2D parameters. The ability to
configure the cache banks is important in achieving
good memory performance. »

Each port such as a read unit 88 or a write unit
90 which requires access to the cache is connected to
an allocator module 86. These modules examine the
memory request that is being made by the port and
route the request to the appropriate cache bank. The
address sent from the port is compared with a base
range register pair in the write allocator to
determine whether or not the address falls within a
given region. If a match occurs then the request is
forwarded to the cache bank. If no match occurs, a
default cache bank is used. This comprises simply
passing the request through to the memory sub-system.

More than one set of base and range registers
may be used, depending on the memory requirements of

the module connected to the port.

10

15

20

- 24 -

Not all of the cache banks provided need to be
accessible from every given allocator. Some ports
will need more flexibility than others. This fact
allows the number of cache banks to be easily scaled
(increased) whilst restricting the growth of
interconnections required between allocators and
cache banks. Thus, a set of caches might be
allocated to deal with video input requests and audio
inputs and outputs whilst others could be allocated
to deal primarily with data fetches from main memory.

Each cache bank is connected to read and write
allocators via an arbiter 94. This receives requests
for access from all of the allocators and can then
determine which allocator is to obtain access to that
particular cache bank. This is done by assigning a
priority to each port and arranging for the arbiter
to simply process the highest priority request that
is outstanding.

The system can be extended to use other types of

inputs such as MPEG and video conferencing.

10

15

20

25

- 25 -

LAIMS

1. A data processing management system comprising:

at least one data input;

at least one data output;

at least one data processing means;

a data storage means; and,

a control means;

wherein the control means comprises:

means for routing data between the data
input, the data output, the data processing means and
the data storage means in one or more programmable
routing operations;

means for causing the data processing means
to commence a predetermined data processing
operation;

means for repeatedly determining which
routing operations and which data processing
operations are capable of being performed;

means for commencing execution of at least
one at the thus determined operations capable of

being performed.

2. A data processing management system according to
claim 1 including means for assigning a priority to
each routing and data processing operation; and

means for determining which of the routing and
data processing operations capable of being performed
has the highest assigned priority, wherein the means

for commencing execution is controlled to commence

10

15

20

- 26 -

execution of the operation with the highest assigned

priority.

3. A data processing management system according to
claim 1 or 2 in which the data input is a real time
input and the operation of receiving data on that

input is assigned the highest priority.

4. A data processing management system according to
claim 3 in which the data input is a video data

input.

5. A data processing management system according to

claim 3 in which the data input is an audio input.

6. A data processing ﬁanagement system according to
any of claims 2 to 5 in which the means for
repeatedly determining which routing operations and
which data processing operations are capable of being
performed and the means for determining which of the
thus determined operations has the highest assigned
priority make this determination on each clock cycle
of a clocking means associated with the control

means.

7. A data processing management system according to
claim 6 in which the commencement of the thus
determined operation with the highest assigned

priority takes place on a succeeding clock cycle.

10

15

20

25

- 27 -

8. A data processing management system according to
any preceding c¢laim in which the means for
determining which routing and data processing
operations are capable of being performed makes this
determination from resource status bits received via
a status bus and generated by internal and/or

external resources.

9. A data processing management system according to
any preceding claim in which the data processing
means includes a store of microcoded instructions
relating to a processing operation to be performed by

the processing means.

10. A data processing management system according to
claim 9 in which the control means commences
execution of the processing operation by providing an
address offset into the microcode instruction store

of the data processing means.

11. A data processing management system according to
any preceding claim in which the data storage means

comprises a cache memory means.

12. A data processing management system according to
claim 11 in which the cache memory means comprises a

plurality of banks of cache memory storage.

13. A data processing management system according to

claim 1 in which each portion of the system which has

10

15

20

25

- 28 -

has access to the cache memory is associated with a
cache memory allocation means which is programmable

to permit access to different banks of cache memory.

14. The data processing management system according
to any preceding claim in which the control means
comprises a set of data banks for performing

operations on data within the control means.

15. A data processing management system according to
any preceding claim in which the control means
comprises a set of address banks, one for each of the
data processing operations to be performed by the

system.

16. A data processing management system according to
any preceding claim in which the control means
comprises a program counter bank for storing the
current program address for each data processing

operation to be performed by the system.

17. A data processing management system according to
any preceding claim in which the control means
comprises a set of input/output banks for interfacing

with the input and output means.

18. A data processing management system according to
any preceding claim in which the control means
comprise read/write units for interfacing with the

storage means.

10

- 29 -
19. A data processing management system according to
claim 12 in which each data bank comprises an
arithmetic logic unit (ALU) and a register file

associated only with that ALU.

20. A data processing management system according to
claims 14 to 19 in which the data banks, the address
banks, the program counter banks, the input/output

banks, and the read/write banks are all connected to
a common status bus a common data interconnect and a

common control bus.

10

15

20

25

e
Amendments to the claims have been filed as follows

CLAIMS

A data processing management system comprising:
at least one data input;
at least one data output;
at least one data processing means;
a data storage means; and,
a control means;
wherein the control means comprises:

means for routing data between the data

.nput, the data output, the data processing means and

- he data stcrage means in one Or more programmable

‘outing operations;

means for causing the data processing means
.o commence a predetermined data processing
)peration;

means for repeatedly determining which
-outing operations and which data processing
>perations are capable of being performed;

means for commencing execution of at least
sne at the thus determined operations capable of

seing performed.

2. A data processing management system according to
~laim 1 including means for assigning a priority to
sach routing and data processing operation; and

means for determining which of the routing and
data processing operations capable of being performed
has the higaest assigned priority, wherein the means

for commencing execution is controlled to commence

10

15

20

2\

e cecution of the operation with the highest assigned

priority.

3. A data processing management system according to
claim 1 or 2 in which the data input is a real time
iaput and the operation of receiving data on that

iaput is assigned the highest priority.

4. A data orocessing management system according to
¢laim 3 in which the data input is a video data

input.

£, A data processing management system according to

¢laim 3 in which the data input is an audio input.

t. A data processing management system according to
¢ny of claims 2 to 5 in which the means for

: epeatedly determining which routing operations and
ihich data processing operations are capable of being
jerformed and the means for determining which of the
- hus determined operations has the highest assigned
ixiority make this determiﬂation on each clock cycle
f a clockirg means associated with the control

eans.

. A data processing management system according to
:laim 6 in which the commencement of the thus
letermined operation with the highest assigned

)riority takes place on a succeeding clock cycle.

10

15

20

25

UN
8. A data processing management system according to
a1y preceding claim in which the means for
datermining which routing and data processing
coerations are capable of being performed makes this
é¢stermination from resource status bits received via
z status bus and generated by internal and/or

€ xternal resources.

<. A data processing management system according to
gay preceding'claim in which the data processing
n=2ans includss a store of microcoded instructions
relating to a processing operation to be performed by

t he processing means.

10. A data processing management system according to
¢laim 9 in which the control means commences

e xecution of the processing operation by providing an
:ddress offset into the microcode instruction store

¢ f the data processing means.

1. A data processing management system according to
:ny preceding claim in which the data storage means

(omprises a cache memory means.

2. A data processing management system according to
¢laim 11 in which the cache memory means comprises a

] lurality of banks of cache memory storage.

"3. A data processing management system according to

(laim 1 in which each portion of the system which has

10

15

20

25

25

: ccess to the cache memory is associated with a cache
{.emory allocation means which is programmable to

jyermit access to different banks of cache memory.

4. The data processing management system according
.0 any preceding claim in which the control means
somprises a set of data banks for performing

)perations on data within the control means.

lS. A data Erocessing management system according to
iny preceding claim in which the control means
~omprises a set of address banks, one for each of the
jata processing opérations to be performed by the

system.

16. A data processing management system according to
any precediang claim in which the control means
comprises a program counter bank for storing the
current program address for each data processing

operation to be performed by the system.

17. A data processing management system according to
any preceding claim in which the control means
comprises a set of input/output banks for interfacing

with the irput and output means.

18. A data processing management system according to
any preceding claim in which the control means
comprise read/write units for interfacing with the

storage means.

10

15

20

25

Y

19. A data processing management system according to
¢laim 12 in which each data bank comprises an
crithmetic logic unit (ALU) and a register file

¢ ssociated only with that ALU.

:0. A data processing management system according to
¢laims 14 to 19 in which the data banks, the address
} anks, the program counter banks, the input /output

t anks, and the read/write banks are all connected to
¢ common status bus a common data interconnect and a

¢ ommon control bus.

1. A methocd for managing a data processing system having
:t least one data input, at least one data output, at

I east one data processing means, a data storage means and
¢ control means comprising the steps of:

roating data via the control means between the

cata input, the data ocutput, the data processing means and

the data storage means in one or more programmable routing
« perations;

repeatedly determining which of said routing
« perations and which of a set of data processing
(perations are capable of being performed; and

commencing execution of at least one of the
raid routing operations or said data processing operations

thich are capable of being performed.

©2. A method according to claim 21 including the steps

assigning a priority to each routine and each

:ata processing operation;

10

15 -

20

determining which of the routing and data
f rocessing operations capable of being performed has the
r ighest assigned priority; and

commencing execution of the operation with the

} ighest assigned priority.

v

3. A methoc. according to claim 22 in which the steps of
1 speatedly determining which routing operations and which
cata processiag operations are capable of being performed
:nd the step of determining which of the operations has

t he highest éésigned priority are performed on each clock
cycle of a clocking means associated with the control

r eans of the data processing system.

©4. A method according to claim 23 wherein commencement
(£ the lowest determined operation with the highest

: ssigned priority takes place on a succeeding clock cycle.

‘5. A data processing management system
ubstantially as herein described with reference to

.he drawings.

'6. A method for managing a data processing system
substantially as herein described with reference to

:he drawings.

Paten
Ofhce

Application No: GB 9607153.5 Examiner: Matthew Gillard
Claims searched: All Date of search: 12 July 1996

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.O): G4A AFGN, AFN
Int Cl (Ed.6): GO6F 9/46
Other:

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
X | US 5307496 (KAWASAKTI). Columns 4 & 5. 1 at least

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or afier the declared priority date but before

with one or more other documents of same category. the filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

