0 00 O O

0 01/46827 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 June 2001 (28.06.2001)

PCT

U 0 00O O

(10) International Publication Number

WO 01/46827 Al

(51) International Patent Classification”: GOG6F 15/78,

9/40, 9/38
(21) International Application Number: PCT/US00/35242

(22) International Filing Date:
21 December 2000 (21.12.2000)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/171,731 22 December 1999 (22.12.1999) US
60/213,745 22 June 2000 (22.06.2000) US
60/250,781 1 December 2000 (01.12.2000) US

(71) Applicant: UBICOM, INC. [US/US]; 1330 Charleston

Road, Mountain View, CA 94043 (US).

(72) Inventors: KELSEY, Nicholas, J.; 1446 Isabelle Avenue,
Mountain View, CA 94040 (US). WATERS, Christopher,
J., E.; 1170 University Avenue, Palo Alto, CA 94301 (US).
MIMAROGLU, Tibet; 1040 Gloucester Court, Sunny-
vale, CA 94087 (US). FOTLAND, David, Allan; 4863

Capistrano Avenue, San Jose, CA 95129 (US).

(74) Agents: MCNELIS, John, T. et al.; Fenwick & West LLP,
Two Palo Alto Square, Palo Alto, CA 94306 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ,PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR INSTRUCTION LEVEL MULTITHREADING IN AN EMBEDDED PROCESSOR

USING ZERO-TIME CONTEXT SWITCHING

Shadow Thread Select
HRT
T0 Avall — S m"\
— —_— ¥ Nane]
ARl =3 A e Shadow Fetch 820 810
Wenthier | °
TOPCh—Y oo M Thread « |5 sHabow | = vecs?
T7 PO —3] u PCs S srRaM 3 M
X] a — v
N e .
e . Thread
Register 1608
1012 PP S‘:':ﬁ"' [* None 1018 Thread Number 1a18
* — > Thread Number ___ wRi wooe
Thiead NUMDET Oyneeric tone Post Fetch
mr‘ HRT None. o2
01 804 Rt B
1
Dynamic Shadow Thread Selected

(57) Abstract: A system and method for enabling multithreading in a embedded processor, invoking context switching in a multi-
threading environment, scheduling multiple threads (1010) to permit numerous hard-real time (802) and non-real time (1014) priority
levels, fetching data and instructions from multiple memory blocks in a multithreading environment, and enabling a particular thread

to modify the multiple threads in a core processor.

10

15

20

25

30

WO 01/46827 PCT/US00/35242

SYSTEM AND METHOD FOR INSTRUCTION LEVEL MULTITHREADING

IN AN EMBEDDED PROCESSOR USING ZERO-TIME CONTEXT SWITCHING

Inventors: Nicholas J. Kelsey
Christopher J. F. Waters
Tibet Mimaroglu

David A. Fotland

RELATED APPLICATIONS

This application claims priority from U.S. provisional
application number 60/171,731 filed on December 22, 1999, U.S.
provisional application number 60/213,745 filed on June 22,
2000, and U.S. provisional application number 60/250,781 filed
on December 1, 2000, which are all incorporated by reference
herein in their entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to the field of embedded processor

architecture.
2. Description of Backgrocund Art
Conventional embedded processors, e.g., microcontrollers,

support only a single hard real-time asynchronous process since
they can only respond to a single interrupt at a time. Most
software implementations of hardware functions—called virtual
peripherals (VPs) —respond asynchronously and thus their
interrupts are asynchronous. Some examples of VPs include an
Ethernet peripheral (e.g., 100 Mbit and 10 Mbit Transmit and
receive rates); High-speed serial standards peripherals, e.g.,
12 Mbps USB, IEEE-1394 Firewire Voice Processing and
Compression: ADPCM, G.729, Acoustical Echo Cancellation (AEC);

an image processing peripheral; a modem; a wireless peripheral,

10

15

20

25

30

WO 01/46827 PCT/US00/35242

e.g., an IRDA (1.5 and 4 Mbps), and Bluetooth compatible system.
These VPs can be used as part of a Home programmable network
access (PNA) system, a voice over internet protocol (VoIP)
system, and various digital subscriber line systems, e.g.,
asymmetric digital subscriber line (ADSL), as well as
traditional embedded system applications such as machine

control.

An interrupt is a signal to the central processing unit
(CPU) indicating that an event has occurred. Conventional
embedded processors support various types of interrupts
including external hardware interrupts, timer interrupts and
software interrupts. In conventional systems, when an
interrupt occurs the central processing unit (CPU) completes
the current instruction, saves the CPU context (at a minimum
the CPU saves the program counter), and jumps to the address of
the interrupt service routine (ISR) that responds to the
interrupt. When the ISR is complete and the interrupt has been
responded to, the CPU executes a return-from-interrupt
instruction and restores the CPU context and continues
executing the main code from where the code was interrupted.

If multiple interrupts are received the CPU must be
capable of servicing them. In one conventional system, if a
second interrupt occurs during the processing of a first
interrupt the second interrupt is ignored until the first
interrupt is serviced. Figure 1 is an illustration of a
conventional interrupt response. The “main” code is
interrupted by a first interrupt “A INT” and the CPU then
processes the ISR for this interrupt (ISR A). The second
interrupt (B INT) is received while the first interrupt is
being processed. In this conventional system the ISR for the
second interrupt does not begin until the ISR for the first

interrupt is completed.

10

15

20

25

30

WO 01/46827 PCT/US00/35242

In another conventional system two levels of interrupt
priority are utilized with the rule that a higher priority
interrupt can interrupt a lower priority interrupt but not an
equal priority interrupt.

Embedded processors have a number of interrupt sources and
so there must be some way of selecting which sources can
interrupt the processor. In conventional systems this is done
by using control (mask) registers to select the desired
interrupt sources.

As described above, when an interrupt occurs the CPU loads
the appropriate interrupt service routine (ISR) address into
the program-counter. One implementation of this is to use the
interrupt number as an index into random access memory (RAM),
e.g., using an interrupt-vector-table, to find the dynamic ISR
address (such as used in an Intel’s 8x86 processors). The size
of the interrupt-vector-table is normally limited by having a
limited number of interrupts or by grouping interrupts together
to use the same address. Grouped interrupts are then further
analyzed to determine the source of the interrupt.

A problem with processing one or more interrupts is that,
as described above, the context of the CPU must be stored
before the interrupt is processed. This is necessary in order
for the CPU to be able to continue processing after the ISR
from the same position it was in before the interrupt was
received. The storing of the context information such as the
program counter and other various registers usually takes at
least one clock cycle, and often many more. This delay reduces
the effective processing speed of the CPU.

Context storing is used in many conventional processors,
e.g., RISC based processors, and includes a single register
set, e.g., 32 registers (RO to R31). These registers are often

insufficient for a desired processing task. Accordingly, the

-3-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

processor must save and restore the register values freguently
in order to switch contexts. Switching contexts may occur when
servicing an interrupt or when switching to another program
thread in a multithreading environment. The old context values
are saved onto a stack using instructions, the context is
switched, and then the previous context for the new thread is
restored by pulling its values off the stack using
instructions. This causes a variety of problems including (1)
significantly reducing the performance of the processor because
of the need to frequently save and restore operation for each
context switch, and (2) preventing some time critical tasks
from executing properly because of the overhead required to
switch contexts.

For example, if a program needs to read a port location
for capturing its value every 100 clock cycles and presuming
the read operation takes only 5 clock cycles then if it
requires 32 registers to save and restore for the context
switch and the save operation and the restore operation each
require two instructions for each register then the context
switch and restoration requires 128 instructions which prevents
the successful completion of the task since the read operation
must occur every 100 clock cycles.

Conventional systems have attempted to resolve the problem
by using dedicated hardware for time critical tasks or by using
a front-end dedicated logic to capture the data and put it in a
first in first out (FIFO) buffer to be processed by software.
Several problems with these techniques are (1) they require
dedicated front-end logic, and (2) they require more memory,
e.g., FIFO, which increases die space and cannot be used for
any other function.

Another problem with conventional embedded processing

systems for processing interrupts is that interrupts that have

-4-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

critical timing requirements may fail. With reference to
Figure 1, if interrupt A and interrupt B are both time-
critical, they may be scheduled such that they both have a high
priority (if priorities are available) and although interrupt A
is processed in a timely manner, interrupt B is not processed
until after interrupt A has been processed. This delay may
cause interrupt B to fail since it is not processed in a
predefined time. That is, conventional systems db not provide
reasonable certainty regarding when an interrupt will be
processed.

An embedded processor is a processor that is used for
specific functions. Embedded processors generally have some
memory and peripheral functions integrated on-chip.
Conventional embedded processors have not be capable of
operating using multiple hardware threads.

A pipelined processor is a processor that begins executing
a second instruction before the first instruction has completed
execution. That is, several instructions are in a “pipeline”
simultaneously, each at a different stage. Figure 3 is an
illustration of a conventional pipeline.

The fetch stage (F) fetches instructions from memory,
usually one instruction is fetched per cycle. The decode stage
(D) reveals the instruction function to be performed and
identifies the resources needed. Resources include general-
purpose registers, buses, and functional units. The issue
stage (I) reserves resources. For example, pipeline control
interlocks are maintained at this stage. The operands are also
read from registers during the issue stage. The instructions
are executed in one of potentially several execute stages (E).
The last writeback stage (W) is used to write results into

registers.

10

15

20

25

30

WO 01/46827 PCT/US00/35242

A problem with conventional pipelined processors is that
because the speed of CPUs are increasing, it is increasingly
difficult to fetch instruction opcodes from flash memory
without having wait-states or without stalling the instruction
pipeline. A faster memory, e.g., static RAM (SRAM) could be
used to increase instruction fetch times but requires
significantly more space and power on the embedded processor.
Some conventional systems have attempted to overcome this
problem using a variety of techniques. One such technique is
to fetch and execute from flash memory. This technique would
limit the execution speed of conventional processors, e.g., to
40 million instructions per second (MIPS) which is unacceptable
in many applications.

Another technique is to load the program code into fast
SRAM from flash memory or other non-volatile memory and then to
execute all program code directly from SRAM. As described
above, the problem with this solution is that the SRAM requires
significantly more space on the die (approximately five times
the space necessary for comparable flash memory) and requires
significantly more power to operate.

A third technique is to use flash memory and SRAM cache.
When the program reference is within the SRAM, then full speed
execution is possible, but otherwise a cache miss occurs that
leads to a long wait during the next cache load. Such a system
results in unpredictable and undeterministic execution time
that is generally unacceptable for processors that are real-
time constrained. The real-time constraints are imposed by the
requirement to meet the timing required by standards such as
IEEE 802.3 (Ethernet), USB, HomePNA 1.1 or SPI (Serial
Peripheral Interface). These standards require that a response
is generated within a fixed amount of time from an event

occurring.

10

15

20

25

30

WO 01/46827 PCT/US00/35242

What is needed is a system and method that (1) enables
multithreading in a embedded processor, (2) invokes zero-time
context switching in a multithreading environment, (3)
schedules multiple threads to permit numerous hard-real time
and non-real time priority levels, (4) fetches data and
instructions from multiple memory blocks in a multithreading
environment, and (5) enables a particular thread to store
multiple states of the multiple threads in the instruction
pipeline.

This invention can also be used with digital signal
processors (DSP) where the invention has the advantages of
allowing smaller memory buffers, a faster response time and a

reduced input to output time delay.

SUMMARY OF THE INVENTION

The invention is a system and method for the enabling
multithreading in a embedded processor, invoking zero-time

context switching in a multithreading environment, scheduling

multiple hardware threads to permit numerous hard-real time and

non-real time priority levels, fetching data and instructions
from multiple memory blocks in a multithreading environment,
and enabling a particular thread to store multiple states of

the multiple threads in the instruction pipeline.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an illustration of a conventional interrupt

response.

Figure 2 is an illustration of an interrupt response in a

multithreaded environment.

10

15

20

25

30

WO 01/46827 PCT/US00/35242

Figure 3 is an illustration of a conventional pipeline.

Figure 4 is an illustration of a multithreaded fetch
switching pipeline according to one embodiment of the present

invention.

Figure 5 is an illustration of an embedded processor

according to one embodiment of the present invention.

Figure 6 is an illustration of an example of a per-thread

context according to one embodiment of the present invention.

Figure 7a is an illustration of a strict scheduling

example according to one embodiment of the present invention.

Figure 7b is an illustration of a semi-flexible scheduling

example according to one embodiment of the present invention.

Figure 7c is an illustration of a loose scheduling example

according to one embodiment of the present invention.

Figure 7d is an illustration of a semi-flexible thread
schedule using three hard-real time threads according to one

embodiment of the present invention.

Figure 8 is an illustration of thread fetching logic with
two levels of scheduling according to one embodiment of the

present invention.

Figure 9 is an illustration of the HRT thread selector

according to one embodiment of the present invention.

-8-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

Figure 10 is an illustration of the NRT shadow SRAM thread
selector and SRAM accessing logic according to one embodiment

of the present invention.

Figure 11 is an illustration of the NRT thread
availability selector according to one embodiment of the

present invention.

Figure 12 is an illustration of the NRT flash memory
thread selector according to one embodiment of the present

invention.

Figure 13 is an illustration of the post fetch selector

according to one embodiment of the present invention.

Figure 14 is an illustration of a multithreaded issue
switching pipeline according to one embodiment of the present

invention.

Figure 15 is an illustration of a multithreaded, pipelined
fetch parallel decode pipeline according to one embodiment of

the present invention.

Figure 16 is an illustration of a multithreaded
superscalar pipeline according to one embodiment of the present

invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of the present invention is now

described with reference to the figures where like reference

-9-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

numbers indicate identical or functionally similar elements.
Also in the figures, the left most digit of each reference
number corresponds to the figure in which the reference number
is first used.

The present invention is a system and method that solves
the above identified problems. Specifically, the present
invention enables multithreading in a embedded processor,
invokes zero-time context switching in a multithreading
environment, schedules multiple threads to permit numerous
hard-real time and non-real time priority levels, fetches data
and instructions from multiple memory blocks in a
multithreading environment, and enables a particular thread to
store multiple states of the multiple threads in the
instruction pipeline.

The present invention overcomes the limitations of
conventional embedded processors by enabling multiple program
threads to appear to execute concurrently on a single processor
while permitting the automatic switching of execution between
threads. The present invention accomplishes this by having
zero-time context switching capabilities, an automatic thread
scheduler, and fetching code from multiple types of memory,
e.g., SRAM and flash memory. The appearance of concurrent
execution is achieved by time-division multiplexing of the
processor pipeline between the available threads.

The multithreading capability of the present invention
permits multiple threads to exist in the pipeline concurrently.
Figure 2 is an illustration of an interrupt response in a
multithreaded environment. Threads A and B are both hard-real-
time (HRT) threads which have stalled pending interrupts A and
B respectively. Thread C is the main code thread and is non-
real-time (NRT). When interrupt A occurs, thread A is resumed

and will interleave with thread C Thread C no longer has the

-10-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

full pipeline throughput since it is NRT. When interrupt B
occurs thread B is resumed, and, being of the same priority as
thread A, will interleave down the pipeline, thread C is now
completely stalled. The main code - thread C will continue
executing only when the HRT threads are no longer using all of
the pipeline throughput.

Figure 5 is an illustration of an embedded processor
according to one embodiment of the present invention. The
embedded processor can include peripheral blocks, such as a
phase locked loop (PLL), or a watchdog timer. The embedded
processor can also include a flash memory with a shadow SRAM.
The shadow SRAM provides faster access to the program. In some
semiconductor manufacturing processes SRAM access is faster
than flash access. The loading of a program into the shadow
SRAM is under program control. The embedded processor also
includes a conventional SRAM data memory a CPU core,
input/output (IO) support logic called virtual peripheral
support logic, and a finite impulse response (FIR) filter
coprocessor. The multithreading aspect of the present
invention takes place largely in the CPU where the multiple
thread contexts and thread selection logic reside. In addition,
in some embodiments the multithreading might also exist in a
coprocessor or DSP core which is on the same chip.

As described above, a feature of the present invention is
the ability to switch between thread contexts with no overhead.
A zero overhead context switch can be achieved by controlling
which program-counter the fetch unit uses for instruction
fetching. Figure 4 is an illustration of a multithreaded fetch
switching pipeline according to one embodiment of the present
invention. The processor will function with information from

different threads at different stages within the pipeline as

-11-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

long as all register accesses relate to the correct registers
within the context of the correct thread.

By thread switching every cycle (or every quanta, i.e., a
set number of cycles or instructions) the system will also
reduce/eliminate the penalty due to a jump (requiring a
pipeline flush) depending on the number of egual-priority
threads which are active. There is only a need to flush the
jumping thread and so if other threads are already in the
pipeline the flush is avoided/reduced.

Zero-time context switching is the ability to switch
between one program context and another without incurring any
time penalty. This implies that the context switch occurs
between machine instructions. The same ideas can also be
applied to low-overhead context switching, where the cost of
switching between contexts is finite, but small. The present
invention includes both of these situations although, for sake
of clarity, the zero-time context switch is described below.
The difference between the zero-time context switch and the
low-overhead context switch will be apparent to persons of
ordinary skill. As described above, a program context is the
collection of registers that describe the state of the machine.
A context would typically include the program counter, a status
register, and a number of data registers. It is possible that
there are also some other registers that are shared among all
programs.

As an instruction is passed down the pipeline, a context
number is also passed with it. This context number determines
which context registers are used to load the program counter,
load register values from or to save register values to. Thus,
each pipeline stage is capable of operating in separate
contexts. Switching between contexts is simply a matter of

using a different context number.

-12-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

Figure 6 is an illustration of an example of a per-thread
context according to one embodiment of the present invention.
The context in this example includes 32 general purpose
registers, 8 address registers and a variety of other
information as illustrated. The type of data that is stored as
part of a thread’s context may differ from that illustrated in
Figure 6.

The present invention is an instruction level
multithreading system and method that takes advantage of the
zero-time context switch to rapidly (as frequently as every
instruction) switch between two or more contexts. The amount of
time that each context executes for is called a gquantum. The
smallest possible quanta is one clock cycle, which may
correspond to one instruction. A guanta may also be less than
one instruction for multi-cycle instructions (i.e., the time-
glice resolution is determined solely by the quantum and not
the instruction that a thread is executing).

The allocation of the available processing time among the
available contexts is performed by a scheduling algorithm. In
a conventional simultaneous multithreading system, such as S.
Eggers et al, “Simultaneous Multithreading: A Platform for Next
Generation Processors” IEEE Micro, pp. 12-19, (Sep/Oct 1997)
that is incorporated by reference herein in its entirety, the
allocation of quanta among contexts (i.e., the time that
context switches occur) is determined by external stimuli, such
as the availability of instructions or data in the cache.

In the present invention, a benefit occurs when the
allocation of quanta is done according to a fixed schedule.
This scheduling of the contexts can be broken into three
classes strict scheduling, semi-flexible scheduling and loose

scheduling.

-13-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

Figure 7a is an illustration of a strict scheduling
example according to one embodiment of the present invention.
Figure 7b is an illustration of a semi-flexible scheduling
example according to one embodiment of the present invention.
Figure 7c¢ is an illustration of a loose scheduling example
according to one embodiment of the present invention.

With reference to Figure 7a, when the scheduler, e.g., the
thread controller that is illustrated in Figure 4, utilizes
strict scheduling the schedule is fixed and does not change
over short periods of time. For example if the schedule is
programmed to be “ABAC” as illustrated in Figure 7a then the
runtime sequence of threads will “ABACABACABAC..” as illustrated
in Figure 7a. Threads that are strictly scheduled are called
hard-real-time (HRT) threads because the number of instructions
executed per second is exact and so an HRT thread is capable of
deterministic performance that can satisfy hard timing
requirements.

With reference to Figure 7b, when the scheduler utilizes a
semi-flexible scheduling technique some of the schedule is
fixed and the rest of the available gquanta are filled with non-
real time (NRT) threads. For example, if the schedule is
programmed to be “A*B*” where “*” is a wildcard and can run any
NRT thread, the runtime sequence of threads, with threads D, E
and F being NRT threads, could be “ADBEAFBEAFBE..” as
illustrated in Figure 7b.

Some of the benefits of using either strict scheduling or
semi-flexible scheduling is that the allocation of execution
time for each HRT thread is set and therefore the time required
to execute each thread is predictable. Such predictability is
important for many threads since the thread may be required to
complete execution within a specific time period. 1In contrast,

the interrupt service routine described above with reference to

-14-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

conventional systems does not ensure that the hard real time
threads will be completed in a predictable time period.

The static and semi-flexible schedule for hard real-time
threads is achieved using a programmable gquantum cycle table.
Each entry in the table represents an available quanta cycle
and provides the hard-real-time thread the cycle it is
allocated to. The table is of variable length, e.g., up to 64
entries. When the end of the table is reached the scheduler
continues from the first element in the table thus providing an
infinitely repeating sequence. For example, Figure 7d is an
illustration of a semi-flexible thread schedule using three
hard-read time threads according to one embodiment of the
present invention. Thread A is scheduled 50% of the time,
thread B is scheduled 25% of the time and thread C is scheduled
12.5% of the time. The remaining 12.5% is allocated to
processing non-real time threads. If the CPU is clocked at 200
MIPS this would equate to thread A having a dedicated CPU
execution rate of 100 MIPS, thread B having a dedicated CPU
execution rate of 50 MIPS, thread C having a dedicated CPU
execution rate of 25 MIPS and the remaining threads, e.g., non-
real time threads, having a minimum CPU execution rate of 25
MIPS.

Accordingly, each hard-real time thread is guaranteed
particular execution rate because they are allocated
instruction slots as specified in the table, thus they each
have guaranteed deterministic performance. The predictability
afforded by the present invention significantly increases the
efficiency of programs since the time required to execute hard-
real time threads is known and the programs do not need to
allocate extra time to ensure the completion of the thread.
That is, the interrupt latency for each hard-real-time thread

is deterministic within the resolution of its static

-15-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

allocation. The latency is determined by the pipeline length
and the time until the thread is next scheduled. The added
scheduling jitter can be considered to be the same as an
asynchronous interrupt synchronizing with a synchronous clock.
For example, a thread with 25% allocation will have a
deterministic interrupt latency with respect to a clock running
at 25% of the system clock.

Although the table reserves the instruction slots for the
hard real-time tasks this does not mean that other non-real
time tasks cannot also execute in that instruction slot. For
example, thread C may be idle most of the time. For example,
if thread C represents a 115.2 kbps UART, then it only needs
deterministic performance when it is sending or receiving data.
There is no need for it to be scheduled when it is not active.
All empty instruction slots, and those instruction slots which
are allocated to a thread that is not active can be used by the
scheduler for non-real time threads.

More than 50 percent of the available MIPS can be
allocated to a single thread, although this will result in a
non-deterministic inter-instruction delay—the time between
successive instructions from the same thread would not be the
same. For some applications this varying inter-instruction
delay is not a disadvantage. For example a thread could be
scheduled in slots 1, 2, 3, 5, 6, 7, 9, ... to achieve 75
percent of the available MIPS of the CPU. One type of NRT
thread scheduling rotates through each thread. That is, the
threads are scheduled in order, with one instruction executed
from each active thread. This type of semi-flexible scheduling
permits non-real-time threads to be scheduled in the empty
slots in the schedule, e.g., the gquanta labeled “*” in Figure
7d, and in slots where the scheduled hard real-time thread is

not active, e.g., in place of thread B if thread B is not

-16-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

active, as described above. This type of scheduling is
sometimes referred to as “round robin” scheduling.

Multiple levels of priority are supported for non-real-
time threads. A low priority thread will always give way to
higher priority threads. The high level priority allows the
implementation of an real time operating system (RTOS) in
software by allowing multi-instruction atomic operations on
low-priority threads. If the RTOS kernel NRT thread has a
higher priority than the other NRT threads under its control
then there is a guarantee that no low priority NRT threads will
be scheduled while the high priority thread is active.
Therefore the RTOS kernel can perform operations without
concern that it might be interrupted by another NRT thread.

With reference to Figure 7c, when the scheduler utilizes a
loose scheduling technique none of the quantum are specifically
reserved for real time threads and instead any gquantum can be
used for non-real time (NRT) threads.

A thread can have a static schedule (i.e., it is allocated
fixed slots in the HRT table) and also be flagged as an NRT
thread. Therefore, the thread will be guaranteed a minimum
execution rate as allocated by the HRT table but may execute
faster by using other slots as an NRT thread.

The present invention includes hardware support for
running multiple software threads and automatically switching
between threads and is described below. This multi-threading
support includes a variety of features including real time and
non-real time task scheduling, inter-task communication with
binary and counting semaphores (interrupts), fast interrupt
response and context switching, and incremental linking.

By including the multi-threading support in the embedded
processor core the overhead for a context switch can be reduced

to zero. A zero-time context-switch allows context switching

-17-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

between individual instructions. Zero-time context-switching
can be thought of as time-division multiplexing of the core.

In one embodiment of the present invention can fetch code
from both SRAM and flash memory, even when the flash memory is
divided into multiple independent blocks. This complicates the
thread scheduling of the present invention. In the present
invention, each memory block is scheduled independently of the
overall scheduling of threads. Figure 8 is an illustration of
thread fetching logic with two levels of scheduling according
to one embodiment of the present invention.

In one embodiment of the present invention the
instructions that are fetched can be stored in multiple types
of memory. For example, the instructions can be stored in SRAM
and flash memory. As described above, accessing data, e.g.,
instructions, from SRAM is significantly faster than accessing
the same data or instructions from flash memory. In this
embodiment, it is preferable to have hard real time threads be
fetched in a single cycle so all instructions for hard-real-
time threads are stored in the SRAM. In contrast, fetching
instructions from non-real-time threads can be stored in either
SRAM or flash memory.

With reference to Figure 8, instructions in shadow SRAM
are fetched based upon a pointer from either an HRT thread
selector 802 or an NRT shadow thread selector 804.

Instructions from the flash memory are fetched based upon a
pointer from an NRT flash thread selector 806. The thread
selectors 802, 804, 806 are described in greater detail below.
The output of the SRAM and the flash memory are input into a
multiplexor (MUX) 810 that outputs the appropriate instruction
based upon an output from a post fetch selector 812, described

below. The output of the MUX is then decoded and can continue

-18-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

execution using a traditional pipelined process or by using a
modified pipelined process as described below, for example.
Figure 9 is an illustration of the HRT thread selector 802
according to one embodiment of the present invention. As
indicated above, the shadow SRAM 820 provides a single cycle
random access instruction fetch. Since hard real time (HRT)
threads require single cycle determinism in this embodiment
such HRT threads may execute only from SRAM. The HRT thread
controller 802 includes a bank selector 902 that allows the
choice of multiple HRT schedule tables. The back selector
determines which table is in use at any particular time. The
use of multiple tables permits the construction of a new
schedule without affecting HRT threads that are already
executing.. A counter 904 is used to point to the time slices
in the registers in the HRT selector 802. The counter will be
reset to zero when either the last entry is reached or after
time slice 63 is read. The counter 904 is used in conjunction
with the bank selector 902 to identify the thread that will be
fetched by the shadow SRAM in the following cycle. If the
identified thread is active, e.g., not suspended then the
program counter (PC) of the identified thread is obtained and
is used as the address for the shadow SRAM in the following
cycle. For example, with respect to Figure 9, if based upon
the bank selector 902 and the counter 904 time slice number 1
is identified, the thread identified by this time slice
represents the thread that will be fetched by the SRAM in the
following cycle. The output of the block described in Figure 9
is a set of signals. Eight signals are used to determine which
of the eight threads is to be fetched. Of course this invention
is not limited to controlling only eight threads. More signals
could be used to control more threads. One signal is used to

indicate that no HRT thread is to be fetched.

-19-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

Figure 10 is an illustration of the NRT shadow SRAM thread
selector 804 and shadow SRAM accessing logic according to one
embodiment of the present invention. The NRT shadow thread
selector 804 includes an available thread identifier 1010 a
register 1012 for identifying the previous dynamic thread that
has been fetched from the shadow SRAM and a flip-flop (F/F)
1011. The register and available thread identifier 1010
(described below) are received by a thread selector unit that
selects the thread to be accessed by the SRAM in the next
cycle, if any. The thread selector 1014 uses the last thread
number from 1012 and the available thread identifier from 1010
to determine which thread to fetch next to ensure a fair round-
robin selection of the NRT threads.

Figure 11 is an illustration of the NRT available thread
identifier 1010 according to one embodiment of the present
invention. The NRT available thread identifier 1010 generates
an output for each thread based upon whether the thread is
active, whether the thread is identified as being dynamic
(NRT), and whether the thread is marked as being of a high
priority. If there are no active, dynamic, high priority
threads then the NRT available thread identifier 1010 generates
an output for each thread based upon whether the thread is
active, whether the thread is identified as being dynamic
(NRT), and whether the thread is marked as being of a low
priority.

The NRT shadow SRAM thread selector 804 generates for each
thread a shadow-NRT-schedulable logic output based upon logic
that determines whether the NRT schedulable output is true and
whether the thread PC points to shadow SRAM. The determination
of whether the PC specifies a location in shadow SRAM is done
by inspecting the address—the shadow SRAM and flash are mapped

into different areas of the address space.

-20-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

As described above the NRT available thread identifier
1010 identifies the available threads and one of these threads
is selected based upon a previous thread that was selected and
successfully fetched out of shadow RAM and used by the pipeline
that is stored in register 1012.

If the HRT thread selector 802 indicates that the cycle is
available for an NRT thread, then the PC of the selected thread
is obtained to be used as the address for the shadow SRAM
access in the following cycle.

The selected thread number (including if it is ‘no-
thread’) is latched to be the register 1012 unless the current
shadow SRAM access is an NRT thread {chosen in the previous
cycle) AND the post-fetch selector 812 did not select the
shadow SRAM to be the source for the decode stage. That is,
the selected thread number is latched to be the “previous
thread” register 1012 only if the current shadow SRAM access is
a HRT thread OR if the current shadow SRAM access is no-thread
OR if the current SRAM access is an NRT thread that has been
chosen by the post-fetch selector 812. The post-fetch selector
812 is described in greater detail below.

Figure 12 is an illustration of the NRT flash memory
thread selector 806 according to one embodiment of the present
invention. The flash read only memory (ROM) requires multiple
clock cycles to access its data. 1In this embodiment of the
present invention, in order to increase the instruction rate
from the flash ROM the flash is divided into four blocks
corresponding to four ranges in the address space. These
blocks are identified as flash A, flash B, flash C, and flash D
in Figure 8. Each block can fetch independently and so each
requires its own NRT thread selector 806 to determine which

threads can be fetched from each particular block. As

-21-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

indicated above, only NRT threads can be executed from the
flash ROM.

The intersection of the set of active threads and the set
of threads where the PC is in this flash block is generated by
the available thread identifier 1010 and is received by a
thread selector 1214. The thread selector 1214 uses the
previous thread number to select the next thread in a round-
robin manner. The thread PCs unit 1214 determines the program
counter (PC) for the selected thread and passes this PC to the
flash block as the address. The output of the flash is double
buffered, meaning that the output will stay valid even after a
subsequent fetch operation begins.

Figure 13 is an illustration of the post fetch selector
according to one embodiment of the present invention. After
each of the flash blocks and SRAM block has selected a thread,
the post fetch selector 812 chooses the thread that is passed
to the pipeline. If a HRT thread is active this is always
chosen. Otherwise an NRT thread will be chosen. In this example
the flash/shadow SRAM resource is chosen in a round-robin
order, depending on the last flash (or shadow SRAM) block that

an NRT thread was selected from by the source selector 1302.

Another aspect of the present invention is the ability to
save and restore thread states for either the related thread or
another thread. Multithreaded CPUs have several threads of
execution interleaved on a set of functional units. The CPU
state is replicated for each thread. Often one thread needs to
be able to read or write the state of another thread. For
example, a real-time operating system (RTOS) running in one
thread might want to multiplex several software threads onto a
single hardware thread, so it needs to be able to save and

restore the states of such software threads.

-22-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

Other processors have a separate operating system (OS)
kernel running on each hardware thread, that is responsible for
saving and restoring the state of that thread. This may not be
adequate if code from an existing RTOS is to be used to control
hardware threads.

One type of instruction set that can be used with the
present invention is a memory to memory instruction set, with
one general source (memory or register), one register source,
and one general destination. The invention allows one thread to
set its general source, general destination, or both, to use
the thread state of another thread. Two fields in the
processor status word, source thread, and destination thread,
are used, and override the normal thread ID for the source
and/or destination accesses to registers or memory.

This invention allows RTOS code from traditional single-
threaded CPUs to be easily ported to the new multithreaded
architecture. It gives a simple way state between a worker
thread and a supervisory thread.

In another embodiment of the present invention, the above
described multithreading system can be used with more powerful
pipeline structures. Figure 14 is an illustration of a
multithreaded issue switching pipeline according to one
embodiment of the present invention. In conventional pipeline
processing environments the fetch and decode stages result in
the same output regardless of when the fetch and decode
operations occur. In contrast the issue stage is data
dependant, it obtains the data from the source registers, and
therefore the result of this operation depends upon the data in
the source registers at the time of the issue operation. In
this embodiment of the present invention the thread-select

decision is delayed to the input of the issue stage.

-23-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

In one embodiment of the present invention, issue
switching is implemented by using thread latches in the fetch
and issue stages as shown in Figure 14. The issue stage
decides which thread to execute based not only on priority, and
the thread-switching algorithm (as with the pre-fetch
selection), but also on data and resource dependencies. Any
number of threads could be managed in hardware by increasing
the number of latches within the fetch and issue stages.

Figure 15 is an illustration of a multithreaded parallel
decode pipeline according to one embodiment of the present
invention. Figure 15 shows the parallel fetch and decode
enhancement. The parallel fetch stages need memory access
during each every cycle and therefore cannot be paralleled
without a pre-fetch system or by multi-porting the program
memory. Multi-porting of program memory would not be an
economical solution as every thread would require its own port
with poor utilization. A pre-fetch system could be used to
reduce bus contentions by fetching lines of program-memory at a
time. If a buffer line was implemented for every thread and
these buffer lines were multi-ported between the fetch and
decode stages then the fetch unit could supply instructions
from any threads in parallel. As a result, the thread-switch
can better hide a pipeline flush and decrease the interrupt
latency. For example, the jump flush improvement comes in the
situation when there are insufficient equal priority threads to
launch and a lower priority thread could be launched instead.
The interrupt latency improvement would be due to the start of
the ISR code being already fetched and decoded ready for
issuing on interrupt.

Figure 16 is an illustration of a multithreaded
superscalar pipeline according to one embodiment of the present

invention. In Figure 16 multiple instructions are executed in

-24-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

parallel from the same thread or from different thread sin
order to maximize the utilization of the execute functional
units. The issue stage is responsible for the thread selection,
resource allocation, and data dependency protection.

Therefore, the issue stage is capable of optimizing the
scheduling of threads to ensure maximum resource utilization
and thus maximum total throughput. The earlier stages (Fetch
and Decode) attempt to maintain the pool of threads available
to the issue thread selector.

One feature of the multithreading embedded processor of
the present invention is the ability to integrate virtual
peripherals (VPs) that have been written independently and are
distributed in object form. Even if the VPs have very strict
jitter tolerances they can be combined without consideration of
the effects on the different VPs on each other.

For example consider the VPs and tolerable jitter below:
(1) UART 115.2 kbps, 217 nanoseconds (ns), (2) 10BaseT
Ethernet, 10 ns, (3) TCP/IP stack, 10 milliseconds (ms), and
(4) application code, 50 ms. If a designer is integrating
these VPs to make a system he or she merely needs to determine
the static schedule table.

Since the TCP/IP and application code is timing
insensitive both VPs are scheduled as NRT threads. The other
two VPs need deterministic response to external events and so
must be scheduled as hard real-time threads. If the target CPU
speed is 200MHz then the Ethernet VP requires 50% of the MIPS,
i.e., a response of 5ns, and it cannot have more than one
instruction delay between its instructions. The UART VP
requires less than 1% of the MIPS but does require to be
serviced within its jitter tolerance so is scheduled four times

in the table.

-25-

10

15

20

25

30

35

WO 01/46827

PCT/US00/35242

The result is that four VPs, possibly each from different

vendors,

can each be integrated without modifying any code and

requiring only some simple mathematics to determine the

percentage of total computing power each thread needs. The VPs

will work together without any timing problems since each

thread that needs it is guaranteed its jitter performance.

Of course the VPs will only work together if they can

communicate with each other.

suitable high-level APIs

This requires the definition of

the details of which would be apparent

to a person of ordinary skill in the art.

Table 1 is an example of

a receive UART thread.

UartRxReset
:Start setb UartRxPinIntE ;Enable hardware interrupt
clrb UartRxPinIntF ;Clear hardware interrupt flag
suspend ;Wait for start edge int
mov RTCC, #Uartl1l5200 * 1.5 ;Initialise RTCC
clrb RTCCIntF ;Clear timer interrupt flag
setb RTCCIntE ;Enable timer interrupt
mov UartRxBits, #%01111111111111111 ;Reset data bits
clrb UartRxPinIntE ;Disable hardware interrupt
:Loop clc ;Guess input will be a 0
suspend ;Wait for timer interrupt
snb UartRxPin ;Is the input 1 ?
stc ;yes => change to a 1
rr UartRxBits, 1 ;Add bit to data bits
snb UartRxBits.7 ;Complete ?
jmp :Loop ;No => get next bit
clc ;Will shift in ©
rr UartRxBits, 8 ;Shift data bits right 8 times
mov UartRxData, UartRxBits ;Save data
int UartRxAvaillnt ;Signal RxAvail interrupt
clrb RTCCIntE ;Disable timer interrupt
jmp :Start ;Wait for next byte
Table 1

-26-

WO 01/46827 PCT/US00/35242

The thread suspends itself pending the falling edge of the
start bit. When this interrupt occurs the thread is resumed
and the timing for the incoming data is based on the exact time
that the start edge was detected. This technique allows higher
accuracy and therefore enables improves the operation of
embedded processors.

The thread will suspend itself pending the next timer
interrupt for every bit that is received (The RTCC timer is
independent for each thread and so will not conflict with other
VPs) .

On the completion of the byte the code issues a software
interrupt to signal to the application layer that a byte is
available to be read. The “INT” instruction simply sets the
interrupt flag. The application layer will either be polling
this interrupt flag or will be suspended and so resumed by this
interrupt.

An example of a transmit UART thread is set forth in Table

2.
UartTxReset
setb vartTxPin ;Idle high
:Start clrb RTCCIntE ;Disable timer interrupt
setb UartTxStartIntE ;Enable TxStartInt
suspend ;Wait for TxStart int
clirb UartTxPin ;Output start bit
mov RTCC, #Uartll5200 ;Initialise RTCC
clrb RTCCIntF ;Clear timer interrupt flag
setb RTCCIntE ;Enable timer interrupt
mov UartTxBits, UartTxData ;Save data to transmit
setb UartTxBits.8 ;Add stop bit to data
clrb UartTxStartIntE ;Disable TxStart interrupt
clrb UartTxStartIntF ;jClear TxStart interrupt flag
int UartTXEmpty ;Indicate ready for next byte
:Loop clc ;Will shift in ©
rr UartTxBits, 1 ;Shift data by 1
snc ;Carry a 0?
jmp 21 ;No => prepare to output 1
:0 suspend ;Yes => wait for timer int

-27-

10

15

20

25

30

35

WO 01/46827 PCT/US00/35242

clrh UartTxPin ;Output 0

mov RTCC, #Uartl115200 ;Initialise RTCC

test UartTxBits ;Check bits

sz ;More bits to send ?

jmp : Loop ;Yes => prepare next bit

jmpe :Start ;No => wait for next byte
21 suspend ;Wait for timer int

setb UartTxPin ;Output 1

mov RTCC, #Uartl1ll1l5200 ;Initialise RTCC

test UartTxBits ;Check bits

4 ;More bits to send ?

jmp :Loop ;Yes => prepare next bit

jmp :Start ;No =»> wait for next byte

Table 2

The thread suspends itself pending the user-defined
TxStart software interrupt. When this interrupt is triggered
by the application thread the Tx UART thread is resumed and the
byte to be transmitted is transferred into an internal register
(UartTxBits) . At this point in time the application is free to
send a second byte and so the interrupt flag is cleared and the
UartTxEmpty interrupt is triggered.

The byte is transmitted by suspending after each bit -
pending the next RTCC interrupt (The RTCC timer is independent
for each thread and so will not conflict with other VPs).

When the transmission is complete the thread will suspend
pending the TxStart interrupt again. It is possible that the
TxStart interrupt was triggered during the transmission of the
last byte and so the thread may be resumed immediately.

While the invention has been particularly shown and
described with reference to a preferred embodiment and several
alternate embodiments, it will be understood by persons skilled
in the relevant art that various changes in form and details
can be made therein without departing from the spirit and scope

of the invention.
-28-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

CLAIMS

What is claimed 1is:

1. A computer based system for switching between program
contexts comprising:

an embedded pipelined processor capable having a first
program thread and a second program thread in an execution
pipeline;

a first set of data storage devices capable of storing a
first state of said embedded processor;

a second set of data storage devices capable of storing a
second state of said embedded processor; and

a thread scheduler for identifying which of said program
threads said embedded processor executes;

wherein said processor switches between said first and
second state in a time period between the end of the execution
of a first program instruction in the first thread and the
beginning of the execution of a second program instruction in

the second thread.

2. The system of claim 1, wherein said first state is
the state of the embedded processor during the execution of the

first program thread.

3. The system of claim 1, wherein said second state is
the state of the embedded processor during the execution of the

second program thread.

4. The system of claim 1, wherein said processor
switches between said first and second states by changing a

state selection register.

-29-

10

15

20

25

30

WO 01/46827 PCT/US00/35242

5. The system of claim 1, wherein said thread scheduler
includes:

a thread identifier for identifying at least one
hard-real-time (HRT) thread and at least one non-real-time
thread;

a HRT scheduler for regularly scheduling said HRT
thread in available time quanta such that said HRT thread
is scheduled to ensure the execution of the HRT in a

predetermined time.

6. The system of claim 5, wherein said time gquanta is at

least one instruction cycle.

7. The system of claim 5, wherein said thread scheduler
schedules a non-real-time (NRT) thread to replace a scheduled

HRT thread if said HRT is complete.

8. The system of claim 5, wherein said thread scheduler
schedules the execution of non-real-time (NRT) threads in

gquanta not allocated to HRT threads.

9. The system of claim 8, wherein said thread scheduler

regularly schedules NRT threads to be executed.

10. The system of claim 5, further comprising:

a first storage device for storing program instructions,
said processor fetching instructions from the first storage
device within a first fetch period;

a second storage device for storing program instructions,
said processor fetching instructions from the second storage

device within a second fetch period;

-30-

WO 01/46827 PCT/US00/35242

wherein said first fetch period is substantially shorter

than said second fetch period.

-31-

WO 01/46827 PCT/US00/35242

1/10

l MAIN] |7 ISR A ‘ | ISR B] { MAIN

Figure 1

| LO0DDD0DUTI0UBC 00 ramence

L
R 111 e A X

Figure 2

WO 01/46827 PCT/US00/35242

2/10
F D | E E w
Figure 3
F D | E E w

[

Thread
Controller

Figure 4

WO 01/46827

3/10
JTAG
PLL Debug
Watchdog
128 K Byte Timer
FLASH
MEMORY 8 K Byte
With 32K x SRAM
32 Shadow MEMORY
SRAM (4K x 16)

16-Bit RISC CPU CORE

VIRTUAL
PERIPHERAL

SUPPORT
LOGIC

IR

PORT PORT PORT
A B [

Figure 5

PCT/US00/35242

WO 01/46827 PCT/US00/35242

4/10
” CONTEXT #7 ,I
’ ’
7’ 4
’ 7’
,’ ,I
4 rd
rd 7
7’ td
2| COoNTEXT#3 e
2] -contexT#2 ’
/] CONTEXT # 1 ’
CONTEXT #0
D0-D31
GENERAL PURPOSE
REGISTERS
(32 bits wide)
31 AT 0
— HI]
{ — MAC_LO |
SOURCE-3 REGISTER
[TMERALARMREGSTER]
CONTROL&STATUS (CSR)
ICSR (SAVED CSR)
DCSR (SAVED CSR)
NTERRUPT MASK[D
31 0
A0-A7
ADDRESS REGISTERS
(32 bits wide)
CONTEXT OFFSET ADDRESS ’
I,’
s
DEBUG START ADDRESS (DEBUG VECTOR) ,'
”
31 0 _,"
DPC (BREAKPOINT SAVED PC) —> ’
IPC {INTERRUPT SAVED PC) _,’
PC g

Figure 6

WO 01/46827 PCT/US00/35242

5/10

ATB[AGATS A[G[ATBIALC)

S — »
|

Time

Figure 7a

A/D/B/E AIF B EAFIB|E]

»
P

Time

Figure 7b

F'EGG|GFFEGGEG

|
|

\)

Time

Figure 7c

WO 01/46827

PCT/US00/35242

6/10
A
B
A
Entry C
Schedule A
Table B
A
*
T l " |)
Sequence is
|AIB'A'CIA18‘A A{B}...repeated
HRT
Thread /\ 810
Select
802 Shadow —/
—— SRAM —
NRT
Shadow 820
Thread
Select
804
NRT
Flash A
Filash A
Thread -
Select Fetch
808
NRT " Operand Write
Flash B Flash B U > Decode || gy || Bxecute || gy
Thread Feten |[7] X
Select
806
NRT
Flash C
Flash C
Thread S_—
Select Fetch
808
NRT
Flash D
Flash D
Thread >
Select Fetch
806
Post Fetch
Select
812

Figure 8

WO 01/46827

PCT/US00/35242

7/10
Time Slice #0
Time Slice #1 HRT
Current Time Thread 3 | Thread
Bank Select |1 Slice Entry ~ Empty 1 | 3-8 ———rore—>
&2 _ LastEntry 1 None
Counter &
904
@1
3
x Time Slice #63
802
Shadow Thread Select
HRT
T0 Avail —f Selector - 5/\
=3 802 /o8
3 802
i 2| Available 810
T7 Avail —> Threads |, Shadow Fetch 820
Identifier
TOPCIxXl—31 1010 M >
—3 U Thread G SHADOW | = IhisattaNone
T7 PCIx:X]—» PCs =] SRAM <
X b a N
100 8+ . Thread
Py Register Selector |22
1012 LRI one) tof8 Thread Number 1ol 8
*Nonel —— || Thread Number WRT Nore
Thread Number oynsmic None Post Fetch
; Select
i HRT None 812
>
Dynamic Shadow Thread Selected

Figure 10

WO 01/46827

8/10
TO Active —>
—
T7 Active —»
Active

T0 Dynamic —»

—>»| Dynamic
—> Low Priority

T7 Dynamic —»f

Threads
TO Priority ——»
—>q
—>»d
T7 Priority ——
TO Active —»
—>
T7 Active ——»{
Active

TO Dynamic ——»

— Dynamic
—> High Priority

T7 Dynamic —»

xcZ

PCT/US00/35242

Available Threads
8

Threads
TO Priority ——»> 1010
h— 1019
T7 Priority ——] NONE
Flash X Thread Select
TO Avail —»
o T2 Available 806
T7 Avail — Threads 8 -
|dentifier
TO PC[x:x]-:; 1010
——>!
T7 PC[x:x]—>
Flash X Fetch
8
Next
tof B+ Register S'I';reecz:gr Thread Tr‘;rg:,d n)8’
2z el azie el | 216 e <« a2
- FLASHX K Thomacttofie
Latch Signal S
1 ! 8
b R N S I
FIF <
! f 1ol 8
1of 8+ of +
Nona. Thread Number Noas None Post Fetch
Select
............. » 812
BUSY/COMPLETE —

Figure 12

WO 01/46827

PCT/US00/35242

9/10
Shadow n
FlashA n M
FlashB n U DECODE
FlashC n X STAGE
FlashD n
HRT No Thread Signal 1t | 810
Shadow 1
Dynamic Shadow No Thread Signal 1 Source FlashA 1
Flash A No Thread Signal 1 Select FlashB 1
Fiash B No Thread Signal 1 1302 FlashC
Flash C No Thread Signal 1 | H FlashD 1
Flash D No Thread Signal 1+ |
__Dynamic Shadow Thread Selected |
Figure 13
F | E E w
7'y -
|
| ‘ ,
| & |
| |
1 Thread !
— i
Controller
Figure 14
[H R -
CHCT {:H}_;, o Lo

Hp |

Figure 15

WO 01/46827 PCT/US00/35242

10/10

I
m
m
=

[
]
[
[

|

[
':—"ﬂ:lL
=

ZeEeeme

Figure 16

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/35242

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 15/78, 9/40, 9/38
US CL :712/228, 214, 42, 246
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 712/228, 214, 42

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

IEEE, EAST search terms: multithreading, realtime, interrupt

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X DISC: Dynamic Instruction Stream Computer ACM 1991, pages| 1-9
163-170
Y US 54¢]725 A (FUNG et al.) 02 February 1999, col. col. 6-col. 7| 1-4
Y US 5,944,816 A (DUTTON et al.) 31 August 1999 col. 3-4 14
A US 4,821,187 A (UEDA et al.) 11 April 1989 fig. 1 14
A US 5,410,658 A (SAWASE et al.) 25 April 1995 fig. 1 1

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
. . L i date and not in conflict with the application but cited to understand the
A document defining the general state of the art which is not considered principle or theory underlying the invention
to be of particular relevance
. "X" document of particular relevance; the claimed invention cannot be
"E" 1 national filing date . ', 8 A .
E earlier document published on or after the international filing considered novel or cannot be considered to involve an inventive step
"L" document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other
special reason (as specified) Y document of perticular relevance; the claimed invention cannot be
e considered to involve an inventive step when the document is
"0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such d its, such combination
means being obvious to a person skilled in the art
"p" document published prior to the international filing date but later than ~ » g~ document member of the same patent family

the priority date claimed

Date of the actual completion of the international search

23 MARCH 2001

Date of mailing of the international search report

97 KPR 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No.

(703) 305-3230

Authorized officer

Telephone No.

S

- re A .
LARRY DONAGHUE. v jii0, ¥ Mg e

(703) 305-9675

Form PCT/ISA/210 (second sheet) (July 1998)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

