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METHODS FOR ANALYSES OF INTERNAL STRUCTURES AND DEFECTS IN
MATERIALS USING PHYSICS-INFORMED NEURAL NETWORKS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims the benefit of U.S. provisional application number
63/307,478, filed February 7, 2022, the entire contents of which is incorporated herein by

reference.

FIELD OF THE INVENTION
[0002] The present invention is related to physics-informed machine learning, and, in
particular, utilizing physics-informed neural networks to examine internal structures and defects
of solid materials, including (1) geometry identification and (2) design of optimized and/or

improved geometry.

BACKGROUND
[0003] Deep learning approaches play an increasingly significant role in a wide range of
technologies that benefit computer vision, natural language processing, and other data-rich areas
of societal interest. Despite the evolving sophistication of data analytics and neural networks
(NNs), much of this work to date has not been predicated on a large volume of scientific data,
through which predictive models can be constructed using experimentally validated mechanistic
inferences and laws of physics. In most scientific applications, by contrast, physical conservation
laws (such as those for momentum and energy) are framed by highly general, mathematical
formulations (e.g., those invoking partial differential equations (PDEs) in areas such as solid
mechanics, fluid mechanics, and material diffusion), along with experimental authentication by

recourse to laboratory tests.

SUMMARY
[0004] According to one aspect, a method for analyzing an aspect of a solid
material/structure is provided. The method includes receiving one or more geometric variables as

one or more inputs to physics-informed neural networks (PINNs). The method also includes
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characterizing/parametrizing a first geometry according to the one or more geometric variables.
The method further includes identifying one or more aspects of the solid material/structure based
on the first geometry, wherein characterizing/parametrizing a first geometry is performed in a

trainable manner.

[0005] According to another aspect, a method for analyzing an aspect of a solid material
is provided. The method includes receiving one or more geometric variables as one or more inputs
to physics-informed neural networks (PINNs). The method also includes generating features and
parameters of a second geometry of one or more aspects of a solid material, wherein generating
features and parameters of a second geometry achieves an improved performance based on one or
more objectives, wherein an improved performance based on one or more objectives is performed

in a trainable manner.

[0006] In some exemplary embodiments of the methods, the one or more aspects of the
solid material/structure includes at least one of one or more internal structures, internal
surfaces/boundaries, external structures, or external surfaces/boundaries. In some exemplary
embodiments of the methods, the one or more aspects of the solid material/structure includes one

or more defects in the solid material/structure.

[0007] In some exemplary embodiments of the methods, the trainable manner includes
substituting one or more geometric variables such as geometry trainable variables, geometry-

dependent training points, and/or making the gradient with respect to geometry tractable.

[0008] In some exemplary embodiments, characterizing/parametrizing a first geometry
includes inversely characterizing a first geometry of at least one of one or more internal structures,
internal surfaces/boundaries, external structures, or external surfaces/boundaries according to
displacement data. In other exemplary embodiments, generating features and parameters of a
second geometry includes inversely designing the second geometry of at least one of one or more
internal  structures, internal surfaces/boundaries, external structures, or external

surfaces/boundaries according to a predefined objective function.
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[0009] In some exemplary embodiments, identifying one or more aspects of the solid
material/structure based on the first geometry includes concurrently identifying one or more full
field stresses, strains, and/or displacements in the one or more aspects of the solid

material/structure.

[00010] In some exemplary embodiments of the methods, a framework for inversely
characterizing and/or designing involves unknown/moving domains directly parameterizing a
computational domain/geometry with material and geometry parameterization. In some exemplary
embodiments, inversely characterizing a first geometry includes minimizing a discrepancy/loss
between the displacement data and one or more results of a forward solver. In other exemplary

embodiments, inversely designing a second geometry includes minimizing the objective function.

[00011] In some exemplary embodiments of the methods, characterizing/parametrizing a
first geometry or generating features and parameters of a second geometry includes representing
of at least one of one or more internal structures, internal surfaces/boundaries, external structures,
or external surfaces/boundaries by analytical function(s), parameterized function(s),a non-uniform
rational basis spline (NURBS) or other neural network(s). Additionally, a shape of the at least one
of one or more internal structures, internal surfaces/boundaries, external structures, or external

surfaces/boundaries are simple or arbitrarily complicated.

[00012] In some exemplary, embodiments, concurrently identifying the full field stresses,
strains, displacements in the one or more solid materials/structures includes one or more different
shapes and/or topologies of the one or more solid materials/structures and different constitutive
models for describing the mechanical properties of the one or more solid materials/structures.
Further, the different constitutive models for describing the mechanical properties of the one or
more solid materials/structures include measuring linear elasticity, nonlinear elasticity or

hyperelasticity, and plasticity.



WO 2023/150352 PCT/US2023/012420

[00013] In some exemplary embodiments of the methods, the trainable manner includes a
pretraining process for the PINNs. This pretraining process includes maintaining one or more
estimated unknown parameters @ defined as fixed/not trainable and updating one or more trainable
parameters of a neural network (NN) 4 for one or more iterations. The pretraining process also
includes solving one or more forward problems to capture a qualitative pattern of a displacement
field and a stress field. The pretraining process further includes solving one or more forward
problems until both a loss function and one or more estimated geometric parameters reach a
relative plateau following pretraining of the PINNs. Additionally, both 4 and @ are then trainable,
with 4 converged towards to a desired local minimum, and the pretraining process stabilizes the
trainable manner of the PINNs. In some exemplary embodiments, an estimation of geometric
parameters is automatically updated as the PINNs minimize the loss function during the pretraining
and/or training process for the PINNs, including enforcing one or more diverse types of conditions
in problem definition for integration into the PINNs in the form of the loss function during the

pretraining and/or training process for the PINNS.

[00014] In some exemplary embodiments of the methods, the one or more geometric
variables parameterize the computational domains of partial differential equations (PDEs) and
boundary conditions. Additionally, the one or more geometric variables are first defined as
trainable before expressing one or more locations of residual points as functions of the one or more
geometric variables. In some exemplary embodiments, the one or more locations of the residual
points are automatically updated as an estimation of the one or more geometric variables are
updated throughout the training process. Additionally, the one or more locations of the residual
points for one or more different conditions are in their correct domains, allowing the capturing of
a gradient of a loss function £ with respect to the one or more geometric variables. Further, the
residual points for the one or more different conditions allows for the PINNs to correctly update
estimation and/or design of the one or more geometric variables throughout the training process
and characterize/design the at least one of one or more internal structures, internal

surfaces/boundaries, external structures, or external surfaces/boundaries and/or defects.
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[00015] In some exemplary embodiments, characterizing/parametrizing a first geometry
includes accurately estimating the one or more geometric variables and one or more material
parameters with limited non-destructive measurements. Accurately estimating the unknown
geometric and one or more material parameters includes a relative error 0(1072) when proper
displacement data are supplied to ensure identifiability. Additionally, characterizing/parametrizing
a first geometry further includes placing one or more displacement measurement points only on

an boundary of a solid material/structure.

[00016] According to another aspect, a method for utilizing physics-informed neural
networks (PINNs) to examine internal structures and defects of solid materials/structures is
provided. The method includes applying a neural network to approximate the primary solution
fields. The method also includes integrating one or more mechanical laws into the PINN by
deriving relevant mechanical quantities of interest from one or more neural network (NN) outputs,
such as strain, stress, and/or residual of equilibrium partial differential equations (PDEs). The
method further includes formulating a loss function £(4,8), wherein the loss function
L(A, 8) measures a discrepancy between predicted mechanical quantities of interest and their
respective true values provided by the one or more mechanical laws and measured data. The
method further includes conducting parameter estimation through a training of the PINN, wherein

the training of the PINN includes updating/training unknown parameters 8 = (Bmat, Bgeo) and

neural networks parameters 4 to minimize the loss function.

[00017] According to another aspect, a method for utilizing physics-informed neural
networks (PINNs) to examine internal or external structures and defects of solid
materials/structures is provided. The method includes minimizing Lppg (4, 8), Lgc(4, 8), wherein
minimizing Lppg(4, 8), Lgc(4, 8) includes satisfying a governing partial differential equation
(PDE) and one or more boundary conditions as the PINN seeks to minimize a loss function.
Additionally, one or more constraints are satisfied through minimizing L.ps-(4, @), wherein the
one or more constraints are directly incorporated through designing an architecture of PINNS.

Further, a design target is achieved through minimizing Leargec(4, @), and one or more relevant
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geometric parameters in @ are adjusted to minimize the loss function and realize a design of optimal

geometry.

BRIEF DESCRIPTION OF THE DRAWINGS
[00018] The present disclosure will be described more fully hereinafter with reference to
the accompanying drawings, in which preferred embodiments of the disclosure are shown. This
disclosure may, however, be embodied in many different forms and should not be construed as
limited to the embodiments set forth herein. Rather, these embodiments are provided so that this
disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those
skilled in the art. Like numbers refer to like elements throughout. Other objects, features and
advantages of the present disclosure will become apparent from the detailed description of the

disclosure, which follows when considered in light of the accompanying drawings in which:

[00019] FIG. 1A provides a diagram of an architecture of the PINN for a plane-strain
problem for a compressible linear elasticity material model.

[00020] FIG. 1B provides a diagram of an architecture of the PINN for a plane-strain
problem for an incompressible hyperelasticity material model.

[00021] FIG. 1C provides a diagram of an architecture of the PINN for a plane-strain
problem for a compressible deformation plasticity material model.

[00022] FIG. 1D a tabular view of definitions of mechanical quantities of interest in the
architectures of PINNs for inverse problems in continuum solid mechanics including geometry
identification and geometry design according to the present disclosure.

[00023] FIG. 2 provides charts of the placement of residual points for the initial geometry
and updated geometry in Cases 0, 4 and 7B.

[00024] FIG. 3 provides a diagram of the general setup of Cases 0-5 of the prototypical
problem on geometry and material identification in the present disclosure.

[00025] FIG. 4A provides a diagram of the specific setup of Case 0 evaluating compressible
linear elasticity for one elliptical void as relates to geometry and material identification in the

present disclosure.



WO 2023/150352 PCT/US2023/012420

[00026] FIG. 4B provides four diagrams of the specific setup of Cases 1, 2, 4, and 5,
evaluating incompressible Neo-Hookean hyperelasticity for one elliptical void, one slit-shaped
void, two circular voids, and one circular inclusion, respectively, as relates to geometry and
material identification in the present disclosure, and also includes the legend relating to respective
sketching schemes includes in FIGs. 3-8.

[00027] FIG. 4C provides a diagram of the specific setup of Case 3 evaluating compressible
deformation plasticity for one circular void as relates to geometry and material identification in
the present disclosure.

[00028] FIG. 4D provides a diagram of the respective hashing schemes for FIGs. 3-8
relating to void, matrix, and inclusion problems of linear elasticity, hyperelasticity, and

deformation plasticity.

[00029] FIG. 5 provides a tabular view of parameter estimation for Cases 0-5 shown in
FIGs. 3 and 4.
[00030] FIG. 6 provides six diagrams of the inference of the deformed patterns compared

with ground truth (obtained from FEM) for Cases 0-5, shown in FIGs. 3 and 4A-4C.

[00031] FIG. 7 provides an illustration of the inference of the stress patterns compared with
ground truth (obtained from FEM) for Case 4 shown in FIGs. 3 and 4.

[00032] FIG. 8 provides an illustration of the inference of the plastic zone compared with

ground truth (obtained from FEM) for Case 3 shown in FIGs. 3 and 4.

[00033] FIG. 9 provides a graphical depiction of the setup of Case 6 on a fiber-reinforced
material.
[00034] FIG. 10 provides a graphical depiction of the designed fiber thickness profile in

Case 6 shown in FIG. 9.

[00035] FIG. 11 provides a tabular view of the design results compared with the optimal
reference solution (obtained from FEM) in Case 6 shown in FIG. 9.

[00036] FIG. 12 provides graphical depictions of the setup of Cases 7A and 7B on a matrix-
void system.

[00037] FIG. 13 provides a graphical depiction of the designed void shape in Case 7A
shown in FIG. 12.
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[00038] FIG. 14 provides a graphical depiction of the optimal reference solution (obtained
from FEM) in Case 7A shown in FIG. 12.

[00039] FIG. 15 provides a tabular view of the design results compared with the optimal
reference solution (obtained from FEM) in Case 7A shown in FIG. 12.

[00040] FIG. 16 provides a graphical depiction of the designed void shape in Case 7B shown
in FIG. 12.
[00041] FIG. 17 provides a graphical depiction of the setup of Case 7C on a matrix-void

system with multiple loading conditions.

[00042] FIG. 18 provides a tabular view of the design results compared the optimal
reference solution (obtained from FEM) in Case 7C shown in FIG. 17.

[00043] FIG. 19 provides a graphical depiction of the setup of Case 8 on a simple bridge.
[00044] FIG. 20 provides a graphical depiction of the designed results compared with the
optimal reference solution (obtained from FEM) in Case 8 shown in FIG. 19.

[00045] FIG. 21 provides a tabular view of the design results compared with the optimal
reference solution (obtained from FEM) in Case 8 shown in FIG. 19.

[00046] FIG. 22 provides the parameter estimation results in Case 4 shown in FIGs. 3 and
4 with different strategies of optimizers.

[00047] FIG. 23 provides a diagram illustrating the geometry of the curved beam relating
the multiple loading conditions illustrative example (Case 9).

[00048] FIG. 24 provides a graph illustrating the evolution of the designed parameter
introduced in FIG. 23.

[00049] FIG. 25 provides a graph illustrating the force-strain curve of the designed
geometry predicted by the PINN and the ground-truth curve introduced in FIG. 23.

DETAILED DESCRIPTION
[00050] Aspects of the present disclosure include methods involving physics-informed deep
learning to help solve inverse problems of solid materials/structures related to unknown geometry.

Practically, this method helps to (1) identify and characterize unknown materials/structures and
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defects at great levels of accuracy and predictive capability with limited non-destructive
measurements, and (2) design geometrical features and parameters of solid materials and structures

to achieve optimized and/or improved performance.

[00051] Emerging research reveals the profound untapped potential of physics-based,
multidisciplinary, deep learning approaches with unprecedented opportunities for scientific and
engineering advances in molecular analysis, design of materials with improved properties and
performance in structural and functional applications, and unique pathways for the characterization
of properties of materials. To further realize this potential, broadly applicable methodologies in
the area of NNs are needed to address a variety of issues that underpin deep learning analyses,
governed by physical laws and guided by mathematical formulations. To this end, a physics-
informed deep learning approach has recently been proposed for the simulation of systems
governed by physical laws that are represented by PDEs. While traditional methods based on deep
learning encode such formulations implicitly by feeding training data governed by equations, this
approach explicitly encodes known physical or scaling laws in the form of mathematical equations
into the standard structure of NNs, formulating the so-called Physics-Informed Neural Networks
(PINNs). Such an approach integrates any existing knowledge expressible in terms of PDEs during
the learning process, thereby markedly improving predictability while reducing the amount of data
required to achieve a desired level of accuracy. Studies have shown the applicability of PINNs in
addressing a wide spectrum of forward and inverse problems spanning disciplines such as fluid
mechanics, quantum mechanics, and solid mechanics. Such applications have shown promise for
enhancing predictability when the amount of data is limited or when the problem is ill-posed,
situations in which existing methods are not likely to yield accurate and reliable results. This
approach has been further extended to offer new pathways to address relevant mathematical

formulations, such as stochastic PDEs and fractional PDEs.

[00052] Aspects of the present disclosure address this urgent need and overcome the various
disadvantages of previously known systems and methods by addressing geometry identification
and geometry design problems in the broad field of continuum solid mechanics with potential

applications in many branches of engineering, sciences and medicine. In a geometry identification
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problem, the unknown geometric features and parameters are determined in a solid
material/structure given measured material response under static or dynamic loading, thereby
characterizing unknown structures including internal defects or boundaries such as voids,
vacancies or holes, inclusions and reinforcements, and/or cracks. In a geometry design problem,
one needs to identify the optimal geometric feature so that the performance of the
material/structure is optimized and/or improved under certain metrics. Traditionally,
computational algorithms for geometry identification/design are established based on the finite
element method (FEM) as the forward solver. Beyond the forward solver, considerable effort is
required for the design and implementation of iterative algorithms for updating the
estimated/designed values of geometric parameters. Through the iterative algorithm, for
identification problems, the discrepancy (loss) between the observed data and the results of the
forward solver is minimized; for design problems, the objective function is minimized. However,
the embedded forward FEM solver as a mesh-based method inherently brings about complications
in these algorithms. The estimated/designed geometry is updated by repeatedly remeshing the
domain through iterations. Alternatively, the unknown domain is embedded in a larger fixed
domain while introducing an auxiliary field to track the presence of material. The problem
becomes even more challenging when large deformations (i.e., geometric nonlinearity) and
nonlinear mechanical properties (i.e., highly nonlinear constitutive behavior of the solid material)
are involved. Available methods are cumbersome and resource-intensive for deriving automated

solutions to such inverse problems involving unknown geometry.

[00053] The present disclosure relates to a novel method based on physics-informed
machine learning, and, in particular, utilizing physics-informed neural networks to examine
internal structures and defects in materials. It is noted that these unknown internal structures and
defects can also be referred to as aspects. It is also noted that these materials can be solid or non-
solid, despite illustrative embodiments treating the materials as primarily solid. This method solves
inverse problems related to unknown geometry, which in practice can be applied to (1) identify
and characterize unknown internal structures and defects with limited non-destructive
measurements, and (2) design geometry of solids to achieve optimized and/or improved

mechanical performance including maximizing or minimizing individually or in certain

10
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combinations the stresses, strains, displacements, elastic or inelastic energies, etc. According to
some embodiments of the present disclosure, a first geometry can refer to the identification and
characterization of unknown internal structures and defects with limited non-destructive
measurements, and a second geometry can refer to designing geometry of solids to achieve
optimized and/or improved mechanical performance including maximizing or minimizing
individually or in certain combinations the stresses, strains, displacements, elastic or inelastic

energies, etc.

[00054] The instant disclosure presents a unique, systematic approach based on PINNs for
solving geometry identification and geometry design problems in continuum solid mechanics.
PINNSs integrate known PDEs of importance in solid mechanics with NNs, composing a unified
computational framework involving both the forward solver and the inverse algorithm. Notably,
the disclosure provides a method for directly parameterizing the geometry of the solid in a
differentiable and trainable manner (i.e., geometry as trainable variables; geometry-dependent
training points; making the gradient with respect to geometry tractable). According to the present
disclosure, these geometric variables can be inputted into PINNs to advance the systems and
methods described herein. An additional technique (i.e., pretraining procedure) is important for
stabilizing the training process of the PINN. For identification problems, this method can

concurrently solve unknown material parameters in addition to geometric parameters.

[00055] According to the exemplary embodiments described herein in detail, for
identification problems, the PINN inversely characterizes the geometry of the void/inclusion
according to the displacement data. For design problems, the PINN inversely design the optimized
and/or improved geometry of the void/inclusion according to a predefined objective function.
According to the present disclosure, this design process can also be referred to as generating the
optimized geometry. According to some examples, optimized performance can refer to improving
performance. As the method completes the identification/design task, it concurrently identifies the
full field stresses, strains, displacements in the solid structure. This framework for inverse
problems involving unknown (moving) domains directly parameterizes the computational domain

(geometry), and can deal with material and geometry parameterization, even for large deformation.

11
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[00056] To test the performance of the method with various parametric assessments, the
instant disclosure builds a set of detailed cases for identification and design problems. The
examples include different shapes and topologies of the structure and different constitutive models
for describing the mechanical properties of the solid material, including linear elasticity,
hyperelasticity, and deformation plasticity. For the particular case of inclusion in identification
problems, the PINN is also required to estimate the unknown material parameter of the inclusion,
through which the instant disclosure demonstrates the capability of our model in solving combined
material and geometry identification problems. As a proof of concept for the method of the subject
applications, the instant disclosure focuses on two-dimensional plane strain static problems. Result

is accurate (relative error no more than 0(1072)).

[00057] According to the exemplary embodiments described herein in detail, the present
disclosure establishes the general formulation of PINNs in continuum solid mechanics involving
both (material and geometry) identification and design problems. FIGs. 1A-1D present the
architectures of PINNs for identification and design problems in continuum solid mechanics.
Corresponding to computational examples of the present disclosure, design of the architectures of
the PINNSs for plane-strain problems for the three material models, as shown in view 10 of FIG.
1A for (compressible) linear elasticity, view 12 of FIG. 1B for (incompressible) hyperelasticity,
and view 14 of FIG. 1C for (compressible) deformation plasticity is contemplated. The
architectures of the PINNs are slightly different for different material models due to the
characteristics of their mathematical expressions. For reference, view 16 of FIG. 1D includes the
definitions of the mechanical quantities of interest in the architectures, which can apply to the
interpretation of subsequent Figures of the present disclosure. Depending on the problems to solve

(identification/design), the components of the loss function are also slightly different.

[00058] The present disclosure firstly summarizes the basic workflow of PINNs for
identification problems as follows: First, it is contemplated that one can apply a neural network
(NN; with trainable parameters 4) to approximate the primary solution fields (top left panels in

FIG. 1A-1C) with respect to the in-plane coordinates X = (X;, X,). Secondly, it is contemplated

12
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that one can integrate the mechanical laws into the PINN architecture (top right panels in FIG. 1A-
1C) by deriving relevant mechanical quantities of interest from the NN outputs, such as strain,
stress, and the residual of equilibrium PDEs. In this process, unknown material parameters 0,
are involved. Thirdly, it is contemplated that one can formulate the loss function £(4, 8), which
measures the discrepancy between the predicted mechanical quantities of interest and their
respective true values provided by mechanical laws and measured data (bottom right panels in

FIGs. 1A-1C). For example, for linear elasticity in FIG. 1A, the loss function is expressed as

EA;H o= (ﬁ AG + 3 ,C A’Q /aaﬁ s A,e, [
[00059] ( ) = appeLene( )+ opelac( ) + OpaaLpaa( ) (H

where the a’s with various subscripts refer to the weights of corresponding loss terms and the three
loss terms correspond to PDEs, boundary conditions (BCs), and data, respectively. Each loss term

L;(4,8) (where j = PDE, BC, Data) is the mean squared error evaluated on N, residual points

N

‘Cj(’\;g) = A Z
2

i1

s <X§i> (Bgeo); A, emat) 2> (2)

where 7 is the residual of the condition j at the ith residual point X]@ (Ogeo). The N, residual points
for condition j are distributed in the domain of condition j to correctly evaluate £;(4,0). The
coordinates of the residual points X]@ depends on geometric parameters @4, because of the

variable computational domain, which will be explained in detail in subsequent portions of the
disclosure. Lastly, it is contemplated that one can conduct parameter estimation through the
training of the PINN (bottom left panels in FIGs. 1A-1C), during which the unknown parameters
0= (Omat, Ogeo) and neural networks parameters 4 are updated/trained to minimize the loss

function. This process can be expressed as:
A, 0 = argmin LA, 8), (3)
A0

where the hat symbol refers to the value of these trainable parameters after the training process
completes. As the solution to the inverse problem, the estimation of the unknown parameters is 8.

More details of the formulation are shown throughout the remaining disclosure.

13
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[00060] The aforementioned summary describes the procedure for solving geometry (and
material) identification problems with the proposed methods. With minimum change of the loss
function, this method can be applied to geometry design problems for optimized and/or improved
performance, as also shown in FIGs. 1A-1C. According to the exemplary embodiments described
herein in detail, the approach of parameterizing the geometry of computational domain can be
applied to conducting structure design in fields of mechanical and civil engineering. For the PINN

for linear elasticity, for instance, the loss function is modified as:
Q{A* a\} = Qi’niﬁﬁf’ﬂi(‘\ Q\} + QB\'{:S({A 8} ~ Qmmzﬁmst{}‘ 8} + amqsﬁtngt*{:’\ 3} {1}

where the additional two loss terms Lenger (4, 8) and Liargec(4, @) correspond to the constraint in the
design problem and the target function to be minimized in the problem. For example, in structural
engineering, one often needs to design a structure with the maximum stiffness (hence minimum
compliance) under a constraint for the total weight/volume of the structure. In this case, L (4, 8)
penalize the violation of the weight/volume constraint, and L, gec(4, 8) may be defined as the
compliance of the structure. In the training process, as the PINN seeks to minimize the loss
function, the governing PDE and the boundary conditions are satisfied through minimizing
Lppg (4,0), Lgc(4, 8); the constraints are approximately satisfied through minimizing L, (4, 8);
the design target is achieved through minimizing Li,rgec(4,8). In this process, any relevant
geometric parameters in & are adjusted in order to minimize the loss function, thereby realizing the
design of optimal geometry. Note that, in some situations, constraints can alternatively be directly

incorporated through designing the architecture of PINN instead.

[00061] According to the exemplary embodiments described herein in detail, geometric
parameters O, play an essentially different role in the inverse problem compared to material
parameters 0,,,.. Material parameters parameterize the governing PDEs of mechanics, which are
naturally endowed with trainability through automatic differentiation of (physics-informed) neural
networks. As aresult, material parameters can be directly estimated using the standard formulation
of PINNS for inverse problems. Geometric parameters 8¢, on the other hand, parameterize the
computational domains of the PDEs and boundary conditions, which do not naturally serve as

trainable parameters in the framework of PINNs. To make the geometric parameters 0,
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differentiable and hence trainable in a similar way to material parameters 6,,,;, the present
disclosure parameterizes the coordinates of residual points by geometric parameters Oge,.
Technically, it is contemplated that such parameterization can be implemented by utilizing the
definition of trainable variables in deep learning libraries (e.g., TensorFlow, Pytorch): the present
disclosure first defines the geometric parameters @, as trainable variables; then, expresses the
locations of residual points as functions of these trainable variables. As a result, the coordinates of
residual points are automatically updated as the estimation of 8., are updated throughout the
iterative training process. In FIG. 2, the present disclosure shows the residual points for each
condition in Cases O and 4 of the examples for geometry identification at views 20 and 22,
respectively, and Case 7B for geometry design at view 24, before and during the simulation. For
reference, black dots are used to articulate PDE parametrization, and gray dots to articulate
boundary conditions (BC). In views 20 and 24, displacement data is articulated by each bordering
“x” character. In this way, the present disclosure ensures that the residual points for different
conditions are always located in their correct domains. More importantly, this allows the present

disclosure to capture the gradient of the loss function £ with respect to the geometric parameters
08¢0, which otherwise could not be realized using the standard formulations of PINNs. With the
geometry-parameterized residual points, the PINN can correctly update the estimated/designed
geometric parameters Bge, throughout the training process, thereby characterizing/designing the
unknown geometry. It is contemplated that such form of parameterization invoking PINNSs to solve
geometry identification problems have hitherto not been addressed. Practically, 84., may be
defined by assuming the shape of the void (e.g., circle, ellipse) and then assigning the unknown
parameters to @, alternatively, for more flexibility, the void shape, or other shapes, may be
represented by analytical function(s), parameterized function(s), non-uniform rational basis spline
(NURBS) or another neural network, where a large number of parameters in 8¢, represents the
irregular shape of the void. In this way, the shape of the at least one of one or more internal
structures, internal surfaces, internal boundaries, external structures, external surfaces, or external
boundaries can be arbitrarily complicated or simple (including but not limited to circular and

elliptical shapes), or, as complicated as the methods of the present disclosure can describe.
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[00062] In another aspect of the present disclosure, it is contemplated that one can find it
important to pretrain the model before using the model to characterize/design unknown geometry.
If the model is directly applied without pretraining, the estimated/designed geometric parameters
rapidly depart from physically admissible values (e.g., void located outside the matrix) after a few
iterations. Inspired by the transfer learning technique, the present disclosure proposes to maintain
all the estimated unknown parameters @ fixed (not trainable) and only update the trainable
parameters of the NN 4 for the first few iterations. During this pretraining process, the PINN
essentially solves a forward problem, seeking to roughly capture the qualitative pattern of the
displacement field and the stress field. After this pretraining process, both 4 and @ can be made
trainable, which initiates the parameter estimation/design. Such a pretraining procedure induces 4
to converge towards to the desired local minimum, hence serving as a good initialization for
geometry identification and design problems. For the prototypical problem of the current
disclosure, technically, the PINN needs to be pretrained until there emerged a qualitative pattern

indicating the existence of a stress concentration around the curved boundary or interface.

[00063] The present disclosure demonstrates the efficacy of the method for geometry
identification problems by modeling a two-dimensional prototypical problem on a matrix-
void/inclusion system as a proof of concept (see FIG. 3). A square-shaped matrix material contains
a void/inclusion with unknown geometry. To characterize the location, size and shape of the
void/inclusion, the instant disclosure applies loading Po on the matrix boundary and monitoring

the displacement response on the measurement points at the matrix boundary under such loading.

[00064] FIG. 3 includes the general setup of the prototypical problem on geometry and
material identification in the present disclosure at view 30. In this way, FIG. 3 presents a plane-
strain problem in the X; — X, plane about a square-shaped matrix specimen with a void/inclusion.
For example, the problem in FIG. 3 correlates to an incompressible Neo-Hookean hyperelasticity
problem, and correlates to the sketching scheme presented in FIGs. 4A-4C. For the sketch of the
X1-X2 plane, view 30 in FIG. 3 includes example measurement points at locations bordering the

sketch marked “X”. The goal of the inverse problem is to estimate the geometric parameters 8 ge,

(and material properties 8y,,¢) of the void (inclusion) €; inside the matrix Q,,, by applying
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uniaxial/biaxial loading Po and collecting displacement data on the matrix boundary. For the
instant disclosure, it is also contemplated that for the inclusion case, material properties of the

inclusion are also characterized.

[00065] FIGs. 4A-4C present six specific plane-strain problems contemplated by the present
disclosure, including the setup of Cases 0-5 of the prototypical problem. For reference, FIG. 4D
provides a legend diagram 48 of the respective hashing schemes for FIGs. 3, 4A-4C, 6, and 8
relating to void, matrix, and inclusion problems of linear elasticity, hyperelasticity, and
deformation plasticity. For each case, the instant disclosure specifies the type of the inhomogeneity
(void/inclusion), the unknown parameters (8 g, for void, or O, and 6, for inclusion; denoted
together as 6 = (Bmat, Bgeo)), the material model (FIG. 4A, evaluating compressible linear
elasticity at view 40; FIG. 4B, evaluating incompressible Neo-Hookean hyperelasticity at views
42,43, 44, and 45; and FIG. 4C, evaluating compressible deformation plasticity at view 46), type
of the loading (uniaxial/biaxial), and the location of displacement measurements (uniformly on the
outer boundary/inside the solid). It is noted that for FIG. 4C, the sketch still refers to a X1-Xz plane,
with unknown parameters also bordering the bottom of the diagram for inclusion. For each sketch
of the X1-X2 plane, views 40-46 in FIGs. 4A-4C include example measurement points at locations
bordering the sketch marked “X”. All unknown parameters describe the geometry of the
void/inclusion except y; in view 46 of FIG. 4C, for Case 5, which represents the shear modulus of
the inclusion. The sketch and all the geometric parameters are shown in the reference (undeformed)
configuration. It is contemplated that the material properties of the matrix are known quantities for

all the cases.

[00066] It is noted that, in accordance with exemplary embodiments, the solution of the
aforementioned Cases 0-5 in FIGs. 4A-4C will provide a proof of concept for the disclosed method
under different practical scenarios, demonstrating the wide applicability of the method. The three
material models (Cases 0, 1, and 3 in FIGs. 4A-4C as the baseline cases), cover a wide range of
mechanical behavior patterns of natural and engineered materials in a vast array of practical
applications. The present disclosure places the displacement measurement points only on the outer

boundary of the matrix, to mimic the real-world situation where the internal details are not
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available, i.e., the situation where non-destructive measurements are required. Non-destructive
measurements refer to measurement techniques for evaluating properties of materials, structures,
and systems without causing damage or destruction, for which the feasibility of the proposed
method will be illustrated by examples shown by Cases 0, 1, and 3-5. Case 2 explores the scenario
of engineering application where the void has a large aspect ratio (such as a crack), which the
present disclosure approximates by a slender slit. For this case only, the present disclosure allows
the displacement measurements to be inside the solid due to the relative insensitivity of the
boundary displacement with respect to the slit geometry. Case 4 demonstrates the applicability of
the method for materials with multiple voids (such as porous materials or those with multiple
cracks/slits). Case 5, estimates the material and geometric parameters for a soft circular inclusion
to show that the method of the present disclosure can handle combined material and geometry

identification problem.

[00067] Another aspect of the present disclosure adapts a finite element solver (e.g.,
commercial software such as Abaqus, open-source library such as FEniCS) to generate the
computational examples. In this disclosure, Abaqus can be adopted as the finite element solver.
Specifically, the present disclosure presets reference values of unknown parameters to be 8* and
conducted forward simulations, which generated the displacement data provided to the PINN and
ground-truth full-field solution for assessing the performance of the PINN. The PINN initialized
the estimation of unknown parameters to be 8. The PINN firstly went through a pretraining
procedure for stabilizing the forward prediction, where the estimated parameters were fixed to be
0*. As the PINN initiated parameter estimation through the iterative training process, it is
contemplated that the estimated parameters 8 would migrate towards the correct value 8*. The
training process terminated after the loss function and the estimated parameters reached a relative
plateau, yielding the parameter estimation results 8. The detailed setups of the prototypical
problem, the finite element solver, and the hyperparameters of the PINN for geometry
identification problems are included in Paragraphs 00085-000105.

[00068] The present disclosure provides the results for Cases 0-5 in the main text. The

results of parameter estimation for Cases 0-5 are shown in view 50 of FIG. 5. For each case, the
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present disclosure compares the estimated and reference values of the unknown parameters by
presenting absolute errors and relative errors. To calculate the relative error, the present disclosure
normalizes the coordinates, the lengths and the modulus, and the tilting angle by the domain size
(side length of the matrix), respective reference values, and 180°, respectively. FIG. 5 indicates
that the PINN estimates unknown parameters with high accuracy, with relative error 0(1072) on

most parameters and as small as 0(10~%) for some parameters.

[00069] It is worth noting that the estimated shear modulus of the inclusion g; in Case 5 has
an error slightly more than 10%. To improve the accuracy of Case 5, the present disclosure
supposes that five additional data points inside the solid are available as in Case 2. The present
disclosure re-trains the PINN with the expanded measurement data and append the results as the
modified Case 5, labeled Case 5 (With Internal Data) in FIG. 5. With the additional data, the
relative error of estimated parameters decreases to 0(1072), similar to other cases. In summary,
given scattered displacement measurements, the PINN can accurately characterize the geometry
(and material properties) of the internal void(s)/inclusion for various problem setups, including
different constitutive relations, shapes of voids, and numbers of voids. The result indicates the
generality of the method of the present disclosure for solving a broad spectrum of inverse problems

in mechanics of materials.

[00070] It is noted that, in accordance with exemplary embodiments, the method of the
present disclosure is not only capable of estimating unknown parameters, but also providing
quantitative measures of the deformed patterns of the solid as well. Specifically, the present

disclosure applies the estimation results 4 and ageo (see Eq. 3) on the neural network part of the
PINN (top left panels in FIGs. 1A-1C) to infer the deformed configuration, where ageo determines

the reference (undeformed) configuration, and 4 determines the mapping from the reference
(undeformed) configuration to the deformed configuration. In FIG. 6 (views 60-65), the present
disclosure displays the comparison of the deformed configurations between the FEM ground truth
and the PINN inference results for Cases 0-5. Again, FIG. 6 includes example measurement points
at locations bordering the sketch marked “X” across Cases 0-5. For clarity of presentation, FIG. 6

shows the outer and inner boundaries of the specimen visualized from the FEM and PINN analyses
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in the accompanying “Configurations” for Cases 0-5. For each of the resulting Configurations, the
dashed lines correlate with FEM/Abaqus, the straight black line with PINN (Matrix), and the dots
with PINN (Inclusion) metrics. The two outlines match each another to a high extent, indicating
that the deformed configurations from the PINN are almost identical to those from the FEM ground
truth. For Case 5 specifically, the inner boundary of the matrix and the boundary of the inclusion
predicted by the PINN also overlap well with each other, indicating that the continuity of the

material surfaces in the matrix-inclusion system is preserved in the inference of the PINN.

[00071] In addition to the reconstruction of deformation pattern, the method of the present
disclosure is also capable of reconstructing the distribution of related mechanical quantities within
the entire volume of the solid, including strain and stress components, principal stresses, elastic
energy density, etc. For Case 4, for example, can be shown in FIG. 7 a comparison of the normal
(Cauchy) stress in the horizontal direction (07) from the PINN prediction at view 72 and the FEM
reference solution at view 70, which demonstrates that our method is able to reconstruct the
distribution of oy;. Similarly, other mechanical variables can be obtained and reconstructed. For
Case 3, where plasticity is involved, the present disclosure also examines the inference of the
plastic zone. FIG. 8, also using legend 48 from FIG. 4D relating to deformation plasticity, shows
the comparison of the plastic zone between the PINN prediction at view 82 and the FEM ground
truth at view 80. Not only is the geometry of the void characterized correctly as previously verified

in FIG. 5 and FIG. 6, the plastic zone of the loaded matrix is also inferred with high accuracy.

[00072] In addition to the aforementioned Cases 0-5 on inverse material/geometry
identification problems, the present disclosure also considers illustrative examples of inverse
problems on the design of optimal geometry. As a first illustrative example, this disclosure
considers a problem on designing fiber-reinforced materials (called as Case 6 hereinafter), as
shown in diagram 90 of FIG. 9. The composite material is composed of homogeneous matrix
(relatively soft, governed by linear elasticity with Young’s modulus E},, = 0.4 and Poisson’s ratio
v = 0.3) and periodically, horizontally aligned fibers (relatively stiff, governed by linear elasticity
with Young’s modulus E; = 2.0 and Poisson’s ratio v = 0.3). The target of Case 6 is: given the

constraint on the maximum area fraction of the fiber (20% in our example), design the shape of
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the fiber so that the material achieves maximum stiffness under horizontal uniaxial loading (i.e.,

minimum mean normal stress in x; direction when applied with a fixed strain loading).

[00073] To solve this problem, the subject disclosure proposes to represent the fiber-matrix
interface with a NN which takes x; (the horizontal coordinate) as input and outputs 7 (the thickness
of the fiber at the given x;). The trainable parameters of this NN are viewed as unknown geometric
parameters to be designed. A representative volume element (the dashed box in FIG. 9) with size
1.0x1.0 1s selected for the mechanical analysis. Similar to the inverse identification problem, the
residual points are adaptively assigned according to the geometry of the interface. L« 1S defined
to make sure that fiber makes up 20% of the area/volume. Uniform strain loading is applied on left
and right boundaries. Ly,pge¢ 18 defined as the mean normal stress in the x; direction on residual
points. As the shape of the interface changes, the present disclosure anticipates that this mean
normal stress response is maximized, which corresponds to the optimal design with maximum
stiffness. Theoretical derivations for composite materials have revealed that the maximum stiffness
is achieved under the isostrain state, which means that the thickness of the fiber can be uniform

in our case t(x;) = 0.2 for all x,) for achieving maximum stiffness in x; direction.
1 1 2 1

[00074] Continuing to graph 100 in FIG. 10, which details the results of Case 6, where the
interface profile t(x,;) is shown for the random initialization before the design process and after
the design process. After the iterative design process, the thickness profile becomes uniform and
converges to be close to t(x;) = 0.2 for all x; € (—0.5,0.5), which matches the theoretical
optimal design. The quantitative comparison of the design results to theoretical optimum is shown
in view 110 of FIG. 11. The results indicate that our method based on PINNs have successfully

identified the optimal design for of the fiber-reinforced material in Case 6 a proof of concept.

[00075] An additional illustrative example (Case 7) is presented in views 120 and 122
respectively of FIG. 12, which presents a matrix-void system. This aspect of the disclosure is
similar to the Cases 0-4 for the inverse identification problem (see FIG. 3). The matrix is made of
linear elastic material with Young’s modulus E = 1.0 and Poisson’s ratio v = 0.3. The target of

the problem is to minimize the global maximum principal tensile stress in the entire domain under
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the uniform, unequal biaxial loading (with magnitude P, = 0.6 in x; direction and P, = 0.3 in x,
direction) provided that the area of the void is fixed (equal to the area of a circle with radius 1y =

0.2).

[00076] The instant disclosure considers two situations regarding the geometry
parameterization: (1) the void is constrained to be a centered ellipse (Case 7A in FIG. 12, shown
in view 120), so that it has only three design variables, including semi-major axis @, semi-minor
axis b (which essentially compose one independent design variable a/b due to the area constraint
of the void) and the tilting angle of the elliptical void (0); (2) the void can be any shape which is
described by a NN representing the void boundary in polar coordinates r(8) centered at the matrix
center (Case 7B in FIG. 12, shown in view 122). To describe the variable geometry, the instant
disclosure defines the unknown geometric parameters as trainable variables for Case 7A, and apply
a neural network to represent the void boundary in polar coordinates for Case 7B. In Case 7B, the
trainable variables of the NN representing r(6) can be viewed as unknown geometric parameters.
Case 7A is compared with finite element simulations to demonstrate the optimality of our design.
For Case 7B, on the other hand, the present disclosure shows the proof of concept of our method

in designing an arbitrary geometry.

[00077] Notably, in this example, the instant disclosure enforces the constraint of the area
not through the addition of loss term L., as a soft constraint. Instead, the constraint is realized
in a hard way by normalizing the void geometry following the output of the NN for describing

r (@), so that the area is fixed whatever the trainable parameters are.

[00078] This aspect of the instant disclosure examines the results in Case 7A from the PINN
for designing the aspect ratio a/b and the tilting angle § to minimize the maximum value of the
maximum principal tensile stress in the entire solid. Due to the setup of the biaxial loading with
P;: P, = 2:1, if the void is circular, the largest tensile stress will be located at the top/bottom of
the void. To avoid this, the void is anticipated to increase its aspect ratio and align its major axis
along x; direction, so that a less sharp (a larger curvature radius) at the top/bottom of the elliptical

void reduces the local stress concentration.
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[00079] The results of the void outline for Case 7A are shown in graph 130 of FIG. 13, with
dashed lines correlating to the initial shape and solid lines correlating with the designed shape.
After the shape initialization and the beginning of the design process, the shape of the void evolves
as anticipated: the major axis aligns along x; direction, and the aspect ratio is roughly 2:1 to match
P;: P,. To quantitatively verify the correctness of our design, the maximum principal tensile stress
can be computed for various values of the aspect ratio a/b and the tilting angle 0 of the void with
finite element method which serves as the reference solution. The maximum principal tensile stress
Omax for different a/b and 6 is shown in graph 140 of FIG. 14. In FIG. 14, the respective line
dashing schemes correlate with the respective tilting angle 8 of the void. The quantitative
comparison of the final design results is shown in view 150 of FIG. 15. The results indicate that

our method based on PINNs have identified the optimal design with high accuracy.

[00080] Graph 160 of FIG. 16 presents the results of the void outline for Case 7B, with
dashed lines correlating to the initial shape and solid lines correlating with the designed shape.
This aspect of the instant disclosure tests the performance of our PINN model in designing the
void where arbitrary shape is admissible through the introduction of a NN for describing the shape
of the boundary. Although the setup of the initial void is to be a dumbbell shape, the shape of the

void still evolves to converge to an ellipse-like shape as the design process is performed.

[00081] In addition to the aforementioned Cases 7A and 7B for the matrix-void system, the
present disclosure also examines the method performance in terms of more complicated problems
involving multiple mechanical loading conditions. FIG. 17 presents an illustration of Case 7C. The
matrix in this case is assumed to be hyperelastic, which undergoes large deformation under
loading. The present disclosure considers two different loading cases simultaneously at 170 and
172, respectively (see FIG. 17), in which the matrix is uniaxially stretched in x; and x, directions
for the two loading conditions, respectively. The goal of this problem is to minimize the maximum
value of the global maximum principal tensile stress among the two loading conditions. The void
is fixed to be an ellipse with lengths of the two semi axes being a = 0.35 and b = 0.15. The only

unknown parameter of the geometry is the tilting angle 6. The optimal tilting angle for minimizing
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this maximum principal tensile stress is +45° according to symmetry. View 180 of FIG. 18 shows
comparison of the final value after the training completes, which demonstrates that the method in
the disclosure has well designed the optimal geometry for minimizing the global maximum

principal tensile stress.

[00082] The instant disclosure considers an example (Case 8) of designing the shape of a
simple bridge as a proof of concept for demonstrating the practical applicability of our method in
mechanical and civil engineering as shown in diagram 190 of FIG. 19. This illustrative
embodiment considers a bridge (with size 1.0x0.5; the structure is governed by linear elasticity
with Young’s modulus E = 1.0, Poisson’s ratio v = 0.3) under compressive loading (with
pressure Py = 0.2) from top, left and right directions. The bottom edge is fixed in x, direction.
The present disclosure further assumes that the shape of the bridge arc is a semi-ellipse with one
axis overlapping with the base of the structure. Given the constraint on the total volume of the
bridge (= 71.73% of the rectangular region 1.0x0.5), the target of the instant disclosure is to design
the optimal aspect ratio (a/b, where a and b are the lengths of the two axes of the ellipse) of the
elliptical arc such that the global maximum principal tensile stress is minimized. Due to the equal
biaxial compressive loading Py, the optimal shape can be a semi-circle. Results are shown in view
200 of FIG. 20 and view 210 of FIG. 21, respectively, with dashed lines correlating to the initial
shape and solid lines correlating with the designed shape. In view 200 of FIG. 20, 202 refers to 0
iterations, 204 to 1,000 iterations, 206 to 10,000 iterations, and 208 to 50,000 iterations,
respectively. After the design process is completed, the arc deviates from its initial shape and
finally becomes a semi-circle. The aspect ratio of the two axes of the semi-elliptical arc after design

is 1.003, which has a relative error as small as 0.3% compared to the analytical solution of 1.0.

[00083] The present disclosure includes an additional computational case considering
multiple loading conditions in addition to the aforementioned Case 7C. The illustrative example
(Case 9) considers applying multiple loadings on a structure and seeking to optimize the
performance of the structure under a metric that involves these loading conditions. Technically, to
implement such problems, it is noted that the PINN is slightly modified to include an additional

pseudo-time 7 as the input of the neural network, which essentially indicates the loading steps. As
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a proof of concept, the illustrative example of the present disclosure considers a curved beam
structure 232, as shown in view 230 of FIG. 23. The distance between the two ends is fixed to be
1.0. The beam 232 shown in view 230 of FIG. 23 consists of two identical arcs with width 27, each
with a curved angle being 26. On the two ends of the beam 232, relative displacement in the
horizontal direction (# = 0.0, 0.1, 0.2, ..., 1.0) is applied. According to the illustrative example,
periodic boundary conditions are applied to ensure that the cross sections on the ends are parallel.
The target of the design problem focuses on the slope of the tangent of the force-displacement
curve. Thereby, the illustrative example denotes the force response under the enforced
displacement & as F(i). The design optimization problem is defined to adjust the curved angle 0,

so that:

U 10030 (N

L 10045, (3

The illustrative example of the present disclosure seeks to find a target value € through these two
design targets, so that the homogenized (equivalent) stiffness of the curved beam 232 satisfies the

desired values under both small and large deformations.

[00084] The results are shown in graphs 240 and 250 of FIGs. 24 and 25, respectively. The
geometric parameter 6 is initialized to be 45°. The target slopes of the problem are chosen such
that 8 = 60° provides the design closest to the target. According to FIG. 24, the designed parameter
deviates from the initial value 45" and approaches 60°, as shown in graph 240 detailing the
evolution of the designed geometric parameter 6. FIG. 25 shows the comparison of the force-strain
curve between the designed geometry predicted by the PINN (solid line) and the ground-truth
curve corresponding to 8 = 60° (dashed line) in graph 250. The results presented in the illustrative
example demonstrate that the PINN, together with the proposed approach for the parameterization
of geometric parameters, is capable of designing optimal geometry under customized targets. In
particular, this case demonstrates the method’s feasibility for complicated problems involving

multiple boundary-value problems with different loading conditions.

25



WO 2023/150352 PCT/US2023/012420

[00085] This aspect of the present disclosure further provides the detailed formulation of
PINNs for forward and inverse problems in continuum solid mechanics. This focus concerns the
PINN for hyperelasticity (specifically, incompressible Neo-Hookean material) as most of the
computational examples of the present disclosure adopt this material. To better clarify the
quantitative formulation, here the present disclosure denotes all the material and geometric

parameters of interest as Oy, and Bge,, respectively. For incompressible Neo-Hookean materials,
the only material parameter is the shear modulus u so that 8,,,; = p. The unknown part of 8 =

(Bmat, Ogeo) in the inverse problem is denoted as .

[00086] The workflow of PINNs comprises four steps in the present disclosure. First, it is
contemplated that one can apply a NN to approximate the primary solution fields (top left panel in
FIG. 1B) in domain Q(Ogeo), including the displacement field u(X; 1) and the pressure field

p(X; A), where A represents trainable parameters of the NN, X = (X;,X,) is the in-plane
coordinates in the reference/undeformed configuration, and the quantities with tilde represent the
approximation from the neural network. For incompressible materials, the present disclosure
envisions the hydrostatic pressure field p as a Lagrange multiplier accompanying the displacement

field u to uniquely determine the stress field.

[00087] Secondly, it is contemplated that one can integrate mechanical laws into the PINN
architecture (top right panel in FIG. 1B) by deriving relevant mechanical quantities of interest from
the NN outputs. During this calculation process, partial derivatives are handled by automatic

differentiation. The deformation gradient F(X; A) and the first Piola-Kirchhoff stress P(X; 4, 1) are

calculated by:
FXGA) =1+ @(x' A) (A1)
> - ! ((}X ) 3
PXA, ) = =B NF (X A) + 1F (XA, (A2)

where 1 is the identity tensor, Eq. Al is kinematics, and Eq. A2 is the constitutive relation for
incompressible Neo-Hookean materials. The residuals of the equilibrium PDE and the

incompressibility condition at X are expressed by:
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Fepe(Xi A, 1) = Div P(X; A, 1), X € Q{Be0), (A3)
P (X5 A) = det(F(X; A)) — 1, X € Q00). (A4)

The residuals of Dirichlet/displacement and Neumann/traction boundary conditions at X are:

F(Xs A, ) = PO A, ONX) = T(X), X € A0 (00, (A6)

where N is the outward unit normal vector on the boundary, and u and T are the specified

displacement and traction on the boundary, respectively. For inverse problems, the present

. ) Vu
disclosure provides displacement data{u*(l)}iv_u1 at {Xl(f )}_ . The residual of the ith displacement
- =1

observation is:

FI(A) = WX ) -, (AT)

2

[00088] Thirdly, it is contemplated that one can formulate the loss function according to the
foregoing residuals from mechanics and data (bottom right panel in FIG. 1B). To define the loss

terms corresponding to the problem definition, the present disclosure places No, Np and N~
residual points in Q, on dQp and 6Qn, denoted as Xg) (ief{1,2,..,No}), Xg) (ie{1,2,..,Np}),
XI(\]i) (i € {1,2, ..., Nxy}), respectively. Since the present disclosure parameterizes the coordinates of
residual points by Oge,, these residual points are all parameterized by Oge,. Then, it is

contemplated that one can evaluate the mean squared residuals of the PDEs, Dirichlet and

Neumann boundary conditions, respectively. Each loss term is defined by
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and the loss function is:
L {/\ & 3 = Gppplepa{ A, 9\ + f-}imcﬁmc(»’\ﬁ 9} + Q’.D}:f.}()\? 8 )

where appg, Xinc, Ap, AN, Ay are the weights of the loss terms. Note that the two loss terms Lp

and Ly for the two types of boundary conditions are simplified into Lg¢ in Eq. 1 in the main text.

[00089] Lastly, it is contemplated that one can conduct parameter estimation through
training/loss minimization (bottom left panel in FIG. 1B). The trainable parameters of the PINN
include the trainable parameters of the NN, 4, and the unknown parameters of the inverse problem,

0.nk (€ 0). Using the notations in this section, this process can be expressed as:

X, By = argmin L{A8). {Ald)
A~gkz(‘k§6
[00090] With the PINN adjusting 4 to minimize the loss function, it is contemplated that

one can anticipate that all the mechanical laws will be approximately satisfied, making the NN
serve as an approximation to the primary solution fields. Furthermore, the residual of displacement
observations in the loss function guides the estimated unknown parameters to evolve towards their

respective target values. In this way, the PINN is able to solve inverse problems.
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[00091] The present disclosure further contemplates the differences of PINNs for linear
elasticity (FIG. 1A) and deformation plasticity (FIG. 1C). For these two constitutive relations, the
solid undergoes infinitesimal deformation, so that one does not need to distinguish reference
(undeformed) configuration (X;,X,) and deformed configuration (x;,x,). In this section, the
coordinates are written as (x, x,) to keep consistent with the conventional notations in solid
mechanics community. Due to the compressibility, the hydrostatic pressure p is no longer an

independent state variable, so that p is not needed as a primary output of the NN.

[00092] To build the PINN for linear elasticity, kinematics in Eq. Al is replaced by the
definition of the infinitesimal strain tensor &;; = du;/dx;, where u = (u4, u,) is the displacement.

Stress-strain relationship in Eq. A2 is replaced by the stress-strain relationship
(Iij wy /\gkk&éj R 21{35}}, (:’\i5}

where A and i are Lamé constants. The equilibrium equation similar to Eq. A3 is da;;/dx; = 0.
Note that the loss function for (compressible) linear elasticity does not require the term for

incompressibility (see Eq. 1 and Eq. A13).

[00093] The PINN for the power-law deformation plasticity can be constructed based on

the PINN for linear elasticity. In this case, the nonlinear stress-strain relation is expressed as
3 o n--
ke = o+ o () 8, {Al6)

where £ (Young’s modulus), o, oy (yield stress), and » (hardening exponent) are material
. . . 3 .
parameters. s is the deviatoric stress tensor (s;; = 0;; — %akkai,-), and o, (= Esijsij) is the von

Mises stress.
[00094] According to Eq. A16, stress cannot be explicitly expressed by strain for power-

law deformation plasticity, unlike linear elasticity (FIG. 1A) and hyperelasticity (FIG. 1B).

Therefore, the integration of constitutive relation through the analytical expression of stress tensor
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no longer works for deformation plasticity. As an alternative solution, the present disclosure
includes the stress field = (04, 012, 22) as primary solution field of the neural network in
addition to the displacement field u = (uy, u,) (see FIG. 1C). After calculating the strain field
according to Eq. A15, one can bridge the strain and stress fields with an additional loss term
according to Eq. A16. In this way, the present disclosure integrates constitutive relation as an

additional penalty term in the loss function for deformation plasticity.

[00095] According to the exemplary embodiments herein, in the case of inverse problems
for multiple materials as in Case 5 in the main text, the present disclosure applies two independent
NNs to approximate the displacement and pressure fields of the matrix and inclusion materials,
respectively. Such approximation can be expressed by
Matrix: {(1{X; An), 2K A1 X € D45{00) (A1
Tactusion: (W{X5 NG P(X AN X € Qi(Bu0) (A18)

In addition to the foregoing loss terms for each material, an additional loss term £;,,. can be utilized
to force the continuity of displacement and traction on the interface rint(ogeo) of two materials. To

do this, the residuals can be written first on a single point for the two conditions of continuity. The

residual of displacement continuity is
.i:i’)im{XE )‘mg }\‘) == i:‘{X; Am} fj{X Ai): X & }“‘im{_Bgao}: (*&}(})

and the residual of stress continuity is

Then, place residual points xﬁ")(ogeo) (ie{1,2,..,Nr}) on F(Ogeo), and construct the loss

component on the interface of two materials by taking a weighted sum as
Line{ Ay A 8) = cpimeLpimd{Ans Ay @)+ conime Lo (A Ay 8, (AZ1)

where
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Hence, the loss function in the case of multiple materials is the summation of the loss function for

each single material and the additional loss L;,; for the material interface.

[00096] For forward problems with no unknown parameter (0, = @, hence 8 = @ for
convenience), measurement data may not be available. For incompressible materials, for example,
the loss function can be written as a weighted sum of all the four loss terms that correspond to
PDEs, the incompressibility condition, displacement boundary conditions, and traction boundary

conditions, respectively:

No 2
_ o= in i) ®
Lppp(A) = \’g} L Tppe (X&’,)&)% (A23)
iVQy 1
1 Ny N 2
L:(QL(A) S aeee r Z th (Xé;': A) (Azﬁ)
aiet i}
RN NN
Lp{A) = W Z T (X(}Q} A)' {A27)
D Puxd E
i N 12
La(A) = e i (X“,\) ‘ A28
The solution of forward problems using PINNs can be expressed as:
A == argmin Ler(A), {A29)
b

The displacement solved by the PINN is ﬁ(X; ;1) forX € Q.
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[00097] According to the exemplary embodiments of the present disclosure, it is noted that
for Case 0, the Young’s modulus of the matrix is E = 1.0, and the Poisson’s ratio is v = 0.3. For
Cases 1, 2, 4 and 5, the shear modulus of the matrix (incompressible Neo-Hookean material) is
i = 0.333, and the external load is Py = 0.3. For Case 3, the parameters fed to the PINN include
material parameters E = 1.0, « = 0.1, n = 10, and gy = 0.005 and the external load P, = 0.002.
For Cases 0, 1, 3, 4, 5, there are N, = 1.0 measurement points of on each edge of the matrix. For
Case 2, measurement points are inside the solid, with 10 of them uniformly placed on the line,
X; =—0.15, X; =0.15, X, = —0.45, X, = 0.45 respectively. For the modified Case 5 with
additional measurements, the five additional measurement points are located at (—0.3,0.05),
(—0.3,0.10), (—0.3,0.15) in the matrix and (—0.05,0.10), (0.15,0.10) in the inclusion. However,
these are merely illustrative embodiments, and not meant to be comprehensive of all possibilities

when considering identification problems utilizing the PINNs of the present disclosure.

[00098] The present disclosure can utilize TensorFlow 1.14 to build up our PINN. Each NN
in the PINN has 4 hidden layers, each with 30 neurons. For Cases 0, 1, 2 and 4, there is one single
NN in the PINN. There are two NNs in the PINN in Case 3 (one NN for (u,, u,), the other NN for
(011, 012, 022)) and Case 5 (one NN for each material). The present disclosure can adopt the layer-
wise adaptive “tanh” function as the activation function for the NNs. Among the trainable
parameters of the NN, weights are initialized with Xavier initialization, biases are initialized as
zeros, and the variable of adaptive activation are initialized as ones. The illustrative example of
the present disclosure utilizes the Adam optimizer to train the network. The learning rate is 0.001

for all cases except Cases 2 and 3.

[00099] For the illustrative embodiment in Case 2, the unknown geometric parameters
directly defined in the code are the location of the center of the slit (Xl(c), X Z(C)), half length of the
slit L, and tilting angle of the slit I', which are post-processed to be the coordinates of the locations
of the centers of the slit tips (X" = X{? — LsinT, XV = X + LcosT, X = x© + LsinT,
XZ(Z) = XZ(C) — L cosT). The learning rate is 0.001 for I" and 0.0002 for (X(C), XZ(C), L). For Case 3,
the learning rate is 0.00005.
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[000100] For the illustrative embodiments Cases 0, 1, 3 and 5, the assignments of residual
points are similar. 3200 internal points for the PDE and incompressibility are assigned for the
illustrative embodiment (800 points for each of the four sub-regions; 40 along the circumferential
direction and 20 along the radial direction). For Case 5 only, 400 residual points are assigned in
the inclusion material. The illustrative embodiment of the present disclosure places 160 residual
points on the outer boundary for enforcing traction boundary conditions. Another 160 residual
points are placed on the inner boundary of the matrix, which enforce the traction-free boundary
conditions for Cases 1 and 3 and the interface conditions for Case 5. The points of displacement

measurements are uniformly placed on the outer boundary of the matrix.

[000101] For the illustrative embodiment Case 2, the smallest length scale is determined by
the W, which poses a limitation for the interval of residual points. To accurately resolve the
displacement field, especially around the slit tip where the displacement changes drastically and
the stress concentration exists, a large density of residual points may be needed in the
computational domain. For this case, there are 49000 internal points, 700 points on the outer
boundary, and 700 points on the inner boundary. For the illustrative embodiment Case 4, the square
region can be divided into two parts, each with one void. For each part, residual points are assigned

in a similar way to Case 1.

[000102] For the illustrative embodiments Cases 0-5, the weights of the loss terms in Eq.
A13 to be appg = Qjnc = ap = a, = 1 are designated when applicable. The weight for traction
boundary conditions ay is also set to be 1, but the present disclosure evaluates this part separately
for each of the five boundaries (left, right, top, bottom, inner), leading to five loss terms related to
traction boundaries, each with weight 1, in the total loss. In Case 2, the calculation of the mean
squared error of the PDE loss term Lppg(4, 8) is further weighted inversely by the local density

of residual points, so that different spatial regions contribute equally to the loss term of PDEs.
[000103] For illustrative embodiments Cases 0 and 3, the small values of loading (roughly

0(1072)) cause difficulties in training the PINN. To mitigate this issue, the external loading (and
oy = 0.005 in Case 3) can be scaled up 100 times and feed the scaled loading into the PINN.
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According to Eqs. A15 and A16, such scaling only results in 100 times the original displacement
(and hence strain) and does not essentially changes the characteristics of the solution. After
obtaining the solution from the PINN, the displacement/strain solution can be scaled back (0.01

times) to its original value.

[000104] Ilustrative embodiments of the present disclosure may use Abaqus as the FEM
. 1y NVu . . .
solver to generate the displacement data {u*(l)}i=1 and the entire displacement field, given the

reference values of unknown parameters 6. The linear density of meshes is 120 per unit length,
which can be sufficiently dense so that the FEM/Abaqus solution is accurate enough to serve as
the reference solution. Plane-strain quadratic elements with hybrid formation (CPE8H elements)

can be applied for hyperelasticity.

[000105] According to exemplary embodiments of the present disclosure, a simple
comparison on the model performance in terms of accuracy and efficiency with different strategies
on optimizers based on Case 4. In the main text, the Adam optimizer can be adopted as the only
optimizer throughout the entire training process with 1M iterations (called strategy 1A in this
section), after which both the parameter estimations and loss function reach a relative plateau.
Such a strategy gives high accuracy and can help facilitate study the convergence history as a
fundamental characteristic of our method. To achieve a reasonable accuracy practically, one may
not need as many as 1M iterations. Here, the present disclosure considers training the PINN over
200K iterations only (called strategy 1B). To further improve the computational efficiency, it is
also contemplated that one may consider using Adam for the first few iterations (40K iterations in
our case), and then switching to L-BFGS (48) (called strategy 2), which is common for training
PINNSs practically. Then, one can compare the results of the three strategies (1A, 1B and 2) in view
220 of FIG. 22 in terms of accuracy of parameter estimation and computational efficiency. The
computational time can be measured by running the code on typical machines using CPU only.
The results of strategy 1B indicates that training the PINN with 200K iterations provides
reasonably high accuracy. Strategy 2 using L-BFGS performs even better. The accuracy is similar

to strategy 1A is achieved, while the computational cost may be significantly reduced.
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[000106] The present disclosure demonstrates the capability of the new method based on
PINNs in effectively solving inverse problems in solid mechanics involving parameterized
geometry. Specifically, the present disclosure focuses on the analyses of internal structures and
defects in engineering solids for two types of problems: (1) geometry (and material) identification;
(2) design of optimized and/or improved geometry. Using illustrative examples, this disclosure
demonstrates that the presented method works for different behavior of the solid material,
including (1) linear elasticity, (2) hyperelasticity, and (3) deformation plasticity. The present
disclosure demonstrates that, for identification problems, the present framework is able to
accurately estimate the unknown geometric and material parameters with a relative error 0(1072)
when proper displacement data are supplied to ensure identifiability. For design problems, the
present disclosure demonstrates that the presented method is able to design optimized and/or
improved geometry with a relative error of 0(10~3)compared with reference optimal design. In
addition to identifying the unknown geometry or optimal geometry, the present disclosure
demonstrates the capability of the method in reconstructing the full-field mechanical quantities

corresponding to the identified/designed geometry, such as displacement, strain, and stress.

[000107] According to the exemplary embodiments described herein in detail, the approach
presented in the present disclosure possesses some unique characteristics, endowing this method
with some distinct advantages. It is contemplated that the method inherits and extends the
applicability and advantages of original PINNs. It is contemplated that the present disclosure
provides a unified framework for solving forward problems and inverse problems with unknown
parameters in PDEs (material identification) and/or domains (geometry identification; geometry
design. Unlike traditional methods based on FEM, there is neither the need to design problem-
specific algorithms to update estimated unknown parameters beyond the forward solver, nor the
need to repeatedly re-mesh the computational domain throughout the iterations in the present
disclosure. In the present disclosure, the update of geometry is realized by the automated process
built in the deep learning algorithms. In particular, the estimation of geometric parameters is
automatically updated as the PINN seeks to minimize the loss function through the iterative
training process. With open-source deep learning libraries (e.g., TensorFlow, Pytorch), the entire

length of the PINN code of the present disclosure for the current work is merely a few hundred
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lines. From the perspective of both design and implementation of the algorithm, PINNs
significantly reduce the human effort and related costs in setting up algorithms for inverse
problems. Diverse types of conditions in the problem definition can be enforced and integrated
into the training guideline of the PINN in the form of loss function. For example, displacement
and traction boundary conditions or data (for identification problems) can be accurately enforced
in the training process; maximum stiffness or minimum principal stress as the objective function
(for design problems) can be integrated into the training guideline within the PINN framework.
On the other hand, compared to typical data-driven deep learning approaches, PINNs have the
advantage of utilizing well-established mechanics formulations as training guidelines, thereby
requiring data only for the current instance of the problem setup and ensuring data-efficiency. It is
noted that data-driven deep learning methods, on the other hand, require a large dataset containing

numerous problem setups.

[000108] It is noted that, in accordance with exemplary embodiments, the present disclosure
adopts the Adam optimizer as the optimization algorithm to achieve best accuracy and to study the
convergence history as a fundamental characteristic of our method. The PINN is trained until both
loss function and the estimated parameters reach a relative plateau. With such a setup, the
computational time for Case 4 of identification, for example, is around 11 hours on a typical
machine (with CPU only) to complete the entire 1M iterations and achieve high accuracy. It is
contemplated by the present disclosure that reasonable accuracy has been achieved within the first
200K iterations. One may further combine Adam and the L-BFGS optimizer to achieve similar
accuracy within much less computational time (around 30 minutes; see Paragraph 000105 and
FIG. 22 for detailed results). Recently, parallel PINNs have been proposed to accelerate the
learning process of PINNs by utilizing multiple CPUs and GPUs and introducing parallel
algorithms. In addition, other studies have focused on analyzing convergence rate of PINNs and
proposing practical techniques for accelerating convergence. With the ongoing efforts to improve
the original formulation of PINNs, the computational efficiency is expected to be significantly

enhanced over time.
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[000109] The present disclosure focuses on the matrix-void/inclusion system in Cases 0-5 as
a simple proof of concept for identification problems, seeking to characterize the internal structures
with static loading on outer boundaries. According to Saint-Venant’s principle, under static
loading, the inhomogeneous stress and deformation states caused by the internal void/inclusion
decays as the distance from the void/inclusion increases. Subsequently, the measurements on outer
boundaries essentially provide the PINN with limited amount of information regarding the internal
void/inclusion. Modern experimental techniques have adopted dynamic external loading such as
ultrasound to acquire time-dependent measurements, through which it is anticipated that the
performance of the method of the present disclosure will benefit from more information provided

by measurements.

[000110] The applications presented in this disclosure can involve a wide range of
engineering problems. Geometry design problems are prevalent in mechanical, civil and material
engineering, where one needs to design the geometry, topology, and/or internal structures of
materials/structures for achieving optimized and/or improved performance based on certain
objectives as guidelines. Geometry identification problems are closed related to defect detection,
which represents a broad class of practical engineering needs in various fields, where identification
and characterization of internal structures and defects in materials are essential. Illustrative
embodiments of the present disclosure include experimental techniques, which have so far been
developed for different materials based on ultrasound, active thermography, eddy current, optical
coherent tomography, and microwave. By integrating the respective physical principles in these
problems, it is contemplated that the approach of the present disclosure can be combined with
these techniques for dealing with unknown/moving geometries, which extends our method beyond

continuum solid mechanics.

[000111] Embodiments of the above-described systems and methods can be implemented in
digital electronic circuitry, in computer hardware, firmware, software and combinations thereof.
The implementation can be as a computer program product. The implementation can, for example,

be in a machine-readable storage device, for execution by, or to control the operation of, data
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processing apparatus. The implementation can, for example, be a programmable processor, a

computer, and/or multiple computers.

[000112] A computer program is provided in any form of programming language, including
compiled and/or interpreted languages, and the computer program can be deployed in any form,
including as a stand-alone program or as a subroutine, element, and/or other unit suitable for use
in a computing environment. A computer program can be deployed to be executed on one

computer or on multiple computers at one site.

[000113] Method steps can be performed by one or more programmable processors executing
a computer program to perform functions of the invention by operating on input data and
generating output. Method steps can also be performed by and an apparatus can be implemented
as special purpose logic circuitry. The circuitry can, for example, be a FPGA (field programmable
gate array) and/or an ASIC (application-specific integrated circuit). Subroutines and software
agents can refer to portions of the computer program, the processor, the special circuitry, software,

and/or hardware that implement that functionality.

[000114] Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor receives instructions and data from a read-
only memory or a random access memory or both. The essential elements of a computer are a
processor for executing instructions and one or more memory devices for storing instructions and
data. Generally, a computer can include, can be operatively coupled to receive data from and/or
transfer data to one or more mass storage devices for storing data (e.g., magnetic, magneto-optical

disks, or optical disks).

[000115] Data transmission and instructions can also occur over a communications network.
Information carriers suitable for embodying computer program instructions and data include all
forms of non-volatile memory, including by way of example semiconductor memory devices. The
information carriers can, for example, be EPROM, EEPROM, flash memory devices, magnetic

disks, internal hard disks, removable disks, magneto-optical disks, CD-ROM, and/or DVD-ROM
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disks. The processor and the memory can be supplemented by, and/or incorporated in special

purpose logic circuitry.

[000116] To provide for interaction with a user, the above described techniques can be
implemented on a computer having a display device. The display device can, for example, be a
liquid crystal display (LCD) monitor. The interaction with a user can, for example, be a display
of information to the user and a keyboard and a pointing device (e.g., a mouse or a trackball) by
which the user can provide input to the computer (e.g., interact with a user interface element).
Other kinds of devices can be used to provide for interaction with a user. Other devices can, for
example, be feedback provided to the user in any form of sensory feedback (e.g., visual feedback,
auditory feedback, or tactile feedback). Input from the user can, for example, be received in any

form, including acoustic, speech, and/or tactile input.

[000117] The above described techniques can be implemented in a distributed computing
system that includes a back-end component. The back-end component can, for example, be a data
server, a middleware component, and/or an application server. The above described techniques
can be implemented in a distributing computing system that includes a front-end component. The
front-end component can, for example, be a client computer having a graphical user interface, a
Web browser through which a user can interact with an example implementation, and/or other
graphical user interfaces for a transmitting device. The components of the system can be
interconnected by any form or medium of digital data communication (e.g., a communication
network). Examples of communication networks include a local area network (LAN), a wide area

network (WAN), the Internet, wired networks, and/or wireless networks.

[000118] The system can include clients and servers. A client and a server are generally
remote from each other and typically interact through a communication network. The relationship
of client and server arises by virtue of computer programs running on the respective computers

and having a client-server relationship to each other.
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[000119] Packet-based networks can include, for example, the Internet, a carrier internet
protocol (IP) network (e.g., local area network (LAN), wide area network (WAN), campus area
network (CAN), metropolitan area network (MAN), home area network (HAN)), a private IP
network, an IP private branch exchange (IPBX), a wireless network (e.g., radio access network
(RAN), 802.11 network, 802.16 network, general packet radio service (GPRS) network,
HiperLAN), and/or other packet-based networks. Circuit-based networks can include, for
example, the public switched telephone network (PSTN), a private branch exchange (PBX), a
wireless network (e.g., RAN, bluetooth, code-division multiple access (CDMA) network, time
division multiple access (TDMA) network, global system for mobile communications (GSM)

network), and/or other circuit-based networks.

[000120] The transmitting device can include, for example, a computer, a computer with a
browser device, a telephone, an IP phone, a mobile device (e.g., cellular phone, personal digital
assistant (PDA) device, laptop computer, electronic mail device), and/or other communication
devices. The browser device includes, for example, a computer (e.g., desktop computer, laptop
computer) with a world wide web browser (e.g., Microsoft® Internet Explorer® available from
Microsoft Corporation, Mozilla® Firefox available from Mozilla Corporation). The mobile
computing device includes, for example, a smartphone or tablet (e.g., iPhone®, iPad®, Android®

device, Windows Phone®, etc.).

[000121] The terms comprise, include, and/or plural forms of each are open ended and
include the listed parts and can include additional parts that are not listed. The term and/or is open

ended and includes one or more of the listed parts and combinations of the listed parts.

[000122] One skilled in the art will realize the invention may be embodied in other specific
forms without departing from the spirit or essential characteristics thereof. The foregoing
embodiments are therefore to be considered in all respects illustrative rather than limiting of the
invention described herein. Scope of the invention is thus indicated by the appended claims, rather
than by the foregoing description, and all changes that come within the meaning and range of

equivalency of the claims are therefore intended to be embraced therein.
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[000123] The foregoing and other objects, features and advantages will be apparent from the
following more particular description of the embodiments, as illustrated in the accompanying
drawings in which like reference characters refer to the same parts throughout the different views.
The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the

principles of the embodiments.

[000124] Although various aspects of the present disclosure are described herein in terms of
various exemplary embodiments, it should be understood that variations and modifications may
be made to the disclosure described herein to adopt it to various usages and conditions within the

scope of applicant’s invention as claimed herein.

[000125] The recitation of a listing of elements in any definition of a variable herein includes
definitions of that variable as any single element or combination (or sub-combination) of listed
elements. The recitation of an embodiment herein includes that embodiment as any single

embodiment or in combination with any other embodiments or portions thereof.
[000126] All patents and publications mentioned in this specification are herein incorporated

by reference to the same extent as if each independent patent and publication was specifically and

individually indicated to be incorporated by reference.
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CLAIMS
1. A method for analyzing an aspect of a solid material/structure, comprising:

receiving one or more geometric variables as one or more inputs to physics-informed
neural networks (PINNs);

characterizing/parametrizing a first geometry according to the one or more geometric
variables; and

identifying one or more aspects of the solid material/structure based on the first
geometry,

wherein characterizing/parametrizing a first geometry is performed in a trainable manner.

2. A method for analyzing an aspect of a solid material/solid structure, comprising:

receiving one or more geometric variables as one or more inputs to physics-informed
neural networks (PINNs); and

generating features and parameters of a second geometry of one or more aspects of a
solid material,

wherein generating features and parameters of a second geometry achieves an improved
performance based on one or more objectives,

wherein an improved performance based on one or more objectives is performed in a
trainable manner.

3. The method of claims 1 or 2, wherein the one or more aspects of the solid
material/structure includes at least one of one or more internal structures, internal
surfaces/boundaries, external structures, or external surfaces/boundaries.

4. The method of claims 1 or 2, wherein the one or more aspects of the solid/structure
includes one or more defects in the solid material/structure.

5. The method of claims 1 or 2, wherein the trainable manner includes substituting one or
more geometric variables such as geometry trainable variables, geometry-dependent training
points, and/or making the gradient with respect to geometry tractable.
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6. The method of claim 1, wherein characterizing/parametrizing a first geometry includes
inversely characterizing a first geometry of at least one of one or more internal structures,
internal surfaces/boundaries, external structures, or external surfaces/boundaries according to
displacement data.

7. The method of claim 2, wherein generating features and parameters of a second geometry
includes inversely designing the second geometry of at least one of internal structures, internal
surfaces/boundaries, external structures, or external surfaces/boundaries according to a
predefined objective function.

8. The method of claim 1, wherein identifying one or more aspects of the solid
material/structure based on the first geometry includes concurrently identifying one or more full
field stresses, strains, and/or displacements in the one or more aspects of the solid
material/structure.

0. The method of claims 6 or 7, wherein a framework for inversely characterizing and/or
designing involves unknown/moving domains directly parameterizing a computational
domain/geometry with material and geometry parameterization.

10. The method of claim 6, wherein inversely characterizing a first geometry includes
minimizing a discrepancy/loss between the displacement data and one or more results of a
forward solver.

11. The method of claim 7, wherein inversely designing a second geometry includes
minimizing the objective function.

12. The method of claims 1 or 2, wherein characterizing/parametrizing a first geometry or
generating features and parameters of a second geometry includes representing at least one of
one or more internal structures, internal surfaces/boundaries, external structures, or external
surfaces/boundaries by analytical function(s), parameterized function(s), a non-uniform rational
basis spline (NURBS) or other neural network(s),

wherein a shape of the at least one of one or more internal structures, internal
surfaces/boundaries, external structures, or external surfaces/boundaries are simple or arbitrarily
complicated.

43



WO 2023/150352 PCT/US2023/012420

13. The method of claim 5, wherein concurrently identifying the full field stresses, strains,
displacements in the one or more solid materials/structures includes one or more different shapes
and/or topologies of the one or more solid materials/structures and different constitutive models
for describing the mechanical properties of the one or more solid materials/structures,

wherein the different constitutive models for describing the mechanical properties of the
one or more solid materials/structures include measuring linear elasticity, nonlinear elasticity or
hyperelasticity, and plasticity.

14. The method of claim 1 or 2, wherein the trainable manner includes a pretraining process
for the PINNs, comprising:

maintaining one or more estimated unknown parameters @ defined as fixed/not trainable
and updating one or more trainable parameters of a neural network (NN) 4 for one or more
iterations;

solving one or more forward problems to capture a qualitative pattern of a displacement
field and a stress field; and

solving one or more forward problems until both a loss function and one or more
estimated geometric parameters reach a relative plateau following pretraining of the PINNs,

wherein both 4 and @ are then trainable,
wherein 4 converged towards to a desired local minimum,

wherein the pretraining process stabilizes the trainable manner of the PINNS.

15.  The method of claim 14, wherein an estimation of geometric parameters is automatically
updated as the PINNs minimize the loss function during the pretraining and/or training process
for the PINNSs,

wherein automatically updating includes enforcing one or more diverse types of
conditions in problem definition for integration into the PINNs in the form of the loss function
during the pretraining and/or training process for the PINNS.

16. The method of claim 3, wherein the one or more geometric variables parameterize the
computational domains of partial differential equations (PDEs) and boundary conditions,

wherein the one or more geometric variables are first defined as trainable before
expressing one or more locations of residual points as functions of the one or more geometric
variables.
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17. The method of claim 16, wherein the one or more locations of the residual points are
automatically updated as an estimation of the one or more geometric variables are updated
throughout the training process,

wherein the one or more locations of the residual points for one or more different
conditions are in their correct domains, allowing the capturing of a gradient of a loss function £
with respect to the one or more geometric variables,

wherein the residual points for the one or more different conditions allows for the PINNs
to correctly update estimation and/or design of the one or more geometric variables throughout
the training process and characterize/design the at least one of one or more internal structures,
internal surfaces/boundaries, external structures, external surfaces/boundaries and/or defects.

18. The method of claim 1, wherein characterizing/parametrizing a first geometry includes
accurately estimating the one or more geometric variables and one or more material parameters
with limited non-destructive measurements,

wherein accurately estimating the unknown geometric and one or more material
parameters includes a relative error 0(10~2) when proper displacement data are supplied to
ensure identifiability,

wherein characterizing/parametrizing a first geometry further includes placing one or
more displacement measurement points only on a boundary of a solid material/structure.

19. A method for utilizing physics-informed neural networks (PINNs) to examine internal
structures and defects of solid materials/structures according to claim 1, comprising:

applying a neural network to approximate the primary solution fields;

integrating one or more mechanical laws into the PINN by deriving relevant mechanical
quantities of interest from one or more neural network (NN) outputs, such as strain, stress, and/or
residual of equilibrium partial differential equations (PDEs);

formulating a loss function £L(4, @), wherein the loss function £(4, 8) measures a
discrepancy between predicted mechanical quantities of interest and their respective true values
provided by the one or more mechanical laws and measured data; and

conducting parameter estimation through a training of the PINN, wherein the training of
the PINN includes updating/training unknown parameters 8 = (Bmat, Bgeo) and neural networks
parameters 4 to minimize the loss function.
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20. A method for utilizing physics-informed neural networks (PINNs) to examine internal or
external structures and defects of solid materials/structures according to claim 2, comprising:

minimizing Lppg(4, 8), Lgc(4, @), wherein minimizing Lppg (4, 8), Lgc(4, 8) includes
satisfying a governing partial differential equation (PDE) and one or more boundary conditions
as the PINN seeks to minimize a loss function,

wherein one or more constraints are satisfied through minimizing L., s-(4, @), wherein
the one or more constraints are directly incorporated through designing an architecture of PINNs,

wherein a design target is achieved through minimizing Li,rgec(4, ), and

wherein one or more relevant geometric parameters in @ are adjusted to minimize the loss
function and realize a design of optimal geometry.
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