02/13002 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
14 February 2002 (14.02.2002)

(10) International Publication Number

PCT WO 02/13002 A2

(51) International Patent Classification’:

(21) International Application Number:

(22) International Filing Date:

GO6F 9/00

PCT/US00/32160

28 November 2000 (28.11.2000)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/223,547 4 August 2000 (04.08.2000) US

(71) Applicants and

(72) Inventors: JONES, Michael, T. [US/US]; 1661 Via
Campagna, San Jose, CA 95120 (US). ARNAUD, Rémi,
Simon, Vincent [FR/US]; 1482 Redmond Avenue, San
Jose, CA 95120 (US). TANNER, Christopher, C.
[US/US]; 20661 Forge Way, #164, Cupertino, CA 95014
(US). WEBB, Richard, Daniel [US/US]; 299 Hillview

Avenue, Redwood City, CA 94062 (US). MCCLENDON,
Brian [US/US]; 35 Buckeye, Portola Valley, CA 94028
Us).

(74) Agents: RAY, Michael, B. et al.; Sterne, Kessler, Gold-
stein & Fox PL.L.C., Suite 600, 1100 New York Avenue,
N.W., Washington, DC 20005-3934 (US).

(81) Designated State (national): JP.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR LEVERAGING INDEPENDENT INNOVATION IN ENTERTAINMENT CONTENT

AND GRAPHICS HARDWARE
GRAPHICS SOFTWARE
|
MARKET APPLICATION
GAP—N jn¢ | STANDARD | ORIENTED SPECIFIC
FEATURES | FEATURE FEATURE

|

(57) Abstract: A system and method is presented that leverages independent innovation in entertainment content and graphics hard-
ware. In this system and method, the current image generation run-time application is replaced with a new framework defining the
connectivity, features, and behavior necessary to implement a graphics system. All this takes place in the context of a software plat-
form utilizing a late-integration mechanism that dynamically integrates the various real-time components in a run-time application.
Ultimately displacing hardware as the central focus of developments efforts, this software platform functionally is the graphics appli-
cation, at least as viewed by the simulation host computer, database developers, and those responsible for visual system procurement
and maintenance. An innovatinve software architecture, the Graphical Application Platform (GAP) is presented. The GAP builds
on image generator, workstation, and scene graph success by extending the concepts of platform and framework into the real-time
graphics domain-bridging the gap between image generation concersn and contemporary hardware and software realities by decou-
pling content, hardware and applications. This new approach also provides technology to address emerging concerns related to the
selection and acquisition processes in the context of new low-cost, high-performance graphics hardware.

10

15

20

25

30

WO 02/13002

System and Method for Leveraging Independent Innovation
in Entertainment Content and Graphics Hardware

Background of the Invention

Field of the Invention

The invention relates to computer graphics, and more particularly to

development of graphics hardware and software.
Related Art
Early Graphics Systems

Early visual systems, such as 1954’s DX-50 helicopter trainer from
Giravion-Dorand, used optical and mechanical systems and did not make a
distinction between the database, the visual system, and the display system. The
hardware-centric structure of these systems follows from the ambitious nature of
their real-time i)erformance and image quality goals relative to available hardware
technology of the day. The birth of image generator technology began with Ivan
Sutherland's SKETCHPAD system. The CT3, introduced ten years later by Evans
& Sutherland, shaped image generator architectures still in use today. This
system, first delivered to NASA, was composed of a DIGITAL EQUIPMENT
CORPORATION PDP-11 front-end processor running the software, connected
to non-programmable graphics hardware. A lasting innovation of this system was
separating the database from the visual system, introducing a modeling tool that
ran on a PDP-11/40 equipped with a calligraphic display. The CT3 was capable
of 900 polygons at 25 Hz, with edge antialiasing and Gouraud shading, and
defined the image generator és a database-driven system, connected to a
simulation host via a hardware or software interface, with output to one or more
associated display subsystems. Such a system is shown in FIG 1. An image
generator 102 is shown creating an image on the basis of data from database 104.

The image is then displayed on one or more displays 106.

PCT/US00/32160

10

15

20

25

WO 02/13002

Scene Graph Toolkits

Since the early 1990’s, general-purpose workstations have increasingly
competed with dedicated hardware image generators, using sophisticated
software, such as SGI’s IRIS PERFORMER, to implement real-time image
generation features. For example, a scene graph was used as a graphics
abstraction. A scene graph is a high-level scene and rendering description
language. A scene graph is used as part of a toolkit application programming
interface (API). The notion of a scene graph underlies PERFORMER and similar
products, where it represents the visual database, serves as the arena of action,
and is the attachment point for newly developed extensions. PERFORMER uses
the scene graph abstraction to provide flexibility to application developers while
retaining control of hardware- and performance-related issues. It also introduced
a sample application which proved popular as a starting point for developers.
PERFORMER was not the first use of scene graphs in a general-purpose graphics
toolkit. PERFORMER, however, focused on performance concerns rather than
developer convenience or hardware independence.

Outside the circle of IRIS PERFORMER users a common belief is that
intermediate software layers degrade the performance of an application. For
instance, the game industry’s historical perception has been that toolkits are only
for prototyping, and that applications must be rewritten before deployment. In
contrast to this wview, IRIS PERFORMER and PARADIGM
ENTERTAINMENT’s VISKIT show that an intelligent, optimizing software

layer can consistently improve application performance.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

The Fourth Element

The success of IRIS PERFORMER in the visual simulation industry
popularized the notion of a toolkit-level API more abstract than low-level
interfaces like OPENGL, yet less rigid than the interface control definition of
classic image generators. This lead to the introduction of a fourth element into
the structure of an image generator—the visual simulation run-time—the high-
level software which provided the additional features, beyond a scene graph,
required to recreate the turnkey capability of classic image generators. This is
shown in FIG. 2. Here, information in a database 202 is used by run-time
software 204. The resulting data is used by a graphics workstation 206 to create
an image for display on one or more display devices 208.

Examples of such a system include Aechelon’s C-Nova, Raytheon’s
RightView, Thomson’s Space Magic, the Equipe Simulation Real Time,
Multigen-Paradigm’s Vega, and, Wormald’s WIGS, each layered above IRIS.
Pairing the scene graph API and image generation run-time has improved visual
simulation: decreasing risk, schedule, and cost. Developers can add features
without relying on sole-source vendor enhancements, helping integrators use and
retain proprietary techniques in system configurations, and better matching the
power of commercial graphics hardware to needs of the image generation
community.

However, advances of software technology can lead to the discovery of
new barriers. This is true with the scene graph as well, where developers
consistently encounter the same technical problems:

Weak Extension Model. The scene graph is a good structure for expressing

. hierarchical articulations, BSP definitions, level of detail (LOD) switch ranges,

and similar traversal characteristics. When extended to allow application
developers to attach callback functions or redefine scene graph elements,
however, a problem emerges. This “tree decoration” metaphor converts a scene

graph into an expression tree with critical but unstated order dependencies,

PCT/US00/32160

10

15

20

25

30

WO 02/13002

surreptitiously changing the meaning of scene graph traversal with the result that
any two or more extensions are likely to be incompatible.

Limited Code Reuse. It is difficult if not impossible for separate
developers to build independent features that can be merged into the common
scene graph due to extension model semantic conflicts. This leads integrators to
develop their own visual simulation run-time environments since they lack a
framework for integrating sub-components from independent software providers,
resulting in multiple versions of the same base features. This troubles proposal
technical evaluators, who may know that a machine is capable of a feature, but
cannot know if a particular bidder will implement it as desired—and there is no
way to replace a weak implementation in one program with a strong
implementation from another.

Difficulties in Integration. Even though the last 20% of the integration
task seemingly requires 80% of the time and expense, there are few tools to help.
Scene graphs are partially responsible, as extension model problems surface at
integration time (when different sub-components first operate together) and
developers cannot profile, understand, or modify the inner-workings of the scene
graph. If testing reveals that a simulator “almost always” runs at frame rate, the
developer is typically at a loss to know what the scene graph is doing differently
to cause frame extension.

Duplication of Application State. The simulation application computes or
manages the positions of objects, light sources, and other state elements. This
same information must also appear in the scene graph in an opaque form due to
its autonomous nature, which requires duplication of application state between
the two with problems in synchronization and update.

The scene graph is a victim of its own success: it works so well as a
graphics abstraction that it has been pressed into further service as an application
abstraction, which it is not. These problems are signs of an inherent structural
mismatch rather than a flaw of scene graph implementations. An entirely
different abstraction and corresponding data structure are needed, able to

represent the innermost essence of applications. A new type of real-time graphics

PCT/US00/32160

10

15

20

25

WO 02/13002

software is necessary, that complements the scene graph as a higher-level
counterpart for application-level concepts and concerns.

A new factor adds unprecedented urgency to these issues: lower-cost 3D
graphics hardware devices have the features, quality, and performance to serve
in an image generator but the corresponding software does not. In many cases,
next-generation hardware offers more capability than is required for typical
training applications. This does not mean, however, that building applications is
becoming easier or less expensive. It will likely be harder to build an image
generator from these components than from workstations, just as some integrators
found powerful general-purpose workstations more difficult to master than classic
dedicated image generators before the advent of the vendor-tuned IRIS Performer
API. The inventorsrecognized that embracing this era of astounding performance
at low price-points requires addressing the portability of high-technology graphics
application soft'ware, which in turn means considering applications as mobile
components able to move from one hardware system to another. Software is
needed that promotes distinguishing hardware capabilities by allowing hardware
vendors to provide alternate implementations of standard features as a route to
tuning and delivering applications.

Figures 3A and 3B illustrate the problem of developing game software in
a manner that utilizes the features of different hardware platforms with different
features. TFigure 3A illustrates a layered approach to game development
customized to a SONY PLAYSTATION2 platform. Figure 3B illustrates a
layered approach to game development customized to a personal computer (PC)
platform. A degree of customization is necessary, as suggested by the uneven
bdundary between hardware and game software. Moreover, this phenomenon of
necessary customization tends to extend into the upper layers, as illustrated. The
boundary between game software and game content is also necessarily
customized; likewise, the boundary between game content and the development
tools. (The development of game content is further illustrated with respect to an

example in Figure 4. This figure shows the incorporation of various aspects of

PCT/US00/32160

10

15

20

25

30

WO 02/13002

content, such as sound, models, animation, and behaviors, through the use of a
level editor.)

An approach is needed that is fundamentally different from prior efforts
that used the same underlying implementation for features and placed the “seam”
between system-dependent implementations at the lower level hardware interface
and scene graph APIs. These low-level approaches have an inherent weakness,
as evidenced by portable 3D graphics bem;hmark suites. Low-level extension
mechanisms restrain hardware vendors from optimizing portable applications, for
instance by making it impossible to transparently insert multi-processing. They
also tend to stifle innovation by requiring implementation of high-level designs
using the specific approach sanctioned by the low-level API developer.

It is even difficult for hardware vendors to add new features using
OpenGL’srespected extension mechanism, and after having done so, application
developers must be enticed to rewrite and re-release their products to incorporate
these system-dependent extensions. A new software architecture is needed to
address this problem by providing a higher level of abstraction that offers
hardware vendors a mechanism to change the way existing, compiled application

software implements features, to access the differentiations of their hardware.

Summary of the Invention

Faced with these concerns, an approach is presented that is able to address
these issues in concert, and in so doing, expand the horizon of real-time image
generation throughout the application areas of computer graphics, including but

not limited to games, training, networked visualization, and other areas where

computer graphics are used. This new technology, described in the following

sections, is based on the concepts of the software platform and the application
framework. These ideas replace the current image generation run-time
application with a new framework defining the connectivity, features, and
behavior necessary to implement a graphics system. All this takes place in the

context of a software platform utilizing an integration mechanism that

dynamically integrates the various real-time components in a run-time

PCT/US00/32160

10

15

20

25

30

WO 02/13002

application. Ultimately displacing hardware as the central focus of development
efforts, this software platform functionally is the graphics application, at least as
viewed by the simulation host computer, database developers, and those
responsible for visual system procurement and maintenance.

An innovative software architecture, the Graphical Application Platform
(GAP) is presented. In one embodiment, the GAP includes a application real-
time kernel (ARK) and components containing executable blocks of logic. The
GAP builds on image generator, workstation, and scene graph success by
extending the concepts of platform and framework into the real-time graphics
domain—bridging the gap between image generation concerns and contemporary
hardware and software realities by decoupling content, hardware and applications.
This new approach also provides technology to address emerging concernsrelated
to the selection and acquisition processes in the context of new low-cost, high-
performance graphics hardware.

The foregoing and other features and advantages of the invention will be
apparent from the following, more particular description of a preferred

embodiment of the invention, as illustrated in the accompanying drawings.

Brief Description of the Figures

FIG. 1 illustrates the elements of classic image generation.

FIG. 2 illustrates the elements of workstation image generation, given run-
time software.

FIG. 3A illustrates the conventional layered approach to game
development customized to a Playstation 2 platform.

FIG. 3B illustrates the conventional layered approach to game
development customlzed to a personal computer platform.

FIG. 4 illustrates the process for developing game content, according to
an embodiment of the present invention.

FIG. 5 illustrates the structure of the GAP, according to an embodiment

of the present invention.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

FIG. 6 illustrates an example of a block internal structure, according to an
embodiment of the present invention.

FIG. 7 illustrates the structure of a component, according to an
embodiment of the present invention.

FIG. 8 illustrates a distribution of blocks among a framework’s phases,
according to an embodiment of the present invention.

FIG. 9illustrates examples of stages executed in a single threaded process,
according to an embodiment of the present invention.

FIG. 10 illustrates a single ARK thread manager and its execution order
list, according to an embodiment of the present invention.

FIG. 11 illustrates concurrent execution of multiple ARK threads
comprising execution order lists, according to an embodiment of the present
invention.

FIG. 12 illustrates an example of an Earth view developed using the GAP
architecture, according to an embodiment of the present invention.

FIG. 13A illustrates the use by a software developer of existing features
supported by the GAP across multiple hardware platforms, according to an
embodiment of the present invention.

FIG. 13B illustrates the use of an application-specific feature added by a
software developer and supported by the GAP across multiple hardware
platforms, according to an embodiment of the present invention.

FIG. 14A illustrates the use by a hardware developer of existing features
supported by the GAP to allow utilization of the hardware platform by multiple
games, according to an embodiment of the present invention.

FIG. 14B illustrates the use by a hardware developer of features, specific
to the hardware, added by the hardware developer and supported by the GAP, to
allow utilization of the features by multiple games, according to an embodiment
of the present invention.

FIG. 15 illustrates a set of shaders, where a specific shader will be chosen

at run-time, according to an embodiment of the present invention.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

FIG. 16A illustrates an example implementation of the GAP architecture
as adapted to a PlayStation2 platform, according to an embodiment of the present
invention.

FIG. 16B illustrates an example implementation of the GAP architecture
as adapted to a personal computer platform running OpenGL, according to an
embodiment of the present invention.

FIG. 16C illustrates an example implementation of the GAP architecture
as adapted to a personal computer platform running Direct3D, where the personal
computer platform includes 3dfx and Nvidia graphics hardware and the Direct3D
microcode includes extensions, according to an embodiment of the present
invention.

FI1G. 16D illustrates an example implementation of the GAP architecture
as adapted to a PlayStation2 platform, where the PSX2 microcode includes
extensions, according to an embodiment of the present invention.

FIG. 16E illustrates an example implementation of the GAP architecture
as adapted to a Nintendo Dolphin platform, according to an embodiment of the
present invention.

FIG. 17 illustrates a game application template of process flow in one
example game, according to an embodiment of the present invention.

FIG. 18 illustrates a logical view of the invention, including user features
and standard GAP features in a context of an application graph and a scene graph.

FIG. 19 illustrates an alternative component implementation, showing the
associated resource requirements and the provided resources, according to an
embodiment of the present invention.

FIG. 20 illustrates an example framework application, according to an
embodiment of the present invention. o

FIG. 21 through 26 illustrate example blocks and graphs that connect
them according to the application development model, according to an

embodiment of the present invention.

PCT/US00/32160

10

WO 02/13002 PCT/US00/32160

-10 -

Detailed Description of the Preferred Embodiments

A preferred embodiment of the present invention is now described with
reference to the figures, where like reference numbers indicate identical or
functionally similar elements. Also in the figures, the left-most digit of each
reference number corresponds to the figure in which the reference number is first
used. While specific configurations and arrangements are discussed, it should be
understood that this is done for illustrative purposes only. A person skilled in the
relevant art will recognize that other configurations and arrangements can be used
without departing from the spirit and scope of the invention. It will be apparent
to a person skilled in the relevant art that this invention can also be employed in

a variety of other devices and applications.

10

15

20

25

30

WO 02/13002 PCT/US00/32160

-11-

I Overview

The invention described in the following sections is based on the concepts
of the software platform and the application framework. These ideas replace the
current graphical application structure, framework, or libraries with a new
framework defining the connectivity, features, and behavior necessary to
implement an image generator. All this takes place in the context of a software
platform utilizing an integration mechanism that dynamically integrates the
various real-time components in a run-time application.

This overview section is organized as follows:

A. Platforms and Frameworks
The Graphical Application Platform
Graphical application framework

Features of the GAP

m o 0w

Blocks, connections, and execution

1. Block Structure and Interface

2. Connections between Blocks

3. Packaging Blocks as Components
4. Block Execution Model

F. Extending the GAP

G. The World According to GAP

A. Platforms and Frameworks

A platform, as the term is used herein, is a complete environment for

_ executing programs. The most common platform is an operati_ng system along
with its system- and language-related run-time libraries. Applications like
EMACS, with low-level text managerﬁent facilities tied together in a user-
extendable manner by an internal Lisp interpreter, are evolutionary ancestors of
application-level platforms. To illuminate the differences between the approach

of the invention and its precursors, web browsers can be used as an analogy.

10

15

20

25

30

WO 02/13002

-12-

When packaged with scripting and programming extensions, modern web
browsers represent a platform for executing web page “programs.” Browsers are
also applications, and the distinction between application and platform is subtle
and often overlooked. The application part provides functions related to
networked paperless communication (HTML browsing and editing, electronic
mail, news reading, and so on), a graphical user interface, and navigation assists
like links to favorite web sites. The platform part consists of mechanisms to load
“programs” (fetching of HTML, Java, CGI scripts, etc.), standardized semantics
for the meaning of these programs, and a run-time “engine” that evaluates the
programs written in HTML, Java, and scripting languages.

Historically, browsers did not expose these two roles as separate aspects;
one could not make a web page, Java applet, or CGI script to redefine or extend
the browser’s GUI or other built in features, nor could an external developer
move the browser interface to a different HTML platform. What would change
had browser developers designed for such capabilities? They would have built
a “browser virtual machine” (BVM) that could fetch and execute HTML, Java,
and script languages; this would be the platform. Everyone would run it, but few
would know about it, because they would have built a “browser application”
identical to previous web browsers but implemented ,in modules of code
executable by the BVM; this would be the application that end-users would see
and all of the look-and-feel would be here. However, they would have built
mutability into the BVM, so developers could reshape every aspect of the
standard browser application, for example, to replace the “GUI module” with one
of their own, or extend the “HTML module” with new features.

Browser developers recognize these virtues and are moving to a platform-
and-framework approach to web browsing able to serve as the basis for
developing new applications that integrate HTML, JavaScript, and Java.
Providing this ability to extend and replace modules requires that the application
have a higher degree of flexibility and generality than is customary. A

framework, according to the invention, can be thought of as this type of

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-13 -

comprehensive but mutable application, rather than a construction set API from
which to build applications.

Contrasting two hypothetical Christmas tree kits illustrates this difference:

Construction Set. A sturdy tree, a box of lights, a box of ornaments, and
no hooks. Comes with instructions reading, “Go for it,” and photos of beautiful
trees.

Framework. The same tree with lights, hooks, and a few ornaments pre-
installed. The hooks allow attachment of whatever additional decorations are
made. Existing lights and ornaments can also be removed.

The framework allows independent developers to write modules relying
on common concepts in exactly the same way, and it minimizes development
because programming complexity is limited to the difference between the
standard and new applications. The construction set approach always requires an
effort proportional to the complexity of the resulting application. These synergies
are the virtues of the framework: it converts new development projects into
incremental efforts and encourages modules sharable with others. These notions,
platform and framework, are central to the software technique, described herein,
for developing portable, high-performance applications that access every bit of
hardware differentiation. When translating these concepts from browsers to the
real-time graphics domain, additional requirements not present in browsers must
be handled, such as time, synchronization, concurrency, and load management,

in order to implement a complete graphical application platform.
B. The Graphical Application Platform

The Graphical Application Platform (GAP) implements a platform for
graphical application development. Its breadth and extensibility allow
implementation ofadvanced real-time graphics applications that are both efficient
and portable. Its three major sections are:

Kernel. The Application Real-time Kernel, or ARK, is an application-

level real-time thread manager. It invokes code blocks according to a

PCT/US00/32160

10

15

20

25

WO 02/13002

-4 -

deterministic schedule listing the blocks to be executed by each of one or more
ARK threads running on each available CPU. A set of system infrastructure
elements is also built into the ARK. These elements dynamically load and unload
components, monitor block execution, and assist in thread management, memory
sharing, mutual exclusion, and synchronization.

Components. Feature implementations are packaged as executable
components that support a powerful negotiation-based resource allocation
scheme. Standard components implement concepts like display configuration and
position extrapolation and other features amenable to system-specific tuning like
morphing an object, advanced surface shading, direct I/O transfers, and universal
texture, terrain, objects, and cultural features. Components have portable
implementations that are rewritten for specialized hardware through arrangements
with hardware manufacturers. This structure and tuning scheme is the primary
“differentiated yet portable” mechanism of the GAP. Through it, application
developers focus on what and why and leave the how to the platform developers
and allied hardware partners.

Connections. Connections implement the flow of data between executable
blocks within or between the components. They affect one-way transport from
an upstream block to a downstream block—they provide the “plug board” to
change communication patterns—an essential task when inserting a new block
or replacing an old one. Consider, for example, a connection between one block
that traverses a graph to extract potentially visible objects and another block that
receives objects and draws them. It may be desirable to insert a new block, say
one to reject anything with an on-screen projection smaller than a given size,
between these two. Doing so means deleting the connection between traverse-
and-draw, and adding connections between traverse-and-reject and between
reject-and-draw. The ARK implements such run-time reconfiguration without

recompilation through efficient concurrency-aware connection facilities.

PCT/US00/32160

10

15

20

25

WO 02/13002

-15-

C. Graphical Application Framework

The GAP also provides a framework for graphical application
development. A complete graphics application can be provided, one that
developers can use directly or modify and extend as desired. By providing a
standard application, a common naming and structure framework is established
for derived applications—housing the mix-and-match flexibility in a very
concrete semantic context.

Although the design supports expansion to multiple CPUs and multiple
graphics devices, in practice this does not imply any overhead for smaller
configurations. The idea is to provide a structure that is just more fully populated
in advanced configurations. The framework application provides the common
overarching structure for a broad class of graphical applications—a structure built
of blocks that can be removed, replaced, and extended, and with connections
between blocks that can be disconnected and reconnected, exposed and hidden.
This allows a developer to reshape as much of the GAP framework as deemed
necessary to implement a custom application while leaving the system logically
intact and, if desired, extensible by others. It also means that developers need only
understand as much of the GAP as they change.

The application framework defines several phases, each of which
corresponds to a potentially concurrent thread of execution. Components are
partitioned between these various framework phases. The GAP architecture
provides automatic detection of parallel access to data for correct pipelined
execution. This feature provides independence from the hardware architecture
while enabling transparent, yet efficient, parallelism at all levels of
implementation. This GAP capability can greatly reduce development time for

complex, multi-threaded applications.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

- 16 -

D. Features of the GAP

GAP features are organized in four groups. The kernel provides access
to hardware resources and public data structures. Standard platform features
implement tasks commonly used in applications. Market-oriented features
address concepts of particular domains. And application-specific features offer
uniqueness to a particular application.

Application Real-time Kernel (ARK). Includes process management,
threads of execution, and physical resources like processors, graphics pipelines,
displays, texture memory, frame buffer memory, and system memory; mutual
access exclusion, explicit data sharing, and implicit data privacy; high-precision
counters, timers, and, time of day clocks; asynchronous file-system operations
and memory transfers; and run-time component loading and unloading.

Standard Platform Features. Includes input device management; .
morphing, interpolation, deformation, and evaluation; spatial audio processing;
activity logging and replay; configuration file parsing and evaluation; coordinate
system processing, including precision management and articulation graphs; and,
paging of objects, textures, materials, and sounds.

Market-Oriented Features. These are the standard concepts of an
industry. For basic visual simulation, this includes a universe model supporting
ephemeris time; geo-referenced temporal positioning; solar system object position
and appearance; visualization of the star-field and constellations; height above
terrain, line of sight intersection, multi-point terrain following, object
intervisibility determination, and collision detection; an atmospheric model with
patchy layered fog, horizon haze, scud clouds, dynamic cloud volumes, and
directional horizon glow; special effects for rain, sleet, snow; and many other
features.

Application-Specific Features. Elements that extend or reshape the
framework into a particular application. For example, this can include motion

models, command line processing, environment variable processing, graphical

PCT/US00/32160

10

15

20

25

WO 02/13002 PCT/US00/32160

-17 -

user interface customization, and, application-specific database loading and
decoding logic.

Together, the ARK and standard features define the Graphical Application
Platform (see Figure 5), which when combined with one or more market-oriented
feature sets, defines a comprehensive development and deployment platform.
GAP-based developers use these features, those from market-oriented collections,

and custom application-specific features to implement their applications.
E. Blocks, Connections, and Execution
1. Block Structure and Interface

Blocks are the basic elements of the GAP framework, defining the
"atoms" of interactive visual computing. They are the basic unit of execution
within the GAP and are end-points for input and output linkages. Once built,
blocks are bound into an application (or to an encapsulating block) by
constructing connections between its input and output points and compatible
points on other blocks. A block does not know the identity of the blocks that
provide its input or that of blocks that connect to its output. Data specified in the
block interface definition allows the ARK to implement this run-time dynamic
connection facility for compiled blocks invisibly and efficiently. Block contents
are shown in FIG. 6 and consist of the following elements:

Input connection points 605. Names are used when making connections,
both internally and externally. Types may be compound data structures, in which
case access can be to “member of name” in addition to the aggregate “name.”

_ Output connection points 610. Output points correspond to public state
elements derived from intrinsic objects. Access to these internal objects is
provided to other blocks that are connected to the corresponding output points.

Private state elements 615, containing block instance data.

10

15

20

25

30

WO 02/13002

- 18 -

Standard functions 620. Standard functions, such as construct (), destruct
(), and initialize() to provide object lifetime services and an evaluate () function
that implements the processing of the block.

In one example, most blocks are implemented in natively compiled and
optimized assembler, C, and C++ code (hence our performance-oriented battle
cry, “Write once, compile everywhere.”) Others, known as compound blocks, can
be expressed purely by weaving simpler blocks together as a processing graph.
These reticulations define links into and out of the block and linkages from the
block’s input and output to and between internal blocks, and are defined and

implemented with simple scripts.
2. Connections Between Blocks

Connections link blocks together. They are essentially a means to specify
the arguments for subroutine invocation through a general connection topology
that allows changes to the connection topology after the functions have been
compiled. A single connection can be established from each block input point to
a compatible output point of any other block.

Many properties of connections are explained by visualizing them as one-
way pipelines where data flows from an internal data member (derived from an
intrinsic-object) through an output point of one block-the producer-downstream
to an input point of another-the consumer. Connections are created at run-time
and can be made and broken during execution. For example, moving an eye point
through a scene may cause the geometry-paging feature to load a new animation
component along with newly paged geometry. The incoming animation block
would need to be attached to the camera position and the connection would be
made as described above. Once connected, the camera position data is available
to the newly loaded block when the internal accessor functions associated with
the block’s input points are invoked.

By maintaining this dataflow model irrespective of concurrency mode, the

ARK offers coherent access to data shared between concurrently executing

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-19-

blocks; allows sporadic generation and consumption of data between blocks that
operate synchronously at different rates or asynchronously; and, offers temporal
coherence for processing pipelines with several multi-megabyte frames of data

being processed simultaneously.

3. Packaging Blocks as Components

Components are the highest-level objects in the GAP environment. They
are factories for generating new collections of blocks based on an iterative global
resource allocation process that chooses between logically identical alternates that
typically have very different physical realizations.

Components are designed to prudently answer questions of the following
form at run-time:

“What should be added to the framework to insert
a particular feature, given a specific hardware
configuration and constraints on available
resources?”

This question is difficult as it depends on both local and global
information:

Locally, one of several available implementations of a feature may be
chosen based on constraints, such as the availability of hardware or other
resources. See Figure 7. Globally, one implementation may be preferred over
another in order to avoid overuse of a critical resource or to optimize based on
application preferences, such as image quality or rendering rate.

Each alternate implementation has a list of resources, such as system
memory, texture memory, CPU requirements, and data-transfer bandwidths that
are required to successfully instantiate the particular implementation and
information used to reduce these requirements when a resource negotiation is
necessary and possibly expand the requirement when resources are abundant.

Components may also introduce new resources into the system. See
Figure 19. Each alternate implementation includes a list of resources provided

by that alternate. New resources also have resource negotiation information,

PCT/US00/32160

10

15

20

25

WO 02/13002

-20 -

supporting supplier-side bargaining in subsequent negotiations over the new
resource.

After the components in an application have been identified, each is asked
about its resource requirements; the answer is the list of the alternate
implementations and their required resources. Aggregating these requirements
specifies our run-time multidimensional resource allocation task.

When a single solution exists, the chosen alternative is communicated to
each component which then instantiates the corresponding implementation with
links into and out of the component becoming links into and out of the blocks of
that implementation.

When more than one combination of alternative implementations fits
within resource constraints, then the chosen configuration is based on weighting
parameters contained in the component definitions and evaluation equations
provided by the application developer. This preferred solution is then
communicated with the components which instantiate the chosen alternatives and
link them into the framework.

If resources are over-subscribed then there is no direct solution, and the
system enters a negotiation phase in which each block is asked which of its
resource requirements can be reduced and what the penalty would be for making
such atrade-off. Typical examples would be texture memory resources that could
be reduced by one-fourth at the penalty of blurry images and system memory
resources minimized by incremental paging rather than fully pre-loading data at
the expense of extra CPU utilization and data transfer bandwidth consumption.
This negotiation continues until an acceptable configuration is reached.

The resource allocation process assures that no component’s
implementation is instantiated unless all necessary resources are available and
that an appropriate decision about which of several alternatives is chosen in

response to available resources.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

221 -

4. Block Execution Model

Returning to Figure 8, after resource negotiation is completed, the blocks
comprising the application are distributed among the framework’s phases as
specified in the component definitions. This results in phase lists each containing
zero or more blocks. For example, the database-paging phase list will be empty .
if an application does not include the standard database-paging component. Each
non-empty phase list defines a potentially concurrent phase of the application.

- Phases that are not empty are mapped to stages of execution. Stages are
a collection of phases that the ARK executes in a single thread, as shown in
Figure 9. The resulting stages of execution are prepared for execution by
generating a deterministic execution order list that arranges the pair-wise block
orderings imposed by connections into a total ordering of the blocks in the
phase’s block list. The execution order list resulting from phase to stage
processing is an input to the ARK and evaluation of such lists is primary ARK
activity. In the sequential execution environment, a single ARK thread
continuously iterates over the execution order list selecting and executing some
or all of the blocks during each pass. The ARK supports cases where blocks run
at different or relatively prime rates, as in Figure 10, which represents a single
ARK thread manager and its execution order list.

Concurrency support within the ARK handles multiple threads on a single
processor (termed multi-threading or multi-programming), a single thread on
each of multiple processors (multi-processing), and arbitrary combinations of
these modes. In concurrent execution, there are multiple ARK threads T, through
T, each with its own block execution order list (EOL), as shown in Figure 11.

_Converting the flattened application graph into multiple lists will
generally cause connections between some of the blocks to span an ARK thread
boundary-with the upstream and downstream blocks in different lists- which has
significant implications for shared data; a case handled invisibly by the ARK to

the great benefit of application developers.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-2

F. Extending the GAP

Both standard and user-developed GAP features are designed and
implemented as components, and as such, they enjoy an unusual degree of
flexibility énd potential impact: they can replace existing components, replace
individual blocks within components, change existing connections, insert
themselves between existing blocks, and define the areas of desirable coﬁcurrency
with each of their alternate implementations. Each of these tasks is performed
openly by labeling the actions, impacts, and resource implications, as opposed to
the anonymous “tree decoration” model of the scene graph. Completeness in the
GAP extension model guarantees that any component can be added to almost any

GAP-based application. Components will negotiate for their needs, and the ARK

- late-integration process will globally adjust the application based on the

requirements of the newly inserted components while honoring the preferences
defined in the application.

Consider the “universal texture” feature of the GAP as an example of the
extension process. The desire is to provide an application with texture images of
enormous extent, such as a centimeter-resolution representation of the earth’s
surface as a single 10,900-terabyte-texture map. This technique has many
practical advantages, including decoupling texture paging from geometric
subdivision to afford the capability to use the same database on different
hardware platforms, as Cosman (1990) first described in the context of what
became the Evans & Sutherland ESIG-4000 image generator, where it is known
as global texture.

The universal texture component implements its task in a three step
process: moving data from disk or across a network to main memory, moving
data from main memory to graphics device texture memory, and using view
information and the downloaded textures on a per-frame basis to implement the
universal texture concept. The GAP implementation separates these steps into
several potentially concurrent phases, each with several blocks interconnected

using ARK connections, and all characterized based on resource requirements and

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-23-

preferences. The implementation uses highly efficient direct I/O for disk
transfers, uses main-memory as a texture-cache that handles cache update
complexities at the International Date Line and the poles, and redefines texture-
processing details as needed to implement universal texture semantics. When this
component is inserted into a GAP-based application, it correctly provides the
universal texture feature without requiring update or recompilation of other
modules and does so across a range of graphics hardware.

Hardware vendors offering special features useful for implementing
universal texture (e.g., E&S global texture unit, SGI Clip-map hardware, SGI
UMA visual workstations, S3 texture compression modes, etc.) can replace the
standard GAP implementation with one that accesses differentiating features of
the hardware. Such vendor localizations define more than graphics; they also
specify concurrency models and application structure to suit their implementation
based on issues like texture load latency and interactions with other components
as resolved during negotiation.

Applications using the universal texture feature, such as the EarthView
image shown in Figure 12, inherit vendor-specific tuning when they are executed,
demonstrating how hardware developers can greatly increase the adoption rate of
their new features since even previously released GAP-based application software

requires no modification or re-release to access the benefits of new hardware.

G. The World According to Gap

The GAP architecture brings anew implementation technology to the real-
time visualization marketplace that separates vertical application-level features
from their implementation environment. This separation expands the modularity
of graphics and multimedia applications by untangling the previously intertwined
tasks of application development, content development, and hardware
development, as follows:

Decoupling of Applications and Content. The GAP makes applications

largely independent of content, since behavioral modules packaged with content

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-24 -

by model builders can provide portable behavioral definitions. Semantic bridges
between modeling tools and the GAP ensure that the personality displayed by
active content within modeling tools matches that shown when the content is used
in GAP-based real-time software.

Decoupling of Content and Hardware. The GAP environment separates
content-level designs from hardware-level expressions of those decisions. Its
structure allows the development of content based on standard definitions of
intent that are tuned to each hardware platform not by the content developer, but

by the hardware vendor through porting and tuning of standard GAP components.

Decoupling of Hardware and Applications. The GAP removes the
dependence of application developers on unique hardware characteristics,
allowing application development for a “virtual” visualization platform rather
than a particular hardware and operating system combination. Conversely, the
GAP allows hardware vendors to integrate unique characteristics of their
hardware into pre-existing applications, easing vendor concerns about attracting

applications to their special hardware features.

II. GAP and ARK

A. Platforms and Frameworks

Developers speak of platforms when they port software, commonly by
saying “I moved my application to the Windows platform” or “it is available on
the PowerPC platform,” a definition too loose to serve our purposes. When the
term “platform” is used herein, it means a self-contained environment for
executing some type of program. The most common platfor is an operating
system along with its system- and language-related run-time libraries.
Applications like EMACS, which provides low-leve] text management facilities
tied together in a user-extendable manner by an internal Lisp interpreter, are

evolutionary ancestors of application-level platforms. The type of platform

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-25-

described herein is different from applications like EMACS and traditional
operating system platforms. To illuminate the differences and the motivations for
these differences, put aside the topics of 3D graphics and spatial audio aside for
a few moments and think about platforms and frameworks in the web browser
space where the concepts are self evident.

In the Javasoft Java environment, the Java virtual machine (JVM) is the
platform for executing Java byte-codes. Combining the JVM with standard Java
classes in byte-code form creates a platform for Java applications. In a similar
sense, Netscape and Microsoft’s Internet Explorer both contain a platform for
executing HTML. When packaged with scripting and programming extensions,
these browsers represent a platform for executing web pages within the context
of the browser application. In the operating system context, programs and shell
scripts replace HTML pages and the operating system is the platform.

Browsers are also applications, but the distinction between application and
platform is subtle and often overlooked. Netscape the application provides
functions related to networked paperless communication (HTML browsing and
editing, electronic mail, news reading, and so on), a graphical user interface, and
navigation assists like links to favorite web sites. The platform aspect of Netscape
consists of mechanisms to load “programs” (fetching of HTML, Java, CGI
scripts, etc.), standardized semantics for the meaning of these programs, and a
run-time “engine” that evaluates the programs written in HTML, Java, and
scripting languages. Historically, Netscape’s browser products did not expose
these two roles as separate aspects; one can’t make a web page, java applet, or
CGI script that redefines or extends the browser’s GUI or other “built in” features
nor could a user move the Navigator browser interface to a different HTML
platform - but what if Netscape had designed for that capability?

1. They would have built a “browser virtual machine” that could

fetch and execute HTML, Java, and script languages; this would
be the platform. Everyone would run it, but few would know

about it, because...

PCT/US00/32160

10

15

20

25

30

WO 02/13002 PCT/US00/32160

226 -

2. They would have built a “browser application” that was identical
in function to Netscape Navigator but implemented in modules of
code executable by the BVM; this would be the application that
end-users would see and all of the look-and-feel would be here,

except...

(98]

They would have built an “extend and replace” capability into the
BVM, so developers could reshape every aspect of the standard
browser application, for example, to replace the “GUI module”
with one of their own, or extend the “HTML module” with new
features. '

Both Netscape and Microsoft recognize the importance of this approach.
Each has announced support for a platform and framework approach to web
browsing that can serve as the basis for developing other applications that
integrate HTML, JavaScript, and Java. Microsoft now provides a browser that can
have its user interface replaced, accept plug-in modules that redefine standard
features, and serve as a plug-in module to support HTML rendering within other
applications. The design and structure of the competing platforms are quite
different:

-- Netscape’s approach is to be a complete browser platform within an

operating system independent application. They use the CORBA

component-programming model and their CORBA implementation is

written in Java.

-- Microsoft’s Internet Explorer and the Internet Explorer Application Kit

relies on Windows operating system services for key features in the fight

to define their operating system as the platform for browsing. IEAK uses

the COM component programming model and COM-based ActiveX

components.

-- Sun’s Java takes a third view, positioning a their programming

language as the universal platform. They include operating system

functionality in the language’s run-time environment and mandate every

10

15

20

25

30

WO 02/13002

-27 -

feature necessary for browsing (AWT, Java2D, Java3D, etc.) as inherently

available elements in their interpreter.

Providing the ability to extend and replace modules requires that the
application be built with a higher degree of flexibility and generality than is
customary. An “application framework” is defined to be precisely this type of
mutable application. Note that the application framework is explicitly intended
to be a complete application (though perhaps with dormant capabilities) that
already does the general thing in a standard way, rather than a construction set
from which an application could be built. The difference between the two
approaches can be made clear by contrasting two Christmas tree kits:

1. Construction Set: A sturdy tree, a box of lights, a big box of
ornaments, and no hooks. Comes with instructions reading, “Go
for it,” and photos of beautiful trees (demos ;-).

2. Framework: The same tree with lights, hooks, and a few
ornaments pre-installed. The hooks allow you to attach whatever
additional decorations you make. (You can also remove the lights
and ornaments.)

In a sense, this is only a matter of degree, but it is an important concept:

The framework provides a structure so that independent development
teams can “talk about” (write modules relying on) common concepts in exactly
the same way. It also means that development is eased because programming
complexity is limited to the difference between the standard application and the
new application. When the standard application provides the majority of common
features, then this difference is low. The construction set approach always
requires a programming effort proportional to the complexity of the resulting
application. These virtues define the synergy of the framework; it converts new
developments into incremental ones and encourages modules that can be shared
with and licensed to others.

When these concepts are translated from browsers to our real-time
graphics world, itis a good match, although several demanding issues that are not

part of the browser analogy must be handled. These issues include time,-

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-28 -

synchronization, concurrency, and performance management. The notions of
platform and framework are the basis for the invention described herein, and
enable portable, high-performance, media-rich applications that use every bit of
differentiation provided by hardware.
The implementation of the platform and framework concepts described
herein results in two major differences from other platforms.
-- First, by designing for performance before compatibility, many of the
complexities faced by the CORBA and COM component interfaces are
avoided. In particular, since each of these seeks domination over the
other, they attempt to support each other’s components through a foreign-
function interface: COM-based applications like Internet Explorer can
include CORBA components and CORBA-based applications like
Netscape can include COM components. Such compatibilities come at
significant expense in terms of performance and complexity. Here, no
external compatibility is needed. The interface model can be structured
to best fit application goals and the underlying implementation.
-- Secondly, multi-threading is supported as an intrinsic feature of our
platform. The component interface is designed to be a partner (along with
an application-level real-time kernel) in efficiently implementing invisible
concurrency. This is in contrast to 'COM and CORBA which are not
thread-safe themselves unless serializing locks wrap each entry point and
which leave concurrency issues to component builders.
These differences distinguish the GAP from other middleware

frameworks.
B. GAP as Application Platform

Referring to Figure 13A, a GAP implements a platform for graphical
application development. An interesting percentage of targeted applications are
expressible within the facilities supported by the GAP in combination with new

capabilities that can be added to the GAP by application developers in the form

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-29.

of extension modules called blocks. The “platformhood” of the GAP results from
this structure:

Kernel. The Application Real-time Kernel (ARK), an application-level
real-time thread manager. The ARK invokes blocks according to a schedule
listing the blocks to be executed by each of one or more ARK threads running on
each available CPU. A tiny set of system infrastructure elements accompanies
(and in some cases is built into) the ARK. These elements dynamically load and
unload components, monitor block execution, and assist in tasks like thread
management, memory sharing, mutual exclusion, and, synchronization.

The ARK provides a modular framework that can best be thought of as an
efficient configurable real-time performance-centric graphics virtual machine
definition and execution framework. The ARK is designed to manage the flow
of data and to schedule all of the processing of graphics processes. It is the smart
glue that digests an application piece by piece understanding the structure and
intent, and then managing that intent efficiently and robustly in a real-time
manner. Although designed to be as thin and light as possible, the ARK get its
power from arobust application definition semantic which was designed from the
beginning to correspond to an efficient run-time implementation. The ARK
makes application definition (including data flow and processing scheduling)
explicit and modular. It abstracts the interface between modular code segments
with highly efficient data interfaces rather than slower functional interfaces -
separating processing and data flow. It forces developers to explicitly define and
relate each code module to the overall application machinery allowing vertical
feature development of components of the machine. These components are

developed quickly and independently with current programming methodologies

(such as c/ct+) - the ARK has little or no direct influence over developer’s use

of their standard programming methodologies. Thus, the ARK defines, in effect,
anew feature level driver model for the entire application. This new application
driver model inherently provides automatic re-configurable multi-thread multi-
process multi-buffer data management of single threaded code modules

(necessary for truly re-configurable multi-threaded apps). The ARK, although it

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-30 -

manages all data that flows between system modules, is data structure agnostic
and will allow for and manage run-time extension of user-defined data structures
even across multiple developers. In summary, the ARK provides the ability to
define an application from its code modules, data structures, and data flow --
while providing everything necessary to act as an efficient run-time kernel
enforcing definition-time semantics (via control of data flow and module
scheduling).

Blocks. Everything about the ARK is implemented using blocks that are
grouped into replaceable components supporting a novel and powerful
negotiation-based interface definition. The term “module” is a general reference
to the three types of blocks, simple blocks that perform a computation, compound
blocks that connect internally instantiated blocks, and super blocks that are a
connected network of simple and compound blocks. Components are special
meta-blocks; they are “block factories” that deliver a collection of super blocks
at the completion of a resource negotiation. In addition to system-related blocks,
numerous standard feature-level components are provided with the GAP. These
elements implement commonly used features (opening a window, interpolating
a quaternion, broadcasting a position), features that are amenable to system-
specific tuning (morphing an object, bump-mapped surface shading, direct I/O
transfer), and features that we believe will distinguish GAP-based applications
(universal texture, terrain, objects, and culture). The blocks themselves are
implemented portably in reference code, and are specially tuned for specific
hardware through arrangement with hardware manufacturers. This structure and
tuning scheme is the primary “differentiated yet portable” mechanism of the
GAP.

Connections. Blocks are linked by one-way connections that represent the

flow of data from the upstream block to the downstream block. Connections are

critical elements of the design as they provide a “plug board” to change

. communication patterns which is an essential task when inserting a new block or

replacing an old one. Consider, for example, a connection between a component

that traverses a graph to extract potentially visible objects and a component that

PCT/US00/32160

10

15

20

25

30

WO 02/13002

231 -

receives objects and then draws them. We want to be able to insert a new
component, say one to reject anything with an on-screen projection smaller than
a given size, between these two. Doing so means deleting the connection between
traverse and draw and adding connections between traverse and reject, and
between reject and draw. This is supported without recompiling any blocks
through the special run-time connection facilities of the ARK.

Natively compiled and optimized code (Assembler, C, C++, etc.) can be
supported as the primary implementation mode for block development. The
native code approach limits portability compared to pure interpretation, but there
is a need for speed. Blocks are portable to the degree of compiler compatibility
so block developers may need conditional compilation or alternate
implementations on different platforms.

The GAP support of natively compiled modules and language-
independent interface definitions means that developers can use the skills and
code they have already developed when building applications for the ARK.

Some blocks can be expressed purely by weaving other blocks together
into a processing graph. These types of blocks are called “compound blocks” as
opposed to the “simple blocks” that perform processing. Developing a
connection-only block means defining links into and out of the block and the
linkages from the block’s input and output to and between the internally
instantiated blocks, which can be done through the scripting language or a special
lightweight connection parser. Such reticulation blocks can be handled without
the need for run-time block code by automatically collapsing each “link-to-a-link”
into a single link, or equivalently by considering a compound block as a macro
that is expanded before use.

It may be desirable to implement a block using a scripting language when
processing duties are light or infrequent. Interpreted scripts provide guaranteed
portability across GAP implementations irrespective of compiler variations. The
plan is to create a flexible scripting mechanism (primarily handling non-

deterministic actions like mark-and-sweep garbage collection and marshalling

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-32-

arguments into and out of the interpreter) so that various languages can be

supported by the same infrastructure.
C. GAP as Application Framework

The GAP also provides a framework for graphical application
development. It is a graphics application that developers can use directly or else ‘
modify and extend as desired. This application will provide an unusually capable
interactive graphics viewer that can be distributed to end-users. Application
developers can reshape the application by adding custom blocks and replacing
some of the standard ones before shipping their GAP-based products. By
providing a standard application, a common naming and structure framework is
established for derived applications; mix and match flexibility is then imbedded
ina c;oncrete context.

Conceptually, the framework application is designed in the following
manner. First, the class of applications that the GAP will address is considered.
This includes graphics-rich games and interactive entertainment, traditional visual
simulation, real-time applications in video and film production and on-air
broadcast, and advanced geo-spatial information systems used in mission
rehearsal; hardware configurations ranging from one to eight CPUs and one to six
graphics pipelines; and the Windows 98, Windows NT, and Unix-like (IRIX,
Solaris, and Linux) operating systems. Next, these applications are examined to
find a general structure that could address the union of their needs. The resulting
structure defines a unifying application framework, which must then be
segmented into potentially concurrent phases of execution. Key features within
the framework are then expressed as standard components. The component
definitions along with the blocks that comprise them define the standard blocks.

| Exerting the effort to find a common substrate across application domains
and levels of hardware sophistication means that the GAP will provide a natural
home for advanced features as they migrate to lower-cost, higher-volume

platforms.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-33-

Although the design supports expansion to multiple CPUs and multiple
graphics devices, this does not imply overhead for smaller configurations. A
structure can be provided that is more fully populated in advanced configurations.
Several important characteristics are emerging during the design of the
framework application that may be indicative of designing for the GAP in
general. Here is a summary:

-- In an embodiment of the invention, the design employs smart high-level
data structures as buffers between data flows in various parts of the
application, mostly in the form of smart caches where data are reused
across a span of renderings. In block form, these structures have a small
control interface and implicit internal processing. Examples include the
object graph, articulation graph, atlas and index maps, object, image, and
audio caches, and, command and classification and bins.
--Early processing components are generally asynchronous between both
themselves and the back end, while the back end stages are simpler and
run synchronously at the image computation rates.
--Most connections are local to a phase. There are two major exceptions:
linkage to some of the lower-level GAP standard blocks occurs
everywhere but seems easy with respect to concurrency, and a few
linkages trave] from near the front of the block graph to the near the end,
short circuiting asynchronous execution and pipelining between the
endpoints.

As a framework, this application provides the common overarching
structure for a broad class of graphical applications-- a structure built of blocks
that can be removed, replaced, and extended, and with connections between
blocks that can be disconnected and reconnected, exposed and hidden. This
allows a developer to reshape as much of the GAP framework as necessary to
implement an application while leaving the rest of the system intact and
extensible by others. It also means that developers must only understand and

touch as much of the GAP as they need to change.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-34 -

This is illustrated in Figures 13A and 13B. Figure 13A shows graphics
software using a feature provided by the ARK, facilitating execution on either of
multiple hardware platforms. In contrast, Figure 13B shows graphics software
using a feature that is specific to the application, facilitating execution on either
of multiple hardware platforms.

Note that this flexibility is also available to hardware developers, as
illustrated in Figures 14A and 14B. In Figure 14A, a developer of a hardware
platform uses a feature provided by the ARK, so as to allow different software
programs to execute on the platform. Figure 14B, in contrast, shows the case
where the hardware developer uses, instead, a device specific feature, so as to
allow different software programs to execute on the platform.

Figure 15 illustrates the availability of different features that perform an
analogous function. Here, the function is that of shading. A generic shader is
available; in addition, different shaders are can also be developed and employed
by different graphics software. Likewise, still other shaders are can be employed
for different hardware devices.

Figures16A and 16B illustrate the logical relationship between the ARK,
the application, and two hardware platforms, Playstation2 and a personal
computer, respectively, in an embodiment of the invention. Each shows how
features, i.e., extensions, can be created by either the software developer (in order
to leverage attributes of the hardware), or by the hardware developer (in order to
leverage attributes of the software). These figures also show how tools such as
C++ can be used to facilitate development of software. Figures 16C through 16E
and 18 further illustrate the logical relationship between various software
platforms and the GAP.

Figure 17 shows these relationships from the perspective of data flow
during execution. An application is shown producing output objects and scene
graphs. In the embodiment illustrated, the hardware is eventually accessed via

GAP microcode.

PCT/US00/32160

WO 02/13002 "PCT/US00/32160

-35-

D. Understanding the GAP

Before describing the framework application, the components, phases,
blocks, connections, and execution semantics, the major elements of the GAP

from the framework and application developer’s point of view are considered.
L. Blocks

Blocks are the basic elements of the GAP framework and define the
“atoms” of interactive visual computing according to the present invention. The
term “module” is a general term meaning any of the three classes of blocks:
blocks, super blocks, and components. Blocks are built by:

-- Creating a GAP block interface definition using a code generation tool,
by editing a standard template, or by coding. This definition specifies the
type and name of each input and output connection point and every
function, which collectively characterize the interface that the block
presents to other blocks.
--Binding compiled procedures or interpreter input scripts to the required
executable elements of a block. These procedures include a constructor
function, an initialization function, a destructor function, and a single
procedure as the implicit computation of the block. The block
initialization function allocates internal data using special ARK data
allocation functions. In an embodiment of the invention, only literal
values and dynamically allocated data types derived from intrinsic objects
can be accessed over connections.

--Once built, blocks are linked into an application or to a higher-level

block by constructing connections between its input and output points and

compatible points on other blocks.

Executable block content can be C or C++ code interspersed with

references to special variables or functions that are in fact references to the data

10

15

20

25

30

WO 02/13002

-36-

output by other blocks. Sometimes a block contains several other blocks
connected into a processing graph. These are termed “compound blocks” and the
internal nesting in their definitions is supported to any finite depth. In the future,
executable block content may also be scripts in whatever scripting language or
languages are supported.

Blocks are the atomic unit of execution within the GAP, and are the level
where input and output linkages are attached. The details of connections are
presented later, but it is important to understand that in an embodiment of the

invention, a block does not know the identity of the blocks that provide its input

-or that of blocks that connect to its output. Data specified in the block interface

definition allows the ARK to invisibly and efficiently implement this run-time
dynamic connection facility for compiled blocks.

What defines a block? In one example, shown schematically in Figure 6,

a block includes the following elements:

1. As mentioned previously, each block has a set of zero or more
input connection points. Each input point has a name and a type.
The name is used when making connections to the block and
internally as the name by which data available through the input
is referenced. The types may be compound data structures
represented by C or C++ structures, in which case access within
the block can be to “member of name” in addition to the aggregate
“name,” though the syntax for this is currently undecided.

2. Blocks have a set of zero or more output points, each of which
also has aname and type. These names must be distinct from each
other and from the input names within the block. Each output
point corresponds to either an internal data member of the block
that is derived from the intrinsic object base class and allocated at
run-time or to a member of such an object. Access to these
internal objects is provided to other blocks that are connected to

the corresponding output points.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-37-

3. Blocks may have a set of internal intrinsic objects that are not
shared via the output points as well as a set of other internal
objects not derived from the intrinsic object base class. Objects
that are not derived from the intrinsic object base class may not be
shared through connections, and only objects derived from the

block base class can have connections.

Finally, each block can contain one or more functions. The constructy(),
destruct(), and initialize() functions provide object lifetime services while the
evaluate() function implements the processing of the block. In natively compiled
blocks the ARK invokes it via subroutine call whenever the block is to be
executed and in interpreted blocks a registered interpreter is invoked with the

body of the evaluation function as the function definition.

2. Standard Blocks

As shown in Figure 5, the taxonomy of GAP blocks has three broad
families: blocks that implement the ARK and GAP infrastructure, blocks that
represent global resource managers for hardware and public data structures, and,
blocks that provide application-level features. Features are further subdivided
based on the breadth of their developer audience: standard blocks that are usable
in many applications, market-oriented blocks for wide use within particular
industries, and application-specific blocks implementing the details of a particular
application. Figure 5 illustrates this segmentation diagrammatically. The ARK-

related infrastructure and resource manager blocks are not shown; they are

‘included as elements of the ARK itself.

Here are representative blocks of each family and audience:

1. Infrastructure. Manage processes, threads of control, and physical
processors. Implement the block interface semantics. Provide
mutual access exclusion, explicit data sharing, and implicit data

privacy. Implement time of day clocks and high-precision real-

PCT/US00/32160

10

15

20

25

30

WO 02/13002

PCT/US00/32160

-38-

time clocks, counters, and timers. Perform data movement, such
as memory transfers and asynchronous disk access. Support
dynamic binding by loading and unloading components during
GAP execution. Efficient low-level parallelism-aware queue,
stack, list, and array data structures. High-level public data
structures, including the scene graph, the working set, and the
image cache.

Resource Managers. Access and allocation of physical resources
like multiple processors, graphics pipelines, display channels,
texture resources, frame buffer storage, and memory. Report data
about capabilities, capacities, status, and performance.
Standard Features. Abstract device management for human input
devices, such as keyboards and joysticks. Attribute morphing,
interpolation, deformation, and evaluation. Spatial audio
processing. Activity logging and playback. Configuration file
parsing and evaluation. Coordinate system processing, including
precision management and catenation. Culling of sounds, visuals,
intersections, and animation. Implicit database paging of objects,
shapes, textures, materials, and sound.

Market-Oriented Features (basic visual simulation subset).
Universe model supporting ephemeris time; geo-referenced
temporal positioning; solar, lunar, and planetary position and
appearance; and, visualization of the star-field and constellations.
Height above terrain, line of sight intersection, multi-point terrain
following, collision detection, and object intervisibility
determination. Atmospheric model with patchy layered fog,
horizon haze, scud clouds, dynamic cloud volumes, directional
horizon glow, rain, sleet, snow, and underwater effects.
Application-Specific Features. These are the blocks that a
developer writes to reshape the GAP into a particular application.

For an “Earth View” demo, this would include motion models,

10

15

25

WO 02/13002

-39.-

command line processing, environment variable processing,
graphical user interface customization, application-specific
database loading and decoding logic, the splash screen, and the
ability to spawn a browser for linkage to a web site.

The ARK and standard blocks together are the GAP; the GAP, when
combined with an industry’s market-oriented blocks, defines a market-oriented
development and deployment platform; and, finally, the GAP along with zero or
more sets of market-oriented blocks and a custom collection of application-
specific blocks, defines a complete application.

The GAP implements a new level of program reuse between applications
by providing a very high level structure to define the interrelationships between
application components that can then be automatically “reconfigured” at run-time
to produce an executable application that is well-tuned and structured for the
details of the hardware platform. This allows hardware-related blocks such as
those related to graphics, video, audio, computation, and, networking to be
substituted by hardware providers via feature-level “device drivers” allowing the
fielding of real-time applications that are both portable and differentiated. This
is a significant advantage for application developers building advanced graphics
applications for PC and other diverse hardware platforms, including cable set-top
boxes and enhanced televisions.

Consider the infrastructure, resource, and standard blocks to be the initial
instruction set of the “GAP virtual machine” or the system services of a “GAP
operating system.” Market-oriented blocks extend this core instruction set by
adding the features of our target markets. They are packaged separately but are
used in exactly the same way. Blocks representing features and resources are
woven together with connections to form the framework application that
developers can modify and extend. This modification process is discussed later,

after the linkage between blocks has been explained.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-40 -

3. Defining Block Interfaces

Interfaces are the “cell wall” separating a block or component from the
outside world. They are a public definition of a block’s input and output
connections that serve as named targets for connection construction. They also
specify functions within blocks. Interfaces are typed and types must match for
connections to be made. For type-safety and data integrity, each input and output
point also has a specific type that a potential connection must also match for the
link to be consummated. Output points also privately specify the identity of data
internal to the block that is accessed by links to the output point. Input points
specify (either explicitly or implicitly) what local variable or accessor function
corresponds to reading and writing data flowing into a block via an input
connection.

Macros can be used to access block inputs so that block construction and
ARK implementation can proceed while further consideration of interface
implementations is conducted. This macro approach also allows alternative
techniques to be tested without requiring blocks to be rewritten. This macro
approach allows different data binding mechanisms in different GAP

implementations.
4. Connections Between Blocks

A single connection can be established from each block input point to a
compatible output point of any other block.
1. The word “single” in this definition means that fan-in cannot be
specified at an input attachment point. _
2. “Compatible” refers to interface compatibility and data type
compatibility. The interface definition names (or identifiers) must
match and the endpoint data types must match. A character string

output cannot be connected to a floating-point input, for example.

PCT/US00/32160

10

15

25

30

WO 02/13002

-41 -

3. Finally, allowing “any” output point as a destination means that

arbitrary fan-out at output attachment points is supported.

It was mentioned earlier that components were super-block "factories" and
can be used where blocks are used. In the connection context, the difference is
that components can only be connected to resources, which are blocks advertised
as designated connection points for components. Many properties of connections

are explained by visualizing them as one-way pipelines where data flows from an

internal intrinsic-object-derived data member through an output point of one

block, the producer, downstream to an input point of another, the consumer. An
alternate view interprets connections as access by a downstream block to the
internal data of an upstream block. This approach more clearly expresses the
capabilities, limitations, and semantics of the connection architecture.

Connections are created at run-time and can be made and broken during
execution. For example, moving an eye point through a scene may cause the
geometry-paging feature to load a new animation component along with newly
paged geometry. The incoming animation block would need to be attached to the
camera position resource and the connection would be made as described above.
Once connected, the camera position output data from within the block owning
that information is available within the newly loaded block when the internal
accessor functions or representative variables associated with the block’s input
points are respectively invoked or accessed.

Together, blocks and connections provide the special abstraction required
for building the GAP. They implement a means to specify the arguments for
subroutine invocation through a general connection topology that allows changes
to the connection topology after the functions have been compiled. They also
support efficient transport of data along connections by exchanging indirection
handles rather than copying data. '

What happens behind the scenes is much more sophisticated than it may
appear at first glance. Presenting blocks with this clean dataflow programming

model above an arbitrary multiprocessing topology is the fundamental design

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-4 -

constraint within the ARK. Much of the complexity in the ARK and the object
model underlying all GAP-related data types exists to create the illusion that
connections work as described above while being extremely efficient and
supporting:
--Coherent access to data shared between concurrently executing blocks.
--Seemingly sporadic generation or consumption of data between blocks
that operate asynchronously or synchronously at differing rates.
--Temporal coherence for time-serialized processing pipelines where
megabytes of data must appear to flow through connections with several

frames of data in-flight at once.

Making and breaking connections between blocks can be infrequent
events while the amount of data accessed over connections can be in the hundreds
of megabytes per second, so an implementation should always prefer faster
accesses even at the expense of slower connection construction.

Connections are a critical element of the GAP environment. They are the
mechanism through which blocks can maintain efficient communication while
supporting flexible reconfiguration of the interconnection topology at and during
run-time. This facility is the basis of “run-time application optimization through
reconfiguration” which is provided to GAP-based application developers through

add-on blocks provided by software developers and hardware manufacturers.

5. Packaging Blocks as Components

Components are the highest-level objects in the GAP environment. They
represent a factory for generating new collections of blocks based on an iterative
global resource allocation process. They are designed to wisely answer questions
of the following form: “what should be added to the standard framework to insert
a particular feature, given that I have a particular hardware configuration and

constraints on available resources?”

PCT/US00/32160

10

15

20

30

WO 02/13002

- 43 -

This is a difficult question to answer because it depends on both local and
global information. Locally, several available implementations of a feature may
be chosen based on constraints, such as the availability of hardware or other
resources. Globally, one implementation may be preferred to another in order to
avoid overuse of a critical resource or to optimize based on application
preferences, such as image quality or rendering rate. For example, if features A
and B can be implemented using either more memory or more processing, then
one implementation of each would be chosen so that total memory use and total
CPU use both fit within available resources with the particular choice based on
resulting frame rate.

Components are the packaging of implementation wisdom in a computer
selectable bundle. They are what enable developers to reuse previously written
software in new applications with confidence that the right “variations” will be
made in the implementation of reused features.

Structurally, a component is a container for one or more alternate
implementations of a feature. This highest-level representation is illustrated in
Figure 7, where the list of alternate implementations is indicated.

Associated with each alternate implementation is a list of resources, such
as system memory, texture memory, CPU requirements, and data-transfer
bandwidths that are required to successfully instantiate the particular
implementation and information used to reduce these requirements when a
resource negotiation is necessary and possibly expand the requirement when
resources are abundant. Components may also introduce resources into the
system, and so each alternate implementation includes a list of resources provided

by that alternate. Each newly created resource also has resource negotiation .

information; this information supports the supplier-side bargaining in subsequent

negotiations over the new resource. Finally, alternate implementations contain a
list of super blocks. The super blocks are the actual implementation. Each is tied
to a particular phase of execution in the application framework and provides a list
of blocks to be executed in that phase. Figure 19 diagrams the contents of a single

alternate implementation.

PCT/US00/32160

10

15

20

25

30

WO 02/13002 PCT/US00/32160

-44 -

After the components in an application have been identified, eachis asked
about its resource requirements; the answer is the list of the alternate
implementations and their required resources. Aggregating these requirements
creates a multidimensional resource allocation problem that is solvable if at least
one configuration of alternates fits within system limits.

-- When a single solution exists, the chosen alternative is communicated
to each component which then instantiates the corresponding
implementation with links into and out of the component becoming links
into and out of the blocks of that implementation.
-- When more than one combination of alternative implementations fits
within resource constraints, then the chosen configuration is based on
weighting parameters contained in the component definitions and
evaluation equations provided by the application developer. This
preferred solution is then communicated with the components which
instantiate the chosen alternatives and link them into the framework.
-- Ifresources are over subscribed then there is no direct solution, and the
system enters a negotiation phase in which each block is asked which of
its resource requirements can be reduced and what the penalty would be
for making such a trade-off. Typical examples would be texture memory
resources that could be reduced by one-fourth at the penalty of blurry
images and system memory resources minimized by incremental paging
rather than fully pre-loading data at the expense of extra CPU utilization
and data transfer bandwidth consumption. Negotiation continues until an
acceptable configuration is found whereupon the components instantiate
the proper alternative implementations with reduced resources, or if there
are too many “strong-willed” components in a constrained environment,
until we find that no solution exists. In this dire case, either a component
is removed and the process restarted, or the process exits.

The resource allocation process assures that no component’s
implementation is instantiated unless all necessary resources are available and

that an appropriate decision about which of several alternatives is chosen in

10

15

20

25

30

WO 02/13002

- 45 -

response to available resources. For example, in an embodiment of the invention,
the universal texture component will have one implementation that relies on a
“clip-map” resource, provided only in SGI implementations, and one that does
not; in the first case the implementation can take advantage of clever SGI
InfiniteReality hardware, and in the other a general software version will be
employed.

Components may also introduce resources into the system. In some cases
these new resources manage physical resources but in others they will represent
attachment points for other blocks. For example, if a morphing component is
attached, it would be useful to also advertise just-before-morphing, morphing,
and, just-after-morphing attachment points so that other components may attach
to these whenever morphing is in use. As a subtlety, note that such “component
on a component” attachments only make sense when the first component is
present; this means that it is not always a problem if a component is not loaded
because of a missing resource. It may just mean that a planned-for contingency

did not materialize in the application’s configuration.
6. Phases and Stages of Execution

The application framework defines several phases of execution, which
correspond to threads of potentially parallel execution. Each alternate
implementation within a component is comprised of one or more super-blocks,
each associated with a single phase of processing. Super blocks may also define
new phases, such as a morphing phase in the case of the previous example. As the
super blocks of the selected alternate implementation of each active component
are instantiated, they are associated with the specified phase as well as being
linked to resources by connections.

The result of instantiating the desired components is a list of phases.
Associated with each phase is a list of zero or more super blocks. Many of these
lists may be empty. For example, the database-paging phase list will be empty if

an application suppresses the standard database-paging component without

PCT/US00/32160

10

15

20

30

WO 02/13002

- 46 -

defining a replacement. Each non-empty phase list defines a potentially
concurrent phase of the application. These phase lists are indicated in Figure 8
with respect to one example application framework.

Phases that are not empty are then mapped to stages of execution. Each
execution stage represents a collection of phases that the ARK will execute in a
single thread. The stage structure is shown in Figure 9. Algorithms for producing
the phase-to-stage mapping are known in the art, and range from the simple “all
phases mapped to a single stage for single-threaded sequential execution” to the
“each phase mapped to an independent stage for maximal concurrency.”

The resulting stages of execution are then prepared for execution by
generating an execution order list that arranges the pair wise block orderings
imposed by connections into a total ordering of the blocks in the phase’s block
list. The ARK, as described later, iterates through these lists and invokes the
evaluation() function of each referenced block.

Stages provide a simple expression of a very complex notion: multiple
“main loops of control” within a single application that execute at different rates

while still reading and updating shared data.

7. Sequential and Concurrent Execution

Preparation to execute an ARK-based application includes loading the
components listed in the application manifest. The manifest lists each of the user-
developed, third party, and market-oriented blocks needed at the top-level of the
application. After loading, these components participate in the resource
allocation, implementation instantiation, and phase-to-stage mapping processes
described previously. Compound blocks consisting exclusively of links to other
blocks are recursively expanded by instantiating their sub-blocks and links and
making the connections indicated by their definitions. At the conclusion of these
tasks, the definition of each stage of application execution has been produced;
each with a block execution order list and a corresponding set of blocks and

constructed connections.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

_47 -

The execution order list resulting from this preprocessing is an input to the
ARK and the evaluation of such lists is the basic task of the ARK. Figure 10
indicates this structure with a single ARK thread manager executing an execution
order list.

In the sequential execution environment, a single ARK thread
continuously iterates over the execution order list selecting and executing some
or all of the blocks during each pass. Partial execution is for cases where blocks
run at different rates. For example, if some run at 60Hz and some at 30Hz, the
ARK would iterate at 60Hz but choose the 60Hz blocks all of the time and the
30Hz blocks half of the time.

Simple blocks represent the finest-grain of potential concurrency from the
developer’s point of view, but as described above, it is actually the execution
order lists that are the true atomic elements of execution. This results from the
fact that each block is referenced by a single block execution order list and it is
blocks, rather than particular functions within blocks, that are scheduled by the
ARK and executed by a potentially concurrent ARK thread.

Concurrent execution is a more sophisticated case where there are
multiple ARK threads each with its own block execution order list, as indicated
by Figure 11. Supported concurrency modes include multiple threads on a single
processor (known as multi-threading or multi-programming), a single thread on
each of multiple processors (which is termed multi-processing), and arbitrary
combinations of multi-programming and multi-processing.

In concurrent execution there are multiple independent block execution
order lists, one per ARK thread. Converting the flattened application graph into
multiple lists will cause some of the connections between blocks to span an ARK
thread boundary, with the upstream and downstream blocks in different lists,
which has significant implications for shared data. This case is invisible to block
developers but not to those who design and implement the ARK since extra
behind-the-scenes work is required to properly handle this situation.

Neither the links between blocks or the presence or absence of data on

such links drives or inhibits the execution of blocks. Block execution is controlled

PCT/US00/32160

10

15

20

25

WO 02/13002

- 48 -

exclusively by the execution order lists, which are made either before or during
execution and which can change during execution. There is a significant
distinction between the “data flowing over dynamic connections between blocks”
structure of the GAP and the “execution controlled by presence of data at block
inputs” nature of pure dataflow architectures. The GAP is more like an
“embedded application-level operating system” that executes blocks by following
one or more block execution order lists produced by a scheduler block (or by
static analysis prior to execution.).

The GAP provides the ability to write programs that automatically and
efficiently expand to use available processing resources without developers
needing to explicitly architect for concurrent execution. It also provides
concurrency with a real-time orientation. These are powerful and unique
advantages of the GAP compared to other platforms and programming

environments.

8. The Framework Application

Figure 20 shows the preliminary structure of an example graphics
application framework according to the present invention. The flow of data starts
in the distinguished block labeled “View Definitions” and continues through the
system toward the input and output devices. The diagram does not label the
processing phases, but they correspond roughly to the darkly outlined blocks.
Neither does the drawing include the standard active terrain, object morphing,

behavior animation, and human input device management components.

III. Application Development

PCT/US00/32160

10

15

20

25

30

WO 02/13002

- 49 -

A. Application Graph

The Application Graph is the fundamental expression of an application
and/or pieces of an application to the Application Real-time Kernel. The ARK
uses this graph to execute the application as if it were a virtual machine based on
the data and processing flow described in the graph. This application graph
consists of processing blocks, data interfaces, and data connections. Organizing
the application in this way is in many ways orthogonal to normal object-oriented
programming model. The ARK does not dictate the data structures used
throughout the application nor the implementation of the processing components.
However, it can force developers to define more of the application explicitly and
thus enables the kernel to manage the data flow and processing of the application
- making many optimizations inherent in understanding the application in its

entirety (at this level of design).
B. Components

The ARK also defines a packaging and run-time management semantic
for the process of inserting functionality into the application graph. This semantic
is based on the notion of a component. Components are feature level packaging
of functionality. The ARK contains not only the current application graph it is
responsible for executing, but a run-time definition dictionary of processing
elements and interfaces that can potentially be used in the application.
Components are able to extend existing definitions and add new definitions to
this run-time dictionary. Components also will eventually be used to negotiate
resources such that they can control how they insert themselves into the system

based on what resources are available to them. Correspondingly, the ARK’s run-

* time resource management and performance monitoring is broken down based on

these same feature-level components. The ARK allocates all resources with
regard to the component requesting making the request. The ARK also tracks the

Components usage of those resources (memory, time, processing, bus bandwidth,

PCT/US00/32160

10

15

20

25

WO 02/13002

-50 -

et cetera). Thus to the kernel, components are much like processes are to a
complete operating system - they are the granularity of resource
allocation/monitoring. However, because of the knowledge of how the
components interact (via the application graph), the ARK kernel can act as amore
intelligent component moderator. Instead of having very little knowledge of a
bunch of unrelated tasks, the ARK has a very detailed knowledge of how many

components fit into a specific overall application structure.
C. Component Dictionary

Because the ARK must maintain the overall understanding of modularly
written and configured applications, it maintains a complete dictionary of
application graph concepts. This dictionary is able to define segments of an
application based on several distinctive structures that make up the ARK
application graph. These structures include processing blocks, data interfaces,
data connections, and data objects. The definitions of these structures must
themselves be modular. In fact, developers of the ARK-based application
machines are strongly urged to define their application by laying out data
interfaces and connection points within an abstract ‘basis’ processing block. This
type of design and development dictates that partial definition, extension, and
encapsulation are key concepts that the dictionary needs to address.” The ARK
needs to be able to assemble all of the structural definitions, partial extensions,
full extensions, and functional replacements into clearly understood application
graph definitions. Further, it needs to allow these application definitions ;to be
configured in interesting ways at ai)plication run-time. Thus dictionary operations
include the definition of simple blocks, data interfaces for blocks, connections

connecting blocks of like interfaces, compound blocks, and basis blocks.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-51 -

D. Processing Blocks

1. Blocks in General

Processing Blocks contain atomic processing that happens within
the application graph. Processing blocks have input fields, internal storage fields,
and output fields. Input fields are, in general, read-only and are updated
automatically by the ARK. Internal storage fields are read/write and are updated
only by the block itself (in general) via normal c++/c field access. Output fields
are just shadows of either input fields or internal storage fields such that the ARK
can manage propagation of the outputs without direct interaction with the block.
The only communication between blocks is via its inputs and its outputs.
However, blocks also are able to interact with the ARK’s resource manager to
negotiate over resources used within the block. Such resources include block
processing time, memory allocation, bus utilization, and other resources that are
defined in the Resource section of this semantic definition.

Blocks define several functional interfaces. These interfaces consist
mainly of initialize, initializeOutputs, reset, and evaluate functions. The ARK
uses the initialize function to have the block allocate it resources. It uses the
initializeOutputs function to have the block define to the ARK the storage for the
block’s output fields. It uses reset to reset the internal state fields of the blocks
to a well-defined default. It uses the evaluate function to have the block perform
its processing - processing based on its inputs and current internal state fields.

Block scheduling is performed by the ARK. This schedule must be
simple and deterministic but can be related to the data available at
ports/connectors. Most blocks are scheduled by simply linearly walking from the
inputs of the current application graph (which is hierarchical) through the
application graph, scheduling blocks whenever their inputs have refreshed
‘enough’ data. The concept of ‘enough data’ is defined by the inserting
component that relates the block’s scheduling to data availability at the block’s

inputs when inserting the block into the graph. This level of scheduling allows

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-52.

for looping constructs, work lists with chunk sizes, and straightforward pass
through execution; however, it does not allow for arbitrary scheduling based on

recursion or stack based block execution.

2. Simple Blocks

Simple blocks are the leaf processing nodes in the application graph
hierarchy. Simple blocks have an evaluation function that is executed whenever
the ARK schedules the block. Simple blocks are merely scheduling points for
processing of typed data flowing through its inputs and outputs.

3. Compound Blocks
Compound blocks are a self-contained section of an application graph that

is encapsulated into one block. This means that the block has as its inputs the

inputs of the graph contained within it. It has outputs corresponding to the

outputs of its contained graph. From the level above, a compound block can be

scheduled just as a simple block - atomically, based on data availability at its

inputs.
4. Basis Compound Blocks

Compound blocks also contain name space. This name space is used to
create data hitch points for data flowing within the compound block. These data
hitch points are named inside the compound block and provide a plug-in
mechanism for components to add functionality to a block that has a predefined
‘basis’ structure. Any compound block can become a basis block by adding
named connectors to its internals. These connectors are important as they define
the semantic for the compound block itself in terms of the data and processing
flow. They also provide potential buffering making the configuration of
processing, scheduling, and configuration largely orthogonal to the

implementation and design of the processing blocks themselves. The idea here

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-53-

is to put the power in the hands of the original developer of the basis block who
is defining how the compound block will function and what types of extensions

it can handle.
5. Phases

Compound blocks that plug directly into the overall application (the
highest level compound block) are called phases and are just specialized basis
compound blocks. Phases are singled out in the system of compound blocks for
several reasons. First, they provide the level of desired configuration granularity
of the overall application. Second, they provide the desired level of plug-in
granularity for components wishing to extend or replace application-level
features. Third, they currently act as the level of granularity with which the ARK
can use threads - each phase can be configured to map to an individual thread if

necessary.
6. Stages

Stages are groupings of phases that are mapped to a particular thread. At
one extreme, there will be a one-to-one mapping between phases and stages,
making ultimate use of available processors and underlying context switching.
At the other extreme, there is only one application stage - this one executes all of
the application phases based on the same simple scheduling algorithm defined for
compound blocks. Stages essentially contain a main loop of synchronization,

communication, and conditional execution of the phases.
7. Block Summary

Blocks are used to describe atomic processing that happens within an

- ARK-based application. The scheduling of the processing is done explicitly

based on ARK semantics. This is very different from the implicit cooperative

stack based control flow used in most application developed with current

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-54 -

programming systems. The explicit nature of ARK-based processing leads to far
more deterministic applications in terms of real-time interactivity and
performance. It further allows for several optimizations based on a high level
understanding of the intent of the application.

Blocks are fundamental building blocks of the ARK.. They are themselves
hierarchically defined. This definition yields to a view of an application as a
recursive compound view of a processing structure with inputs and outputs. The
entire application is, in this way, one large compound block with inputs and
outputs. Further, the application is broken into functionally separable pieces with
well defined interconnects (Phases). Theses separable pieces are compound
blocks themselves can be configured and instanced in interesting ways. Further,
these separable pieces are themselves compound blocks with their own structure

defined in terms of processing and data flow.

E. Data Interfaces

1. General Description

The ARK dictates that all communication with the application happens
via explicitly defined data interfaces. These data interfaces differ substantially
from the stack based functional communication mechanism provided by most
current programming systems. Data interfaces are access to typed data where the
‘provider’ of the data on the interface (a processing block) and the ‘user’ of the
data (another processing block) do not directly interact or have knowledge of each
other. Yet, despite this ‘abstract’ data interface blocks are able to be connected
directly (in implementation) and are often able to expose internal data without
passing that data on a stack via a virtual or non-virtual function call. This type
of fast direct access is only manageable because of the ARK knowledge and
scheduling of processing blocks within the overall graph.

Designing an ARK based application should start with the definition of

its data interfaces. In normal functional programming, code modules are broken

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-55-

apart and functional programming interfaces are defined to abstract their
interaction. In object-oriented applications, this abstraction is further broken
down according to the nature of individual ‘objects’ within the overall application
and how those objects can interact with each other abstractly. In ARK
applications, rather than defining the application based solely on its functional or
object structure, the application is described in terms of the data interfaces
available at various places in the overall application structure. These interfaces
represent the interaction points of system and, although they describe data flow,
provide an inherent structure for the processing blocks that will connect to the
interfaces. Once again, this level of description takes the flow of data out of the
implicit realm of individual system objects or modules and makes it explicit and
configurable at a higher level. In effect, these interfaces allow for applications
objects/modules to hook into interfaces in many different parts of the system
while still interacting in a way semantically consistent with the overall application
structure. Thus, data interfaces provide an overall feature driver model for entire
applications. Individual components of the system interact across agreed upon
data interfaces while understanding only the data interface itself and caring

nothing of the block or blocks on the other side of the interface.

2. Pins

The ARK defines the applications data interfaces at several levels. The
lowest level of data interface definition is called a pin. Pins are defined to
represent access to an atomic field being sent or received by a block (coming
from or going to another block). Pins therefore provide a data interface
corresponding directly to fields within intrinsic objects (integer, float, object
handle, vector, et cetera). Pins are separated into two types - inputs and outputs.
An input pin must be connected to an output pin or its value is undefined. Input
pins are accessed much like internal fields during a block’s evaluation. In fact,
the basic notion is that the ARK assures that a block’s input pins all contain valid

data when the block executes. Output pins have slightly different semantics

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-56-

however. Output pins must have corresponding fields in the block or one of the
block’s contained objects. The ARK is responsible for passing on output pin
values without interaction from the block. This means the ARK must have a field

to output pin mapping for each output pin. To summarize, when a block

executes, the ARK makes all of the block’s inputs valid and available. When a

block finishes executing, the ARK conceptually pushes the block’s outputs across
to other inputs that are connected to them. In implementation, this merely means
that the ARK allows other blocks connected to this block’s outputs to sample

those data values at semantically appropriate times.
3. Ports

Pins can be grouped together to form a description of a higher level of

data interface called a port. Ports are hierarchical in nature and provide a

polymorphic type system for complex pin groupings. Ports are defined as a list

of pins and other ports. Ports are first defined via a port type system before port
instances are created. This allows for standard port types to be defined and used
by multiple developers who seek to attach their individual processing blocks via
a standard interface. These port typés can also be used by Connectors (defined
later) to have not only a standard interface but also a standard point in an
application where that interface exists and has particular meaning. Port
definitions are run-time extensible and are polymorphic. Ports merely represent
a way of hierarchically grouping pins together in a standard way - much like

creating standard sockets in the hardware world.
4. Pin/Port Interactivity

Pins and ports are normally simple and automatic. The ARK is

responsible for propagating data from output pins/ports to connected input

- pins/ports. The propagation normally happens automatically inside of the ARK

and what minimal setup the ARK does is carried out in internal ARK wrapper

PCT/US00/32160

10

15

20

25

WO 02/13002

-57-

functions that surround a block’s evaluation. However, the ARK does allow for
‘interactive’ ports/pins to be defined. Interactive ports/pins are able to ask the
ARK to ‘pull’ new data in for processing or ‘push’ data out for processing. This
interactive push/pull semantic allows the flexibility to create blocks that interact
with the application or each other in a more fine grain way. It is important to note
that interactive pins/ports require special much more expensive data buffering and
can only be used by ports that are connected to special buffered Connectors that

will be described later in this section.

5. Data Connections

Data Connections are connections between one block’s input pin/port to
another block’s like-typed output pin/port. The ARK provides only one type of
connection - the simple connection. Simple connections provide safe direct
access of an abstract interface between two blocks. Simple connections represent
simple data flow via a copy by value semantic between two pins/ports. However,
the implementation of simple connections is better described with an electrical
analogy. In this analogy, inputs are really connected electrically to another
block’s outputs. Thus when block B’s input is connected to block A’s output,
block B’s port effectively sample the actual data in block A when it samples its
input pin. This is only safe because the ARK makes sure that block A and B are
only executed in a semantically consistent fashion and even takes care of multi-
buffering block A’s data in the case where A & B are evaluated in different

threads.

0. Data Connectors

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-58 -

Simple Connectors

Connectors are hub-like hitch points for data. There are two types of
Connectors. Simple connectors act like a dual sided port that exists inside of a
compound block separate from any of the blocks that will connect to it. The
important thing about simple connectors is that they provide pre-defined name
space for components to be developed independently and still interact. When
components add functionality to a basis block, they do so by inserting blocks and
connecting the ports of those blocks to pre-existing connectors. Thus, the
connectors provide the overall structure of the compound block and define the

interfaces that intrinsic developers will use to communicate.

Buffered Connectors

Buffered connectors provide not just structural name space, but also
provide extra semantics for data flowing through them. Buffered connectors are
able to support both fan-in and fan-out of data flowing through them. Further,
buffered connectors can be used as work queues and data routers. Buffered
connectors allow for much more interesting data hub connection points that allow
much more modular and configurable application components. They also provide
even more definition for the structure of the application as expressed to the ARK.
However, buffered connectors have run-time cost. Buffered connectors must
have storage for the data that they buffer. Further, they must support several
simple data filtering and routing optioﬁs to allow application phases to be
extended, replaced, and configured in interesting ways. Buffered connectors are

useful for allowing fan-in by sequentially providing each data element to the

downstream block. Buffered connectors are also useful because the ARK allows

blocks to be scheduled based on the number of elements available in the
connector’s buffer. Thus simple looping constructs can be implemented for high

level pieces of work/functionality. This also allows processing blocks to be

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-59.

simplified to work on set of inputs while the ARK will schedule them iteratively
based on inputs available in the current configuration. Buffered connectors are
also especially useful for event-driven multi-threaded (cross Phase) inter-block

communication.
7. Data Interface Summary

Data Interfaces are fundamental to the ARK. They allow code modules
to interact efficiently inside of a real-time application using an abstract interface.
The lowest level interfaces are atomic field interfaces called pins. Pins can be
grouped into a hierarchically typed structure known as a port. Pins and ports from
different blocks can be connected together via simple connections. Connections
are semantically simple in that they act as pass-by-value data connection. Data
Interfaces can exist separately in the application as name space - such an interface
provides symmetric input/output typed data and is called a connector. Special
buffered connectors allow for more advanced data interaction between processing

blocks while still expressing the intent of the application to the ARK.
F. Object Design Language (ODL)
1. ODL Overview

The ODL, according to the present invention, lets developers describe the
structure of their programs in a simple, straightforward way. This high level
description can be used to realize the program in a way that achieves a higher
performance than the mainstream languages and functions on multiple hardware
and software platforms.

Libraries, applications, and the objects contained within them are
expressed in the ODL. The state information in the objects is expressed in an
abstract way so that memory and data transfer can be managed using methods that
are tuned for a particular platform. In addition, information can be provided

through the ODL to enable other kinds of optimizations.

PCT/US00/32160

10

15

20

25

WO 02/13002

- 60 -

The ODL, in the embodiment described herein, uses the syntax of the
Scheme programming language because it can describe arbitrarily complex
structures in a straightforward way , it is easily extended with new semantics, it
is readable by humans (provided it is reasonably formatted), and it is easily and
quickly parsed by the computer. Also, it is familiar to many programmers and is

supported by most text editors.

2. Glossary

A glossary for terminology in this section is provided here.

Object: An entity that contains state information, which is comprised by
encapsulated fields of different types. Depending on the types of fields an object
contains, it can be connected to other objects, flow between objects in a dataflow
program, be manipulated by a procedural program (written in C/C++), etc.

Object Element: A part of an object. An object element typically has a
name and holds state information of a certain type. The different kinds of
elements are shown below.

Interface: An element that is used for input or output of data into or out
of an object.

Field: An element that holds state information of a certain type.

Basis: An element that defines an object (the "basis object") to be used
as the basis, or foundation for extensions. The object acquires all the elements
of the basis object.

Extension: An element that defines an object (the iextension objecti) to
be added. The object acquires all the elements of the extension object and hooks
its connections to the existing connectors.

Connector: An element that exists for the sole purpose of acting as a
place to make connections. Connectors are typically used inside objects that can
be used as bases; their purpose is to establish fixed points for extensions to

connect to.

PCT/US00/32160

WO 02/13002 PCT/US00/32160

-61 -

Connection: An element that serves as the connection for the transfer of
data between two objects. A connection connects a source of data (a field or an
object output) to a consumer of data (an object input).

Series: A special kind of connection that connects in iseriest with a

5 connector. The purpose is to allow the data that flows through the connector to
be processed in multiple, independent ways.

Block: An object that has at least one input and/or output element and
thus can be connected to other blocks in a dataflow program. A block that
contains only an evaluate function is referred to as a "simple block." All others

10 are called "compound blocks" because they are internally comprised of other
blocks.
3. Dataflow Object Syntax

In this section, curly brackets denote values to be filled in. Square
15 brackets denote items that are optional. An asterisk denotes zero or more of the

items preceding it.
General Syntax

20 All ODL keywords are case-insensitive. Object names, however, are not
guaranteed to be case-insensitive because some languages (notably C and C++)
are case-sensitive.

Scheme-style comments are supported: A comment consists of all

characters between a semicolon and the following carriage return.

25
Object References
There are two types of object references: a limited (normal) object
reference (ObjectRef) and a complete object reference (ObjectCRef).
30 The ObjectRef operator lets an object definition reference another object

definition. Only the public elements of the referenced object can be accessed.

10

15

20

25

30

WO 02/13002

-62 -

The parameters to ObjectRef may include any number of the referred-to object's
properties. The ObjectRef operator resolves the reference and replaces itself
with the object definition identified by the parameters.

The following example identifiers the iAdder block.
(ObjectRef (Block (Name 'iAdder)))

The ObjectCRef operator works like ObjectRef except that it allows
access all elements of the referenced object, not just the public elements. This is
normally only used with basis and extension elements.

The ObjectCRef operator violates encapsulation, and will probably go
away in the future, when we re-implement the way basis and extension elements

are resolved.
Type Specifier

An object type specifier can specify either a built-in type, or an object

definition.

A small number of built-in types is supported for building complex

objects. A built-in type is specified using the Type operator.
(Type {iBool | iInt | iFloat | iPointer})

For all other object types, the object definition is specified. Since most object
definitions are defined in one place and referenced by their identifiers, the
ObjectRef operator is usually used. However, if an object definition is used in
only one place, it can appear "inline."

Inline object definitions are not fully supported yet.

Independent of what type of object is used, a type specifier can state that
the data exists either locally or remotely. A local objectis one that is instantiated

Jocally. A remote object is one that exists at another place (inside another object,

PCT/US00/32160

10

15

20

25

30

WO 02/13002 PCT/US00/32160

-63 -

for instance) and is referenced. The Pin operator can convert any type specifier
to one that is remote.

Remotely accessed objects are typically used in input, output, and
connector elements of objects.

Examples

An integer:
(Type 'iInt)

An iAdder block, using an ObjectRef operator:

(ObjectRef (Block (Name 'iAdder)))

An iAdder block, inline:

(Block (Name 'iAdder) (Input (Name 'left) (Type 'iInt)) cel)

An integer, accessed remotely:

(Pin (Type 'ilInt))

An iAdder block, accessed remotely:

(Pin (ObjectRef (Block (Name 'iAdder))))

4. Object Syntax

Depending on the elements it contains, an object can be a simple state

container that flows through a dataflow program, or it can be a block that can be

connected into the program.

10

15

20

25

30

WO 02/13002

- 64 -

A state container typically contains fields and functions, whereas a block
contains inputs, outputs, internal blocks, connectors, etc. Since any object can
contain any elements, there isreally no sharp distinction between a state container
object and a block.

Ablock's implementation can be made up of a network of internal blocks

and fields connected together by wires, as well as an "evaluate" function that can
perform computations. A block can also contain connectors, to which series
connections (typically used in extension objects) can be connected.
There are two ways to implement a block. The first way is to explicitly specify
a collection of internal blocks, fields, connectors, and connections. The second
way 1is to use a basis element and zero or more extension elements. In the latter
case, the implementation of the basis object is combined with that of the
extension objects, forming a new implementation.

Basis elements can also be used to implement the traditional inheritance

of object properties. See the Basis section below for more information.
Object Identity

All object definitions must contain a list of unique identifiers, which,
when taken together, uniquely identify the object definition. The list of unique
identifiers is specified by the Identifiers property. If the Identifiers property is
not present, the object is identified solely by its Name property.

(Object
(Identifiers 'Name 'Author)
Name 'Transmogrifier)
g

(Author 'Calvin)

PCT/US00/32160

10

15

20

25

WO 02/13002

-65 -
Interface: Inputs and Outputs

Input and output interfaces are specfied by the Input and Output
propel'tieé. Each has a type specifier, which states the type of data that flows into -

or out of the input or output.
Fields

State information is stored in fields. Each has a type specifier, which
states the type of data that stored.

The Value property specifies the initial value of the field. It is used only
with the basic types (int, float, etc.) that have no built-in default values.

The Owned property only applies to fields that are Intrinsic objects. If set
to true, the object will be managed (instantiated, deleted, etc.). By default, it is
set to true.

The Reset property specifies how the field's value is to be reset. The
default is Value, which means it is set to its initial value when it is reset. If set

to None, nothing is done to reset its value. [Other settings not yet implemented.]
Evaluate Function

The implementation of the evaluate function is specified using the
Implementation property. The code can either be specified inline (using the
Code property) or in a file (using the File property). Ifthe file property is used,
the name of the file is optional. If no name is specified, the name is automatically
generated. If the file does not exist, it is automatically generated.

Additional code that is called by the evaluate function need not be
identified in the ODL program; it only needs to be present in an accessible library

at runtime.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

- 66 -

Connectors

A connector is specified using the Connector property. Connectors are
typically used in blocks that are intended to be used as basis objects. The purpose
of the connectors is to allow extensions to automatically connect themselves to
the right place in the basis block's dataflow program.

Data flows through a connector. The connector exposes the stream of data
so that extensions can tap into it. The data can be modified as it passes through

the connector using series connections (see the Series section below).

Internal Blocks

Internal blocks, which make up part of an objectis implementation, are
specified using the Bloek operator. As with fields, a type specifier is required to

state the type of object to use.

Functions

A function is specified using the Function operator.

At the present time, only C++ functions are supported, and they are only
callable from C++ code.

A function has a name, a language, a return value, and any number of
parameters. For C++ functions, the parameter order must also be specified.

The language is specified using the Language operator. There is no
default value, so every function must have a language property. Supported
languages: C++.
The return value is specified using the Return operator. Parameters are specified
using the Parameter operator. All parameters and the return value must have a
type specifier. Parameters must be named; for C++ functions, return values do
not have to be named. The parameter order is specified using the

ParameterOrder operator.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-67 -

Examples:

This function takes two integer parameters and returns a floating point

value.

(Function (Name FixedToFloat) (Language C++)
(Return (Type iFloat))

(Parameter (Name HighBits) (Type iInt))
(Parameter (Name LowBits) (Type iInt))
(ParameterOrder HighBits TowBits)
(Implementation (File)))

Connections

A "wire" between two internal blocks or connectors is specified using the
Connection property. The wire's properties (what it connects to) are specified
using the From and To properties.

The From property specifies where the input end of the wire is connected.
Data flows into this end of the wire. The To property specifies where the output
end of the wire is connected. Data flows out of this end of the wire.

The From and To properties each specify the location of an interface
element to be connected. They must be compatible with each other; i.e., they
must carry same data type. They each have either one or two parameters. If there
is only one parameter, it identifies an interface element (input or output) or
connector of the block to which the connection belongs. If there are two
parameters, then they specify an interface element of an internal block; the first
parameter is the internal block name and the second parameter is the interface
name.

If a connector is identified in the From or To property of a connection
within an extension, it should contain an extra element to specify whether it is

identifying a connector in the extension or in the basis block. This is done by

PCT/US00/32160

10

15

20

25

30

WO 02/13002

- 68 -

adding either "(basis)" or "(extension)" in the general form of the identifier. See
the last example below.

Examples:

This connection wires the block's Left input to the X input of internal

block A:

(Connection (From 'Left) (To 'A 'X))

This connection wires the R output internal block A to the input of internal

connector B:

(Connection (From 'A 'R) (To 'B))

This connection wires the RGB output of internal block C to the block's Color

output:

(Connection (From 'C 'RGRB) (To 'Color))

This connection exist within an extension. It wires the Sum output of the

extension's internal block D to the basis block's connector C:

(Connection (From 'D 'Sum) (To ((Name 'C) (Basis))))

Series Connections

A series connection is a special type of connection that is used in
conjunction with a connector.

If you want to perform a computation on the data that flows through a
connector, you can specify the computation using a series property. The
computation is inserted into the flow of data at the connector such that the data

flowing into the connector is processed, producing new data at the output of the

PCT/US00/32160

10

15

20

25

30

WO 02/13002

- 69 -

connector. Using multiple series elements, any number of independent
computations (i.e., computations that have no knowledge of each other) can be
inserted in series at the connector.

The order in which they are inserted is unspecified at the present time,
since it may depend on information not yet available, such as performance
characteristics of the inserted blocks.

A series property contains three distinct elements:

I. A Connector element that identifies the connector where the

computation is to be performed.

2. A From element that identifies a data source where the new

connector data comes from.

3. Any number of To elements that specify the inputs into which the

connector data is fed.
Basis

The Basis operator allows the elements of another object to be acquired.
A basis element can be used for traditional inheritance of properties, or as a

foundation for extension elements.
Traditional Inheritance of Properties

Since the basis operator allows an object to acquire the properties of
another object, it can be used when several objects share a set of properties. The
shared properties are defined in an object, and the object is used as the basis in all
the objects that share the properties.

To use a basis for this purpose, do not name the basis element. This
allows the sub object to refer to the base objectis elements using the same names.
In order to avoid collisions, when the basis element is named, the base objectis

elements are given an extra identifier when they are acquired by the sub object.

PCT/US00/32160

10

15

20

25

30

35

WO 02/13002

-70 -

Note: The use of a basis does not form an abstraction; it does not allow
polymorphism. The traditional inheritance that allows polymorphism is not
supported. Instead, abstractions are created through the use of block interfaces.

Foundation for Extensions

To use a basis for the purpose of extending with extension elements, the
basis element must be given a name in order for the basis objectis elements to

avoid collisions with those of the extension objects.
Extensions

The Extension operator allows the elements of another object to be
acquired and hooked up to the existing connectors. If the connectors named in
the extensionis connection elements do not exist, an error results. The connectors
are typically supplied by a basis element.

Note: It is not clear whether inputs and outputs should be supported in

extensions. At this time, extensions should not contain inputs or outputs.
Syntax Summary

The iBlocki operator is currently used to define all objects. This will

probably change to iObjecti soon.

Object/block:

(Block
(Name {name})

[(Input (Name {name}) {TypeSpecifier})]*
[(Output (Name {name}) {TypeSpecifier})]*
[(Field

(Name {name})

{TypeSpecifier}

[(Value {Value})]

[(Owned {boolean})]

[(Reset {none | Value | Object | Function})])]1*
[(Block (Name {name}) {TypeSpecifier})]*

PCT/US00/32160

10

15

20

25

30

35

40

45

WO 02/13002 PCT/US00/32160

-71 -

[(Connector (Name {name}) {TypeSpecifier})]*

[(Function (Name {name}) (Language {language})
[(Return {TypeSpecifier})]

[(Parameter (Name {name}) {TypeSpecifier})]*
[(ParameterOrder {name}*)]

[(Implementation [(File [{fileName}])]
(Code [{code}]*)])]

)
[(Connection

(From {OutputlIdentifier})
(To {InputlIdentifier})
)1
[(Series
(Connector {ConnectorName})
(From {OutputlIdentifier})

[(To {InputIdentifier})]*
)1+

[(Implementation

{ (Code [{string}l*) | (File [{FileName}])}
)] :

[(Basis (Name {name}) {TypeSpecifier})]
[(Extension (Name {name}) {TypeSpecifier})]*

Outputldentifier:

{BlockName} {OutputElement} |
{InputName} |

{ConnectorName} |

((Name {ConnectorName}) (Basis
| Extension))

Inputldentifier:

{FieldName} |

{BlockName} {InputElement} |
{OutputName} |

{ConnectorName} |

{ (Name {ConnectorName}) (Basis
| Extension))

Extension Syntax

An extension is an object that an element except inputs and outputs. Its
connections can refer to connectors in the object in which it is used, which allows

it to automatically connect itself into the object. For this reason, an extension

10

15

20

25

30

WO 02/13002 PCT/US00/32160

-T2

object cannot be used in isolation; the connectors it refers to must be supplied
externally, usually via a basis element.

If a connector is identified in the From or To property of a connection
within an extension, it must contain an extra element to specify whether it is
identifying a connector in the extension or in the object to which it belongs. This
is done by adding either "(basis)" or "(extension)" in the general form of the
identifier.

See the example in the next section.
5. Dataflow Object Examples
Simple Blocks

iAdder

The block shown in Figure 21 is a two-input adder, named iAdder. It is
a simple block because its output is computed by an evaluate function. The two

integer inputs are added together to produce the output.

The ODL code is shown below.
(Block 7
- (Name 'iAdder)

(Input (name 'left) (pin (type 'ilInt)))
(Input (name 'right) (pin (type 'ilInt)))

(Output (name 'sum) (pin (type 'ilInt)))

(Field (name 'sumField) (type 'iInt))

(Cohnection (from 'sumField) (to 'sum))

(Implementation (File))

10

15

20

25

30

WO 02/13002 PCT/US00/32160

-73 -

The implementation of the block's evaluate function is shown below. It

resides in a separate file.

_sumField = _left + right;

Compound Blocks

iAdder3

The block shown in Figure 22 is a three-input adder, named iAdder3. It

is implemented using two iAdder blocks.

The ODL code is shown below.

(Block
(Name 'iAdder3)

(Input (name 'left) (pin (type 'iInt)))
(Input (name 'middle) (pin (type 'iInt)))
(Input (name 'right) (pin (type 'iInt)))
(Output (name 'sum) (pin (type 'ilInt)))

(Block (Name 'a0) (ObjectRef (Block (Name 'iAdder))))
(Block (Name 'al) (ObjectRef (Block (Name 'iAdder))))
(Connection (From 'left) (To 'a0 'left))

(Connection (From 'middle) (To 'a0 'right))
(Connection (From 'right) (To 'al 'right))
(Connection (From 'a0 'sum) (To 'al 'left))
((

Connection (From 'al 'sum) (To 'sum))

10

15

20

25

30

35

WO 02/13002

- 74 -

Basis and Extension Objects

This example involves three different objects: a compound block that is

used as a basis block, an extension object that extends the basis block, and a

block that combines the two through the use of basis and extension elements.

iFormula

This compound block, shown in figure 25, contains two connectors, m and

g, to which an extension can connect.

(Block
(name 'iFormula)

(Input (Name 'x) (pin (Type 'iInt)))
(Output (Name 'f) (pin (Type 'iInt)))

(Connector (Name 'm) (pin (Type 'iInt)))
(Connector (Name 'g) (pin (Type 'ilnt)))

(block (name 'mult) (ObjectRef (block (name 'iMultiplier))))
(block (name 'add) (ObjectRef (block (name 'iAdder))))

(connection (from 'x)

(to 'm 'left))

(connection (from 'x)

(to 'm 'right))

(connection (from 'x)

(to 'g))

(connection (from 'm 'product) (to 'm))
(connection (from 'm)

(to 'add 'left))

(connection (from 'g)

(to 'add 'right))

(connection (from 'add 'sum) (to

PCT/US00/32160

10

15

20

25

30

35

WO 02/13002

-75 -

iMyEXxtension

This extension's connections refer to connectors in the iFormula block,
and therefore can be used to extend it. It is illustrated in Figure 24, and contains
a simple program that taps into connector m and is inserted in series with

connector g.

(extension
(name 'iMyExtension)

(block (name 'a) (objectRef (block (name 'iAdder))))

(connection (from ((name 'm) (basis))) (to 'a 'left))
(series (connector ((name 'qg) (basis))) (to 'a
right) (from 'a sum))
)
iMyFormula

This block uses the iFormula block as a basis block, which it extends

using the iMyExtension extension.

(block
(name 'iMyFormula)

(basis (name 'b) (objectCRef (block (name 'iFormula))))
(extension (name 'e) (objectCRef (extension (name
'"iMyExtension))))

)

IV. Conclusion

While various embodiments of the present invention have been described
above, it should be understood that they have been presented by way of example,
and not limitation. It will be apparent to persons skilled in the relevant art that
various changes in detail can be made therein without departing from the spirit

and scope of the invention. Thus, the present invention should not be limited by

PCT/US00/32160

WO 02/13002 PCT/US00/32160

-76 -

any of the above-described exemplary embodiments, but should be defined only

in accordance with the following claims and their equivalents.

10

15

20

25

30

WO 02/13002 PCT/US00/32160
-77 -
What is Claimed is:
1. A method for supporting development of content independent of

a run-time platform, comprising the steps of:
storing processing blocks that define content; and
storing an application graph that expresses the identity of
the stored processing blocks and data connectivity between the stored processing
blocks; whereby, the application graph can be traversed by a graphical application

platform at run-time to execute appropriate processing blocks on a run-time

platform.

2. The method of claim 1, wherein the content comprises game
content.

3. A method for supporting development of content independent of

multiple hardware platforms, comprising the steps of:

storing processing blocks that define content independent
of multiple hardware platforms;

selecting a target hardware platform from multiple
hardware platforms;

storing an application graph that expresses the identity of
the stored processing blocks and data connectivity between the stored processing
blocks based on the selected target hardware platform; and

traversing the application graph at run-time, including

executing appropriate processing blocks on the selected target hardware

platform.

4. The method of claim 3, wherein the content comprises game
content, and the multiple hardware platforms include at least one of a game

console platform and a personal computer platform.

10

15

20

25

30

WO 02/13002

- 78 -

5. A game development and run-time system, comprising:
a graphical application platform that enables a game

application to run on any of multiple hardware platforms.

6. The system of claim 5, further comprising:
an object definition tool that enables a developer to define
an application graph such that said game application can run on a target hardware

platform.

7. The system of claim 6, wherein said object definition tool further

enables a developer to define objects, object elements, and connections.

8. A graphical application platform for leveraging capabilities
provided independently in at least one of an application software and a hardware
platform, comprising:

an application real-time kernel (ARK);

a plurality of standard features implemented as executable blocks
of logic; and

connections between said blocks that implement data flow
between said blocks, whereby capabilities of at least one of the application
software and the hardware platform can be implemented modularly by adding

additional corresponding blocks and connections.

9. The graphical application platform of claim 8, wherein said ARK

- comprises logic that invokes blocks according to a schedule listing the blocks to

be executed in each of at least one ARK thread running on at least one central
processing unit, dynamically loads and unloads blocks, monitors block execution,
and facilitates thread management, memory sharing, mutual exclusion, and

synchronization.

PCT/US00/32160

10

15

20

25

30

WO 02/13002

-79.

10. The graphical application platform of claim 8, wherein said
additional blocks implement additional features, said additional features

comprising market oriented features.

11. The graphical application platform of claim 8, wherein said
additional blocks implement additional features, said additional features

comprising application specific features.

12. The graphical application platform of claim 8, wherein said
standard and additional blocks are organized into components, wherein each
component comprises blocks representing alternative implementations of a

feature.

13. The graphical application platform of claim 12, wherein each of
said alternative implementations comprises:
a) blocks corresponding to said alternative implementation;
b) identification of resources needed by said alternative
implementation; and
c) identification of resources provided by said alternative

implementation.

14. A method of pre-processing a graphics application with respect to

a predefined hardware platform, comprising the steps of:

a) selecting from among a set of alternative implementations
of a feature;

b) mapping at least one block, corresponding to the selected
implementation, to a phase of execution;

c) mapping the phase of execution to a stage of execution;

d) creating a block execution order list corresponding to the

stage of execution; and

PCT/US00/32160

WO 02/13002 PCT/US00/32160

- 80 -

e) submitting the stage of execution to an application real

time kernel for management of execution of the stage.

15. The method of claim 14, wherein said step a) comprises a
negotiation process in which resource requirements of each alternative
implementation are considered, along with the costs and benefits of variations in

such resource requirements, thereby allowing selection of an implementation.

WO 02/13002 PCT/US00/32160

1/30
104 ‘
102 106
b ¢ C
IMAGE DISPLAY
DATABASE GENERATOR - DEVICES
202
204 206 208
CY o -
RUN-TIME GRAPHICS | DISPLAY
DATABASE SOFTWARE [~ |WORKSTATION| | DEVICES

SUBSTITUTE SHEET (RULE 26)

WO 02/13002 . PCT/US00/32160

2/30

TOOLS TOOLS

A T M —\ﬂﬂ_ﬂr—LﬂJ—u—LF

— GAME CONTENT

GAME CONTENT A [

0 T e S GAME SOFTWARE

GAME SOFTWARE T
L HARDWARE (PC)

HARDWARE (PSX2)

FIG.3A F1G.3B
MODELS SOUND
ANIMATION
DATA FLOW
BEHAVIORS
LEVEL EDITOR

+

GAME CONTENT

FIG.4

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

3/30

WO 02/13002

TINLONYLS ATNYA ¥0078 ANV v - G9l4

STINAON D14103dS
~NOLYONdd¥
\\ STINAON ‘
N
STINAON “,

QUVONVLS
SINVD oz<% &\Qﬁ%ﬁm
INFWNIVLMIING Q NOISSIN

NOILONAO¥d NOILVINAIS
O30IA ONY W1 WNRSIA

TINYIN
JNL-TVAY
NOILYOIddV

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

9°0l4

JUNLONAULS TYNYIINI 10018

4/30

3IVIS TVNYALINE 0018

NOILINIJ3d 3OVAY3INI MO01d

OO 0O

“ O0aynvA3 ‘O3zrviunt ‘(Lon¥1s3a “(LoNYLSNOD

N

5340 WAL Lo
20 %

oy

INYN U INdINO | 3dAL U IndLNO IdAL U INdNI | JWYN U (NdNI
NN € IndLNO | 3dAL € INdLnO 3dAL € INdNI | INVN € LndNI
1aL 1X3L
INWN 2 INdLNO | 3dAL ¢ LNdLNO 3dAL ¢ INdNI | JWYN € LNdNI
INN L IndINO | 3dAL | IndINO IdAL L INdNI | JWYN L LNdNI

N

S103rd0 JISNIYINI TYNYIINI
1,

SINIOd NOILO3NNOD

\\\\\\\

2

SINIOd NOILOINNODZ

7 inding”,
]

I

10074

]
0i9

029

SUBSTITUTE SHEET (RULE 26)

WO 02/13002 PCT/US00/32160

5/30

INTRINSIC COMPONENT
 ALTERNATE MPLEVENTATIONS
/Ll L LIS LS
IMPLEMENTATION 1

IMPLEMENTATION 2

TEXT
IMPLEMENTATION 3

IMPLEMENTATION n

TOP-LEVEL VIEW OF COMPONENT STRUCTURE

FIG.7

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

6/30

SHo0'1d

A

SMo018

A

sMoolg =

8°0l4

NOILNO3X3 40 S3SVHd

3JSVYHd
NS

SHo018 [~ 018 |~

sHo018 = SHO019 |
77 77,

Ty \\ . \
NHANON | 77/ aNiowd 73Wd7

w&mzao IvavivaZ, [/ NOWYZIWIINI
22 2

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

7/30

679l

S3SVHd 40 NOILJ3TI0) V Jdv SIIVIS

A

3SVHd ONIMVYA

3SYHd ONITIND —~

3SVHd ONIHAYON AYLINOID =

A

3SVHd NOILVZIVILINI

SUBSTITUTE SHEET (RULE 26)

WO 02/13002 PCT/US00/32160

8/30

072887777

ARK THREAD MANAGER

1 .
7 EXECUTION ORDER (IST7

BLOCK 1 AT 60 Hz

BLOCK 2 AT 30 Hz

TEXT
BLOCK 3 AT 30 Hz

BLOCK AT 19 Hz

ARK STRUCTURE IN SEQUENTIAL EXECUTION

FI1G.10

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

9/30

SLSH
4340
NOLLNOIX3

SAVIdHL
gV

SIS ¥3QY0 NOILNO3XI ANV ‘SAVIYHL MY ‘S,Ndd IdIINW

(=) @% % (=) (w2

Y

117914

c1

by

80770004

o

4]

by

70877

SUBSTITUTE SHEET (RULE 26)

WO 02/13002 PCT/US00/32160

10/30

FI1G.12

EARTH VIEW DEMONSTRATION

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

11/30

Vel

JUVMAUVH —— |

Xa d IXSd
T~ I
VIS | SRNVAS | 3ynivay
OI03dS | QIINIMO | quvaNviS AV
NOWYOMddY | L3NV

(dv9)
NY04LV1d

h NOLLYONddV

IVOIHAVYO

JHVMLA0S SIIHAVHD

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

a4 17914

JUVMAUVH ——

12/30

Xa Od XSd
N1V NV | s3unLvad
014103dS Q3ININO | QuVaNVLS A
NOILYOIddY 1INV

N—dVd

JUVMLA0S SOIHAVYI

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

13/30

ANk

JUYMQUVH —— |

Xd Od

¢XSd

SAUN1VIS
J14103dS
30IA3d

S3dNnivid e IVEE

@3IN3I¥0 QHVANVIS
LTIDIUVA

pd

Yy

/.\ll

\

JUVMLH0S SOIHAVD

/

(dv9)
N4041Y1d
NOILYOIddV
WOIHdYY49

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

14/30

av1°9l4

FUVMAUVH ——

Xd dd 7XSd
\\
N1V N1V NIV
JI4103dS Q3INIHO QUVONVIS NV
J0IA30 1INMYN
—

JUVMLI0S SOIHAVYD

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

15/30

G17Old

¢ A

| 301N

M JUVMAUVH

43AVHS
¢ 01N

d3AVHS
e

43avHS
¢ JNVD

d3AVHS
I 3AYO

d3AVHS
JIIANTD

MV

ﬁ(\1:m<o

(1 IW9) JUYMLI0S SIIHAVH9

¢ IV

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

16/30

v31°9l4

CNOILVLSAVd

W4041Y1d NOILYOMddY TYOIHAVYD

JUVMAUVH NOLLYLSAVId

3100040

SIINGON LIINNOD
ANV WYdO0ud OL

S100L _

JISNIIINI

S100L

100

-

JOVNONVT NOILINIAIA 133rd0

[] [] [1 J
30000401 ZXSd JISNIALNI
NOSNILG zo=<5§§z_ 0/l T %5:. .msmao.mm@o..v_%
NOISNALA - TAT] K0T oV
_ 0/1 ¥ITIONINOD-03AU-0INY-SIIHAVAI e
SOISAHA/NOWLOAIA NOISITIOD [0 -~ -~
INIHAUON/NOLLYAINY
TOXINOD ONINIONY
SIHSIN
NS0 Hv) N30
A 7
NOISN3LX3
g ONINLL
S04 | OVRHL-ILTN
”,. HOT4 VIV
s ¥TINGIHOS
~1\
NIvaaL ;
o 0} MY
NOLLVOFddV

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

17/30

891°9l4

SMOGNIM + XNNI

3100040

S1001
DISNIYINI

S1001

“1X3 JI03dS XIPE ~—1
13 04I03dS VIO -1 ~—T

VO | A%m KYO4IYTd 3HL 40 NOLMTOAT :dvd
" JUVMQVH Od
: 79uadg

NREE
D
Ry e
Y
Lo 173
L3 0 .

STINCON 1I3NNOD
ANV RVO0Ud 01

B

700

-

JOVNONYT NOLLINIA3 LO3rd0

zo_z%%&mz_ O_ 5: %5:.. .msuao. “....“.m_ms-v_%
TIAT] HOT dv9) B
_ Ly 0/1 ¥ITIOMINOY-03AA-O0IGNY-SOIHAVAI
) ONTIND |
NOISN3LX3 SOISAHA/NOILD3LIA NOISITIOD o oo e =
NoISNAL3] ONIHJYON/NOLLYHINY
TOMINOD ONINIANIY
SIHSIN
| | wssauo0ud -, Hdvdd IN30S
ﬂ]
NOISNILX3
~_ ONINIL
STVI40d - .,u.ﬁ %N_E._w:z
555 MO4 VIYa
- smﬁ 52?, STIHEHIS
~A N\
IV
NOLVOIddV NivdaL 07 WY

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

Xjpg
(

VIQIAN

\/

917014

SINO41V1d JHOW ANV JHON -dvD

!

SMOONIM

JUVMQUVH Od

18/30

1Y R
A B
AN I
R 2y S
Sl

foe e L.

a¢193u1d

‘1X3 2lID3dS VIGIAN — ~—1"
"IX3 J4103dS Xpg T ~—7

| |

N\

NOLLYININNYLSNI ‘0/1 314 ‘AYOWIN ‘SLOIr0 YOOV

13A31 MOT dVO
0/1 ¥3ITI0YINOO-03CIA-0IaNY—-SIIHdYY9

NOISN3LX3 w
NOISN3LX3

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

19/30

WO 02/13002

d91-l1

SWY04LVId JHON ANV JHON -dvd

INOLLYISAVTd TUVMGEVH ZNOLLVISAVId
30000¥IIN ZXSd JISNRILNI
NOISNALE zo_Ezm_%&mz_ LED %E: .msuao umoolv_%
NOISNALX3 - TIATT HOT D £ .
0/ 3TIOHINOI-03IA-0I0NY~SIHdVYO

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

20/30

NIHA10Q OGN3ININ

1917914

SAYO4LYId JHON ANV JHON -dVd

JYVMAUVH NIHJ100 OGN3LININ

IdV XHY—OQNIININ

A\ 22000 0%%%% 28

7 NOWININCRASN O/ 14 “RIOMBN SIO3EO',.* 3900,

TIA3T MO dV9
0/1 ¥3TIOYINOD-03AIA-0INY-SIIHdVYI

o

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

21/30

JUVMAYVH

o — — — — — — —— (o — o T— S St ettt ot et et

L1791

SNOILOISYALNI
)
ISIT AV1dSIO
T
e
JWMMMO (140ddNnS SSVd—LLINK) | :1ndINO
300200 [ONTIHOY VIS -~ =— ONITIND
s SSYd—ILTINA R ONILYOS 3IVIS
A¥13N039 7 %
J9VNI
YA S103r80 :1NdLNO
INISSID0¥d WNLXAL »
[Te—— SIHSIN yammummmwﬂu
NLX3L 231INdN0ID
% %
Sh XXXKK »
N XXXX
XXX o
nxooqm RESY
4 |
AAVIdNIL NOILYOIddY JWVD dvo ¢ |

—— e — — — — — — —

NOLLYIINddV

o/l
SNONOYHINASY
—SNONNILNOD

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

"JQ000MIIN 3A0BY ¥IAMA INM-19 AIUNLYIS-TING "SIILNIBYAYD YW GIONVAQY S3ZiLN
‘ONIQYOT 3UNLXIL SNONOYHINASY T3TIVHVd “INIONI A¥LINO3D SY LNA

22/30

30000YIIN CXSd JONVNHOLY3d

Il

PSEEE

TT—
a I3

[+ o0 ORI

" A

oo usgedeses St (V0 ad WIS

0

BIRS
T oY

N XSd ANGHOV =i

J18ION3LXd

7¥Sd 1oy ax0pAWiBydly

I AT R TS TR W PR TN O TR R Tt e TR
e g ISP NG % e ERD T e L e s T e e RS

Spte N RS A I TR .urx.:....n...n.. < STy o8 e a1 Y D
o syt MU It BTN i ..w IBRE R N f}.m LSS
RN R MNTST o e, X RSN
i e e b e R eV L B S R St e i B D 3

J18IANILX

2d 10} asonAwayoly

¥

3%, b

R

HdVdd
N3OS

HdY49
R | NOLLYOIddy

nuAWsUdlY <+ JISNIYLNI

81914

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002

23/30

61914

NOLLVINIWI1dNI ININOJWOO JLIVNU3LTV NV 40 JHNLONYULS

SHO0T@ ONNOJNOD ONY 3SVHd :°U

d

04Nl NOLVILOO3N ANV “U3AWN

04Nl

NOLLYILO93N ONY JuIWwN

SYO0T8 ONNOJNOD NV 3SvHd ‘€| | OANI NOLLVILO9IN GNV & JNWN | | OANI NOLLVLLO9IN GNV € FWWN
1yal 1AL 1AL
SYO018 GNNOJNOD ONY 3SWHd 7| | NI NOILVLLO9IN ONY Z JWVN | | O:NI NOLLYLLO9IN ONV Z JWWN
SYOOT@ ONNOJNOO NV 3SvHd ©L | | O4NI NOILVILO9IN GNV | JWWN | [O4NI NOLLVLLO9IN ONV | 3WWN
7 > 7777 7, 7/ 7 7 \
/078 H3dns) V///030N0d 300538777 77 ainoad S0un0sis’

NOLLVININI1dNl ININOdWOD

SUBSTITUTE SHEET (RULE 26)

WO 02/13002

PCT/US00/32160
24/30
J\ DISK ()
y y
™ e)
RESIDENT RESIDENT i
GEOMETRY GEOMETRY
e o DATABASE
ARTICULATION ARTICULATION PAGING
| GRAPH | _ ORAPH | ‘ VIEW
{ ooe [eee | DEFINITIONS
(" OBJECT) |eee | (OBJECT) \
GRAPH GRAPH | ATLAS
Y \
SPATIAL | |LOGICAL|, TEMPORAL
STATE & SHAPE STATE & SHAPE INDEX INDEX INDEX
L J _ y
1 T
r r v
COARSE GEOMETRY CULL COARSE IMAGE CULL COARSE AUDIO CULL

|

r r
(ACTVE GEOMETRY CACHE) [ACTVE MAGE CACHE] | ACTVE AUDIO CACHE]
! ‘
FINE GEOMETRY CULL FINE IMAGE CULL
|

VY A Y Y !

GFX GFX || GEOM GEOM IMACE IMAGE AUDIO AUDIO) (AUDIO) AUDIO
CMD feee| CMD || BIN |eee| BIN BIN [eee BIN CMD |eeel CMD BIN eee| BIN
BIN 1 BIN n 1 n 1 BIN 1 BINn n

i 1

| = |
1 Y
L[GRAPHICS MANAGER 1|“0M;RAPHICS MANAGER n] | AUDIO MANAGER 1 | eee| AUDIO MANAGER n

| Y |]

FRAPHIC? DEVICE) ((‘J\’APHICE DEVICE) [AUDIO DEV,CEH (AUDIO DEVICE,J

(OUTPUT CHANNELS) (OUTPUT CHANNELS) | |(OUTPUT CHANNELS) (OUTPUT CHANNELS)

F 1 1 FF t{rT 1 i1 |

GRAPHICS HARDWARE AUDIO HARDWARE
STRUCTURE OF THE FRAMEWORK APPLICATION

F1G.20

SUBSTITUTE SHEET (RULE 26)

Y
FINE AUDIO CULL

WO 02/13002 PCT/US00/32160

25/30

wuu
iADDER]
7

FI1G.21

SUBSTITUTE SHEET (RULE 26)

WO 02/13002 PCT/US00/32160

26/30

//7)\ f//// I,

2.9 0.
MIDDLE J L RIGHT J
Z

ZIRY!
iADDER J

m
(a) C iADDER J
7
%
N

FI1G.22

SUBSTITUTE SHEET (RULE 26)

WO 02/13002 PCT/US00/32160

W U

[iMULTIPLIER J

A

F1G.23

SUBSTITUTE SHEET (RULE 26)

WO 02/13002

28/30

F1G.24

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32160

WO 02/13002 PCT/US00/32160

v U

(m) [MULTIPLIER J

7

7%
iADDER J @

_7

Z%
[ADDER J
2

[x‘2+($<“2+$<)=2x“2+x J

AN

f ,
NN\,
SUBSTITUTE SHEET (RULE 26) FI G . 2 5

WO 02/13002 PCT/US00/32160

30/30

f///// /////)
nCOUNTER

TERMINATOR /\ (L
"/

7
|MULT|PLIER J IMULTI LI R

\ 7
&=
i

lZ
iPRINTER 1
J

FI1G.26

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

