
US 20220138061A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0138061 A1

Beuch et al . (43) Pub . Date : May 5 , 2022

Publication Classification (54) DYNAMIC REPLACEMENT OF DEGRADING
PROCESSING ELEMENTS IN STREAMING
APPLICATIONS

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

(72) Inventors : Daniel Beuch , Rochester , MN (US) ;
Michael J. Branson , Rochester , MN
(US) ; Adam Thomas Stallman ,
Rochester , MN (US) ; Ryan K.
Cradick , Oronoco , MN (US)

(51) Int . Ci .
GOOF 11/20 (2006.01)
G06Q 30/04 (2006.01)
G06F 11/36 (2006.01)

(52) U.S. CI .
CPC G06F 11/2028 (2013.01) ; G06F 2201/85

(2013.01) ; G06F 11/3612 (2013.01) ; G06Q
30/04 (2013.01)

(57) ABSTRACT
An embodiment includes monitoring a distributed comput
ing application at runtime for occurrence of a condition ,
where the condition includes occurrence of a degradation
condition on a processing element (PE) . The embodiment
also includes starting a provisional PE on a second node at
runtime while maintaining runtime operation of the PE . The
embodiment compares operation of the PE to operation of
the provisional PE based on a performance metric associated
with the computing resource . The embodiment connects the
provisional PE to replace the stream of tuples from the PE
to a downstream PE with a stream of tuples from the
provisional PE to the downstream PE .

(73) Assignee : International Business Machines
Corporation , Armonk , NY (US)

(21) Appl . No .: 17 / 084,974

(22) Filed : Oct. 30 , 2020

100

PROCESSING SYSTEM
104

PROCESSOR
122 CLIENT 114

APPLICATION
105A

MEMORY
124

STORAGE
108

NETWORK
102 DATABASE

109

CLIENT 110

APPLICATION
105B CLIENT 112

O.

DEVICE 132 SERVER 106

FIG . 1

100

PROCESSING SYSTEM 104

Patent Application Publication

PROCESSOR 122

CLIENT 114

MEMORY

APPLICATION 105A
124

STORAGE 108

NETWORK 102

DATABASE 109

May 5 , 2022 Sheet 1 of 12

OLD

CLIENT 110

APPLICATION 105B

CLIENT 112

III 10 .

G

S
DEVICE 132

SERVER 106

D

US 2022/0138061 A1

FIG . 2

200

PROCESSING UNIT 206

Patent Application Publication

GRAPHICS PROCESSOR 210

NB / MCH 202

MAIN MEMORY 208

AUDIO ADAPTER 216

SIO 236

BUS 240

SB / ICH 204

BUS 238

May 5 , 2022 Sheet 2 of 12

DISK 226

CD - ROM 230

USB AND OTHER PORTS 232

PCI / PCle DEVICES 234
KEYBOARD AND MOUSE ADAPTER 220

MODEM 222

ROM 224

CODE 226A

NETWORK ADAPTER 212

REMOTE SYSTEM 2013

US 2022/0138061 A1

NETWORK 201A

STORAGE 2010 CODE 2010

FIG . 3

Patent Application Publication

COMPUTE NODE 310B

COMPUTE NODE 310C

300

COMPUTE NODE 310D

COMPUTE NODE 310A

NETWORK 320

PROCESSING ELEMENT (S)
312

OPERATOR (S)
314

MANAGEMENT SYSTEM 305

May 5 , 2022 Sheet 3 of 12

OPERATOR GRAPH 332 STREAM MANAGER 334

DATABASE SYSTEM 315 DATABASE 340

US 2022/0138061 A1

FIG . 4

I / O DEVICES
406

TO COMMUNICATIONS NETWORK

Patent Application Publication

COMPUTER NODE 400
CPU 402

I / O DEVICE INTERFACE
404

NETWORK INTERFACE 408

INTERCONNECT (BUS)
410

May 5 , 2022 Sheet 4 of 12

MEMORY 412

STORAGE 414

PROCESSING ELEMENTS 416

BUFFER 422

OPERATOR 418 PERFORMANCE MONITOR 420

US 2022/0138061 A1

FIG . 5

I / O DEVICES
506

TO COMMUNICATIONS NETWORK

Patent Application Publication

MANAGEMENT SYSTEM 500
CPU 502

I / O DEVICE INTERFACE
504

NETWORK INTERFACE 508

INTERCONNECT (BUS)
510

MEMORY 512

STORAGE 514

May 5 , 2022 Sheet 5 of 12

OPERATOR GRAPH 522

STREAM MANAGER 516 PROVISIONAL PE ANALYSIS MODULE 518 PERFORMANCE MONITOR 520 SCHEDULER 524

US 2022/0138061 A1

FIG . 6 PROVISIONAL PE ANALYSIS MODULE 600

Patent Application Publication

PERFORMANCE MONITOR 602

PERFORMANCE DATA

INITIAL ANALYSIS MODULE 604

DEGRADED PERFORMANCE PE 608

PROVISIONAL PE (S)
616

PROVISIONAL PE TROUBLESHOOTER 606

May 5 , 2022 Sheet 6 of 12

PERFORMANCE DATA

PERFORMANCE DATA

PROVISIONAL PE GENERATOR 610 PERFORMANCE COMPARITOR 612 SYSTEM UPDATER 614

USER INTERFACE 618

US 2022/0138061 A1

FIG . 7

Patent Application Publication

700

704

PE4

PE6

SINK 712

PE5

702

PE9

PE10

PE2

SOURCE 710
PE1

?
May 5 , 2022 Sheet 7 of 12

708

PE3

SINK 714

706

PE7

PE8

US 2022 / 0138061A1

FIG . 8

Patent Application Publication

008

U

PPE

818 .

804

PE4

PE6

SINK 812

1 U U

PE5

802

816

PE9

PE10

May 5 , 2022 Sheet 8 of 12

808

PE2

908

SINK 814

SOURCE 810
PE1

SS

11

PE3

PEZ

PES

1

1

1

11

0

US 2022/0138061 A1

FIG.9

900

START

END

Patent Application Publication

START STREAMS APPLICATION 902

STREAMS APPLICATION STOPPED 916

PROVISIONAL PE TROUBLESHOOTING 914

MONITOR PROCESSING ELEMENTS FOR DEGRADED PERFORMANCE 904

OTHER REMEDY 910

May 5 , 2022 Sheet 9 of 12

YES

YES

-NO

IS DEGRADED PERFORMANCE DETECTED AT ANY PROCESSING ELEMENTS ? 906

-YES

IS THERE AN INDICATOR OF BACKPRESSURE ? 908

-NO

ARE CLUSTER RESOURCES NEAR CAPACITY ? 912

-NO

US 2022/0138061 A1

FIG . 10

1000

Patent Application Publication

START

END

DETERMINE LOCATION FOR PROVISIONAL PROCESSING ELEMENT 1002

SWITCHOVER TO PROVISIONAL PE 1010

START PROVISIONAL PROCESSING ELEMENT 1004

May 5 , 2022 Sheet 10 of 12

NO

COMPARE PERFORMANCE OF DEGRADED AND PROVISIONAL PROCESSING ELEMENTS 1006

PROVISIONAL PE PERFORMING BETTER THAN DEGRADED PE ?
1008

-YES

US 2022/0138061 A1

FIG . 11

1100

Patent Application Publication

START

END

DETERMINE LOCATION FOR PROVISIONAL PROCESSING ELEMENTS 1102

SWITCHOVER TO BEST PERFORMING PROVISIONAL PE 1110

START MULTIPLE PROVISIONAL PROCESSING ELEMENTS 1104

May 5 , 2022 Sheet 11 of 12

NO

COMPARE PERFORMANCE OF DEGRADED AND PROVISIONAL PROCESSING ELEMENTS 1106

ARE ANY PROVISIONAL PES PERFORMING BETTER THAN DEGRADED PE ?
1108

-YES

US 2022/0138061 A1

FIG . 12

1200

Patent Application Publication

START

END YES

DETERMINE LOCATION FOR PROVISIONAL PROCESSING ELEMENT 1202

NO

MAX TRIES FOR PROV PE REACHED ? 1212

SWITCHOVER TO PROVISIONAL PE 1210

START PROVISIONAL PROCESSING ELEMENT 1204

May 5 , 2022 Sheet 12 of 12

NO

COMPARE PERFORMANCE OF DEGRADED AND PROVISIONAL PROCESSING ELEMENTS 1206

PROVISIONAL PES PERFORMING BETTER THAN DEGRADED PE ? 1208

-YES

US 2022/0138061 A1

US 2022/0138061 Al May 5 , 2022
1

DYNAMIC REPLACEMENT OF DEGRADING
PROCESSING ELEMENTS IN STREAMING

APPLICATIONS a

BACKGROUND

a

The embodiment also includes connecting the first provi
sional PE to replace the second stream of tuples from the PE
to the downstream PE with a third stream of tuples from the
first provisional PE to the downstream PE . Other embodi
ments of this aspect include corresponding computer sys
tems , apparatus , and computer programs recorded on one or
more computer storage devices , each configured to perform
the actions of the embodiment .
[0006] An embodiment includes a computer usable pro
gram product . The computer usable program product
includes a computer - readable storage medium , and program
instructions stored on the storage medium .
[0007] An embodiment includes a computer system . The
computer system includes a processor , a computer - readable
memory , and a computer - readable storage medium , and
program instructions stored on the storage medium for
execution by the processor via the memory .

BRIEF DESCRIPTION OF THE DRAWINGS

[0001] The present invention relates generally to
method , system , and computer program product for stream
computing . More particularly , the present invention relates
to a method , system , and computer program product for
dynamic replacement of processing elements in streaming
applications .
[0002] Database systems are typically configured to sepa
rate the process of storing data from accessing , manipulat
ing , or using data stored in a database . In traditional , static
database systems , data is first stored and indexed in memory
before subsequent querying and analysis . In general , such
static database systems are not always well - suited for per
forming real - time processing and analyzing streaming data .
For example , static database systems are sometimes unable
to store , index , and analyze large amounts of streaming data
efficiently or in real time .
[0003] Streams - based computing and streams - based data
base computing have emerged in recent years as developing
technologies for database systems . In a streams application ,
nodes connected to one another across a network allow data
to flow from one node to the next . Such data flows encap
sulate blocks of data in a " tuple . ” A tuple is a block of data
of one or a variety of different data types , such as integer ,
float , Boolean , or string data . Groups of tuples are transmit
ted in sequences referred to as a “ stream ” or “ data stream . ”
In particular , it may occur that data arrives essentially
continuously , as a stream of data points corresponding to an
ongoing or continuous event .
[0004] For example , data representing the price of a par
ticular stock may generally fluctuate over the course of a
day , and a data stream management system may continu
ously receive updated stock prices , e.g. , at equal time
intervals or as the price changes . Other examples of such
data streams include temperature or other environmental
data collected by sensors , computer network analytics ,
patient health data collected at a hospital , or data describing
a manufacturing process or other business process (es) .

a

[0008] The novel features believed characteristic of the
invention are set forth in the appended claims . The invention
itself , however , as well as a preferred mode of use , further
objectives and advantages thereof , will best be understood
by reference to the following detailed description of the
illustrative embodiments when read in conjunction with the
accompanying drawings , wherein :
[0009] FIG . 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented ;
[0010] FIG . 2 depicts a block diagram of a data processing
system in which illustrative embodiments may be imple
mented ;
[0011] FIG . 3 depicts a block diagram of an example
streams application environment in accordance with an
illustrative embodiment ;
[0012] FIG . 4 depicts a block diagram of an example
compute node in accordance with an illustrative embodi
ment ;
[0013] FIG . 5 depicts a block diagram of an example
management system in accordance with an illustrative
embodiment ;
[0014] FIG . 6 depicts a block diagram of an example
provisional PE (PE) analysis module in accordance with an
illustrative embodiment ;
[0015] FIG . 7 depicts a block diagram of an operator graph
for a stream computing application in accordance with an
illustrative embodiment ;
[0016] FIG . 8 depicts a block diagram of an operator graph
for a stream computing application having a provisional PE
in accordance with an illustrative embodiment ;
[0017] FIG . 9 depicts a flowchart of an example dynamic
PE replacement process in accordance with an illustrative
embodiment ;
[0018] FIG . 10 depicts a flowchart of an example provi
sional PE troubleshooting process in accordance with an
illustrative embodiment ;
[0019] FIG . 11 depicts a flowchart of an example provi
sional PE troubleshooting process in accordance with an
illustrative embodiment ; and
[0020] FIG . 12 depicts a flowchart of an example provi
sional PE troubleshooting process in accordance with an
illustrative embodiment .

SUMMARY

[0005] The illustrative embodiments provide for dynamic
replacement of degrading processing elements in streaming
applications . An embodiment includes monitoring a distrib
uted computing application at runtime for occurrence of a
condition , where the distributed computing application com
prises a first node that includes a processing element (PE)
receiving a first stream of tuples from an upstream PE ,
performing a defined process on the first stream of tuples
resulting in a second stream of tuples , and transmitting the
second stream of tuples to a downstream PE , where the
condition includes occurrence of a degradation condition on
the PE . The embodiment also includes starting a first pro
visional PE on a second node at runtime while maintaining
runtime operation of the PE , where the first provisional PE
receives the first stream of tuples from the upstream PE and
performs the defined process on the first stream of tuples .
The embodiment also includes comparing operation of the
PE to operation of the first provisional PE based on a
performance metric associated with the computing resource .

US 2022/0138061 A1 May 5 , 2022
2

DETAILED DESCRIPTION

a

a

[0021] Stream - based computing and stream - based data
base computing are emerging as a developing technology for
database systems . Products are available which allow users
to create applications that process and query streaming data
before it reaches a database file . With this emerging tech
nology , users can specify processing logic to apply to
inbound data records while they are “ in flight , ” with the
results available in a very short amount of time , often in
fractions of a second . Constructing an application using this
type of processing has opened up a new programming
paradigm that will allow for development of a broad variety
of innovative applications , systems , and processes , as well
as present new challenges for application programmers and
database developers .
[0022] The main components of stream processing appli
cations include tuples , data streams , operators , PEs , and
jobs . A “ tuple , ” is an individual piece of the data in a data
stream . A " data stream , ” as used herein , refers to a running
sequence of tuples . An “ operator , ” as used herein , is a logical
function that manipulates the tuple data from the incoming
data stream and produces the results in the form of an output
data stream . A “ operator graph , ” as used herein , is a visual
representation of the operators connected by the data
streams that flow through them and defines the analytic
application . A “ processing element ” or “ PE ” as used herein
is an executable that includes a set of one or more operators
that will run in the same process on a network node or
computing resource , for example a server , client , host ,
container , or other computing device , such as a data pro
cessing system . A “ node , " as used herein , is a network node
including any electronic device addressable over a computer
network that is capable of creating , receiving , and / or trans
mitting information over the computer network , and may
refer to may refer to an element , module , component , board ,
device or system .
[0023] A streams processing job has a directed graph of
PEs that send data tuples between the PEs . The PE operates
on the incoming tuples , and produces output tuples . APE has
an independent processing unit and runs on a host . The
streams platform can be made up of a collection of hosts that
are eligible for PEs to be placed upon .
[0024] In a stream computing application , PEs are thus
connected to one another such that data flows from one PE
to the next over a network connection (e.g. , over a TCP / IP
socket) . Data flows from one stream operator to another in
the form of a tuple having a sequence of one or more
attributes associated with an entity .
[0025] Stream computing applications handle massive
volumes of data that need to be processed efficiently and in
real time . Stream computing is able to achieve high perfor
mance streaming and scalability by distributing an applica
tion across multiple nodes by creating executables (i.e. ,
PEs) , as well as replicating PEs on multiple nodes and load
balancing among them . Thus , a stream computing applica
tion may continuously ingest and analyze hundreds of
thousands of messages per second and up to petabytes of
data per day . Accordingly , each stream operator in a stream
computing application may be required to process a received
tuple within fractions of a second .
[0026] An advantage of products , such as IBM Streams , is
the massive scalability and performance (IBM is a registered
trademark of International Business Machines corporation) .
Performance advantages include improvements in terms of

being able to ingest , filter , analyze , and correlate potentially
massively larger volumes of continuous data streams in a
given time frame than was previously possible . However , if
a streaming application “ falls behind ” in its processing , the
analysis it is performing loses its value , i.e. results of the
analysis are based on the past , not the most recent data .
[0027] A streaming application might fall behind simply
because of poor performance of one part of the application .
A streaming application can also fall behind because of
failures within the application . A streaming services pro
vider or operating system may support high - availability and
application failover , but failure - recovery mechanisms
include a period of time where data is not processed while
the recovery occurs . For example , the amount of time it
takes a processing element (PE) to fail and restart could
range from 20 to 30 seconds to several minutes , depending
on a number of factors (e.g. a quick failure versus a gradual
failure where the PE runs slower and slower until it ulti
mately fails , the amount of time to create / schedule a new
resource to host a restarted PE , the amount of time to deploy
the new PE , etc.) .
[0028] The longer the failure - recovery process takes to
complete the longer the backlog of unprocessed real - time
data , resulting in the application falling behind real - time
until it " catches up ” with the most recent data . If multiple
failures occur , lengthy recovery periods could result in the
application being completely flooded with real - time data ,
causing it to completely fail .
[0029] The illustrative embodiments of the present disclo
sure address problems and performance goals particular to
streams processing by monitoring its processing elements
(PEs) for degradation and replacing a degrading PE (before
it fails) with a better performing replica of itself . Some such
embodiments provide one or more advantages over prior
techniques , such as improving the performance of a stream
ing application by replacing underperforming PEs , provid
ing a way to avoid PE failures , and associated lengthy
recoveries , by proactively replacing a degrading PE with a
healthier replica of itself before it fails , and enabling swi
tchover to a replacement PE much faster than going through
a full failure - recovery scenario , thereby reducing or prevent
ing the buildup of unprocessed real - time data during the
failure - recovery process .
[0030] In an illustrative embodiment , a streams manager
monitors a streaming application , maintaining statistics that
represent the performance of the various PEs that make up
the streaming application . In some embodiments , the
streams manager monitors PEs for degradation and , when
degradation of one or more PEs is detected , performs
troubleshooting processes , or issues notification signals or
data to a troubleshooting module or separate application . For
example , in some embodiments , a PE monitors itself for
degradation indicators and signals a streams manager when
the PE detects degradation .
[0031] In some embodiments , a streams manager detects
degradation of a PE by monitoring the PE for occurrence of
a condition that serves as a degradation indicator , which may
differ from one PE to another . In some embodiments , the
thresholds for degradation indicator conditions may also
differ from one PE to another . Thus , in some such embodi
ments , a degradation indicator condition is configurable for
each PE .
[0032] In some embodiments , a degradation indicator con
dition includes execution conditions associated with a PE

a

US 2022/0138061 A1 May 5 , 2022
3

that deviate from a predefined or expected pattern . For
example , in some embodiments , indicators of degradation
include abnormal amounts of queued tuples (i.e. tuples
waiting to be processed on input ports of operators in the
PE) , abnormal memory usage , number and types of excep
tions handled , and abnormal CPU consumption .
[0033] In some embodiments , the streams manager moni
tors a plurality of PEs . In alternative embodiments , the
streams manager only monitors a single PE . In some
embodiments , the streams manager maintains statistics that
represent the normal or expected performance of the PE
prior to degradation of the PE . In some embodiments , the
streams manager logs the utilization of such computing
resources by the PE , allowing for normal utilization patterns
to be established and thereby also allowing for abnormal
utilization patterns to be detected .
[0034] In some embodiments , abnormal amounts of
queued tuples includes higher than normal amounts of
queued tuples . In some embodiments , abnormal memory
usage includes abnormally high rates of change in memory
usage . In some embodiments , abnormal CPU consumption
includes abnormally high rates of change in CPU consump
tion .
[0035] In some embodiments , when a streams manager
detects degradation of a PE , the streams manager performs
an initial analysis in connection with the degraded PE . In
some such embodiments , the streams manager analyzes the
degraded PE to determine whether the indications signifying
the degraded performance are actually indications of a
problem other than degradation of the degraded performance
PE , such as backpressure or one or more cluster computing
resources reaching capacity .
[0036] In some such embodiments , when a streams man
ager detects degradation of a PE and does not detect an
alternative problem , the streams manager tests the use of one
or more provisional PEs as possible replacements for the
degrading PE . In some such embodiments , the streams
manager communicates with a scheduler to identify a node
to host the provisional PE . In some embodiments , the
scheduler searches for a node other than the node hosting the
PE . In some embodiments , the scheduler also searches for a
node based on predetermined rules or criteria , for example
availability of computing resources and vicinity to upstream
and downstream PEs . In some embodiments , once the
scheduler identifies a host node , the scheduler notifies the
streams manager of the selected location for the provisional

[0038] In some embodiments , the streams manager com
pares the operation of the degraded PE to that of the
provisional PEs based on a performance metric associated
with one or more computing resources . For example , in
some embodiments , the streams manager compares the
operation of the degraded PE to that of the provisional PE by
comparing one or more of CPU usage , memory usage , and
speed of tuple through - put . In some such embodiments , if
the streams manager determines that the provisional PE is
performing better than the degraded PE , then the streams
manager replaces the degraded PE with the provisional PE ,
for example by connecting the output of the provisional PE
to the downstream PE in place of the degraded performance
PE , and the streams manager shuts down the degraded PE .
In some embodiments , the streams manager sends a notifi
cation to the user via a user interface regarding the replace
ment of the degraded PE with the provisional PE .
[0039] For the sake of clarity of the description , and
without implying any limitation thereto , the illustrative
embodiments are described using some example configura
tions . From this disclosure , those of ordinary skill in the art
will be able to conceive many alterations , adaptations , and
modifications of a described configuration for achieving a
described purpose , and the same are contemplated within the
scope of the illustrative embodiments .
[0040] Furthermore , simplified diagrams of the data pro
cessing environments are used in the figures and the illus
trative embodiments . In an actual computing environment ,
additional structures or components that are not shown or
described herein , or structures or components different from
those shown but for a similar function as described herein
may be present without departing the scope of the illustra
tive embodiments .
[0041] Furthermore , the illustrative embodiments are
described with respect to specific actual or hypothetical
components only as examples . The steps described by the
various illustrative embodiments can be adapted for provid
ing explanations for decisions made by a machine learning
classifier model , for example
[0042] Any specific manifestations of these and other
similar artifacts are not intended to be limiting to the
invention . Any suitable manifestation of these and other
similar artifacts can be selected within the scope of the
illustrative embodiments .
[0043] The examples in this disclosure are used only for
the clarity of the description and are not limiting to the
illustrative embodiments . Any advantages listed herein are
only examples and are not intended to be limiting to the
illustrative embodiments . Additional or different advantages
may be realized by specific illustrative embodiments . Fur
thermore , a particular illustrative embodiment may have
some , all , or none of the advantages listed above .
[0044] Furthermore , the illustrative embodiments may be
implemented with respect to any type of data , data source ,
or access to a data source over a data network . Any type of
data storage device may provide the data to an embodiment
of the invention , either locally at a data processing system or
over a data network , within the scope of the invention .
Where an embodiment is described using a mobile device ,
any type of data storage device suitable for use with the
mobile device may provide the data to such embodiment ,
either locally at the mobile device or over a data network ,
within the scope of the illustrative embodiments .

?

PE .
[0037] In some embodiments , the streams manager starts
the provisional PE on the identified node at runtime while
maintaining runtime operation of the degraded performance
PE . In some such embodiments , the streams manager con
nects the provisional PE to an upstream PE that is the same
upstream PE from the degraded PE so that the provisional
PE and the degraded PE both receive the same stream of
tuples from the same upstream PE at the same time . In some
such embodiments , the provisional PE and the degraded PE
both perform the same defined process on the stream of
tuples , which allows the streams manager to compare the
performance of the degraded PE to that of the provisional
PE . In some such embodiments , the degraded PE performs
the defined process on the stream of tuples resulting in an
output stream of tuples that the degraded PE transmits to a
downstream PE , while the output of the provisional PE is not
connected to any downstream elements .

US 2022/0138061 A1 May 5 , 2022
4

[0045] The illustrative embodiments are described using
specific code , contrastive explanations , computer readable
storage medium , high - level features , historical data , designs ,
architectures , protocols , layouts , schematics , and tools only
as examples and are not limiting to the illustrative embodi
ments . Furthermore , the illustrative embodiments are
described in some instances using particular software , tools ,
and data processing environments only as an example for the
clarity of the description . The illustrative embodiments may
be used in conjunction with other comparable or similarly
purposed structures , systems , applications , or architectures .
For example , other comparable mobile devices , structures ,
systems , applications , or architectures therefor , may be used
in conjunction with such embodiment of the invention
within the scope of the invention . An illustrative embodi
ment may be implemented in hardware , software , or a
combination thereof .
[0046] The examples in this disclosure are used only for
the clarity of the description and are not limiting to the
illustrative embodiments . Additional data , operations ,
actions , tasks , activities , and manipulations will be conceiv
able from this disclosure and the same are contemplated
within the scope of the illustrative embodiments .
[0047] Any advantages listed herein are only examples
and are not intended to be limiting to the illustrative embodi
ments . Additional or different advantages may be realized by
specific illustrative embodiments . Furthermore , a particular
illustrative embodiment may have some , all , or none of the
advantages listed above .
[0048] With reference to the figures and in particular with
reference to FIGS . 1 and 2 , these figures are example
diagrams of data processing environments in which illus
trative embodiments may be implemented . FIGS . 1 and 2 are
only examples and are not intended to assert or imply any
limitation with regard to the environments in which different
embodiments may be implemented . A particular implemen
tation may make many modifications to the depicted envi
ronments based on the following description .
[0049] FIG . 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented . Data processing environment 100 is a
network of computers in which the illustrative embodiments
may be implemented . Data processing environment 100
includes network 102. Network 102 is the medium used to
provide communications links between various devices and
computers connected together within data processing envi
ronment 100. Network 102 may include connections , such
as wire , wireless communication links , or fiber optic cables .
[0050] Clients or servers are only example roles of certain
data processing systems connected to network 102 and are
not intended to exclude other configurations or roles for
these data processing systems . Data processing system 104
couples to network 102. Software applications may execute
on any data processing system in data processing environ
ment 100. Any software application described as executing
in processing system 104 in FIG . 1 can be configured to
execute in another data processing system in a similar
manner . Any data or information stored or produced in data
processing system 104 in FIG . 1 can be configured to be
stored or produced in another data processing system in a
similar manner . A data processing system , such as data
processing system 104 , may contain data and may have
software applications or software tools executing computing
processes thereon . In an embodiment , data processing sys

tem 104 includes memory 124 , which includes application
105A that may be configured to implement one or more of
the data processor functions described herein in accordance
with one or more embodiments .
[0051] Server 106 couples to network 102 along with
storage unit 108. Storage unit 108 includes a database 109
configured to store data as described herein with respect to
various embodiments , for example image data and attribute
data . Server 106 is a conventional data processing system . In
an embodiment , server 106 includes PEs of a stream pro
cessing application 105B that may be configured to imple
ment one or more of the processor functions described
herein in accordance with one or more embodiments .
[0052] Clients 110 , 112 , and 114 are also coupled to
network 102. A conventional data processing system , such
as server 106 , or client 110 , 112 , or 114 may contain data and
may have software applications or software tools executing
conventional computing processes thereon .
[0053] Only as an example , and without implying any
limitation to such architecture , FIG . 1 depicts certain com
ponents that are usable in an example implementation of an
embodiment . For example , server 106 , and clients 110 , 112 ,
114 , are depicted as servers and clients only as example and
not to imply a limitation to a client - server architecture . As
another example , an embodiment can be distributed across
several data processing systems , and a data network as
shown , whereas another embodiment can be implemented
on a single data processing system within the scope of the
illustrative embodiments . Conventional data processing sys
tems 106 , 110 , 112 , and 114 also represent example nodes in
a cluster , partitions , and other configurations suitable for
implementing an embodiment .
[0054] Device 132 is an example of a conventional com
puting device described herein . For example , device 132 can
take the form of a smartphone , a tablet computer , a laptop
computer , client 110 in a stationary or a portable form , a
wearable computing device , or any other suitable device . In
an embodiment , device 132 sends requests to server 106 to
perform one or more data processing tasks by stream pro
cessing application 105B such as initiating processes
described herein . Any software application described as
executing in another conventional data processing system in
FIG . 1 can be configured to execute in device 132 in a
similar manner . Any data or information stored or produced
in another conventional data processing system in FIG . 1 can
be configured to be stored or produced in device 132 in a
similar manner .
[0055] Server 106 , storage unit 108 , data processing sys
tem 104 , and clients 110 , 112 , and 114 , and device 132 may
couple to network 102 using wired connections , wireless
communication protocols , or other suitable data connectiv
ity . Clients 110 , 112 , and 114 may be , for example , personal
computers or network computers .
[0056] In the depicted example , server 106 may provide
data , such as boot files , operating system images , and
applications to clients 110 , 112 , and 114. Clients 110 , 112 ,
and 114 may be clients to server 106 in this example . Clients
110 , 112 , 114 , or some combination thereof , may include
their own data , boot files , operating system images , and
applications . Data processing environment 100 may include
additional servers , clients , and other devices that are not
shown .
[0057] In the depicted example , memory 124 may provide
data , such as boot files , operating system images , and

US 2022/0138061 A1 May 5 , 2022
5

applications to processor 122. Processor 122 may include its
own data , boot files , operating system images , and applica
tions . Data processing environment 100 may include addi
tional memories , processors , and other devices that are not
shown .
[0058] In the depicted example , data processing environ
ment 100 may be the Internet . Network 102 may represent
a collection of networks and gateways that use the Trans
mission Control Protocol / Internet Protocol (TCP / IP) and
other protocols to communicate with one another . At the
heart of the Internet is a backbone of data communication
links between major nodes or host computers , including
thousands of commercial , governmental , educational , and
other computer systems that route data and messages . Of
course , data processing environment 100 also may be imple
mented as a number of different types of networks , such as
for example , an intranet , a local area network (LAN) , or a
wide area network (WAN) . FIG . 1 is intended as an example ,
and not as an architectural limitation for the different illus
trative embodiments .
[0059] Among other uses , data processing environment
100 may be used for implementing a client - server environ
ment in which the illustrative embodiments may be imple
mented . A client - server environment enables software appli
cations and data to be distributed across a network such that
an application functions by using the interactivity between a
conventional client data processing system and a conven
tional server data processing system . Data processing envi
ronment 100 may also employ a service - oriented architec
ture where interoperable software components distributed
across a network may be packaged together as coherent
business applications . Data processing environment 100
may also take the form of a cloud , and employ a cloud
computing model of service delivery for enabling conve
nient , on - demand network access to a shared pool of con
figurable computing resources (e.g. networks , network
bandwidth , servers , processing , memory , storage , applica
tions , virtual machines , and services) that can be rapidly
provisioned and released with minimal management effort
or interaction with a provider of the service .
[0060] With reference to FIG . 2 , this figure depicts a block
diagram of a data processing system in which illustrative
embodiments may be implemented . Data processing system
200 is an example of a conventional computer , such as data
processing system 104 , server 106 , or clients 110 , 112 , and
114 in FIG . 1 , or another type of device in which computer
usable program code or instructions implementing the pro
cesses may be located for the illustrative embodiments .
[0061] Data processing system 200 is also representative
of a conventional data processing system or a configuration
therein , such as conventional data processing system 132 in
FIG . 1 in which computer usable program code or instruc
tions implementing the processes of the illustrative embodi
ments may be located . Data processing system 200 is
described as a computer only as an example , without being
limited thereto . Implementations in the form of other
devices , such as device 132 in FIG . 1 , may modify data
processing system 200 , such as by adding a touch interface ,
and even eliminate certain depicted components from data
processing system 200 without departing from the general
description of the operations and functions of data process
ing system 200 described herein .
[0062] In the depicted example , data processing system
200 employs a hub architecture including North Bridge and

memory controller hub (NB / MCH) 202 and South Bridge
and input / output (I / O) controller hub (SB / ICH) 204. Pro
cessing unit 206 , main memory 208 , and graphics processor
210 are coupled to North Bridge and memory controller hub
(NB / MCH) 202. Processing unit 206 may contain one or
more processors and may be implemented using one or more
heterogeneous processor systems . Processing unit 206 may
be a multi - core processor . Graphics processor 210 may be
coupled to NB / MCH 202 through an accelerated graphics
port (AGP) in certain implementations .
[0063] In the depicted example , local area network (LAN)
adapter 212 is coupled to South Bridge and I / O controller
hub (SB / ICH) 204. Audio adapter 216 , keyboard and mouse
adapter 220 , modem 222 , read only memory (ROM) 224 ,
universal serial bus (USB) and other ports 232 , and PCI /
PCIe devices 234 are coupled to South Bridge and I / O
controller hub 204 through bus 238. Hard disk drive (HDD)
or solid - state drive (SSD) 226 and CD - ROM 230 are
coupled to South Bridge and I / O controller hub 204 through
bus 240. PCI / PCIe devices 234 may include , for example ,
Ethernet adapters , add - in cards , and PC cards for notebook
computers . PCI uses a card bus controller , while PCIe does
not . ROM 224 may be , for example , a flash binary input /
output system (BIOS) . Hard disk drive 226 and CD - ROM
230 may use , for example , an integrated drive electronics
(IDE) , serial advanced technology attachment (SATA) inter
face , or variants such as external - SATA (ESATA) and micro
SATA (mSATA) . A super I / O (SIO) device 236 may be
coupled to South Bridge and I / O controller hub (SB / ICH)
204 through bus 238 .
[0064] Memories , such as main memory 208 , ROM 224 ,
or flash memory (not shown) , are some examples of com
puter usable storage devices . Hard disk drive or solid - state
drive 226 , CD - ROM 230 , and other similarly usable devices
are some examples of computer usable storage devices
including a computer usable storage medium .
[0065] An operating system runs on processing unit 206 .
The operating system coordinates and provides control of
various components within data processing system 200 in
FIG . 2. The operating system may be a commercially
available operating system for any type of computing plat
form , including but not limited to server systems , personal
computers , and mobile devices . An object oriented or other
type of programming system may operate in conjunction
with the operating system and provide calls to the operating
system from programs or applications executing on data
processing system 200 .
[0066] Instructions for the operating system , the object
oriented programming system , and applications or pro
grams , such as application 105 in FIG . 1 , are located on
storage devices , such as in the form of code 226A on hard
disk drive 226 , and may be loaded into at least one of one
or more memories , such as main memory 208 , for execution
by processing unit 206. The processes of the illustrative
embodiments may be performed by processing unit 206
using computer implemented instructions , which may be
located in a memory , such as , for example , main memory
208 , read only memory 224 , or in one or more peripheral
devices .

[0067] Furthermore , in one case , code 226A may be
downloaded over network 201A from remote system 201B ,
where similar code 201C is stored on a storage device 2011 .
In another case , code 226A may be downloaded over net

US 2022/0138061 A1 May 5 , 2022
6

work 201A to remote system 201B , where downloaded code
201C is stored on a storage device 2010 .
[0068] The hardware in FIGS . 1-2 may vary depending on
the implementation . Other internal hardware or peripheral
devices , such as flash memory , equivalent non - volatile
memory , or optical disk drives and the like , may be used in
addition to or in place of the hardware depicted in FIGS . 1-2 .
In addition , the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system .
[0069] In some illustrative examples , data processing sys
tem 200 may be a personal digital assistant (PDA) , which is
generally configured with flash memory to provide non
volatile memory for storing operating system files and / or
user - generated data . A bus system may comprise one or
more buses , such as a system bus , an I / O bus , and a PCI bus .
Of course , the bus system may be implemented using any
type of communications fabric or architecture that provides
for a transfer of data between different components or
devices attached to the fabric or architecture .
[0070] A communications unit may include one or more
devices used to transmit and receive data , such as a modem
or a network adapter . A memory may be , for example , main A
memory 208 or a cache , such as the cache found in North
Bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUs .
[0071] The depicted examples in FIGS . 1-2 and above
described examples are not meant to imply architectural
limitations . For example , data processing system 200 also
may be a tablet computer , laptop computer , or telephone
device in addition to taking the form of a mobile or wearable
device .
[0072] Where a computer or data processing system is
described as a virtual machine , a virtual device , or a virtual
component , the virtual machine , virtual device , or the virtual
component operates in the manner of data processing system
200 using virtualized manifestation of some or all compo
nents depicted in data processing system 200. For example ,
in a virtual machine , virtual device , or virtual component ,
processing unit 206 is manifested as a virtualized instance of
all or some number of hardware processing units 206
available in a host data processing system , main memory
208 is manifested as a virtualized instance of all or some
portion of main memory 208 that may be available in the
host data processing system , and disk 226 is manifested as
a virtualized instance of all or some portion of disk 226 that
may be available in the host data processing system . The
host data processing system in such cases is represented by
data processing system 200 .
[0073] With reference to FIG . 3 , this figure depicts a block
diagram of an example streams application environment 300
in accordance with an illustrative embodiment . In an
embodiment , the streams application environment 300 is
configured to execute a streams application , which is an
example of application 105A / 105B of FIG . 1 .
[0074] In the illustrated embodiment , the streams appli
cation environment 300 includes a management system 305
and a plurality of compute nodes 310A - 310D (herein generi
cally referred to as nodes 310) —i.e . , hosts — which are
communicatively coupled to each other using one or more
communications networks 320. In an embodiment , the com
munications network 320 includes one or more servers ,
networks , or databases , and uses a communication protocol
to transfer data among compute nodes 310. In an embodi
ment , a database system 315 containing a database 340 is

communicatively coupled to network 320 for communica
tion with compute nodes 310. In a particular embodiment ,
database system 315 is an example of server 106 with
database 109 of FIG . 1 , and nodes 310A - 310D are examples
of data processing system 104 , clients 110 , 112 , and 114 , and
device 132 of FIG . 1 .
[0075] In the illustrated embodiment , the one or more
compute nodes 310A - 310D are configured as shown for
compute node 310D , such that each of the compute nodes
310A - 310D comprise one or more PES 312 , and each PE
includes one or more operators 314. Operators 314 are the
fundamental building blocks of the streams application ,
allowing for the streams application to be a distributed
computing application . In some embodiments , the compute
nodes 310A - 310D each run a Linux operating system , and
each PE 312 represents a Linux process , and within each
Linux process there are operators 314 that run one or more
aspects of the streams application such that the streams
application is distributed among the operators 314 , PEs 312 ,
and compute nodes 310A - 310D .
[0076] In some embodiments , the management system
305 includes an operator graph 332 and a stream manager
334. In some embodiments , developers using the stream
computing service write streaming applications by defining
the operator graph 332 , which is compiled and submitted to
the management system 305 .
[0077] The stream manager 334 places the operators in the
operator graph 332 on one or more PES on one or more
computing nodes , which may include one or more of com
puting nodes 310A - 310D . In some embodiments , the opera
tor graph 332 includes a description of the stream network
topology , such as the location , arrangement , connections ,
and functionality of various operators on nodes 310 of the
streams application environment 300 .
[0078] PEs , such as PE 312 , hosts one or more operators ,
such as operator (s) 314 , that operate on incoming tuples , and
produces output tuples . A PE has an independent processing
unit and runs on a node , such as any of compute nodes
310A - 310D . In a stream application , PEs 312 are connected
to one another such that data flows from one PE to the next .
Data flows from one PE to another in the form of a tuple
having a sequence of one or more attributes associated with
an entity .
[0079] In some embodiments , the stream manager 334
monitors the PES 312 for degradation and replaces a degrad
ing PE before it fails with a better performing replica of
itself . Streaming applications process potentially massive
amounts of data in real - time . If a streaming application “ falls
behind ” in its processing , the analysis it is performing may
lose its value , i.e. results of the analysis are based on the
past , not the most recent data . An application might fall
behind simply because of poor performance of one part of
the application , such as a single PE . Thus , detecting and
replacing a degrading PE before it fails as described herein
provides for significant improvements in performance and
efficiency for streaming applications .
[0080] With reference to FIG . 4 , this figure depicts a block
diagram of an example compute node 400 in accordance
with an illustrative embodiment . In an embodiment , the
compute node 400 is an example of the compute nodes
310A - 310D of FIG . 3 .
[0081] In the illustrated embodiment , the compute node
400 includes one or more processors (CPUs) 402 , a network
interface 408 , an interconnect 410 , a memory 412 , and a

a

US 2022/0138061 A1 May 5 , 2022
7

9

a

a

storage 414. The compute node 400 may also include an I / O
device interface 404 used to connect I / O devices 406 , e.g. ,
keyboard , display , and mouse devices , to the compute node
400. In some embodiments , the functionality described
herein is distributed among a plurality of systems , which can
include combinations of software and / or hardware based
systems , for example Application - Specific Integrated Cir
cuits (ASICs) , computer programs , or smart phone applica
tions .
[0082] In some embodiments , each CPU 402 retrieves and
executes programming instructions stored in the memory
412 or storage 414. Similarly , in some embodiments , the
CPU 402 stores and retrieves application data residing in the
memory 412. In some embodiments , the interconnect 410
transmits programming instructions and application data
between each CPU 402 , I / O device interface 404 , storage
414 , network interface 408 , and memory 412 .
[0083] In some embodiments , one or more PEs 416 are
stored in the memory 412. In some such embodiments , a PE
416 includes one or more stream operators 418. In some
embodiments , a PE 416 is assigned to be executed by only
one CPU 402 , although in other embodiments the stream
operators 418 of a PE 416 include one or more threads that
are executed on two or more CPUs 402. The memory 412 is
generally included to be representative of a random access
memory , e.g. , Static Random Access Memory (SRAM) ,
Dynamic Random Access Memory (DRAM) , or Flash . The
storage 414 includes a buffer 422 and is generally included
to be representative of a non - volatile memory , such as a hard
disk drive , solid state device (SSD) , or removable memory
cards , optical storage , flash memory devices , network
attached storage (NAS) , or connections to storage area
network (SAN) devices , or other devices that may store
non - volatile data .
[0084] In some embodiments , a streams application
includes one or more stream operators 418 that are compiled
into a PE 416. In some embodiments , the memory 412
includes two or more PEs 416 , each PE having one or more
stream operators 418. In some embodiments , each stream
operator 418 includes a portion of code that processes tuples
flowing into a PE and outputs tuples to other stream opera
tors 418 in the same PE , in other PEs , or in both the same
and other PEs in a stream computing application . In some
embodiments , PEs 416 pass tuples to other PEs that are on
the same compute node 400 or on other compute nodes that
are accessible via communications networks . For example ,
in an embodiment , a first PE 416 on a first compute node 400
outputs tuples to a second PE 416 on a second compute node
400 .
[0085] In some embodiments , the PES 416 include a
performance monitor 420. In some embodiments , the per
formance monitor 420 monitors the PE 416 for degradation
and issues notification signals or data when degradation of
the PE 416 is detected . For example , in some embodiments ,
the performance monitor 420 signals a stream manager (e.g. ,
stream manager 334 of FIG . 3) when the performance
monitor 420 detects degradation of performance of the PE
416 .
[0086] In some embodiments , a performance monitor 420
detects degradation by monitoring the PE 416 for occurrence
of a condition that serves as a degradation indicator , which
may differ from one PE 416 to another . In some embodi
ments , the thresholds for degradation indicator conditions
may differ from one PE 416 to another . Thus , in some such

embodiments , a degradation indicator condition is config
urable for each PE 416. In some embodiments , a degradation
indicator condition includes execution conditions associated
with the PE 416 that deviates from a predefined or expected
pattern . For example , in some embodiments , indicators of
degradation include abnormal amounts of queued tuples (i.e.
tuples waiting to be processed on input ports of operators in
the PE) , abnormal memory usage , number and types of
exceptions handled , and abnormal CPU consumption . In
some embodiments , the performance monitor 420 monitors
the PE 416 and maintaining statistics that represent the
normal or expected performance of the PE 416. In some
embodiments , a performance monitor 420 logs the utiliza
tion of such computing resources by the PE 416 , allowing
for normal utilization patterns to be established and also
allowing for abnormal utilization patterns to be detected . In
some embodiments , abnormal amounts of queued tuples
includes higher than normal amounts of queued tuples . In
some embodiments , abnormal memory usage includes
abnormally high rates of change in memory usage . In some
embodiments , abnormal CPU consumption includes abnor
mally high rates of change in CPU consumption .
[0087] With reference to FIG . 5 , this figure depicts a block
diagram of an example management system 500 in accor
dance with an illustrative embodiment . In an embodiment ,
the management system 500 is an example of the manage
ment system 305 of FIG . 3 .
[0088] In the illustrated embodiment , the management
system 500 includes one or more processors (CPUs) 502 , a
network interface 508 , an interconnect 510 , a memory 512 ,
and a storage 514. The management system 500 may also
include an I / O device interface 504 connecting I / O devices
506 , e.g. , keyboard , display , and mouse devices , to the
management system 500. In some embodiments , the func
tionality described herein is distributed among a plurality of
systems , which can include combinations of software and / or
hardware based systems , for example Application - Specific
Integrated Circuits (ASICs) , computer programs , or smart
phone applications .
[0089] In some embodiments , each CPU 502 retrieves and
executes programming instructions stored in the memory
512 or storage 514. Similarly , in some embodiments , each
CPU 502 stores and retrieves application data residing in the
memory 512 or storage 514. The interconnect 510 is used to
move data , such as programming instructions and applica
tion data , between the CPU 502 , 1/0 device interface 504 ,
storage unit 514 , network interface 508 , and memory 512 .
The storage 514 is generally included to be representative of
a non - volatile memory , such as a hard disk drive , solid state
device (SSD) , removable memory cards , optical storage ,
Flash memory devices , network attached storage (NAS) ,
connections to storage area - network (SAN) devices , or the
cloud . In some embodiments , the network interface 508 is
configured to transmit data via the communications network .
[0090] In some embodiments , the memory 512 stores a
stream manager 516. Additionally , in some such embodi
ments , the storage 514 stores an operator graph 522 that
defines how tuples are routed to PEs for processing . In the
illustrated embodiment , the stream manager 516 also con
tains a provisional PE analysis module 518 and a scheduler
524. In the illustrated embodiment , the provisional PE
analysis module 518 includes a performance monitor 520 .
[0091] In some embodiments , the analysis module 518
monitors the PEs for degradation and replaces a degrading

a

a

US 2022/0138061 A1 May 5 , 2022
8

a

PE before it fails with a better performing replica of itself .
Streaming applications process potentially massive amounts
of data in real - time . If a streaming application “ falls behind ”
in its processing , the analysis it is performing may lose its
value , i.e. results of the analysis are based on the past , not
the most recent data . An application might fall behind
simply because of poor performance of one part of the
application , such as a single PE . Thus , detecting and replac
ing a degrading PE before it fails as described herein
provides for significant improvements in performance and
efficiency for streaming applications .
[0092] In some embodiments , the performance monitor
520 monitors a streaming application , maintaining statistics
that represent the performance of the various PEs that make
up the streaming application . In some embodiments , the
performance monitor 520 is part of the stream manager 516
as shown . In other embodiments , the performance monitor
520 is invoked at runtime , but may be a separate entity from
the runtime stream manager 516 .
[0093] In some embodiments , the performance monitor
520 monitors PEs for degradation and issues notification
signals or data when degradation of one or more PEs is
detected . For example , in some embodiments , the perfor
mance monitor 520 signals the stream manager 516 when
the performance monitor 520 detects degradation of perfor
mance of a PE .
[0094] In some embodiments , a performance monitor 520
detects degradation by monitoring the PEs for occurrence of
a condition that serves as a degradation indicator , which may
differ from one PE 416 to another . In some embodiments , the
thresholds for degradation indicator conditions may differ
from one PE 416 to another . Thus , in some such embodi
ments , a degradation indicator condition is configurable for
each PE 416. In some embodiments , a degradation indicator
condition includes execution conditions associated with a
PE that deviates from a predefined or expected pattern . For
example , in some embodiments , indicators of degradation
include abnormal amounts of queued tuples (i.e. tuples
waiting to be processed on input ports of operators in the
PE) , abnormal memory usage , number and types of excep
tions handled , and abnormal CPU consumption . In some
embodiments , the performance monitor 520 monitors PES
and maintaining statistics that represent the normal or
expected performance of the PEs . In some embodiments , a
performance monitor 520 logs the utilization of such com
puting resources by the PEs , allowing for normal utilization
patterns to be established and also allowing for abnormal
utilization patterns to be detected . In some embodiments ,
abnormal amounts of queued tuples includes higher than
normal amounts of queued tuples . In some embodiments ,
abnormal memory usage includes abnormally high rates of
change in memory usage . In some embodiments , abnormal
CPU consumption includes abnormally high rates of change
in CPU consumption .
[0095] In some embodiments , the analysis module 518
analyzes a PE identified by the performance monitor 520 as
exhibiting one or more indications of degradation . In some
embodiments , the analysis module 518 analyzes the PE to
determine whether the indications identified by the perfor
mance monitor 520 are actually indications of a problem
other than degradation of the PE , such as backpressure or
one or more cluster computing resources reaching capacity .
In some such embodiments , if the analysis module 518 does
not detect a problem other than degradation of the PE , the

analysis module 518 next evaluates the PE using a provi
sional PE . In some such embodiments , the analysis module
518 uses the scheduler 524 to identify a node to host the
provisional PE . In some embodiments , the scheduler 524
searches for a node other than the node hosting the PE . In
some embodiments , the scheduler 524 also searches for a
node based on predetermined rules or criteria , for example
availability of computing resources and vicinity to upstream
and downstream PEs .
[0096] In some embodiments , once the scheduler 524
identifies a host node , the analysis module 518 starts the
provisional PE on the identified node at runtime while
maintaining runtime operation of the PE . In some such
embodiments , the provisional PE is connected to the same
upstream PE as the PE under analysis so that the provisional
PE and the PE under analysis both receive the same stream
of tuples from the same upstream PE at the same time . In
some such embodiments , the provisional PE and the PE
under analysis both perform the same defined process on the
stream of tuples . In some such embodiments , the PE under
analysis performs the defined process on the stream of tuples
resulting in an output stream of tuples that the PE transmits
to a downstream PE , while the output of the provisional PE
is not connected to any downstream elements .
[0097] In some embodiments , the analysis module 518
compares operation of the PE under analysis to operation of
the provisional PE based on a performance metric associated
with one or more computing resources . In some such
embodiments , if the analysis module 518 determines that the
provisional PE is performing better than the PE under
analysis , then the analysis module 518 replaces the PE under
analysis with the provisional PE , for example by connecting
the output of the provisional PE to the downstream PE in
place of the PE under analysis , which is then shut down .
[0098] With reference to FIG . 6 , this figure depicts a block
diagram of an example provisional PE analysis module 600
in accordance with an illustrative embodiment . In an
embodiment , the provisional PE analysis module 600 is an
example of the provisional PE analysis module 518 of FIG .
5 .
[0099] In the illustrated embodiment , the provisional PE
analysis module 600 includes a performance monitor 602 ,
an initial analysis module 604 , and a provisional trouble
shooter 606. In the illustrated embodiment , the provisional
troubleshooter 606 includes a provisional PE generator 610 ,
a performance comparator 612 , and a system updater 614. In
some embodiments , the functionality described herein is
distributed among a plurality of systems , which can include
combinations of software and / or hardware based systems ,
for example Application - Specific Integrated Circuits
(ASICs) , computer programs , or smart phone applications .
[0100] In the illustrated embodiment , the performance
monitor 602 monitors a streaming application , maintaining
statistics that represent the performance of the various PEs
that make up the streaming application . In some embodi
ments , the performance monitor 602 monitors PEs for
degradation and issues notification signals or data when
degradation of one or more PEs is detected . For example , in
some embodiments , the performance monitor 602 signals
the initial analysis module 604 when the performance moni
tor 602 detects degradation of performance of a PE , such as
degraded performance PE 608 shown in FIG . 6 .
[0101] In some embodiments , the performance monitor
602 detects degradation of the degraded performance PE

US 2022/0138061 A1 May 5 , 2022
9

m 608 by monitoring the degraded performance PE 608 for
occurrence of a condition that serves as a degradation
indicator , which may differ from one PE to another . In some
embodiments , the thresholds for degradation indicator con
ditions may also differ from one PE to another . Thus , in
some such embodiments , a degradation indicator condition
is configurable for each PE . In some embodiments , a deg
radation indicator condition includes execution conditions
associated with a PE that deviates from a predefined or
expected pattern . For example , in some embodiments , indi
cators of degradation include abnormal amounts of queued
tuples (i.e. tuples waiting to be processed on input ports of
operators in the PE) , abnormal memory usage , number and
types of exceptions handled , and abnormal CPU consump
tion . In some embodiments , the performance monitor 602
monitors a plurality of PEs , including degraded performance
PE 608. In alternative embodiments , the performance moni
tor 602 only monitors degraded performance PE 608. In
some embodiments , performance monitor 602 maintains
statistics that represent the normal or expected performance
of the degraded performance PE 608 prior to degradation of
PE 608. In some embodiments , the performance monitor
602 logs the utilization of such computing resources by the
degraded performance PE 608 , allowing for normal utiliza
tion patterns to be established and thereby also allowing for
abnormal utilization patterns to be detected . In some
embodiments , abnormal amounts of queued tuples includes
higher than normal amounts of queued tuples . In some
embodiments , abnormal memory usage includes abnormally
high rates of change in memory usage . In some embodi
ments , abnormal CPU consumption includes abnormally
high rates of change in CPU consumption .
[0102] In some embodiments , the initial analysis module
604 analyzes degraded performance PE 608 upon it being
identified by the performance monitor 602 as exhibiting one
or more indications of degradation . In some embodiments ,
the initial analysis module 604 analyzes the degraded per
formance PE 608 to determine whether the indications
identified by the performance monitor 602 are actually
indications of a problem other than degradation of the
degraded performance PE 608 , such as backpressure or one
or more cluster computing resources reaching capacity .
[0103] In some such embodiments , if the initial analysis
module 604 does not detect a problem other than degrada
tion of the degraded performance PE 608 , the initial analysis
module 604 notifies the provisional troubleshooter 606 ,
which next evaluates the degraded performance PE 608
using a provisional PE 616. In some such embodiments , the
provisional troubleshooter 606 communicates with a sched
uler (e.g. , scheduler 524 of FIG . 5) to identify a node to host
the provisional PE 616. In some embodiments , the scheduler
searches for a node other than the node hosting the PE . In
some embodiments , the scheduler also searches for a node
based on predetermined rules or criteria , for example avail
ability of computing resources and vicinity to upstream and
downstream PEs . In some embodiments , once the scheduler
identifies a host node , the scheduler notifies the provisional
PE generator 610. The provisional PE generator 610 starts
the provisional PE 616 on the identified node at runtime
while maintaining runtime operation of the degraded per
formance PE 608. In some such embodiments , provisional
PE generator 610 connects an upstream side of the provi
sional PE 616 to the same upstream PE as the degraded
performance PE 608 so that the provisional PE 616 and the

degraded performance PE 608 both receive the same stream
of tuples from the same upstream PE at the same time . In
some such embodiments , the provisional PE 616 and the
degraded performance PE 608 both perform the same
defined process on the stream of tuples , which allows for
comparison of the performance of the degraded performance
PE 608 to that of the provisional PE 616 by the performance
comparator 612. In some such embodiments , the degraded
performance PE 608 performs the defined process on the
stream of tuples resulting in an output stream of tuples that
the degraded performance PE 608 transmits to a downstream
PE , while the output of the provisional PE 616 is not
connected to any downstream elements .
[0104] In some embodiments , the performance compara
tor 612 compares the operation of the degraded performance
PE 608 to that of the provisional PE 616 based on a
performance metric associated with one or more computing
resources . For example , in some embodiments , the perfor
mance comparator 612 compares the operation of the
degraded performance PE 608 to that of the provisional PE
616 by comparing one or more of CPU usage , memory
usage , and speed of tuple through - put . In some such embodi
ments , if the performance comparator 612 determines that
the provisional PE 616 is performing better than the
degraded performance PE 608 , then the performance com
parator 612 notifies the system updater 614. Responsive to
the notification by the performance comparator 612 that the
provisional PE 616 is performing better than the degraded
performance PE 608 , the system updater 614 replaces the
degraded performance PE 608 with the provisional PE 616 ,
for example by connecting the output of the provisional PE
616 to the downstream PE in place of the degraded perfor
mance PE 608 , and the system updater 614 shuts down the
degraded performance PE 608. In some embodiments , the
system updater 614 sends a notification to the user via a user
interface 618 regarding the replacement of the degraded
performance PE 608 with the provisional PE 616 .
[0105] With reference to FIG . 7 , this figure block diagram
of an operator graph 700 for a stream computing application
in accordance with an illustrative embodiment . The operator
graph shown in FIG . 7 is shown for clarity purposes as a
non - limiting example of a streaming application that can
benefit from disclosed embodiments .
[0106] In the illustrated embodiment , the operator graph
700 is a graph for a stream computing application beginning
from one or more sources 710 through to one or more sinks
712 , 714. This flow from source to sink may also be
generally referred to herein as an execution path . Although
FIG . 7 is abstracted to show connected PES PE1 - PE10 , the
operator graph 700 may include data flows between stream
operators (e.g. , operator 314 of FIG . 3) within the same or
different PEs . Typically , PEs receive tuples from the stream
as well as output tuples into the stream (except for a
sink — where the stream terminates , or a source — where the
stream begins) .
[0107] In the illustrated embodiment , the operator graph
700 includes ten PES (labeled as PE1 - PE10) running on the
compute nodes 702 , 704 , 706 , and 708. In some embodi
ments , a PE includes one or more stream operators fused
together to form an independently running process with its
own process ID (PID) and memory space . In embodiments
where two (or more) PEs are running independently , inter
process communication may occur using a “ transport , ” e.g. ,
a network socket , a TCP / IP socket , or shared memory .

a

a

a

a

US 2022/0138061 A1 May 5 , 2022
10

However , when stream operators are fused together , the
fused stream operators can use more rapid communication
techniques for passing tuples among stream operators in
each PE .
[0108] The operator graph 700 begins at a source 710 and
ends at a sink 712 , 714. Compute node 702 includes the PES
PE1 , PE2 , and PE3 . Source 710 flows into the PE PE1 ,
which in turn outputs tuples that are received by PE2 and
PE3 . For example , PE1 may split data attributes received in
a tuple and pass some data attributes in a new tuple to PE2 ,
while passing other data attributes another new tuple to
PE3 . As a second example , PE1 may pass some received
tuples to PE2 while passing other tuples to PE3 . Tuples that
flow to PE2 are processed by the stream operators contained
in PE2 , and the resulting tuples are then output to PE4 on
compute node 704. Likewise , the tuples output by PE4 flow
to operator sink PE6 712. Similarly , tuples flowing from PE3
to PE5 also reach the operators in sink PE6 712. Thus , in
addition to being a sink for this example operator graph , PE6
could be configured to perform a join operation , combining
tuples received from PE4 and PE5 . This example operator
graph also shows tuples flowing from PE3 to PE7 on
compute node 706 , which itself shows tuples flowing to PE8
and looping back to PE7 . Tuples output from PE8 flow to
PE9 on compute node 708 , which in turn outputs tuples to
be processed by operators in a sink PE , for example PE10
714 .
[0109] In some embodiments , a tuple received by a par
ticular PE is generally not considered to be the same tuple
that is output downstream because the output tuple is
changed in some way . For example , in some embodiments ,
an attribute or metadata is added , deleted , or changed .
However , some embodiments include a PE that does not
change an output tuple from the input tuple in any way .
Generally , a particular tuple output by a PE may not be
considered to be the same tuple as a corresponding input
tuple even if the input tuple is not changed by the PE .
However , to simplify the present description and the claims ,
an output tuple that has the same data attributes as a
corresponding input tuple may be referred to herein as the
same tuple . In the illustrated embodiment , a performance
monitor as described herein is configured to monitor one or
more of PES PE1 - PE10 for degraded performance .
[0110] With reference to FIG . 8 , this figure depicts a block
diagram of an operator graph 800 for a stream computing
application having a provisional PE in accordance with an
illustrative embodiment . The operator graph shown in FIG .
8 is shown for clarity purposes as a non - limiting example of
a modified version of the operator graph 700 of FIG . 7 that
begins at a source 810 and ends at a sink 812 , 814 that can
benefit from disclosed embodiments .
[0111] In the illustrated example , a performance monitor
(e.g. , performance monitor 520 of FIG . 5 or performance
monitor 602 of FIG . 6) detects degradation of PE2 by
monitoring the PE2 and detecting that execution conditions
associated with PE2 deviates from a predefined or expected
pattern . For example , in some embodiments , the perfor
mance monitor detects indicators of degradation including
abnormal amounts of queued tuples (i.e. tuples waiting to be
processed on input ports of operators in the PE) , abnormal
memory usage , number and types of exceptions handled ,
and / or abnormal CPU consumption . In the illustrated
example , a problem other than degradation has not been
detected , so a provisional PE (designated PPE in FIG . 8) is

started on a different node : since PE2 is on node 802 , PPE
is located on node 804 , but could alternatively have been
started on node 806 or node 808 .
[0112] The provisional PE is started at runtime while
maintaining runtime operation of PE2 . Initially , for purposes
of comparing performance of the provisional PE to PE2 , the
provisional PE is only connected on its upstream side via
edge 816 to PE1 so that the provisional PE and PE2 both
receive the same stream of tuples from the same upstream
PE1 at the same time and both perform the same defined
process on the stream of tuples , which allows for compari
son of the performance of the provisional PE to that of PE2 .
[0113] In the illustrated example , a performance compara
tor or streams manger compares the operation of the provi
sional PE to that of PE2 based on a performance metric
associated with one or more computing resources . For
example , in some embodiments , the provisional PE and PE2
are compared based on one or more of CPU usage , memory
usage , and / or speed of tuple through - put . In some such
embodiments , if the provisional PE performs better than
PE2 , then provisional PE replaces PE2 , for example by
connecting the output / downstream side of the provisional
PE to the downstream PE4 of PE2 in place of PE2 , for
example by connecting edge 818 from the provisional PE to
PE4 and shutting down PE2 .
[0114] With reference to FIG . 9 , this figure depicts a
flowchart of an example dynamic PE replacement process
900 in accordance with an illustrative embodiment . In a
particular embodiment , the provisional PE analysis module
600 in FIG . 6 carries out the process 900 .
[0115] In an embodiment , at block 902 , the process 900
starts a streams application . Next , at block 904 , the process
900 monitors processing elements for degraded perfor
mance . Next , at block 906 , the process 900 checks whether
degraded performance has been detected at any processing
elements . If not , the process 900 returns to block 904 to
continue monitoring . Otherwise , the process 900 continues
to block 908 , where the process 900 begins evaluation of the
degraded PE . At block 908 , the process 900 checks the
degraded PE for an indication that backpressure is the cause
of the degraded performance , followed by block 912 , where
the process 900 checks the operating levels of computing
resources of the cluster of nodes in which the degraded PE
is deployed . If the process 900 detects backpressure or a lack
of available or sufficient cluster computing resources as
being likely to be the cause of the degradation of the
degraded PE , the process proceeds to block 910 , where the
process applies other remedies known in the art to address
the backpressure and / or lack of cluster computing resources .
Otherwise , the process continues to block 914 , where the
process 900 performs a provisional PE troubleshooting
process , for example according to the process 1000 of FIG .
10 , the process 1100 of FIG . 11 , the process 1200 of FIG . 12 ,
or a process that combines portions of two or more of
process 1000 , 1100 , and / or 1200 .
[0116] After the provisional PE troubleshooting process at
block 914 , the process 900 returns to block 904 to continue
monitoring processing elements for degraded performance .
In the illustrated embodiment , the monitoring continues
until another degraded PE is discovered or until the streams
application stops as indicated at block 916 , after which the
process 900 ends .
[0117] With reference to FIG . 10 , this figure depicts a
flowchart of an example dynamic PE replacement process

.

.

2

US 2022/0138061 A1 May 5 , 2022
11

a

1000 in accordance with an illustrative embodiment . In a
particular embodiment , the provisional PE analysis module
600 in FIG . 6 carries out the process 1000. In an embodi
ment , the process 1000 is an example of the provisional PE
troubleshooting process at block 914 of FIG . 9 .
[0118] In the illustrated embodiment , the process 1000
tests the use of a provisional processing element as a
possible replacement for a degrading PE . At block 1002 , the
process 1000 determines a location for a provisional PE . In
some embodiments , the process 1000 uses a scheduler to
identify a node on which to deploy the provisional PE . In
some such embodiments , the scheduler determines a best
node to run the provisional PE . In some such embodiments ,
the scheduler excludes the node on which the degrading PE
is running when determining a best node to run the provi
sional PE .
[0119] Next , at block 1004 , the process 1000 starts the
provisional PE on the node selected at block 1002. In some
embodiments , the provisional PE is started at runtime while
maintaining runtime operation of the degrading PE . In some
embodiments , the provisional PE is only connected on its
upstream side , and is connected to the immediate next
upstream PE of the degrading PE . This connection results in
both the provisional PE and the degrading PE receiving the
same stream of tuples from the same upstream PE at the
same time .
[0120] Next , at block 1006 , the process 1000 compares the
performance of the degraded PE and the provisional PE . In
some such embodiments , the provisional PE performs the
same defined processing on the stream of tuples as the
degrading PE , which allows for a performance - based com
parison of the provisional PE and the degrading PE . In some
embodiments , a performance comparator or streams manger
compares the operation of the provisional PE to that of the
degrading PE based on a performance metric associated with
one or more computing resources . For example , in some
embodiments , the provisional PE and the degrading PE are
compared based on one or more of CPU usage , memory
usage , and / or speed of tuple through - put .
[0121] Next , at block 1008 , the process 1000 determines
whether the performance of the provisional PE is better than
the performance of the degraded PE . In some such embodi
ments , if the provisional PE performs better than the
degraded PE , then at block 1010 the process 1000 performs
a switchover to the provisional PE as a replacement for the
degrading PE , and the degrading PE is shut down . In some
embodiments , the switchover includes connecting the out
put / downstream side of the provisional PE to the next
immediate downstream PE of the degrading PE .
[0122] With reference to FIG . 11 , this figure depicts a
flowchart of an example dynamic PE replacement proce
1100 in accordance with an illustrative embodiment . In a
particular embodiment , the provisional PE analysis module
600 in FIG . 6 carries out the process 1100. In an embodi
ment , the process 1100 is an example of the provisional PE
troubleshooting process at block 914 of FIG . 9 .
[0123] In the illustrated embodiment , the process 1100
tests the use of a plurality of provisional processing elements
as possible replacements for a degrading PE . In some
embodiments , the number of provisional PES is a fixed
predetermined value . In some embodiments , the number of
provisional PEs is a user - configurable value that is initially
set to a default value and is adjustable by user inputs . In
some embodiments , the process 1100 determines the number

of provisional PEs to use based on any number of imple
mentation - specific factors , for example the type of degrad
ing PE being replicated (i.e. , the operations performed by
one or more operators on the degrading PE) , the size of the
streams application , the number of available nodes already
being used by the streams application , and / or any other
desired factors .
[0124] At block 1102 , the process 1100 determines loca
tions for each of the plurality of provisional PEs . In some
embodiments , the process 1100 uses a scheduler to identify
nodes on which to deploy the provisional PEs . In some such
embodiments , the scheduler determines a list of best nodes
to run the provisional PEs . In some embodiments , the
scheduler also determines the number of provisional PEs to
deploy , for example based on availability of nodes on which
the deploy the provisional PEs . In some such embodiments ,
the scheduler excludes the node on which the degrading PE
is running when determining best nodes to run the provi
sional PES .
[0125] Next , at block 1104 , the process 1100 starts the
provisional PEs on the respective node selected at block
1102. In some embodiments , the provisional PEs are started
at runtime while maintaining runtime operation of the
degrading PE . In some embodiments , the provisional PES
are only connected on their upstream sides , and are all
connected to the immediate next upstream PE of the degrad
ing PE . This connection results in both the degrading PE and
the set of provisional PEs receiving the same stream of
tuples from the same upstream PE at the same time .
[0126] Next , at block 1106 , the process 1100 compares the
performance of the degraded PE and the provisional PEs . In
some such embodiments , the provisional PEs each perform
the same defined processing on the stream of tuples as the
degrading PE , which allows for a performance - based com
parison of the degrading PE to the provisional PEs . In some
embodiments , a performance comparator or streams manger
compares the operation of the degrading PE to that of the
provisional PEs based on a performance metric associated
with one or more computing resources . For example , in
some embodiments , the provisional PEs and the degrading
PE are compared based on one or more of CPU usage ,
memory usage , and / or speed of tuple through - put .
[0127] Next , at block 1108 , the process 1100 determines
whether the performance of any of the provisional PEs is
better than the performance of the degraded PE . In some
such embodiments , if any of the provisional PEs performs
better than the degraded PE , then at block 1110 the process
1100 performs a switchover to the best performing provi
sional PE as a replacement for the degrading PE , and the
degrading PE and remaining provisional PEs are shut down .
In some embodiments , the switchover includes connecting
the output / downstream side of the provisional PE to the next
immediate downstream PE of the degrading PE .
[0128] With reference to FIG . 12 , this figure depicts a
flowchart of an example dynamic PE replacement process
1200 in accordance with an illustrative embodiment . In a
particular embodiment , the provisional PE analysis module
600 in FIG . 6 carries out the process 1200. In an embodi
ment , the process 1200 is an example of the provisional PE
troubleshooting process at block 914 of FIG . 9 .
[0129] In the illustrated embodiment , the process 1200
tests the use of a provisional processing element as a
possible replacement for a degrading PE . At block 1202 , the
process 1200 determines a location for a provisional PE . In a

US 2022/0138061 A1 May 5 , 2022
12

a

some embodiments , the process 1200 uses a scheduler to
identify a node on which to deploy the provisional PE . In
some such embodiments , the scheduler determines a list of
best nodes to run the provisional PEs . In some embodiments ,
the scheduler also determines the number of provisional PEs
to deploy , for example based on availability of nodes on
which the deploy the provisional PEs . In some such embodi
ments , the scheduler excludes the node on which the degrad
ing PE is running when determining best node (s) to run the
provisional PES .
[0130] Next , at block 1204 , the process 1200 starts the
provisional PE on the node selected at block 1202. In some
embodiments , the provisional PE is started at runtime while
maintaining runtime operation of the degrading PE . In some
embodiments , the provisional PE is only connected on its
upstream side , and is connected to the immediate next
upstream PE of the degrading PE . This connection results in
both the provisional PE and the degrading PE receiving the
same stream of tuples from the same upstream PE at the
same time .
[0131] Next , at block 1206 , the process 1200 compares the
performance of the degraded PE and the provisional PE . In
some such embodiments , the provisional PE performs the
same defined processing on the stream of tuples as the
degrading PE , which allows for a performance - based com
parison of the provisional PE and the degrading PE . In some
embodiments , a performance comparator or streams manger
compares the operation of the provisional PE to that of the
degrading PE based on a performance metric associated with
one or more computing resources . For example , in some
embodiments , the provisional PE and the degrading PE are
compared based on one or more of CPU usage , memory
usage , and / or speed of tuple through - put .
[0132] Next , at block 1208 , the process 1200 determines
whether the performance of the provisional PE is better than
the performance of the degraded PE . In some such embodi
ments , if the provisional PE does not perform better than the
degraded PE , then at block 1212 the process 1200 deter
mines whether a maximum number of provisional PEs have
been tried . If so , the process ends . If not , the process returns
to block 1202 to perform a next iteration of blocks 1202
1208 using another provisional PE at a different location
(e.g. , deployed on a node other than the node on which the
degrading PE is deployed , and also other than node (s) used
for previous iterations of blocks 1202-1208) .
[0133] In some embodiments , the maximum number of
provisional PEs at block 1212 is a fixed predetermined
value . In some embodiments , the maximum number of
provisional PEs at block 1212 is a user - configurable value
that is initially set to a default value and is adjustable by user
inputs . In some embodiments , the process 1100 determines
the maximum number of provisional PEs at block 1212
based on any number of implementation - specific factors , for
example the type of degrading PE being replicated (i.e. , the
operations performed by one or more operators on the
degrading PE) , the size of the streams application , the
number of available nodes already being used by the streams
application , and / or any other desired factors .
[0134] In some such embodiments , if any of the iterations
of blocks 1202-1208 result in the provisional PE performing
better than the degraded PE , then at block 1210 the process
1200 performs a switchover to the provisional PE as a
replacement for the degrading PE , and the degrading PE is
shut down . In some embodiments , the switchover includes

connecting the output / downstream side of the provisional
PE to the next immediate downstream PE of the degrading
PE .

[0135] The following definitions and abbreviations are to
be used for the interpretation of the claims and the specifi
cation . As used herein , the terms “ comprises , ” “ comprising , ”
“ includes , ” “ including , " " has , ” “ having , " " contains ” or
" containing , ” or any other variation thereof , are intended to
cover a non - exclusive inclusion . For example , a composi
tion , a mixture , process , method , article , or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but can include other elements not expressly
listed or inherent to such composition , mixture , process ,
method , article , or apparatus .
[0136] Additionally , the term “ illustrative ” is used herein
to mean “ serving as an example , instance or illustration . ”
Any embodiment or design described herein as “ illustrative ”
is not necessarily to be construed as preferred or advanta
geous over other embodiments or designs . The terms “ at
least one ” and “ one or more ” are understood to include any
integer number greater than or equal to one , i.e. one , two ,
three , four , etc. The terms “ a plurality ” are understood to
include any integer number greater than or equal to two , i.e.
two , three , four , five , etc. The term " connection " can include
an indirect “ connection ” and a direct " connection . "

[0137] References in the specification to “ one embodi
ment , " " an embodiment , ” “ an example embodiment , " etc. ,
indicate that the embodiment described can include a par
ticular feature , structure , or characteristic , but every embodi
ment may or may not include the particular feature , struc
ture , or characteristic . Moreover , such phrases are not
necessarily referring to the same embodiment . Further , when
a particular feature , structure , or characteristic is described
in connection with an embodiment , it is submitted that it is
within the knowledge of one skilled in the art to affect such
feature , structure , or characteristic in connection with other
embodiments whether or not explicitly described .
[0138] The terms “ about , ” “ substantially , " " approxi
mately , ” and variations thereof , are intended to include the
degree of error associated with measurement of the particu
lar quantity based upon the equipment available at the time
of filing the application . For example , “ about " can include a
range of 18 % or 5 % , or 2 % of a given value .
[0139] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
described herein .

[0140] Thus , a computer implemented method , system or
apparatus , and computer program product are provided in
the illustrative embodiments for managing participation in
online communities and other related features , functions , or
operations . Where an embodiment or a portion thereof is
described with respect to a type of device , the computer
implemented method , system or apparatus , the computer

a

2

US 2022/0138061 A1 May 5 , 2022
13

a

program product , or a portion thereof , are adapted or con
figured for use with a suitable and comparable manifestation
of that type of device .
[0141] Where an embodiment is described as imple
mented in an application , the delivery of the application in
a Software as a Service (SaaS) model is contemplated within
the scope of the illustrative embodiments . In a SaaS model ,
the capability of the application implementing an embodi
ment is provided to a user by executing the application in a
cloud infrastructure . The user can access the application
using a variety of client devices through a thin client
interface such as a web browser (e.g. , web - based e - mail) , or
other light - weight client - applications . The user does not
manage or control the underlying cloud infrastructure
including the network , servers , operating systems , or the
storage of the cloud infrastructure . In some cases , the user
may not even manage or control the capabilities of the SaaS
application . In some other cases , the SaaS implementation of
the application may permit a possible exception of limited
user - specific application configuration settings .
[0142] The present invention may be a system , a method ,
and / or a computer program product at any possible technical
detail level of integration . The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention .
[0143] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e.g. , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0144] Computer readable program instructions described
herein can be downloaded to respective computing process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable

program instructions for storage in a computer readable
storage medium within the respective computing processing
device .
(0145] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , con
figuration data for integrated circuitry , or either source code
or object code written in any combination of one or more
programming languages , including an object oriented pro
gramming language such as Smalltalk , C ++ , or the like , and
procedural programming languages , such as the " C " pro
gramming language or similar programming languages . The
computer readable program instructions may execute
entirely on the user's computer , partly on the user's com
puter , as a stand - alone software package , partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server . In the latter scenario , the remote
computer may be connected to the user's computer through
any type of network , including a local area network (LAN)
or a wide area network (WAN) , or the connection may be
made to an external computer (for example , through the
Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0146] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0147] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0148] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or

US 2022/0138061 A1 May 5 , 2022
14

other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0149] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the blocks may occur out of the order
noted in the Figures . For example , two blocks shown in
succession may , in fact , be executed substantially concur
rently , or the blocks may sometimes be executed in the
reverse order , depending upon the functionality involved . It
will also be noted that each block of the block diagrams
and / or flowchart illustration , and combinations of blocks in
the block diagrams and / or flowchart illustration , can be
implemented by special purpose hardware - based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions .
[0150] Embodiments of the present invention may also be
delivered as part of a service engagement with a client
corporation , nonprofit organization , government entity ,
internal organizational structure , or the like . Aspects of these
embodiments may include configuring a computer system to
perform , and deploying software , hardware , and web ser
vices that implement , some or all of the methods described
herein . Aspects of these embodiments may also include
analyzing the client's operations , creating recommendations
responsive to the analysis , building systems that implement
portions of the recommendations , integrating the systems
into existing processes and infrastructure , metering use of
the systems , allocating expenses to users of the systems , and
billing for use of the systems . Although the above embodi
ments of present invention each have been described by
stating their individual advantages , respectively , present
invention is not limited to a particular combination thereof .
To the contrary , such embodiments may also be combined in
any way and number according to the intended deployment
of present invention without losing their beneficial effects .

1. A computer implemented method comprising :
monitoring , at runtime , in a distributed computing appli

cation wherein a processing element (PE) operating on
a first node processes a first stream of tuples from an
upstream PE and transmits a second stream of tuples to
a downstream PE , an occurrence of a degradation
condition on the PE ;

processing at a first provisional PE on a second node
while maintaining runtime operation of the PE ,

the first stream of tuples from the upstream PE ;
and
connecting the first provisional PE to replace the second

stream of tuples from the PE to the downstream PE
with a third stream of tuples from the first provisional
PE to the downstream PE .

2. The computer implemented method of claim 1 , further
comprising selecting the second node from among a plural
ity of nodes for executing the first provisional PE .

3. The computer implemented method of claim 2 , wherein
the selecting of the second node from among the plurality of

nodes is based at least in part on availability of computing
resources on the second node .

4. The computer implemented method of claim 1 , wherein
the first provisional PE receives the first stream of tuples
from the upstream PE and performs a defined process on the
first stream of tuples while the PE receives the first stream
of tuples from the upstream PE and performs the defined
process on the first stream of tuples .

5. The computer implemented method of claim 4 , further
comprising starting a second provisional PE on a third node
at runtime while maintaining runtime operation of the PE ,

wherein the second provisional PE receives the first
stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples while the
first provisional PE and the PE each receives the first
stream of tuples from the upstream PE and each per
forms the defined process on the first stream of tuples .

6. The computer implemented method of claim 5 , wherein
the connecting is responsive to comparing an operation of
the PE to an operation of the first provisional PE , and further
responsive to comparing an operation of the second provi
sional PE to the operation of the PE and to the operation of
the first provisional PE based on a performance metric
associated with a computing resource .

7. The computer implemented method of claim 1 , further
comprising :

starting the first provisional PE ; and
starting , prior to starting the first provisional PE , a second

provisional PE on a third node at runtime while main
taining runtime operation of the PE ,

wherein the second provisional PE receives the first
stream of tuples from the upstream PE and performs a
defined process on the first stream of tuples .

8. The computer implemented method of claim 7 , further
comprising , prior to starting the first provisional PE :

comparing an operation of the PE to an operation of the
second provisional PE based on a performance metric
associated with a computing resource .

9. The computer implemented method of claim 8 , wherein
the comparing of the operation of the PE to the operation of
the second provisional PE results in identifying the opera
tion of the PE exceeding operation of the second provisional
PE based on the performance metric .

10. A computer program product comprising one or more
computer readable storage media , and program instructions
collectively stored on the one or more computer readable
storage media , the program instructions executable by a
processor to cause the processor to perform operations
comprising :

monitoring a distributed computing application at runtime
for occurrence of a condition ,

wherein the distributed computing application comprises
a first node that includes a PE receiving a first stream
of tuples from an upstream PE , performing a defined
process on the first stream of tuples resulting in a
second stream of tuples , and transmitting the second
stream of tuples to a downstream PE , and

wherein the condition includes occurrence of a degrada
tion condition on the PE ;

starting a first provisional PE on a second node at runtime
while maintaining runtime operation of the PE ,

wherein the first provisional PE receives the first stream
of tuples from the upstream PE and performs the
defined process on the first stream of tuples ;

US 2022/0138061 A1 May 5 , 2022
15

a comparing operation of the PE to operation of the first
provisional PE based on a performance metric associ
ated with a computing resource ; and

connecting the first provisional PE to replace the second
stream of tuples from the PE to the downstream PE
with a third stream of tuples from the first provisional
PE to the downstream PE .

11. The computer program product of claim 10 , wherein
the stored program instructions are stored in a computer
readable storage device in a data processing system , and
wherein the stored program instructions are transferred over
a network from a remote data processing system .

12. The computer program product of claim 10 , wherein
the stored program instructions are stored in a computer
readable storage device in a server data processing system ,
and wherein the stored program instructions are downloaded
in response to a request over a network to a remote data
processing system for use in a computer readable storage
device associated with the remote data processing system ,
further comprising :

program instructions to meter use of the program instruc
tions associated with the request ; and

program instructions to generate an invoice based on the
metered use .

13. The computer program product of claim 10 , further
comprising selecting the second node from among a plural
ity of nodes for executing the first provisional PE .

14. The computer program product of claim 10 , wherein
the first provisional PE receives the first stream of tuples
from the upstream PE and performs the defined process on
the first stream of tuples while the PE receives the first
stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples .

15. The computer program product of claim 14 , further
comprising starting a second provisional PE on a third node
at runtime while maintaining runtime operation of the PE ,

wherein the second provisional PE receives the first
stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples while the
first provisional PE and the PE each receives the first
stream of tuples from the upstream PE and each per
forms the defined process on the first stream of tuples .

16. The computer program product of claim 15 , wherein
the comparing of the operation of the PE to operation of the
first provisional PE further comprises comparing the opera
tion of the second provisional PE to the operation of the PE
and to operation of the first provisional PE based on the
performance metric associated with the computing resource .

17. A computer system comprising a processor and one or
more computer readable storage media , and program
instructions collectively stored on the one or more computer
readable storage media , the program instructions executable
by the processor to cause the processor to perform opera
tions comprising :

monitoring a distributed computing application at runtime
for occurrence of a condition ,

wherein the distributed computing application comprises
a first node that includes a PE receiving a first stream
of tuples from an upstream PE , performing a defined
process on the first stream of tuples resulting in a
second stream of tuples , and transmitting the second
stream of tuples to a downstream PE , and

wherein the condition includes occurrence of a degrada
tion condition on the PE ;

starting a first provisional PE on a second node at runtime
while maintaining runtime operation of the PE ,

wherein the first provisional PE receives the first stream
of tuples from the upstream PE and performs the
defined process on the first stream of tuples ;

comparing operation of the PE to operation of the first
provisional PE based on a performance metric associ
ated with a computing resource ; and

connecting the first provisional PE to replace the second
stream of tuples from the PE to the downstream PE
with a third stream of tuples from the first provisional
PE to the downstream PE .

18. The computer system of claim 17 , further comprising
selecting the second node from among a plurality of nodes
for executing the first provisional PE .

19. The computer system of claim 17 , wherein the first
provisional PE receives the first stream of tuples from the
upstream PE and performs the defined process on the first
stream of tuples while the PE receives the first stream of
tuples from the upstream PE and performs the defined
process on the first stream of tuples .

20. The computer system of claim 19 , further comprising
starting a second provisional PE on a third node at runtime
while maintaining runtime operation of the PE ,

wherein the second provisional PE receives the first
stream of tuples from the upstream PE and performs the
defined process on the first stream of tuples while the
first provisional PE and the PE each receives the first
stream of tuples from the upstream PE and each per
forms the defined process on the first stream of tuples .

