
US 2012O117303A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0117303 A1

Carannante et al. (43) Pub. Date: May 10, 2012

(54) METADATA STORAGE ASSOCIATED WITH (22) Filed: Nov. 4, 2010
FLASHTRANSLATION LAYER

Publication Classification
(75) Inventors: Procolo Carannante, Monte Di

Procida (NA) (IT); Angelo Di Sena, (51) Int. Cl.
Arzano (NA) (IT): Fabio Salvati, G06F 12/00 (2006.01)
Montoro Inferiore (AV) (IT): G06F 2/02 (2006.01)
Giuseppe Ferrari, Napoli (NA)
(IT); Anna Sorgente, Marigliano (52) U.S. Cl. 711/103; 711/E12.001: 711/E12.008
(NA) (IT)

(57) ABSTRACT
(73) Assignee: Numonyx B.V., Rolle (CH)

Subject matter disclosed herein relates to storing information
(21) Appl. No.: 12/939,953 via a NAND flash translation layer.

500

Receive read operation request to
51O read from NAND memory

Determine location to read
520 NAND memory

Read Metadata from PCM
530

Read main area of NAND
memory and retrieve ECC from

540 spare area of NAND memory

550

Patent Application Publication May 10, 2012 Sheet 1 of 8 US 2012/011 7303 A1

135

160 17O

Patent Application Publication May 10, 2012 Sheet 2 of 8 US 2012/011 7303 A1

305

31 O

320

ECC and BB Info

Metadata and Markers

N-N-1
330

FIG. 3

Patent Application Publication May 10, 2012 Sheet 3 of 8 US 2012/011 7303 A1

Receive write operation
41 O request

Determine free portion of
420 NAND memory

Determine ECC

450
440

Write information in
main area of NAND Write

and associated ECC in metadata in
PCM Spare area

460

FIG. 4

Patent Application Publication May 10, 2012 Sheet 4 of 8 US 2012/011 7303 A1

500

Receive read operation request to
510 read from NAND memory

Determine location to read
520 NAND memory

Read Metadata from PCM
530

Read main area of NAND
memory and retrieve ECC from

540 Spare area of NAND memory

550

FIG. 5

Patent Application Publication May 10, 2012 Sheet 5 of 8 US 2012/011 7303 A1

Receive delete operation request
to delete at least a portion of

NAND memory 610

Determine portion of NAND
62O memory to be deleted

Set a delete flag of the deleted portion
630 by writing metadata on PCM

FIG. 6

Patent Application Publication May 10, 2012 Sheet 6 of 8 US 2012/011 7303 A1

Receive wear-leveloperation
710 request

730

Move main Move metadata

information in PCM Of a
720 pages of block

from block X X to block Y to block Y O OOC

Set block X to "invalid" flag by
740 Writing metadata in PCM

FIG. 7

Patent Application Publication May 10, 2012 Sheet 7 of 8 US 2012/011 7303 A1

810

SSue block
erase Command
On NAND for

block X

Set metadata in
PCM related to

block X
820

840

X greater than
last block Of
partition?

860

FIG. 8

Patent Application Publication May 10, 2012 Sheet 8 of 8 US 2012/011 7303 A1

940 9 OO

FIG. 9

US 2012/01 17303 A1

METADATA STORAGE ASSOCATED WITH
FLASHTRANSLATION LAYER

BACKGROUND

0001 1. Field
0002. Subject matter disclosed herein relates to storing
information via a flash translation layer.
0003 2. Information
0004 Electronic devices may include a NAND flash trans
lation layer (FTL) between a file allocation table (FAT) file
system, for example, and NAND-based flash memory, such as
NAND or OneNANDTM, available from Samsung Electron
ics of Hwasung-City, Gyeonggi-Do, Korea. FTL may com
prise a software sector manager to enable operation of NAND
flash memory using standard FAT-based file systems. Such an
FTL may include an application program interface (API), for
example. Non-volatile memories such as NAND flash may
store data or code without the need for a constant source of
power. This capability is useful for portable applications such
as digital cameras, MP3 players, PDAs, and data storage in
mobile phones, for example. However, flash technology may
require particular software to manage data. For this reason,
FTL software may perform operations to manage embedded
flash memory devices. With FTL software, a user need only
use relatively simple file system commands to interact with a
NAND flash memory device, for example.

BRIEF DESCRIPTION OF THE FIGURES

0005. Non-limiting and non-exhaustive embodiments will
be described with reference to the following figures, wherein
like reference numerals refer to like parts throughout the
various figures unless otherwise specified.
0006 FIG. 1 is a schematic view of a hardware/software
structure, according to an embodiment.
0007 FIG. 2 is a schematic view of a memory structure,
according to another embodiment.
0008 FIG. 3 is a schematic view of a memory structure,
according to yet another embodiment.
0009 FIG. 4 is a flow diagram of a memory write process,
according to an embodiment.
0010 FIG. 5 is a flow diagram of a memory read process,
according to an embodiment.
0011 FIG. 6 is a flow diagram of a memory delete process,
according to an embodiment.
0012 FIG. 7 is a flow diagram of a memory wear-level
process, according to an embodiment.
0013 FIG. 8 is a flow diagram of a memory format pro
cess, according to an embodiment.
0014 FIG.9 is a schematic block diagram of a computing
system and a memory device, according to an embodiment.

DETAILED DESCRIPTION

0015 Reference throughout this specification to “one
embodiment' or “an embodiment’ means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of claimed Subject matter. Thus, the appearances of the phrase
“in one embodiment” or “an embodiment in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea
tures, structures, or characteristics may be combined in one or
more embodiments.

May 10, 2012

0016. In an embodiment, a NAND flash translation layer
(FTL) may be used to at least partially manage operations of
NAND or NAND-based devices, such as OneNANDTM
device. Such a OneNANDTM device may comprise a memory
that includes one or more NAND devices and is capable of
exporting a different memory interface, such as a NOR-like
interface, for example. An FTL may be included in a memory
controller or a micro-controller, for example, or may com
prise a portion of an operating system or may be distributed as
a Software stand alone component. For example, an applica
tion may generate commands and/or addressing Suitable for a
hard disk drive or other memory device. A NAND FTL may
translate such commands and/or addressing to be Suitable for
NAND flash memory. In an implementation, a process of
translating such commands and/or addressing and perform
ing a write operation of information to a NAND memory, for
example, may result in generating metadata, error correction
code (ECC), and/or markers associated with the information.
Accordingly, the information may be written to one portion of
NAND memory and metadata, error correction code (ECC),
and/or markers associated with the information may be writ
ten to another portion of NAND memory. In a particular
example, the information may be written to a main area of
NAND memory and metadata, error correction code (ECC),
and/or markers associated with the information may be writ
ten to a spare area of the NAND memory.
0017. In one implementation, a relatively large portion of
operations performed by NAND FTL may comprise opera
tions to access (e.g., read/write) spare area of flash memory. A
duration of time spent accessing memory may be referred to
as busy time. Busy time to access memory in spare area of
NAND flash memory may be substantially the same as time to
access memory in a main area of NAND flash memory. Thus,
NAND FTL may spend a relatively large amount of time
accessing memory in a spare area of NAND memory to
read/write metadata, error correction code (ECC), and/or
markers, for example. Embodiments included herein describe
techniques to improve performance of NAND FTL and flash
memory by writing metadata and/or markers to a memory
type other than NAND, as described in detail below. Such
other type of memory may have faster access times, at least
for relatively small amounts of information (Such as the case
for metadata and/or markers, for example) to be read or writ
ten, than NAND memory. Herein, examples describe such
other type of memory as comprising phase change memory
(PCM), though it is understood that claimed subject matter is
not limited to PCM. For example, other types of memory that
may be used to write metadata and/or markers may comprise
nonvolatile memory such as NOR flash, cell trap NAND
flash, EEPROM, and so on. In particular embodiments, writ
ing information to NAND memory and to PCM may be
performed in parallel or concurrent operations to further
improve performance of flash FTL and flash memory.
0018. In an embodiment, a process to operate NAND flash
memory may include receiving a write request via a FTL to
store information in a NAND memory array. Such informa
tion may be associated with metadata, which may be descrip
tive of one or more locations where the information is to be
stored in the NAND memory array. For example, metadata
may comprise sector numbers, virtual block addresses, error
correction code (ECC), bad block markers, and so on. In one
implementation, Such metadata may be written to a type of
nonvolatile memory other than NAND memory. In particular,
such other type of nonvolatile memory may be selected to

US 2012/01 17303 A1

have faster read/write speeds than NAND memory, at least for
reading/writing relatively small amounts of information, as
discussed in detail below. PCM is one example of such
memory. Thus, information to be stored in NAND memory
may have associated metadata that may be stored in another
type of nonvolatile memory. In one particular implementa
tion, a process to store information in NAND memory may be
performed at the same time as a process to store associated
metadata in another type of nonvolatile memory. An ability to
concurrently perform such processes may result in NAND
memory showing faster write-speeds. In another particular
implementation, ECC of the information may be written to a
spare area of NAND memory while other metadata may be
written to another type of a nonvolatile memory device.
0019. In one embodiment, a process such as that described
above may involve a memory device comprising a NAND
memory array to store information associated with a write
request received via a FTL, and a nonvolatile memory being
another type of memory than the NAND memory array. Such
other type of memory may store metadata of the information.
Such a FTL may write information in a main area of a NAND
memory array and write metadata in a nonvolatile memory in
a parallel process, for example. In an implementation, such a
nonvolatile memory may comprise PCM. Of course, details
of Such a memory device and processes of operating Such a
memory device are merely examples, and claimed subject
matter is not so limited.

0020 Embodiments, such as those described above, may
allow for improved performance of storing information in
NAND memory by using PCM to store metadata. Though
such embodiments may incorporate PCM, merely a relatively
small amount of a PCM array may be used to store metadata.
For example, less than four megabytes of PCM may be used
for every one gigabyte of information to be stored in NAND
memory, though claimed Subject matter is not limited in this
respect.
0021. In an implementation, information may be stored in
multi-level cell (MLC) devices such as NAND flash. Such
MLC devices may allow a limited number of times that
memory array sectors or pages in the MLC devices may be
programmed between two erase operations. Such a limited
number of times, or number of operations (NOP), may be
merely one. Such a device may then be referred to as a NOP-1
device, for example. In one implementation, the number of
program operations on a sector or page between erase opera
tions need not be limited, thus allowing for a relatively easy
and more efficient algorithm to ensure power loss data safety
as part of a power loss recovery capability. For example. Such
a power loss recovery capability may help to ensure that an
unexpected power loss need not corrupt already-written data
in a memory system while also helping to ensure that the
memory system may operate correctly at a next power on
event. In an implementation, techniques to provide Such a
power loss recovery capability may include writing markers
and/or commits separately from data itself Some NAND or
NAND-based devices may have a constraint related to the
number of writes on a page between two block erase opera
tions (e.g., NOP-1 devices). Accordingly, Such devices may
not be power loss safe by themselves. Moving such markers
and/or commits to a PCM may overcome Such a constraint,
providing power loss recovery also for NOP-1 devices (such
as for MLC devices).
0022 FIG. 1 is a schematic view of hardware/software
structure 100, according to an embodiment. Such a memory

May 10, 2012

system may be operatively connected to a processor 140
hosting one or more applications 145, for example. Such
applications may initiate commands to access NAND
memory 160 and/or PCM 170 to write and/or read informa
tion via FTL 110. In one implementation, processor 140 may
transmit/receive such commands to/from a file system 150. In
Such a case, file system 150 may comprise a computer file
system architecture to provide a method of storing and/or
organizing computer files and information stored in the com
puter files. For example, file system 150 may be used to
organize computer files into a database for storage, organiza
tion, manipulation, and/or retrieval by processor 140. FTL
110 may comprise a NAND FTL to at least partially manage
operations of NAND memory 160 and/or PCM 170. For
example, applications 145 may generate commands and/or
addressing Suitable for addressing a hard disk drive (not
shown) or other memory device. FTL 110 may translate such
commands and/or addressing to be suitable for NAND flash
memory 160 and/or PCM 170.
0023. In a particular implementation, FTL 110 may
include a flash abstraction layer (FAL) 120 and a hardware
adaptation layer (HAL) 130. For example, FAL 120 may
provide a relatively high-level abstraction of the physical
organization of NAND memory 160, emulating rewriting of
memory sectors in hard disks by remapping new data to
another location in the NAND memory array and marking a
previous sector invalid. In addition, FAL 120 may perform
one or more operations to maintain integrity of NAND
memory 160. For example, FAL 120 may comprise badblock
management (BBM) module 122, wear-leveling module 124,
garbage collection module 126, and translation module 128,
for example. BBM module 122 may determine whether
memory blocks in NAND memory 160 are bad and may hide
such bad blocks from FAL 120 to prevent the FAL from
accessing them. Badblocks may comprise blocks of NAND
memory that contain one or more invalid bits whose reliabil
ity is not guaranteed. Badblocks may be present at the time a
NAND memory is manufactured and/or shipped, or bad
blocks may develop during the lifetime of the NAND
memory, for example.
0024. Wear-leveling module 124 may monitor and spread
the number of write cycles per block. Such a wear-leveling
process may be useful for NAND memory, which may be
programmed or erased reliably a limited number of times.
Memories not involved with a wear-leveling algorithm may
comprise blocks that are used at different rates. For example,
blocks with relatively long-lived, static data need not endure
as many write cycles as blocks involved with frequently
changed data. Wear Leveling module 124 may ensure that a
NAND memory array is used substantially uniformly by
monitoring and evenly distributing the number of erase cycles
per block. Thus, for example, if a block is requested by
translation module 128, the wear leveling module 124 may
allocate a least used block, though claimed Subject matter is
not so limited.

0025 FAL 120 may emulate rewriting sectors in hard
disks by remapping new information to another location of a
NAND memory array and marking a previous sector invalid.
After some time, it may be necessary to free Some invalid
memory space to further allow new information to be written.
To do this, FAL 120 may implement garbage collection mod
ule 126, which may copy valid sectors of NAND memory into
a new free area while erasing information in the old area.
Translation module 128 may provide translation from virtual

US 2012/01 17303 A1

to physical addresses and convert logical operations into
physical operations on NAND memory 160. Translation
module 128 may also handle exporting of operations avail
able on storage media (e.g., write sector, read sector and
format partitioning).
0026. As mentioned above, FTL 110 may include a hard
ware adaptation layer (HAL) 130 to manage hardware func
tions of NAND memory 160 and/or PCM170. For example,
in one implementation, HAL 130 may comprise, among other
things, a NAND driver 133 and a PCM driver 138. In other
implementations, HAL 130 need not include a PCM driver if,
for example, other types of memory are used in hardware/
software structure 100. HAL 130 may also include ECC
module 135 to detect and/or correct a particular number of
errors in information to be written to or read from NAND
memory 160. ECC module 135 may encode such information
to allow the ECC module to identify and/or correct errors in
the information. In a particular example, if ECC module 135
does not correct one or more errors successfully, FAL 120
may return a message to processor 140 indicating that an
operation has failed. As an illustrative example, ECC module
135 may implement ECC code to allow for correction of 1-bit
errors and/or to detect 2-bit errors for every 512 bytes of
information.

0027 FIG. 2 is a schematic view of a NAND memory
structure 200, according to an embodiment. For example,
NAND memory 160 shown in FIG. 1 may comprise NAND
memory structure 200, though claimed subject matter is not
so limited. NAND memory structure 200 may be partitioned
into a main memory area 210 and a spare memory area 220.
NAND memory structure 200 may comprise NAND flash
memory. NAND memory structure 200 may comprise a user
addressable memory space including Such main and spare
memory areas and/or one or more other memory areas, which
may or may not be contiguous with one another, and may or
may not reside on a single device. Main memory area 210 and
spare memory area 220 may comprise independent address
able spaces that may be accessed by read, write, and/or erase
processes, for example. In one implementation, main
memory area 210 may comprise one or more sectors 212 of
memory to store information. For example, such sectors may
have a capacity to store two kilobytes of information, though
claimed subject matter is not so limited. For NAND memory,
information may be written a sector at a time. Spare memory
area 220 may be used to store metadata and/or ECC associ
ated with information written to main memory area 210. In a
particular example, such metadata and/or ECC may have a
size of about twenty bytes for every two kilobytes of infor
mation (e.g., a size of a sector). In one implementation, meta
data and/or ECC may be written to spare memory area 220 in
a same operation (e.g., at the same time) that information is
written to main memory area 210. On the other hand, in
another implementation, metadata and/or ECC may be writ
ten to spare memory area 220 in an operation separate and/or
Subsequent to an operation of writing information to main
memory area 210. In this case, write performance of NAND
memory structure 200 may be relatively slow because the
time it takes to write twenty bytes of metadata and/or ECC
may be as long as the time it takes to write two kilobytes of
information, for example. As mentioned above, write opera
tions may be performed on no less than a sector of NAND
memory at a time, whether writing to main memory area 210
or spare memory area 220. Another type of nonvolatile
memory, however, such as PCM for example, may be written

May 10, 2012

to less than a sector at a time. Accordingly, as discussed in
detail below, PCM may be incorporated to store metadata,
resulting in improved performance of NAND write opera
tions.

0028 FIG. 3 is a schematic view of a memory structure
300, according to an embodiment. Memory structure 300
may comprise NAND memory 305 and secondary memory
330, which may comprise PCM or other nonvolatile memory
other than NAND memory. For example, NAND memory
160 shown in FIG. 1 may comprise NAND memory 305,
though claimed subject matter is not so limited. For illustra
tive reasons, the embodiment of FIG. 3 will be described so
that secondary memory 330 comprises PCM330. It is under
stood, however, that any of a number of memory types may be
used in place of PCM, and claimed subject matter is not
limited in this respect. As described for FIG. 2 above, NAND
memory 305 may be partitioned into a main memory area 310
and a spare memory area 320. NAND memory 305 may
comprise NAND flash memory. Main memory area 310 and
spare memory area 320 may comprise independent address
able spaces that may be accessed by read, and/or write pro
cesses, for example. In one implementation, main memory
area 310 may comprise one or more sectors 312 of physical
memory to store information. For example, as described
above for sectors 212 in FIG. 2, such sectors may have a
Substantially uniform, predefined capacity to store informa
tion, though claimed Subject matter is not so limited. Spare
memory area 320 may be used to store ECC and/or bad block
information. In particular, such ECC may be associated with
information written to main memory area 310, and bad block
information may be descriptive of sectors 312 in NAND
memory 305, for example. Meanwhile, metadata (such as that
associated with garbage collection and/or wear-leveling for
example) associated with information written to main
memory area 310 may be written to and maintained in PCM
330. In one implementation, markers may also be written to
and maintained in PCM 330. Such markers, which may be
generated if information is written to main memory area 310,
may comprise invalid block markers, delete sector markers,
and/or markers resulting from write commit and/or erase
commit to ensure that an erase operation of a particular block
is completed, just to name a few examples. Markers may also
include write commit, used to ensure that information written
is valid during write operations, and invalid block markers to
indicate that a particular block contains invalid information.
0029. As mentioned above, such metadata (as well as
markers) may have a size of about twenty bytes for every two
kilobytes of information (e.g., a size of a sector). In one
implementation, metadata and/or markers may be written to
PCM 330 in a same operation (e.g., at the same time) that
information is written to main memory area 310 of NAND
memory 305. On the other hand, in another implementation,
metadata and/or markers may be written to PCM 330 in an
operation separate and/or Subsequent to an operation to write
information to main memory area 310. Because small
amounts of data (e.g., twenty bytes) may be written to PCM
330 faster than would be the case for writing to NAND spare
memory 320, write performance of memory structure 300
may be improved compared to write performance of memory
structure 200. As mentioned above, write operations may be
performed on no less than a sector of NAND memory 305 at
a time, but write operations may be performed a byte at a time
in PCM 330, for example. Thus, introducing a secondary
memory, such as PCM330, to memory structure 300 to store

US 2012/01 17303 A1

metadata may result in improved write performance. Of
course, such details of memory structure 300 are merely
examples, and claimed Subject matter is not so limited.
0030 FIG. 4 is a flow diagram of a memory write process
400, according to an embodiment. In one example, memory
write process may be performed using memory structure 300
shown in FIG. 3. At block 410, a FTL, such as FTL 110 shown
in FIG. 1, for example, may receive a write operation request
to write information in NAND memory. Such an FTL may
comprise at least a portion of write, erase, read, and/or format
processes, for example, which may be performed by a pro
cessor, a memory controller, or by a dedicated micro-control
ler. Such a request, for example, may originate from a pro
cessor connected to the FTL. As a result, at block 420, the
FTL may determine a free portion of NAND memory in
which to write information of the write request. In addition to
considering which portions of NAND memory are free, such
a determination may be based, at least in part, on wear
leveling and/or badblock information, among other things. At
block 430, the FTL may determine ECC for the information
to be written to NAND memory. At block 440, such ECC may
be written to a spare area of NAND memory while associated
information may be written to a main area of NAND memory.
In a particular implementation, at block 450, metadata asso
ciated with the information being written to NAND memory
may be written to PCM in a parallel process. Process 400 may
then proceed to oval 460 to end a write process. Of course,
details of Such a process are merely examples, and claimed
Subject matter is not so limited.
0031 FIG. 5 is a flow diagram of a memory read process
500, according to an embodiment. In one example, memory
read process may be performed using memory structure 300
shown in FIG. 3. At block 510, a FTL, such as FTL 110 shown
in FIG. 1, for example, may receive a read operation request
to read information in NAND memory. Such a request, for
example, may originate from a processor operationally con
nected to the FTL. As a result, at block 520, the FTL may
determine a location of NAND memory from where to read
information of the read request. Such determining may be
based, at least in part, on an address that may accompany a
read request. At block 530, the FTL may read metadata from
PCM. A location where such metadata is stored may be
uniquely associated with the block and page number of an
associated read request. Such a location may be calculated
starting from a base address in PCM space, depending on the
implementation. Of course. Such details are merely examples.
Other techniques or schema, which may be relatively com
plex, may be involved to calculate or determine location
where metadata may be stored. For example, Such schema
may involve a variable number of bytes per page and/or
additional bytes associated with a block or a set of blocks. In
another example, such schema may involve associating dif
ferent locations to the same page in different statuses or times,
though claimed Subject matter is not limited in this respect. At
block 540, information stored in a main area of NAND
memory may be read and ECC associated with the informa
tion may be retrieved from a spare area of NAND memory.
Process 500 may then proceed to oval 550 to end a read
process. Of course, details of Such a process are merely
examples, and claimed Subject matter is not so limited.
0032 FIG. 6 is a flow diagram of a memory delete process
600, according to an embodiment. In one example, memory
delete process may be performed using memory structure 300
shown in FIG. 3. At block 610, a FTL, such as FTL 110 shown

May 10, 2012

in FIG. 1, for example, may receive a delete operation request
to delete information in NAND memory. Such a request, for
example, may originate from a processor operationally con
nected to the FTL. As a result, at block 620, the FTL may
determine a location of NAND memory from where to delete
information of the delete request. Such determining may be
based, at least in part, on an address that may accompany a
delete request. At block 630, the FTL may set a delete flag or
perform another process to indicate that a particular portion
of NAND memory has been deleted. Such a delete flag, for
example, may be written as metadata in PCM. Process 600
may then proceed to oval 640 to end a delete process. Of
course, details of Such a process are merely examples, and
claimed Subject matter is not so limited.
0033 FIG. 7 is a flow diagram of a memory wear-level
process 700, according to an embodiment. Such a process
may lead to Substantially uniform usage of physical blocks in
a NAND memory. At block 710, a FTL, such as FTL 110
shown in FIG. 1, for example, may receive a wear-levelopera
tion request from a processor operationally connected to the
FTL. In another implementation, FTL may initiate a wear
level process from time to time or on a scheduled basis, and
claimed Subject matter is not limited in this respect. Such a
process may include relocating data stored in an initial por
tion of memory to another portion of memory. Accordingly,
FTL may modify an address that identifies the initial portion
of memory to an address that identifies the new portion of
memory to contain the relocated data. In particular wear-level
process 700, a memory block X of information stored in a
main area of NAND memory may be moved to a memory
block Y in the main area of NAND memory, for example, as
at block 720. Metadata associated with the information
moved from memory block X may be stored in PCM, as
discussed above. At block 730, such metadata may be moved
from its present location in the PCM to another location in the
PCM that corresponds to memory blockY. In one implemen
tation, operations to write to the PCM may be performed to
store new information mapping between a NAND memory
and PCM locations. In one implementation of wear-level
process 700, moving memory blocks of information in
NAND and moving metadata associated with the information
may be performed in parallel processes (e.g., performed at the
same time), though claimed Subject matter is not so limited.
At block 740, FTL may set a particular flag to indicate that
memory block X is “invalid’ so that the FTL may avoid
writing new information to memory block X, at least for a
particular time, for example. Such a flag may also indicate
that memory block X no longer stores valid information. Such
a flag may be written to and maintained by the PCM. As
discussed above, relatively Small amounts of data, Such as a
flag, may be written to PCM, whereas writing to NAND
memory may be performed in no less than sectors of data.
Accordingly, performance of NAND memory may be
improved (e.g., time may be saved) by writing a flag to PCM
instead of the NAND memory. Process 700 may then proceed
to oval 750 to end a wear-level process. Of course, details of
Such a process are merely examples, and claimed Subject
matter is not so limited.

0034 FIG. 8 is a flow diagram of a memory format process
800, according to an embodiment. For example, FTL may
perform such a process to erase all blocks or a contiguous area
of memory in a NAND memory sequentially one block at a
time. At block 810, a counter X may be initially set to the
number of the first block in the area to be erased, such as Zero

US 2012/01 17303 A1

in the case described in process 800. At block 820, FTL may
performan operation to erase thex" block of NAND memory.
If x comprises the initial value Zero, such a block may be the
first block of a memory device to be erased. In one imple
mentation, in a parallel process, at block 830, metadata asso
ciated with the X-numbered block in the NAND memory may
be generated and written to PCM. In an example, such meta
data may comprise the number oferases performed on a given
block. As mentioned above for process 700, relatively small
amounts of data, such as metadata, may be written to PCM,
whereas writing to NAND memory may be performed in no
less than blocks of data. Accordingly, performance of NAND
memory may be improved (e.g., time may be saved) by writ
ing metadata to PCM instead of the NAND memory. At block
840, counter X may be incremented to a subsequent value. At
diamond 850, if counter X is greater than the number of blocks
to be erased, then process 800 may end at oval 860. On the
other hand, if counter X is less than the number of blocks to be
erased, then process 800 may return to blocks 820 and 830 to
erase the X-numbered block in the NAND memory and to
generate metadata associated with the X-numbered block. Of
course, details of Such a process are merely examples, and
claimed Subject matter is not so limited.
0035 FIG. 9 is a schematic diagram illustrating an exem
plary embodiment of a computing system 900 including a
memory device 910. Such a computing device may comprise
one or more processors, for example, to execute an applica
tion and/or other code. A computing device 904 may be
representative of any device, appliance, or machine that may
be configurable to manage memory device 910. Memory
device 910 may include a memory controller 915 and a
memory 922. By way of example but not limitation, comput
ing device 904 may include: one or more computing devices
and/or platforms, such as, e.g., a desktop computer, a laptop
computer, a workStation, a server device, or the like; one or
more personal computing or communication devices or appli
ances, such as, e.g., a personal digital assistant, mobile com
munication device, or the like; a computing system and/or
associated service provider capability, Such as, e.g., a data
base or data storage service provider/system; and/or any com
bination thereof.

0036. It is recognized that all or part of the various devices
shown in system 900, and the processes and methods as
further described herein, may be implemented using or oth
erwise including hardware, firmware, Software, or any com
bination thereof. Thus, by way of example but not limitation,
computing device 904 may include at least one processing
unit 920 that is operatively coupled to memory 922 through a
bus 940 and a host or memory controller915. Processing unit
920 is representative of one or more circuits configurable to
perform at least a portion of a data computing procedure or
process. By way of example but not limitation, processing
unit 920 may include one or more processors, controllers,
microprocessors, microcontrollers, application specific inte
grated circuits, digital signal processors, programmable logic
devices, field programmable gate arrays, and the like, or any
combination thereof. Processing unit 920 may include an
operating system configured to communicate with memory
controller 915. Such an operating system may, for example,
generate commands to be sent to memory controller 915 over
bus 940. In one implementation, memory controller 915 may

May 10, 2012

comprise an internal memory controller or an internal write
state machine, wherein an external memory controller (not
shown) may be external to memory device 910 and may act as
an interface between the system processor and the memory
itself, for example. Such commands may comprise read and/
or write commands.

0037 Memory 910 is representative of any data storage
mechanism. In an implementation, memory 922 may include
primary memory 924 and/or a secondary memory 926. Pri
mary memory 924 may comprise NAND, for example, while
secondary memory 92.6 may comprise a PCM. While illus
trated in this example as being separate from processing unit
920, it should be understood that all or part of primary
memory 924 may be provided within or otherwise co-located/
coupled with processing unit 920.
0038. In one embodiment, computing system 900 may
comprise a memory device that includes an array of NAND
memory cells and a FTL to receive a write request to store
information in the array of NAND memory cells, determine
metadata of the information, write the information in the
array of NAND memory cells, and write the metadata in a
nonvolatile memory other than the NAND memory array.
Such other nonvolatile memory may comprise PCM, for
example. System 900 may further include processor 920 to
host one or more applications and to initiate the write request
to the flash translation layer to provide access to the NAND
memory cells in the memory device.
0039. Secondary memory 92.6 may include, for example,
the same or similar type of memory as primary memory
and/or one or more data storage devices or systems, such as,
for example, a disk drive, an optical disc drive, a tape drive, a
Solid state memory drive, etc. In certain implementations,
secondary memory 92.6 may be operatively receptive of, or
otherwise configurable to couple to, a computer-readable
medium 928. Computer-readable medium 928 may include,
for example, any medium that can carry and/or make acces
sible data, code, and/or instructions for one or more of the
devices in system 900.
0040 Computing device 904 may include, for example, an
input/output 932. Input/output 932 is representative of one or
more devices or features that may be configurable to acceptor
otherwise introduce human and/or machine inputs, and/or
one or more devices or features that may be configurable to
deliver or otherwise provide for human and/or machine out
puts. By way of example but not limitation, input/output
device 932 may include an operatively configured display,
speaker, keyboard, mouse, trackball, touch screen, data port,
etc.

0041. In the above description, numerous specific details
are set forth to provide a thorough understanding of claimed
subject matter. However, it will be understood by those
skilled in the art that claimed subject matter may be practiced
without these specific details. In other instances, methods,
apparatuses, or systems that would be known by one of ordi
nary skill have not been described in detail so as not to
obscure claimed subject matter.
0042. In the above description of various memories, one or
more portions of Such memories may store digital signals
representative of data and/or information as expressed by a
particular state of the memories. For example, an electronic
signal representative of data and/or information may be

US 2012/01 17303 A1

'stored in a portion of memory device by affecting or chang
ing the State of Such portions of memories to represent data
and/or information as binary information (e.g., ones and
Zeros). As such, in a particular implementation, Such a change
of state of the portion of memory to store a signal represen
tative of data and/or information constitutes a transformation
of memories to a different state or thing. Of course, details of
Such memories are merely examples, and claimed Subject
matter is not so limited.
0043. The terms, “and, “and/or and “or' as used herein
may include a variety of meanings that will depend at least in
part upon the context in which it is used. Typically, “and/or
as well as 'or' if used to associate a list, such as A, B or C, is
intended to mean A, B, and C, here used in the inclusive sense,
as well as A, B or C, here used in the exclusive sense. Refer
ence throughout this specification to “one embodiment” or
“an embodiment’ means that aparticular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of claimed subject
matter. Thus, the appearances of the phrase “in one embodi
ment” or “an embodiment in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, structures,
or characteristics may be combined in one or more embodi
ments. Embodiments described herein may include
machines, devices, engines, or apparatuses that operate using
digital signals. Such signals may comprise electronic signals,
optical signals, electromagnetic signals, or any form of
energy that provides information between locations.
0044) While there has been illustrated and described what
are presently considered to be example embodiments, it will
be understood by those skilled in the art that various other
modifications may be made, and equivalents may be substi
tuted, without departing from claimed Subject matter. Addi
tionally, many modifications may be made to adapt a particu
lar situation to the teachings of claimed Subject matter
without departing from the central concept described herein.
Therefore, it is intended that claimed subject matter not be
limited to the particular embodiments disclosed, but that such
claimed Subject matter may also include all embodiments
falling within the scope of the appended claims, and equiva
lents thereof.

What is claimed is:
1. A method comprising:
receiving a write request via a flash translation layer to

store information in a NAND or NAND-based memory
array;

determining metadata of said information;
writing said information in said NAND or NAND-based
memory array; and

writing said metadata in a second memory, said second
memory comprising a type of nonvolatile memory other
than that of said NAND or NAND-based memory array.

2. The method of claim 1, further comprising:
determining an error correction code (ECC) of said infor

mation; and
writing said ECC in said NAND or NAND-based memory

array.
3. The method of claim 1, further comprising:
writing bad block information in said NAND or NAND

based memory array.
4. The method of claim 1, wherein said writing said infor

mation in said NAND or NAND-based memory array and

May 10, 2012

said writing said metadata in said second memory are per
formed concurrently with one another.

5. The method of claim 1, wherein said second memory
comprises phase change memory (PCM).

6. The method of claim 1, wherein said metadata comprises
sector numbers and/or virtual blockaddresses of said NAND
or NAND-based memory array.

7. The method of claim 1, wherein said NAND or NAND
based memory array comprises a multi-level NAND or
NAND-based memory array.

8. The method of claim 5, moving markers and/or commits
to said PCM to provide power loss recovery on a NOP-1
device.

9. A memory device comprising:
a NAND or NAND-based memory array to store informa

tion associated with a write request received via a flash
translation layer; and

a second memory comprising a type of nonvolatile
memory other than that of said NAND or NAND-based
memory array to store metadata of said information,
wherein said flash translation layer is adapted to write
said information in said NAND or NAND-based
memory array and to write said metadata in said second
memory in a parallel process.

10. The memory device of claim 9, wherein said flash
translation layer is further adapted to write an error correction
code (ECC) of said information in said NAND or NAND
based memory array.

11. The memory device of claim 9, wherein said flash
translation layer is further adapted to write bad block infor
mation in said NAND or NAND-based memory array.

12. The memory device of claim 9, wherein said second
memory comprises phase change memory (PCM).

13. The memory device of claim 12, wherein said flash
translation layer comprises a NAND driver and a PCM driver.

14. The memory device of claim 9, wherein said flash
translation layer comprises hardware and/or Software to man
age badblocks of said NAND or NAND-based memory array
and to manage wear leveling of said NAND or NAND-based
memory array.

15. The memory device of claim 9, wherein said metadata
comprises sector numbers and/or virtual block addresses of
said NAND or NAND-based memory array.

16. A system comprising:
a memory device comprising at least one array of NAND
memory cells, said memory device further comprising a
flash translation layer to:
receive a write request to store information in said array

of NAND memory cells;
determine metadata of said information;
write said information in said array of NAND memory

cells; and
write said metadata in a second memory comprising a

type of nonvolatile memory other than that of said
array of NAND memory cells; and

a processor to host one or more applications and to initiate
said write request to said flash translation layer to pro
vide access to said array of NAND memory cells in said
memory device.

17. The system of claim 16, wherein said flash translation
layer is adapted to:

determine an error correction code (ECC) of said informa
tion; and

write said ECC in said array of NAND memory cells.

US 2012/01 17303 A1 May 10, 2012

18. The system of claim 16, wherein said flash translation writing said metadata in said second memory are performed
layer is adapted to: concurrently with one another.

20. The system of claim 16, wherein said metadata com
prises sector numbers and/or virtual block addresses of said
array of NAND memory cells.

write bad block information in said array of NAND
memory cells.

19. The system of claim 16, wherein said writing said
information in said array of NAND memory cells and said ck

