w0 2021/047540 A1 |0 00000 KA 00 0 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 March 2021 (18.03.2021)

(10) International Publication Number

WO 2021/047540 A1l

WIPO I PCT

(51) International Patent Classification:
HO4N 19/122 (2014.01) HO04N 19/119 (2014.01)
HO4N 19/136 (2014.01)

(21) International Application Number:
PCT/CN2020/114227

(22) International Filing Date:
09 September 2020 (09.09.2020)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
PCT/CN2019/104874
09 September 2019 (09.09.2019) CN

(71) Applicants: BEIJING BYTEDANCE NETWORK
TECHNOLOGY CO., LTD. [CN/CN]; Room B-0035, 2/
F, No. 3 Building, No. 30, Shixing Road, Shijingshan Dis-
trict, Beijing 100041 (CN). BYTEDANCE INC. [US/US];
12655 West Jefferson Boulevard, Sixth Floor, Suite No.
137, Los Angeles, California 90066 (US).

(72) Inventors: XU, Jizheng, 12655 West Jefferson Boule-
vard, Sixth Floor, Suite No. 137, Los Angeles, California
90066 (US). ZHANG, Kai; 12655 West Jefferson Boule-
vard, Sixth Floor, Suite No. 137, Los Angeles, California
90066 (US). ZHANG, Li; 12655 West Jefferson Boule-
vard, Sixth Floor, Suite No. 137, Los Angeles, California
90066 (US). LIU, Hongbin; Jinritoutiao Post Office, Chi-
na Satellite Communications Tower, No. 63, Zhichun Road,
Haidian District, Beijing 100080 (CN). DENG, Zhipin; Jin-
ritoutiao Post Office, China Satellite Communications Tow-
et, No. 63, Zhichun Road, Haidian District, Beijing 100080
(CN). WANG, Yue; Jinritoutiao Post Office, China Satel-
lite Communications Tower, No. 63, Zhichun Road, Haidi-
an District, Beijing 100080 (CN).

Agent: LIU, SHEN & ASSOCIATES; 10th Floor, Build-
ing 1, 10 Caihefang Road, Haidian District, Beijing 100080
(CN).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(54) Title: COEFFICIENT SCALING FOR HIGH PRECISION IMAGE AND VIDEO CODING

800

N\

Determining that a conversion between a current
block of a video and a bitstream representation of the
video comprises an application of a transform coding

mode to the current block

- 810

Performing, based on the determining, the
conversion, wherein a dequantization process or an
inverse transformation used in the conversion is
configured based on a rule

—— 820

FIG. 8

(57) Abstract: Methods, systems, and devices for coefficient scaling for high-precision image and video coding are described. A ex-
ample method of video processing includes performing a conversion between a current block of a video and a bitstream representa-
tion of the video according to a rule, wherein the rule specifies that the conversion comprises during encoding, skipping applying a
forward transform to residual coefficients of the current block prior to including in the bitstream representation, or during decoding,
reconstructing residual coefficients of the current block from the bitstream representation without applying an inverse transform, and
wherein the rule further specifies that a scale factor is applied to the residual coefficients independent of a size of the current block.

[Continued on next page]

WO 2021/047540 A | [I 00000000 00RO OO 0 0 00

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of'inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))

WO 2021/047540 PCT/CN2020/114227

COEFFICIENT SCALING FOR HIGH PRECISION IMAGE AND VIDEO
CODING

CROSS-REFERENCE TO RELATED APPLICATION
[0001] Under the applicable patent law and/or rules pursuant to the Paris Convention, this
application is made to timely claim the priority to and benefits of International Patent Application
No. PCT/CN2019/104874 filed on September 9, 2019. For all purposes under the law, the entire
disclosures of the aforementioned applications are incorporated by reference as part of the

disclosure of this application.

TECHNICAL FIELD
[0002] This patent document relates to video coding and decoding.

BACKGROUND
[0003] In spite of the advances in video compression, digital video still accounts for the largest
bandwidth use on the internet and other digital communication networks. As the number of
connected user devices capable of receiving and displaying video increases, it i1s expected that the

bandwidth demand for digital video usage will continue to grow.

SUMMARY
[0004] Devices, systems and methods related to digital video coding, and specifically, to
coefficient scaling for high-precision image and video coding.
[0005] In one example aspect, a video processing method is disclosed. The method includes
performing a conversion between a current block of a video and a bitstream representation of the
video according to a rule, wherein the rule specifies that the conversion comprises during
encoding, skipping applying a forward transform to residual coefficients of the current block prior
to including in the bitstream representation, or during decoding, reconstructing residual
coefficients of the current block from the bitstream representation without applying an inverse
transform, and wherein the rule further specifies that a scale factor is applied to the residual

coefficients independent of a size of the current block.

WO 2021/047540 PCT/CN2020/114227

[0006] In another example aspect, a video processing method is disclosed. The method includes
determining that a conversion between a current block of a video and a bitstream representation of
the video comprises an application of a transform coding mode to the current block; and
performing, based on the determining, the conversion, wherein a dequantization process or an
inverse transformation used in the conversion is configured based on a rule.

[0007] In yet another example aspect, a video processing method is disclosed. The method
includes determining that a conversion between a current block of a video and a bitstream
representation of the video comprises a lossless conversion; and performing, based on the
determining, the conversion, wherein a transformation, an inverse transformation, a quantization
process, and/or a dequantization process used in the conversion is applied without a bit-shifting
operation.

[0008] In yet another aspect, the above-described method is embodied in the form of processor-
executable code and stored in a computer-readable program medium.

[0009] In yet another aspect, a device that is configured or operable to perform the above-
described method is disclosed. The device may include a processor that is programmed to
implement this method.

[0010] In yet another aspect, a video decoder apparatus may implement a method as described
herein.

[0011] The above and other aspects and features of the disclosed technology are described in

greater detail in the drawings, the description and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0012] FIG. 1 shows an example of a Low-Frequency Non-Separable Transform (LFNST)
process.
[0013] FIG. 2 shows examples of SBT position, type and transform type.
[0014] FIG. 3 is an illustration of the two scalar quantizers used in the proposed approach of
dependent quantization.
[0015] FIG. 4 shows an example state transition and quantizer selection for the proposed

dependent quantization.

WO 2021/047540 PCT/CN2020/114227

[0016] FIG. 5 is a block diagram of an example video processing system in which disclosed
techniques may be implemented.
[0017] FIG. 6 is a block diagram for an example hardware platform for video processing.

[0018] FIGS. 7-9 are flowcharts for example methods of video processing.

DETAILED DESCRIPTION
[0019] Embodiments of the disclosed technology may be applied to existing video coding
standards (e.g., HEVC, H.265) and future standards to improve compression performance. Section
headings are used in the present document to improve readability of the description and do not in
any way limit the discussion or the embodiments (and/or implementations) to the respective

sections only.

1 Summary

[0020] This document is related to image and video coding technologies. Specifically, it is
related to transform, quantization, dequantization and inverse transform in image and video
coding. It may be applied to the existing video coding standard like HEVC, or the standard
(Versatile Video Coding) to be finalized. It may be also applicable to future video coding standards

or video codec.

2 Background

[0021] Video coding standards have evolved primarily through the development of the well-
known ITU-T and ISO/IEC standards. The ITU-T produced H.261 and H.263, ISO/IEC produced
MPEG-1 and MPEG-4 Visual, and the two organizations jointly produced the H.262/MPEG-2
Video and H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/HEVC standards. Since
H.262, the video coding standards are based on the hybrid video coding structure wherein temporal
prediction plus transform coding are utilized. To explore the future video coding technologies
beyond HEVC, Joint Video Exploration Team (JVET) was founded by VCEG and MPEG jointly
in 2015. Since then, many new methods have been adopted by JVET and put into the reference
software named Joint Exploration Model (JEM). In April 2018, the Joint Video Expert Team
(JVET) between VCEG (Q6/16) and ISO/IEC JTC1 SC29/WG11 (MPEG) was created to work
on the VVC standard targeting at 50% bitrate reduction compared to HEVC.

[0022] The latest version of VVC draft, i.e., Versatile Video Coding (Draft 6) could be found at:

WO 2021/047540 PCT/CN2020/114227

[0023] http://phenix.it-sudparis.eu/jvet/doc_end user/documents/15 Gothenburg/wgl1/JVET-
02001-v14.zip

[0024] The latest reference software of VVC, named VTM, could be found at:

[0025] https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTIM/-/tags/VTM-6.0rcl

2.1 Transform and quantization

2.1.1 Large block-size transforms with high-frequency zeroing

[0026] In VTMS, large block-size transforms, up to 64x64 in size, are enabled, which is primarily
useful for higher resolution video, e.g., 1080p and 4K sequences. High frequency transform
coefficients are zeroed out for the transform blocks with size (width or height, or both width and
height) equal to 64, so that only the lower-frequency coefficients are retained. For example, for an
MxN transform block, with M as the block width and N as the block height, when M is equal to
64, only the left 32 columns of transform coefficients are kept. Similarly, when N is equal to 64,
only the top 32 rows of transform coefficients are kept. When transform skip mode is used for a

large block, the entire block is used without zeroing out any values.

2.1.2 Multiple transform selection (MTS) for core transform

[0027] In addition to DCT-II which has been employed in HEVC, a Multiple Transform
Selection (MTS) scheme is used for residual coding both inter and intra coded blocks. It uses
multiple selected transforms from the DCT8/DST7. The newly introduced transform matrices are

DST-VII and DCT-VIIIL Table 1 shows the basis functions of the selected DST/DCT.

WO 2021/047540 PCT/CN2020/114227

Table 1 - Transform basis functions of DCT-II/ VIII and DSTVII for N-point input

Transform Type Basis function 7(j), i, j=0,1,..., N—1
) 2 i (2j+1)
T,(j) = wo - \/; cos <T>
DCT-II
2 i_g
where, wy = W8 1T
1 i#0
4 m-(2i+1)-(2j+1)
DCT-VIII (7)) = .
L0 = IZy51 COS(AN + 2)
4 - QRi+1)-G+1)
DST-VII () = . Qi
L0 = IZy51 Sm(2N + 1)

[0028] In order to keep the orthogonality of the transform matrix, the transform matrices are
quantized more accurately than the transform matrices in HEVC. To keep the intermediate values
of the transformed coefficients within the 16-bit range, after horizontal and after vertical transform,
all the coefficients are to have 10-bit.

[0029] In order to control MTS scheme, separate enabling flags are specified at SPS level for
intra and inter, respectively. When MTS is enabled at SPS, a CU level flag is signalled to indicate
whether MTS is applied or not. Here, MTS 1is applied only for luma. The MTS CU level flag 1s

signalled when the following conditions are satisfied.

- Both width and height smaller than or equal to 32
- CBF flag is equal to one

[0030] If MTS CU flag is equal to zero, then DCT2 is applied in both directions. However, if
MTS CU flag is equal to one, then two other flags are additionally signalled to indicate the
transform type for the horizontal and vertical directions, respectively. Transform and signalling
mapping table as shown in Table 2. Unified the transform selection for ISP and implicit MTS i1s

used by removing the intra-mode and block-shape dependencies. If current block is ISP mode or

WO 2021/047540 PCT/CN2020/114227

if the current block is intra block and both intra and inter explicit MTS is on, then only DST7 1s
used for both horizontal and vertical transform cores. When it comes to transform matrix precision,
8-bit primary transform cores are used. Therefore, all the transform cores used in HEVC are kept
as the same, including 4-point DCT-2 and DST-7, 8-point, 16-point and 32-point DCT-2. Also,
other transform cores including 64-point DCT-2, 4-point DCT-8, 8-point, 16-point, 32-point DST-

7 and DCT-8, use 8-bit primary transform cores.

Table 2 - Transform and signaling mapping table

MTS CU flag | MTS Hor flag | MTS Ver flag Intra/inter
Horizontal Vertical
0 DCT2
0 0 DST7 DST7
0 1 DCTS DST7
1 1 0 DST7 DCTS
1 1 DCTS DCTS

[0031] To reduce the complexity of large size DST-7 and DCT-8, High frequency transform
coefficients are zeroed out for the DST-7 and DCT-8 blocks with size (width or height, or both
width and height) equal to 32. Only the coefficients within the 16x16 lower-frequency region are
retained.

[0032] As in HEVC, the residual of a block can be coded with transform skip mode. To avoid
the redundancy of syntax coding, the transform skip flag is not signalled when the CU level
MTS _CU flag is not equal to zero. The block size limitation for transform skip is the same to that
for MTS in JEM4, which indicate that transform skip is applicable for a CU when both block width

and height are equal to or less than 32.

2.1.3 Transform coefficient zeroing out

[0033] When a transform unit is large, it may need a large transform core, which brings much

more complexity compared with small transform. Therefore, in the current VVC design, when a

WO 2021/047540 PCT/CN2020/114227

transform unit is large enough, a certain part of the transform coefficients will be set to O to reduce
the size of transform needed.
[0034] Specifically, in the current VVC draft, it defines two variables to reflect which part of
coefficients will be preserved:

nonZeroW = Min(nTbW, (trTypeHor>0) ? 16 : 32)

nonZeroH = Min(nTbH, (trTypeVer>0) ? 16 : 32)
[0035] Thus, after a 2-D forward transform, only with x=0..nonZeroW-1 and y=0..nonZeroH-1
may contain non-zero coefficients and all other coefficients are set to 0.
[0036] We denote nonZeroW and nonZeroH as the actual transform size in width and height,
which may be different from the width (nTbW) and height (nTbH) of the transform unit.

2.1.4 Low-Frequency Non-Separable Transform (LFNST)

[0037] In VTMS, LENST (low-frequency non-separable transform), which is known as reduced
secondary transform, is applied between forward primary transform and quantization (at encoder)
and between de-quantization and inverse primary transform (at decoder side) as shown in FIG. 1.
In LFNST, 4x4 non-separable transform or 8x8 non-separable transform is applied according to
block size. For example, 4x4 LFNST 1s applied for small blocks (i.e., min (width, height) < 8) and
8x8 LFNST is applied for larger blocks (i.e., min (width, height) > 4).

[0038] FIG. 1 shows an example of a Low-Frequency Non-Separable Transform (LFNST)
process.

[0039] Application of a non-separable transform, which is being used in LFNST, is described as
follows using input as an example. To apply 4x4 LFNST, the 4x4 input block X

X = (3-1)

1s first represented as a vector X
)? = [XOO XOl XOZ X03 X10 Xll X12 X13 XZO X21 XZZ X23 X30 X31 X32 X33]T (3'2)
[0040] The non-separable transform is calculated as F=T-X , where F indicates the transform

coefficient vector, and 7 is a 16x16 transform matrix. The 16x1 coefficient vector F is

subsequently re-organized as 4x4 block using the scanning order for that block (horizontal, vertical

WO 2021/047540 PCT/CN2020/114227

or diagonal). The coefficients with smaller index will be placed with the smaller scanning index

in the 4x4 coefficient block.

2.1.4.1 Reduced Non-separable transform

[0041] LFNST (low-frequency non-separable transform) is based on direct matrix multiplication
approach to apply non-separable transform so that it is implemented in a single pass without
multiple iterations. However, the non-separable transform matrix dimension needs to be reduced
to minimize computational complexity and memory space to store the transform coefficients.
Hence, reduced non-separable transform (or RST) method is used in LEFNST. The main idea of the
reduced non-separable transform is to map an N (N is commonly equal to 64 for 8x8 NSST)
dimensional vector to an R dimensional vector in a different space, where N/R (R < N) 1s the

reduction factor. Hence, instead of NxN matrix, RST matrix becomes an RxN matrix as follows:

By by by By
t2r taz faz Loy

Tran = ; : (3 -3)
Ips fpp fpa - gy

[0042] where the R rows of the transform are R bases of the N dimensional space. The inverse
transform matrix for RT is the transpose of its forward transform. For 8x8 LFNST, a reduction
factor of 4 1s applied in VIMS, and 64x64 direct matrix, which is conventional 8x8 non-separable
transform matrix size, is reduced to16x48 direct matrix. Hence, the 48x16 inverse RST matrix is
used at the decoder side to generate core (primary) transform coefficients in 8x8 top-left regions.
When16x48 matrices are applied instead of 16x64 with the same transform set configuration, each
of which takes 48 input data from three 4x4 blocks in a top-left 8x8 block excluding right-bottom
4x4 block. With the help of the reduced dimension, memory usage for storing all LFNST matrices
is reduced from 10KB to 8KB with reasonable performance drop. In order to further reduce worst
case complexity in terms of multiplication count occurs when all TUs consist of 4x4 TU or 8x8
TU, top 8x48 and 8x16 matrices are applied to 8x8 TU and 4x4 TU, respectively. For blocks larger
than 8x8 TU, worst case does not occur so that 8x8 LFNST (1.e. 16x48 matrix) is applied to top-
left 8x8 region. For 8x4 TU or 4x8 TU, 4x4 LFNST (i.e. 16x16 matrix) is applied to only top-left

4x4 region. For 4xN or Nx4 TU (N > 16), 4x4 LFNST is applied to two adjacent top-left 4x4

WO 2021/047540 PCT/CN2020/114227

blocks each. With the aforementioned simplification, the worst-case number of multiplications

becomes 8 per sample.

2.1.4.2 LFNST transform selection

[0043] There are totally 4 transform sets and 2 non-separable transform matrices (kernels) per
transform set are used in LFNST. The mapping from the intra prediction mode to the transform set
is pre-defined as shown in Table 3. For each transform set, the selected non-separable secondary
transform candidate is further specified by the explicitly signalled LFNST index. The index is

signalled in a bit-stream once per Intra CU after transform coefficients.

Table 3 Transform selection table

IntraPredMode Tr. set index
IntraPredMode < 0 1
0 <= IntraPredMode <=1 0
2 <=IntraPredMode <= 12 1
13 <= IntraPredMode <= 23 2
24 <= IntraPredMode <= 44 3
45 <= IntraPredMode <= 55 2
56 <= IntraPredMode 1

2.1.4.3 LFNST index Signaling and interaction with other tools

[0044] The forward 8x8 LFNST uses 16x48 matrices so that it produces non-zero coefficients
only in the top-left 4x4 region within the given 8x8 region. In other words, if LENST is applied
then the 8%8 region except the top-left 4x4 region generates only zero coefficients. As a result,
LFNST index is not coded when any non-zero element is detected within 8x8 block region other
than top-left 4x4 because it implies that LFNST was not applied. In such a case, LENST index is
inferred to be zero. If LFNST index is equal to O, LFNST is not applied. Otherwise, LENST is
applied. In addition, the LFNST index is context coded but does not depend on intra prediction
mode, and only the first bin is context coded.

[0045] An inverse LFNST is conditionally applied when the following two conditions are

satisfied:

WO 2021/047540 PCT/CN2020/114227

a. Block size is greater than or equal to the given threshold (W>=4 && H>=4)

b. Transform skip mode flag is equal to zero
[0046] If both width (W) and height (H) of a transform coefficient block is greater than 4, then
the 8x8 LFNST is applied to the top-left 8<8 region of the transform coefficient block. Otherwise,
the 4x4 LFNST 1s applied on the top-left min(8, W) x min(8, H) region of the transform coefficient
block.
[0047] Furthermore, LFNST is applied for intra CU in both intra and inter slices, and for both
Luma and Chroma. If a dual tree is enabled, LFNST indices for Luma and Chroma are signaled
separately. For inter slice (the dual tree is disabled), a single LFNST index is signaled and used
for both Luma and Chroma.
[0048] When ISP mode is selected, LFNST i1s disabled and RST index is not signaled, because
performance improvement was marginal even if RST is applied to every feasible partition block.
Furthermore, disabling RST for ISP-predicted residual could reduce encoding complexity. LFNST

is also disabled and the index is not signaled when MIP mode is selected.

2.1.5 Sub-block Transform (SBT)

[0049] In VTM, sub-block transform is introduced for an inter-predicted CU. In this transform
mode, only a sub-part of the residual block is coded for the CU. When inter-predicted CU with
cu_cbf equal to 1, cu_sbt flag may be signaled to indicate whether the whole residual block or a
sub-part of the residual block is coded. In the former case, inter MTS information is further parsed
to determine the transform type of the CU. In the latter case, a part of the residual block is coded
with inferred adaptive transform and the other part of the residual block is zeroed out.

[0050] When SBT is used for an inter-coded CU, SBT type and SBT position information are
signaled in the bitstream. There are two SBT types and two SBT positions, as indicated in FIG. 2.
For SBT-V (or SBT-H), the TU width (or height) may equal to half of the CU width (or height) or
1/4 of the CU width (or height), resulting in 2:2 split or 1:3/3:1 split. The 2:2 split is like a binary
tree (BT) split while the 1:3/3:1 split is like an asymmetric binary tree (ABT) split. In ABT
splitting, only the small region contains the non-zero residual. If one dimension of a CU is 8 in
luma samples, the 1:3/3:1 split along that dimension is disallowed. There are at most 8 SBT modes

for a CU.

10

WO 2021/047540 PCT/CN2020/114227

[0051] Position-dependent transform core selection is applied on luma transform blocks in SBT-
V and SBT-H (chroma TB always using DCT-2). The two positions of SBT-H and SBT-V are
associated with different core transforms. More specifically, the horizontal and vertical transforms
for each SBT position is specified in FIG. 2. For example, the horizontal and vertical transforms
for SBT-V position 0 is DCT-8 and DST-7, respectively. When one side of the residual TU i1s
greater than 32, the transform for both dimensions is set as DCT-2. Therefore, the sub-block
transform jointly specifies the TU tiling, cbf, and horizontal and vertical core transform type of a
residual block.

[0052] A variable maxSbtSize is signaled in SPS to specify the max CU size for which SBT can
be applied. In the VTMS, for HD and 4K sequences, maxSbtSize is set as 64 by encoder; for other
smaller resolution sequences, maxSbtSize is set as 32.

[0053] The SBT is not applied to the CU coded with combined inter-intra mode or TPM mode.

2.1.6 Quantization

[0054] In VTMS, Maximum QP was extended from 51 to 63, and the signaling of initial QP was
changed accordingly. The initial value of SliceQpY is modified at the slice segment layer when a
non-zero value of slice qp_delta is coded. Specifically, the value of init_qp_minus26 is modified
to be in the range of (— 26 + QpBdOffsetY) to +37. In VIMS, when the size of a transform block
is not a power of 4, the transform coefficients are processed along with a modification to the QP
or QP levelScale table rather than by multiplication by 181/256 (or 181/128), to compensate for
an implicit scaling by the transform process.

[0055] In addition, the same HEVC scalar quantization is used with a new concept called
dependent scala quantization. Dependent scalar quantization refers to an approach in which the set
of admissible reconstruction values for a transform coefficient depends on the values of the
transform coefficient levels that precede the current transform coefficient level in reconstruction
order. The main effect of this approach is that, in comparison to conventional independent scalar
quantization as used in HEVC, the admissible reconstruction vectors are packed denser in the N-
dimensional vector space (N represents the number of transform coefficients in a transform block).
That means, for a given average number of admissible reconstruction vectors per N-dimensional

unit volume, the average distortion between an input vector and the closest reconstruction vector

11

WO 2021/047540 PCT/CN2020/114227

is reduced. The approach of dependent scalar quantization is realized by: (a) defining two scalar
quantizers with different reconstruction levels and (b) defining a process for switching between
the two scalar quantizers.
[0056]
[0057] FIG. 3 is an illustration of the two scalar quantizers used in the proposed approach of
dependent quantization.
[0058] The two scalar quantizers used, denoted by QO and QIl, are illustrated in FIG. 3. The
location of the available reconstruction levels is uniquely specified by a quantization step size A.
The scalar quantizer used (QO or Q1) is not explicitly signalled in the bitstream. Instead, the
quantizer used for a current transform coefficient is determined by the parities of the transform
coefficient levels that precede the current transform coefficient in coding/reconstruction order.
[0059] FIG. 4 shows an example state transition and quantizer selection for the proposed
dependent quantization.
[0060] As illustrated in FIG. 4, the switching between the two scalar quantizers (QO and Q1) is
realized via a state machine with four states. The state can take four different values: 0, 1, 2, 3. It
is uniquely determined by the parities of the transform coefficient levels preceding the current
transform coefficient in coding/reconstruction order. At the start of the inverse quantization for a
transform block, the state is set equal to 0. The transform coefficients are reconstructed in scanning
order (i.e., in the same order they are entropy decoded). After a current transform coefficient is
reconstructed, the state is updated as shown in FIG. 4, where k denotes the value of the transform
coefficient level.
[0061] 1t is also supported to signal the default and user-defined scaling matrices. The
DEFAULT mode scaling matrices are all flat, with elements equal to 16 for all TB sizes. IBC and
intra coding modes currently share the same scaling matrices. Thus, for the case of
USER _DEFINED matrices, the number of MatrixType and MatrixType DC are updated as
follows:

e MatrixType: 30 = 2 (2 for intra&IBC/inter) x 3 (Y/Cb/Cr components) x S (square TB

size: from 4x4 to 64x64 for luma, from 2x2 to 32x32 for chroma)

12

WO 2021/047540 PCT/CN2020/114227

e MatrixType DC: 14=2 (2 for intra&IBC/inter x 1 for Y component) X 3 (TB size: 16x16,
32x32, 64x64) + 4 (2 for intra&IBC/inter x 2 for Cb/Cr components) X 2 (TB size: 16x16,
32x32)

[0062] The DC values are separately coded for following scaling matrices: 16x16, 32x32, and
64x64. For TBs of size smaller than 8x8, all elements in one scaling matrix are signalled. If the
TBs have size greater than or equal to 8x8, only 64 elements in one 8x8 scaling matrix are signalled
as a base scaling matrix. For obtaining square matrices of size greater than 8x8, the 8x8 base
scaling matrix is up-sampled (by duplication of elements) to the corresponding square size (i.e.
16x16, 32x32, 64x64). when the zeroing-out of the high frequency coefficients for 64-point
transform is applied, corresponding high frequencies of the scaling matrices are also zeroed out.
That 1s, if the width or height of the TB is greater than or equal to 32, only left or top half of the
coefficients is kept, and the remaining coefficients are assigned to zero. Moreover, the number of
elements signalled for the 64x64 scaling matrix is also reduced from 8x8 to three 4x4 submatrices,

since the bottom-right 4x4 elements are never used.

2.1.7 Joint coding of chroma residuals

[0063] VTMS supports a mode where the chroma residuals are coded jointly. When this mode 1s
activated, one single joint residual block is signalled for both Cb and Cr blocks in the same
transform unit. Then, the Cb residual is set equal to the signalled residual, and the Cr residual is
set by negating the signs of the signalled residual. In other words, at the decoder, to reconstruct
the chroma blocks, the signalled joint residual is added to the Cb prediction block and deducted
from the Cr prediction block. The joint residual is coded using the regular chroma residual coding
process. The flag indicating whether joint residual mode is used is signaled with a flag in the
bitstream if both the Cb and the Cr coded block flags (cbf) are 1.

[0064] In the PPS and in the slice header, chroma QP offset values are signalled for the joint
chroma residual coding mode separate from the usual chroma QP offset values signalled for
regular chroma residual coding mode. These chroma QP offset values are used to derive the
chroma QP values for those blocks coded using the joint chroma residual coding mode. In the
VTMS encoder, chroma QP offset is set to -1 for the joint chroma residual coding mode and +1

for the regular chroma residual coding mode.

13

WO 2021/047540 PCT/CN2020/114227

[0065] At the encoder side, the average of the Cr residual subtracted from the Cb residual is used
as the input to the transform and quantization process:

resJoint = (resCb —resCr) / 2
[0066] If chroma scaling of the LMCS mode is active, chroma scaling is applied to the joint
residual in the same way as what is done in the regular chroma residual coding mode. That is, the

coded joint residual signal 1s scaled.
2.2 Dequantization and inverse transform design in VVC draft 6

2.2.1 Dequantization

8.7.3 Scaling process for transform coefficients

Inputs to this process are:

a luma location (xXTbY, yTbY) specifying the top-left sample of the current luma transform
block relative to the top-left luma sample of the current picture,

— avariable nTbW specifying the transform block width,

— avariable nTbH specifying the transform block height,

— avariable cldx specifying the colour component of the current block,

a variable bitDepth specifying the bit depth of the current colour component.
Output of this process is the (nTbW)x(nTbH) array d of scaled transform coefficients with
elements d[x][vy].

The quantization parameter qP is derived as follows:

If cldx is equal to O and transform_skip flag[xXTbY][yTbY] is equal to O, the following
applies:
GP=Qpy (8-950)
— Otherwise, if cldx is equal to O (and transform_skip flag][xTbY][yTbY] is equal to 1), the
following applies:

qP = Max(QpPrimeTsMin, Qp'y) (8-951)
— Otherwise, if TuCResMode[xTbY][yTbY] is equal to 2, the following applies:

qP = Qp'cver (8-952)
— Otherwise, if cldx is equal to 1, the following applies:

14

WO 2021/047540 PCT/CN2020/114227

qP = Qp'es (8-953)
— Otherwise (cldx is equal to 2), the following applies:
GP=Qp'c: (8-954)
The variable rectNonTsFlag is derived as follows:
rectNonTsFlag = (((Log2(nTbW) + Log2(nTbH)) & 1) == 1 && (8-955)
transform_skip flag[xXTbY][yTbY |==0)
The variables bdShift, rectNorm and bdOffset are derived as follows:
bdShift = bitDepth + ((rectNonTsFlag ? 1 : 0) + (8-956)
(Log2(nTbW) + Log2(nTbH)) /2) — 5 + dep_quant_enabled flag
bdOffset = (1 << bdShift)>>1 (8-957)
The list levelScale[][] is specified as levelScale[j][k] = { {40,45,51,57,64,72},
{57,64,72,80,90,102} } withj=0..1,k =0..5.
The (nTbW)x(nTbH) array dz is set equal to the (nTbW)x(nTbH) array
TransCoeffLevel[xTbY][yTbY][cldx].
For the derivation of the scaled transform coefficients d[x][y] with x=0..nTbW — 1,
y =0..nTbH — 1, the following applies:
— The intermediate scaling factor m[x][y] is derived as follows:
— If one or more of the following conditions are true, m[x][y] is set equal to 16:
— sps_scaling_list enabled flag is equal to O.
— transform_skip flag[xTbY][yTbY] is equal to 1.
— Otherwise, the following applies:
m[x][vy] = ScalingFactor[Log2(nTbW)][Log2(nTbH)][matrixId][x][v],
with matrixId as specified in Table 7-5 (8-958)
— The scaling factor Is[x][y] 1s derived as follows:
— If dep _quant _enabled flag is equal to 1, the following applies:
Is[x][y]=(m[x][y] * levelScale[rectNonTsFlag][(P +1) % 6]) << ((qP+ 1)/
6) (8-959)
— Otherwise (dep_quant_enabled flag is equal to 0), the following applies:
Is[x][y]=(m[x][y] * levelScale[rectNonTsFlag][qP % 6]) << (qP /6) (8-960)
— When BdpcmFlag[xTbY][yYbY] is equal to 1, dz[x][y] is modified as follows:

15

WO 2021/047540 PCT/CN2020/114227

— If BdpcmDir[xTbY][yYbY] is equal to O and x is greater than O, the following applies:
dz[x][y] = Clip3(CoeffMin, CoeffMax, dz[x— 1][y] +dz[x][y]) (8-961)
— Otherwise, if BdpemDir[xTbY][yYbY] is equal to 1 and y is greater than O, the following
applies:
dz[x][y] = Clip3(CoeffMin, CoeffMax, dz[x [[y—1]+dz[x][y]) (8-962)
— The value dnc[x][y] 1s derived as follows:
dnc[x][y]=(dz[x][y] *Is[x][y] +bdOffset) >> bdShift (8-963)
— The scaled transform coefficient d[x][y] is derived as follows:

d[x][v] = Clip3(CoeffMin, CoeffMax, dnc[x][y]) (8-964)

2.2.2 Inverse transform

8.7.5 Transformation process for scaled transform coefficients

8.7.5.1 General

Inputs to this process are:

— aluma location (xXTbY, yTbY) specifying the top-left sample of the current luma transform
block relative to the top-left luma sample of the current picture,

— avariable nTbW specifying the width of the current transform block,

— avariable nTbH specifying the height of the current transform block,

— avariable cldx specifying the colour component of the current block,

— an (nNTbW)x(nTbH) array d[x][y | of scaled transform coefficients with x =0..nTbW — 1,
y=0..nTbH — 1.

Output of this process is the (nTbW)x(nTbH) array r[x][y] of residual samples with

x=0.nTbW — 1, y=0..nTbH — 1.

When Ifnst_1dx[xTbY][yTbY] is not equal to O and both nTbW and nTbH are greater than or

equal to 4, the following applies:

16

WO 2021/047540 PCT/CN2020/114227

— The variables predModelntra, nLfnstOutSize, log2LfnstSize, nLfnstSize, and nonZeroSize are

derived as follows:

predModelntra =
(cldx==0) ? IntraPredModeY[xTbY][yTbY] : IntraPredModeC[xTbY][yTbY]
(8-965)

nLfnstOutSize = (nTbW >=8 && nTbH >=8) ? 48 : 16 (8-966)
log2LfnstSize = (nTbW >=8 && nTbH >=8) ? 3 : 2 (8-967)

nLfnstSize =1 << log2LfnstSize (8-968)

nonZeroSize = ((nTbW ==4 && nTbH ==4) I
(nTbW==8 && nTbH ==8)) ? 8 : 16 (8-969)

— When intra_mip flag][xTbComp][yTbComp] is equal to 1 and cldx is equal to O,
predModelntra is set equal to INTRA PLANAR.

— When predModelntra is equal to either INTRA LT CCLM, INTRA L CCLM, or
INTRA T CCLM, predModelntra is set equal to
IntraPredModeY[xTbY + nTbW /2][yTbY +nTbH /2].

— The wide angle intra prediction mode mapping process as specified in clause 8.4.5.2.6 is
invoked with predModelntra, nTbW, nTbH and cldx as inputs, and the modified
predModelntra as output.

— The values of the list u[x] with x = 0..nonZeroSize — 1 are derived as follows:

xC =DiagScanOrder[2][2][x][0] (8-970)
yC =DiagScanOrder[2][2][x][1] (8-971)
u[x]=d[xC][yC] (8-972)

— The one-dimensional low frequency non-separable transformation process as specified in
clause 8.7.4.2 1s invoked with the input length of the scaled transform coefficients
nonZeroSize, the transform output length nTrS set equal to nLfnstOutSize, the list of scaled
non-zero transform coefficients u[x | with x = 0..nonZeroSize — 1, the intra prediction mode
for LENST set selection predModelntra, and the LENST index for transform selection in the
selected LFNST set Ifnst 1dx[xTbY][yTbY] as inputs, and the list v[x] with
x = 0..nLfnstOutSize — 1 as output.

— Thearray d[x][y] with x =0..nLfnstSize — 1, y = 0..nLfnstSize — 1 is derived as follows:

17

WO 2021/047540 PCT/CN2020/114227

— If predModelntra is less than or equal to 34, the following applies:
dix][y]=(y<4) ? v[x+(y<<log2LfnstSize) | : (8-973)
((x<4) 2 v[32+x+((y—4)<<2)] : dIx][y])
— Otherwise, the following applies:
dix][y]=(x<4) ? v[y +(x<<log2LfnstSize)] : (8-974)
((y<4) 2 v[32+y+((x—4)<<2)] : d[x][y])
The variable implicitMtsEnabled is derived as follows:
— If sps mts enabled flag is equal to 1 and one of the following conditions is true,

implicitMtsEnabled is set equal to 1:

— IntraSubPartitionsSplitType is not equal to ISP NO SPLIT

— cu_sbt_flag is equal to 1 and Max(nTbW, nTbH) 1s less than or equal to 32

— sps_explicit mts_intra_enabled flag is equal to O and CuPredMode[O][xTbY][yTbY]
is equal to MODE INTRA and Ifnst idx[xO][y0O] 1is equal to O and
intra_mip_flag[x0][yO] is equal to O

— Otherwise, implicitMtsEnabled is set equal to O.

The variable trTypeHor specifying the horizontal transform kernel and the variable trTypeVer
specifying the vertical transform kernel are derived as follows:

— If cldx is greater than O, trTypeHor and trTypeVer are set equal to O.

— Otherwise, if implicitMtsEnabled is equal to 1, the following applies:

— If IntraSubPartitionsSplitType s not equal to ISP NO SPLIT or
sps_explicit_mts_intra_enabled flag is equal to O and CuPredMode[O][xTbY][yTbY]
is equal to MODE_INTRA, trTypeHor and trTypeVer are derived as follows:

trTypeHor = (nTbW >=4 && nTbW <=16)?1:0 (8-975)
trTypeVer = (nTbH>=4 && nTbH<=16)21:0 (8-976)

— Otherwise (cu_sbt_flagis equal to 1), trTypeHor and trTypeVer are specified in Table 8-15
depending on cu_sbt_horizontal flag and cu_sbt pos flag.

— Otherwise, trTypeHor and trTypeVer are specified in Table 8-14 depending on
tu_mts 1dx[xTbY][yTbY].

The variables nonZeroW and nonZeroH are derived as follows:

18

WO 2021/047540 PCT/CN2020/114227

If Ifnst_1dx[xTbY][yTbY] is not equal to O and nTbW is greater than or equal to 4 and nTbH
1s greater than or equal to 4, the following applies:

nonZeroW = (nTbW==4 || nTbH==4) ? 4 : 8(8-977)

nonZeroH = (nTbW ==4 || nTbH==4) ? 4 : 8 (8-978)
Otherwise, the following applies:

nonZeroW = Min(nTbW, (trTypeHor>0) ? 16 : 32) (8-979)

nonZeroH = Min(nTbH, (trTypeVer>0) ? 16 : 32) (8-980)

The (nTbW)x(nTbH) array r of residual samples 1s derived as follows:

1.

When nTbH is greater than 1, each (vertical) column of scaled transform coefficients d[x][y]
with x=0.nonZeroW — 1, y=0.nonZeroH—1 1is transformed to e[x][y] with
x =0..nonZeroW — 1, y=0.nTbH—-1 by invoking the one-dimensional transformation
process as specified in clause 8.7.4.4 for each column x = 0..nonZeroW — 1 with the height of
the transform block nTbH, the non-zero height of the scaled transform coefficients nonZeroH,
the list d[x][y] with y = 0..nonZeroH — 1 and the transform type variable trType set equal to
trTypeVer as inputs, and the output is the list e[x][y] with y =0..nTbH — 1.

When nTbH and nTbW are both greater than 1, the intermediate sample values g[x][y] with
x =0..nonZeroW — 1, y = 0..nTbH — 1 are derived as follows:

gl x][y] = Clip3(CoeffMin, CoeffMax, (e[x][y]+ 64) >> 7) (8-981)

When nTbW is greater than 1, each (horizontal) row of the resulting array g[x][y] with
x =0..nonZeroW — 1, y=0.nTbH — 1 is transformed to r[x][y] with x=0.nTbW — 1,
y=0..nTbH — 1 by invoking the one-dimensional transformation process as specified in
clause 8.7.4.4 for each row y = 0..nTbH — 1 with the width of the transform block nTbW, the
non-zero width of the resulting array g[x][y] nonZeroW, the list g[x][y] with
x = 0..nonZeroW — 1 and the transform type variable trType set equal to trTypeHor as inputs,
and the output is the list 1| x][y] with x =0..nTbW — 1.

When nTbW is equal to 1, rf[x][y] is set equal to e[x][y] for x=0.nTbW —1,
y=0..nTbH — 1.

Table 8-14 — Specification of tr1ypeHor and trTypeVer depending on tu mts idx[x [[y]

19

WO 2021/047540 PCT/CN2020/114227

tu mts idx[x0][y0]|0|1|2|3|4
tr'TypeHor Oj1]12|1(2

trTypeVer oj1)1]12(2

Table 8-15 — Specification of trTypeHor and tr1ypeVer depending on cu sbt horizontal flag and
cu sbt pos flag

cu_sbt horizontal flag | cu_sbt pos flag | trTypeHor | trTypeVer
0 0 2 1
1 1 1
1 0 1 2
1 1 1 1

8.7.4.2 Low frequency non-separable transformation process
Inputs to this process are:
— avariable nonZeroSize specifying the transform input length,
— avariable nTrS specifying the transform output length,
— alist of scaled non-zero transform coefficients x[j] with j = 0..nonZeroSize — 1,
— avariable predModelntra specifying the intra prediction mode for LENST set selection,
— avariable Ifnstldx specifying the LENST index for transform selection in the selected LFNST
set.
Output of this process is the list of transformed samples y[1] with 1= 0..nTrS — 1.
The transformation matrix derivation process as specified in clause 8.7.4.3 is invoked with the
transform output length nTrS, the intra prediction mode for LENST set selection predModelntra,
and the LFNST index for transform selection in the selected LFNST set Ifnstldx as inputs, and the
(nTrS)x(nonZeroSize) LEFNST matrix lowFreqTransMatrix as output.
The list of transformed samples y[1] with 1 =0..nTrS — 1 1s derived as follows:
y[i] = Clip3(CoeffMin, CoeffMax, ((YRonZeroSize~1]qwFreqTransMatrix[i][j] * x[j]) +
64)>>7) (8-982)

8.7.4.3 Low frequency non-separable transformation matrix derivation process

20

WO 2021/047540 PCT/CN2020/114227

Inputs to this process are:

— avariable nTrS specifying the transform output length,

— avariable predModelntra specifying the intra prediction mode for LENST set selection,

— avariable Ifnstldx specifying the LENST index for transform selection in the selected LFNST
set.

Output of this process is the transformation matrix lowFreqTransMatrix.

The variable 1fnstTrSetldx is specified in Table 8-16 depending on predModelntra.

Table 8-16 — Specification of lfnstTrSetldx

predModelntra IfnstTrSetldx

predModelntra < 0 1

0 <= predModelntra <=1 0
2 <= predModelntra <= 12 1
13 <= predModelntra <= 23 2
24 <= predModelntra <= 44 3
45 <= predModelntra <= 55 2
56 <= predModelntra <= 80 1

The transformation matrix lowFreqTransMatrix is derived based on nTrS, IfnstTrSetldx, and

Ifnstldx as follows:

- If nTrS is equal to 16, IfnstTrSetldx is equal to 0, and Ifnstldx is equal to 1, the following
applies:

21

WO 2021/047540

lowFreqTransMatrix[m][n |

108 -
—40 -

{
{
{
{
{
{
{
{
{ 2
{
{
{
{
{
{
{
{
}

Otherwise, if nTrS is equal to 16, IfnstTrSetldx is

following applies:

44
97

1
12
7

-16
-10

-44
-11
100

-6
-16
-38

37

6
-9
=30

lowFreqTransMatrix[m][n |

119 -
=27 -1

23

{
{

{

{

{

{

{

{ -17 -
S
-6 -
{
{
{
{
{
{
{
}

’

30
01
58

28
24

=22

17
-15
-11

-111

=23
-47
-102
22
-26
23

19 7 -1
29 =12 -3
-16 -29 1
-16 36 -8
-102 36 23
14 11 -3
36 94 -38
24 =25 -3
10 16 24
-5 =29 5
=17 -3 -064
-30 -28 =87
28 -13 -14
9 16 19

5 28 =17
=7 -3 =35

-2 3 2
2 22 3

2 38 2
89 -2 =26
7¢ -11 -17
25 87 =7
14 =53 -6
=7 52 9
=17 8 -42
21 -9 34
19 -2 6
22 0 102
-13 -18 5
0 =25 3

1 -13 =23
=7 1 =34

-11 4]
18 18
=54 21
3 22
-4 38
-97 7
=7 3
8 99

3 19
-33 =26
-35 11
31 4
-3 37
12 33
4] =7
-1 =7
equal to

-16 3
19 30
10 -13
13 -8
20 13

=74 4

-68 -67
50 -92

9 18
44 -3
6 =12
-19 19
0 0
-3 =30
1 20
-2 3

PCT/CN2020/114227

2 -1 0 -1 -1 0o 1}
-15 -3 -1 -3 2 1}
14 -4 =7 2 4 o 3}
18 -15 4 1 -5 2}
=27 -5 5 16 -8 -6}
26 1 55 -10 -19 3}
-47 11 -6 -13 -17 10}
-28 =29 6 -43 21 11}
10 24 -4 =7 -2 -3 }
-96 33 14 4 39 -14 }
17 19 -86 6 36 14

4 33 6l -5 =17 22}
-15 -3 -2 107 =36 -24 }
32 94 12 0 34 -45 }
18 -45 40 36 97 -8
-2 =32 -6 -33 -1l6 -112 }

0, and Ifnstldx 1s equal to 2, the

-13 6 95 69 -29 -24

6 0 -3 2 1 o 3}
=7 -9 5 3 -5 -1}
-5 4 14 -1 -9 o 3}
-38 -1 -9 =20 -2 8 1
18 -4 1 -15 3 5 1
39 -5 0 -1 =20 -1}
17 29 2 6 25 4 3
-15 27 =15 -10 -6 3}
16 25 -4 2 -1 11}
102 11 =7 13 11 -20 }
}
-32 30 -1l6 -14 -8 =23 }
21 22 58 -88 -54 28 1}
8 -76 -34 4 -80 -26 }
-2 80 -44 37 -68 1}
}

-6 19 5 -38 11 -115

Otherwise, if nTrS is equal to 16, IfnstTrSetldx is equal to 1, and Ifnstldx is equal to 1, the

following applies:

22

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix m][n] =

{

{ -111 39 4 3 44 11 -12 -1 7 -16 -5 2 3 -1 4 2}
{ =47 =27 15 -1 -92 43 20 -2 20 39 -16 -5 10 -5 -13 2}
{ =35 -23 4 4 =17 =72 32 6 =59 18 50 -6 0 40 o =13 }
{ 13 93 =27 -4 -48 13 -34 4 =52 11 1 10 3 16 -3 1}
{ =11 =27 1 2 =47 -4 =36 10 -2 -85 14 29 =20 -2 57 4 3
{ 0 =35 32 -2 26 60 -3 -17 -82 1 =30 0 =37 21 3 12}
{ -17 -46 =92 14 7 -10 -39 29 =17 27 =28 17 1 -15 -13 17
{ 4 -10 =23 4 16 58 -17 26 30 21 67 2 -13 59 13 -40 }
{ 5 =20 32 -5 8 -3 -46 =7 -4 2 =15 24 100 44 0 5 1
{ -4 -1 38 -18 =7 -42 =63 -6 33 34 =23 15 =65 33 =20 2}
{ -2 -10 35 -19 5 8 -44 14 =25 25 58 17 7 -84 -lo =18 }
{ 5 13 18 34 11 -4 18 18 5 58 -3 42 -2 -10 85 38
{ -5 -7 =34 -83 2 -1 -4 =73 4 20 15 -12 4 -3 44 12}
{ 0 4 -2 =60 5 9 42 34 5 -14 9 80 -5 13 -38 37}
{ -1 2 7 =57 3 =7 9 68 -9 6 -49 =20 6 -4 36 -64 }
{ -1 0 =12 23 1 -4 17 =53 -3 4 =21 72 -4 -8 -3 -83 }
s

Otherwise, if nTrS is equal to 16, IfnstTrSetldx is equal to 1, and Ifnstldx is equal to 2, the
following applies:

lowFreqTransMatrix m][n] =

88 -55 6 -3 -66 27 9 -2 11 11 -13 1 -2 =7 1 2
-58 =20 27 -2 =27 75 =29 0 47 -42 -11 11 -9 -3 19 -4
-51 23 =22 5 -63 3 37 -5 1 64 -35 -4 29 =31 -11 13
=27 =76 49 -2 40 14 9 -17 -56 36 -25 6 14 3 -6 8

19 -4 =36 22 52 7 36 =23 28 -17 -64 15 -5 -44 48 9

29 50 13 -10 1 34 =59 1 =51 4 =16 30 52 =33 24 -5
=12 =21 =74 43 =13 39 18 -5 =58 =35 27 -5 19 26 6 -5

-6 27 18 -5 =37 -18 12 -25 -44 -10 -38 37 -66 45 40 =7
-13 -28 -45 -39 0 -5 =39 69 =23 le -12 -18 =50 =31 24 13
-1 8 24 =51 ~-15 -9 44 10 -28 =70 -1z -39 24 -18 -4 51
-8 -2z -17 33 -18 -45 =57 =27 0 =31 =30 29 -2 =13 =53 49
1 12 32 51 -8 8 -2 =31 =22 4 46 -39 -49 =67 14 17

4 5 24 60 -5 =14 =23 38 9 8 -34 =59 24 47 42 28
-1 -5 -20 -34 4 4 -15 -46 18 31 42 10 10 27 49 78

UL U U NI

{

{

{

{

{

{

{

{

{ 19 38 -10 -5 28 66 0 -5 -4 19 =30 -26 -40 28 =60 37
{

{

{

{

{

{

{

{ -3 -7 =22 =34 -5 -11 -36 -69 -1 -3 =25 =73 5 4 4 -49
}

Otherwise, if nTrS is equal to 16, IfnstTrSetldx is equal to 2, and Ifnstldx is equal to 1, the

following applies:

23

WO 2021/047540

lowFreqTransMatrix[m][n |

{

{ -112 47
{ 29 =7
{ -36 -87
{ 28 -5
{ =12 -24
{ 18 53
{ 5 -1
{ -13 =32
{ -4 -13
{ 15 33
{ -8 -24
{ -2 -6
{ -3 =7
{ 2 6
{ 4 8
{ 0 1
}

Otherwise, if nTrS is

following applies:

-2

69

15
69

18
-10
63
=27
-24
-16
10
21

equal to 16, IfnstTrSetldx is

2 =34
-1 -108
-10 -17
-2 =29
-3 26
=74 14
0 =26
-2 15
19 18
89 8
15 12
13 -1
-21 10
-3 -5
40 -4
11 -2

lowFreqTransMatrix[m][n |

{

{ =99 39
{ 58 42
{ =15 71
{ 46 5
{ -14 -54
{ -3 3
{ 17 16
{ 15 54
{ -6 =17
{ -2 -1
{ 7 29
{ -5 -24
{ 4 8
{ -2 -11
{ -3 -5
{ 1 1
}

’

Otherwise, if nTrS is

following applies:

=33
-44

-29
69

-8
-55
-9
14
=53
21
-25
=23
7

18

65
33
-58
71
25
-11

13
40
=33
13
80
24

34
46
15
41
-8
24
-16
-11
-4

-20
-63
-29
-12
-9
=50
18
60
30
11
53
-15

=21
-4
2

2
2
26

-6l
28
0
=27
60
25
26
37
46
=31
-28
-13

-5
23
25
-15
6l
-26
-12
-26
-8
48
10
-6l

=53
-24
16

15 =7
-45 13
7 14
103 =36
15 54
-6 =7
45 -9
-25 =80
16 33
-4 -8
-17 =50
3 18

8 20

7 24

5 14

3 7
equal to

-15 -2
-55 32
62 =7
52 -38
27 44
24 63
62 1
=30 17
4 34
-13 -34
14 59
6 30
=7 =17
-5 =26
1 3

2 5

-11

-4
-36
-11

47
60
-15
-39
-51
38
41
31
20

PCT/CN2020/114227
g -3 -1 0}
8 -5 1 0}
6 g -7 0}
48 -16 -4 1}
0 -4 6 -2 }
-5 -7 -6 8}
-113 28 8 -1 }
-16 -50 28 2}
1 0 5 -2}
-2 -6 -9 -7 }
0 35 -67 26 }
-23 -95 17 17 }
1 2 1 7}
-16 -41 -89 49 }
7 18 32 52 }
-6 -19 -42 -101 }

2, and Ifnstldx is equal to 2,

-4
13
-48
-19
-14
-38
41
-55
-15
-16
-44
-64
9
24

-1
-5

-2

-5

22
-52

-3
23
-84
19
-25
67

21
-19
-63
=27
-18

89
-43
-16

=21
=22
-42
-45
-36
23
71
56
20
-19
15
9

-20
20
-54
44
31
=73
41
25

the

U U NI

equal to 16, IfnstTrSetldx is equal to 3, and Ifnstldx is equal to 1, the

24

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix m][n] =

{

{ -114 37 3 2 =22 =23 14 0 21 =17 -5 2 5 2 -4 -1 }
{ =19 -41 19 -2 85 -60 -11 7 17 31 -34 2 -11 19 2 -8
{ 36 =25 18 -2 -42 =53 35 5 46 -60 =25 19 8 21 =33 -1}
{ =27 -80 44 -3 -58 1 =29 19 -41 18 -12 =7 12 =17 7 -6}
{ -11 =21 37 =10 44 -4 47 =12 =37 -41 58 18 10 -46 -le6 31}
{ 15 47 10 -6 -1l6 -44 42 10 =80 25 =40 21 =23 -2 3 =14 1}
{ 13 25 79 =39 -13 10 31 -4 49 45 12 -8 3 -1 43 7
{ 16 11 -26 13 -13 =74 =20 -1 5 -6 29 =47 26 -49 54 2}
{ -8 -34 -26 7 -26 -19 29 =37 1 22 46 -9 =81 37 14 20}
{ -6 -30 -42 -12 -3 5 57 =52 -2 37 -12 6 74 10 6 -15 }
{ 5 9 -6 42 -15 -18 -9 26 15 58 14 43 23 -10 =37 75}
{ -5 =23 =23 36 3 22 36 40 27 -4 -16 56 -25 -46 56 -24 }
{ 1 3 23 73 8 5 34 46 -12 2 35 -38 26 52 2 =31 }
{ -3 -2 =21 =52 1 -10 -17 44 -19 =20 30 45 27 6l 49 21}
{ -2 -7 =33 -be6 -4 -6 21 63 15 31 32 -2z -10 =-26 =52 -38 }
{ -5 -1z -18 -12 8 22 38 36 -5 -15 -51 -63 -5 0 15 73}
s

Otherwise, if nTrS is equal to 16, IfnstTrSetldx is equal to 3, and Ifnstldx is equal to 2, the

following applies:

lowFreqTransMatrix[m][n] =

{

{ -102 22 7 2 66 -25 -6 -1 -15 14 1 -1 2 -2 1 o 3}
{ 12 93 =27 -6 -27 -64 36 6 13 5 =23 0 -2 6 5 -3 }
{ =59 -24 17 1 =62 -2 -3 2 83 -12 -17 -2 =24 14 7 -2}
{ =33 23 =36 11 -21 50 35 -1l6 -23 -78 16 19 22 15 =30 -5 }
{ 0 -38 -81 30 27 5 51 -32 24 36 -16 12 -24 -8 9 1}
{ 28 38 8 -9 62 32 -13 2 51 -32 15 5 -66 28 0 -1}
{ 11 =35 21 =17 30 -18 31 18 -11 -36 =80 12 16 49 13 =32 }
{ -13 23 22 =36 -12 64 39 25 -19 23 =36 9 -30 -58 33 =7}
{ -9 -20 -55 -83 3 -2 1 62 8 2 27 =28 7 15 -11 5 1}
{ -6 24 =38 23 -8 40 -49 0 =7 9 =25 -44 23 39 70 -3 }
{ 12 17 17 0 32 27 21 2 67 11 -6 -10 89 -22 -12 16}
{ 2 -9 8 45 7 -8 27 35 -9 -31 -17 =87 =23 =-22 -19 44 3
{ -1 -9 28 -24 -1 -10 49 =30 -8 =7 40 1 4 33 65 67}
{ 5 -12 -24 -17 13 -34 -32 -1le6 14 -67 =7 9 7 =74 49 1}
{ 2 -6 11 45 3 -10 33 55 8 -5 59 4 7 -4 44 -66 }
{ -1 1 -14 36 -1 2 =20 69 0 0 =15 72 3 4 5 65}
s

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 0, and 1fnstldx is equal to 1 the following applies:

25

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix| m][n | = lowFreqTransMatrixColOto15[m |[n | withm =0..15,n=0..15
lowFreqTransMatrixColOto15 =

{

{ -117 28 18 2 4 1 2 1 32 -18 -2 0 -1 0 0 o 3}
{ -29 -91 47 1 9 0 3 0 =54 26 -8 3 0 1 0 o 3}
{ =10 62 -11 -8 -2 -2 -1 -1 -95 3 32 0 4 0 2 o 3}
{ =15 15 -10 -2 1 0 1 0 10 112 -20 =17 -4 -4 -1 -2}
{ 32 39 92 -44 4 -10 1 -4 26 12 -15 13 -5 2 -2 o 3}
{ -10 1 50 -15 2 -3 1 -1 -28 -15 14 6 1 1 1 o 3}
{ 1 =33 -11 -14 7 -2 2 0 29 =12 37 =7 -4 0 -1 o 3}
{ 0 6 -6 21 -4 2 0 0 =20 =-24 -104 30 5 5 1 2}
{ -13 -13 =37 -101 29 -11 8 -3 -12 -15 =20 2 -11 5 -2 1}
{ 6 1 -14 -36 9 -3 2 0 10 9 -18 -1 -3 1 0 o 3}
{ -12 -2 =26 -12 -9 2 -1 1 -3 30 4 34 -4 0 -1 o 3}
{ 0 -3 0 -4 -15 6 -3 1 -7 -15 -28 -86 19 -5 4 -1 }
{ -1 9 13 5 14 -2 2 -1 -8 3 -4 =62 4 1 1 o 3}
{ 6 2 -3 2 10 -1 2 0 8 3 -1 =20 0 1 0 o 3}
{ 6 9 -2 35 110 =22 11 -4 -2 0 -3 1 -18 12 -3 2}
{ -1 7 -2 9 -11 5 -1 1 =7 2 =22 4 =13 0 -1 o 3}
}

’

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol16to31| m — 16 |[n | withm=16..31,n=0..15
lowFreqTransMatrixCol16to31 =

{

{ 14 -1 -3 0 -1 0 0 0 2 0 0 0 0 0 0 o 3}
{ 33 5 -9 -1 -2 0 -1 0 -3 3 0 0 0 0 0 o 3}
{ 32 =30 -4 4 -1 1 0 0 6 2 -5 0 0 0 0 o 3}
{ -20 =26 31 1 0 0 0 0 2 -l6 -1 6 0 1 0 o 3}
{ 29 -l6 =22 8 0 1 0 1 =20 6 4 -3 1 0 0 o 3}
{ =99 -4 9 5 5 2 2 1 44 -10 -11 1 -2 0 -1 o 3}
{ 6 =99 3 26 -1 5 0 2 14 30 =27 -2 1 -1 0 -1}
{ -7 -46 10 -14 7 0 1 0 9 21 7 -6 -2 -1 0 -1}
{ -12 10 26 12 -6 0 -1 0 =32 -2 11 3 3 -1 1 0o 1}
{ 38 26 -13 -1 -5 -1 -1 0 102 3 -14 -1 -5 -1 -2 0o 1}
{ =30 3 =92 14 19 0 3 0 -11 34 21 =33 1 -2 0 -1}
{ -5 =17 -41 42 -6 2 -1 1 -1 -40 37 13 -4 2 -1 1}
{ =12 23 le -11 -17 0 -1 0 -11 97 -3 -3 0 -6 0 -2}
{ -4 4 =16 0 -2 0 1 0 34 23 6 =7 -4 -2 -1 o 3}
{ -5 -4 =22 8 -25 3 0 0 -3 -21 2 -3 9 -2 1 o 3}
{ 0 28 0 76 4 -6 0 -2 -13 5 -76 -4 33 -1 3 o 3}

by
lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol32to47] m — 32 [n | withm=32..47,n=0..15
lowFreqTransMatrixCol32to47 =

{
{ 3 0 -1 0 1 0 0 C 1 0 0 0 1 0 0 o 3}

26

PCT/CN2020/114227

WO 2021/047540

S T TP S S P TN

10

10
=27

(@} (@} (@} [aN) (@} o) [aN) 0 (@} (e8] =t (@} 0 Lo L0
| | | |)
|
N O o n n w .o A4 O W 4 N O N o
| | | | - | N ™M |
|
[B N e N T s e
| | | | — | — | | —
o~ 0 — — Lo 0 [aN) — (& (o3} (@) — [e0) [and (e}
| | — N | — N O |
| | | —

TS I I

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 0, and Ifnstldx is equal to 2 the following applies:

27

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixColOtol15[m [n] withm=0..15,n=0..15
lowFreqTransMatrixColOto15 =

{

{ -108 48 9 1 1 1 0 0 44 -6 -9 -1 -1 0 -1 0
{ 55 66 =37 -5 -6 -1 -2 0 67 =30 =20 4 -2 0 -1 0
{ 2 86 -21 -13 -4 -2 -1 -1 -88 5 6 4 5 1 1 0
{ -24 -21 -38 19 0 4 -1 2 =23 -89 31 20 2 3 1 1
{ 9 20 98 -26 -3 -5 0 -2 -9 =26 15 -16 2 0 1 0
{ =21 -7 =37 10 2 2 -1 1 -10 69 -5 =7 -2 -2 0 -1
{ -10 =25 4 =17 8 -2 2 -1 =27 -17 =71 25 8 2 1 1
{ 2 5 10 64 -9 4 -3 1 -4 8 62 3 =17 1 -2 0
{ -11 -15 =28 =97 6 -1 4 -1 7 3 57 -15 10 -2 0 -1
{ 9 13 24 -6 7 -2 1 -1 16 39 20 47 -2 -2 -2 0
{ =7 11 12 7 2 -1 0 -1 -14 -1 -24 11 2 0 0 0
{ 0 0 7 -6 23 -3 3 -1 5 1 18 96 13 -9 -1 -1
{ -2 -6 -1 -10 0 1 1 0 =7 -2 =28 20 -15 4 -3 1
{ -1 6 -16 0 24 -3 1 -1 2 6 6 16 18 =7 1 -1
{ -5 -6 -3 -19 -104 18 -4 3 0 6 0 35 -41 20 -2 2
{ -1 -2 0 23 -9 0 -2 0 1 1 8 -1 29 1 1 0
s

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol16to31| m — 16 |[n | withm=16..31,n=0..15
lowFreqTransMatrixCol16to31 =

{

{ 9 -9 -1 1 0 0 0 0 3 -1 1 0 0 0 0 0
{ =31 -19 14 4 1 1 1 0 -6 3 5 -2 0 0 0 0
{ 14 -5 0 3 0 0 0 0 10 -5 -2 0 -1 0 0 0
{ =30 26 36 -8 -2 -2 0 -1 14 18 =7 -9 -1 -1 0 0
{ -6l -3 -2 3 7 1 1 C 12 16 -6 -1 0 -1 0 0
{ =93 2 19 0 3 0 2 0 17 4 0 0 -1 0 0 0
{ -4 -66 28 36 -5 3 0 1 -10 20 33 -13 -8 0 0 -1
{ -3 =75 5 -14 1 4 0 1 -36 3 18 -4 4 0 1 0
{ -1 =27 13 6 1 -1 0 0 =34 -6 0 3 4 1 2 0
{ 28 23 76 -5 =25 -3 -3 -1 6 36 -7 =39 -4 -1 0 -1
{ =20 48 11 -13 -5 -2 0 -1 -105 -19 17 0 6 2 3 0
{ =21 =7 -42 14 -24 -3 0 0 11 -47 =7 3 -5 9 1 2
{ -2 =32 -2 -066 3 7 1 2 -11 13 =70 5 43 -2 3 0
{ -3 11 -63 9 4 -5 2 -1 =22 94 -4 -6 -4 -4 1 -2
{ -2 10 -18 16 21 3 -2 0 -2 11 6 -10 6 -3 -1 0
{ 3 -6 13 76 30 -11 -1 -2 =26 -8 -69 7 -9 =7 3 -1

by
lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol32to47] m — 32 [n | withm=32..47,n=0..15
lowFreqTransMatrixCol32to47 =

{
{ 1 -1 0 0 1 0 0 0 0 -1 0 0 0 0 0 0

28

TS U I I

TS U U U

PCT/CN2020/114227

WO 2021/047540

N S o

—_ 11 —_

— (@} [aN) (e} o~) o~ — [e0) [e0] [e2] o) (e} — [Ie)
| | | | | — — | — | [N}

| | |
— L0 (e8] (@} =t 0 = [e0) =t [e0) — = o) Lo =
| | | — | | — ™)

| |
o~ e} — ™~ [f9) o — [aN) [aN) = (@} [e0) (@} — (@}
| | — — | —

| |

U I N

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 1, and Ifnstldx is equal to 1 the following applies:

29

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixColOtol15[m [n] withm=0..15,n=0..15
lowFreqTransMatrixColOto15 =

{

{ 110 -49 -3 -4 -1 -1 0 -1 -38 -1 10 0 2 0 1 0
{ -43 -19 17 -1 3 0 1 0 -98 46 14 -1 2 0 1 0
{ =19 17 =7 3 -2 1 -1 0 =32 =59 29 3 4 0 2 0
{ =35 -103 39 1 7 0 2 0 38 -13 25 -6 1 -1 0 0
{ 9 5 -6 -1 -1 0 -1 0 42 4 21 -11 1 -3 1 -1
{ -5 -5 -28 9 -3 2 -1 1 -20 -78 22 16 1 3 0 1
{ 14 17 27 =12 1 -3 1 -1 8 19 -13 4 -2 1 -1 0
{ 7 35 17 -4 -1 0 0 0 3 8 54 -17 1 -2 1 -1
{ -13 =-27 -101 24 -8 6 -3 2 11 43 6 28 -6 3 -1 1
{ -11 -13 -3 -10 3 -1 1 o -19 -19 =37 8 4 2 0 1
{ -4 -10 -24 -11 3 -2 0 -1 -6 =37 -45 =17 8 -2 2 -1
{ -2 1 13 =17 3 -5 1 -2 3 0 =55 22 6 1 1 0
{ 3 1 5 -15 1 -2 1 -1 7 4 =7 29 -1 2 -1 1
{ -4 -8 -1 =50 6 -4 2 -2 -1 5 =22 20 6 1 0 0
{ 5 -1 26 10z -13 12 -4 4 -4 -2 =40 =7 =23 3 -5 1
{ -5 -6 =27 =22 -12 0 -3 0 -5 8 -20 -83 0 0 0 0
}

’

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol16to31| m — 16 |[n | withm=16..31,n=0..15
lowFreqTransMatrixCol16to31 =

{

{ -9 13 1 -2 0 0 0 0 -4 2 -3 0 0 0 0 0
{ 26 26 -15 -3 -2 -1 -1 0 11 =7 -9 2 0 0 0 0
{ =72 43 34 -9 3 -2 1 -1 13 36 -18 -10 0 -2 0 -1
{ -1 7 6 =7 1 -1 0 o -13 14 2 -4 2 -1 0 0
{ 21 70 =32 =21 0 -4 -1 -1 34 -26 =57 11 4 2 0 1
{ 80 -6 25 -5 -4 -1 -1 0 6 -24 7 -9 0 0 0 0
{ 48 -1 48 -15 -4 -2 -1 -1 1 60 -28 -42 5 -6 1 -2
{ 10 14 -11 -34 4 -4 1 -1 -80 =7 -6 2 15 0 3 0
{ -3 14 21 -12 =7 -2 -1 -1 =23 10 -4 =12 3 0 1 0
{ -1z =30 3 -9 5 0 1 0 =56 -9 =47 8 21 1 4 1
{ 17 14 -58 14 15 0 2 0 =10 34 =7 28 4 -1 1 0
{ 8 74 21 40 -14 0 -2 0 =36 -8 11 -13 =23 1 -3 0
{ 8 3 12 -14 -9 -1 -1 0 4 29 =15 31 10 4 1 1
{ -16 -15 18 -29 -11 2 -2 1 40 -45 -19 =22 31 2 4 1
{ -1 5 8 -23 7 2 1 1 10 -11 -13 -3 12 -3 2 0
{ 9 7 24 =20 41 3 6 1 15 20 12 11 17 -9 1 -2

by
lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol32to47 m — 32 [n | withm=32..47, n=0..15
lowFreqTransMatrixCol32to47 =

{
{ -2 2 0 1 -1 1 0 0 -1 1 0 0 -1 0 0 0

TS UL U I

TS U U U

WO 2021/047540

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
}

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 1, and 1fnstldx is equal to 2 the following applies:

’

11
-16

-11
23
-36
6l
-25
-9
-26

-3

11
-32

-11
46

=30
34

22
41
23
-1

-1
-12
-6

13
-51

-10
10
=31
16
55

18

-10

-5

=22
19

32

0 0
-3 2
-3 0
12 4

1 -5
-2 13

-24 0
-4 4
41 8

=30 22
-4 =12
-9 =65

-42 12

-14 -4

3 -18

31

-1
-1

-2

-6
-2
-2

-15

-11
-14
-12

10

-2
-2

-4
-5

=7
=21

=7
-25

PCT/CN2020/114227
2 -1 0 0
3 1 -1 1

-1 1 -1 0
0o -1 0 0
-1 R
-2 -3 2 2
1 -1 -2 2
0 -2 1 0
-1 3 5 -2
2 -5 9 4
0 2 -2 -1
0 0o -1 3
5 1 6 2
3 0 6 3
-2 1 -8 10

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixColOtol15[m [n] withm=0..15,n=0..15
lowFreqTransMatrixColOto15 =

{

{ 80 -49 6 -4 1 -1 1 -1 =72 36 4 0 1 0 0 0
{ =72 -6 17 0 3 0 1 0 =23 58 -21 2 -3 1 -1 0
{ =50 19 -15 4 -1 1 -1 1 -58 -2 30 -3 4 -1 2 0
{ =33 -43 28 =7 4 -2 2 -1 -38 11 -8 4 1 1 0 0
{ 10 66 -21 -3 -3 0 -1 0 =53 -41 -2 16 -1 4 -1 1
{ 18 14 13 -9 2 -2 1 -1 34 32 =31 12 -5 2 -2 1
{ 21 66 -1 9 -4 2 -1 1 =21 41 -30 -10 0 -2 0 -1
{ 1 -6 -24 17 -5 3 -2 1 24 10 39 =21 5 -4 2 -1
{ 9 33 -24 1 4 0 1 0 6 50 26 1 -10 0 -2 0
{ =7 -9 =32 14 -3 3 -1 1 -23 -28 0 -5 -1 0 0 0
{ 6 30 69 -18 5 -4 3 -1 -3 -11 -34 -16 9 -4 2 -1
{ 1 -8 24 -3 7 -2 2 -1 -6 -51 -6 -4 -5 0 -1 0
{ 4 10 4 17 -9 4 -2 1 5 14 32 -15 9 -3 2 -1
{ -3 -9 =23 10 -10 3 -3 1 -5 -14 -le =27 13 -5 2 -1
{ 2 11 22 2 9 -2 2 0 -6 =7 20 =32 -3 -4 0 -1
{ 2 -3 8 14 -5 3 -1 1 -2 -11 5 -18 8 -3 2 -1
s

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol16to31| m — 16 |[n | withm=16..31,n=0..15
lowFreqTransMatrixCol16to31 =

{

{ 26 0 =12 2 -2 1 -1 0 =7 -9 6 1 0 0 0 0
{ 55 -46 -1 6 -2 1 -1 0 =22 7 17 =7 2 -1 1 0
{ 6 57 =34 0 -2 0 -1 0 34 -48 -2 14 -4 3 -1 1
{ =55 24 26 -5 2 -1 1 0 15 46 -40 -1 -1 0 -1 0
{ 36 -5 41 -20 3 -3 1 -1 -30 26 =32 -3 7 -2 2 -1
{ 40 4 -4 -9 -3 -2 -1 -1 27 =31 -43 19 -2 3 -1 1
{ =35 =17 -3 26 -6 5 -2 2 56 3 18 =25 -1 -2 -1 -1
{ 33 32 =30 4 -3 -1 -1 0 -4 13 -16 -10 0 -1 0 0
{ =27 1 -28 =21 16 -5 3 -2 =23 36 -2 40 =17 4 -3 1
{ -36 -59 -24 14 4 2 1 1 =23 -26 23 26 -3 5 0 2
{ =16 35 =35 30 -9 3 -2 1 =57 -13 6 4 -5 5 -1 1
{ 38 -1 0 25 6 2 1 1 47 20 35 1 =27 1 -5 0
{ 7 13 19 15 -8 1 -1 0 3 25 30 -18 1 -2 0 -1
{ -1 -13 =30 11 -5 2 -1 0 -5 -8 -22 -16 10 0 1 0
{ 13 -5 -28 6 18 -4 3 -1 -26 27 -14 6 =20 0 -2 0
{ 12 -23 -19 22 2 0 1 0 23 41 =7 35 -10 4 -1 1

by
lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol32to47 m — 32 [n | withm=32..47, n=0..15
lowFreqTransMatrixCol32to47 =

{
{ 3 5 -1 -2 -2 -2 -1 1 1 1 0 0 -1 -1 0 0

TS UL U I

TS U U U

WO 2021/047540 PCT/CN2020/114227

{ 9 5 -12 1 -3 -4 4 2 4 1 -2 -1 -1 -1 1 0
{ =10 7 21 -10 6 1 -11 0 -1 -1 4 2 3 0 -2 -1
{ 17 =38 1 17 -3 11 15 -11 3 -1 -10 1 0 1 3 2
{ 15 -8 1 17 -1 -2 4 -8 2 0 -1 3 0 0 0 -1
{ 7 =49 52 10 -11 22 7 =26 -1 -6 -9 6 -2 2 4 -2
{ =15 -13 =27 9 9 -6 20 5 -3 2 -6 -9 3 -3 1 5
{ 24 -26 =37 33 5 =32 55 -5 =7 22 -14 =22 1 -9 -3 13
{ 43 =13 4 -41 -19 -2 =24 17 11 -4 8 4 -3 -3 -3 -3
{ 10 -26 38 7 =12 11 42 =22 -5 20 -14 -15 -1 -2 1 6
{ 28 10 4 7 0 -15 7 =10 -1 7 -2 2 1 -3 0 0
{ 37 =37 -9 -47 -28 5 0 18 8 6 0 -8 -4 -3 -3 1
{ 11 24 22 -11 -3 37 -13 -&8 -5 12 -63 26 9 -15 11 8
{ o =29 =27 6 =27 -10 =30 9 -3 -10 =7 77 9 =13 45 -8
{ =76 -2¢ -4 =7 12 51 5 24 7 =17 -le -12 -5 4 2 13
{ 5 7 23 5 69 -38 -8 -32 -15 =31 24 11 2 18 11 -15
s

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 2, and 1fnstldx is equal to 1 the following applies:

33

TS U I U

PCT/CN2020/114227

WO 2021/047540

0..15,n=0.15

lowFreqTransMatrixColOto15] m][n | with m

lowFreqTransMatrix| m |[n |

lowFreqTransMatrixColOto15

33

-121

{

=23

121

16

19 -

108

-20

19

10

-43

32

11
105

-29

=31

19

=12 —_

43

14

=31

-17 -48 10 -

-12

23

-43 -100

-15

24 99 -17 10 -

10

-48

-14

11

-10 —_

103 -—42 24

28

0.15

lowFreqTransMatrixCol16to31[m — 16 [n | withm = 16..31, n

lowFreqTransMatrix| m |[n |

lowFreqTransMatrixCol16to31

24

=27

17

-18

-120 14

{

=30

11
12

12

0 -117

-29

46

22

-25 —_

17 -

-13 -105

{

15

19 -

-20

17 -

-9 -100

11 -

32

-39

14

57

-15

-40

-6l

-26

17

=97

-14

17

-42

32.47,n=0.15

lowFreqTransMatrixCol32to47[m — 32 |[n | with m

lowFreqTransMatrix| m |[n |

lowFreqTransMatrixCol32to47

34

PCT/CN2020/114227

WO 2021/047540

-12

17

12

-32

32

-10

117

32

10
13

-35

10

0 -116 6

-3

30

=17

-63

-10

4

1 -102

30

-34

-10

18

-95

19

24 -

10

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 2, and 1fnstldx is equal to 2 the following applies:

35

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixColOtol15[m [n] withm=0..15,n=0..15
lowFreqTransMatrixColOto15 =

{

{ 87 -41 3 -4 1 -1 0 -1 =73 28 2 1 1 1 0 0
{ =75 4 7 0 2 0 1 0 =41 36 =7 3 -1 1 0 0
{ 26 -44 22 -6 4 -2 1 -1 77 24 =22 2 -4 0 -1 0
{ -39 -68 37 =7 6 -2 2 0 -9 56 -21 1 -2 0 -1 0
{ 10 =20 2 0 1 0 0 0 50 -1 8 -5 1 -1 0 0
{ =21 -45 8 -2 3 -1 1 0 -7 =30 26 -8 3 -1 1 -1
{ -4 -2 =55 28 -8 5 -3 2 -2 37 43 -19 1 -2 1 -1
{ 2 19 47 =23 6 -4 2 -1 -23 -22 -44 17 -2 2 -1 0
{ =19 -62 -9 3 0 0 0 0 -12 -56 27 =7 3 -1 1 0
{ 1 9 -5 0 -1 0 0 0 0 22 -1 2 0 1 0 0
{ 5 17 -9 0 -2 1 0 0 13 54 -2 7 -1 1 0 0
{ 7 27 56 -2 10 -3 3 -1 -2 -6 8 -28 3 -4 1 -1
{ 0 0 19 -4 3 -2 2 -1 -3 -13 10 -4 1 0 0 0
{ -3 0 =27 =80 40 -16 6 -4 4 3 31 6l =22 7 -1 1
{ 1 2 -8 6 -1 1 0 0 2 8 -5 -1 0 0 0 0
{ -4 -18 =57 8 -8 1 -3 0 -5 -20 -69 7 -6 2 -2 1
}

’

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol16to31| m — 16 |[n | withm=16..31,n=0..15
lowFreqTransMatrixCol16to31 =

{

{ 30 -5 -6 1 -1 0 0 0 -8 -3 3 0 0 0 0 0
{ 72 =29 -2 0 -1 0 -1 0 =37 6 7 -2 1 0 0 0
{ 7 -38 10 0 1 0 0 0 =51 27 4 -3 2 -1 1 0
{ =45 4 -3 6 -1 2 0 1 49 -13 3 -3 -1 0 0 0
{ 66 17 -24 4 -3 1 -1 0 13 -49 15 1 0 0 0 0
{ -9 69 =33 5 -2 0 -1 0 -44 =31 10 7 -2 2 0 1
{ -47 =34 =27 5 4 -1 1 0 -39 -2 27 4 -2 1 0 0
{ =33 3 22 -2 -4 1 -1 0 =58 -17 6 -6 7 -1 1 0
{ 7 -8 16 -6 4 -2 1 -1 -15 54 -23 2 -1 0 0 0
{ -13 17 0 -2 0 -1 0 0 =-46 -10 -10 4 -1 1 0 0
{ 4 51 -3 -6 -1 -1 0 0 =20 6 -34 9 -2 2 -1 0
{ -1 -4 -68 35 -5 5 -2 1 0 35 43 -4 -6 1 -1 0
{ -6 =37 -18 -5 2 -2 1 -1 6 -6 =7 25 -6 4 -1 1
{ -4 -7 =26 -6 -10 6 -4 1 3 8 14 -18 15 -5 2 -1
{ 1 24 3 5 -1 1 0 0 -3 12 6 -10 1 -1 0 0
{ 1 4 0 33 =7 5 -2 1 0 -9 53 -22 3 -1 0 0

by
lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol32to47] m — 32 [n | withm=32..47,n=0..15
lowFreqTransMatrixCol32to47 =

{
{ 3 2 -1 0 -2 -1 0 0 1 1 0 0 -1 0 0 0

TS U I I

TS U U U

WO 2021/047540

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
}

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 3, and 1fnstldx is equal to 1 the following applies:

’

12
31
-19
-53
49
-11
=23
-42
-80
16
-14
16

-9
4

-5

34

32
40
-25
=27
-52
-38
10
-4
-1
=27

-4
-8

-8
-2

20
28
-12
55
-1
-25
-2

-4

-10
-24
13
10
-9

27
43
34
-66
59

15

45
5

-2

=7
-3
-12
-11

23
15

46

-11
36

-11
-2
-6
-8

-2
-8

-52
-4
18

-13

37

-13
-18
-15
20
-28
-9
35

86

4

0
-4
-1
-3
=7
7
-43
-1
1
=17

PCT/CN2020/114227
-1 0 c 0
-4 -1 1 0

1 0 0 0
4 2 -1 -1
-2 -1 -1 0
3 -1 -2 1
4 3 o -1
3 2 0 1

-14 2 30 -1

10 3 o -1
4 -4 0 3

-23 13 5 -8
-2 0o -2 -1

-65 -6 7 2

4 6 4 -1

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixColOtol15[m [n] withm=0..15,n=0..15
lowFreqTransMatrixColOto15 =

TS U U I

{

{ -115 37 9 2 2 1 1 0 10 -29 8 0 1 0 1 0
{ 15 51 -18 0 -3 0 -1 0 =95 7 34 -3 5 -1 2 0
{ 29 =22 16 -6 3 -2 1 -1 -4 -80 12 15 0 3 0 1
{ -36 -98 25 5 4 1 2 1 =59 11 =17 1 1 1 0 0
{ -6 18 3 -3 -1 0 0 0 =50 -5 =38 12 0 2 0 1
{ 4 15 52 -13 5 -3 2 -1 -17 -45 16 24 -2 4 -1 2
{ =20 -7 -43 4 0 1 -1 1 =7 35 0 12 -4 1 -1 0
{ 4 29 1 26 -5 4 -2 1 =17 -7 =73 6 6 2 1 1
{ 12 13 10 2 -1 3 -1 1 17 -2 -46 12 7 0 2 0
{ 5 20 90 -17 4 -3 2 -1 6 66 8 28 =7 3 -1 1
{ -3 -4 =34 -12 2 -1 -1 0 5 25 11 43 -10 4 -2 1
{ -1 -3 2 19 -2 4 -1 2 9 3 =35 22 11 1 2 0
{ 10 -4 -6 12 5 1 1 0 11 -9 =12 -2 =7 0 -1 0
{ 4 6 14 53 -4 4 0 2 0 -1 -20 -13 3 2 -1 1
{ 2 9 13 37 19 6 2 2 -9 -3 -9 =28 =20 -4 -3 -1
{ 3 -3 12 84 -12 8 -2 3 6 13 50 -1 45 1 7 0
s

lowFreqTransMatrix [m][n | = lowkFreqTransMatrixCol16to31[m — 16 [[n | withm =16..31,n=0..15
lowFreqTransMatrixCol16to31 =

TS U U U

{

{ 23 -8 -8 1 -1 0 0 0 3 3 -2 -1 0 0 0 0
{ 23 =47 1 6 0 1 0 1 8 5 -12 0 -1 0 0 0
{ 45 7 =59 7 -2 1 -1 0 -15 41 -3 -16 2 -3 0 -1
{ 6 -13 7 -3 0 0 0 0 14 -4 -14 3 -1 0 0 0
{ 3 67 -7 =40 3 -6 1 -3 -1z -13 65 -3 -10 0 -1 0
{ =87 -8 -14 7 8 1 2 0 23 =35 -6 -3 1 1 0 0
{ =51 -2 =57 5 15 0 4 0 7 39 5 =55 1 =7 1 -3
{ -5 21 -3 5 -1 -3 0 -1 -11 2 =52 -3 27 -2 5 0
{ 16 -45 -9 =53 6 1 1 0 70 16 8 -4 =37 1 =7 0
{ 29 5 -19 12 9 -1 1 0 =10 14 -1 -13 7 0 1 0
{ 23 20 =40 12 21 -3 4 -1 25 -28 -10 5 8 6 0 2
{ -7 =65 -19 =22 11 4 2 1 =75 -18 3 -1 -10 2 0 1
{ 33 -10 -4 18 18 -4 4 -1 28 =72 1 =49 15 2 2 1
{ -3 1 -5 35 -16 -6 -1 -2 46 29 13 21 37 -5 4 -1
{ 1 18 9 28 24 6 2 2 =20 -5 =25 -33 -36 9 -2 2
{ -2 18 =-22 =37 -13 14 0 3 1 -12 -3 2 =15 -8 1 -1

by
lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol32to47] m — 32 |[n | withm=32..47,n=0..15
lowFreqTransMatrixCol32to47 =

{
{ 4 0 0 -1 1 1 0 0 2 0 0 0 0 0 0 o 3}

38

PCT/CN2020/114227

WO 2021/047540

=17

41

-10

25

-58

27

21

29

-12

13

10 -48

19

-64

21

-19

-17

=27

-35

-10

26

-15

=23 22

56

-16

13
19

-25

-41

12

-53 -18

-10

-12

42 57 =22 - -25 -28
14

-13

17

19

Otherwise, if nTrS is equal to 48, lfnstTrSetldx is equal to 3, and 1fnstldx is equal to 2 the following applies:

39

WO 2021/047540 PCT/CN2020/114227

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixColOto15[m |[n | withm=0..15,n=0..15
lowFreqTransMatrixColOto15 =

{

{ 109 -2¢ -8 -3 -2 -1 -1 0 =50 28 2 1 0 0 0 0
{ -39 31 -5 2 -1 1 0 0 =95 6 18 0 4 0 1 0
{ 29 -3 -2 -2 0 0 0 0 0 -41 9 0 2 0 1 0
{ 18 96 -23 2 -5 1 -2 0 =10 6 10 -2 1 -1 1 0
{ -29 -60 16 -2 3 -1 1 0 =52 9 -17 5 -2 1 -1 1
{ -23 -5 -15 5 -2 1 -1 1 2 79 -13 -4 -2 -1 -1 0
{ =7 -3 12 -3 3 -1 1 0 =31 -62 8 7 0 2 0 1
{ 1 -26 5 0 1 0 1 0 24 -3 43 -6 4 -2 1 -1
{ 11 14 6 -3 1 -1 1 0 10 =7 -9 3 -2 1 -1 0
{ -10 -11 -47 3 -4 1 -1 0 5 28 11 -2 -1 0 0 0
{ -8 -24 =99 11 -10 3 -4 1 -5 =36 19 -26 4 -5 1 -2
{ -5 1 -1 0 1 0 0 0 -10 -14 -6 8 0 1 0 0
{ 1 12 =20 21 -4 5 -2 2 -5 -2 =75 9 -1 2 -1 1
{ 2 -9 -18 8 -3 3 -1 1 3 =25 =62 -6 0 -2 0 -1
{ 4 9 39 18 0 2 0 1 -6 -l6 =-22 =37 5 -5 1 -2
{ =7 -2 15 -6 1 -1 1 -1 -11 -3 22 -14 0 -2 1 -1
}

’

lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol16to31| m — 16 |[n | withm=16..31,n=0..15
lowFreqTransMatrixCol16to31 =

{

{ -18 -8 6 0 1 0 1 0 6 -2 -3 0 0 0 0 0
{ 32 -49 5 1 1 0 0 0 27 -1 -14 2 -2 1 -1 0
{ 86 4 =33 2 -6 1 -2 0 =32 58 1 =7 0 -2 0 -1
{ -14 26 2 -4 1 -1 0 0 =-43 -9 35 -2 4 -1 1 0
{ 13 56 -2 -9 0 -2 0 -1 -34 -18 41 0 3 0 1 0
{ -9 1 5 -1 1 0 0 0 -4 49 2 -14 1 -3 0 -1
{ =75 9 -45 5 -1 1 -1 0 14 35 0 =23 2 -5 1 -2
{ -7 -64 9 14 0 3 0 1 -12 -4 5 3 -1 1 0 0
{ 22 21 1 =21 2 -4 1 -2 92 1 53 0 -9 1 -2 0
{ -12 -2 =38 2 0 1 0 0 16 38 11 -16 -1 -3 0 -2
{ 0 25 41 5 -3 1 0 0 10 -5 =7 12 2 1 0 0
{ =17 -2 7 -5 3 -1 0 0 -1l6 13 3 31 -1 6 0 2
{ -1 -2 -16 -4 0 -1 0 0 =7 7 =31 0 3 0 0 0
{ -6 -61 14 =51 2 -6 0 -2 -19 0 40 =7 =17 0 -3 0
{ -5 15 63 9 -16 0 -3 0 18 42 -18 27 15 1 3 1
{ -18 =7 30 -9 -4 0 -1 0 =35 23 23 10 =17 1 -3 0

by
lowFreqTransMatrix| m |[n | = lowFreqTransMatrixCol32to47] m — 32 [n | withm=32..47,n=0..15
lowFreqTransMatrixCol32to47 =

{
{ -3 2 1 -1 0 0 0 0 -2 0 0 0 0 0 0 0

TS U I NI

TS U U U

WO 2021/047540 PCT/CN2020/114227

{ 3 5 -3 -2 4 1 -1 -1 2 0 0 0 2 0 0 o 3}
{ =14 -8 20 0 -2 -3 0 4 -1 -1 0 0 -1 1 0 o 3}
{ 14 -40 1 10 2 1 -10 1 2 -4 -1 -1 0 0 -1 o 3}
{ 19 =36 -10 13 3 6 -14 -1 3 1 -1 -3 1 1 -1 -1}
{ =31 -14 56 -1 13 =37 -4 20 -2 2 =10 0 2 -4 0 -1}
{ 1 -8 32 -1 7 -12 -4 10 0 2 -6 -1 2 0 0 -2}
{ 8 =59 -3 26 14 6 -58 6 -5 17 -7 -18 3 3 -1 -5 }
{ -21 -11 1 40 -5 -4 =24 5 -4 5 -6 -5 0 0 0 -3 }
{ 12 -9 =22 7 -8 60 4 =36 -6 -15 54 7 3 =7 -8 14
{ -1 1 9 -3 -3 -14 -3 12 2 4 =13 -2 -1 3 2 -4 }
{ -93 -15 -46 -3 23 -19 0 =47 8 4 8 3 2 3 0 o 3}
{ 4 11 -12 4 =12 14 =50 -1 -8 32 -4 =54 2 0 30 -15 }
{ 13 -4 11 9 17 0 24 5 1 -12 4 28 0 0 =15 8 1
{ 12 =34 9 =24 4 28 -2 4 -11 -4 30 2 5 -13 -4 18
{ =19 53 6 48 -65 12 =12 11 -8 -16 10 =21 -2 -1z 6 2}
}

8.7.4.4 Transformation process

Inputs to this process are:

— avariable nTbS specifying the horizontal sample size of transformed samples,

— avariable nonZeroS specifying the horizontal sample size of non-zero scaled transform coefficients,
— alist of scaled transform coefficients x| j | with j = 0..nonZeroS — 1,

— atransform kernel type variable trType.

Output of this process is the list of transformed samples y[1 | withi=0..nTbS — 1.

The transformation matrix derivation process as specified in clause 8.7.4.5 in invoked with the transform
size nTbS and the transform kernel Type tr'Type as inputs, and the transformation maxtrix transMatrix as
output.

Depending on the value of trType, the following applies:, the list of transformed samples y[1] with
1=0..nTbS — 1 is derived as follows:

— IftrType is equal to 0, the following transform matrix multiplication applies:
ylil= %% %75 transMatrix[i] [j 267-082(TbS)]« x[j] withi=0.nTbS —1 (8-983)

— Otherwise (trType is equal to 1 or trType is equal to 2), the following transform matrix multiplication

applies:

ylil= Zog=ero5~1 transMatrix[i] [j] x[j] withi=0.nTbS—1 (8-984)

41

WO 2021/047540 PCT/CN2020/114227

8.7.4.5 Transformation matrix derivation process

Inputs to this process are:

— avariable nTbS specifying the horizontal sample size of scaled transform coefficients,
— the transformation kernel type trType.

Output of this process is the transformation matrix transMatrix.

The transformation matrix transMatrix is derived based on trType and nTbs as follows:

— IftuType is equal to 0, the following applies:

42

WO 2021/047540

PCT/CN2020/114227

transMatrix| m][n | = transMatrixColOtol15[m][n | withm = 0..15, n=0..63
transMatrixColOto 135 =(8-986)

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

64
91
90
90
90
90
90
90
89
88
88
87
87
86
85
84
83
83
82
81
80
79
78
77
75
73
73
71
70
69
67
65
64
62
6l
59
57
56
54
52
50
48

64
90
90
88
87
84
82
79
75
71
67
62
57
52
46
41
36
28
22
15

-4
-11
-18
-24
-31
-37
—43
—48
-54
-59
—64
-69
=73
=77
-80
-83
-85
-87
-89
=90

64
90
88
84
80
73
67
59
50
41
31
20

-13
-24
-36
—44
-54
-62
=70
=77
-82
-86
-89
=90
=90
=90
-87
-83
-78
=71
—64
-56
-46
-37
-25
-15

-4

18
28

64
90
85
79
70
59
46
33
18

-13
-28
—43
-56
-67
=77
-83
-88
-90
-90
-87
-81
=73
-62
-50
-37
-22

-7

24
38
52
64
73
82
87
90
90
88
83
75
65

64
88
82
71
57
41
22

-18
-37
-54
-69
-80
-87
-90
-90
-83
=73
-61
—44
-25
-7
13
33
50
65
78
86
90
90
85
77
64
48
31
11
-9
-28
-46
-62
=75
-84

64
87
78
62
43
20
-4
-28
=50
-69
-82
=90
=90
-84
=73
-56
-36
-11
13
37
57
73
85
90
89
81
67
48
25

-22
—44
—64
=79
-88
-91
-87
=77
-61
—-41
-18

7

64
86
73
52
25

-31
-56
=75
-87
=90
-84
=70
—48
-22

36
59
78
88
90
83
67
44
18
-11
-38
-62
-80
=90
=90
-81
—64
—-41
-13
15
43
65
82
90
89
79

43

64
84
67
41

-24
-54
=77
-89
-90
=78
-56
-25

38
65
83
91
85
69
43
11
-22
-52
=75
-88
-90
=79
-57
-28

37
64
83
90
86
70
44
13
-20
-50
=73

64
83
6l
28
-9
—44
=73
-88
-89
=73
-46
-11
25
59
82
91
83
62
31
-7
—43
=71
-88
-90
=75
—48
-13
24
57
81
90
84
64
33
-4
-41
=70
-87
-90
=77
-50
-15

64
81
54
15
-25
-62
-85
-90
=75
—44
-4
37
70
88
88
69
36

-46
=77
-90
-84
-6l
-24
18
56
82

80
52
13
-28
-64
-86
-90
=73
—43

38
71
89
87

64
79
46

—43
=77
-90
-81
-50

38
73
90
83
54
11
-36
=71
-90
-84
=57
-15
31
69
89
86
6l
20
-25
-65
-88
-87
-64
-24
22
62
87
88
67
28
-18
-59

64
77
38
-11
-57
-86
-88
-62
-18
33
73
90
80
44
-4
-52
-83
-90
-67
-24
25
69
90
83
50

-46
-81
-90
=71
-31
20
64
88
85
56

-41
=78
-91
=75
-37

64
73
31
-24
=70
-90
=78
-37
18
65
90
81
43
-11
-61
-88
-83
—48

56
87
86
54

-50
-84
-88
-59
-9
44
82
90
64
15
-38
=79
-90
-69
-22
33
75
91

64
71
22
-37
-80
=90
-61

50
86
85
48
-9
-62
=90
=79
-36
24
73
91
70
20
-38
-81
-89
-59
-4
52
87
84
46
-11
—64
=90
-78
-33
25
73
90
69
18
—-41

(8-985)
64 64
69 65
13 4
-48 =59
-87 =90
-83 -71
-38 -13
24 52
75 89
90 77
6l 22
2 -44
-57 -87
-90 -81
-78 =31
-28 37
36 83
81 84
88 38
52 -28
-9 =80
-65 —87
-90 -46
=71 20
-18 75
44 90
85 54
84 -11
43 =70
-20 =90
=73 -61
-90 2
-64 64
=7 91
54 67
88 7
80 —57
33 =90
-31 =73
-79 -15
-89 50
-56 88

TS U G U GG I

WO 2021/047540 PCT/CN2020/114227

46 -90 38 54 =90 31 6l -88 22 67 -85 13 73 -82 4 78
44 -91 48 41 -90 52 37 =90 56 33 -90 59 28 -88 62 24
43 =90 57 25 =87 70 9 -80 80 -9 =70 87 -25 =57 90 -43
41 -90 65 11 =79 83 -20 -59 90 -48 =33 87 71 -2 73 -86
38 -88 73 -4 -67 90 -46 -31 85 -78 13 61 -90 54 22 -82
37 -86 79 -20 =52 90 -69 2 65 -90 56 15 =77 87 —41 -33
36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -—-83 36
33 -81 87 —-48 -15 71 =90 62 -2 =59 90 =73 20 44 -86 83
31 -78 90 -6l 4 54 -88 82 -38 -22 73 =90 67 -13 -46 85
28 =73 91 -71 24 33 =77 90 -69 20 37 =79 90 -65 15 41
25 =70 90 -80 43 9 =57 87 —87 57 -9 -43 80 -90 70 =25
24 -65 88 -86 59 -15 =33 71 =90 83 -b2 7 41 =77 91 =79
22 -6l 85 -90 73 -38 -4 46 -78 90 -82 54 -13 -31 67 —88
20 -56 81 -91 83 -—-59 24 15 =52 79 =90 84 -62 28 11 -48
18 =50 75 -89 89 -75 50 -18 -18 50 =75 89 -89 75 =50 18
15 -44 69 -84 91 -86 71 48 20 11 -41 65 -83 90 -87 73
13 -38 6l -78 88 -90 85 -73 54 -31 4 22 —46 67 —-82 90
11 =33 52 -69 81 -88 91 -87 79 -65 48 -28 7 15 =37 56
9 =25 43 =57 70 =80 87 -90 90 -87 80 -70 57 —-43 25 -9
7 =20 33 —44 56 -65 73 -81 86 —90 91 =90 87 —-83 77 -69
4 -13 22 =31 38 -46 54 -61 67 =73 78 -82 85 -—88 90 =90
2 =7 11 -15 20 -24 28 =33 37 —41 44 48 52 -56 59 -62

L S e I T S i S N

44

WO 2021/047540 PCT/CN2020/114227

transMatrix[m |[n | = transMatrixCol16to31[m — 16 [[n | withm =16..31,n=0..63 (8-987)
transMatrixCol16to31 = (8-988)

{

{ 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 }
{ 62 59 56 52 48 44 41 37 33 28 24 20 15 11 7 2}
{ -4 -13 -22 -31 -38 -4¢6 -54 -61 -67 -73 -78 -82 -85 -88 -390 -90 }
{-69 -77 -83 -87 -%0 -91 -%0 -86 -81 -73 -65 -56 -44 -33 -20 -7}
{ -9%0 -87 -80 -70 -57 -43 -25 -9 9 25 43 57 70 80 87 90 }
{ -b¢ -37 -15 7 28 48 65 79 87 91 88 81 69 52 33 11}
{ 13 38 6l 78 88 90 85 73 54 31 4 -22 -46 -67 -82 -90 }
{ 73 87 90 83 65 41 11 -20 -48 -71 -86 -91 -84 -69 -—-44 -15}
{ 89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89 }
{ 48 11 -28 -62 -84 -90 -79 -52 -15 24 59 83 91 81 56 20 }
{ -22 -1 -85 -90 =73 -38 4 46 78 90 82 54 13 -31 -¢67 -88 }
{ =79 =91 =77 -—41 7 52 83 90 71 33 -15 -59 -86 -88 -65b -24 }
{ -87 =57 -9 43 80 90 70 25 -25 =70 -90 -80 -43 9 57 87 }
{ 41 15 65 90 79 37 -20 -69 -90 -77 =33 24 71 91 73 28 }
{ 31 78 90 6l 4 -54 -88 -82 -38 22 73 90 67 13 -46 -85 }
{ 83 86 44 -20 =73 -90 -59 2 62 90 71 15 -48 -87 -81 -33 }
{ 83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83 }
{ 33 -41 -87 -77 -15 56 90 65 -2 -69 -90 =52 20 79 86 37}
{ -38 -88 -73 -4 67 90 46 -31 -85 =78 -13 6l 90 54 -22 -82 }
{ -8 -73 -2 71 87 33 —-48 -90 -b9 20 83 79 11 -65 -390 -41 }
{ —-80 -9 70 87 25 =57 =90 -43 43 90 57 -25 -87 =70 9 80 1}
{ —-24 62 88 28 -59 -90 -33 56 90 37 =52 -90 -41 48 91 44 3}
{ 4o 90 38 -54 -90 -31 6l 88 22 -67 -85 -13 73 82 4 =78 }
{ 68 56 —-41 -91 =37 59 87 15 =73 =79 7 84 6b -28 -90 -48 }
{ 75 -18 -89 -50 50 89 18 =75 =75 18 89 50 -50 -89 -18 75 }
{ 15 -79 -69 33 91 28 =71 =77 20 90 41 -62 -83 7 87 52}
{ -54 -85 4 88 46 -61 -82 13 90 38 -67 -78 22 90 31 =73}
{ =90 =33 73 69 —-41 -88 -2 87 44 -65 =77 28 90 15 -83 -56 }
{ =70 43 87 -9 -90 -25 80 57 =57 -80 25 90 9 -87 43 70}
{ =7 88 33 =79 -56 62 73 -41 -86 15 91 11 -87 =37 77 59 }
{ 61 73 —-46 -82 31 88 -13 -90 -4 90 22 -85 -38 78 54 -67 }
{ 91 7 -90 -15 88 24 -86 =33 83 41 =79 -48 73 56 -69 -62 }
{ 64 -64 -64 64 64 -64 -o64 64 64 -64 -64 64 64 -64 -o64 64}
{ -2 =90 11 90 -20 -87 28 84 -37 -81 44 77 =52 -71 59 65 }
{ -67 -54 78 38 -85 -22 90 4 =90 13 88 -31 -82 46 73 -61 }
{ =90 20 84 —44 =71 65 52 -81 -28 90 2 =90 24 83 —-48 -69 }
{ =57 80 25 =90 9 87 —43 =70 70 43 87 -9 90 -25 =80 57 }
{ 11 84 -52 -59 81 20 -91 24 79 -62 -48 86 7 =90 37 71}
{ 73 31 -90 22 78 -67 -38 90 -13 -82 6l 46 —-88 4 85 -54 }
{ 90 -44 -59 84 2 -86 56 48 -88 11 81 -—-65 =37 90 -24 73}
{ 50 -89 18 75 =75 -18 89 -50 =50 89 -18 =75 75 18 -89 50 }
{ -20 =71 81 2 =83 69 24 =90 52 44 =90 33 62 —-86 11 77}

45

WO 2021/047540 PCT/CN2020/114227

{ -78 -4 82 -73 -13 85 -67 -22 88 -61 -31 90 -54 -38 90 -46 }
{ -87 65 20 -86 69 15 -84 71 11 -83 73 7 =81 77 2 =79}
{ -43 90 -57 =25 87 -=70 -9 80 -80 9 70 -87 25 57 =90 43 }
{ 28 52 -91 56 24 -84 77 -7 -69 88 —-37 —44 90 -62 -15 81 }
{ 82 -22 -54 90 -61 -13 78 -85 31 46 —-90 67 4 =73 88 -38 }
{ 84 -81 24 48 -90 71 -7 -62 91 -59 -11 73 -88 44 28 -83 1}
{ 3¢ -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -—-83 36 }
{ =37 -28 79 -88 52 11 -69 91 -65 7 56 =90 77 =24 41 84 }
{ -85 46 13 -67 90 =73 22 38 -82 88 —-54 -4 61 -90 78 =31 1}
{ -81 90 -62 11 44 -83 88 -59 7 48 -84 87 -b6 2 52 -86 }
{ -25 70 =90 80 —43 -9 57 =87 87 57 9 43 -80 90 =70 25 }
{ 44 2 -48 81 -90 73 =37 -11 56 -84 90 -69 28 20 -62 87 }
{ 88 -¢7 31 13 -54 82 -90 78 —46 4 38 =73 90 -85 6l -22 }
{ 77 =90 86 —-65 33 7 -44 73 =90 87 -69 37 2 -41 71 -88 }
{ 18 =50 75 -89 89 -75 50 -18 -18 50 =75 89 -89 75 =50 18 }
{ -52 24 7 =37 62 -81 90 -88 77 =56 28 2 =33 59 =79 90 }
{ -90 82 —-67 46 -22 -4 31 -54 73 -85 90 -88 78 -6l 38 -13 }
{ =71 83 -90 90 -86 77 —62 44 24 2 20 —-41 59 -73 84 -390 }
{ -9 25 —43 57 =70 80 —-87 90 =90 87 —80 70 =57 43 -25 9}
{ 59 -48 37 -24 11 2 =15 28 —41 52 -62 71 =79 84 -88 90 }
{ 90 -90 88 -85 82 -78 73 -67 61 -54 46 —-38 31 -22 13 -4}
{ 65 -69 71 =73 77 =79 81 -—-83 84 -86 87 -—88 90 -90 90 -91 }
s

transMatrix m |[n]=(n& 1 ?—1: 1) * transMatrixCol16t031[47 —m][n] (8-989)
withm =32.47, n=0..63
transMatrix m [[n]=(n& 1 ?7-1:1) * transMatrixColOto15[63 —m][n] (8-990)
with m =48..63, n=0..63
— Otherwise, if trType is equal to 1 and nTbs is equal to 4, the following applies:
transMatrix[m || n|= (8-991)

29 55 74 84
74 74 0 =74
84 -29 -7T4 55
55 -84 74 =29

e e e

{
{
{
{
{
t

’

— Otherwise, if trType is equal to 1 and nTbs is equal to 8, the following applies:

46

WO 2021/047540 PCT/CN2020/114227

ransMatrix[m J[n]= (8-992)

17 32 46 60 71 78 85 86
46 78 86 71 32 -17 -60 -85
71 85 32 -46 -86 -60 17 78

{

{

{

{

{ 85 46 -60 -78 17 86 32 71
{ 8¢ -17 -85 32 78 —-46 -71 60
{ 78 -71 -17 85 -60 =32 86 —46
{ 60 -86 71 -17 -46 85 -78 32
{ 32 -¢0 78 -86 85 -71 46 17
}

’

— Otherwise, if trType is equal to 1 and nTbs is equal to 16, the following applies:
transMatrix m |[n]= (8-993)

{

{ 8 17 25 33 40 48 55 62 68 73 77 81 85 87 88 88 }
{ 25 48 68 81 88 88 81 68 48 25 0 -25 -48 -68 -81 -88 }
{ 40 73 88 85 62 25 -17 -55 -81 -88 =77 -—48 -8 33 68 87 }
{ 55 87 81 40 -17 -8 -88 -73 -25 33 77 88 62 8 -48 -85 }
{ 68 88 48 -25 -81 -81 -25 48 88 68 0 -68 -88 -—48 25 81 }
{77 77 o =77 =77 0 77 77 o =77 =77 0 77 77 o =77}
{ 85 55 -48 -87 -8 81 62 —-40 -88 -17 77 68 -33 -88 -25 73}
{ 68 25 -81 -48 68 68 -48 -81 25 88 0 -88 -25 81 48 -68 }
{ 68 -8 -88 17 87 -25 -85 33 81 —40 =77 48 73 -55 -68 62}
{ 87 -40 -68 73 33 -88 8 85 —-48 -62 77 25 -88 17 81 -55 }
{ 81 -68 -25 88 —48 -48 88 -25 -68 81 0 -81 68 25 -88 48 }
{ 73 -85 25 55 -88 48 33 -87 68 8 =77 81 -17 -62 88 —40 }
{ 62 -88 68 -8 =55 88 -73 17 48 -87 77 =25 -40 85 -81 33}
{ 48 -81 88 -68 25 25 -68 88 -81 48 0 -48 81 -88 68 -25 }
{ 33 -e62 81 -—-88 85 -68 40 -8 =25 55 =77 88 —87 73 —48 17 }
{17 =33 48 -62 73 -81 87 -—88 88 -85 77 -68 55 -40 25 -8 }
s

— Otherwise, if tr'Type is equal to 1 and nTbs is equal to 32, the following applies:

47

WO 2021/047540 PCT/CN2020/114227

transMatrix[m |[n | = transMatrixColOto15[m][n | withm=0..15,n=0..15 (8-994)
transMatrixColOto 15 =(8-995)

{

{ 4 9 13 17 21 26 30 34 38 42 46 50 53 56 60 63 }
{ 13 26 38 50 60 68 77 82 86 89 90 88 85 80 74 66}
{ 21 42 60 74 84 89 89 84 74 60 42 21 0 -21 -42 -60}
{ 30 56 77 87 89 80 63 38 9 -21 -50 -72 -85 -90 -84 -68 }
{ 38 68 86 88 74 46 9 -30 -63 -84 -90 =78 =53 -17 21 56 }
{ 4o 78 90 77 42 -4 -50 -80 -90 -74 -38 9 53 82 89 72}
{ 53 85 85 53 0O -53 -85 -85 -53 0 53 85 85 53 0 -53 1}
{ 60 89 74 21 —-42 -84 -84 42 21 74 89 60 0 -60 -89 =74}
{ 606 90 56 -13 -74 -87 -—4d¢ 26 80 84 34 -38 -85 =78 -21 50 }
{ 72 86 34 -46 -89 -63 13 78 82 21 -56 -90 -53 26 84 77}
{77 80 9 =72 -84 -17 66 86 26 -60 -88 -34 53 90 42 —-46 }
{ 80 72 -17 -86 -60 34 90 46 -50 -89 =30 63 85 13 =74 =78 }
{ 84 60 -4z -89 -21 74 74 -21 -89 -42 60 84 0 -84 =60 42}
{ 8¢ 46 -63 -78 21 90 26 =77 -66 42 87 4 -85 =50 60 80 1}
{ 68 30 -78 -56 60 77 =34 -87 4 89 26 -80 =53 63 74 -38 }
{ 90 13 -87 -26 84 38 -78 =50 72 60 -63 -68 53 77 -42 -82 }
s

transMatrix[m |[n | = transMatrixCol16to31[m — 16 [[n | withm =16..31,n=0..15 (8-996)
transMatrixColl6to31 = (8-997)

{

{ 606 68 72 74 77 78 80 82 84 85 86 87 88 89 90 90 }
{ beo 46 34 21 9 -4 -17 -30 -42 -53 -¢3 -72 -78 -84 -87 -90 }
{ -74 -84 -89 -89 -84 -74 -60 -42 -21 0 21 42 60 74 84 89 }
{ -46 -17 13 42 66 82 90 86 74 53 26 -4 -34 -60 -78 -88 }
{ 80 90 82 60 26 -13 -50 =77 -89 -85 -66 -34 4 42 72 87 }
{ 34 -13 -56 -84 -88 -68 -30 17 60 85 87 66 26 -21 -63 -86 }
{ -85 -85 =53 0 53 85 85 53 0 -53 -85 -85 -E3 0 53 85 }
{ -21 42 84 84 42 -21 -74 -89 -60 0 60 89 74 21 -42 -84 }
{ 68 72 9 -60 -90 -63 4 68 89 53 -17 =77 -86 -—42 30 82 }
{ 9 -66 —-88 -—42 38 87 68 -4 =74 -85 =30 50 90 60 -17 -80 }
{ =90 -50 38 89 56 -30 -87 -63 21 85 68 -13 -82 -4 4 78 }
{ 4 82 68 -21 -87 -56 38 90 42 -53 -88 -26 66 84 9 =77}
{ 89 21 =74 =74 21 89 42 -60 -84 0 84 60 —-42 -89 -21 74}
{ -17 -%0 -30 74 68 —-38 -88 -9 84 53 -56 -82 13 89 34 =72}
{ -8¢ 9 90 21 -82 =50 66 72 —-42 -85 13 90 17 -84 —46 68 }
{ 30 86 -17 -89 4 90 9 -88 -21 85 34 -80 -4e6 74 56 -66 }
s

— Otherwise, if trType is equal to 2 and nTbs is equal to 4, the following applies:

48

WO 2021/047540

transMatrix| m |[n | =
{
{ 84 74 bhh
{ 74 0 =74
{ 55 =74 =29
{ 29 =74 84
be

(8-998)

29
=74
84
-55

e e e

PCT/CN2020/114227

Otherwise, if trType is equal to 2 and nTbs 1s equal to 8, the following applies:

transMatrix[m |[n | =

{

{ 86 85 78
{ 85 60 17
{ 78 17 =60
{ 71 -32 -86
{ 60 =71 -—46
{ 46 -86 32
{ 32 -8 85
{ 17 —46 71
be

(8-999)

71 60 46
-32 -71 -86
-86 —46 32
-17 78 60

78 32 -85

60 -85 17
-46 -17 71
-85 86 -78

32
-78
85
-46
-17
71
-86
60

17
-46
71
-85
86
=78
60
-32

S

Otherwise, if trType is equal to 2 and nTbs is equal to 16, the following applies:

transMatrix| m |[n | =

{

{ 88 88 87
{ 88 81 68
{ 87 68 33
{ 85 48 -8
{ 81 25 —48
{ 77 0 =77
{ 73 -25 -88
{ 68 -48 -81
{ 62 -68 =55
{ 55 -81 -17
{ 48 -88 25
{ 40 -88 62
{ 33 -81 85
{ 25 -68 88
{ 17 -48 73
{ 8 -25 40
s

(8-1000)

85 81 77
48 25 0
-8 -48 =77
-62 —-88 =77

-88 -68 0
=77 0 77
-33 68 77

25 88 0

73 48 =77
88 -25 =77
68 -81 0
17 =81 77
-40 =25 77
-81 48 0
-87 88 =77
-55 68 =77

73
-25
-88
-33

68

77
-17
-88
—40

62

81

-87
—48
55
85

68
—48
-81

25

88

0
-88
-25

81

48
-68
-68

48

81
-25
-88

62
-68
-55

73

48
=77
—40

81

33
-85
-25

87

17
-88

-8

88

55
-81
=17

88
-25
=77

62

48
-85

-8

88
-33
=73

68

40
-87

48
-88
25
68
-81

81
-68
-25

88
—48
—48

88
-25
-68

81

40
-88
62
17
-81
77
-8
-68
87
-33
—48
88
-55
-25
85
=73

33
-81
85
—40
-25
77
-87
48
17
=73
88
-55
-8
68
-88
62

Otherwise, if trType is equal to 2 and nTbs is equal to 32, the following applies:

49

25
-68
88
-81
48
0
—48
81
-88
68
-25
-25
68
-88
81
—48

17
—48
73
-87
88
=77
55
-25

40
-68
85
-88
81
-62
33

-25
40
-55
68
=77
85
-88
88
-87
81
=73
62
—48
33
=17

TS U U

WO 2021/047540 PCT/CN2020/114227

transMatrix[m |[n | = transMatrixColOto15[m || n | withm=0..15,n=0..15 (8-1001)
transMatrixColOto 15 =(8-1002)

{

{ 90 90 89 88 87 86 85 84 82 80 78 77 74 72 68 66 }
{ 90 87 84 78 72 63 53 42 30 17 4 -9 -21 -34 -46 -56 }
{ 89 84 74 60 42 21 o -21 -42 -60 -74 -84 -89 -89 -84 -T74 }
{ 68 78 60 34 4 -26 -53 -74 -86 -90 -82 -66 -42 -13 17 46 }
{ 87 72 42 4 -34 -66 -85 -89 =77 =50 -13 26 60 82 90 80 1}
{ 8¢ 63 21 -26 -66 -87 -85 -60 -17 30 68 88 84 56 13 -34 1}
{ 85 53 0O -53 -85 -85 =53 0 53 85 85 53 0 -53 -85 -85}
{ 84 42 -21 =74 -89 -60 0 60 89 74 21 —-42 -84 -84 42 21 }
{ 82 30 —-42 -86 -77 -17 53 89 68 4 -63 -90 -60 9 72 88 }
{ 80 17 -60 -90 =50 30 85 74 4 -68 -87 -38 42 88 66 -9 }
{ 78 4 =74 -82 -13 68 85 21 -63 -87 =30 56 89 38 -50 -90 }
{77 -9 -84 -66 26 88 53 —-42 -90 -38 56 87 21 -68 -82 -4}
{ 74 =21 -89 —42 60 84 0 -84 -60 42 89 21 =74 -4 21 89 }
{ 72 -34 -89 -13 82 56 -53 -84 9 88 38 -68 -74 30 90 17}
{ 68 -46 -84 17 90 13 -85 -—42 72 66 —-50 -82 21 90 9 -86 }
{ 66 -5H6 -74 46 80 -34 -85 21 88 -9 =90 -4 89 17 -86 -30 }
s

transMatrix| m][n | = transMatrixCol16to31| m — 16 |[n | withm = 16..31,n=0..15
(8-1003)
transMatrixCol16to31 = (8-1004)

{

{ 63 60 56 53 50 46 42 38 34 30 26 21 17 13 9 4}
{ -66 -74 -80 -8 -83 -90 -89 -8¢6 -82 -77 -68 -60 -50 -38 -26 -13 }
{ -60 -42 -21 0 21 42 60 74 84 89 89 84 74 60 42 21 }
{ 68 84 90 85 72 50 21 -9 -38 -63 -80 -89 -87 -77 -bH6 -30 }
{ beo 21 -17 =53 -78 -90 -84 -63 -30 9 46 74 88 86 68 38 }
{ -72 -89 -82 -LE3 -9 38 74 90 80 50 4 42 =77 =90 -U78 -4¢6 }
{ -53 0 53 85 85 53 0 -53 -85 -85 -53 0 53 85 85 53}
{ 74 89 60 0 -60 -89 -74 -21 42 84 84 42 -21 -74 -89 -60 }
{ 50 -21 -78 -85 -38 34 84 80 26 —-46 -87 -74 -13 56 90 66}
{ =77 -84 -26 53 90 56 -21 -82 -78 -13 63 89 46 -34 -86 -T2 }
{ —46 42 90 53 -34 -88 -60 26 86 66 -17 -84 -T2 9 80 77}
{ 78 74 -13 -85 -63 30 89 50 —-46 -90 -34 60 86 17 =72 -80 }
{ 42 -¢60 -84 0 84 60 -4z -89 -21 74 74 -21 -89 —42 60 84 }
{ -80 -¢60 50 85 -4 87 -42 66 77 -26 -90 -21 78 63 —-46 -86 }
{ -38 74 63 -53 -80 26 89 4 -87 -34 77 60 -56 -78 30 88 }
{ 82 4z =77 =53 68 63 -60 =72 50 78 -38 -84 26 87 -13 -90 }
s

50

WO 2021/047540 PCT/CN2020/114227

3 Technical problems addressed by some disclosed technical solutions

1. Currently VVC design uses width and height of a transform block to determine the number
of bit shifting during transform and inverse transform, which might reduce processing
precision.

2. Currently VVC design uses width and height of a transform block to determine the number
of bit shifting during quantization and dequantization, which might reduce processing
precision.

3. Currently VVC quantization design may lead to quantized residual out of 16-bit dynamic
range for some block sizes, which degrades coding efficiency because of clipping to 16-bit
thereafter.

4. Currently a left shift is applied to transform skip to align the energy to transformed blocks,
which may be unnecessary.

4 A listing of embodiment examples and techniques

[0067] The list below should be considered as examples to explain general concepts. These
items should not be interpreted in a narrow way. Furthermore, these items can be combined in
any manner.

[0068] In the following descriptions, a transform skip block may represent a block which
transform (non-identity transform) is not applied or only identity transform is applied, such as a
block with transform skipped mode; a block with BDPCM mode, a block with transform and

quantization bypass mode, a block with palette mode.

1. For a transform skip block, the scaling factor used in the conversion of a decoded coefficient
to residual (e.g., tsShift) may be independent of block size.
a. In one example, the scaling factor is a constant
1. In one example, the scaling factor may be set as 1.
b. In one example, the scaling factor may depend on internal bit-depth
1. In one example, the scaling factor may be set as (15-internal bit_depth)
c. In one example, the transformation process for scaled transform coefficients is not
invoked and the output of the scaling process for transform coefficients is the input to

generate the intermediate residual samples, i.e., without bit shift.

51

WO 2021/047540 PCT/CN2020/114227

For a transform skip block, the scaling process for transform coefficients may be independent
of block size.

a. In one example, the bit shifting in the scaling process for transform coefficients may
be independent of block size.

For a block coded in BDPCM mode, the scaling factor used in the conversion of a decoded
coefficient to residual (e.g., tsShift) may be independent of block size.

a. In one example, the scaling factor is a constant

1. In one example, the scaling factor may be set as 1.
b. In one example, the scaling factor may depend on internal bit-depth
1. In one example, the scaling factor may be set as (15-internal bit_depth)

c. In one example, the transformation process for scaled transform coefficients is not
invoked and the output of the scaling process for transform coefficients is the input to
generate the intermediate residual samples, i.e., without bit shift.

For a block coded in BDPCM mode, the scaling process for transform coefficients may be
independent of block size.

a. In one example, the bit shifting in the scaling process for transform coefficients may
be independent of block size.

It is proposed that the dequantization factor, i.e. levelScale, may be in independent of whether
the block is coded in transform skip mode.

It is proposed that the dequantization factor, i.e. levelScale, may be in independent of whether
the block is coded in BDPCM mode.

It is proposed that the bit shifting of a rectangular block, i.e. with width different from height,
during the scaling process for transform coefficients, is independent of whether the block is
coded in transfom skip mode.

It is proposed that the bit shifting of a rectangular block, i.e. with width different from height,
during the scaling process for transform coefficients, is independent of whether the block is
coded in BDPCM mode.

It is proposed that the shifting (e.g., bdShift) in the scaling process for transform coefficients
may depend on whether the block is coded in BDPCM mode.

a. In one example, the transform shift may be equal to that for transform skip block.

52

WO 2021/047540 PCT/CN2020/114227

10. It 1s proposed that the transform shift (e.g., tsShift) in the conversion of a decoded coefficient

to residual for a block may depend on whether the block is coded in BDPCM mode.

a.

In one example, the transform shift may be equal to that for transform skip block.

11. It 1s proposed that scaling list, 1.e. quanzation matrix, may be disallowed for a block when it 1s

coded in BDPCM mode.

a.

In one example, all the entries in the scaling list for BDPCM block may be a constant.

1. In one example, the value of the constant is 16.

12. It may be constrained that for a transform skip block, the decoded coefficients after

dequantization shall be in the range of TsMin to TsMax.

a.

In one example, the range may be different from the range for transformed coefficients,
1.e., from CoeffMin to CoeffMax.
In one example, TsMin may be -(1 << bitDepth), where bitDepth is the bit depth for
the color component that transform skip is applied.
In one example, TsMax may be [(1 << bitDepth)-1], where bitDepth is the bit depth
for the color component that transform skip is applied.
In one example, TsMin may be -(1 << min(bitDepth, 15)), where bitDepth is the bit
depth for the color component that transform skip is applied.
In one example, TsMax may be [(1 << min(bitDepth, 15))-1], where bitDepth is the bit
depth for the color component that transform skip is applied.
In one example, the range may depend on the lowest allowed Qp for transform skip,
1.e. QpPrimeTsMin.
1. In one example, TsMin may be -(1 << (bitDepth — (QpPrimeTsMin-4)/6)).
1. In one example, TsMax may be [(1 << (bitDepth — (QpPrimeTsMin-4)/6))-1].
iii. In one example, TsMin may be -(1 << min(bitDepth — (QpPrimeTsMin-
4)/6),15)).
iv. In one example, TsMax may be [(1 << min(bitDepth — (QpPrimeTsMin-
4)/6),15))-1].

13. It may be constrained that for a BDPCM block, the decoded coefficients after dequantization

shall be in the range of BdpcmMin to BdpcmMax.

53

WO 2021/047540 PCT/CN2020/114227

In one example, the range may be different from the range for transformed coefficients,
1.e., from CoeffMin to CoeffMax.

In one example, the range may be equal to the range of transform skip block.

In one example, BdpcmMin may be -(1 << (bitDepth+1)), where bitDepth is the bit
depth for the color component that transform skip is applied.

In one example, BdpcmMax may be [(1 << (bitDepth+1))-1], where bitDepth is the bit
depth for the color component that transform skip is applied.

Alternatively, furthermore, the range may be dependent on whether transform and
quantization are both bypassed (e.g., cu_transquant bypass flag/
transquant_bypass_enabled flag is equal to 1) or lossless coding is applied for current
block.

1. In one example, when transform and quantization are both bypassed (e.g.,
cu_transquant_bypass_flag/ transquant_bypass_enabled flag is equal to 1) or
lossless coding is applied for current block, BdpcmMin and BdpcmMax may
be set to -(1 << (bitDepth+1)) and [(1 << (bitDepth+1))-1], respecitvely.

ii. In one example, when transform and quantization are not both bypassed (e.g.,
cu_transquant_bypass_flag/ transquant_bypass_enabled flag is equal to 0) or
lossless coding is not applied for current block, BdpcmMin and BdpcmMax
may be set to -(1 << (bitDepth)) and [(1 << (bitDepth))-1], respecitvely.

14. For a transformed block, the number of bit-shifting for dequantization may depend on the

actual transform size (e.g., the size without consideration of zeroing-out area,).

a.

In one example, the number of bit-shifting for dequantization may depend on the height

of the actual transform, 1.e. nonZeroH described in 2.1.3.

15. For a transformed block, the number of bit-shifting for inverse transform may depend on the

transform block size and actual transform size.

a.

In one example, the number of bit-shifting for inverse transform may depend on the
transform block size.
In one example, the number of bit-shifting for inverse transform may depend on the

height of the transform block.

54

WO 2021/047540 PCT/CN2020/114227

In one example, the number of bit-shifting for inverse transform may depend on the
height of the actual transform.

In one example, the number of bit-shifting for inverse transform may depend on the
actual transform size.

In one example, the number of bit-shifting for inverse transform for blocks that
transform block size is different from the actual transform size may be different from
those blocks that transform block size is equal to the actual transform size.

In one example, the number of bit-shifting for inverse transform for blocks that
transform block height is different from the actual transform height may be different

from those blocks that transform block height is equal to the actual transform height.

16. For a transformed block, the number of bit-shifting for dequantization may depend on a capped

transform block size.

a.

In one example, when the transform block size is equal to or large than 32x32, the
number of bit-shifting for dequantization may be according to 16x16 block size.

In one example, whether and/or how to apply the capped transform block size may
depend on quantization parameter.

In one example, whether and/or how to apply the capped transform block size may
depend on if the block width is even-number times of the block height.

In one example, whether and/or how to apply the capped transform block size may

depend on if the block height is even-number times of the block width.

17. If lossless coding is used, the transform and/or quantization process may be applied without

bit-shifting.

a.

In one example, a sequence/picture/subpicture/slice/tile group/tile/brick/CTU
row/CTU/CU/PU/TU/subblock level flag may be added into the bitstream to indicate
whether the current video unit is coded by lossless coding.
1. In one example, if lossless coding is used, the corresponding lossless flag of
current video unit may be set equal to 1.
In one example, if lossless coding is used, an invertible transform may be applied that

the encoding frames are bit-exact with the original frames.

55

WO 2021/047540 PCT/CN2020/114227

1. In one example, the transform size for a lossless coded block may be fixed to
MXxN (such as M=N=4).
ii. In one example, the transform core for a lossless coded block may be Walsh
Hadamard Transform.
i1, In one example, transform skip may be used for a lossless coded block.
c. In one example, if lossless coding is used for the current video unit, the scaling factor
used in the conversion of a decoded coefficient to residual (e.g., tsShift) may be set to
1 (e.g., without scaling).
d. In one example, if lossless coding is used for the current video unit, the number of bit-
shifting for inverse transform may be equal to O (e.g., without bit-shifting).
e. In one example, if lossless coding is used for the current video unit, the quantization
parameter may be set to N (such as N=4, e.g., without quantization).
f. In one example, if lossless coding is used for the current video unit, the number of bit-

shifting for dequantization may be equal to O (e.g., without bit-shifting).

S Embodiments

The following changes, marked in bold face italics, and deletion are included in parenthesis {{ }}

are based on JVET-02001-vE.

5.1 Embodiment #1

This embodiment reflects the change to make the scaling factor for transform skip block
independent of block size.
8.7.2 Scaling and transformation process

Inputs to this process are:

a luma location (xXTbY, yTbY) specifying the top-left sample of the current luma transform
block relative to the top-left luma sample of the current picture,

— avariable cldx specifying the colour component of the current block,

— avariable nTbW specifying the transform block width,

— avariable nTbH specifying the transform block height.

56

WO 2021/047540 PCT/CN2020/114227

Output of this process is the (nTbW)x(nTbH) array of residual samples resSamples[x][y | with
x=0.nTbW — 1, y=0..nTbH — 1.
The variables bitDepth, bdShift and tsShift are derived as follows:

bitDepth = (cldx == 0) ? BitDepthy : BitDepthc (8-942)
bdShift = Max(20 — bitDepth, 0) (8-943)
tsShift =5 + ((Log2(nTbW) + Log2(nTbH))/2) (8-944)

The variable codedCldx 1s derived as follows:

— If cldx 1s equal to O or TuCResMode[xTbY][yTbY] is equal to 0, codedClIdx is set equal to
cldx.

— Otherwise, if TuCResMode[xTbY][yTbY] is equal to 1 or 2, codedCIdx is set equal to 1.

— Otherwise, codedCIdx is set equal to 2.

The variable cSign is set equal to (1 — 2 * slice joint_cber_sign flag).

The (nTbW)x(nTbH) array of residual samples resSamples is derived as follows:

1. The scaling process for transform coefficients as specified in clause 8.7.3 is invoked with
the transform block location (xTbY, yTbY), the transform block width nTbW and the
transform block height nTbH, the colour component variable cldx being set equal to
codedCIdx and the bit depth of the current colour component bitDepth as inputs, and the
output is an (nTbW)x(nTbH) array of scaled transform coefficients d.

2. The (nTbW)x(nTbH) array of residual samples r 1s derived as follows:

— Iftransform_skip flag[xXTbY][yTbY]is equal to 1 and cldx is equal to O, the residual
sample array values r[x][y] with x=0.nTbW — 1, y=0..nTbH — 1 are derived as

follows:

iix]lyl=dlx][y] #<< tsShift}} (8-945)

— Otherwise (transform_skip flag[xTbY][yTbY] is equal to O or and cldx is not equal
to 0), the transformation process for scaled transform coefficients as specified in

clause 8.7.4.1 1s invoked with the transform block location (xTbY, yTbY), the

57

WO 2021/047540 PCT/CN2020/114227

transform block width nTbW and the transform block height nTbH, the colour
component variable cldx and the (nTbW)x(nTbH) array of scaled transform
coefficients d as inputs, and the output is an (nTbW)x(nTbH) array of residual samples

I.

8.7.3 Scaling process for transform coefficients

The variables bdShift, rectNorm and bdOffset are derived as follows:
o Iftransform_skip flag| xTbY |[yTbhY [is equal to 1, the following applies:
bdShift = bitDepth — 5 + dep _quant _enabled flag
* Otherwise, the following applies:
bdShift = bitDepth + ((rectNonTsFlag ? 1 : 0)+ (8-956)
(Log2(nTbW) + Log2(nTbH)) /2) — 5+ dep_quant enabled flag
— bdOffset = (1 << bdShift) >>1 (8-957)

5.2 Embodiment #2

This embodiment reflects the change to make the scaling process based on actual transform size

but not transform block size.

8.7.3 Scaling process for transform coefficients

Inputs to this process are:

— aluma location (xXTbY, yTbY) specifying the top-left sample of the current luma transform
block relative to the top-left luma sample of the current picture,

— avariable nTbW specifying the transform block width,

— avariable nTbH specifying the transform block height,

— avariable cldx specifying the colour component of the current block,

— avariable bitDepth specifying the bit depth of the current colour component.

Output of this process is the (nTbW)x(nTbH) array d of scaled transform coefficients with
elements d[x][vy].

The variable tr TypeHor specifying the horizontal transform kernel and the variable trTypeVer

specifying the vertical transform kernel are derived as follows:

58

WO 2021/047540 PCT/CN2020/114227

— If cldx is greater than 0, trTypeHor and trTypeVer are set equal to 0.
— Otherwise, if implicitMtsEnabled is equal to 1, the following applies:

— If IntraSubPartitionsSplitType is not equal to ISP NO SPLIT or
sps_explicit mts_intra_enabled flagis equal to 0 and CuPredMode[0 [[xTbY |[yTbY |
is equal to MODE _INTRA, trTypeHor and trTypeVer are derived as follows:

trTypeHor = (nTbW >=4 && nTbW <=16) ?1: 0 (8-975)
trTypeVer = (nTbH >=4 && nTbH <=16)21:0 (8-976)

— Otherwise (cu_sbt _flag is equal to 1), trTypeHor and trTypeVer are specified in Table

8-15 depending on cu_sbt_horizontal flag and cu_sbt_pos_flag.
— Otherwise, trTypeHor and trTypeVer are specified in Table 8-14 depending on
tu_mts_idx|[xTbY |[yThY |].
The variables nonZeroW and nonZeroH are derived as follows:
— If lifnst_idx[xTbY [[yTbhY | is not equal to 0 and nTbW is greater than or equal to 4 and
nTbhH is greater than or equal to 4, the following applies:
nonZeroW =(nTbW ==4 || nTbH==4) ? 4 : 8 (8-977)
nonZeroH = (nTbW==4 || nTbH==4) ? 4 : 8 (8-978)
— Otherwise, the following applies:
nonZeroW = Min(nTbW, (trTypeHor >0) ? 16 : 32) (8-979)
nonZeroH = Min(nThH, (trTypeVer>0) 2 16 : 32) (8-980)
The quantization parameter qP is derived as follows:
— 1If cldx 1s equal to O and transform_skip flag[xTbY][yTbY] is equal to O, the following
applies:
qP =Qp'y (8-950)
— Otherwise, if cldx is equal to O (and transform_skip flag[xTbY][yTbY] is equal to 1), the
following applies:
qP = Max(QpPrimeTsMin, Qp'y) (8-951)
— Otherwise, if TuCResMode[xTbY][yTbY] is equal to 2, the following applies:
qP = Qp'coer (8-952)
— Otherwise, if cldx is equal to 1, the following applies:
qP = Qp'es (8-953)

59

WO 2021/047540 PCT/CN2020/114227

— Otherwise (cldx is equal to 2), the following applies:
GP=Qp'c: (8-954)
The variable rectNonTsFlag is derived as follows:
rectNonTsFlag = (((Log2(nTbW) + Log2(nTbH)) & 1) == 1 && (8-955)
transform_skip flag[xXTbY][yTbY |==0)
The variables bdShift, rectNorm and bdOffset are derived as follows:
bdShift = bitDepth + ((rectNonTsFlag ? 1 : 0) + (8-956)
(Log2(n'TbW) + Log2({{nThH }nonZeroH))/2)— 5+ dep_quant_enabled flag
bdOffset = (1 << bdShift)>>1 (8-957)
The list levelScale[][] is specified as levelScale[j][k] = { {40,45,51,57,64,72},
{57,64,72,80,90,102} } withj=0..1,k =0..5.
The (nTbW)x(nTbH) array dz is set equal to the (nTbW)x(nTbH) array
TransCoeffLevel[xTbY][yTbY][cldx].
For the derivation of the scaled transform coefficients d[x][y] with x=0..nTbW — 1,
y =0..nTbH — 1, the following applies:
— The intermediate scaling factor m[x][y] is derived as follows:
— If one or more of the following conditions are true, m[x][y] is set equal to 16:
— sps_scaling_list enabled flag is equal to O.
— transform_skip flag[xTbY][yTbY]is equal to 1.
— Otherwise, the following applies:
m[x][vy] = ScalingFactor[Log2(nTbW)][Log2(nTbH)][matrixId][x][v],
with matrixId as specified in Table 7-5 (8-958)
— The scaling factor Is[x][y] 1s derived as follows:
— If dep _quant _enabled flag is equal to 1, the following applies:
Is[x][y]=(m[x][y] * levelScale[rectNonTsFlag][(P +1) % 6]) <<((qP+ 1)/
6) (8-959)
— Otherwise (dep_quant_enabled flag is equal to 0), the following applies:
Is[x][y]=(m[x][y] * levelScale[rectNonTsFlag][qP % 6]) << (qP/6) (8-960)
— When BdpcmFlag[xTbY][yYbY] is equal to 1, dz[x][y] is modified as follows:
— If BdpcmDir[xTbY][yYbY] is equal to O and x is greater than O, the following applies:

60

WO 2021/047540 PCT/CN2020/114227

dz[x][y] = Clip3(CoeffMin, CoeffMax, dz[x—1][y] +dz[x][y]) (8-961)
— Otherwise, if BdpemDir[xTbY][yYbY] is equal to 1 and y is greater than O, the following
applies:
dz[x][y] = Clip3(CoeffMin, CoeffMax, dz[x [[y—1]+dz[x][y]) (8-962)
— The value dnc[x][y] 1s derived as follows:
dnc[x][y]=(dz[x][y] *Is[x][y] +bdOffset) >> bdShift (8-963)
— The scaled transform coefficient d[x][y] is derived as follows:

d[x][v] = Clip3(CoeffMin, CoeffMax, dnc[x][y]) (8-964)

5.3 Embodiment #3

This embodiment reflects the change to make the inverse transform shifting dependent on the

actual transform size and transform block size.

8.7.4 Transformation process for scaled transform coefficients

8.7.4.1 General

Inputs to this process are:

— a luma location (xXTbY, yTbY) specifying the top-left sample of the current luma transform
block relative to the top-left luma sample of the current picture,

— avariable nTbW specifying the width of the current transform block,

— avariable nTbH specifying the height of the current transform block,

— avariable cldx specifying the colour component of the current block,

— an (nNTbW)x(nTbH) array d[x][y | of scaled transform coefficients with x =0..nTbW — 1,
y=0..nTbH — 1.

Output of this process is the (nTbW)x(nTbH) array r[x][y] of residual samples with

x=0.nTbW — 1, y=0..nTbH — 1.

When Ifnst_1dx[xTbY][yTbY] is not equal to O and both nTbW and nTbH are greater than or

equal to 4, the following applies:

61

WO 2021/047540 PCT/CN2020/114227

— The variables predModelntra, nLfnstOutSize, log2L{nstSize, nLfnstSize, and nonZeroSize are

derived as follows:

predModelntra =
(cldx==0) ? IntraPredModeY[xTbY][yTbY] : IntraPredModeC[xTbY][yTbY]
(8-965)

nLfnstOutSize = (nTbW >=8 && nTbH >=8) ? 48 : 16 (8-966)
log2LfnstSize = (nTbW >=8 && nTbH >=8) ? 3 : 2 (8-967)

nLfnstSize =1 << log2LfnstSize (8-968)

nonZeroSize = ((nTbW ==4 && nTbH ==4) I
(nTbW==8 && nTbH ==8)) ? 8 : 16 (8-969)

— When intra mip flag][xTbComp][yTbComp] is equal to 1 and cldx is equal to O,
predModelntra is set equal to INTRA PLANAR.

— When predModelntra is equal to either INTRA LT CCLM, INTRA L CCLM, or
INTRA T CCLM, predModelntra is set equal to
IntraPredModeY[xTbY + nTbW /2][yTbY +nTbH /2].

— The wide angle intra prediction mode mapping process as specified in clause 8.4.5.2.6 is
invoked with predModelntra, nTbW, nTbH and cldx as inputs, and the modified
predModelntra as output.

— The values of the list u[x] with x = 0..nonZeroSize — 1 are derived as follows:

xC =DiagScanOrder[2][2][x][0] (8-970)
yC =DiagScanOrder[2][2][x][1] (8-971)
u[x]=d[xC][yC] (8-972)

— The one-dimensional low frequency non-separable transformation process as specified in
clause 8.7.4.2 1s invoked with the input length of the scaled transform coefficients
nonZeroSize, the transform output length nTrS set equal to nLfnstOutSize, the list of scaled
non-zero transform coefficients u[x | with x = 0..nonZeroSize — 1, the intra prediction mode
for LENST set selection predModelntra, and the LENST index for transform selection in the
selected LFNST set Ifnst 1dx[xTbY][yTbY] as inputs, and the list v[x] with
x = 0..nLfnstOutSize — 1 as output.

— Thearray d[x][y] with x =0..nLfnstSize — 1, y = 0..nLfnstSize — 1 is derived as follows:

62

WO 2021/047540 PCT/CN2020/114227

— If predModelntra is less than or equal to 34, the following applies:
dix][y]=(y<4) ? v[x+(y<<log2LfnstSize) | : (8-973)
((x<4) 2 v[32+x+((y—4)<<2)] : dIx][y])
— Otherwise, the following applies:
dix][y]=(x<4) ? v[y +(x<<log2LfnstSize)] : (8-974)
((y<4) 2 v[32+y+((x—4)<<2)] : d[x][y])
The variable implicitMtsEnabled is derived as follows:
— If sps mts enabled flag is equal to 1 and one of the following conditions is true,

implicitMtsEnabled is set equal to 1:

— IntraSubPartitionsSplitType is not equal to ISP NO SPLIT

— cu_sbt_flag is equal to 1 and Max(nTbW, nTbH) 1s less than or equal to 32

— sps_explicit_mts_intra_enabled flag is equal to O and CuPredMode[O][xTbY][yTbY]
is equal to MODE INTRA and Ifnst idx[xO][y0O] 1is equal to O and
intra_mip_flag[x0][yO] is equal to O

— Otherwise, implicitMtsEnabled is set equal to O.

The variable trTypeHor specifying the horizontal transform kernel and the variable trTypeVer
specifying the vertical transform kernel are derived as follows:

— If cldx is greater than O, trTypeHor and trTypeVer are set equal to O.

— Otherwise, if implicitMtsEnabled is equal to 1, the following applies:

— If IntraSubPartitionsSplitType s not equal to ISP NO SPLIT or
sps_explicit_mts_intra_enabled flag is equal to O and CuPredMode[O][xTbY][yTbY]
is equal to MODE_INTRA, trTypeHor and trTypeVer are derived as follows:

trTypeHor = (nTbW >=4 && nTbW <=16)?1:0 (8-975)
trTypeVer = (nTbH>=4 && nTbH<=16)21:0 (8-976)

— Otherwise (cu_sbt_flagis equal to 1), trTypeHor and trTypeVer are specified in Table 8-15
depending on cu_sbt_horizontal flag and cu_sbt pos flag.

— Otherwise, trTypeHor and trTypeVer are specified in Table 8-14 depending on
tu_mts 1dx[xTbY][yTbY].

The variables nonZeroW and nonZeroH are derived as follows:

63

WO 2021/047540 PCT/CN2020/114227

— Iflfnst idx[xTbY][yTbY] is not equal to O and nTbW is greater than or equal to 4 and nTbH
1s greater than or equal to 4, the following applies:
nonZeroW = (nTbW==4 || nTbH==4) ? 4 : 8(8-977)
nonZeroH = (nTbW ==4 || nTbH==4) ? 4 : 8 (8-978)
— Otherwise, the following applies:
nonZeroW = Min(nTbW, (trTypeHor>0) ? 16 : 32) (8-979)
nonZeroH = Min(nTbH, (trTypeVer>0) ? 16 : 32) (8-980)

The (nTbW)x(nTbH) array r of residual samples 1s derived as follows:

5. When nTbH is greater than 1, each (vertical) column of scaled transform coefficients d[x][y]
with x=0.nonZeroW — 1, y=0.nonZeroH —1 is transformed to e[x][y] with
x =0..nonZeroW — 1, y=0.nTbH—-1 by invoking the one-dimensional transformation
process as specified in clause 8.7.4.4 for each column x = 0..nonZeroW — 1 with the height of
the transform block nTbH, the non-zero height of the scaled transform coefficients nonZeroH,
the list d[x][y] with y = 0..nonZeroH — 1 and the transform type variable trType set equal to
trTypeVer as inputs, and the output is the list e[x][y] with y =0..nTbH — 1.

6. When nTbH and nTbW are both greater than 1, the intermediate sample values g[x][y] with
x =0..nonZeroW — 1, y =0..nTbH — 1 are derived as follows:

g[x][y] = Clip3(CoeffMin, CoeffMax, (e[x][y] + 64) >> 7 -
Log2(nTbH/nonZeroH)) (8-981)

7. When nTbW is greater than 1, each (horizontal) row of the resulting array g[x][y | with
x =0..nonZeroW — 1, y=0.nTbH — 1 is transformed to r[x][y] with x=0.nTbW — 1,
y=0..nTbH — 1 by invoking the one-dimensional transformation process as specified in
clause 8.7.4.4 for each row y = 0..nTbH — 1 with the width of the transform block nTbW, the
non-zero width of the resulting array g[x][y] nonZeroW, the list g[x][y] with
x = 0..nonZeroW — 1 and the transform type variable trType set equal to trTypeHor as inputs,
and the output is the list 1| x][y] with x =0..nTbW — 1.

8. When nTbW is equal to 1, rf[x][y] i1s set equal to e[x][y] for x=0.nTbW —1,
y=0..nTbH — 1.

8.7.2 Scaling and transformation process

Inputs to this process are:

64

WO 2021/047540 PCT/CN2020/114227

— aluma location (xXTbY, yTbY) specifying the top-left sample of the current luma transform
block relative to the top-left luma sample of the current picture,
— avariable cldx specifying the colour component of the current block,
— avariable nTbW specifying the transform block width,
— avariable nTbH specifying the transform block height.
Output of this process is the (nTbW)x(nTbH) array of residual samples resSamples[x][y | with
x=0.nTbW — 1, y=0..nTbH — 1.
The variables bitDepth, bdShift and tsShift are derived as follows:
bitDepth = (cldx == 0) ? BitDepthy : BitDepthc(8-942)
bdShift = Max(20 — bitDepth + Log2(nTbH/nonZeroH), 0) (8-943)

5.4 Embodiment #4

This embodiment reflects the change to make the quantized residual within a 16-bit range.

8.7.3 Scaling process for transform coefficients

Inputs to this process are:

— a luma location (xXTbY, yTbY) specifying the top-left sample of the current luma transform
block relative to the top-left luma sample of the current picture,

— avariable nTbW specifying the transform block width,

— avariable nTbH specifying the transform block height,

— avariable cldx specifying the colour component of the current block,

a variable bitDepth specifying the bit depth of the current colour component.

Output of this process is the (nTbW)x(nTbH) array d of scaled transform coefficients with
elements d[x][vy].

The quantization parameter qP is derived as follows:

— 1If cldx 1s equal to O and transform_skip flag[xTbY][yTbY] is equal to O, the following
applies:

GP=Qpy (8-950)
— Otherwise, if cldx is equal to O (and transform_skip flag[xTbY][yTbY] is equal to 1), the
following applies:

qP = Max(QpPrimeTsMin, Qp'y) (8-951)

65

WO 2021/047540 PCT/CN2020/114227

— Otherwise, if TuCResMode[xTbY][yTbY] is equal to 2, the following applies:
qP = Qp'coer (8-952)
— Otherwise, if cldx is equal to 1, the following applies:
qP = Qp'es (8-953)
— Otherwise (cldx is equal to 2), the following applies:
GP=Qp'c: (8-954)
The variable rectNonTsFlag is derived as follows:
rectNonTsFlag = (((Log2(nTbW) + Log2(nTbH)) & 1) == 1 && (8-955)
transform_skip flag[xTbY][yTbY |==0)
The variables bdShift, rectNorm and bdOffset are derived as follows:
tsize = (Log2(nTbW) + Log2(nTbH)) / 2
if rectNonTsFlag is equal to 0 and qP is smaller than 4 and tsize is equal to or large than
5
tsize = tsize - 1
bdShift = bitDepth + ((rectNonTsFlag ? 1 : 0)+
{{(Log2(nTbW) + Log2(nTbH)) / 2}} tsize) — 5 + dep_quant_enabled flag
bdOffset = (1 << bdShift) >>1 (8-957)

5.5 Embodiment #5

This embodiment reflects transform shift depends on whether the block is coded in BDPCM mode.

8.7.2 Scaling and transformation process

The (nTbW)x(nTbH) array of residual samples resSamples is derived as follows:

3. The scaling process for transform coefficients as specified in clause 8.7.3 1s invoked with
the transform block location (xTbY, yTbY), the transform block width nTbW and the
transform block height nTbH, the colour component variable cldx being set equal to
codedCldx and the bit depth of the current colour component bitDepth as inputs, and the
output is an (nTbW)x(nTbH) array of scaled transform coefficients d.

4. The (nTbW)x(nTbH) array of residual samples r is derived as follows:

66

WO 2021/047540 PCT/CN2020/114227

— If (transform_skip flag[xTbY][yTbY] is equal to 1 or BdpcmFlag| xThY][yYbY |
is equal to 1) and cldx is equal to O, the residual sample array values r[x][y] with
x=0.nTbW — 1, y=0..nTbH — 1 are derived as follows:

ffx][y]=d[x][y] << tsShift (8-945)

— Otherwise (transform_skip flag[xTbY][yTbY] is equal to O or and cldx is not equal
to 0), the transformation process for scaled transform coefficients as specified in
clause 8.7.4.1 1s invoked with the transform block location (xTbY, yTbY), the
transform block width nTbW and the transform block height nTbH, the colour
component variable cldx and the (nTbW)x(nTbH) array of scaled transform
coefficients d as inputs, and the output 1s an (nTbW)x(nTbH) array of residual samples

I.

5.6 Embodiment #6
This embodiment reflects dequantization for BDPCM block.

8.7.3 Scaling process for transform coefficients

;l;he variable rectNonTsFlag is derived as follows:

rectNonTsFlag = (((Log2(nTbW) + Log2(nTbH)) & 1) == 1 && (8-955)

transform_skip flag[xXTbY][yTbY | ==0 && BdpcmFlag| xTbY |[[yYbY [==0)

The variables bdShift, rectNorm and bdOffset are derived as follows:

bdShift = bitDepth + ((rectNonTsFlag ? 1 : 0)+ (8-956)

(Log2(nTbW) + Log2(nTbH)) /2) — 5 + dep_quant_enabled flag

bdOffset = (1 << bdShift) >> 1 (8-957)
The list levelScale[][] is specified as levelScale[j][k] = { {40,45,51,57,64,72},
{57,64,72,80,90,102} } withj=0..1,k =0..5.
The (nTbW)x(nTbH) array dz is set equal to the (nTbW)x(nTbH) array
TransCoeffLevel[xTbY][yTbY][cldx].

For the derivation of the scaled transform coefficients d[x][y] with x=0..nTbW — 1,
y =0..nTbH — 1, the following applies:

67

WO 2021/047540 PCT/CN2020/114227

— The intermediate scaling factor m[x][y] is derived as follows:

— If one or more of the following conditions are true, m[x][y] is set equal to 16:
— sps_scaling_list enabled flag is equal to O.
— transform_skip flag[xTbY][yTbY]is equal to 1.
— BdpcmFlag[xTbY || yYbY [is equal to 1.

— Otherwise, the following applies:
m[x][y | = ScalingFactor[Log2(nTbW)][Log2(nTbH)][matrixId [[x][v],

with matrixId as specified in Table 7-5 (8-958)

5.7 Embodiment #7

This embodiment reflects that the dequantization factor for a rectangular block does not depend on whether
the block is of transform skip or BDPCM mode.

8.7.2 Scaling and transformation process

The (nTbW)x(nTbH) array of residual samples resSamples is derived as follows:

5. The scaling process for transform coefficients as specified in clause 8.7.3 is invoked with
the transform block location (xTbY, yTbY), the transform block width nTbW and the
transform block height nTbH, the colour component variable cldx being set equal to
codedCIdx and the bit depth of the current colour component bitDepth as inputs, and the
output is an (nTbW)x(nTbH) array of scaled transform coefficients d.

6. The (nTbW)x(nTbH) array of residual samples r is derived as follows:

— Iftransform_skip flag[xXTbY][yTbY]is equal to 1 and cldx is equal to O, the residual
sample array values r[x][y] with x=0.nTbW — 1, y=0..nTbH — 1 are derived as
follows:

fx[yl=dix][y] << tsShift}} (8-945)

— Otherwise (transform_skip flag[xTbY][yTbY] is equal to O or and cldx is not equal
to 0), the transformation process for scaled transform coefficients as specified in
clause 8.7.4.1 1s invoked with the transform block location (xTbY, yTbY), the
transform block width nTbW and the transform block height nTbH, the colour

68

WO 2021/047540 PCT/CN2020/114227

component variable cldx and the (nTbW)x(nTbH) array of scaled transform
coefficients d as inputs, and the output is an (nTbW)x(nTbH) array of residual samples

I.

8.7.3 Scaling process for transform coefficients

The variable rectNonTsFlag is derived as follows:
{{rectNonTsFlag = (((Log2(nTbW) + Log2(nTbH)) & 1) == 1 && (8-955)
transform_skip flag[xTbY J[yTbY] ==0)}}
rectFlag = ((Log2(nTbW)+ Log2(nTbH))& 1) (8-955)
The variables bdShift, rectNorm and bdOffset are derived as follows:
- Iftransform_skip flag{ xIbY [[yIbY | is equal to 1,
bdShift = bitDepth — 10 + dep _quant_enabled flag

- Otherwise

bdShift = bitDepth + (({{frectNonTsFlag!} rectFlag? 1 : 0)+ (8-956)
(Log2(nTbW) + Log2(nTbH))/ 2) — 5 + dep_quant enabled flag

bdOffset = (1 <<bdShift)>> 1 (8-957)

The list levelScale[][] is specified as levelScale[j][k] = { {40,45,51,57,64,72},
{57,64,72,80,90,102} } withj=0..1,k =0..5.
The (nTbW)x(nTbH) array dz is set equal to the (nTbW)x(nTbH) array
TransCoeffLevel[xTbY][yTbY][cldx].
For the derivation of the scaled transform coefficients d[x][y] with x=0..nTbW — 1,
y =0..nTbH — 1, the following applies:
— The intermediate scaling factor m[x][y] is derived as follows:
— If one or more of the following conditions are true, m[x][y] is set equal to 16:
— sps_scaling_list enabled flag is equal to O.
— transform_skip flag[xTbY][yTbY]is equal to 1.
— Otherwise, the following applies:

69

WO 2021/047540 PCT/CN2020/114227

m[x][y | = ScalingFactor[Log2(nTbW)][Log2(nTbH)][matrixId [[x][v],
with matrixId as specified in Table 7-5 (8-958)
— The scaling factor Is[x][y] 1s derived as follows:
— If dep _quant _enabled flag is equal to 1, the following applies:
Is[x][y]=(m[x][y] * levelScale[{frectNonTsFlag}! rectFlag1[(qP+1)%61])
<<((@P+1)/6) (8-959)
— Otherwise (dep_quant_enabled flag is equal to 0), the following applies:
Is[x][y]=(m[x][y] * levelScale[{frectNonTsFlag}} rectFlag][qP % 6]) <<
(qP/6) (8-960)
— When BdpcmFlag[xTbY][yYbY] is equal to 1, dz[x][y] is modified as follows:
— If BdpcmDir[xTbY][yYbY] is equal to O and x is greater than O, the following applies:
dz[x][y] = Clip3(CoeffMin, CoeffMax, dz[x— 1][y] +dz[x][y]) (8-961)
— Otherwise, if BdpemDir[xTbY][yYbY] is equal to 1 and y is greater than O, the following
applies:
dz[x][y] = Clip3(CoeffMin, CoeffMax, dz[x [[y—1]+dz[x][y]) (8-962)
— The value dnc[x][y] 1s derived as follows:
dnc[x[y]=(dz[x][y] *Is[x][y] +bdOffset) >> bdShift (8-963)
— The scaled transform coefficient d[x][y] is derived as follows:

d[x][v] = Clip3(CoeffMin, CoeffMax, dnc[x][y]) (8-964)

5.8 Embodiment #8

This embodiment reflects the constrain for transform skip coefficients.

7.4.9.11 Residual coding semantics

abs_remainder[n | is the remaining absolute value of a transform coefficient level that is coded
with Golomb-Rice code at the scanning position n. When abs_remainder[n] is not present, it is
inferred to be equal to O.

It is a requirement of bitstream conformance that the value of abs remainder[n] shall be
constrained such that the corresponding value of TransCoeffLevel[x0][yO][cldx][xC][yC] 1s

in the range of CoeffMin to CoeffMax, inclusive.

70

WO 2021/047540 PCT/CN2020/114227

It is a requirement of bitstream conformance that the value of abs remainder[n|] for a
transform block shall be constrained such that the corresponding value of
TransCoeffLevel| x0][yO |[cIdx][xC][yC] is in the range of —(1<< BitDepthY) to (1<<
BitDepthY)-1, inclusive.

[0069] FIG. 5 is a block diagram showing an example video processing system 500 in which
various techniques disclosed herein may be implemented. Various implementations may include
some or all of the components of the system 500. The system 500 may include input 502 for
receiving video content. The video content may be received in a raw or uncompressed format,
e.g., 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format.
The input 502 may represent a network interface, a peripheral bus interface, or a storage
interface. Examples of network interface include wired interfaces such as Ethernet, passive
optical network (PON), etc. and wireless interfaces such as Wi-Fi or cellular interfaces.

[0070] The system 500 may include a coding component 504 that may implement the various
coding or encoding methods described in the present document. The coding component 504 may
reduce the average bitrate of video from the input 502 to the output of the coding component 504
to produce a coded representation of the video. The coding techniques are therefore sometimes
called video compression or video transcoding techniques. The output of the coding component
504 may be either stored, or transmitted via a communication connected, as represented by the
component 506. The stored or communicated bitstream (or coded) representation of the video
received at the input 502 may be used by the component 508 for generating pixel values or
displayable video that is sent to a display interface 510. The process of generating user-viewable
video from the bitstream representation is sometimes called video decompression. Furthermore,
while certain video processing operations are referred to as “coding” operations or tools, it will
be appreciated that the coding tools or operations are used at an encoder and corresponding
decoding tools or operations that reverse the results of the coding will be performed by a
decoder.

[0071] Examples of a peripheral bus interface or a display interface may include universal
serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on.

Examples of storage interfaces include SATA (serial advanced technology attachment), PCI,

71

WO 2021/047540 PCT/CN2020/114227

IDE interface, and the like. The techniques described in the present document may be embodied
in various electronic devices such as mobile phones, laptops, smartphones or other devices that
are capable of performing digital data processing and/or video display.

[0072] FIG. 6 1s a block diagram of a video processing apparatus 600. The apparatus 600 may
be used to implement one or more of the methods described herein. The apparatus 600 may be
embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on. The
apparatus 600 may include one or more processors 602, one or more memories 604 and video
processing hardware 606. The processor(s) 602 may be configured to implement one or more
methods described in the present document. The memory (memories) 604 may be used for
storing data and code used for implementing the methods and techniques described herein. The
video processing hardware 606 may be used to implement, in hardware circuitry, some
techniques described in the present document. In some embodiments, the hardware 606 may be
at least partly in the processor 602, e.g., a graphics co-processor.

[0073] FIG. 7 is a flowchart of an example method 700 of video processing. The method 700
includes, at operation 710, performing a conversion between a current block of a video and a
bitstream representation of the video according to a rule, the rule specifying that the conversion
comprises during encoding, skipping applying a forward transform to residual coefficients of the
current block prior to including in the bitstream representation, or during decoding,
reconstructing residual coefficients of the current block from the bitstream representation
without applying an inverse transform, and the rule further specifying that a scale factor is
applied to the residual coefficients independent of a size of the current block.

[0074] FIG. 8 is a flowchart of an example method 800 of video processing. The method 800
includes, at operation 810, determining that a conversion between a current block of a video and
a bitstream representation of the video comprises an application of a transform coding mode to
the current block.

[0075] The method 800 includes, at operation 820, performing, based on the determining, the
conversion, wherein a dequantization process or an inverse transformation used in the conversion
is configured based on a rule.

[0076] FIG. 9 is a flowchart of an example method 900 of video processing. The method 900

includes, at operation 910, determining that a conversion between a current block of a video and

72

WO 2021/047540 PCT/CN2020/114227

a bitstream representation of the video comprises a lossless conversion.

[0077] The method 900 includes, at operation 920, performing, based on the determining, the
conversion, wherein a transformation, an inverse transformation, a quantization process, and/or a
dequantization process used in the conversion is applied without a bit-shifting operation.

[0078] The following technical solutions may be implemented as preferred solutions in some
embodiments.

[0079] 1. A method of video processing, comprising performing a conversion between a current
block of a video and a bitstream representation of the video according to a rule, wherein the rule
specifies that the conversion comprises during encoding, skipping applying a forward transform
to residual coefficients of the current block prior to including in the bitstream representation, or
during decoding, reconstructing residual coefficients of the current block from the bitstream
representation without applying an inverse transform, and wherein the rule further specifies that
a scale factor 1s applied to the residual coefficients independent of a size of the current block.
[0080] 2. The method of solution 1, wherein the scale factor is a pre-defined constant.

[0081] 3. The method of solution 2, wherein the scale factor is one.

[0082] 4. The method of solution 1, wherein the scale factor is based on an internal bit-depth
(ibd).

[0083] 5. The method of solution 4, wherein the scale factor is (15—1bd).

[0084] 6. The method of solution 1, wherein a transformation process for scaled transform
coefficients is disabled, and wherein an output of a scaling process for the transform coefficients
is used as an input to generate intermediate residual samples.

[0085] 7. A method of video processing, comprising determining that a conversion between a
current block of a video and a bitstream representation of the video comprises an application of a
transform coding mode to the current block; and performing, based on the determining, the
conversion, wherein a dequantization process or an inverse transformation used in the conversion
is configured based on a rule.

[0086] 8. The method of solution 7, wherein the dequantization process comprises a K-bit bit-
shifting operation, wherein K is an integer, and wherein the rule specifies that K is based on a
size of a transform kernel used in the transform coding mode.

[0087] 9. The method of solution 8, wherein K 1s based on a height of the transform kernel.

73

WO 2021/047540 PCT/CN2020/114227

[0088] 10. The method of solution 7, wherein the inverse transformation comprises a K-bit bit-
shifting operation, wherein K is an integer, and wherein the rule specifies that K is based on a
size of the current block and/or a size of a transform kernel used in the transform coding mode.
[0089] 11. The method of solution 10, wherein K is based on a height of the current block.
[0090] 12. The method of solution 10, wherein K is based on a height of the transform kernel.
[0091] 13. The method of solution 7, wherein the dequantization process comprises a K-bit bit-
shifting operation, wherein K is an integer, and wherein the rule specifies that K is based on a
capped transform block size.

[0092] 14. The method of solution 13, wherein a size of the transform block is greater than or
equal to 32x32, and where K is based on a block size of 16x16.

[0093] 15. The method of solution 13, wherein the capped transform block size is based on a
quantization parameter (QP) of the dequantization process.

[0094] 16. The method of solution 13, wherein the capped transform block size is based on a
ratio between a height and a width of the current block.

[0095] 17. A method of video processing, comprising determining that a conversion between a
current block of a video and a bitstream representation of the video comprises a lossless
conversion; and performing, based on the determining, the conversion, wherein a transformation,
an inverse transformation, a quantization process, and/or a dequantization process used in the
conversion is applied without a bit-shifting operation.

[0096] 18. The method of solution 17, wherein the determining is based on an indication in a
sequence or a picture or a subpicture or a slice or a tile group or a tile or a brick or a coding tree
unit row or a coding tree unit or a coding unit or a prediction unit or a transform unit or at a
subblock level.

[0097] 19. The method of solution 17, wherein an application of the transformation to an input
and subsequent application of the inverse transformation results in a bit-exact output that
matches the input due to the conversion being a lossless conversion.

[0098] 20. The method of solution 17, wherein a scaling factor used for converting residual
coefficient values of the current block and coded coefficients of the current block is equal to one
due to the conversion being a lossless conversion.

[0099] 21. The method of solution 17, wherein, for a K-bit bit-shifting operation used in the

74

WO 2021/047540 PCT/CN2020/114227

inverse transformation, K is set to zero due to the conversion being a lossless conversion.
[00100] 22. The method of solution 17, wherein the quantization process uses a
quantization parameter (QP) set to a predetermined value (N) due to the conversion being a
lossless conversion, and wherein N is a positive integer.

[00101] 23. The method of solution 22, where N = 4.

[00102] 24. The method of solution 17, wherein, for a K-bit bit-shifting operation used in
the dequantization process, K is set to zero due to the conversion being a lossless conversion.
[00103] 25. The method of any of solutions 1 to 24, wherein performing the conversion
comprises generating the bitstream representation from the one or more video regions.

[00104] 26. The method of any of solutions 1 to 24, wherein performing the conversion
comprises generating the one or more video regions from the bitstream representation.

[00105] 27. An apparatus in a video system comprising a processor and a non-transitory
memory with instructions thereon, wherein the instructions upon execution by the processor,
cause the processor to implement the method in any one of solutions 1 to 26.

[00106] 28. A computer program product stored on a non-transitory computer readable
media, the computer program product including program code for carrying out the method in any
one of solutions 1 to 26.

[00107] 29. A computer readable medium that stores the bitstream representation
generated according to the method in any one of solutions 1 to 26.

[00108] 30. A computer readable medium that stores a coded representation or a bitstream
representation generated according to the method in any one of solutions 1 to 26.

[00109] In the above solutions, the performing the conversion includes using the results of
previous decision step (e.g., using or not using certain coding or decoding steps) during the
encoding or decoding operation to arrive at the conversion results. In the above-described
solutions, video processing may include video coding or encoding or compressing or transcoding
(changing from one format or bitrate to another format or bitrate), decoding or decompressing.
Furthermore, these solutions may be applied to other visual data such as images.

[00110] The disclosed and other solutions, examples, embodiments, modules and the functional
operations described in this document can be implemented in digital electronic circuitry, or in

computer software, firmware, or hardware, including the structures disclosed in this document

75

WO 2021/047540 PCT/CN2020/114227

and their structural equivalents, or in combinations of one or more of them. The disclosed and
other embodiments can be implemented as one or more computer program products, i.e., one or
more modules of computer program instructions encoded on a computer readable medium for
execution by, or to control the operation of, data processing apparatus. The computer readable
medium can be a machine-readable storage device, a machine-readable storage substrate, a
memory device, a composition of matter effecting a machine-readable propagated signal, or a
combination of one or more them. The term “data processing apparatus” encompasses all
apparatus, devices, and machines for processing data, including by way of example a
programmable processor, a computer, or multiple processors or computers. The apparatus can
include, in addition to hardware, code that creates an execution environment for the computer
program in question, e.g., code that constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination of one or more of them. A
propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical,
or electromagnetic signal, that is generated to encode information for transmission to suitable
receiver apparatus.

[00111] A computer program (also known as a program, software, software application,
script, or code) can be written in any form of programming language, including compiled or
interpreted languages, and it can be deployed in any form, including as a stand-alone program or
as a module, component, subroutine, or other unit suitable for use in a computing environment.
A computer program does not necessarily correspond to a file in a file system. A program can be
stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules, sub programs, or portions of code).
A computer program can be deployed to be executed on one computer or on multiple computers
that are located at one site or distributed across multiple sites and interconnected by a
communication network.

[00112] The processes and logic flows described in this document can be performed by one
or more programmable processors executing one or more computer programs to perform
functions by operating on input data and generating output. The processes and logic flows can

also be performed by, and apparatus can also be implemented as, special purpose logic circuitry,

76

WO 2021/047540 PCT/CN2020/114227

e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated
circuit).

[00113] Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will receive instructions and data from a
read only memory or a random-access memory or both. The essential elements of a computer
are a processor for performing instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more mass storage devices for storing data,
e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such
devices. Computer readable media suitable for storing computer program instructions and data
include all forms of non-volatile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices;
magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD
ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

[00114] While this patent document contains many specifics, these should not be construed as
limitations on the scope of any subject matter or of what may be claimed, but rather as
descriptions of features that may be specific to particular embodiments of particular techniques.
Certain features that are described in this patent document in the context of separate
embodiments can also be implemented in combination in a single embodiment. Conversely,
various features that are described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any suitable subcombination. Moreover,
although features may be described above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed combination can in some cases be excised
from the combination, and the claimed combination may be directed to a subcombination or
variation of a subcombination.

[00115] Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular order

shown or in sequential order, or that all illustrated operations be performed, to achieve desirable

77

WO 2021/047540 PCT/CN2020/114227

results. Moreover, the separation of various system components in the embodiments described
in this patent document should not be understood as requiring such separation in all
embodiments.

[00116] Only a few implementations and examples are described and other implementations,
enhancements and variations can be made based on what is described and illustrated in this

patent document.

78

WO 2021/047540 PCT/CN2020/114227

WHAT IS CLAIMED IS:

1. A method of video processing, comprising:

performing a conversion between a current block of a video and a bitstream representation
of the video according to a rule,

wherein the rule specifies that the conversion comprises:

during encoding, skipping applying a forward transform to residual coefficients of the
current block prior to including in the bitstream representation, or

during decoding, reconstructing residual coefficients of the current block from the
bitstream representation without applying an inverse transform, and

wherein the rule further specifies that a scale factor is applied to the residual coefficients

independent of a size of the current block.

2. The method of claim 1, wherein the scale factor is a pre-defined constant.
3. The method of claim 2, wherein the scale factor is one.
4. The method of claim 1, wherein the scale factor is based on an internal bit-depth (ibd).

5. The method of claim 4, wherein the scale factor is (/5—ibd).

6. The method of claim 1, wherein a transformation process for scaled transform coefficients
is disabled, and wherein an output of a scaling process for the transform coefficients is used as an

input to generate intermediate residual samples.

7. A method of video processing, comprising:

determining that a conversion between a current block of a video and a bitstream
representation of the video comprises an application of a transform coding mode to the current
block; and

performing, based on the determining, the conversion,

wherein a dequantization process or an inverse transformation used in the conversion is

configured based on a rule.

79

WO 2021/047540 PCT/CN2020/114227

8. The method of claim 7, wherein the dequantization process comprises a K-bit bit-shifting
operation, wherein K is an integer, and wherein the rule specifies that K is based on a size of a

transform kernel used in the transform coding mode.
9. The method of claim 8, wherein K is based on a height of the transform kernel.

10. The method of claim 7, wherein the inverse transformation comprises a K-bit bit-shifting
operation, wherein K is an integer, and wherein the rule specifies that K is based on a size of the

current block and/or a size of a transform kernel used in the transform coding mode.
11. The method of claim 10, wherein K is based on a height of the current block.
12. The method of claim 10, wherein K is based on a height of the transform kernel.

13. The method of claim 7, wherein the dequantization process comprises a K-bit bit-shifting
operation, wherein K is an integer, and wherein the rule specifies that K is based on a capped

transform block size.

14. The method of claim 13, wherein a size of the transform block is greater than or equal to

32x32, and where K is based on a block size of 16x16.

15. The method of claim 13, wherein the capped transform block size is based on a

quantization parameter (QP) of the dequantization process.

16. The method of claim 13, wherein the capped transform block size is based on a ratio

between a height and a width of the current block.

17. A method of video processing, comprising:

determining that a conversion between a current block of a video and a bitstream
representation of the video comprises a lossless conversion; and

performing, based on the determining, the conversion,

wherein a transformation, an inverse transformation, a quantization process, and/or a

dequantization process used in the conversion is applied without a bit-shifting operation.

80

WO 2021/047540 PCT/CN2020/114227

18. The method of claim 17, wherein the determining is based on an indication in a sequence
or a picture or a subpicture or a slice or a tile group or a tile or a brick or a coding tree unit row
or a coding tree unit or a coding unit or a prediction unit or a transform unit or at a subblock

level.

19. The method of claim 17, wherein an application of the transformation to an input and
subsequent application of the inverse transformation results in a bit-exact output that matches the

input due to the conversion being a lossless conversion.

20. The method of claim 17, wherein a scaling factor used for converting residual coefficient
values of the current block and coded coefficients of the current block is equal to one due to the

conversion being a lossless conversion.

21. The method of claim 17, wherein, for a K-bit bit-shifting operation used in the inverse

transformation, K is set to zero due to the conversion being a lossless conversion.

22. The method of claim 17, wherein the quantization process uses a quantization parameter
(QP) set to a predetermined value (N) due to the conversion being a lossless conversion, and

wherein N is a positive integer.
23. The method of claim 22, where N = 4.

24. The method of claim 17, wherein, for a K-bit bit-shifting operation used in the

dequantization process, K is set to zero due to the conversion being a lossless conversion.

25. The method of any of claims 1 to 24, wherein performing the conversion comprises

generating the bitstream representation from the one or more video regions.

26. The method of any of claims 1 to 24, wherein performing the conversion comprises

generating the one or more video regions from the bitstream representation.

27. Anapparatus in a video system comprising a processor and a non-transitory memory with
instructions thereon, wherein the instructions upon execution by the processor, cause the

processor to implement the method in any one of claims 1 to 26.

81

WO 2021/047540 PCT/CN2020/114227

28. A computer program product stored on a non-transitory computer readable media, the
computer program product including program code for carrying out the method in any one of

claims 1 to 26.

29. A computer readable medium that stores the bitstream representation generated according

to the method in any one of claims 1 to 26.

82

PCT/CN2020/114227

WO 2021/047540

wesnsNg

L Old

JSNAT 9%I9ALE QX 10} SIUBDIR0D Indul o
TSNS T RSIAAU P 0] SJuBigeon ndur g

wosuey ajgeiedas-uou
Kauanbalp-mof asianu)

uonezZiueND
!@Q

uoneziuenp

<<<<<<<<<<<<<<<<<<<<<<<<<<

wiojsues ajqeiedas-iou
LAouanbagy-mor premiod

wiiojsuel]
Arewulid
9sIaAU|

wojsuel |
Atewllid
plEMIO]

ISNT pEeI0g RXR 40} sjusigeor nduryg
ISNAT pres) pxp 0} sjuapiyeon indm o1

1/9

PCT/CN2020/114227

WO 2021/047540

¢ 9ld

T uoiisod ‘H-19S

DST-7

4 v

Yynioyv =1y flm-wmal

Y-y

T uoiyisod ‘A-19S
M TM-M

|

|

|

|

~ _
MYIOMY=TM = ¢
2 #

!

|

|

Q uoiyisod ‘H-19S

Y-y
%%%%%%%%%%%% Yy
0

i
()
i
\ T

0 uoiysod ‘A-19S
TM-M M

2/9

DST-7
<

8-12d

PCT/CN2020/114227

WO 2021/047540

¢ Ol

] Ve V8 V. V9 V& Vv VE VI V @ V- V¢ Ve V- VS V9 V- V8 V6
S p ¢ z 1 01- ¢ & ¥ 5
Q @ 0] O & 0O & O e O
q > a9 a d a 3 1) 1

. ¢ 4 T o I r & v
¢ O e o e o e 0 e
v g R M v a ¥

3/9

PCT/CN2020/114227

v Ol

==(T8%)

1 € €
¢ I ¢
0 ¢ I
z 0 0
= (184} | 0==(1%8Y) alels
UM
104 33835 IXeU

WO 2021/047540

21038
ues == (18 %)

4/9

WO 2021/047540 PCT/CN2020/114227

510

500

508

506
FIG. 5

504

502

5/9

PCT/CN2020/114227

WO 2021/047540

9 Ol

909 Aowsasy
AynoaiD
Buissao0.d 09pIA ¥09
10S$9901d
¢09

009

6/9

PCT/CN2020/114227

WO 2021/047540

L Ol

oL — |

a|nJ e 0} buiploooe

03pIA 8Uj) JO uolejuasaldal wWeal)s)iq e pue 0SpIA B
JO Y00]|q JUBLIND B USaM]Sq UOISISAUOD B Bulwiopuad

/

004

7/9

PCT/CN2020/114227

WO 2021/047540

8 Ol

0¢8 —

a|nJ B U0 paseq painblyuod
S| UOISISAUO0D 3Y} Ul pasn UOIlBwWIOiSuUBl) 9SIaAUI
ue Jo ss920.d uoneziuenbap e ulaiaym ‘UOISISAUOD
ay} ‘Buiuiwislap ay) uo paseq ‘Bulwiopad

0l8 — |

300|q JuaiInd ay} 0} apowl

Buipod wuojsued) e Jo uoneolidde ue sasudwod 09pIA

ay} Jo uonejuasaldal weal)s)iq B pue 03PIA B JO 320|q
JUS.IND B USBM}BQ UOISISAUO0D B Jey) buluiwisleq

/

008

8/9

PCT/CN2020/114227

WO 2021/047540

6 Ol

026 —

uoljesado Buiyiys-1q e noyym paljdde
SI UOISJDAUO0D 3y) Ul pasn ssadoud uoneziuenbap
B JOo/pue ‘ssao0.4d uoneziuenb e ‘uoiewlojsuel)
9SJ2AUI UB ‘uoljeullojsuel) B UisJaym ‘UOISISAU0D
ay} ‘Buiuiwislap ay) uo paseq ‘Bulwiopad

0l6 —|

UOISISAUOD SS3|SSO| B S9s1Idwoo 09pIA
oy} Jo uonejuasaidal wealsiiq e pue 08pIA B JO 300|q
JUS1IND B USSM]S(UOISISAUOD B Jey) Buluiwialaqg

/

006

9/9

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2020/114227

A. CLASSIFICATION OF SUBJECT MATTER

HO4N 19/122(2014.01)i; HO4N 19/136(2014.01)i; HO4N 19/119(2014.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

+, width, height, LFNST

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT,.CNKLWPLEPODOC,IEEE,JVET: video, image, picture, encod+, cod+, convert+, convers+, bitstream, forward,
transform+, DCT, residue, residual, coefficient, scale, scaling, factor, bit, depth, lossless, mode, size, dimension, skip+, bypass

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2018270481 Al (CANON K.K.) 20 September 2018 (2018-09-20) 1-29
description, paragraphs [0070]-[0160], figures3, 4

X US 2014056362 A1 (BRITISH BROADCASTING CORP.) 27 February 2014 (2014-02-27) 1-16, 25-29
description, paragraphs [0041]-[0103], figures5, 6

the whole document

A US 2015124872 A1 (BROADCOM CORP.) 07 May 2015 (2015-05-07) 1-29

the whole document

A CN 107211146 A (VID SCALE INC.) 26 September 2017 (2017-09-26) 1-29

the whole document

A HASHIMOTO, Tomonori et al. "Non-CE7: Harmonization of scaling matrix and LFNST" 1-29
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/5C 29/WG 11
15th Meeting: Gothenburg, SE, 12 July 2019 (2019-07-12),

the whole document

A ZHAQO, Yin et al. "Non-CE6: Simplification on LENST" 1-29
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/5C 29/WG 11
15th Meeting: Gothenburg, SE, 12 July 2019 (2019-07-12),

D Further documents are listed in the continuation of Box C.

See patent family annex.

Special categories of cited documents:

document defining the general state of the art which is not considered

to be of particular relevance

earlier application or patent but published on or after the international

filing date

document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other

special reason (as specified)

«0” document referring to an oral disclosure, use, exhibition or other
means

«p>” document published prior to the international filing date but later than

the priority date claimed

«1> later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

«x> document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

«y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

100088
China

Facsimile No. (86-10)62019451

25 September 2020 28 October 2020
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing WANG,Conglei

Telephone No. 86-(10)-53961717

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members

PCT/CN2020/114227
. Patf‘/nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
uUs 2018270481 Al 20 September 2018 RU 2015117258 A 27 December 2016
KR 20170104646 A 15 September 2017
IN 201501790 P4 01 July 2016
WO 2014071439 Al 15 May 2014
JP 2015537448 A 24 December 2015
KR 20170054558 A 17 May 2017
EP 2918078 Al 16 September 2015
BR 112015006767 A2 04 July 2017
AU 2013344305 Al 26 March 2015
KR 20150048804 A 07 May 2015
uUs 2015326883 Al 12 November 2015
CN 104782125 A 15 July 2015
JP 2018085738 A 31 May 2018
uUs 2014056362 Al 27 February 2014 WO 2013001278 Al 03 January 2013
CN 103404141 A 20 November 2013
KR 20140027932 A 07 March 2014
EP 3026911 Al 01 June 2016
™ 201320751 A 16 May 2013
EP 2652954 A2 23 October 2013
IN 201310910 P1 26 December 2014
CN 105847815 A 10 August 2016
GB 2492333 A 02 January 2013
JP 2014523175 A 08 September 2014
WO 2013001279 A2 03 January 2013
JP 2017098975 A 01 June 2017
uUs 2015124872 Al 07 May 2015 None
CN 107211146 A 26 September 2017 EP 3222044 Al 27 September 2017
us 2017280163 Al 28 September 2017
WO 2016081939 Al 26 May 2016

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - wo-search-report
	Page 95 - wo-search-report

