
(12) United States Patent

USO0950 1493B1

(10) Patent No.: US 9,501,493 B1
Banerjee et al. (45) Date of Patent: Nov. 22, 2016

(54) INSTANTIATING VIRTUALIZATION UNIT 39.8% A. S. S. Goof 1730s
ON STORAGE OR PROXY NODE FOR 56888. A 658. E". "I'o';
PERFORMING OPERATION BASED ON 379,201.04
NODE HAVING HARDWARE 2009/003O896 A1 1/2009 Jensen GO6F 17,30545
CHARACTERISTICS FOR SERVING 2009/0100158 A1* 4/2009 Sonkin HO4L 41,0856

REQUIRED FILE SYSTEM ROLE FOR 2009,0293,022 A1 11/2009 Fries TO9,221
OPERATION 2012/0185867 A1 7, 2012 Archer et al.

2013,0166677 A1 6/2013 Chung et al.
(71) Applicant: International Business Machines 2013/0275122 A1* 10, 2013 Park G06F 4.

Corporation, Armonk, NY (US) 2013,0346615 A1 12/2013 Gondi
2014/0047342 A1 2/2014 Breternitz et al.

(72) Inventors: Pradipta K. Banerjee, Bangalore (IN); 2014/018913.0 A1 7, 2014 Khandelwal et al.
Sasikanth Eda, Vijayawada (IN); 2015/0106398 A1* 4/2015 Tomlinson GO6F 17,30259
Deepak R. Ghuge, Sangamner (IN); 707/769
Sandeep R. Patil, Pune (IN) 2015,0235044 A1* 8, 2015 Cohen G06F 21:

ck

(73) Assignee: International Business Machines 2016/0048413 A1* 2/2016 Matsuyama G06:59,
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 S. V. Gogouvitis; Vision Cloud: A Cloud Storage Solution Support
U.S.C. 154(b) by 0 days. ing Modern Media Production; SMPTE Motion Imaging Journal

2013; pp. 30-37.*
(21) Appl. No.: 14/959,769 (Continued)

(22) Filed: Dec. 4, 2015 Primary Examiner — Abdullah Al Kawsar
(74) Attorney, Agent, or Firm — Stosch Sabo

(51) Int. Cl.
G06F 7/30 (2006.01) (57) ABSTRACT
G06F 9/50 (2006.01) A method for adjusting roles of nodes in a distributed
G06F 9/48 (2006.01) clustered file system can include receiving a first computa

(52) U.S. Cl. tion operation and profiling the first computation operation
CPC G06F 17/30194 (2013.01); G06F 9/4881 according to one or more metrics. The method can also

(2013.01); G06F 17/3007 (2013.01); G06F include determining, based on the profiling of the first
9/5005 (2013.01); G06F 9/5044 (2013.01) computation operation, a first file system attribute of the first

(58) Field of Classification Search computation operation. The method can also include iden
None tifying that the first computation operation serves a first file
See application file for complete search history. system role and identifying a first hardware characteristic of

hardware on which a first node of a plurality of nodes is
(56) References Cited hosted. The method can also include receiving an identifi

U.S. PATENT DOCUMENTS

8,209,702 B1
9,015,724 B2

6/2012 Roytman et al.
4/2015 Druyan

cation that the first node can utilize additional computation
of the first file system role and instantiating a virtualization
unit on the first node.

14 Claims, 7 Drawing Sheets

S C

RECEWEACOMPUTATION
OPERATION

so

profit computation 512
OPERATION

S4
DETERMINEAFILE
SYSTEMATTRIBUTE

IDEMTFYAFIRST HARDWARE
CHARACTERISTIC OF HOSTING
HARWARE FORAFRSTN

RECEIVE ANDENTIFICATION
THATANODE CANUTILIZE
ADDITIONAL COMPUTATION
OF THE FILE SYSTEM ROLE

InstantiaTEAvon THE
FIRST MEBASED ON THE
FILE SYSTEMATTRIBUTEAMD
HARDWARE CHARACTERISTIC

EMTIFY THAT THE COMPUTATION 516
OPERATIONSERWESAFILE SYSTEM

ROL

18

4520

522

US 9,501,493 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS
Burt, J., “IBM Looking to 'Storlets to Manage Object Storage.”
eweek.com, May 15, 2014 (printed Aug. 28, 2015), 1 page, eweek.
com/storage/ibm-looking-to-storlets-to-manage-object-storage.
html.
Rabinovici-Cohen et al., “Storlet Engine: Performing Computations
in Cloud Storage.” IBM Research Report, H-0320 (HAI1408-001),
Aug. 4, 2014, pp. 1-13.

Rabinovici-Cohen et al., “Storlet Engine: Performing Computations
in Cloud Storage”, IBM Research Report, H-0320 (HAI408-001)
Aug. 4, 2014. Computer Science. Haifa, Israel. 13 pages.
Banerjee et al., “Storlet Workflow Optimization Leveraging Clus
tered File System Roles”, U.S. Appl. No. 14/959,733, filed Dec. 4,
2015.
List of IBM Patents or Patent Applications Treated as Related, Apr.
22, 2016. 2 pages.

* cited by examiner

U.S. Patent Nov. 22, 2016 Sheet 1 of 7 US 9,501,493 B1

1OO

11 O
RECEIVE A COMPUTATION

OPERATION

PROFILE THE COMPUTATION
OPERATION

DETERMINEA FLE
SYSTEM ATTRIBUTE

IDENTIFY THAT THE COMPUTATION
OPERATION SERVES A FILE SYSTEM

ROLE

112

116

RECEIVE AN IDENTIFICATION
THAT ANODE CAN UTILIZE
ADDITIONAL COMPUTATION
OF THE FILE SYSTEM ROLE

12O
EXECUTE THE COMPUTATION
OPERATION ON THE NODE

FIG. 1

US 9,501,493 B1 Sheet 4 of 7

9|,7

>HETTIGTE HOS

Nov. 22, 2016

070 || #7

U.S. Patent

U.S. Patent Nov. 22, 2016 Sheet S of 7 US 9,501,493 B1

OO

51O
RECEIVE A COMPUTATION

OPERATION

512
PROFILE THE COMPUTATION

OPERATION

514
DETERMINEA FLE
SYSTEM ATTRIBUTE

IDENTIFY THAT THE COMPUTATION 516
OPERATION SERVES A FILE SYSTEM

ROLE

518
IDENTIFY AFIRST HARDWARE
CHARACTERISTIC OF HOSTING
HARDWARE FOR A FIRST NODE

52O
RECEIVE AN IDENTIFICATION
THATANODE CAN UTILIZE
ADDITIONAL COMPUTATION
OF THE FILE SYSTEM ROLE

522
INSTANTIATE AVM ON THE
FIRST NODE BASED ON THE
FILE SYSTEM ATTRIBUTE AND
HARDWARE CHARACTERISTIC

FIG. 5

US 9,501,493 B1
1.

INSTANTATING VIRTUALIZATION UNIT
ON STORAGE OR PROXY NODE FOR
PERFORMING OPERATION BASED ON

NODE HAVING HARDWARE
CHARACTERISTICS FOR SERVING
REQUIRED FILE SYSTEM ROLE FOR

OPERATION

BACKGROUND

Aspects of the present disclosure relate to computing in an
object storage environment, and more particular aspects
relate to optimizing computing infrastructure within an
object storage environment.

In object-based storage, various shortcomings may limit
performance. In some cases, excessive communication
between storage nodes has impaired performance. In other
cases, performance of nodes has been limited by an inefli
cient usage of hardware resources.

SUMMARY

According to embodiments of the present disclosure, a
method, system, and computer program product are dis
closed for adjusting roles of nodes in a distributed clustered
file system. The method (or the system or computer program
product) can include receiving a first computation operation.
The method can also include profiling the first computation
operation according to one or more metrics. The method can
also include determining, based on the profiling of the first
computation operation, a first file system attribute of the first
computation operation. The method can also include iden
tifying, in response to determining the first file system
attribute, that the first computation operation serves a first
file system role. The method can also include identifying a
first hardware characteristic of hardware on which a first
node of a plurality of nodes is hosted. The method can also
include receiving an identification, in response to the per
forming the lookup, that the first node can utilize additional
computation of the first file system role. The method can also
include instantiating a virtualization unit on the first node,
where the first node is selected based on the first file system
attribute and the first hardware characteristic, and where the
virtualization unit serves the first file system role that can
utilize the additional computation of the virtualization unit.

The above summary is not intended to describe each
illustrated embodiment or every implementation of the pres
ent disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included in the present application are
incorporated into, and form part of the specification. They
illustrate embodiments of the present disclosure and, along
with the description, serve to explain the principles of the
disclosure. The drawings are only illustrative of certain
embodiments and do not limit the disclosure.

FIG. 1 depicts a flowchart for workflow optimization
based on computation operation roles and node character
istics, according to various embodiments.

FIG. 2 depicts a table containing characteristics of nodes,
according to various embodiments.

FIG. 3 depicts a template for assigning roles to nodes,
according to various embodiments.

FIG. 4 depicts a block diagram for assigning virtual
machines to nodes based on workload, according to various
embodiments.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 5 depicts a flowchart for workflow optimization

based on hardware characteristics, according to various
embodiments.

FIG. 6 depicts a table containing characteristics of hard
ware, according to various embodiments.

FIG. 7 depicts a block diagram for assigning virtual
machines to nodes based on hardware characteristics,
according to various embodiments.

While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawings and will be described in
detail. It should be understood, however, that the intention is
not to limit the invention to the particular embodiments
described. On the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention.

DETAILED DESCRIPTION

Aspects of the present disclosure relate to computing in an
object storage environment, and more particular aspects
relate to optimizing computing infrastructure within an
object storage environment.

In order to combat various inefficiencies, a storlet engine
may be utilized in an object storage environment, and the
Storlet engine may utilize one or more storlets. A storlet may
be a computation module that may be uploaded dynamically,
e.g., the storlet may be transferred to a storage node from
another node without interrupting an ongoing process. A
Storlet may include embedded computing infrastructure
within an object storage environment. A storlet may also
serve to offload data-intensive computations to where data is
stored, instead of data being processed in a single location.
A storlet may run within a storage unit or medium, proxi
mate to various data. A storlet may be executed in a sandbox
when not trusted, according to various embodiments. A
Storlet may be viewed as an analog to stored procedures in
databases. A storlet may add flexibility to the storage, and
may make the storage extensible, effectively making the
storage a platform, according to various embodiments. In
other words, a storage may be transformed using a storlet
from merely keeping data, to producing value from the data.
A storlet engine may run one or more storlets, according to
various embodiments, and may operate along with various
Software (e.g., middleware).
The architecture of a storlet may include a software

engine within various nodes. An end user may frame the
computation operation and deploy or pass it to the engine as
a typical object storage request (e.g., “PUT”) operation. A
Storlet-configured object storage may not require any addi
tional client or a compute node to perform analysis of the
data, thus the storage or proxy nodes may act as compute
nodes and may return results to the user. Various architec
tures may use virtual machines (VMs), but the architectures
may also or instead use Linux containers, Dockers, etc.
deployed on the nodes in order to perform various compu
tation tasks or operations. A storlet may be composed of or
utilize Linux containers and/or additional middleware.
A workflow of a storlet engine may be optimized by

leveraging various file system roles, and may be distributed
across various nodes in a distributed clustered file system,
according to various embodiments. Alternatively, various
algorithms, operations, or frameworks may help to optimize
a workflow of a storlet by leveraging various underlying
hardware features.
An example object storage architecture may utilize two

types of nodes (also referred to as entities). One node type

US 9,501,493 B1
3

called “proxy' nodes may be used for distributed load
handling and request handling nodes into a namespace.
Another node type may be called “storage' nodes, which
may write to the various storage Subsystems (e.g., disks).
Storage nodes may serve as a storage unit or repository, and
may assist in analysis, including extracting information from
raw data of the data residing in these storage Subsystems.
Traditionally the architecture would utilize an additional
client or node in order to compute data.

In a clustered file system (e.g., IBM GPFS), there may be
one or more nodes that provide tokens to the rest of a cluster,
these nodes are called Token Managers. In programming
languages, a token may be a single element of a program
ming language. For example, a token could be a keyword, an
operator, or a punctuation mark. For example, in network
ing, a token may be a particular series of bits that travels
around a token-ring network. As the token circulates, com
puters attached to the network can capture it. In this sense,
a token may act as a ticket, enabling an owner to send a
message across the network. There may be only one token
for each network, so there would be no possibility that two
computers will attempt to transmit messages at the same
time.

Token Managers may be selected from nodes previously
designated as managers. The Token Managers may be
responsible for tracking all of the tokens in the cluster, but
these nodes may or may not maintain file metadata, a job that
may be performed by a meta node.

Within a clustered file system, a cluster with one or more
cache file-sets may utilize a gateway node (which may act as
a network file system (NFS) client to fetch data in parallel
from home) and may have multiple application nodes
(which may service application data requests). On the appli
cation nodes, data requests may be handled locally if the
requested data is cached. Otherwise, the data requests may
be forwarded on to gateway nodes, which may use an NFS
client to handle the request.
A split between application and gateway nodes may be

conceptual, and any node in the cache cluster may function
as either a gateway node or an application node based on its
configuration, according to various embodiments. Gateway
nodes may be viewed as the edge of the cache cluster that
may communicate with a home cluster, while the application
nodes may interface with the application. Application nodes
may communicate with each other via internal remote
procedure call (RPC) requests. Active file management
(AFM) may be supported on AIX(R) and Linux nodes, which
may be assigned as gateway nodes.

Client nodes may permit or facilitate an exchange of data
between virtual servers that locally mount a clustered file
system. Virtual servers may include or encompass various
VMs and/or containers or other virtualization units. Other
exports of the data may or may not be permitted, according
to various embodiments. The client node may or may not be
used for virtual servers to share clustered file system data
directly through any application, service, protocol or
method, such as NFS, common internet file system (CMS),
file transfer protocol (FTP), or hypertext transfer protocol
(HTTP). For various functions, a clustered file system server
license may be required or requested, according to various
embodiments.
An administration (admin) node may be used by various

administration commands to communicate between nodes.
A metadata node may be a node that handles metadata, also
referred to as “directory block updates.” An application node
may mount a clustered file system and may run an applica
tion (e.g., of a user), which may access the file system.

5

10

15

25

30

35

40

45

50

55

60

65

4
Clustered file systems (e.g., GlusterFS, Ceph, GPFS, etc.)

may use a cluster mechanism, such as quorum, to maintain
data consistency in the event of a node failure. During node
failure situations, quorum may need to be maintained in
order for the cluster to remain online. If quorum is not
maintained due to node failure, the clustered file system may
unmount local file systems from the remaining nodes and
may attempt to reestablish quorum, at which point a file
system recovery may occur. Replication servers in a file
system organization, through various migration techniques,
may be used to synchronize folders for servers on network
connections that have a limited bandwidth, according to
various embodiments. According to various embodiments,
VMware templates may be used. A policy execution server
may include a node that handles execution of automated
information lifecycle management (ILM) policies defined or
deployed for the cluster or namespace.
A storlet scheduler operation or framework may improve

computation performance and may reduce workload on a
storage unit in a multi-node object storage environment by
performing specific workflow changes in the embedded
compute engine. This may help in automatic Storlet invoca
tion (which may include selecting a node for computation
operation execution), according to a classification of com
putation operations designated for a particular system. An
appropriate node may be determined based on a file system
role performed by a node or server in the back-end of a
clustered file system.

Object storage systems (both traditional object storage
and embedded compute engines within object storage sys
tems) may be built using commodity or multi-vendor hard
ware. Each node may be treated equally irrespective of its
roles. The usage of commodity hardware for traditional
object storage systems may be practical as the object storage
may be primarily designed to be a low cost storage, but the
commodity or multi-vendor hardware when used for com
pute embedded object storage system may generate subop
timal results.
A storlet scheduler operation or framework may improve

computation performance or may reduce workload on the
storage unit in a multi-vendor commodity object storage
environment by performing specific workflow changes in
the embedded compute engine (storlet). Workflow changes
may be made according to various hardware architecture
values or characteristics. Hardware characteristics may be
designated by default by the hardware manufacturer, or may
be received from any other source, including various reposi
tories on the Internet and elsewhere.

In a storage context, clustered file systems may be used as
a back-end storage for object storage (as opposed to using
ext3, ext4, XFS, etc.). Various examples, when utilized in
conjunction, may join various advantages (e.g., backup.
replication, consistency, locking, better metadata handling,
etc.) of a clustered file system to object storage architectures.
However, various issues may exist when a clustered file
system backed object storage is used for Storlet execution.
Various issues may include excessive communication
(through, e.g., transfer control protocol (TCP) or remote
program call (RPC)) between various nodes, or excessive
interlocking between the nodes. The interlocking may occur
because of attempts to maintain consistency.
A clustered file system may include multiple nodes across

a network and according to the distributed nature of its
architecture, and some of the nodes participating in the
cluster may need to perform additional roles or functions
(e.g., admin node, application node, client node, metadata
node, token manager node, WAN caching gateway node,

US 9,501,493 B1
5

quorum node, etc., as outlined herein). By virtue of the roles
performed by the node. Some computation operations per
formed on these nodes may prove to be faster, as opposed to
executing computation operations inefficiently with in view
of roles performed by the node.

If a user inputs a computation operation, execution of the
operation may involve repetitive operations on each object,
Such as image processing, where each object may need to
read/write multiple times at each pass. The computation
operation may also generate Substantial token traffic (e.g.,
each time the container starts accessing the object, the node
may pass the request to the token manager node to verify
whether this object is locked by any other application). In
the aforementioned scenario a storlet invocation may be
made on a node other than a token manager node. As a result,
excessive communication (RPC calls) may occur between
the node that is used for executing the storlet computation
operation and the node that handles token management.
A storlet architecture may lack intelligence to select the

node for fulfilling a specific type of computation operation,
by which the storage unit may be benefited by the file system
role performed by the selected node. Lack of intelligence
may result in a Substantial increase in disk input/output (I/O)
operations, and load on the file system, and may result in
degradation of storage unit performance, which may reduce
the life span of disks involved.
A framework and middleware may help in efficient storlet

invocation. Invocation may include picking a node for a
computation operation execution according to the classifi
cation of computation operations meant for a particular
system. The appropriate node may be determined based on
the file system role performed by node or server in a
clustered file system back-end.

Object storage units used for scaling out may be built
using commodity hardware, and may be initially deployed
on multi-vendor hardware. Various hardware types, old or
new, may be dynamically plugged in (or unplugged) as
demand grows or shrinks. Sometimes the object storage
units may be initially deployed using multi-vendor hardware
platforms in order to reduce capital expenditures (CAPEX).

FIG. 1 depicts a flowchart 100 for workflow optimization
based on computation operation roles and node character
istics, according to various embodiments.

At 110, optimizing workflow begins by receiving a first
computation operation. At 112, the received computation
operation may be profiled according to one or more metrics.
The profiling may include identifying and categorizing a
first process performed by the first computation operation.
The profiling the first computation operation according to
one or more metrics may also include parsing the first
computation operation into a plurality of sub-operations, and
analyzing the plurality of Sub-operations together or sepa
rately. Identifying and categorizing the first process per
formed by the first computation operation may utilize a
daemon, according to various embodiments.

At 114, a first file system attribute of the first computation
operation may be determined. The first file system attribute
may include node type, features, file system roles, compu
tation operation categories, and/or tasks served by a first
node. The first file system attribute may be determined based
on past performance, or metadata of the first computation
operation, according to various embodiments. The first file
system attribute may further be based on a file system role
of the first computation operation, according to various
embodiments.
At 116, a lookup operation may be performed based on a

first computation template, and it may be identified that the

10

15

25

30

35

40

45

50

55

60

65

6
first computation operation serves a first file system role.
The first computation template may be configurable by a
user, according to various embodiments.
At 118, an identification that a first node can utilize

additional computation of the first file system role may be
received. The first node may be a proxy node, storage node,
or other type of node, according to various embodiments. A
storage node may be utilized as a storage medium within a
virtualization environment. Proxy nodes may be utilized to
communicate data or bits between storage nodes and other
nodes. At 120, the first computation operation may be
executed on the first node. According to various embodi
ments, the first node may be selected based on the first file
system attribute, and the first node may serve the first file
system role that can utilize additional computation.

According to various embodiments, at a first time interval,
a second computation operation may be received. The
second computation operation may then be profiled accord
ing to one or more metrics, which may include, for example,
identifying and categorizing a second process performed by
the second computation operation. A second file system
attribute may then be determined, based on the profiling of
the second computation operation, of the second computa
tion operation.
An example of a storlet engine workflow may include

various steps, according to various embodiments. A user
may deploy a computation operation (e.g., a PUT operation).
The storlet engine may then parse the computation operation
for syntax errors. The Storlet engine may then determine the
type, nature, and/or characteristics of the computation opera
tion. For example, the computation operation may be arith
metic, or any specialized operation, such as conversion
from .TXT to PDF editing.JPG, etc. The storlet engine may
then determine a node to be used for instantiating a virtu
alization unit. The Storlet engine may then pass the compu
tation operation to the virtualization unit. The virtualization
unit may then pull, read, or write data, based on the steps
defined in the computation operation. The storlet may then
return to the user code, which may indicate a success or
failure, and/or results.
A middleware software engine may be integrated with a

Storlet architecture in order to leverage or designate various
file system roles, in order to distribute roles across various
nodes in a distributed clustered file system.
A storlet engine may estimate a file system role appro

priate for a deployed computation operation. This estimation
may be based on the type of the operations encapsulated in
the computation operation. This estimation may also be auto
learning enabled, and an end user may have the ability to
determine the role required, via metadata or an extended
attribute of the computation operation object. The storlet
engine may also enable a periodic framework, which may
scan for underlying file system features, roles, and/or tasks
served by each node. These collected details per node
participating in the object storage cluster may be reported to
a scheduler service embedded with the storlet engine.

Based on the identified file system role suited for the
computation operation and file systems reported to the
scheduler service, the Storlet engine may perform a lookup
operation against a pre-programmed template, which may be
updated dynamically, automatically, and/or by an adminis
trator. If the appropriate file system role is found available
among the reported nodes and based on available resources,
the storlet engine may determine a node to be used for
executing this particular computation operation.

FIG. 2 depicts a table 200 containing characteristics of
nodes, according to various embodiments.

US 9,501,493 B1
7

A scheduler framework may collect and/or compile
underlying file system features, roles, and/or tasks served by
each node, as depicted in table 200. Various nodes may be
shown, such as node 1 at 210. Features, roles, and/or tasks
may be displayed or stored at 212. Respective information
may be appended or included for any number of nodes, up
to an N' node 214. Each node may have information akin to
the representation at 212.
A proposed framework may facilitate a daemon on each

node participating in the object storage cluster and the
daemon may collect the file system features, roles, and/or
tasks served by each node, and may export the collected
details from each node to the storlet scheduler (proposed
middleware). The storlet engine may then use the details to
identify the underlying file system roles served by the node
(e.g., proxy or storage nodes).

Middleware may enable a hook in the storlet engine
execution cycle and facilitate a provision to auto determine
a Suitable file system role required of the computation
operation deployed by the user. It may also support manual
determination of the file system role required for the com
putation operation (auto learning platform).
An example of file system role determination of a

deployed computation operation by the proposed middle
ware may include, for example, (Image processing)->Token
manager; (Achieve/Backup operations)->replication man
ager, (Long running operations)->Ouorum manager; (Gam
ing/real time operations)->WAN caching gateway; or
(Metadata operations)->Metadata manager, according to
various embodiments.
The middleware may keep track of the file system role

performed by the node and the deployed computation opera
tion category. Based on these parameters, the middleware
may help the storlet engine to determine the appropriate
node to be selected for processing the deployed computation
operation along with the available resource consideration. It
may form a standard comparison of the determined compu
tation operation file system role needed versus the best
matched node role which are pre-programmed and inputted
to the Storlet engine as a template, according to various
embodiments.

FIG.3 depicts a template 300 for assigning roles to nodes,
according to various embodiments.
The example template 300 may include various catego

ries, such as computation operation 310, file system role
required 312, and current node serving this role 314. Tem
plate 300 may be the template used at 116, according to
various embodiments. At 316 may be input and output data
related to each category, including attributes or characteris
tics of operations and/or nodes, and details of each operation
and/or node, as described herein.

FIG. 4 depicts a block diagram 400 for assigning virtual
machines to nodes based on workload, according to various
embodiments.
At 412, a load balancer is shown, which may receive input

from a user 410. The load balancer 412 may communicate
with a storlet scheduler module 414. The load balancer may
balance workloads across various nodes such that each node
is less likely to be over-utilized or underutilized, according
to various embodiments. The storlet scheduler module 414
is shown where the node for storlet invocation is determined
based on the computation operations and the file system role
served by the node, which may reduce unnecessary com
munication between nodes and reduces load on the storage
unit.

The scheduler module may communication with an object
service module 416. The object service module may com

5

10

15

25

30

35

40

45

50

55

60

65

8
municate or assign VMS or operations to nodes, including
node 1418, node 2 420, node 3 422, node 4 424, and node
5 426, according to various embodiments. Various VMs.
including VM1, VM2, etc. may be assigned to various
nodes, as described herein. Various data or operations may
be stored on various nodes, e.g., a storage node. Various
operations may be executed on various nodes, e.g., using a
VM.

According to the shown embodiment, data 428 is stored
on node 1418, along with VM1 434. Data 430 is stored on
node 2420. Data 432 is stored on node 3 422, along with
VM2436. Nodes 4 and 5 (424 and 426, respectively) contain
neither data nor VMs.

Various computation operations may be stored as data,
and may be assigned to various nodes, as described herein.
Various nodes may be assigned VMs by the object service
module 416, according to various embodiments.

FIG. 5 depicts a flowchart 500 for workflow optimization
based on hardware characteristics, according to various
embodiments.
At 510, a first computation operation may be received. At

512, the first computation operation may be profiled accord
ing to one or more metrics. Profiling the first computation
operation according to one or more metrics may include
parsing the first computation operation into a plurality of
Sub-operations, and analyzing the plurality of Sub-opera
tions. The profiling of the first computation operation may
utilize a daemon, according to various embodiments.
At 514, a first file system attribute of the first computation

operation may be determined based on the profiling of the
first computation operation. According to various embodi
ments, the first file system attribute may include or be related
to node type, features, file system roles, computation opera
tion categories, or tasks served by the first node. The first file
system attribute may be determined based on past perfor
mance, according to various embodiments. The first file
system attribute may be determined based on metadata of
the first computation operation. The first file system attribute
may also be determined based on a file system role of the
first computation operation, according to various embodi
mentS.

At 516, it may be identified that the first computation
operation serves a first file system role. The identifying that
the first computation operation serves a first file system role
516 may perform a lookup operation based on a first
computation operation template, according to various
embodiments. The first computation template may be con
figurable by a user, according to various embodiments.
At 518, a first hardware characteristic of hardware may be

identified, on which a first node of a plurality of nodes may
be hosted. The first node may be a proxy node or a storage
node, according to various embodiments. The first hardware
characteristic may include various characteristics, including
hardware role, number of processing cores, hard disk speed,
thermal characteristics, hardware efficiency, hyper-transport
status, proxy status, etc.
At 520, an identification that a first node can utilize

additional computation of the file system role may be
received. At 522, a virtualization unit (e.g., a VM) may be
instantiated on the first node. The first node may be selected
based on the first file system attribute and/or the first
hardware characteristic, according to various embodiments.
The virtualization unit may serve the first file system role
that can utilize the additional computation of the virtualiza
tion unit.

According to various embodiments, a second computation
operation may be received. The second computation opera

US 9,501,493 B1
9

tion may then be profiled according to one or more metrics.
Based on the profiling of the second computation operation,
a second file system attribute of the second computation
operation may be determined, according to various embodi
mentS.

A storlet engine may treat each node participating in the
object storage cluster equally, irrespective of the hardware
type, model, manufacturer, etc. of the node. The Storlet
engine may identify the nodes as unique nodes using respec
tive network addresses (e.g., IP addresses). A Storlet engine
execution step used to determine or identify a node to be
used for instantiating a virtualization unit, and passing the
computation operation to the virtualization unit may be
achieved in various ways. One way may include instantiat
ing the virtualization unit on the node that contains maxi
mum data required for fulfilling that particular computation
operation. Another way may include instantiating the virtu
alization unit on the node that contains maximum available
hardware resources. However, the above-mentioned tech
niques may prove to be inefficient in the case of multi
vendor or varied hardware, as even hardware with maximum
available resources may or may not be the most efficient
choice for running or hosting a particular node.
A storlet engine may be deployed within object storage

units, which may help in preparing the hardware resources
to be computation ready, possibly including a virtualization
unit (e.g., a Linux container, Docker, ZeroVM, etc.) and
middleware (e.g., Software units), which may help determine
a computation operation to be performed by the virtualiza
tion unit. The determining may be based on a user-deployed
computation operation.

If an object storage cluster is built using multi-vendor
hardware units (e.g., nodes 1, 2, and 3 are Intel, nodes 4, 5,
and 6 are Supermicro, and nodes 7, 8, and 9 are IBM
OpenPower). These nodes may contain different hardware
built-in features, which may help them process efficiently
with respect to certain workloads. For example, the Intel
nodes may contain specialized hardware accelerators that
make them process encryption workloads efficiently. Like
wise, the Supermicro nodes may contain a special applica
tion-specific integrated chip (ASIC) that makes them pro
cess image and video rendering workloads efficiently.
Finally, according to this example, the IBM OpenPower
nodes may contain special central processing unit (CPU)
architecture that makes them process arithmetic operations
efficiently, Such as seismic, cosmic data processing etc.

If a computation operation has been deployed, which falls
under the category of arithmetic operations, and both the
example IBM OpenPower node, and Intel node reported a
similar hardware resource availability, a storlet engine may
treat both nodes as equal, and it may assign to the Intel node
the handling of this computation operation. The assignment
to the Intel node, possibly not optimal for Such an operation,
may in turn result in undesirable performance, possibly in
terms of increased time for processing and increased load on
a storage unit. If instead the example IBM OpenPower node
has been assigned this workload, it possibly could have
delivered better results than other nodes, like the Intel node.
A lack of a framework and/or middleware may help an

example storlet engine to understand the underlying hard
ware features built by the manufacturers, and may cause a
selection of nodes or hardware based on the workloads (e.g.,
computation operation input) that could be accelerated by
various hardware platforms available for use by the storlet
engine.

Other embodiments may provision a framework and/or
middleware that can be integrated with the storlet architec

10

15

25

30

35

40

45

50

55

60

65

10
ture to help determine or select an appropriate node to be
used for executing a specified computation workload. The
selection may be based on the type of computation opera
tions involved in the request and file system role or task
performed by the node, or based on the hardware features or
attributes built in to the nodes by hardware manufacturers.

Implementation of a middleware software engine that can
be integrated with the storlet architecture helps leverage the
underlying hardware features built by the hardware manu
facturers. For example, various middleware may estimate
category of the deployed computation operation. This esti
mation may be based on the type of the operations encap
Sulated in the computation operation. This estimation may
be auto learning enabled and an end user may determine the
category via metadata or an extended attribute of the com
putation operation object.

Proposed middleware may also enable a periodic frame
work that scans for underlying hardware features, disk speed
variations, and roles served by the node. These collected
details per node participating in the object storage cluster are
reported to the scheduler service embedded with the storlet
engine. Based on the computation operation category and
features reported to the scheduler service, middleware (or a
Storlet engine) may perform a lookup operation using a
pre-programmed template. The template may contain a map
of category versus hardware features for the feature required
for a particular computation operation category. The tem
plate may be similar to template 300 shown in FIG.3, except
hardware features may be featured in the template.

If the appropriate feature is found available among the
reported nodes and based on its available resources, the
storlet engine may determine a node to be used for executing
this particular computation operation is modified Such that
the node bearing this hardware feature is selected for instan
tiating the virtualization unit.

FIG. 6 depicts a table 600 containing characteristics of
hardware, according to various embodiments.
The proposed framework, according to various embodi

ments, facilitates a daemon on each node participating in an
object storage cluster and the daemon may collect various
hardware features or accelerators built in the nodes and disk
rotational speeds etc., and may export the collected details
from each node to storlet scheduler middleware. The storlet
engine may then identify the underlying hardware features
along with the role served by a node (e.g., proxy or storage)
using the middleware.
The proposed middleware may enable a hook in a storlet

engine execution cycle and may facilitate a provision to
automatically determine the category of computation opera
tion deployed by the user. It may also support manual
determination of category of the computation operation by a
user (but may also include an automatic learning platform).
An example of category classification of deployed com

putation operation by a storlet engine middleware may
include: (Encrypt an object)->Encryption category: (..TXT
to PDF conversation)->File system/Direct Memory cat
egory; and (Seismic data processing)->Arithmetic category,
according to various embodiments.
The Storlet engine may keep track of various hardware

characteristics and/or parameters, including hardware fea
tures, disk speeds, role of the node, etc. and the deployed
computation operation category. The storlet engine may then
determine the appropriate hardware architecture node to be
selected for processing the deployed computation operation,
based on the characteristics and/or parameters, along with
the available resource consideration. The Storlet engine may
also perform a comparison of the determined computation

US 9,501,493 B1
11

operation category versus best matched hardware features
which are pre-programmed and inputted to the Storlet engine
as a template, according to various embodiments.

At 610 is shown an example Intel x86 node, with various
characteristics shown at 612, including number of cores,
disk speed, and whether node 610 is a proxy. A 614 is shown
an example Node N, as the table 600 may contain a plurality
of nodes and accompanying characteristics.

FIG. 7 depicts a block diagram 700 for assigning virtual
machines to nodes based on hardware characteristics,
according to various embodiments.

For example, if multi-vendor and/or commodity hardware
is to be utilized, along with sample hardware value addi
tions, plugged in to an object storage unit, the hardware may
be inefficient.

At 712 is a load balancer with which a user 710 may
communicate or the user 710 may configure. The load
balancer may communicate with a scheduler module 714.
The scheduler module 714 may communicate with an object
service module 716. The object service module may control
various nodes and/or VMS and may assign data or work to
be computed. The object service module may be in com
munication with various nodes, including an Intel x86 node
718, and ARM/RISC node 720, a Dell x86 node 722, an IBM
Power node 724, and an HP x86 node 726. The nodes may
include various features based on the hardware characteris
tics of each node or node-hosting hardware, as is described
herein. Various VMs may be assigned to various nodes using
the object service module 716, including VM1 734 to the
Intel x86 node 718, VM2 736 to the ARM/RISC node 720,
VM3 738 to the Dell x86 node 722, VM4 740 to the IBM
Power node 724, and VMS 742 to the HP x86 node 726. The
VMs, and workloads associated therewith, may be assigned
using the object service module, through which the load
balancer 712 and the scheduler 714 may interact, to nodes
and/or hardware as is appropriate and efficient, under vari
ous conditions, and according to various hardware charac
teristics, as described herein. A template may also be utilized
to assign nodes and operations to appropriate nodes.
A user may input data to an object storage interface,

including a username and password, according to various
embodiments. A computation operation may then be
uploaded to a storlet engine. The Storlet engine may then
trigger a container or VM to execute the computation
operation on a node. The node may be selected as being
where most of the data required for this computation opera
tion is located, or the node may be selected as having the
most available resources. A node may then be selected that
contains characteristics that allow for acceleration of execu
tion for the computation operation, which may result in
faster processing of for example, an encryption workload.
Usage of a storage unit may also be reduced as a result.
The present disclosure describes various methods and

systems for the flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be

10

15

25

30

35

40

45

50

55

60

65

12
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
The present invention may be a system, a method, and/or

a computer program product. The computer program prod
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention. The computer readable storage medium
can be a tangible device that can retain and store instructions
for use by an instruction execution device.
The computer readable storage medium may be, for

example, but is not limited to, an electronic storage device,
a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor Storage
device, or any Suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any Suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.
Computer readable program instructions described herein

can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, Switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.
Computer readable program instructions for carrying out

operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language Such as Smalltalk, C++ or
the like, and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the users computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be

US 9,501,493 B1
13

connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer readable program instructions. These
computer readable program instructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer readable
program instructions may also be stored in a computer
readable storage medium that can direct a computer, a
programmable data processing apparatus, and/or other
devices to function in a particular manner, such that the
computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow
chart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

10

15

25

30

35

40

45

50

55

60

65

14
The descriptions of the various embodiments of the

present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
What is claimed is:
1. A method for adjusting roles of nodes in a distributed

clustered file system, comprising:
receiving a first computation operation;
profiling the first computation operation by parsing the

first computation operation into a plurality of arithmetic
Sub-operations, and analyzing the plurality of arithme
tic Sub-operations;

determining, based on the profiling of the first computa
tion operation, a first file system attribute associated
with the first computation operation;

identifying, in response to determining the first file system
attribute, that the first computation operation requires a
node serving a first file system role by performing a
lookup operation based on a first computation opera
tion template, wherein the first computation operation
template identifies respective file system roles required
by respective computation operations; and
wherein the first computation operation template fur

ther identifies respective hardware characteristics
required for a node serving respective file system
roles including a respective hardware role, a respec
tive number of processing cores, a respective hard
disk speed, a respective thermal characteristic, a
respective hardware efficiency, a respective hyper
transport status, and a respective proxy status;

wherein each node of the plurality of nodes operate as
a storage node or a proxy node other than having
hardware characteristics for serving a file system
role;

identifying a first hardware characteristic of hardware on
which a first node of a plurality of nodes is hosted,
wherein the identifying a first hardware characteristic
comprises:
retrieving by a respective daemon of each respective

node, at respective scan intervals, respective hard
ware characteristics from respective nodes of the
plurality of nodes, wherein respective hardware
characteristics comprise hardware role, number of
processing cores, hard disk speed, thermal charac
teristics, hardware efficiency, hyper-transport status,
and proxy status and exporting the retrieved hard
ware characteristics to a memory in response to
identifying the first file system role; and

identifying respective nodes including the first node of
the plurality of nodes having respective hardware
characteristics required for respective file system
roles based on the retrieved respective hardware
characteristics stored in the memory;

receiving an identification that the first node has capabil
ity and can utilize additional computation of the first
file system role;

instantiating a virtualization unit on the first node,
wherein the first node is selected based on the first file
system attribute and the first hardware characteristics,

US 9,501,493 B1
15

and wherein the virtualization unit serves the first file
system role that can utilize the additional computation
of the virtualization unit; and

performing the first computation operation on the virtu
alization unit instantiated on the first node.

2. The method of claim 1, wherein the first file system
attribute is selected from a group consisting of node type,
features, file system roles, computation operation categories,
and tasks by served the first node.

3. The method of claim 1, further comprising:
receiving a second computation operation;
profiling the second computation operation according to

one or more metrics,
determining, based on the profiling of the second com

putation operation, a second file system attribute asso
ciated with the second computation operation.

4. The method of claim 1, wherein the determining the
first file system attribute is based on past performance.

5. The method of claim 1, wherein the first file system
attribute indicates a file system role required by the first
computation operation.

6. A system for adjusting roles of nodes in a distributed
clustered file system, comprising:

a processor coupled to a system memory, wherein the
processor is configured to:

receive a first computation operation;
profile the first computation operation by parsing the first

computation operation into a plurality of arithmetic
Sub-operations, and analyzing the plurality of arithme
tic Sub-operations;

determine, based on the profiling of the first computation
operation, a first file system attribute associated with
the first computation operation;

identify, in response to determining the first file system
attribute, that the first computation operation requires a
node serving a first file system role by performing a
lookup operation based on a first computation opera
tion template, wherein the first computation operation
template identifies respective file system roles required
by respective computation operations; and
wherein the first computation operation template fur

ther identifies respective hardware characteristics
required for a node serving respective file system
roles including a respective hardware role, a respec
tive number of processing cores, a respective hard
disk speed, a respective thermal characteristic, a
respective hardware efficiency, a respective hyper
transport status, and a respective proxy status;

identify a first hardware characteristics of hardware on
which a first node of a plurality of nodes is hosted,
wherein the identify a first hardware characteristic
comprises:
retrieving by a respective daemon of each respective

node, at respective scan intervals, respective hard
ware characteristics from respective nodes of the
plurality of nodes, wherein respective hardware
characteristics comprise hardware role, number of
processing cores, hard disk speed, thermal charac
teristics, hardware efficiency, hyper-transport status,
and proxy status and exporting the retrieved hard
ware characteristics to a memory in response to
identifying the first file system role; and

identifying respective nodes including the first node of
the plurality of nodes having respective hardware
characteristics required for respective file system
roles based on the retrieved respective hardware
characteristics stored in the memory;

10

15

25

30

35

40

45

50

55

60

65

16
receive an identification that the first node has capability

and can utilize additional computation of the first file
system role;

instantiate a virtualization unit on the first node, wherein
the first node is selected based on the first file system
attribute and the first hardware characteristics, and
wherein the virtualization unit serves the first file
system role that can utilize the additional computation
of the virtualization unit; and

perform the first computation operation on the virtualiza
tion unit instantiated on the first node.

7. The system of claim 6, wherein the first computation
operation template is configurable by a user.

8. The system of claim 6, wherein the processor is further
configured to:

receive a second computation operation;
profile the second computation operation according to one

or more metrics,
determine, based on the profiling of the second compu

tation operation, a second file system attribute associ
ated with the second computation operation.

9. The system of claim 6, wherein the first file system
attribute indicates a file system role required by the first
computation operation.

10. A computer-readable program product for adjusting
roles of nodes in a distributed clustered file system, the
computer program product comprising a computer readable
storage medium having program instructions embodied
therewith, the program instructions executable by a com
puter to cause the computer to perform a method compris
ing:

receiving a first computation operation;
profiling the first computation operation by parsing the

first computation operation into a plurality of arithmetic
Sub-operations, and analyzing the plurality of arithme
tic Sub-operations;

determining, based on the profiling of the first computa
tion operation, a first file system attribute associated
with the first computation operation;

identifying, in response to determining the first file system
attribute, that the first computation operation requires a
node serving a first file system role by performing a
lookup operation based on a first computation opera
tion template, wherein the first computation operation
template identifies respective file system roles required
by respective computation operations; and
wherein the first computation operation template fur

ther identifies respective hardware characteristics
required for a node serving respective file system
roles including a respective hardware role, a respec
tive number of processing cores, a respective hard
disk speed, a respective thermal characteristic, a
respective hardware efficiency, a respective hyper
transport status, and a respective proxy status;

wherein each node of the plurality of nodes operate as
a storage node or a proxy node other than having
hardware characteristics for serving a file system
role;

identifying a first hardware characteristic of hardware on
which a first node of a plurality of nodes is hosted,
wherein the identifying a first hardware characteristic
comprises:
retrieving by a respective daemon of each respective

node, at respective scan intervals, respective hard
ware characteristics from respective nodes of the
plurality of nodes, wherein respective hardware
characteristics comprise hardware role, number of

US 9,501,493 B1
17

processing cores, hard disk speed, thermal charac
teristics, hardware efficiency, hyper-transport status,
and proxy status and exporting the retrieved hard
ware characteristics to a memory in response to
identifying the first file system role; and 5

identifying respective nodes including the first node of
the plurality of nodes having respective hardware
characteristics required for respective file system
roles based on the retrieved respective hardware
characteristics stored in the memory;

receiving an identification that the first node has capabil
ity and can utilize additional computation of the first
file system role;

instantiating a virtualization unit on the first node.
wherein the first node is selected based on the first file
system attribute and the first hardware characteristics,
and wherein the virtualization unit serves the first file
System role that can utilize the additional computation
of the virtualization unit; and

performing the first computation operation on the virtu
alization unit instantiated on the first node.

10

15

18
11. The computer-readable program product of claim 10,

wherein the first file system attribute is selected from a group
consisting of node type, features, file system roles, compu
tation operation categories, and tasks by served the first
node.

12. The computer-readable program product of claim 10,
wherein the method further comprises:

receiving a second computation operation;
profiling the second computation operation according to

one or more metrics,
determining, based on the profiling of the second com

putation operation, a second file system attribute asso
ciated with the second computation operation.

13. The computer-readable program product of claim 10,
wherein the determining the first file system attribute is
based on metadata of the first computation operation.

14. The computer-readable program product of claim 10,
wherein the first file system attribute indicates a file system
role required by the first computation operation.

:k ck k k k

