
US008301791 B2

(12) United States Patent (10) Patent No.: US 8,301,791 B2
Malaiyandi et al. (45) Date of Patent: *Oct. 30, 2012

(54) SYSTEMAND METHOD FOR 5,403,667 A 4/1995 Simoens
NON-DISRUPTIVE CHECK OF AMIRROR 5,581,724. A 12/1996 Belsan et al.

5,819,292 A 10, 1998 Hitz et al.

(75) Inventors: Prasanna Kumar Malaiyandi, San 88. A 38 Eli, al.
Jose, CA (US); Varun Khurana, Santa 6,341,341 B1 1/2002 Grummon et al.
Clara, CA (US); Michael L. 6,480,970 B1 1 1/2002 DeKoning et al.
Federwisch, San Jose, CA (US) 6,668,264 B1 12/2003 Patterson et al.

s s 6,745,303 B2 6/2004 Watanabe

(73) Assignee: NetApp., Inc., Sunnyvale, CA (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 152 days. U.S. Appl. No. 60/941,109, filed May 31, 2007, and accorded filed of

Jul. 26, 2007, entitled System and Method for Non-Disruptive Check
This patent is Subject to a terminal dis- of a Mirror, by Prasanna Kumar Malaiyandi, et al., 45 pages.
claimer.

(Continued)
(21) Appl. No.: 12/129,874

Primary Examiner — Ashok Patel
(22) Filed: May 30, 2008 Assistant Examiner — Lawrence Cosby

(74) Attorney, Agent, or Firm — Cesari and McKenna, LLP
(65) Prior Publication Data

US 2009/0030983 A1 Jan. 29, 2009 (57) ABSTRACT
A system and method for verifying the consistency of mir

Related U.S. Application Data rored data sets between source and destination storage sys
(60) Provisional application No. 60/941,109, filed on Jul tems is provided. A destination verification module sends

26, 2007 pp s u. Y - s version information to the source storage system where the
s source verification module determines whether the source

(51) Int. Cl. and destination storage systems are utilizing compatible ver
G06F 15/16 (2006.01) sions of the verification module. If the destination verification

(52) U.S. Cl 709/231: 709/219 module receives an acceptable version from the source, the
58 Fi id f c - - - - - ificati- - - - - -s - - - - - - - h- - - - - - s 709/231 destination module then determines a base PCPI to utilize for
(58) Field of Classification Search 709/21 9 verification and sends a PCPI identifier of the base PCPI to the

S lication file f let h hist Source. The source verification module generates and trans
ee appl1cauon Ille Ior complete searcn n1Story. mits a data stream consisting of comprising of checksum

(56) References Cited information. The destination verification module compares

U.S. PATENT DOCUMENTS

4,570,217 A 2f1986 Allen et al.
5,124,987 A 6/1992 Milligan et al.
5,163,131 A 11/1992 Row et al.
5,202,979 A 4, 1993 Hillis et al.
5,278,979 A 1/1994 Foster et al.

SURCE

WERIFICATIC tourPLS WITH
ScRCE WERSlo

WERIFICATIONMODULE
AREST TR&NSFR

WERIFICATIONMOULESENSLIST OF
RCPSTs WERIFY

WERICATIONMOULESENDS
CAT&STREAM

the received data stream with checksum information retrieved
from disk. If there are mismatches, i.e. the received data
differs from the data retrieved from disk, the destination veri
fication module logs the data mismatches in a verification log
file.

23 Claims, 12 Drawing Sheets

688 ESTNation
80s

WERIFICATION Modjesks
WERSION INFORMATION TOSCURCE

820 83S

NO

s

WE
Los ATA, MSMATCHES

Tygg FIL

US 8,301,791 B2
Page 2

U.S. PATENT DOCUMENTS

6,889,228 B1 5, 2005 Federwisch et al.
6,915,316 B1 7/2005 Patterson et al.
6,993,539 B2 1/2006 Federwisch et al.
7,007,046 B2 2/2006 Manley et al.
7,010,553 B2 3, 2006 Chen et al.
7,039,663 B1 5, 2006 Federwisch et al.
7,043,485 B2 5/2006 Manley et al.
7,117.323 B1 10/2006 Delaney
7,127.577 B2 10/2006 Koning et al.
7,203,796 B1 4/2007 Muppalaneni et al.
7,225,204 B2 5/2007 Manley et al.
7,325,109 B1 1/2008 Muppalaneni et al.
7,337,194 B2 2/2008 Goyal
7.464,238 B1* 12/2008 Yadav T11 162
7,603,391 B1 10/2009 Federwisch et al.
8,010,509 B1* 8/2011 Khurana et al. 707,690

2002, 0083.037 A1
2003/O158873 A1
2003/O159007 A1
2003/O182322 A1*
2004/0030668 A1
2005. O144202 A1

6, 2002 Lewis et al.
8, 2003 Sawdon et al.
8, 2003 Sawdon et al.
9/2003 Manley et al. 707/2O1
2/2004 Pawlowski et al.
6, 2005 Chen

2006/0010227 A1 1/2006 Atluri 709/217
2006/0010299 A1* 1/2006 Zhang et al. 711,162
2006/0036648 A1* 2/2006 Frey et al. 707/200
2006, O184587 A1
2006/021821.0 A1
2007/0O88754 A1
2009, OOO6792 A1

OTHER PUBLICATIONS

U.S. Appl. No. 1 1/478,931, filed Jun. 30, 2006, entitled System and
Method for Verifying and Correcting the Consistency of Mirrored
Data Sets, by Varun Khurana, et al., 39 pages.
Patterson, David A. et al., “A Case for Redundant Arrays of Inex
pensive Disks (RAID). Proceedings of the International Conference
on Management of Data (SIGMOD), Jun. 1988, pp. 109-116.
Hitz, Dave, et al., “File System Design for an NFS File Server
Appliance'. Technical Report 3002, Presented Jan. 19, 1994,
USENIX Winter 1994, San Francisco, CA, The USENIX Associa
tion, Network Appliance, Rev. C3/95, 23 pages.
Akyurek, Sedat, Placing Replicated Data to Reduce Seek Delays,
Department of Computer Science, University of Maryland,
UMIACS-TR-91-121, CS-TR-2746, Aug. 1991.
Bitton, Dina, Disk Shadowing, Proceedings of the 14" VLDB Con
ference, LA, CA 1988.
Chaudhuri, Surajit, et al., Self-Tuning Technology in Microsoft SQL
Server, Data Engineering Journal 22, Feb. 1999 pp. 20-27.
Chutani, Sailesh, et al., The Episode File System. In Proceedings of
the USENIX Winter 1992.
Coyne, Robert A. et al., Storage Systems for National Information
Assets, Proc. Supercomputing 92, Minneapolis, Nov. 1992, pp. 626
633.
Finlayson, Ross S., et al., Log Files. An Extended File Service
Exploiting Write-Once Storage Department of Computer Science,
Stanford University, Report No. STAN-CS-87/1177, Sep. 1987.
Gray, Jim, et al., The Recovery Manager of the System R Database
Manager, ACM Computing Surveys, (13)2:223-242 1981.
Hecht, Matthew S., et al. Shadowed Management of Free Disk Pages
with a Linked List, ACM Transactions on Database Systems, 8/4.
Dec. 1983, pp. 503-5 14.
Howard, John, H. et al., Scale and Performance in a Distributed File
System, Carnegie Mellon University, CMU-ITC-87-068, Aug. 1987.
Howard, John H. An Overview of the Andrew File System, Carnegie
Mellon University, CMU-ITC-88-062 1988.

8, 2006 Federwisch et al.
9, 2006 Sarma et al.
4/2007 Brannon et al.
1/2009 Federwisch et al.

Howard, John, H. et al., Scale and Performance in a Distributed File
System, ACM Trans. Computer System, 6(1), Feb. 1988 pp. 51-81.
Kazar, Michael Leon, Synchronization and Caching Issues in the
Andrew File System, Carnegie Mellon University, CMU-ITC-88
O63.
Kazar, Michael L., et al., DEcorum File System Architectural Over
view, USENIX Summer Conference, Anaheim, California, 1990.
Kemper, Alfons, et al., Performance Tuning for SAP R/3, Data Engi
neering Journal 22, Feb. 1999 pp. 33-40.
Kent, Jack et al., Optimizing Shadow Recovery Algorithms, IEEE
Transactions on Sofiware Engineering, 14(2): 155-168, Feb. 1988.
Kistler, et al., Disconnected Operation in the Coda File System, ACM
Transactions on Computer Systems, vol. 10, No. 1 Feb. 1992, pp.
3-25.
Lorie, Raymond, A. Physical Integrity in a Large Segmented Data
base, ACM Trans. Database Syst., vol. 2, Mar. 1977, pp. 91-104.
Ousterhout, John et al., Beating the I/O Bottleneck. A Case for Log
Structured File Systems, Technical Report, Computer Science Divi
sion, Electrical Engineering and Computer Sciences, University of
California at Berkeley, Oct. 30, 1988.
Patterson, D., et al., A Case for Redundant Arrays of Inexpensive
Disks (RAID), Technical Report, CSD-87-391. Computer Science
Division, Electrical Engineering and Computer Sciences, University
of California at Berkeley 1987.
Peterson, Zachary Nathaniel Joseph, Data Placement for Copy-On
Write. Using Virtual Contiguity, University of CA, Santa Cruz, Mas
ter's Thesis for the Department of Science in Computer Science, Sep.
2002.
Quinlan, Sean, A Cached WORM File System, Software-Practice and
Experience, 21(12): 1289-1299 1991.
Rosenblum, Mendel, et al., The LFS Storage Manager, Computer
Science Division, Electrical Engineering and Computer Sciences,
Univ. of CA, presented at Summer 90 USENIX Technical Confer
ence, Anaheim, CA Jun. 1990.
Rosenblum, Mendel, et al. The Design and Implementation of a
Log-Structured File System Jul. 24, 1991 pp. 1-15.
Rosenblum, Mendel. The Design and Implementation of a Log
Structured File System, 1992 pp. 1-93.
Rosenblum, Mendel, et al., The Design and Implementation of a
Log-Structured File System. In Proceedings of ACM Transactions on
Computer Systems, (10) 1:26-52, Feb. 1992.
Schiefer, Berni, et al., DB2 Universal Database Performance Tuning,
Data Engineering Journal 22, Feb. 1999 pp. 12-19.
Seltzer, Margo I., et al., Journaling Versus Sofi Updates. Asynchro
nous Meta-Data Protection in File Systems, Proceedings of 200
USENIX Annual Technical Conference, Jun. 18-23, 2000.
Shasha, Dennis, Tuning Time Series Queries in Finance. Case Stud
ies and Recommendations, Data Engineering Journal 22, Feb. 1999
pp. 41-47.
Sidebotham, Bob, Volumes: The Andrew File System Data Structur
ing Primitive, EEUG Conference Proceedings, Manchester, UK,
Autumn 1986.
Subramanian, Muralidhar, et al., Performance Challenges in Object
Relational DBMSs, Data Engineering Journal 22, Feb. 1999 pp.
28-32.
Weikum, Gerhard, et al., Towards Self-Tuning Memory Management
for Data Servers, Data Engineering Journal 22, Feb. 1999 pp. 3-11.
West, Michael, et al. The ITC Distributed File System. Prototype and
Experience, Carnegie-Mellon University, Technical Report CMU
ITC-040, Mar. 1985.
Zayas, Edward R. AFS-3 Programmer's Reference: Architectural
Overview, Transarc Corporation, Pittsburgh, PA, 1.0 edition 1991.

* cited by examiner

U.S. Patent Oct. 30, 2012 Sheet 3 of 12 US 8,301,791 B2

3OO

ROOT
NODE

305

NODE FILE
INDIRECT
BLOCK

310

NODE FILE
DIRECT
BLOCK

315

m in or men we ne m = - - - - - - - - - - - - - - - m an in men in a - - - - - - - - - we are men a a me - - - - - - -

INODE FILE
308 NODE NODE

315 315

eas

Y--------

INDIRECT
BLOCK FILE DATA FILE DATA FLE DATA

BLOCK BLOCK BLOCK 325

320A 320B 320C tyre N

FIG. 3

U.S. Patent Oct. 30, 2012 Sheet 4 of 12 US 8,301,791 B2

4OO

ROOT
NODE

305

NODE FE
INDIRECT
BLOCK

310

NODE FILE
INDIRECT
BLOCK

NODE
to O O

315
INODE FILE

308 :

FIG. 4

U.S. Patent Oct. 30, 2012 Sheet 5 of 12 US 8,301,791 B2

500

? ROOT
NODE

505

NODE FILE NODE FILE
INDIRECT INDIRECT
BLOCK BLOCK

310 510

NODE FILE NODE FILE
DIRECT DIRECT
BLOCK BLOCK

512

f--------------------------
PCP INODE FILE

NODE FILE
NODE NODE

O e B e) O. O.

315 515

FIG. 5

U.S. Patent Oct. 30, 2012 Sheet 6 of 12 US 8,301,791 B2

SOURCE 600 DESTINATION
605

61O

ADMINISTRATOR INITIATES
VERIFICATIONMODULE

61 5

VERIFICATIONMODULE SENDS
62O VERSION INFORMATION TO SOURCE

VERIFICATIONMODULE REPLIES WITH
SOURCE VERSION

625
NO

COMPATIBLEP

YES ABORT

630 635

WERIFICATIONMODULE SENDS
BASEPCP TO SOURCE

640

VERIFICATIONMODULE
AGREES TO TRANSFER

645

WERIFICATIONMODULE SENDSLIST OF
PCPS TO VERIFY

650

VERIFICATIONMODULE SENDS
DATA STREAM

655

VERIFICATIONMODULE COMPARES
DATASTREAM WITH DATA ON DISK

VERIFICATIONMODULE
LOGS DATAMISMATCHES

TOLOG FILE

F.G. 6 Coupled

U.S. Patent Oct. 30, 2012 Sheet 7 of 12 US 8,301,791 B2

700

PCP COUNT

ACCESS IME 715

CP COUNT 720

PCP D 725

15

73O

FIG. 7

U.S. Patent Oct. 30, 2012 Sheet 8 of 12 US 8,301,791 B2

8OO

MAGIC

VERSION

TYPE

FILE SYSTEM VERSION

VOLUME

PCP LST

SOURCE VOLUME

SOURCE STORAGE SYSTEM

SOURCE PCP

FIG. 8

U.S. Patent Oct. 30, 2012 Sheet 9 of 12 US 8,301,791 B2

9 OO

- 910
NETWORK READ () RECEIVES DATA FROM NETWORK

915
NETWORK READ () INCREMENTS BLOCK COUNT

NETWORK READ () ISSUES READ REQUEST TO RAID

925
DISK READ () READS BUFFER FROM RAID

930
DISK READ () DECREMENTS BLOCK COUNT

935

940

DISK READ () WRITES
VERIFICATION LOG

945

ADDITIONAL NO
BLOCKS

YES

95O

FIG. 9

U.S. Patent Oct. 30, 2012 Sheet 10 of 12 US 8,301,791 B2

1000

1025

too
TIME OF VERIFICATION

CHECKSUM

FIG 10

U.S. Patent Oct. 30, 2012 Sheet 11 of 12 US 8,301,791 B2

MAGIC

VERSION

SOURCE STORAGE SYSTEM

SOURCEVOLUME

DESTINATION STORAGE SYSTEM

DESTINATION VOLUME

PCPS

BASE PCP D

CHECKSUM SIZE

CHECKSUM

FIG 11

U.S. Patent Oct. 30, 2012 Sheet 12 of 12 US 8,301,791 B2

12OO

/

210

215

22O

25

1

FIG. 12

US 8,301,791 B2
1.

SYSTEMAND METHOD FOR
NON-DSRUPTIVE CHECK OF AMIRROR

RELATED APPLICATION

The present invention claims priority to U.S. Provisional
Patent Application Ser. No. 60/941,109, and accorded filing
date of Jul. 26, 2007, entitled SYSTEM AND METHOD
FOR NON-DISRUPTIVE CHECK OF A MIRROR, by
Prasanna Malaiyandi et al., the contents of which are hereby
incorporated by reference.
The present invention is related to the U.S. Pat. No. 8,010,

509, entitled SYSTEMAND METHOD FORVERIFYING
AND CORRECTING THE CONSISTENCY OF MIR
RORED DATA SETS, by Varun Khurana and Prasanna
Malaiyandi, the contents of which are hereby incorporated by
reference.

FIELD OF THE INVENTION

This invention relates to storage systems and more particu
larly to Verifying the consistency of mirrored data sets on
storage systems.

BACKGROUND OF THE INVENTION

A storage system typically comprises one or more storage
devices into which information may be entered, and from
which information may be obtained, as desired. The storage
system includes a storage operating system that functionally
organizes the system by, inter alia, invoking storage opera
tions in support of a storage service implemented by the
system. The storage system may be implemented in accor
dance with a variety of storage architectures including, but
not limited to, a network-attached storage environment, a
storage area network and a disk assembly directly attached to
a client or host computer. The storage devices are typically
disk drives organized as a disk array, wherein the term “disk’
commonly describes a self-contained rotating magnetic
media storage device. The term disk in this context is synony
mous with hard disk drive (HDD) or direct access storage
device (DASD).

Storage of information on the disk array is preferably
implemented as one or more storage “volumes of physical
disks, defining an overall logical arrangement of disk space.
The disks within a Volume are typically organized as one or
more groups, wherein each group may be operated as a
Redundant Array of Independent (or Inexpensive) Disks
(RAID). Most RAID implementations enhance the reliabil
ity/integrity of data storage through the redundant writing of
data 'stripes' across a given number of physical disks in the
RAID group, and the appropriate storing of redundant infor
mation (parity) with respect to the striped data. The physical
disks of each RAID group may include disks configured to
store striped data (i.e., data disks) and disks configured to
store parity for the data (i.e., parity disks). The parity may
thereafter be retrieved to enable recovery of data lost when a
disk fails. The term “RAID and its various implementations
are well-known and disclosed in A Case for Redundant
Arrays of Inexpensive Disks (RAID), by D.A. Patterson, G. A.
Gibson and R. H. Katz, Proceedings of the International
Conference on Management of Data (SIGMOD), June 1988.
The storage operating system of the storage system may

implement a high-level module, such as a file system, to
logically organize the information stored on the disks as a
hierarchical structure of directories, files and blocks. For
example, each “on-disk” file may be implemented as set of

10

15

25

30

35

40

45

50

55

60

65

2
data structures, i.e., disk blocks, configured to store informa
tion, such as the actual data for the file. These data blocks are
organized within a Volume block number (vbn) space that is
maintained by the file system. The file system organizes the
data blocks within the vbn space as a “logical volume'; each
logical Volume may be, although is not necessarily, associated
with its own file system. The file system typically consists of
a contiguous range of vbns from Zero to n, for a file system of
size n+1 blocks.
A known type offile system is a write-anywhere file system

that does not overwrite data on disks. If a data block is
retrieved (read) from disk into a memory of the storage sys
tem and “dirtied' (i.e., updated or modified) with new data,
the data block is thereafter stored (written) to a new location
on disk to optimize write performance. A write-anywhere file
system may initially assume an optimal layout Such that the
data is substantially contiguously arranged on disks. The
optimal disk layout results in efficient access operations, par
ticularly for sequential read operations, directed to the disks.
An example of a write-anywhere file system that is configured
to operate on a storage system is the Write Anywhere File
Layout (WAFL(R) file system available from Network Appli
ance, Inc., Sunnyvale, Calif.
The storage operating system may further implement a

storage module. Such as a RAID system, that manages the
storage and retrieval of the information to and from the disks
in accordance with input/output (I/O) operations. The RAID
system is also responsible for parity operations in the storage
system. Note that the file system only “sees the data disks
within its vbn space; the parity disks are “hidden' from the
file system and, thus, are only visible to the RAID system. The
RAID system typically organizes the RAID groups into one
large “physical disk (i.e., a physical Volume). Such that the
disk blocks are concatenated across all disks of all RAID
groups. The logical volume maintained by the file system is
then “disposed over (spread over) the physical volume main
tained by the RAID system.
The storage system may be configured to operate accord

ing to a client/server model of information delivery to thereby
allow many clients to access the directories, files and blocks
stored on the system. In this model, the client may comprise
an application, such as a database application, executing on a
computer that “connects to the storage system over a com
puter network, Such as a point-to-point link, shared local area
network, wide area network or virtual private network imple
mented over a public network, such as the Internet. Each
client may request the services of the file system by issuing
file system protocol messages (in the form of packets) to the
storage system over the network. By Supporting a plurality of
file system protocols. Such as the conventional Common
Internet File System (CIFS) and the Network File System
(NFS) protocols, the utility of the storage system is enhanced.

In order to improve reliability and facilitate disaster recov
ery in the event of a failure of a storage system, its associated
disks or some portion of the storage infrastructure, it is com
mon to mirror (or replicate) a data set comprising some or all
of the underlying data and/or the file system that organizes the
data. A data set comprises an area of defined storage which
may have a mirroring relationship associated therewith.
Examples of data sets include, e.g., a file system, a Volume or
a persistent consistency point image (PCPI), described fur
ther below.

In one example, a mirror is established and stored at a
destination storage system, making it more likely that recov
ery is possible in the event of a true disaster (e.g. a flood,
power outage, act of war, etc.) that may physically damage a
Source storage system location or its infrastructure. The mir

US 8,301,791 B2
3

ror is updated at regular intervals, typically set by an admin
istrator, in an effort to maintain the most recent changes to the
file system on the destination storage system. That is, the
storage systems cooperate to ensure that the mirror is consis
tent, i.e., that the mirror on the destination storage system
contains identical data to that of the Source storage system.
One common form of update involves the use of a “snap

shot process in which an active file system at the Source
storage system, consisting of inodes and blocks, is captured
and the changes between two Snapshots are transmitted over
a network (such as the well-known Internet) to the remote
destination storage system. By “active file system” it is meant
the file system to which current input/output operations are
being directed.

Note that the term "snapshot' is a trademark of Network
Appliance, Inc. It is used for purposes of this patent to des
ignate a persistent consistency point image (PCPI). A persis
tent consistency point image is a point in time representation
of the storage system, and more particularly, of the active file
system, stored on a storage device or in other persistent
memory and having a name or other unique identifier that
distinguishes it from other PCPIs taken at other points in time.
A PCPI can also include other information (metadata) about
the active file system at the particular point in time for which
the image is taken. The terms PCPI and snapshot may be used
interchangeably throughout this patent without derogation of
Network Appliance's is trademark rights. The PCPI process
is described in further detail in U.S. patent application Ser.
No. 09/932,578, entitled INSTANT SNAPSHOT by Blake
Lewis et al., now issued as U.S. Pat. No. 7,454,445 on Nov.
18, 2008, TR3002 File System Design for an NFS File Server
Appliance by Dave Hitz et al., published by Network Appli
ance, Inc., and in U.S. Pat. No. 5,819,292 entitled METHOD
FOR MAINTAINING CONSISTENT STATES OF A FILE
SYSTEM AND FOR CREATING USER-ACCESSIBLE
READ-ONLY COPIES OF A FILE SYSTEM by David Hitz
et al., which are hereby incorporated by reference.
An exemplary PCPI-based mirroring technique typically

provides remote asynchronous replication or mirroring of
changes made to a source file system in a destination replica
file system. Broadly stated, the mirroring technique typically
scans (via a scanner) the blocks that make up two versions of
a PCPI of the source file system to identify latent divergence,
i.e., changed blocks, in the respective PCPI files, based upon
differences in vbns further identified in a scan of a logical file
block index of each PCPI. Trees (e.g., buffer trees) of blocks
associated with the files are traversed, bypassing unchanged
pointers between versions, to identify the changes in the
hierarchy of the trees. These changes are transmitted to the
destination replica. This technique allows regular files, direc
tories, inodes and any other hierarchical structure of trees to
be efficiently scanned to determine differences (latent diver
gence) between versions thereof. A set number of PCPIs may
be retained both on the source and destination file systems
depending upon various time-based and other criteria.

Conventional mirroring and archival backup systems typi
cally include processes to ensure that the data set is correctly
mirrored, to thereby reduce the divergence of the replica (i.e.
mirror) from the original source file system. However, errors
may occur in the mirror due to, e.g., network, software and/or
physical media malfunctions of the storage devices. As a
result of such errors, the mirror is not identical to the source
file system, which may cause data loss should an error con
dition occur on the Source storage system. Additionally, the
file systems on either the Source or destination storage sys
tems may experience an error condition. The file system error
may be corrected by conventional file system error correction

10

15

25

30

35

40

45

50

55

60

65

4
techniques; however, Such correction may exacerbate mirror
divergence. Additionally, as the destination is typically a
read-only Volume, to correct the destination requires that the
mirroring relationship be broken and the destination volume
converted to a read/write volume. To ensure that a correct
mirror is on the destination storage system, a new mirroring
relationship may need to be established that includes an initial
baseline backup operation performed on the data set. Estab
lishment of the mirroring relationship is computationally, I/O
resource and network intensive, and does not guarantee that
the administrator has retained one or more point in time
mirrors of file system images previous to the establishment of
the new mirroring relationship. That is, although the new
mirror may be up to date, it does not reflect the contents of the
mirrored source storage system at a previous point in time,
thereby reducing the effectiveness of the mirror.

Furthermore, a noted disadvantage of a performing various
Verification techniques is that the verification techniques may
prevent backup operations from occurring. Such a disruption
of backup operation schedules may result in the reduction of
consistency and/or usefulness of the backup data by increas
ing the amount of time between backup operations. These
increased changes to the backup schedule result in a loss of
synchronization between the Source and destination storage
systems. If the Source storage system then fails, the destina
tion storage system may be out of sync by a potentially
Substantial amount of time, which may result in data loss for
any data written and/or modified during that time period.

SUMMARY OF THE INVENTION

The disadvantages of the prior art are overcome by provid
ing a system and method for verifying the consistency of
mirrored data sets between source and destination storage
systems. The present invention is illustratively implemented
as a “destination' Verification module of a storage operating
system executing on the destination storage system that coop
erates with a “source' verification module executing on the
Source storage system.
Upon initialization of a verification procedure, the desti

nation verification module sends version information to the
Source storage system where the source verification module
determines whether the source and destination storage sys
tems are utilizing compatible versions of the verification
module. If the destination verification module receives an
acceptable version from the source, the destination module
then determines a base PCPI to utilize for verification and
sends a PCPI identifier of the base PCPI to the source. In
response, source verification module sends a list of PCPI’s to
be verified to the destination verification module.

Furthermore, the source verification module generates and
transmits a data stream consisting of comprising of checksum
information. The destination verification module compares
the received data stream with checksum information retrieved
from disk. If there are mismatches, i.e. the received data
differs from the data retrieved from disk, the destination veri
fication module logs the data mismatches in a verification log
file. Such a log file may be utilized in a later correction
procedure to render the destination consistent with the source.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which like
reference numerals indicate identical or functionally similar
elements:

US 8,301,791 B2
5

FIG. 1 is a schematic block diagram of an exemplary mir
rored storage system environment in accordance with an
embodiment of the present invention;

FIG. 2 is a schematic block diagram of an exemplary Stor
age operating system in accordance with an embodiment of 5
the present invention;

FIG.3 is a schematic block diagram of an exemplary inode
buffer tree in accordance with an embodiment of the present
invention;

FIG. 4 is a schematic block diagram of an exemplary inode
buffer tree showing a persistent consistency point image
inode in accordance with an embodiment of the present
invention;

FIG. 5 is a schematic block diagram of an exemplary inode
buffer tree showing the copy on write nature of a file system
in accordance with an embodiment of the present invention;

FIG. 6 is a flow chart detailing the steps of a procedure for
Verifying a mirrored data set inaccordance with an illustrative
embodiment of the present invention;

FIG. 7 is a schematic block diagram of an exemplary PCPI
list data structure in accordance with an embodiment of the
present invention;

FIG. 8 is a schematic block diagram of an exemplary data
stream header data structure in accordance with an embodi
ment of the present invention;

FIG. 9 is a flowchart detailing the steps of a procedure for
processing and verifying received checksums in accordance
with an embodiment of the present invention;

FIG. 10 is a schematic block diagram of an exemplary log
file header data structure ina accordance with an embodiment
of the present invention;

FIG. 11 is a schematic block diagram of an exemplary
secondary log file header in accordance with an embodiment
of the present invention; and

FIG. 12 is a schematic block diagram of an exemplary
mismatch entry data structure in accordance with an embodi
ment of the present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

A. Network and Storage System Environment

FIG. 1 is a schematic block diagram of a storage system
environment 100 that includes a pair of interconnected stor
age systems including a source storage system 110 and a
destination storage system 112 that may be advantageously
used with the present invention. For the purposes of this
description, the source storage system is a networked com
puter that manages storage on one or more source Volumes
114, each comprising an array of storage disks 160 (described
further below). Likewise, the destination storage system 112
manages the storage on one or more destination Volumes 116
comprising arrays of disks 160. The source and destination
storage systems are linked via a network 118 that can com
prise a local or wide area network, Such as the well-known
Internet. An appropriate network adapter 130 residing in each
storage system 110, 112 facilitates communication over the
network 118. Also for the purposes of this description, like
components in each of the Source and destination storage
system 110 and 112 respectively, are described with like
reference numerals. As used herein, the term "source' can be
broadly defined as a location from which the subject data
travels during a mirroring operation and the term “destina
tion' can be defined as the location to which the data travels.
While a source storage system and a destination storage sys
tem, connected by a network, is a particular example of a

10

15

25

30

35

40

45

50

55

60

65

6
Source and destination used herein, a source and destination
could be computers/storage systems linked via a direct link,
or via loopback (a "networking arrangement internal to a
single computer for transmitting a data stream between local
Source and local destination), in which case the Source and the
destination are the same storage system.

In the particular example of a pair of networked source and
destination storage systems, each storage system 110 and 112
can be any type of special-purpose computer (e.g., server) or
general-purpose computer, including a standalone computer.
Each storage system 110, 112 comprises a processor 120, a
memory 125, a network adapter 130 and a storage adapter 140
interconnected by a system bus 145. Each storage system 110.
112 also includes a storage operating system 200 that man
ages data and may implement a file system to logically orga
nize the information as a hierarchical structure of directories
and files on the disks.

It will be understood to those skilled in the art that the
inventive technique described herein may apply to any type of
special-purpose computer (e.g., file serving appliance) or
general-purpose computer, including a standalone computer,
embodied as a storage system. An example of a storage sys
tem that may be advantageously used with the present inven
tion is described in U.S. Pat. No. 7,873,700 titled, MULTI
PROTOCOL STORAGE APPLIANCE THAT PROVIDES
INTEGRATED SUPPORT FOR FILE AND BLOCK
ACCESS PROTOCOLS, filed on Aug.9, 2002, and issued on
Jan. 18, 2012. Moreover, the teachings of this invention can
be adapted to a variety of storage system architectures includ
ing, but not limited to, a network-attached storage (NAS)
environment, a storage area network (SAN) and disk assem
bly directly-attached to a client or host computer. The term
“storage system’ should therefore be taken broadly to include
Such arrangements in addition to any Subsystems configured
to perform a storage function and associated with other equip
ment or systems.

In the illustrative embodiment, the memory 125 comprises
storage locations that are addressable by the processor and
adapters for storing software program code and data struc
tures. The memory comprises a form of random access
memory (RAM) that is generally cleared by a power cycle or
other reboot operation (i.e., it is “volatile' memory). The
processor and adapters may, in turn, comprise processing
elements and/or logic circuitry configured to execute the Soft
ware code and manipulate the data structures. The operating
system 200, portions of which are typically resident in
memory and executed by the processing elements, function
ally organizes the storage system by, interalia, invoking Stor
age operations in Support of a file service implemented by the
storage system. It will be apparent to those skilled in the art
that other processing and memory means, including various
computer readable media, may be used for storing and
executing program instructions pertaining to the inventive
technique described herein.
The network adapter 130 comprises the mechanical, elec

trical and signaling circuitry needed to connect each storage
system 110, 112 to the network 118, which may comprise a
point-to-point connection or a shared medium, Such as a local
area network. Each storage system may also be intercon
nected with one or more clients 170 via the network adapter
130. The clients transmit requests for file service to the source
and destination storage systems 110, 112, respectively, and
receive responses to the requests over a LAN or other network
(118). The client 170 may communicate with the storage
system over network 118 by exchanging discrete frames or
packets of data according to predefined protocols, such as the
Transmission Control Protocol/Internet Protocol (TCP/IP).

US 8,301,791 B2
7

Moreover, the client may interact with the storage system
110, 112 in accordance with a client/server model of infor
mation delivery. That is, the client may request the services of
the storage system, and the system may return the results of
the services requested by the client, by exchanging packets
155 over the network 118. The clients may issue packets
including file-based access protocols, such as the Common
Internet File System (CIFS) protocol or Network File System
(NFS) protocol, over TCP/IP when accessing information in
the form of files and directories. Alternatively, the client may
issue packets including block-based access protocols, such as
the Small Computer Systems Interface (SCSI) protocol
encapsulated over TCP (iSCSI) and SCSI encapsulated over
Fibre Channel (FCP), when accessing information in the form
of blocks.
The storage adapter 140 cooperates with the storage oper

ating system 200 executing on the storage system to access
information requested by the client. The information may be
stored on the disks 160 that are attached, via the storage
adapter 140 to each storage system 110, 112 or other node of
a storage system as defined herein. The storage adapter 140
includes input/output (I/O) interface circuitry that couples to
the disks over an I/O interconnect arrangement, such as a
conventional high-performance, Fibre Channel serial link
topology. The information may be stored on any type of
attached array of writable storage device media such as video
tape, optical, DVD, magnetic tape, bubble memory, elec
tronic random access memory, micro-electro mechanical and
any other similar media adapted to store information, includ
ing data and parity information. However, as illustratively
described herein, the information is preferably stored on the
disks 160, such as hard disk drivers (HDD) and/or direct
attached storage devices (DASD).

Storage of information on disks 160 is preferably imple
mented as one or more storage “volumes” that comprise a
collection of physical storage disks 160 cooperating to define
an overall logical arrangement of Volume block number (vbn)
space on the Volume(s). Each logical Volume is generally,
although not necessarily, associated with its own file system.
The disks within a logical volume/file system are typically
organized as one or more groups, wherein each group may be
operated as a Redundant Array of Independent (or Inexpen
sive) Disks (RAID). Most RAID implementations, such as a
RAID-4 level implementation, enhance the reliability/integ
rity of data storage through the redundant writing of data
“stripes' across a given number of physical disks in the RAID
group, and the appropriate storing of parity information with
respect to the striped data. An illustrative example of a RAID
implementation is a RAID-4 level implementation, although
it should be understood that other types and levels of RAID
implementations may be used in accordance with the inven
tive principles described herein.

B. Storage Operating System

To facilitate access to the disks 160, the storage operating
system 200 illustratively implements a write-anywhere file
system that cooperates with virtualization modules to “virtu
alize' the storage space provided by disks 160. The file sys
tem logically organizes the information as a hierarchical
structure of named directories and files on the disks. Each
“on-disk” file may be implemented as set of disk blocks
configured to store information, such as data, whereas the
directory may be implemented as a specially formatted file in
which names and links to other files and directories are stored.
The virtualization modules allow the file system to further

5

10

15

25

30

35

40

45

50

55

60

65

8
logically organize information as a hierarchical structure of
blocks on the disks that are exported as named logical unit
numbers (luns).

In the illustrative embodiment, the storage operating sys
tem is illustratively the NetApp.R DataONTAPR) operating
system available from Network Appliance, Inc., Sunnyvale,
Calif. that implements a Write Anywhere File Layout
(WAFL(R) file system. However, it is expressly contemplated
that any appropriate storage operating system may be
enhanced for use in accordance with the inventive principles
described herein. As such, where the term “DataONTAP is
employed, it should be taken broadly to refer to any storage
operating system that is otherwise adaptable to the teachings
of this invention.

FIG. 2 is a schematic block diagram of an exemplary stor
age operating system 200 that may be advantageously used
with the present invention. The storage operating system
comprises a series of software modules organized to form an
integrated network protocol stack or, more generally, a multi
protocol engine that provides data paths for clients to access
information stored on the storage system using block and file
access protocols. The protocol stack includes a media access
layer 205 of network drivers (e.g., gigabit Ethernet drivers)
that interfaces to network protocol layers, such as the IPlayer
210 and its supporting transport mechanisms, the TCP layer
215 and the User Datagram Protocol (UDP) layer 220. A file
system protocol layer provides multi-protocol file access and,
to that end, includes support for the Direct Access File System
(DAFS) protocol 255, the NFS protocol 230, the CIFS pro
tocol 225 and the Hypertext Transfer Protocol (HTTP) pro
tocol 235. A VI layer 250 implements the VI architecture to
provide direct access transport (DAT) capabilities, such as
RDMA, as required by the DAFS protocol.
An iSCSI driver layer 245 provides block protocol access

over the TCP/IP network protocol layers, whilea FC driver
layer 240 receives and transmits block access requests and
responses to and from the storage system. The FC and iSCSI
drivers provide FC-specific and iSCSI-specific access control
to the blocks and, thus, manage exports of luns to either iSCSI
or FCP or, alternatively, to both iSCSI and FCP when access
ing the blocks on the storage system. In addition, the storage
operating system includes a disk storage module 260 embod
ied as a RAID system that manages the storage and retrieval
of information to and from the Volumes/disks in accordance
with I/O operations, and a disk driver system 265 that imple
ments a disk access protocol Such as, e.g., the SCSI protocol.

Bridging the disk software layers with the integrated net
work protocol stack layers is a virtualization system 270 that
is implemented by a file system interacting with virtualization
modules illustratively embodied as, e.g., vaisk module 280
and SCSI target module 275. The vidisk module 280 is layered
on the file system to enable access by administrative inter
faces, such as a user interface (UI), in response to a user
(system administrator) issuing commands to the storage sys
tem. The SCSI target is disposed between the FC and iSCSI
drivers and the file system to provide a translation layer of the
virtualization system between the block (lun) space and the
file system space, where luns are represented as blocks.
The file system is illustratively a message-based system

that provides logical Volume management capabilities for use
in access to the information stored on the storage devices,
Such as disks. That is, in addition to providing file system
semantics, the file system provides functions normally asso
ciated with a Volume manager. These functions include (i)
aggregation of the disks, (ii) aggregation of storage band
width of the disks, and (iii) reliability guarantees, such as
mirroring and/or parity (RAID). The file system illustratively

US 8,301,791 B2

implements the WAFL file system (hereinafter generally the
“write-anywhere file system') having an on-disk format rep
resentation that is block-based using, e.g., 4 kilobyte (KB)
blocks and using index nodes (“inodes') to identify files and
file attributes (such as creation time, access permissions, size
and block location). The file system uses files to store meta
data describing the layout of its file system; these metadata
files include, among others, an inode file. A file handle, i.e., an
identifier that includes an inode number, is used to retrieve an
inode from disk.

Broadly stated, allinodes of the write-anywhere file system
are organized into the inode file. A file system (FS) infoblock
specifies the layout of information in the file system and
includes an inode of a file that includes all otherinodes of the
file system. Each logical volume (file system) has an FS info
block that is preferably stored at a fixed location within, e.g.,
a RAID group. The inode of the root FS info block may
directly reference (point to) blocks of the inode file or may
reference indirect blocks of the inode file that, in turn, refer
ence direct blocks of the inode file. Within each direct block
of the inode file are embedded inodes, each of which may
reference indirect blocks that, in turn, reference data blocks of
a file.

Operationally, a request from the client is forwarded as a
packet 155 over the computer network 118 and onto the
storage system where it is received at the network adapter. A
network driver (of layer 205 or layer 240) processes the
packet and, if appropriate, passes it on to a network protocol
and file access layer for additional processing prior to for
warding to the write-anywhere file system 285. Here, the file
system generates operations to load (retrieve) the requested
data from disk if it is not resident "in core, i.e., in memory
125. If the information is not in the memory, the file system
indexes into the inode file using the inode numberto access an
appropriate entry and retrieve a logical vbn. The file system
then passes a message structure including the logical vbn to
the RAID system 260; the logical vbn is mapped to a disk
identifier and disk block number (disk.dbn) and sent to an
appropriate driver (e.g., SCSI) of the disk driver system 265.
The disk driver accesses the dbn from the specified disk and
loads the requested data block(s) in memory 125 for process
ing by the storage system. Upon completion of the request,
the storage system (and operating system) returns a reply to
the client over the network 118.

It should be noted that the software “path’ through the
storage operating system layers described above needed to
perform data storage access for the client request received at
the storage system may alternatively be implemented inhard
ware. That is, in an alternate embodiment of the invention, a
storage access request data path may be implemented as logic
circuitry embodied within a field programmable gate array
(FPGA) or an application specific integrated circuit (ASIC).
This type of hardware implementation increases the perfor
mance of the storage service provided by storage system in
response to a request issued by client 170. Moreover, in
another alternate embodiment of the invention, the process
ing elements of adapters 130, 140 may be configured to
offload some or all of the packet processing and storage
access operations, respectively, from processor 120, to
thereby increase the performance of the storage service pro
vided by the system. It is expressly contemplated that the
various processes, architectures and procedures described
herein can be implemented in hardware, firmware or soft
Wa.

As used herein, the term "storage operating system' gen
erally refers to the computer-executable code operable to
perform a storage function in a storage system, e.g., that

5

10

15

25

30

35

40

45

50

55

60

65

10
manages data access and may, in the case of a file server,
implement file system semantics. In this sense, the Data
ONTAP software is an example of such a storage operating
system implemented as a microkernel and including a file
system 285 to implement the WAFL file system semantics
and manage data access. The storage operating system can
also be implemented as an application program operating
over a general-purpose operating system, Such as UNIX(R) or
Windows XPR, or as a general-purpose operating system
with configurable functionality, which is configured for stor
age applications as described herein.
The file system 285 also includes a set of PCPI processes

290 that enable the file system to generate PCPIs of the active
file system, as described further below. Also included within
the storage operating system 200 is a mirroring application
module 295. The mirroring application module 295 illustra
tively generates appropriate mirrors (or other replicas) of data
sets and manages data backups in accordance with an
embodiment of the present invention. In accordance with an
illustrative embodiment of the present invention, a verifica
tion module 297 is associated with the mirroring application
module 295. The verification module 297 illustratively per
forms verification of mirrored datasets inaccordance with the
teachings of the present invention, as described further below.
Included within verification module 297 are a Net
work Read() process 298 and a Disk Read() process 299.
These processes 298, 299, described further below, read
incoming checksum information from the source storage sys
tem (Network Read()) or from storage devices (Disk
Read()) to compare during verification.

C. Persistent Consistency Point Images

As noted above, in certain mirroring architectures, storage
systems utilize PCPIs. For example, source storage system
110 ("source') may generate a baseline PCPI that is trans
ferred to destination storage system 112 (“destination'). At a
later point in time, the source storage system may generate a
second PCPI. The mirroring application module 295 deter
mines the changes between the baseline and the second
PCPIs, with only those changes being transmitted to the des
tination, which may then update its file system and generate a
second PCPI so that the baseline and second PCPIs are iden
tical on both the source and destination.

PCPIs are generally created on some regular schedule that
may be subject to great variation. In addition, the number of
PCPIs retained by the storage system is highly variable.
Under one storage scheme, a number of recent PCPIs is stored
in succession (for example, a few days worth of PCPIs each
taken at four-hour intervals), and a number of older PCPIs is
retained at increasing time spacings (for example, a number
of daily PCPIs for the previous week(s) and weekly PCPI for
the previous few months). Each PCPI is stored on-disk along
with the active file system, and is called into the memory 125
of the storage system as requested by the storage operating
system 200 or mirroring application 295. However, it is con
templated that a variety of PCPI creation techniques and
timing schemes can be implemented within the teachings of
this invention.
An exemplary file system inode structure 300 according to

an illustrative embodiment is shown in FIG. 3. The inode for
the inode file or more generally, the “root' inode 305 contains
information describing inode file 308 associated with a given
file system. In this exemplary file system inode structure root
inode 305 contains a pointer to the inode file indirect block
310. The inode file indirect block 310 points to one or more
inode file direct blocks 312, each containing a set of pointers

US 8,301,791 B2
11

to inodes 315 that make up the inode file 308. The depicted
subject inode file 308 is organized into volume blocks (not
separately shown) made up of inodes 315 which, in turn,
contain pointers to file data (or “disk') blocks 320A, 320B
and 320C. In the diagram, this is simplified to show just the
inode itself containing pointers to the file data blocks. Each of
the file data blocks 320(A-C) is adapted to store, in the illus
trative embodiment, 4 kilobytes (KB) of data. Note, however,
where more than a predetermined number of file data blocks
are referenced by an inode (315), one or more indirect blocks
325 (shown in phantom) are used. These indirect blocks point
to associated file data blocks (not shown).
When the file system generates a PCPI of a given file

system, a PCPI root inode is generated as shown in FIG. 4.
The PCPI rootinode 405 is, in essence, a duplicate copy of the
rootinode 305 of the file system300. Thus, the exemplary file
system structure 400 includes the same inode file indirect
block 310, inode file direct block312, inodes 315 and file data
blocks 320CA-C) as depicted in FIG. 3. When a user modifies
a file data block, the file system writes the new data block to
disk and changes the active file system to point to the newly
created block.

FIG. 5 shows an exemplary inode file system structure 500
after a file data block has been modified. In this illustrative
example, file data which is stored at disk block 320C is
modified. The file system writes the modified contents to disk
block 320C, which is a new location on disk. Because of this
new location, the inode file data which is stored at disk block
315 is rewritten so that it points to block 320C. This modifi
cation causes the file system to allocate a new disk block 515
for the updated version of the data at 315. Similarly, the inode
file indirect block 310 is rewritten to block 510 and direct
block 312 is rewritten to block 512, to point to the newly
revised inode 515. Thus, after a file data block has been
modified the PCPI root inode 405 contains a pointer to the
original inode file system indirect block 310 which, in turn,
contains a link to the inode 315. This inode 315 contains
pointers to the original file data blocks 320A, 320B and 320C.
However, the newly written inode 515 includes pointers to
unmodified file data blocks 320A and 320B. The inode 515
also contains a pointer to the modified file data block 320C
representing the new arrangement of the active file system. A
new file system root inode 505 is established representing the
new structure 500. Note that metadata in any PCPI blocks
(e.g. blocks 310, 315 and 320C) protects these blocks from
being recycled or overwritten until they are released from all
PCPIs. Thus, while the active file system root inode 505
points to new blocks 510,512,515 and 320C, the oldblocks
310, 315 and 320C are retained until the PCPI is fully
released.

In accordance with an illustrative embodiment of the
present invention, the mirroring application module 295 may
permit the mirroring of various PCPIs between the source and
destination. This may be due to, for example, incremental
changes that are sent at various points in time, which are
represented within the file systems as persistent consistency
point images (PCPIs). Typically, a first PCPI is utilized to
perform a baseline backup to the destination. At some later
point in time a second PCPI is generated, which is compared
with the first PCPI to generate a set of changes that is trans
ferred to the destination.

D. Verification of Mirrored Data Sets

The present invention provides a system and method for
Verifying the consistency of mirrored data sets between
Source and destination storage systems. The present invention

5

10

15

25

30

35

40

45

50

55

60

65

12
is illustratively implemented as a “destination verification
module of a storage operating system executing on the desti
nation storage system that cooperates with a “source' verifi
cation module executing on the Source storage system.
Upon initialization of a verification procedure, the desti

nation verification module sends version information to the
Source storage system where the source verification module
determines whether the source and destination storage sys
tems are utilizing compatible versions of the verification
module. If the destination verification module receives an
acceptable version from the source, the destination module
then determines a base PCPI to utilize for verification and
sends a PCPI identifier of the base PCPI to the source. In
response, source verification module sends a list of PCPI’s to
be verified to the destination verification module.

Furthermore, the source verification module generates and
transmits a data stream consisting of comprising of checksum
information. The destination verification module compares
the received data stream with checksum information retrieved
from disk. If there are mismatches, i.e. the received data
differs from the data retrieved from disk, the destination veri
fication module logs the data mismatches in a verification log
file. Such a log file may be utilized in a later correction
procedure to render the destination consistent with the source.

FIG. 6 is a flowchart detailing the steps of a procedure 600
for verifying mirrored data sets in accordance with an illus
trative embodiment of the present invention. The procedure
600 begins in step 605 and continues to step 610 where an
administrator initiates a destination verification module in
accordance with an embodiment of the present invention. The
Verification module may be initiated via a command line
interface (CLI) command or a graphical user interface (GUI).
In alternate embodiments, the destination verification module
may automatically be activated. For example, the system
administrator may configure verification module to execute
on a daily basis or, for example, at the conclusion of any
mirroring activity. Once initiated, the destination verification
module sends version information related to the version of the
destination verification module to the source in step 615. In
response, the source verification module replies with version
of the source verification module in step 620. The destination
verification module determines whether the source and des
tination versions are compatible in step 625. If they are not
compatible, the procedure 600 then aborts in step 630. It
should be noted that step 615–625 for version negotiation may
be performed using alternate techniques including, e.g., a
multi-round version negotiation to identify a common version
to be utilized between the source and destination verification
modules.

If the destination verification module determines in step
625 that the source and destination versions are compatible,
the procedure 600 continues to step 635 where the destination
verification module identifies and sends the identifier of a
base PCPI to the source. Illustratively, the base PCPI is deter
mined by identifying the most recent PCPI at the destination.
However, in alternate embodiments, differing techniques
may be utilized for identifying a base PCPI. For example, an
administrator may desire to verify a particular PCPI, in which
case, the selected PCPI may be user selected as the base PCPI.
Once the base PCPI identification has been sent to the source
Verification module, the source verification module agrees to
perform the transfer in step 640. If the base PCPI is not be
available on the source, the verification module may disagree
to perform the transfer. In Such case, the procedure may abort.
However, in alternate embodiments should the identified base
PCPI not be available, then the source verification module
may identify an alternate base PCPI and agree to perform the

US 8,301,791 B2
13

verification process using the alternate base PCPI. In step
645, the source verification module sends a list of PCPIs to
verify to the destination. Illustratively, the list of PCPIs are the
PCPIs up to the point in time identified by the base PCPI.
PCPIs later in time that the base PCPI are not verified. Illus
tratively, the source destination verification module first
sends a PCPI count data structure 700 (see FIG. 7). The PCPI
count data structure alerts the destination verification module
of the number and identification of PCPIs to be verified.
The source verification module generates and transmits a

data stream to the destination verification module in step 650.
This data stream, described further below in reference to FIG.
8 contains checksum information relating to particular blocks
of the PCPIs to be verified along with a header information
identifying which volumes etc. of a PCPI are being verified.
The destination verification module compares the received
data stream and the checksum information contained therein,
with the checksum data stored on disk in step 655. A deter
mination is made by the destination verification module, in
step 660, whether any mismatches occur, i.e., whether data
received from the source verification module differs from the
data stored on disk. If a mismatch occurs, the procedure
continues to step 665 where the destination verification mod
ule logs the data mismatch to a verification log file. The
procedure 600 then completes in step 670. However, if in step
660 no mismatch has been identified, the procedure continues
to step 670 and completes.

FIG. 7 is a schematic block diagram of a PCPI count data
structure 700 in accordance with an embodiment of the
present invention. The PCPI count data structure 700 includes
a PCPI count field 705 and that one or more entries 710. The
PCPI count field 705 identifies the total number of PCPI
identified within data structure 700. Each entry 710 is asso
ciated with a PCPI of the source storage system. Entries 710
illustratively contain an access time field 715, a consistency
point count field 720, a PCPI ID field 725, and in alternate
embodiments, additional field 730. The access time field 715
identifies the most recent time that a PCPI was accessed. The
consistency point count field 720 identifies the consistency
point (CP) at which the PCPI was generated. Illustratively,
PCPIs are generated during CPs which are identified by a
monotonically increasing number. A PCPI ID field 725 con
tains an identifier of the PCPI. Illustratively, the PCPI iden
tifier field 725 contains a numeric identifier of the PCPI.
However, in alternate embodiments, additional and/or differ
ing forms of identifications may be used to signify the identity
of a particular PCPI. As such, the description of a numeric
PCPI ID should be taken as exemplary only.

FIG. 8 is a schematic block diagram of an exemplary data
stream header data structure 800 in accordance with an
embodiment of the present invention. The header data struc
ture 800 includes a magic field 805, a version field 810, a type
field 815, a file system version field 820, a volume field 825,
a PCPI list field 830, a source volume field 835, a source
storage system field 840, a source PCPI field 845 and, in
alternate embodiments additional fields 850. The magic field
805 contains a predetermined bit pattern identifying data
structure 800 as a header for a data stream in accordance with
an embodiment of the present invention the version field 810
identifies the current version of the source or of the header.
The type field 815 identifies the type of a data being trans
mitted. The file system version field 820 identifies the version
of the file system executing on the Source storage system. As
a checksum algorithms may change or be implemented in
various manners in differing versions of file systems, the file
system version field 820 enables the destination to identify an
appropriate and compatible file system version to Verify

10

15

25

30

35

40

45

50

55

60

65

14
against checksums. The volume field 820 identifies the vol
ume associated with the PCPIs being transmitted. The PCPI
list array field 830 contains a list of PCPIs for which check
Sum information is being transmitted. The Source Volume
field 835 identifies the source volume from the source storage
system. Similarly, the source storage system field 840 iden
tifies the storage system that is acting as the source. The
Source PCPI field 845 identifies the PCPI from which the
checksum information is being obtained.

Thus, in the illustrative embodiment, the data stream may
comprise of a header data structure 800 followed by one or
more checksum blocks containing checksum information for
the blocks of the PCPIs to be verified.

FIG. 9 is a flowchart detailing the steps of a procedure 900
for processing data from the Source storage system for and
comparing it with on disk data in accordance with an illus
trative embodiment of the present invention. The procedure
900 begins in step 905 and continues to step 910 where the
Network Read() process 298 receives data from the network.
Illustratively, Network Read() processes incoming data
from the source storage system by reading data from the
network interconnecting the source and destination storage
systems, i.e., by reading the incoming data stream generated
by the source verification module. Then, in step 915, the
Network Read() process increments a Block Count, which
is illustratively a global variable accessible via both Net
work Read() and Disk Read() processes. By incrementing
Block Count, the Network Read() process 298 identifies
that an additional operation has been received from the net
work and is to be sent to the RAID module (disk storage
module 260).
Once the Block Count variable has been incremented, the

Network Read() process issues a read request to the RAID
module 260 in step 920 to retrieve the appropriate checksum
information from disk. Operating concurrently, in step 925,
the Disk Read() process 299 reads buffers retrieved from the
RAID module 260. For every buffer read (representative of a
block, Such as a vbn), the Disk Read() process decrements
the Block Counter in step 930. The Disk Read() process
then verifies that the checksums received from the source
match the checksums retrieved from disk. If they do not, the
Disk Read() process writes a verification log entry in step
940. Once a verification log entry has been written, a deter
mination is made whether additional blocks are to be read. If
so, the procedure loops back to step 910. However, if no
additional blocks are to be read, the procedure 900 completes
in step 950.

FIG. 10 is a schematic block diagram of an exemplary
verification log header data structure 1000 accordance with
an embodiment of the present invention. The data structure
1000 includes a magic field 1005, a version field 1010, a mode
field 1015, and number of mismatches field 1020, a time of
verification field 1025, a checksum field 1030 and, in alter
nate embodiments additional fields 1035. The magic field
1005 identifies that this data structure is a verification log file
header data structure 1000. The version field 1010 identifies a
version of the destination verification module writing the log
file. The mode field 1015 identifies the type of mismatches to
be stored. In the example of the present invention, the mode
identifies that checksums have been verified. In accordance
with alternate embodiments of the present invention, a full bit
by bit comparison could occur instead of simply comparing
checksums. The number of mismatches field 1020 identifies
the total number of mismatches stored within the log file. The
time of the verification field 1025 is the time at which the
verification procedure was executed. The checksum field
1030 comprises a checksum of the header data structure 1000.

US 8,301,791 B2
15

FIG. 11 is a schematic block diagram of an exemplary
verification subheader data structure 1100 inaccordance with
an embodiment of the present invention. The data structure
1100 includes a magic field 1105, a version field 1110, a
source storage system 1115, a source volume field 1120, a
destination storage system field 1125, a destination volume
field 1130, a PCPI list field 1135, a base PCPI ID field 1140,
a checksums size field 1145, a checksum field 1150 and, in
alternate embodiments additional fields 1155. The magic
field 1105 contains a bit pattern identifying data structure
1100 as a subheader data structure. The version field 1110
identifies the current version of the subheader data structure.
The source storage system field 1115 identifies the source
storage system from which the comparison is made. Simi
larly, the source volume field 1120 identifies the volume on
the source storage system 1115 or from which I that was
utilized in the comparison for verification process. The des
tination storage system field 1125 identifies the storage sys
tem destination storage system. The destination Volume field
1130 identifies the volume on the destination storage system.
The list of PCPI field 1135 contains a list of PCPIs which
were verified in accordance with the present invention. The
base PCPI ID field 1140 identifies the base PCPI that was
utilized by the source and destination verification procedures.
The checksums size field 1145 identifies the size of the check
sums used in the verification. The checksum field 1150 con
tains a checksum of data structure 1100.

FIG. 12 is a schematic block diagram of an exemplary
mismatch entry data structure 1200 in accordance with an
embodiment of the present invention. Illustratively, a mis
match entry data structure 1200 is appended to the verifica
tion log file for each mismatch identified. Data structure 1200
includes a version field 1205, a block number field 1210, a
flags field 1215, a source checksum field 1220, a destination
checksum field 1225 and, in alternate embodiments, addi
tional fields 1230. The version field identifies the version of
the mismatch data structure being utilized. In alternate
embodiments, the mismatch data structure 1200 may vary
with differing versions. Thus, by containing the version, Veri
fication modules will be able to correctly interpret the con
tents of data structure 1200. The block number field 1210
identifies the particular block number at which a mismatch
occurred. The flags field 1215 may contain flags identifying
certain conditions. The source checksum field 1220 contains
the checksum received from the source storage system. A
destination checksum field 1225 contains checksum value
received from the peer retrieved from disk at the destination.
The foregoing description has been directed to specific

embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, but the attainment of some or all of
their advantages. For instance, it is expressly contemplated
that the teachings of this invention can be implemented as
Software, including a computer-readable medium having pro
gram instructions executing on a computer, hardware, firm
ware, or a combination thereof. Accordingly, this description
is to be taken by way of example of and not to otherwise limit
the scope of the invention. Therefore, it is the object of the
appended claims to cover all Such variations and modifica
tions as come within the true spirit and scope of the invention.

What is claimed is:
1. A method for Verifying data on a computer storage

System, comprising:
hosting a first data set by a source computer;
hosting a second data set by a destination computer;

10

15

25

30

35

40

45

50

55

60

65

16
sending, from the Source computer to the destination com

puter, a list of Persistent Consistency Point Images (PC
PIs) for the first data set and the second data set:

sending, from the Source computer to the destination com
puter, a data stream for the list of PCPIs and the first data
Set,

comparing information of the data stream at the destination
computer with the second data set; and

in response to an inconsistency between the information of
the data the second data set, logging the inconsistency to
a verification log.

2. The method as in claim 1, wherein sending the data
stream comprises sending a header data structure.

3. The method as in claim 1, wherein sending the data
stream comprises sending checksum information associated
with the first data set, and wherein comparing information of
the data stream comprises comparing the checksum informa
tion in the data stream with checksum information associated
with the second data set.

4. The method as in claim 1, further comprising:
identifying a base PCPI of the first data set and the second

data set; and
wherein the list of PCPIs comprises one or more PCPIs of

the first data set associated with a time prior to the base
PCPI.

5. The method as in claim 1, further comprising:
wherein the first data set and the second data set comprise

Volumes.
6. The method as in claim 1, further comprising:
wherein the first data set and the second data set are in a

mirroring relationship.
7. The method as in claim 1, further comprising:
ensuring that the Source computer and the destination com

puter utilize a compatible version of a verification mod
ule executed on at least one of the source computer and
the destination computer.

8. The method as in claim 4, further comprising:
sending, from the destination computer to the Source com

puter, a PCPI identifier of the base PCPI.
9. A computer storage system apparatus for verifying data,

comprising:
a source computer serving a first data set;
a destination computer operatively connected to the Source

computer, the destination computer serving a second
data set;

the source computer further sending a list of a Persistent
Consistency Point Images (PCPIs) for the first data set
and the second data set to the destination computer;

the source computer further sending a data stream for the
list of PCPIs and the first data set to the destination
computer;

the destination computer further comparing information of
the data stream with the second data set; and

at least one of the Source computer and the destination
computer, in response to an inconsistency between the
information of the data stream and the second data set, to
log the inconsistency to a verification login.

10. The apparatus as in claim 9, wherein the data stream
comprises a header data structure.

11. The apparatus as in claim 9, wherein the data stream
comprises checksum information associated with the first
data set, and wherein the destination computer compares the
checksum information in the data stream with checksum
information associated with the second data set.

12. The apparatus as in claim 9, wherein the destination
computer identifies a base PCPI of the first data set and the

US 8,301,791 B2
17

second data set, and wherein the list of PCPIs comprises one
or more PCPIs of the first data set associated with a time prior
to the base PCPI.

13. The apparatus as in claim 9, wherein the first data set
and the second data set comprise Volumes.

14. The apparatus as in claim 9, wherein the first data set
and the second data set are in a mirroring relationship.

15. The apparatus as in claim 9, wherein the destination
computer ensures that the source computer and the destina
tion computer utilize a compatible version of a verification
module configured to execute on at least one of the Source
computer and the destination computer.

16. The apparatus as in claim 12, wherein the destination
computer sends a PCPI identifier of the base PCPI to the
Source computer.

17. A non-transitory computer-readable storage media
device containing executable program instructions for execu
tion by a processor, the computer-readable storage media
device comprising:

program instructions that receive, at a second computer to
host a second data set, a list of Persistent Consistency
Point Images (PCPIs) sent from a first to host a first data
set, the list of PCPIs for the first data set and the second
data set;

program instructions that receive at the second computer a
data stream sent from the first computer, the data stream
for the list of PCPIs and the first data set:

program instructions that compare at the second computer
information of the data stream with the second data set;
and

5

10

15

25

18
program instructions that log the inconsistency at the sec

ond computer to a verification log in response to an
inconsistency between the information of the data
stream and the second data set.

18. The apparatus as in claim 9 wherein the verification log
comprises a mismatch entry associated with the inconsis
tency.

19. The apparatus as in claim 11 wherein the checksum
information comprises a RAID checksum.

20. The apparatus as in claim 10 wherein the header data
structure comprises the list of PCPIs.

21. The apparatus as in claim 9 further comprising a first
process configured to execute on the destination computer,
the first process configured to read the data stream from a
network operatively connecting the source computer and the
destination computer.

22. The apparatus as in claim 21 further comprising a
second process configured to execute on the destination com
puter, the second process configured to read the second data
set from one or more storage devices operatively connected to
the destination computer.

23. The apparatus as in claim 22 further comprising a
counter on the destination computer shared between the first
process and the second process, the first process configured to
increment the counter in response to receiving an operation
associated with the data stream from the network, the second
process configured to decrement the counter in response to
reading a block of the second data set stored at the destination
computer.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,301,791 B2 Page 1 of 1
APPLICATIONNO. : 12/129874
DATED : October 30, 2012
INVENTOR(S) : Prasanna Kumar Malaiyandi et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In col. 16, line 3 should read:
PlS) associated with the first data Set and the Second data Set:

In col. 16, line 10 should read:
The data stream and the Second data Set, logging the inconsistency to

In col. 16, line 41 should read:
A computer Storage System apparatus configured to verify data,

In col. 16, line 47 should read:
The source computer further sending a list of Persistent

In col. 16, line 48 should read:
Consistency Point Images (PCPIS) associated with the first data Set

In col. 16, line 50 should read:
The Source computer further configured to send a data Stream associated with the

In col. 16, line 56 should read:
Computer further configured, in response to an inconsistency between the

In col. 16, line 58 should read:
Log the inconsistency to a Verification log.

In col. 17, line 21 should read:
Program instructions that receive, at a Second computer operable to

In col. 17, line 23 should read:
Point Images (PCPIs) sent from a first computer to host a first data

Signed and Sealed this
Nineteenth Day of November, 2013

Teresa Stanek Rea

Deputy Director of the United States Patent and Trademark Office

