wo 2016/183545 A1 || I} NP0 OO A AR AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/183545 Al

17 November 2016 (17.11.2016) WIPO | PCT
(51) International Patent Classification: (72) Inventors: TEODORESCU, Radu; 303 East 109th Street,
GO6F 12/02 (2006.01) GO6F 17/30 (2006.01) Apt 1, New York, NY 10029 (US). CAUDY, Ryan; 360
. .. i East 88th Street, Apt 25B, New York, NY 10128 (US).
(21) International Application Number: PCTIUS2016/032587 KENT, David, R., IV; 6965 Winter Hawk Circle, Color-
ado Springs, CO 80919 (US). WRIGHT, Charles; 48 Fur-
(22) International Filing Date: nace Woods Road, Cortlandt Manor, NY 10567 (US).
14 May 2016 (14.05.2016) RIES, Brian; 2640 Xenwood Avenue South, St Louis
. Park, MN 55416 (US).
(25) Filing Language: English

L) . (74) Agent: CARMICHAEL, James, T.; Carmichael IP,
(26) Publication Language: English PLLC, 8000 Towers Crescent Drive, 13th Floor, Tysons

(30) Priority Data: Corner, VA 22182 (US).
62/161,813 14 May 2015 (14.05.2015) us (81) Designated States (uniess otherwise indicated, for every
(71) Applicant: WALLEYE SOFTWARE, LLC [US/US]; kind of national protection available). AE, AG, AL, AM,

2800 Niagara Lane N., Plymouth, MN 55447 (US).

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE
LINKS TO UPDATE PROPAGATION GRAPH NODES

Remote Query Processor

(57) Abstract: Described are methods, systems and computer read-

Update propagation graph

\ ' |

Exported
Table
Handle 1
518

Exported
Table
Handle 3
522

Exported
Table
Handle 2
520

Heartbeat,’

Heartbeat\‘
526\

524 /

Remote Client
528

/ Remote Client 2

530
Remote
Table
Handle 3
536

Remote
Table
Handle 1
532

Remote
Table
Handle 2
534

RTH ref count =2 RTH ref count = 3 RTH ref count = 2

FIG.5

able media for distributed and optimized garbage collection of re-
mote and exported object handle links to update propagation graph
nodes.

WO 2016/183545 A1 WAL 00T O O

(84) Designated States (unless otherwise indicated, for every SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
kind of regional protection available). ARIPO (BW, GH, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, .
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, Kz, RU, Tublished:
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, — with international search report (Art. 21(3))
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

WO 2016/183545 PCT/US2016/032587

DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND
EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES

{00601] This application claims the benefit of U 8. Provisional Application No. 62/161,813,
entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by
reference in its entirety.

{0002} Embodiments relate generally to computer data systems, and more particularly, to
methods, systems and computer readable media for providing optimized garbage collection of
remote table handle links.

{00683} In an environment where a query server can have multiple remote chients, multiple
links can be set up to tables on the query server from each remote client. Therecanbe a
system cost for maintaining all of these links, or from maintaining the data sources referenced
by the links. As remote clients disconnect from from the query server or as remote clients
stop using a particular table, links can still be registered for the remote clients on the query
server. The number of links that need to be managed by the query server can continue to
grow with new remote client connections and query operations against query server tables. If
the links are not properly garbage collected after use, the amount of system resources to
manage the increasing number of links and the data sources referenced by the links may also
increase.

10004] Embodiments were conceived in light of the above mentioned needs, problems and/or
Himitations, arnong other things.

{0005] Some implementations can include a system for managing distributed client-server
object handles, the system comprising a remote client computer containing a first one or more
hardware processors, a server computer containing a second one or more hardware
processors, and the remote client computer containing a first computer readable data storage
device coupled to the first one or more hardware processors, the first computer readable data
storage device having stored thereon software instructions that, when executed by the first
one or more hardware processors, cause the first one or more hardware processors to perform
operations. The operations can include creating a remote object handle manager. The
operations can also include establishing a connection with a remote query processor on the
server computer. The operations can further include establishing a liveness indication system
with the remote query processor. The operations can also inchude receiving from the remote

query processor, exported object handle information for use in constructing a remote object

WO 2016/183545 PCT/US2016/032587

handle, including an exported object identifier, the exported object identifier identifying an
exported object. The operations can include the remote object handle manager constructing a
remote object handle. The operations can also include the remote object handle manager
monitoring liveness of all client objects that depend on the remote object handle, the remote
object handle depending on the exported object and indirectly on the exported object’s
dependencies. The operations can include the remote object handle manager sending a
release notification to the remote query processor including an exported object identifier,
after no client objects depend on the exported object. The operations can also include the
server computer containing a second computer readable data storage device coupled to the
second one or more hardware processors, the second computer readable data storage device
having stored thereon software instructions that, when executed by the second one or more
hardware processors, cause the second one or more hardware processors to perform
operations. The operations can include creating a remote query processor, the remote query
processor performing operations.

{0006} The operations can include creating an exported object handle manager. The
operations can also inchude sending the exported object handle information, including an
exported object identifier from an exported object handle manager to the remote client
computer. The operations can further include preserving a liveness of the exported object at
feast until the first of the following events: receipt of a release notification from the remote
table handle manager; and the liveness indication system determines the remote client
computer 18 not connected.

{0087] The remote query processor operations can include the remote query processor
receiving a transmitted user query task from the remote client computer. The remote query
processor operations can also include executing the transmitted user query task. The remote
query processor operations can further include upon executing an instruction from the user
query task to export an object, creating an exported object handle.

{00608] The remote query processor operations can include publishing a list of objects
available for export to the remote client computer.

{0009} The operations can include wherein the remote object handle manager monttoring of
client object liveness comprises maintaining a remote object handle reference count on the
remote object handle. The operations can also include decrementing the remote object handle
reference count after a dependent client object no longer depends on the remote object

handie. The operations can further include when the remote object handle reference count

WO 2016/183545 PCT/US2016/032587

after decrementing is zero, sending a digital message to the remote query processor to release
an associated exported object handle.

{0010} The operations can include wherein the exported object handle maintains a strong
reference to one or more components of an update propagation graph created on the server
computer.

{0011} The operations can include wherein the relationship between a remote object handle
and its associated exported cbject extends an update propagation graph across at least one of
multiple remote query processors and multiple clients,

{06012} The operations can include wherein the remote object handle invokes one or more
methods on an exported object and delivers return values as copied objects or remote object
handles of exported objects.

{0013} The operations can include wherein the remote client computer and the server
computer are different computers.

{0014} The operations can include wherein the remote object handle manager monitoring of
client object liveness comprises the remote object handle manager monitoring a handle
cleanmup reference queue and after a handle cleanup reference appears in the handle cleanup
reference queue, invoking a handle cleanup reference cleanup method. The operations can
further include the handle cleanup reference cleanup method removing the handle cleanup
reference trom a set of handle cleanup references monitored by the remote object handle
manager, thereby eliminating all strong references to the handle cleanup reference. The
operations can further include the handle cleanup reference cleanup method sending a digital
message to the remote query processor to release an associated exported object handle.
{0015} The operations can include wherein the remote object handle manager monitoring of
client object liveness comprises the remote object handle manager monitoring a handle
cleanmup reference queue and after a handle cleanup reference appears in the handle cleanup
reference queue, invoking a handle cleanup reference cleanup method. The operations can
also include the handle cleanup reference cleanup method decrementing a remote object
handle reference count on a remote object handle associated with the handle cleanup
reference. The operations can further include the handle cleanup reference cleanup method
removing the handle cleanup reference from a set of handle cleanup references monitored by
the remote object handle manager. The operations can include when the remote object
handle reference count after decrementing is zero, sending a digital message to the remote

query processor to release an associated exported object handle.

WO 2016/183545 PCT/US2016/032587

{0016} The operations can include wherein the remote query processor preserving a liveness
of the exported object comprises maintaining a reference count associated with the exported
object. The operations can also include decrementing the reference count associated with the
exported object after receipt of a release notification from the remote table handle manager.
The operations can further include decrementing the reference count associated with the
exported object after the liveness indication system determines the remote client computer is
not connected. The operations can also include when the remote object handle reference
count after decrementing is zero, removing a strong reference to the exported object from the
exported object handle. The operations can include when the remote object handle reference
count after decrementing is greater than zero, maintaining a strong reference to the exported
object from the exported object handle.

{0017} Some implementations can include a method for managing distributed client-server
object handles, the method comprising creating a remote object handle manager. The method
can also include establishing a connection with a remaote query processor on a server
computer. The method can further include establishing a liveness indication system with the
remote query processor. The method can also include receiving from the remote query
processor, exported object handle information for use in constructing a remote object handle,
including an exported object identifier, the exported object identifier identifying an exported
object. The method can include the remote object handle manager constructing a remote
object handle. The method can also include the remote object handle manager monitoring
liveness of all client objects that depend on the remote object handle, the remote object
handle depending on the exported object and indirectly on the exported object’s
dependencies. The method can include the remote object handle manager sending a release
notification to the remote query processor including an exported object identifier, after no
client objects depend on the exported object. The method can also include creating a remote
query processor, the remote query processor performing operations.

{00618] The operations can include creating an exported object handle manager. The
operations can also include sending the exported object handle information, including an
exported object identifier from an exported object handle manager to a remote client
computer. The operations can further include preserving a liveness of the exported object
until receipt of a release notification from the remote table handle manager or until the
liveness indication system determines the remote client computer is not connected.

{0019} The remote query processor operations can turther include the remote query processor

receiving a transmitted user query task from a remote client computer. The operations can

WO 2016/183545 PCT/US2016/032587

also include executing the transmitted user query task. The operations can further include
upon executing an instruction from the user query task to export an object, creating an
exported object handle.

{0028] The remote query processor operations can include publishing a list of objects
available for export to the remote client computer.

{0021} The method can include the operations of the first one or more hardware processors
further comprising the remote object handle manager monitoring a handle cleanup reference
queue. The operations can also include after a handle cleanup reference appears in the handle
cleanup reference queue, invoking a handle cleanup reference cleanup method. The
operations can further include the handle cleanup reference cleanup method decrementing a
remote object handle reference count on a remote object handle associated with the handle
cleanup reference. The operations can also include the handle cleanup reference cleanup
method removing the handle cleanup reference from a set of handle cleanup references
monitored by the remote object handle manager. The operations can include when the
remote object handle reference count after decrementing is zero, sending a digital message to
the remote query processor to release an associated exported object handle. The operations
can also include when the remote object handle reference count after decrementing is greater
than zero, maintaining a strong reference to the remote object handle in order to ensure
liveness for dependent client objects.

{0022} The method can include wherein the exported object handle maintains a strong
reference to an update propagation graph created on the server computer.

{0023] The method can 1include wherein the relationship between a remote object handle and
its associated exported object extends an update propagation graph across at least one of
multiple remote query processors and multiple clients.

{0024} The method can inchude wherein the remote object handle invokes one or more
methods on an exported object and delivers return values as copied objects or remote object
handles of exported objects.

{0025} The method can include wherein the remote client computer and the server computer
are different computers.

{0026] The method can also include wherein the preserving a liveness of the exported object
comprises maintaining a reference count associated with the exported object. The method
also includes decrementing the reference count associated with the exported object after
receipt of a release notification from the remote table handle manager. The method further

includes decrementing the reference count associated with the exported object after the

(W4

WO 2016/183545 PCT/US2016/032587

liveness indication system determines the remote client computer is not connected. The
method also includes when the remote object handle reference count after decrementing 13
zero, removing a strong reference to the exported object from the exported object handle.

The method turther includes when the rernote object handle reference count after
decrementing is greater than zero, maintaining a strong reference to the exported object from
the exported object handle.

{00271 Some implementations can include a nontransitory computer readable medium having
stored thereon software instructions that, when executed by one or more processors, cause the
one or more processors to perform operations. The operations can include creating a remote
object handle manager. The operations can alsc include establishing a connection with a
remote query processor on a server computer. The operations can further include establishing
a liveness indication system with the remote query processor. The operations can also
include recetving from the remote query processor, exported object handle information for
use in constructing a remote object handle, including an exported object identifier, the
exported object identifier identifying an exported object. The operations can include the
remote object handle manager constructing a remote object handle. The operations can also
include the remote object handle manager monitoring liveness of all client objects that
depend on the remote object handle, the remote object handle depending on the exported
object and indirectly on the exported object’s dependencies. The operations can include the
remote object handle manager sending a release notification to the remote query processor
including an exported object identifier, after no client objects depend on the exported object.
The operations can also include the server computer containing a second computer readable
data storage device coupled to the second one or more hardware processors, the second
computer readable data storage device having stored thereon software nstructions that, when
executed by the second one or more hardware processors, cause the second one or more
hardware processors to perform operations.

{00628] The operations can include creating a remote query processort, the remote query
processor performing operations including creating an exported object handle manager. The
remote query processor operations can also include sending the exported object handie
information, including an exported object identifier from an exported object handle manager
to the remote client. The remote query operations can further include preserving a liveness of
the exported object until receipt of a release notification from the remote table handle

manager or untll the liveness indication system determines the reruote client is not connected.

WO 2016/183545 PCT/US2016/032587

{0029} The operations can include the remote query processor receiving a transmitted user
query task from the rernote client computer. The operations can also include executing the
transmitted user query task. The operations can further include upon executing an instruction
from the user query task to export an object, creating an exported object handle.

{0030] The operations can include publishing a list of objects available for export to the
remote client.

{0031} The operations can inclhude the remote object handle manager monitoring a handle
cleanup reference queue. The operations can also include after a handle cleanup reference
appears iu the handle cleanup reference queue, invoking a handle cleanup reference cleanup
method. The operations can further include the handle cleanup reference cleanup method
decrementing a remote object handle reference count on a remote object handle associated
with the handle cleanup reference. The operations can also include the handle cleanup
reference cleanup method removing the handle cleanup reference from a set of handle
cleanup references monitored by the remote object handle manager. The operations can
include when the remote object handle reference count after decrementing is zero, sending a
digital message to the remote query processor to release an associated exported object handle.
The operations can also include when the remote object handle reference count after
decrementing is greater than zero, maintaining a strong reference to the remote object handle
in order to ensure liveness for dependent client objects.

{0032} The operations can include wherein the exported object handle maintains a strong
reference to an update propagation graph created on the server computer.

{0033] The operations can include wherein the relationship between a remote object handle
and its associated exported object extends an update propagation graph across at least one of
multiple remote query processors and multiple clients.

{0034} The operations can include wherein the remote object handle invokes one or more
methods on an exported object and delivers return values as copied objects or remote object
handles of exported objects.

{0035} The operations can include wherein the remote client computer and the server
computer are different computers.

{0036] Some implementations can include a method for monitoring liveness of parent objects
and child objects participating in an update propagation graph on a guery processing
computer having parent listener objects and child listener objects, the method comprising
maintaining continued Hveness of said parent objects so long as their child objects have

continued liveness. The method can also include permitting termination of liveness of

WO 2016/183545 PCT/US2016/032587

dependent child objects when their parent objects have continued liveness. The method can
further include maintaining continued liveness of said parent listener objects so long as their
child objects have continued liveness. The method can also include permitting termination of
liveness of dependent child listener objects when their parent objects have continued liveness.
{0037} The method can include wherein the child objects are only weakly reachable from

their parent objects and the parent objects are strongly reachable from their child objects.

BRIEF DESCRIPTION OF THE DRAWINGS

{0038} FIG. 11s a diagram of an example computer data system showing an example data
distribution configuration in accordance with some implementations.

{06039} FIG. 215 a diagram of an exarople computer data system showing an example
administration/process control arrangement in accordance with some implementations.
{0040} FIG. 3 is a diagram of an example computing device configured for remote query
processor processing in accordance with some implementations.

{0041] FIG. 3A is a diagram of an example computing device contigured for remote client
processing in accordance with some implementations.

{0042] FIG. 4 1s a diagram of an example update propagation graph in accordance with some
implementations.

{0043] FIG. 4A 1s a diagram of an example update propagation graph with collected
references in accordance with some implementations.

{0044] FIG. 5 15 a diagram of an example remote query processor and remote clients in
accordance with some implementations.

{0045] FIG. 5A 1s a diagram of an example remote table handle manager in accordance with
some implementations.

{0046] FIG. 5B is a diagram of an example remote table handle manager in accordance with
some implementations.

{0047} FIG. 5C 1s a diagram of an example remote table handle manager in accordance with
some implementations.

{0048} FIG. 5Dis a diagram of an example remote query processor and reruote clients in
accordance with some implementations.

{0049} FIG. 5E 1s a diagram of an example remote query processor and remote clients 1o

accordance with some implementations.

WO 2016/183545 PCT/US2016/032587

{0050] FIG. 6 15 a flowchart of an example remote table handle establishment in accordance
with some iroplementations.

{0051 FIG. 7 is a flowchart of an example of loss of heartbeat reference collection in
accordance with some implementations.

{0052] FIG. 8 is a flowchart of an example of non-loss of heastbeat reference collection in

accordance with some implementations.

DETAILED BESCRIPTION

{0053] Reterence is made herein to the Java programming language, Java classes, Java
bytecode and the Java Virtual Machine (JVM) for purposes of tllustrating exarnple
implementations. It will be appreciated that implementations can include other programming
languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an
alternative to or in addition to Java classes {(e.g., other language classes, objects, data
structures, program units, code portions, script portions, etc), other types of bytecode, object
code and/or executable code, and/or other virtual machines or hardware implemented
machines configured to execute a data system query.

{0034} FIG. 115 a diagram of an example computer data system and network 100 showing an
example data distribution configuration in accordance with some implementations. In
particular, the system 100 includes an application host 102, a periodic data import host 104, a
query server host 106, a long-term file server 108, and a user data import host 110. While
tables are used as an example data object in the description below, it will be appreciated that
the data system described herein can also process other data objects such as mathematical
objects {e.g., a singular value decomposition of values in a given range of one or more rows
and columns of a table), TableMap objects, etc. A TableMap object provides the ability to
tookup a Table by some key. This key represents a unique value {or unique tuple of values)
from the columns aggregated on in a byExternal() statement execution, for example. A
TableMap object can be the result of a byExternal() statement executed as part of a query. It
will also be appreciated that the configurations shown in FIGS. 1 and 2 are for illustration
purposes and in a given implementation each data pool {(or data store) may be directly
attached or may be managed by a file server.

{0055] The application host 102 can include one or more application processes 112, one or
more log files 114 {e.g, sequential, row-otiented log files), one or more data log tailers 116

and a multicast key-value publisher 118, The periodic data import host 104 can include a

WO 2016/183545 PCT/US2016/032587

focal table data server, direct or remote connection to a periedic table data store 122 {e.g., a
column-oriented table data store} and a data import server 120, The query server host 106
can include a multicast key-value subscriber 126, a performance table logger 128, local table
data store 130 and one or more remote query processors {132, 134) each accessing one ot
more respective tables (136, 138). The long-term file server 108 can include a long-tern data
store 140. The user data import host 110 can include a remote user table server 142 and a
user table data store 144, Row-oriented log files and column-oriented table data stores are
discussed herein for tllustration purposes and are not intended to be limiting. It will be
appreciated that log files and/or data stores may be contigured in other ways. In general, any
data stores discussed herein could be configured in a manner suitable for a contemplated
implementation.

10056} In operation, the input data application process 112 can be configured to receive input
data from a source (e.g., a securities trading data source), apply schema-specified, generated
code to tormat the logged data as it's being prepared for ocutput to the log file 114 and store
the recetved data in the sequential, row-oriented log file 114 via an optional data logging
process. In some implementations, the data logging process can include a daemon, or
background process task, that is configured to log raw input data received from the
application process 112 to the sequential, row-oriented log files on disk and/or a shared
memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data
to log files can additionally serve to provide a backup copy of data that can be used in the
event that downstream processing of the input data is halted or interrupted or otherwise
becomes unreliable.

{0057} A data log tailer 116 can be configured to access the sequential, row-oriented log
file(s) 114 to retrieve input data logged by the data logging process. In some
implementations, the data log tatler 116 can be configured to perform strict byte reading and
transmission {e.¢., to the data import server 120). The data import server 120 can be
configured to store the input data into one or more corresponding data stores such as the
periodic table data store 122 in a column-oriented configuration. The periodic table data
store 122 can be used to store data that 1s being recetved within a time period {e.g., a minute,
an hour, a day, etc.) and which may be later processed and stored in a data store of the long-
term file server 108, For example, the periodic table data store 122 can include a plurality of
data servers configured to store periodic securities trading data according to one or more
characteristics of the data (e.g., a data value such as security symbol, the data source such as

a given trading exchange, etc.).

WO 2016/183545 PCT/US2016/032587

{0058] The data import server 120 can be contigured to receive and store data into the
periodic table data store 122 in such a way as to provide a consistent data presentation to
other parts of the system. Providing/ensuring consistent data in this context can include, for
example, recording logged data to a disk or memory, ensuring rows presented externally are
available for consistent reading {e.g, to help ensure that if the system has part of a record, the
system has all of the record without any errors), and preserving the order of records from a
given data source. If data is presented to clients, such as a remote query processor {132,
134), then the data may be persisted in some fashion (e g, written to disk}.

{0059] The local table data server 124 can be configured to retrieve data stored in the
periodic table data store 122 and provide the retrieved data to one or more remote guery
processors {132, 134) via an optional proxy.

{0060] The remote user table server (RUTS) 142 can include a centralized consistent data
writer, as well as a data server that provides processors with consistent access to the data that
it is responsible for managing. For example, users can provide input to the system by writing
table data that 1s then consumed by query processors.

{0061} The remote query processors (132, 134) can use data from the data import server 120,
local table data server 124 and/or from the long-term file server 108 to perform queries. The
remote query processors (132, 134) can also recetve data from the multicast key-value
subscriber 126, which receives data from the multicast key-value publisher 118 in the
application host 102. The performance table logger 128 can log performance information
about each remote query processor and its respective queries into a local table data store 130,
Further, the remote query processors can also read data from the RUTS, from local table data
written by the performance logger, or from user table data read over NFS.

{0062} It will be appreciated that the configuration shown in FIG. 1 is a typical example
configuration that may be somewhat idealized for illustration purposes. An actual
configuration may include one or more of each server and/or host type. The hosts/servers
shown in FIG. 1 {e.g., 102-110, 120, 124 and 142} mayv each be separate or two or more
servers may be combined into one or more combined server systems. Data stores can include
focal/remote, shared/isolated and/or redundant. Any table data may tflow through optional
proxies indicated by an asterisk on certain connections to the remote query processors. Also,
it will be appreciated that the term “periodic” 13 being used for illustration purposes and can
include, but is not limited to, data that has been received within a given time period (e.g,,
millisecond, second, minute, hour, day, week, month, year, etc.) and which has not yet been

stored to a long-term data store {e.g., 140},

WO 2016/183545 PCT/US2016/032587

{0063] FIG. 2 1s a diagram of an example computer data system 200 showing an example
administration/process control arrangement 1n accordance with some implementations. The
system 200 includes a production client host 202, a controlier host 204, a GUT host or
workstation 206, and query server hosts 208 and 210, It will be appreciated that there may be
one or more of each of 202-210 in a given implementation,

{0064} The production client host 202 can include a batch query application 212 (e g, a
query that is executed from a command line interface or the like) and a real time query data
consumer process 214 {e.g., an application that connects to and listens to tables created from
the execution of a separate query). The batch query application 212 and the real time query
data consumer 214 can connect to a remote query dispatcher 222 and one or more remote
query processors (224, 226) within the query server host 1 208.

{0065] The controller host 204 can include a persistent query controlier 216 configured to
connect to a remote query dispatcher 232 and one or more remote query processors 228-230.
In some implementations, the persistent query controller 216 can serve as the "primary
client" for persistent queries and can request remote query processors from dispatchers, and
send instructions to start persistent queries. For example, a user can submit a query to 216,
and 216 starts and runs the query every day. In another example, a securities trading strategy
could be a persistent query. The persistent query controller can start the trading strategy
query every morning before the market open, for instance. It will be appreciated that 216 can
work on times other than days. In some implementations, the controller may require its own
clients to request that queries be started, stopped, etc. This can be done manually, or by
scheduled {e.g., cron) jobs. Some implementations can include "advanced scheduling” (e g,
auto-start/stop/restart, time-based repeat, etc.) within the controller.

{0066} The GUVhost workstation can tnclude a user console 218 and a user query application
220. The user console 218 can be configured o connect to the persistent query controller
216. The user query application 220 can be configured to connect to one or more remote
query dispatchers (e.g., 232) and one or more remote query processors (228, 230}

{0067} FIG. 3 15 a diagram of an example computing device 300 in accordance with at least
one implementation. The computing device 300 includes one or more processors 302,
operating system 304, computer readable medium 306 and network interface 308 The
memory 306 can wnclude remote query processor application 310 and a data section 312 {e.g.,
for storing ASTs, precompilied code, etc).

{0068} In operation, the processor 302 may execute the application 310 stored 10 the memory

306. The remote query processor application 310 can include software instructions that,

WO 2016/183545 PCT/US2016/032587

when executed by the processor, cause the processor to perform operations for distributed and
optintized garbage collection of remote and exported table handle links to update propagation
graph nodes in accordance with the present disclosure (e.g., performing one or more of 602~
632; 702-708; 802-820 described below).

{0069} The remote query processor application program 310 can operate in conjunction with
the data section 312 and the operating system 304

{0076} FIG. 3A 1s a diagram of an example computing device 350 1n accordance with at least
one implementation. The computing device 350 includes one or more processors 352,
operating system 354, computer readable mediuom 356 and network interface 358, The
memory 356 can include remote client application 360 and a data section 362 {e.g., for
storing ASTs, precorupiled code, etc.).

{0071} In operation, the processor 352 may execute the application 360 stored in the memory
356. The remote client application 360 can include software instructions that, when executed
by the processor, cause the processor to perform operations for distributed and optimized
garbage collection of remote and exported table handle links to update propagation graph
nodes in accordance with the present disclosure {e.g., performing one or more of 602-632;
702-708; 802-820 described below),

{0072} The remote client application program 360 can operate in conjunction with the data
section 362 and the operating system 354.

{0073} Remote clients can have multiple connections to a query server host including
communications to conduct query operations on the query server host that can result in
creating an update propagation graph to map out static and dynamic nodes that tepresent the
query execution. In order to allow a remote client to interact with nodes in the update
propagation graph on the server, e.g. for display, remote ruethod invocation, or querying, an
exported table handle can be created on the server side and a remote table handle on the client
side to handle the links between the remote client and the update propagation graph tables on
the server.

{6074} FIG. 4 15 a diagram of an example update propagation graph with collected references
in accordance with some implementations. Variables (401, 403, 409, 411, 419) can be table
or object reference variables. For example, variable t7 can refer to the result of a join
operation on the referents of variable t8 and vartable t9 (not shown). Variable Var0 401 can
reference table object TO 402, variable Varl 403 can reference table object t1 404, variable
Var2 409 can reference table object T2 410, Var3 411 can reference table object T3 412, and

Vard 419 can reference table object T4 420

WO 2016/183545 PCT/US2016/032587

{0075] Table object T2 410 can be a child node of table object TO 402 and table object T3
412 can be a child node of table object T1 404, Table object T4 420 can be a child node of &
join operation on table object T2 410 and table object T3 412, L.0,2 406 can be a notification
listener for propagating update notifications from table object TO to table object T2 410,
1.1,3 408 can be a notification listener for propagating update notifications from table object
T1 404 to table object T3 412, L2 4 414 can be a notification listener for propagating update
notifications from T2 410 to a merge join listener 4 418. L.3,4 can be a notification listener
for propagating update notifications from table object T3 also to merge join listener 4 418,
Merge join listener 4 418 can be a notification listener for propagating join update
notifications to table object T4 420. FIG. 4 contains two types of arrows, an arrow with a
broken line and an arrow with a solid line. Tn this example, the arrows with broken lines
represent weak references in the direction of the arrow for propagating update notifications
from a parent, such as T0 402 to a child histener, such as 10,2 406. Arrows with solid lines
represent strong references in the direction of the arrow.

{0076} It will be appreciated that a weak reference does not prevent garbage collection of its
referent, in this case a query update graph listener for propagating changes from a parent to a
child node. A strong reference from a child node to a parent node serves to prevent garbage
collection of the parent node until the child is no longer strongly reachable. Were the parent
to hold strong references to the child listeners, this would prevent sub-graphs that are not
externally reachable from being garbage collected.

{0077] FIG. 4A 1s a diagram of an example update propagation graph with collected
references in accordance with some implementations. In this example, a query operation can
re-assign a variable Vard that previously referred to T4 420 to be NULL 422, thereby
rendering T4 420 and its associated histeners Merge Join Listener 4 418, 1.2,4 414, and 13,4
416 only weakly reachable. Accordingly, the garbage collector can remove (make
finalizable, finalize, and reclaim) table object T4 420 and listeners Merge Join Listener 4 418,
12,4 414, and 1.3,4 416 from memory and thus from the update propagation graph.

{0078} FIG. S is a diagram of an example remote query processor 502 and remote clients
524, 530 in accordance with some implernentations. A reruote query processor 502 can
contain one or more update propagation graphs 504 and one or more exported table handles
(518, 520, 522). An update propagation graph 504 can contain parent object nodes, such as
506, 512, and children nodes that are downstream to the parent object nodes, such as 508,
514, 510, 516, Some object nodes such 508, 514 can serve as both a parent and a child. For

example, t1 table object 506 can be a parent to child t2 table object 508, and 12 table object

WO 2016/183545 PCT/US2016/032587

508 can be a parent to child 13 table object 510. The arrows with broken lines between the
nodes can be weak references in the direction of the arrow and the arrows with solid hines
between the nodes can be strong references. A remote client 528, 530 can have one or more
remote table handles 532, 534, 536.

{06791 A remote table handle 532, 534, 536 can be created on a remote client 528, 530 to
maintain an active link to a corresponding exported table handle 518, 520, 522 on a remote
query processor 502, An exported table handle 518, 520, 522 can be created in response to a
query operation on table objects in an update propagation graph 504, For example, Remote
client 1 528 can send a query request in the form of t3=t2 select() to a remote query processor
502. In response, the remote query processor 502 can create table object t3 510 in the update
propagation graph with the appropriate weak and strong references between 13 510 and €2
508. The remote query processor 502 can then create an exported table handle 1 518 with a
strong reference to t3 510 and send a stub with the exported table handle information,
including an 1dentifier for the exported table to be used in subsequent messages, e.g. a handle
release message, or a remote method invocation message, to the remote client T 528, The
remote client 1 528 remote table handle manager (not shown) can then create a remote table
handle 1 532 to communicate with the exported table handle 518 on the remote query
processor 502 for any further access to t3 510, Remote table handles 532, 534, 536 can
contain a remote table handle (RTH) reference count. A remote table handle 532, 534, 536
can remain alive as long as its RTH reference count remains greater than zero.

{0080] It will be appreciated in the example that as long as the strong reference from the
exported table handle 1 518 remains in place, {3 510 cannot be garbage collected. But if the
strong reference from the exported table handle 1 518 is removed, t3 510 can then be garbage
collected because the only reference to 13 510 would be a weak reference from the £3 510
parent, {2 508,

{0081} It will also be appreciated that the same exported table can be shared with multiple
clients and that reference counting can occur on the exported table handle to track connected
clients and to determine when to remove the exported table handles. It will also be
appreciated that if the reference counting occurs on the exported table handle, then reference
counting on the remote table handle may not be necessary.

{0082] A heartbeat signal 524, 526 can exist between each remote client 524, 526 and each
remote query processor 502, A heartbeat signal 524, 526 can be used to determine whether a
remote client 528, 530 1s connected to a remote query processor 502 during period of remote

client 528, 530 inactivity. It can be assumed by a remote query processor 502 that if a

WO 2016/183545 PCT/US2016/032587

heartbeat signal 524, 526 1s no longer detected from a remote client 528, 530 that the remote
client has disconnected from the remote query processor 502,

{0083 It will be appreciated that a heartbeat signal and a monitoring of a heartbeat signal is
just one example of a hiveness indication systern. Other methods may exist for determining
the status of connections between processes and/or computers.

{0084} It will be appreciated that one or more remote query processors 502 can be connected
to one or more remote clients. One remote query processor S02 can be connected to one or
more clients and one client can be connected to one or more remote query processors 502,
{06085} FIG. 5A is an example diagram of a remote client 1 528 that can contain a remote
table handle manager 540. A remote table handle manager 540 can create and manage one or
more remote table handles 532, 534, one or more handle cleanup references (HCR) (542, 544,
546, 548, 550) per each remote table handle 532, 534, one or more proxy objects (552, 556)
per each HCR (542-550), one or more coluran objects (554, 558) per each HCR (542-550),
one or more widgets 560 per HCR (542-550), and a cleanup queue 562.

{0086} A remote table handle 532, 534 can contain a remote table handle (RTH) reference
count for each link to a handle cleanup reference (542-550). For example, remote table
handle manager 540 can create an HCR for each proxy, column, and/or widget that is part of
a table referenced by remote table handle 1 532. For example, if remote table handle 1 532
references a table with 1 proxy and 1 column, remote table handle manager 540 can create
HCR1, 1 542 to reference the proxy 1 552 and HCR1, 2 to reference the column 1, 2 554
Continuing with the example, remote table handle 1 532 can have an RTH reference count of
2 because remote table handle 1 532 1s connected to 2 HCRs, HCR 1,1 542 and HCR1,2 544
Each of the connections can be a weak reference as represented by an arrow with a broken
fine. Similarly, remote table handle 2 534 can have an RTH reference count of 3 because
remote table handle 2 534 is connected to 3 HCRs, HCR2, 1 546, HCR2Z, 2 548 and HCRZ2, 3
550,

16087} It will be appreciated that a table can have multiple proxies, columns and widgets. An
HCR can be created for each proxy, column, and widget.

{0088} It will also be appreciated that a cleanup queue 562 can be empty or contain handle
cleanup references that have been designated for cleanup. This concept is further described
below.

{6089} FIG. 5B is an example diagram of a remote client } 528 that can contain a remote
table handle manager 540 with a widget reference removed from a remote table handle 534,

In this example, a widget has been removed from the table represented by the remote table

WO 2016/183545 PCT/US2016/032587

handle 2 534, The system garbage collection code {(not shown) can then remove the HCR2, 3
550 reference because the reference between the widget 2 560 and the HCR2, 3 550 15 a weak
reference as shown by the broken arrow, and a weak reference does not prevent garbage
coliection. The system garbage collection code can place the HCRZ2, 3 reference into the
cleanup queue 562 because the link between the HCR2, 3 550 and widget 2 560 reference is a
weak reference. The remote table handle manager 540 can monitor the cleanup queue 562,
Next, the remote table handle manager 540 can dequeue HCRZ, 3 from the cleanup queue
562 and can invoke an HCR cleanup method (not shown). The HCR cleanup method can
then decrement the remote table handle 534 RTH reference count from 3 to 2 and remove
HCR2, 3 from the set of HCRs being monitored by the remote table handle manager 540.
{0090} It will be appreciated that in this example, the remote table handle 2 532 remains alive
because the RTH reference count for the remote table handle 2 532 remains at a value greater
than zero.

{0091} It will also be appreciated that for the example where the reference counting occurs on
the exported table handle instead of the remote table handle, then a separate exported table
handie can be requested for each handle cleanup reference and dependent object on the client.
It will also be appreciated that for the example of reference counting occurring on the
exported table handle and not on the remote table handle, then cleanup references may not be
used on the server side, except as an alternative to reference counting if a same object is
exported multiple times. In this example, the server may not need to notify a client that an
exported object is not reachable because the client may have already released the exported
object.

{0092] FIG. 5C continues the example of FIG. 5B. A proxy 2 556 and a column 2, 2 558 can
be removed from the table represented by the remote table handle 2 534 The systern garbage
collection code {not shown) can then remove the HCRZ2, 1 546 reference and the HCR2, 2
reference because the references are weak references as shown by the broken arrow, and a
weak reference does not prevent garbage collection. The system garbage collection code can
place the HCR2, 1 546 reference and the HCR2, 2 548 reference into the cleanup queue 562
because the link between the HCR2, 1 546 reference and proxy 2 556, and the hink between
the HCR2, 2 548 reference and column 2, 2 558 are weak references. The remote table
handle manager 540 can continue monitoring the cleanup queue 562, Next, the remote table
handle manager 540 can dequeue HCR2, 1 and HCR2, 2 from the cleanup queue 562 and can
invoke their HCR cleamup methods (not shown). The HCR cleanup methods can then

decrement the remote table handle 534 RTH reference count from 2 to 0 and remove HCR2,

WO 2016/183545 PCT/US2016/032587

1 and HCRZ,2 from the set of HCRs being monitored by the remote table handle manager
540. Because the remote table handle 2 534 now has a reference count of zero, the remote
table handle manager 540 can remove the remote table handle 2 534 and take further action
as shown 1n FIG. 53D to start a cleanup of matching resources on the server side.

{0093} FIG. 5D is a diagram of an example remote query processor and remote clients in
accordance with some implementations. Continuing the example from FIG. 5C, the remote
table handle manager 540 on remote client 1 528 can remove the remote table handie 2 534
because the RTH reference count for remote table handle 2 534 has been decremented to
zero, thereby releasing chient-side system sources that were used to maintain the remote table
handle 2 534. The remote table handle manager 540 can also send a message to the remote
guery processor 502 to remove the exported table handle 2 520, thereby releasing server-side
system resources that were used to maintain the exported table handle 2 520. The
communication link between the remote table handle 2 534 and the exported table handie 2
520 can also be torn down, which can release communication resources for the link, such as
sockets on both the client-side and server-side. Nodes 514 and 516 can then also be garbage
collected because 514 and 516 loses the strong references to 514 and 516,

10094 It will be appreciated that a connection can also exist per remote client — remote query
processor relationship in place of or in addition to a remote table handle — exported table
handle relationship.

{0095} FIG. 5E 1s a diagram of an example remote query processor and remote clients 1o
accordance with some implementations. In this example, a heartbeat 526 signal between the
remote client 2 530 and the remote query processor 502 has been lost. A remote query
processor 502 can monitor the heartbeat 524, 526 between a remote query processor 502 and
aremote client 528, 530, When a remote query processor 502 does not detect heartbeat 526
signal over a predetermined length of time, the remote client 530 can be determined to be
either disconnecting or disconnected from the remote query processor 302, Steps can then be
taken on both the client-side and the server side to cleanup resources that were freed up by
the disconnection. For example, an exported table handle manager on the server side that is
associated with the disconnected client can cleanup all of the exported table handles 522
associated with the disconnecting client 530, The strong references from the exported table
handle to the update propagation graph 504 node 512 can also be removed. I the node 512
has no other strong references, the node can be made available for garbage collection. In this
example, a strong reference still exists from node 514 to node 512, thus, node 512 can not be

made available for garbage collection.

WO 2016/183545 PCT/US2016/032587

{0096] It will be appreciated that a single remote client can have many remote table handles
connected to many exported table handles on the server-side, numbering into the hundreds
and thousands. The cleanup of these connections after the loss of a heartbeat can release a
significant arnount of system resources.

{06971 FIG. 615 a flowchart of an example remote table handle establishment in accordance
with some implementations. Processing begins at 602, when a remote client establishes a
connection with a remote guery processor. Processing continues to 604,

{0098] At 604, the remote client and remote query processor establish a bidirectional
heartbeat connection. Processing continues to 606.

{0099] At 600, the remote client transmits a user query to the remote query processor.
Processing continues to 608.

10100] At 608, the remote query processor executes the user query. Processing continues to
610,

{0101] At 610, the execution of the query may result in one or more strong references being
removed from one or more nodes. Processing continues to 612

{3162] A1 612, when live nodes are added to an update propagation graph, the parent nodes
hold weak references to their respective child listener objects, which in turn hold strong
references to their parent table node, their child table node, and any other data structures they
need for update propagation. The child table node holds a strong reference to its parent
fisteners, which hold strong references to the parent table object(s).

101031 It will be appreciated that “live nodes” can be dynamic nodes that can listen for
updates and pass on the update information to lower child nodes. Processing continues to
614,

{0104] At 614, the query causes changes in vanables referencing update propagation graph
nodes.

10105] It will be appreciated that variables can be a holder for a strong reference to a table,
such as “t1.” The contents of a variable, such as t1, can change depending on how t1 is used
in a query instruction. For example, t1 can initially be assigned as t1=t2 select() but can later
be re-assigned as t1=t4.select. Processing continues to 616 and 618,

10106] At 616, the remote query processor, during query execution, may explicitly create one
or more export table handles. Processing continues to 624

{0107} At 618, the remote query processor during execution of a query can publish the

existence of tables that may be exported. Processing continues to 620,

WO 2016/183545 PCT/US2016/032587

{0108] At 620, client-side actions, either automatic or by user input, can request an exported
table handle be created. Processing continues to 622,

{0109] At 622, the remote query processor creates an exported table handle on the remote
query processor. Processing continues to 624.

{0110] At 624, the remote query processor sends a stub back to the remote client to use in
constructing a remote table handle. Processing continues to 626.

{0111} A1 026, a remote table handle 13 created on the remote client by a remote table handle
manager. Processing continues to 628,

[0112] At 628, the remote table handle manager increments the remote table handle reference
count and creates monitored handle cleanup references (HCR) for all objects that require the
remote table handle and its corresponding exported table handle in order to remain active.
Processing continues to 630.

{0113] At 630, the remote client establishes a link from the remote table handle to the
exported table handle.

{0114} It will be appreciated that the link can be a logical link or a physical link. Processing
continues to 632,

{0115] At 632, the remote query processor waits for the next query transmission from a
remote client. Process returns to 606,

{0116] FIG. 7 1s a flowchart of an example of loss of heartbeat reference collection 700 in
accordance with some implementations. Processing begins at 702 when a remote query
processor monitors for a heartbeat signal between the remote query processor and a remote
client. Processing continues to 704.

{0117} At 704, a determination by the remote query processor is made as to whether a
heartbeat signal the remote client 1s present. If the heartbeat 15 present, processing returns to
702 to continue monitoring for the heartbeat signal. If a heartbeat is not present, processing
continues to 706.

{0118] At 700, an exported table handle manager on the remote query processor cleans up all
of the exported table handles associated with the disconnecting or disconnected remote client.
Processing continues to 708.

{0119] At 708, when no other strong links exist to the node that was connected to an exported
table handle manager, the node is available for system initiated garbage collection.

{0120] FIG. 8 1s a flowchart of an example of non-loss of heartbeat reference collection in

accordance with some implementations. Processing begins at 802 and 804,

WO 2016/183545 PCT/US2016/032587

16121} It will be appreciated that the two flows shown in FIG. 8 are shown without a direct
connection between the two flows. The two flows in the example do not have a direct
connection but do make use of a common queue, a handle cleanup reference (HCR) queue.
One flow places objects into the HCR queue and the other flow retrieves the placed objects
from the HCR queue. Steps of the first flow (802-810) are discussed first followed by step of
the second flow (804-820).

{0122] At 802, a system garbage collector monitors object reachability, including the HCR’s
referent, which can be any object that requires the remote table handle and exported table
handle to remain active. Processing continues to 806,

{0123} At 800, when the liveness-enforcing referent object of a handle cleanup reference
becomes only weakly reachable, the HCR (as a weak reference) 1s cleared and the referent
object is marked finalizable {eligible to be garbage collected by the system}. Processing
continues to 808,

{0124} At 808, the system garbage collection mechanism enqueues the HCR for the HCR
queue. Processing continues to 810

{0125] At 810, the system garbage collection mechanism finalizes and reclaims the liveness-
enforcing referent that was previously weakly-reachable from the HCR.

{0126} At 804, a remote table handle manager monitors the HCR queue. Processing
continues to §12.

{0127} At 812, the remote table handle manager dequeues an HCR and invokes an HCR
cleanup method.

{0128] It will be appreciated that the term “method” here refers to a programming language
construct or function, and can be any construct that 1s available in the programming language
used to write the HCR cleanup function. Processing continues to 814,

{0129] At 814, the HCR cleanup method determines the remote table handle associated with
the dequened HCR and decrements that remote table handle reference count by one.
Processing continues to 816.

{0130} At 816, the HCR cleanup method removes the HCR from the set of HCRs monitored
by the remote table handle manager. Processing continues to 818.

i0131] At 818, the remote table handle manager determines whether the remote table handle
reference count is zero. If the remote table handle count 1s greater than zero, processing

returns to 804, If the remote table handle count is zero, processing continues to 820.

WO 2016/183545 PCT/US2016/032587

{0132} At 820, the remote table handle manager sends a digital message to the remote query
processor to cleanup the associated exported table handle on the remote query processor.
Processing returns to 804,

{0133] It will be appreciated that the modules, processes, systems, and sections described
above can be implemented tn hardware, hardware programmed by software, software
instructions stored on a nontransitory computer readable medium or a combination of the
above. A system as described above, for example, can include a processor configured to
execute a sequence of programmed instructions stored on a nontransitory computer readable
medium. For example, the processor can include, but not be limited to, a personal computer
or workstation or other such computing system that includes a processor, microprocessor,
microcontroller device, or is comprised of control logic including integrated circuits such as,
for example, an Application Specific Integrated Circuit {(ASIC), a field programmable gate
array (FPGA), graphics processing unit (GPU), or the like. The instructions can be compiled
from source code instructions provided in accordance with a programming language such as
Java, C, C++, CH.net, assembly or the like. The instructions can also comprise code and data
objects provided in accordance with, for example, the Visual Basic™ language, a specialized
database query language, or another structured or object-oriented programming language.
The sequence of programmed instructions, or programmable logic device configuration
software, and data associated therewith can be stored in a nontransitory computer-readable
medium such as a computer memory or storage device which may be any suitable memory
apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, tlash memory, disk
drive and the like.

{0134} Furthermore, the modules, processes systems, and sections can be implemented as a
single processor or as a distributed processor. Further, i1t should be appreciated that the steps
mentioned above may be performed on a single or distributed processor (single and/or multi-
core, or cloud computing system). Also, the processes, system components, modules, and
sub-modules described in the vartous figures of and for embodiments above may be
distributed across multiple computers or systems or may be co-located in a single processor
or systemn. Example structural embodiment alternatives suitable for implementing the
modules, sections, systems, means, or processes described herein are provided below.

{0135] The modules, processors or systems described above can be implemented as a
programmed general purpose computer, an electronic device programmed with microcode, a
hard-wired analog logic circuit, software stored on a coroputer-readable medium or signal, an

optical computing device, a networked system of electronic and/or optical devices, a special

WO 2016/183545 PCT/US2016/032587

purpose computing device, an integrated circuit device, a semiconductor chip, and/or a
software module or object stored on a computer-readable medium or signal, for example.
{0136] Embodiments of the method and system (or their sub-components or modules), may
be implerented on a general-purpose computer, a special-purpose computer, a programmed
microprocessor or microcontrolier and peripheral integrated circuit element, an ASIC or other
integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a
discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the
like. In general, any processor capable of implementing the functions or steps described
herein can be used to implement embodiments of the method, system, or a computer prograrm
product (software program stored on a nontransitory computer readable medium).

{0137} Furthermore, embodiments of the disclosed method, system, and computer program
product {or software instructions stored on a nontransitory computer readable medium) may
be readily implemented, fully or partially, in software using, for example, object or object-
oriented software development environments that provide portable source code that can be
used on a variety of computer platforms. Alternatively, embodiments of the disclosed
method, system, and computer program product can be implemented partially or fully in
hardware using, for example, standard logic circuits or a VLS design. Other hardware or
software can be used to implement embodiments depending on the speed and/or efficiency
requirements of the systems, the particular function, and/or particular software or hardware
system, microprocessor, or microcomputer being utilized. Embodiments of the method,
system, and computer program product can be implemented in hardware and/or software
using any known or later developed systems or structures, devices and/or software by those
of ordinary skill in the applicable art from the function description provided herein and with a
general basic knowledge of the software engineering and computer networking arts.

{3138} Moreover, embodiments of the disclosed method, system, and computer readable
media (or computer program product) can be implemented in software executed on a
programmed general purpose computer, a special purpose computer, a microprocessor, or the
like.

{3139] It1s, therefore, apparent that there 15 provided, in accordance with the various
embodiments disclosed herein, methods, systems and computer readable media for
distributed and optimized garbage collection of remote and exported table handle links to
update propagation graph nodes.

{0140} Application No. , entitled "DATA PARTITIONING AND ORDERING”

{Attorney Docket No. W1.1-10057) and filed in the United States Patent and Trademark

WO 2016/183545 PCT/US2016/032587

Office on May 14, 2016, 1s hereby incorporated by reference herein in its entirety as if fully
set forth herein.

{0141} Application No. , entitted "COMPUTER DATA SYSTEM DATA
SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH" (Attorney
Docket No. W1.4-10058) and filed in the United States Patent and Trademark Office on May
14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
{0142} Application No. , entitted "COMPUTER DATA SYSTEM POSITION-
INDEX MAPPING" (Attorney Docket No. W1.5-10083) and filed in the United States Patent
and Trademark Office on May 14, 2016, 15 hereby incorporated by reference herein in its
entirety as if fully set forth herein.

{0143} ApplicaionNo. , entitled "SYSTEM PERFORMANCE LOGGING OF
COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS" (Attorney Docket
No. W1.6-10074) and filed 1in the United States Patent and Trademark Otfice on May 14,
2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
{0144} ApplicaionNo. , entitled "DISTRIBUTED AND OPTIMIZED
GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS
TO UPDATE PROPAGATION GRAPH NODES" (Attorney Docket No. W1.8-10085) and
filed in the United States Patent and Trademark Office on May 14, 2016, is hereby
incorporated by reference herein in its entirety as if fully set forth herein.

{0145} ApplicaionNo. , entitied "COMPUTER DATA SYSTEM CURRENT
ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING
QUERY LANGUAGE CONSTRUCTS" {Attorney Docket No. W2.1-10060) and filed in the
United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by
reference herein in 1ts entirety as if fully set forth herein.

{0146] Application No. , entitted "PARSING AND COMPILING DATA
SYSTEM QUERIES” {Attorney Docket No. W2.2-10062) and filed in the United States
Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in
its entirety as if fully set forth herein.

{0147} ApplicaionNo. , entitled "DYNAMIC FILTER PROCESSING”
{Attorney Docket No. W2.4-10075) and filed in the United States Patent and Trademark
Office on May 14, 2016, 1s hereby tncorporated by reference herein 1o 1ts entirety as if fully
set forth herein.

{0148} Application No. , entitled "DYNAMIC JOIN PROCESSING USING

REAL-TIME MERGED NOTIFICATION LISTENER" (Attorney Docket No. W2.6-10076)

WO 2016/183545 PCT/US2016/032587

and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby
incorporated by reference herein in its entirety as if fully set forth herein.

i0149] Application No. , entitted "DYNAMIC TABLE INDEX MAPPING"
{Attorney Docket No. W2.7-10077) and filed in the United States Patent and Trademark
Office on May 14, 2016, 1s hereby incorporated by reference herein in its entirety as if fully
set forth herein.

{3150} Application No. , entitted "QUERY TASK PROCESSING BASED ON
MEMORY ALLOCATION AND PERFORMANCE CRITERIA" (Attorney Docket No.
W2.8-10094) and filed 1n the United States Patent and Trademark Office on May 14, 2016, is
hereby incorporated by reference herein in its entirety as if fully set forth herein.

{0151} ApplicatbionNo. , entitled "A MEMORY-EFFICIENT COMPUTER
SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING" (Attorney Docket No.
W2.9-10107) and filed 1n the United States Patent and Trademark Office on May 14, 2016, is
hereby incorporated by reference herein in its entirety as if fully set forth herein.

{01582} ApplicationNo. , entitled "QUERY DISPATCH AND EXECUTION
ARCHITECTURE" (Attorsey Docket No. W3.1-10061) and filed in the United States Patent
and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its
entirety as if fully set forth herein.

{0153} Application No. , entitted "COMPUTER DATA DISTRIBUTION
ARCHITECTURE" (Attorney Docket No. W3.2-10087) and filed in the United States Patent
and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its
entirety as if fully set forth herein.

{0154} Application No. , entitfed "DYNAMIC UPDATING OF QUERY
RESULT DISPLAYS" (Attorney Docket No. W3.3-10059) and filed in the United States
Patent and Trademark Office on May 14, 2016, 1s hereby incorporated by reference herein in
its entirety as if fully set forth herein.

{0155] Application No. , entitted "BYNAMIC CODE LOADING" (Attorney
Docket No. W3.4-10065) and filed in the United States Patent and Trademark Otfice on May
14, 2016, is hereby incorporated by reference herein in its entirety as if tully set forth herein.
i0156] Application No. , entitfed "IMPORTATION, PRESENTATION, AND
PERSISTENT STORAGE OF DATA" (Attorney Docket No. W3.5-10088) and filed in the
United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by

reference herein in 1ts entirety as if fully set forth herein.

WO 2016/183545 PCT/US2016/032587

{0157} Application No. , entitted "COMPUTER DATA DISTRIBUTION
ARCHITECTURE" (Attorney Docket No. W3.7-10079) and filed in the United States Patent
and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its
entirety as if fully set forth herein.

{0158] Application No. , entitted "PERSISTENT QUERY DISPATCH AND
EXECUTION ARCHITECTURE" (Attorney Docket No. W4.2-10089) and filed in the
United States Patent and Trademark Office on May 14, 2016, ts hereby incorporated by
reference herein in its entirety as if fully set forth herein.

{0189] ApplicationNo. , entitted "SINGLE INPUT GRAPHICAL USER
INTERFACE CONTROL ELEMENT AND METHOD" (Attorney Docket No. W4.3-10003)
and filed in the United States Patent and Trademark Office on May 14, 2016, 13 hereby
incorporated by reference herein in its entirety as if fully set forth herein.

{0160} ApplicationNo. , entitled "GRAPHICAL USER INTERFACE DISPLAY
EFFECTS FOR A COMPUTER DISPLAY SCREEN" {Attorney Docket No. W4.4-10090)
and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby
incorporated by reference herein in its entirety as if fully set forth herein.

{0161} ApplicationNo. , entitled "COMPUTER ASSISTED COMPLETION OF
HYPERLINK COMMAND SEGMENTS" {Attorney Docket No. W4.5-10091} and filed in
the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by
reference herein in 1ts entirety as if fully set forth herein.

10162} Application No. , entitted "HISTORICAL DATA REPLAY UTILIZING
A COMPUTER SYSTEM" {Attorney Docket No. WS5.1-10080) and filed in the United States
Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in
its entirety as if fully set forth herein.

{0163} Application No. , entitted "DATA STORE ACCESS PERMISSION
SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL
FILTERS" (Attorney Docket No. W6.1-10081) and filed in the United States Patent and
Trademark Office on May 14, 2010, 1s hereby incorporated by reference herein in its entirety
as if fully set forth herein.

i0164] Application No. , entitted "REMOTE DATA OBIECT
PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE
PROTOCOL" {Attorney Docket No. W7.2-10064) and filed in the United States Patent and
Trademark Office on May 14, 2016, 15 hereby incorporated by reference herein in its entirety

as if fully set forth herein.

WO 2016/183545 PCT/US2016/032587

{0165] While the disclosed subject matter has been described in conjpunction with a number
of embodiments, it is evident that many alternatives, modifications and vartations would be,
or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants
intend to embrace all such alternatives, modifications, equivalents and variations that are

within the spirit and scope of the disclosed subject matter.

b3
~i

WO 2016/183545 PCT/US2016/032587

CLAIMS

What is claimed is:
1. A system for managing distributed client~server object handles, the system comprising:
a remote client computer containing a first one or more hardware processors,
a server computer containing a second one or more hardware processors;
the remote client computer containing a first computer readable data storage device
coupled to the first one or more hardware processors, the first computer readable data storage
device having stored thereon software instructions that, when executed by the first one or
more hardware processors, cause the first one or more hardware processors to perform
operations including:
creating a remote object handle manager;
establishing a connection with a remote query processor on the server computer;
establishing a liveness indication system with the remote query processor,
receiving from the remote query processor, exported object handle information for use
in constructing a remote object handle, including an exported object identifier, the exported
object identifier identifying an exported object,
the remote object handle manager constructing a remote object handle;
the remote object handle manager monitoring liveness of all client objects that depend
on the remote object handle, the remote object handle depending on the exporied object and
indirectly on the exported object’s dependencies;
the remote object handle manager sending a release notification to the remote query
processor including an exported object identifier, after no client objects depend on the
exported object;
the server computer containing a second computer readable data storage device
coupled to the second one or more hardware processors, the second computer readable data
storage device having stored thereon software instructions that, when executed by the second
one or more hardware processors, cause the second one or more hardware processors to
perform operations including:
creating a remote query processor, the remote query processor performing operations
including:
creating an exported object handle manager;
sending the exported object handle information, including an exported object

identifier from an exported object handle manager to the remote client computer; and

WO 2016/183545 PCT/US2016/032587

preserving a liveness of the exported object at least until the first of the
tollowing events:
receipt of a release notification from the remote table handle manager;
and
the liveness indication system determines the remote client computer is

not connected.

2. The system of claim 1, the remote query processor operations further comprising:

the remote query processor recetving a transmitted user query task from the remote
client computer;

executing the transmitted user query task; and

upon executing an instruction from the user query task to export an object, creating an

exported object handle.

3. The system of claim 1, the remote query processor operations further comprising

publishing a list of objects available for export to the remote client computer.

4. The system of claim 1, wherein the remote object handie manager monitoring of client
object liveness comprises:

maintaining a remote object handle reference count on the remote object handle;

decrementing the remote object handle reference count after a dependent client object
no longer depends on the remote object handle; and

when the remote object handle reference count after decrementing is zero, sending a

digital message to the remote query processor to release an assoctated exported object handle.

5. The system of claim 1, wherein the exported object handle maintains a strong reference to

one or more components of an update propagation graph created on the server computer.

6. The system of claime 1, wherein the relationship between a remote object handle and its
associated exported object extends an update propagation graph across at least one of

multiple remote query processors and multiple clients.

bJ

N

WO 2016/183545 PCT/US2016/032587

7. The system of claim 1, wherein the remote object handle invokes one or more methods on
an exported object and delivers return values as copied objects or remote object handles of

exported objects.

& The system of claim I, wherein the remote client computer and the server computer are

different computers.

9. A method for managing distributed client-server object handles, the method
comprising:
creating a remote object handle manager;
establishing a connection with a remnote query processor on a server corputer,
establishing a liveness indication system with the remote query processor;
receiving from the remote query processor, exported object handle information
for use in constructing a remote object handle, including an exported object identifier, the
exported object identifier identifying an exported object;
the remote object handle manager constructing a remote object handle;
the remote object handle manager monitoring liveness of all client objects that
depend on the remote object handle, the remote object handle depending on the exported
object and indirectly on the exported object’s dependencies;
the remote object handle manager sending a release notification to the remote
query processor including an exported object identifier, after no client objects depend
on the exported object;
creating a remote query processor, the remote query processor performing
operations including:
creating an exported object handle manager,
sending the exported object handle information, including an exported object
identifier from an exported object handle manager to a remote client computer; and
preserving a liveness of the exported object until receipt of a release
notification from the remote table handle manager or until the liveness indication

system determines the remote client computer is not connected.

10. The method of claim 9, the remote query processor operations further comprising:
the remote query processor receiving a transmitted user query task from a remote

client computer;

WO 2016/183545 PCT/US2016/032587

executing the transmitted user guery task; and
upon executing an instruction from the user query task to export an object, creating an

exported object handle.

11. The method of claim 9, the remote query processor operations further comprising

publishing a list of objects available for export to the remote client computer.

12. The method of claim 9, the operations of the first one or more hardware processors
further comprising:

the remote object handle manager monitoring a handle cleanup reference queue;

after a handle cleanup reference appears in the handle cleanup reference queue,
invoking a handle cleanup reference cleanup method;

the handle cleanup reference cleanup method decrementing a remote object handle
reference count on a remote object handle associated with the handle cleanup reference;

the handle cleanup reference cleanup method removing the handle cleanup reference
from a set of handle cleanup references monitored by the remote object handle manager,

when the remote object handle reference count after decrementing is zero, sending a
digital message to the remote query processor to release an associated exported object handle;
and

when the remote object handle reference count after decrementing 1s greater than
zero, maintaining a strong reference to the remote object handle in order to ensure liveness

for dependent client objects.

13. The method of claim 9, wherein the exported object handle maintains a strong reference

to an update propagation graph created on the server computer,

14. The method of claim 9, wherein the relationship between a remote object handle and its
associated exported object extends an update propagation graph across at least one of

multiple remote query processors and multiple clients.

15. The rethod of claim 9, wherein the remote object handle invokes one or more methods
on an exported object and delivers return values as copied objects or remote object handles of

exported objects.

WO 2016/183545 PCT/US2016/032587

16. The method of claim 9, wherein the remote client computer and the server computer are

different computers.

17. A nontransitory computer readable medium having stored thereon software
istructions that, when executed by one or more processors, cause the one or more processors
to perform operations including:
creating a remote object handle manager;
establishing a connection with a remote query processor on a server computer;
establishing a iveness indication system with the remote query processor;
receiving from the remote query processor, exported object handle information for use
in constructing a remote object handle, including an exported object identifier, the exported
object identifier identifying an exported object;
the remote object handle manager constructing a remote object handle;
the remote object handle manager monitoring liveness of all client objects that depend
on the remote object handle, the remote object handle depending on the exported object and
indirectly on the exported object’s dependencies;
the remote object handle manager sending a release notification to the remote query
processor including an exported object identifier, after no client objects depend on the
exported object;
the server computer containing a second computer readable data storage device
coupled to the second one or more hardware processors, the second computer readable data
storage device having stored thereon software instructions that, when executed by the second
one or more hardware processors, cause the second one or more hardware processors to
perform operations including:
creating a remote query processor, the remote query processor performing operations
including:
creating an exported object handle manager,
sending the exported object handle information, including an exported object
identifier from an exported object handle manager to the remote client; and
preserving a liveness of the exported object until receipt of a release
notification from the remote table handle manager or until the liveness indication

system determines the remote client is not connected.

18. The nontransitory computer readable medium of claim 17, further comprising:

(98]
b2

WO 2016/183545 PCT/US2016/032587

the remote query processor receiving a transmitted user query task from the remote
client computer,

executing the transmitted user query task; and

upon executing an instruction from the user query task to export an object, creating an

exported object handle.

19. The nontransitory computer readable medium of claim 17, further comprising publishing

a list of objects available for export to the remote client.

20. The nontransitory computer readable medium of claim 17, further comprising:

the remote object handle manager monitoring a handle cleanup reference queue;

after a handle cleanup reference appears in the handle cleanup reference queue,
invoking a handle cleanup reference cleanup method;

the handle cleanup reference cleanup method decrementing a remote object handle
reference count on a remote object handle associated with the handle cleanup reference;

the handle cleanup reference cleanup method removing the handle cleanup reference
from a set of handle cleanup references monitored by the remote object handle manager,;

when the remote object handle reference count after decrementing is zero, sending a
digital message to the remote query processor to release an associated exported object handle;
and

when the remote object handle reference count after decrementing is greater than
zero, matntaining a strong reference to the remote object handle in order to ensure liveness

for dependent client objects.

21. The nontransitory computer readable medium of claim 17, wherein the exported object
handle maintains a strong reference to an update propagation graph created on the server

computer.

22. The nountransitory computer readable medium of claim 17, wherein the relationship
y

between a remote object handle and its associated exported object extends an update

propagation graph across at least one of multiple remote query processors and multiple

clients.

WO 2016/183545 PCT/US2016/032587

23. The nontransitory computer readable medium of claim 17, wherein the remote object
handle invokes one or more methods on an exported object and delivers return values as

copied objects or remote object handles of exported objects.

24. The nontransitory computer readable medium of claim 17, wherein the remote client

computer and the server computer are different computers.

25. The system of claim 1, wherein the remote object handle manager monitoring of client
object liveness comprises:

the remote object handle manager monitoring a handle cleanup reference queue;

after a handle cleanup reference appears in the handle cleanup reference queue,
invoking a handie cleanup reference cleanup method;

the handle cleanup reference cleanup method removing the handle cleanup reference
from a set of handle cleanup references monitored by the remote object handle manager,
thereby eliminating all strong references to the handle cleanup reference; and

the handle cleanup reference cleanup method sending a digital message to the remote

query processor to release an associated exported object handle.

26. The system of claim 1, wherein the remote object handle manager monitoring of client
object liveness comprises:

the remote object handle manager monitoring a handle cleanup reference queue;

atter a handle cleanup reference appears in the handle cleanup reference queue,
invoking a handle cleanup reference cleanup method;

the handle cleanup reference cleanup method decrementing a remote object handle
reference count on a remote object handle associated with the handle cleanup reference;

the handle cleanup reference cleanup method removing the handle cleanup reference
from a set of handle cleanup references monitored by the remote object handle manager; and

when the remote object handle reference count after decrementing is zero, sending a
digital message to the remote query processor to release an associated exported object handle.
27. The system of claim 1, wherein the remote query processor preserving a liveness of the
exported object comprises:

maintaining a reference count associated with the exported object;

WO 2016/183545 PCT/US2016/032587

decrementing the reference count associated with the exported object after receiptof a
release notification from the remote table handle manager;

decrementing the reference count associated with the exported object after the
liveness indication system determines the remote client corputer 15 not connected;

when the remote object handle reference count after decrementing is zero, removing a
strong reference to the exported object from the exported object handle; and

when the remote object handle reference count after decrementing is greater than

zero, maintaining a strong reference to the exported object from the exported object handle.

28 A method for monitoring liveness of parent objects and child objects participating in an
update propagation graph on a query processing computer having parent listener objects and
child listener objects, the method comprising:

maintaining continued liveness of said parent objects so long as their child objecis
have continued liveness;

permitting termination of liveness of dependent child objects when their parent
objects have continued liveness,

maintaining continued liveness of said parent listener objects so long as their child
objects have continued liveness; and

permitting termination of liveness of dependent child listener objects when their

parent objects have continued hiveness.

29. The method of claim 28 wherein:
said child objects are only weakly reachable from their parent objects; and

satd parent objects are strongly reachable from their child objects.

30. The method of claim 9 wherein the preserving a liveness of the exported object
comprises:

maintaining a reference count associated with the exported object;

decrernenting the reference count associated with the exported object atter receipt of a
release notification from the remote table handle manager;

decrementing the reference count associated with the exported object after the
liveness indication system determines the remote client computer is not connected;

when the remote object handle reference count after decrementing is zero, removing a

strong reference to the exported object from the exported object handle; and

(98]
U

WO 2016/183545 PCT/US2016/032587

when the remote object handle reference count after decrementing is greater than

zero, maintaining a strong reference to the exported object from the exported object handle.

PCT/US2016/032587

WO 2016/183545

1/15

e

8

IR

SRR

IS

X

.m
]
|
W
]
W
]
|
]
W
w.
]
W
]
|
]

s

.

e

P \\\\M

e

7

_
— 4

D R A

o

o

P 44, 3
7 “r *
R -,

|
]
]
M
]
i
]
|
|
]
m
]
i
]
|
|
]

AR WA AR RARAA AR AR AR W I, PRI PRI AR AR

HARAr AR AR AR, RS RS,

e

A NN SRRRRRRRR A

anan Ao
vt
A A NN RN AR A

A - -

B R e

~

PCT/US2016/032587

WO 2016/183545

2/15

8¢

3
RERY

A%

&

Sl

WO 2016/183545 PCT/US2016/032587
3/15

Camputing Device 300

Computer Readable Medium 306
s e O
Provessor(s) Qperating System
302 304
Remaote Query Procassor
appdioatinn
316
Neowork
fntecface
INE Data
312

FIG. 3

WO 2016/183545 PCT/US2016/032587
4/15

Comyputing Device 350

Compiter Readabls Medium 356
Pracessors} Operating Systen
352 354
Remote clont application
360
Network
Interface
358 Data
363

FIG, 3A

WO 2016/183545 PCT/US2016/032587

5/15

VarO |:> TO Varl :> T1

Var2 T2 Var3 |:> T3
409 :> 410 411 412

Merge
Join
Listener 4
418

Var4 :> T4
419 420

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545 PCT/US2016/032587

6/15

VarQ :> T0 Varl :> T1
401 402

403 404

‘_-

L1,3
408

Var2 [::; T2 Var3 [:::> T3
409 410 411

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545

Remote Query Processor

7/15

PCT/US2016/032587

504

Update propagation graph

\

Exported
Table
Handle 1

518

i

Exported
Table
Handle 2
520

Exported
Table
Handle 3

522

/

Heartbeat,/

524 / /

/.

Heartbeat\
526\

Remote Client
528

/

Remote
Table
Handle 1
532

Remote
Table
Handle 2
534

RTH ref count =2

RTH ref count =3

/

Remote
Table
Handle 3
536

RTH ref count = 2

Remote Client 2

530

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545 PCT/US2016/032587
8/15
528 Remote Client 1
Remote table handle manager
540
Remote Remote
Table Table
Handle 1 Handle 2
532 534
RTH ref count =2 RTH ref count =3
HCR2,2
548
I i I 1 I
] 1]]]
\ 4 | 4 4 4 \ 4
Proxy 1 Column 1, 2 Proxy 2 Column 2, 2 Widget 2
552 554 556 558 560
Cleanup Queue: {empty set}
562
FIG. 5A

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545 PCT/US2016/032587

9/15
528 Remote Client 1
Remote table handle manager
540
Remote Remote
Table Table
Handle 1 Handle 2
532 534
RTH ref count =2 RTH ref count = 2
1 1
] l
\ 4 A 4
Proxy 1 Column1l, 2 Proxy 2 Column 2, 2 idge
552 554 556 558
N
Cleanup Queue: HCR2, 3
562
FIG. 5B

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545 PCT/US2016/032587

10/15
528 Remote Client 1
Remote table handle manager
540
Remote Remote
Table Tabl
Handle 1 e 2
532
RTH ref count=2 RTH ref count =
I I
]]
4 4
Proxy 1 Colurznn 1
>>2 554
Cleanup Queue: HCR2, 3; HCR 3, 2; HCR2, 1
562
FIG. 5C

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545 PCT/US2016/032587

11/15

Remote Query Processor

Update propagation graph
504

\ \

Exported porte Exported
Table B Table
Handle 1 Zhdle Handle 3
518 520 522

/ /

Hea rtbeat',f" Heartbeat"\‘
524 // 526\
Remote Client Remote Client 2
528 530
Remote Remote
Table Table
Handle 1 Handle 3
532 536
RTH ref count=2 RTH ref count =0 RTH ref count =2

FIG. 5D

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545

Remote query processor 502

12/15

PCT/US2016/032587

Update propagation graph 504

\

Exported Exported ported
Table Table Ta
Handle 1 Handle 2 dle
518 520 522
7‘ /

Heartbea‘;/" Heartbeap,
524 / \ 526 /%
Remote Client 1 Remote Client 2
528 530
Remote Remote Remo
Table Table le
Handle 1 Handle 2 andle
532 534 536

ETH ref count =2

ETH ref count =3

ETH ref count =2

FIG. 5E

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545 PCT/US2016/032587

13/15

600 Remote Table Handle Establishment

602

Remote client establishes a connection with a remote query processor f
v Ve 604

Remote client and remote query processor establish a bidirectional heartbeat
v f606
Remote client transmits a user query to the remote query processor
v /608
Remote query processor executes user query

v 610

Query may result in strong reference(s) being removed from one or more f

nodes
v

When live nodes are added, the parent node holds a weak reference to the f612

listener object, which holds a strong reference to the child table and any other
data structures it needs for update propagation. The child table holds a strong
reference to its parent listeners, which hold strong references to the parent
table object.
v 614

The query causes changes in variables referencing update query graph nodes

/\

The RQP during query execution The RQP in execution of a query 618
may explicitly create one or more publishes the existence of tables
exported table handles that may be exported
S ¥
616 Client-side actions (automatic or user input) request an ETH be created

.
The RQP creates an exported table handle on the remote query

processor

v v

[e)}
N
N

S S NS N

) , - 624
The RQP sends a stub back to the remote client to use in constructing a remote
table handle
v 626

Remote table handle is constructed

v

The RTHM increments the RTH reference counts and creates monitored HCR

references for all objects that require an RTH and a corresponding ETH in
order to remain active

v

Client establishes link from remote table handle to exported table handle

v

630

S S S

632

'\

RQP waits for next query transmission from remote client

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2016/183545

14/15

700 Loss of Heartbeat Reference Collection

Remote query
processor monitors f 702
heartbeat between the
remote query processor
and the remote client

Is the
heartbeat
present?

Yes

No

706
S

The exported table handle
manager cleans up all exported
table handles associated with
the disconnecting client

h
y
When no other strong f 708
references exist to the node, the
node is available for garbage
collection

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/032587

WO 2016/183545 PCT/US2016/032587

15/15

800 Non-Heartbeat Loss Reference Collection

System garbage
collector monitors
object reachability

802
f

A

When liveness-
enforcing referent
object of an HCR

becomes only weakly
reachable, HCR is
cleared and referent
object is marked
finalizable

806
/

v

RTHM monitors HCR
queue

804
f

A

v

RTHM dequeues an HCR
and invokes the HCR
cleanup method,

812
S

y

HCR cleanup method
decrements the
associated RTH’s

814
s

808

System garbage / reference count
collection mechanism

enqueues the HCR for A

the HCR queue HCR cleanup method

removes the HCR from

the set monitored by

the RTHM

f 816

810
f

System garbage
collection mechanism
finalizes and reclaims
the liveness-enforcing

referent

818

s the remote
table handle

No

reference count
=07

820
e

Remote Table Handle Manager sends a
message to the remote query

processor to cleanup the exported
table handle

FIG. 8

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2016/032587

A CLASSIFICATION OF SUBJECT MATTER

GOG6F 12/02 (2006.01)
GOG6F 17/30 (2006.01)

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F 12/00-12/02, 17/00-17/30, HO4L 9/00-9/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSearch (RUPTO internal), USPTO, PAJ, K-PION, Esp@cenet, Information Retrieval System of FIPS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5960087 A (SUN MICROSYSTEMS, INC.) 28.09.1999, abstract, col. 4, 1-27, 30
lines 35-49, col. 6, line 66-col. 7, line 25, col. 13, lines 62-67, col. 15,
line 38-col. 16, lines 3, 9-32, col. 17, line 58-col. 18, line 4, col. 22, line 26-
col. 23, line 13
Y US 2002/0002576 A1 (SUN MICROSYSTEMS, INC.) 03.01.2002, [0014], [0039] 1-27, 30
X US 8838656 B1 (HISCAMP SYSTEMS, INC.) 16.09.2014, abstract, 28,29
claims 1, 5, 15, 20
|:| Further documents are listed in the continuation of Box C. |:| See patent family annex.
* Special categories of cited documents: 17 later document published after the international filing date or priority

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier document but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“p” document published prior to the international filing date but later than

the priority date claimed

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

20 July 2016 (20.07.2016)

Date of mailing of the international search report

28 July 2016 (28.07.2016)

Name and mailing address of the ISA/RU:

Federal Institute of Industrial Property,
Berezhkovskaya nab., 30-1, Moscow, G-59,

GSP-3, Russia, 125993

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer
A. Tokarev

Telephone No. 499-240-25-91

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report

