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3D RADIOMIC PLATFORM FOR IMAGING BIOMARKER DEVELOPMENT
Cross-Reference to Related Applications

[0001] This application claims priority to U.S. Provisional Application No. 62/693,371, filed

July 2, 2018, which is incorporated herein by reference in its entirety.

Field of the Invention

[0002] The present disclosure relates to examining medical images of a tumors and
surrounding tissue and, more particularly, to developing three-dimensional models of

radiomic features of the tumor for 3D image biomarker development.

Background

[0003] The background description provided herein is for the purpose of generally
presenting the context of the disclosure. Work of the presently named inventors, to the
extent it is described in this background section, as well as aspects of the description that
may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly

admitted as prior art against the present disclosure.

[0004] Accurate assessment of treatment response provides clinicians with valuable
information about the efficacy of treatment. However, current assessment techniques are
often subjective and inconsistent. For many techniques, a clinician collects two-dimensional
images of a tumor at different stages of treatment. The clinician then analyses the images
and determines tumor growth/reduction using a one dimensional measure, i.e., tumor
longest diameter. In some examples, clinicians use computer-based systems to identify
tumors and track changes in tumor size using these two-dimensional images. Yet, because
these conventional systems examine only two-dimensional image data, the systems, while
offering a level of automation, often fail to accurately track true volumetric changes in the

tumor, and thereby, they often fail to provide accurate information about treatment efficacy.

Summary of the Invention

[0005] The present application presents a platform for identifying three-dimensional (3D)
radiomic features for use in examining medical image data for subjects. In particular the
platform may be used for identifying 3D radiomic features for developing imaging biomarker
for various pathologies, including cancers. The present techniques provide a quantitative
and consistent way to structure medical image data, in particular radiology data, and

standardize response data collection.
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[0006] The present techniques provide automated processes capable of examining large
volumes of stored, digital radiology data, in an optimized manner that reduces image
processing burdens and that expands diagnostic and prognostic and disease monitoring
accuracy by identifying from among a large cohort of radiomic features, those particular
radiomic features that are most correlative from a diagnostic and prognostic and disease
monitoring viewpoint. The result is not only that large databases of radiology data may be
examined to generate a reduced set of particularly important image biomarkers, but the
responsiveness of tumors to treatment is more accurately assessed and in a more processing

efficient manner.

[0007] As shown, the platform provides objective and standardize response assessment.
The platform is able to assess target tissue and tumor imaging patterns not recognizable to
clinicians examining images using the naked eye or using 2D images. Indeed, the platform is
able to generate and assess entirely new imaging patterns, e.g., new 3D radiomic patterns.
As such, the platform is able to identify imaging features that can improve prognosis (or
clinical outcome prediction) and imaging features associated with genomic data. In these

ways, the platform is able develop non-invasive imaging biomarkers for genomic data.

[0008] In accordance with an example, a computer-implemented method to analyze
medical image data, the method comprises: obtaining, at one or more processors, the
medical image data comprising a plurality of two-dimensional (2D) medical images;
performing target tissue detection and target tissue segmentation for each 2D medical image
to produce a set of segmented target tissue images; generating a three-dimensional (3D)
model of detected and segmented target tissue; identifying a master set of radiomic features
for the 3D model of detected and segmented target tissue; comparing at least some of the
radiomic features in the master set to identify redundant radiomic features for the 3D model
of detected and segmented target tissue; excluding the redundant radiomic features from
the 3D model of detected and segmented target tissue; and extracting a selected set of

radiomic features from the 3D model of detected and segmented target tissue.

[0009] In some examples, the target tissue is tumor tissue. In some examples, the target

tissue is tumor tissue and surrounding tissue.

[0010] In some examples, the method includes identifying from among the selected set of
radiomic features, radiomic features that are significantly associated with clinical outcomes

and/or genomic data.
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[0011] In accordance with another example, a computing device, having one or more
processors is, configured to obtain, at one or more processors, the medical image data
comprising a plurality of two-dimensional (2D) medical images; perform target tissue
detection and target tissue segmentation for each 2D medical image to produce a set of
segmented target tissue images; generate three-dimensional (3D) model of detected and
segmented target tissue; identify a master set of radiomic features for the 3D model of
detected and segmented target tissue; compare at least some of the radiomic features in the
master set to identify redundant radiomic features for the 3D model of detected and
segmented target tissue; exclude the redundant radiomic features from the 3D model of
detected and segmented target tissue; and extract a selected set of radiomic features from

the 3D model of detected and segmented target tissue.

[0012] In some examples, the selected set of radiomic features is analyzed to determine

tumor diagnosis or prognosis.

[0013] In some examples, the selected set of radiomic features are analyzed to determine
tumor treatment effectiveness, and normal tissue side effect including for example changes

to the selected set of radiomic features in response to tumor treatments.

[0014] In some examples, a 3D graphic that visually depicts one or more of the selected set
of radiomic features is generated and provided to medical professionals, for example, using a

graphical user interface display.

[0015] In some examples, downloadable radiomic feature files, in csv (Comma-Separated

Values) format, are provided to medical professionals by the system.

[0016] In some examples, downloadable segmentation files in DICOM (Digital Imaging and
Communications in Medicine), nrrd (Nearly Raw Raster Data), or nifti (Neuroimaging
Informatics Technology Initiative) format are also provided to medical professionals by the

system.

[0017] In some examples, the selected set of radiomic features are determined by
comparing a master set of radiomic features to genomic data and/or to patient treatment
outcome data to identify which radiomic features within the master set of features are
indicative of a tumor diagnosis, tumor prognosis, tumor treatment effectiveness, the

effectiveness of treatment on normal tissues, etc.
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[0018] In some examples, the radiomic features are imaging data that correlate to and are
indicators of molecular or genomic data, treatment response data, diagnostic data,

prognostic data, and/or classifiers of cancer patient risk stratification.

[0019] In some examples, the radiomic features are shape-based features (e.g., tumor
longest diameter, 3D volume, surface area, sphericity, surface smoothness, numbers of

voxels, etc.).

[0020] In some examples, the radiomic features are Intensity-based features (e.g., average
tumor intensity, skewness of tumor intensity distribution, and kurtosis of tumor intensity

distribution).

[0021] In some examples, the radiomic features are textural features (e.g., contrast,

correlation, and homogeneity).

[0022] In some examples, the radiomic features are filter-based features (e.g., wavelets

and Laplacian of Gaussian filters).

[0023] In some examples, normalization is performed on the medical images before the 3D
model is generated, for example, to ensure a normalization of image intensity distribution,

image color, and voxel size for the 3D model.

[0024] In some examples, the processes herein may be performed before a tumor therapy
and again after a tumor therapy, or multiple times after a tumor therapy. For example a 3D
model of detected and segmented target tissue may be generated from medial images taken
before tumor therapy and generated again from medical images taken after the tumor
therapy. A determined selected set of radiomic features from the 3D model may then be
extracted and compared before tumor therapy and after tumor therapy, and the changes in
each (or at least one) of the radiomic features quantified. The radiomic features compared
before and after therapy may be any of those discussed herein and others, including shape-

based features, intensity-based features, textural features, and filter-based features

[0025] In some examples, the comparison of 3D models before and after tumor therapy,
e.g., the comparison of radiomic features before and after tumor therapy, is used by a
processing system to determine the efficacy of the therapy (e.g., whether there is a reduction
in tumor longest diameter, 3D volume, or surface area, or a change in sphericity, surface
smoothness, numbers of voxels, etc., or a change in average tumor intensity, skewness of

tumor intensity distribution, or kurtosis of tumor intensity distribution, or a change in
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contrast, correlation, and homogeneity, or a change in wavelets and Laplacian of Gaussian
filters. In some examples, that comparison data is used by a processing system to determine
a next therapy or a group of matched therapies, based on the determined efficacy (e.g.,
based on radiomic feature significantly associated with clinical outcomes and/or genomic

data and the amount of changes in those radiomic features).

Brief Description of the Drawings

[0026] The figures described below depict various aspects of the system and methods
disclosed herein. It should be understood that each figure depicts an example of aspects of

the present systems and methods.

[0027] FIG. 1 is a schematic illustration of an example computer processing system for
analyzing radiology images, such as tumor images (and other target tissue images), to
generate a 3D model and to generate 3D radiomic features of regions of interest in the

images

[0028] FIG. 2 illustrates an example computing device for implementing the systems of FIG.

1 and the processes of FIGs. 3, 8, and 9, in accordance with an example.

[0029] FIG. 3 is a block diagram of an example method for performing 3D radiomic feature
generation and analysis on radiology images, as may be performed by the processing system

of FIG. 1 and/or the computing device of FIG. 2, in accordance with an example.

[0030] FIG. 4 illustrates 2D medical images of a portion of a tumor taken at different times

in the process of treating a subject.

[0031] FIG. 5 illustrates 3D models of a tumor for a patient generated from 2D medical

images taken at the different times of FIG. 4.

[0032] FIG. 6 illustrates 2D medical images taken of a portion of a tumor showing

inconclusive differences in 2D features, such as major and minor axes.

[0033] FIG. 7 is a plot of the changes in a 3D radiomic feature (e.g., tumor volume)
developed from the 3D models of FIG. 5, illustrating a clear correlation between changes in

the 3D radiomic feature and treatment stages.

[0034] FIG. 8 is a block diagram of an example process for redundant radiomic feature
identification and exclusion, as may be implemented by the method of FIG. 3, in accordance

with an example.
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[0035] FIG. 9 is a block diagram of an example process for identification of a diagnostic
radiomic feature set, as may be implemented by the method of FIG. 3, in accordance with an

example.

[0036] FIG. 10 is a plot showing of c-index (concordance) of clinical data, molecular data,
and radiomic feature data for an example implementation. As shown, integrating radiomic
feature data developed herein, with clinical and molecular data shows an increase in

predictive power (i.e., a higher c-index) of outcome data.

Detailed Description

[0037] The present application presents a platform for identifying radiomic features for use
in examining medical image data for subjects. In particular, the platform may be used for
identifying radiomic features for developing imaging biomarker for various pathologies,
including cancers. These radiomic features are generated from a three-dimensional (3D)
model of a target tissue, where that 3D model has been generated from a series of 2D

medical images.

[0038] The present techniques provide a quantitative and consistent way to structure
medical image data (e.g., radiology data) and to standardize response data collection. The
present techniques provide automated processes capable of examining large volumes of
stored, digital radiology data, in an optimized manner that reduces image processing burdens
and that expands diagnostic accuracy by identifying from among a large cohort of radiomic
features, those particular radiomic features that are most correlative from a diagnostic
viewpoint. The result is not only that large databases of radiology data may be examined to
generate a reduced set of particularly important image biomarkers, but the responsiveness of

tumors to treatment is more accurately assessed, and in shorter period of time.

[0039] The present techniques streamline the therapeutic assessment process, making the
process quantitative, more objective and consistent. Furthermore, generated radiomic
features can capture meaningful clinical, biological, and anisotropic changes of tumor over
the course of treatment. These changes are not identifiable from traditional two-
dimensional imaging and analysis and thereby provide new indicators (which we also term
image biomarkers) of tumor diagnosis and prognosis. Further still, the techniques herein
include segmentation and normalization techniques to generate a structure data set from

numerous disparate medical image databases.
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[0040] Additionally, the present techniques apply pair-wise comparisons between radiomic
features to identify redundant features that may be excluded when modelling and analyzing
the tumor. Redundant feature extraction can substantially reduce the computer processing
resources needed to perform tumor analysis. We have found that redundant feature
exclusion has been able to reduce a master radiomic feature set from numbering in the
1000s to identifying a selected group of less than 100 radiomic features and in some
instances less than 10 radiomic features that may be used for diagnostic and prognostic

assessment.

[0041] The tumors that may be examined by the present techniques include malignant and
benign tumors. Example malignant tumors may include various cancer types, such as, breast
cancer, colon cancer, gastric cancer, endometrium cancer, ovarian cancer, hepatobiliary tract
cancer, urinary tract cancer, lung cancer, brain cancer, and skin cancers. The present
techniques may be used to develop 3D radiomic features that correlate to any of these or
other tumor types. Moreover, the present techniques may be used to develop a 3D model of
radiomic features that act as 3D image biomarkers of the various tumor types. In some
examples, the 3D model of radiomic features is constructed by analyzing intra-tumor
radiomic features, that is, radiomic features of different tumor types within a subject or
across subjects. In some examples, the 3D model of radiomic features is constructed by
analyzing inter-tumor radiomic features, that is, radiomic features of the same tumor type,

but appearing in different locations within a subject.

[0042] FIG. 1 illustrates a computer processing system 100 for analyzing radiology images,
such as tumor images (and other target tissue images) to generate a 3D model and to

generate 3D radiomic features of regions of interest in the images.

[0043] The processing system 100 includes an radiomic feature processing framework 102
communicatively coupled to a network 106 for receiving medical images and other data
genomic data and drug treatment and patient outcome data. For example, the network 106
is shown coupled to a variety of different sources, from a variety of different sources,
including (i) medical imaging databases of healthcare providers (Provider_1 104) such as
hospitals, physician groups, labs, etc.; (ii) dedicated digital medical image scanners 108 that
may be, by way of example, any suitable optical histopathology slide scanner including 20x
and 40x resolution magnification scanners; (iii) medical image repositories 110 such as
databases of stored medical images and (iii) the Cancer Imaging Archive (TCIA). Each of the
image sources may present multiple image sources. In the illustrated example, the

Provider_1 104 and the medical images repository 110 may include genomic data, treatment

7
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data, and/or patient outcome data, as desired. The processing system 100 may be coupled

to other medical data sources (not shown}, as well.

[0044] The medical image data herein may be any suitable two-dimensional radiology
images. The radiology images may be from any suitable imaging modality, examples of which
include X-ray images, computed tomography (CT) scans, magnetic resonance imaging (MRI),

nuclear medicine imaging (NMR), positron-emission tomography (PET), etc.

[0045] The processing system 100 may be implemented on a computing device such as a
computer, tablet or other mobile computing device, or server. The system 100 may include a
number of processors, controllers or other electronic components for processing or
facilitating the image capture, generation, or storage and image analysis, as described herein.
An example computing device 200 for implementing processing system 100 is illustrated in

FIG. 2.

[0046] As illustrated in FIG. 2, the system 100 may be implemented on the computing
device 200 and in particular on one or more processing units, which may represent Central
Processing Units (CPUs), and/or on one or more or Graphical Processing Units (GPUs),
including clusters of CPUs and/or GPUs. Features and functions described for the system 100
may be stored on and implemented from one or more non-transitory computer-readable
media of the computing device 200. The computer-readable media may include, for
example, an operating system and a radiomic feature platform corresponding to elements of
the radiomic feature processing framework 102. The radiomic feature platform may include
a segmentation controller, a 3D model generator, a medical image normalization controller, a
radiomic feature extraction controller, a redundancy exclusion controller, and a selected

radiomic features generator.

[0047] Moaore generally, the computer-readable media may store trained 3D models, a
master set of radiomic features, an identification of redundant radiomic features, and

selected radiomic features.

[0048] The selected radiomic features generated by the system 100 are a subset of
radiomic features optimally-defined for diagnostic and prognostic assessment of target

tissue, including, for example, tumor and surrounding tissue.

[0049] These selected radiomic features may be generated from a 3D model of target

tissue.
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[0050] These selected radiomic features, for example, may include imaging data that
correlates to and thereby indicates particular molecular data, genomic data, treatment
response data, diagnostic data, prognostic data, and/or classifiers of cancer patient risk

stratification. In this way, the selected radiomic features can provide imaging biomarkers.

[0051] The selected radiomic features generated by the system 100 may include: shape-
based features (e.g., tumor longest diameter, 3D volume, surface area, sphericity, surface
smoothness, numbers of voxels, etc.); intensity-based features (e.g., average tumor intensity,
skewness of tumor intensity distribution, and kurtosis of tumor intensity distribution);
textural features (e.g., contrast, correlation, and homogeneity); and filter-based features

(e.g., wavelets and Laplacian of Gaussian filters).

[0052] The computing device 200 includes a network interface communicatively coupled to
the network 106, for communicating to and/or from a portable personal computer, smart
phone, electronic document, tablet, and/or desktop personal computer, or other computing
devices. The computing device further includes an 1/0O interface connected to devices, such
as digital displays, user input devices, etc. In the illustrated example, the processing system
100 is implemented on a single server 200. However, the functions of the system 100 may be
implemented across distributed devices 200, 202, 204, etc. connected to one another
through a communication link. In other examples, functionality of the system 100 may be
distributed across any number of devices, including the portable personal computer, smart
phone, electronic document, tablet, and desktop personal computer devices shown. The
network 106 may be a public network such as the Internet, private network such as research
institutions or corporations private network, or any combination thereof. Networks can
include, local area network (LAN), wide area network (WAN), cellular, satellite, or other
network infrastructure, whether wireless or wired. The network can utilize communications
protocols, including packet-based and/or datagram-based protocols such as internet protocol
(IP), transmission control protocol (TCP), user datagram protocol (UDP), or other types of
protocols. Moreover, the network can include a number of devices that facilitate network
communications and/or form a hardware basis for the networks, such as switches, routers,
gateways, access points (such as a wireless access point as shown), firewalls, base stations,

repeaters, backbone devices, etc.

[0053] The computer-readable media may include executable computer-readable code
stored thereon for programming a computer (e.g., comprising a processor(s) and GPU(s)) to
the techniques herein. Examples of such computer-readable storage media include a hard

disk, a CD-ROM, digital versatile disks (DVDs), an optical storage device, a magnetic storage

9
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device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM
(Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable
Programmable Read Only Memory) and a Flash memory. More generally, the processing
units of the computing device 200 may represent a CPU-type processing unit, a GPU-type
processing unit, a field-programmable gate array (FPGA), another class of digital signal

processor (DSP), or other hardware logic components that can be driven by a CPU.

[0054] Returning to FIG. 1, the radiomic feature processing framework 102 includes a
segmentation module that automatically identifies target tissue, such as tumors, in received
medical images, segments that target tissue for analysis by the framework 102. In some
examples, the segmentation module may implement a convolutional neural network to
perform whole slide image segmentation. More generally, any number of unsupervised or
supervised methods of image segmentation may be used. The segmentation module may be
configured to perform segmentation on each 2D medical image, thereby removing from the
image and retaining those portions corresponding to the target tissue, e.g., tumor. The
segmentation may be patch segmentation, in which groups of pixels are examined to identify
the target tissue within the medical image. For example, a segmentation process may
identify a particular geometric patch that will be used for analyzing image data. Patches may
be geometric, e.g., a repeating pattern of square or rectangular pixels defined across each
medical image and at a pixel size sufficient to analyze changes in topology and morphology in
medical images. Example patch sizes include 256x256 pixels, although fewer pixels can be
used, such as 90x90, 80x80, 70x70, 60x60, 50x50, and so on, down to at least 10x10, and
even further, such as 5X5 depending on the application. In other examples, patch type may
be non-geometric, also termed herein a “super pixel,” where each patch is allowed to vary in
shape, but where the super pixels are generated to include a sufficient threshold of imaging

information for topology and morphology analysis.

[0055] A normalization module normalizes the segmented image data. The normalization
may normalize pixel or voxel intensity, pixel or voxel color, or other factors. The
normalization module may normalize medical images from different medical image sources,
thereby allowing uniform analysis across a large combined database of medical images. In
some configurations, the normalization module is configured to normalize medical image
data across different imaging modalities, for example, normalizing segmented X-Ray image

data with segmented MRI data.

10
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[0056] The normalization module may perform normalization on 2D medical images, in
some examples. While in other examples, the normalization module may perform

normalization on a 3D model generated by the framework 102, as described herein.

[0057] A 3D model generator module of the framework 102 stores the segmented and
normalized image data and performs registration and data stacking processes to construct a
3D model of the target tissue or tumor. A radiomic feature processing module analyses the
resulting 3D model and identifies radiomic features from that 3D model, redundant radiomic
features for exclusion, and a resulting subset of clinically and biologically meaningful
radiomic features (also termed diagnostic radiomic features) that can be used to diagnose

tumors and/or indicate tumor state.

[0058] FIG. 3 illustrates a process 300 for performing radiomic feature generation and
analysis on radiology images, as may be performed by the processing system 100, e.g., as
implemented by the computing device 200. Radiology images from image sources are
imported and tumor location detection is performed. In an example automated
configuration, tumor location detection is performed by comparing received radiology
images to a database of tumor-identified medical images, e.g., through the use of a
convolution neural network. The convolution neural network may be trained by clinical
and/or synthetic training medical images, including medical images of tissue samples
corresponding to the tumor to be detected, of tissue samples that do not exhibit the tumor
to be detected, of tissue samples that exhibit other tumor types, and/or tissue samples
exhibiting no tumor. It is noted, that in a 2D medical image, the process 300 may identify a
number of different locations of tumors, as well as any number of different tumor types that

may be present in the 2D medical image.

[0059] While the process 300 is discussed in reference to the particular example of tumor
location detection, more broadly, the process 300 may be used to identify any target tissue.
In some examples, that target tissue may encompass a tumor and surrounding tissue. In
other examples, the target tissue may be any tissue imaged in the 2D images, such as organ
tissue or bone tissue. That is, the segmentation, normalization, 3D modelling, and other
processes described herein as applied to tumor regions may be applied to any target tissue

under examination.

[0060] With the tumor location detection complete, tumor border segmentation may be
achieved, for example, using an edge detection based segmentation technique. The tumor or

tumor regions in the medical image are segmented out and a segmentation confirmation

11
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process may be optionally implemented. Segmentation confirmation may include, for
example, assessing the shape of the tumor border to identify any regions of large shifts in
intensity pixel to pixel that may indicate an improper segmentation. Segmentation
confirmation may be based on the number of such regions of large shift across the entire
image or across a portion of the image, for example. If the segmentation confirmation is
returned as below a threshold confirmation level, then the process may repeat, until a

sufficiently accurate segmentation has been achieved.

[0061] Each segmented medical image is a 2D image of a tumor, or target tissue. The
segmented medical images are buffered and stored by a 3D tumor model generator that

constructs a 3D model from the segmented 2D images.

[0062] In some examples, image intensity distribution and voxel size normalization is
performed on the 3D model to provide uniform information across the 3D model for radiomic
feature extraction. As discussed herein, such normalization allows for compensating in
differences between different medical image sources (such as different medical imaging

scanners), as well as across entirely different medical imaging modalities.

[0063] FIG. 4 illustrates example 2D medical image data provided to the process 300 and
comprising 2D MRI images of a brain scan taken at five (5), different points in time. Timel
and Time2 are pre-treatment scans. Brain tumors are identified in the medical images.
Time3 — Time5 are medical images taken after surgery to remove a portion of the brain
tumor and show the regression of tumor in response to therapy. FIG. 4 illustrates 2D T1
structure images and 2D T2 FLAIR (fluid attenuated inversion recovery) images, either or both

of which may be provided to the process 300.

[0064] FIG. 5 illustrates example 3D models generated for each of the different image
capture times of FIG. 4, where the 3D models have been generated by the process 300 from

multiple 2D images taken at each time, Timel — Time5.

[0065] Returning to FIG. 3, with the 3D model normalized, a master set of radiomic
features are extracted from the 3D model. The radiomic features may include, by way of
example, shape-based features (e.g., tumor longest diameter, 3D volume, surface area,
sphericity, surface smoothness, numbers of voxels, etc.), intensity-based features (e.g.,
average tumor intensity, skewness of tumor intensity distribution, and kurtosis of tumor
intensity distribution), textural features (e.g., contrast, correlation, and homogeneity); and

filter-based features (e.g., wavelets and Laplacian of Gaussian filters).

12
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[0066] An example radiomic feature that may be extracted from the 3D model is the tumor
3D volume. FIG. 6 shows a 2D medical image of the tumor showing major and minor (i.e.,
long and short) axes of the tumor region, at Time2, before surgery, and at Time3, after
surgery. As indicated, just looking at this 2D image and examining for changes in the major
or minor axes is inconclusive. This 2D image alone does not sufficiently instruct a clinician on

the successfulness of the surgery.

[0067] In contrast, when we examined the tumor 3D volume radiomic feature generated
from the process 300, a clear difference in volume was shown. FIG. 7 plots the measures of
the tumor 3D volume radiomic feature, as a function of time, in an example. The change in
3D volume clearly correlates with surgery. Indeed, changes in the 3D volume radiomic
feature of the tumor further correlated with subsequent, post-surgery treatment. These
indications from the 3D volume stand in stark contrast to the inconclusive results using 2D
medical image data only (i.e., FIG. 6). In other examples, changes in radiomic features may
be compared before and after other kinds of treatment events. For example, the tumor 3D
volume radiomic feature generated from the process 300 may be generated before a patient
receives a therapy and again after a patient receives a therapy. As another example, the
tumor 3D volume radiomic feature generated from the process 300 may be generated more
than once after a patient receives a therapy. Exemplary therapies include chemotherapy,
radiation, immunotherapy, PARP inhibitors, CAR T-cell therapy, and cancer vaccines, among
other therapies. In an example, the tumor 3D volume radiomic feature generated from the
process 300 may be generated in the first 60 days after receipt of a therapy. In some
examples, the tumor 3D volume radiomic feature generated from the process 300 that is
generated after receipt of a therapy may be utilized to determine the efficacy of the therapy.
In some examples, the tumor 3D volume radiomic feature generated from the process 300

may be utilized to determine a next therapy.

[0068] Returning to FIG. 3, the process 300 further includes a redundant radiomic feature
exclusion process, discussed in further detail in the example implementation of FIG. 8, and a
diagnostic radiomic feature extraction process, discussed in further detail in the example

implementation of FIG. 9.

[0069] FIG. 8 illustrates a process 400 for identifying redundant radiomic features from
among a master set of radiomic features identified in the process 300. The master set of
extracted radiomic features (e.g., 500, 1000, 2000, or more) is provided. For each of the
features in the master set, pair-wise correlations are determined for each other of the

features in the master set. The pair-wise correlations are scored and any correlations with a
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score above a threshold value (e.g., correlations > .95) are identified, correlation scores are
tallied for the radiomic features. Those radiomic features with a high average correlation
score are removed from the masters set to generate a selected radiomic features set. The
process then repeats another round until the radiomic features that are left are features that
have pair-wise correlations below the threshold (e.g., < .95). After the final round, a subset

of radiomic features is produced by the process 400.

[0070] In FIG. 9, a process 500 obtains the subset of radiomic features from process 400
and determines a further subset of radiomic features, in particular, a selected radiomic
feature set that may be used for diagnostic or prognostic assessments, for example to assess

tumor type, treatment efficacy, etc.

[0071] In an example implementation of the process 500, the radiomic features, genomics
data corresponding to the obtained medical images, and patient treatment outcome data are
provided to a univariate analysis processor. The analysis processor compares each of the
radiomic features obtained from the process 400 to categorized genomics data and/or to
categorized outcome data. This comparison is done across a large database of medical
images and 3D models. The process 500 determines, from the large database comparisons,
whether any (and which) of the radiomic features are significantly associated with either
genomics data or outcome data, and those significant associations are stored in a database
format to identify the radiomic feature and the associations of that feature. The radiomic
features identified as having significant associations are then determined to be clinically
and/or biologically significant and are stored as a selected radiomic feature set. The process
500 may then generate an enhanced 3D model exhibiting only the radiomic features
identified as having significant associations. In some examples, radiomic features having
significant associations may be illustrated in the previously generated 3D model (3D tumor
model generation process of FIG. 3) using a segmentation and color coding to visually
indicate those radiomic features. In some examples, the process 500 generates a digital
report or data file that includes a listing of the radiomic features having significant
associations, a scoring of the level of significance (e.g., a p-value) and the associated clinical
data and/or biological data. In some examples, the significant associations are covariant, in

which case the report will include covariant associations.

[0072] As used herein “significant associations” refers to statistically significant
associations, assessed using a statistical model such as a survival function analysis. Example
statistical models include a log-rank test model or a Kaplan-Meier model. Others statistical

models include a likelihood ratio test or a Wald test. Yet, in some examples herein, including
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FIG. 10 discussed below, a regression model that allows for covariant analysis is used, such as
the Cox proportional hazards regression analysis. As used herein significant associations,
resulting from the model used, refers to associations having a p-value of <0.05, <0.045,

<0.040, <0.035, <0.030, <0.025, <0.020, <0.015, <0.010, <0.005, or <0.001.

[0073] As shown in FIG. 10, the radiomic feature data developed by the process 300 may be
combined with clinical data (e.g., age in the illustrated example) and molecular data (e.g.,
MGMT methylation) to produce an integrated radiomic-based indicator. This integrated
radiomic-based indicator can provide significantly improved c-index (Cox index of a Cox
proportional hazards) values for assessing tumor and other target tissue (in the illustrated
example, the c-index values shown all exhibit a p-value <0.005). That is, while radiomic
features alone can serve as imaging biomarkers, in some cases, radiomic features may be
combined with other data to provide even more accurate integrated imaging biomarkers.
FIG. 10 is a plot showing c-index (concordance) for clinical data, molecular data, and radiomic
feature data, in an example. Integrating these data sets together, e.g., through multivariate
Cox proportional hazards model, results in a substantially higher c-index, which can serve as
a more accurate imaging biomarker. Molecular data may include gene expression

irregularities, irregular microRNA profile, splice variations, DNA methylation, etc.

[0074] Further still, the selected radiomic features may be cross-correlated against clinical
outcome data and genomic data to identify significant associations. Clinical outcome data
would include stored data on disease-free survival, tumor stage, response rate to particular
therapeutics, absence of disease, quality of life, etc. Genomic data may include variations in
DNA structure or sequence, or copy number, etc. These data types may be stored in and
received from databases, such as electronic medical images databases /repositories, medical

provider electronic databases, and the like.

[0075] It is noted herein, the processing comparisons and analyses may be implemented
through trained or untrained processing techniques. For example, 2D image segmentation,
3D model normalization, redundant radiomic feature exclusion, pair-wise correlations, and
determinations of diagnostic radiomic features may be achieved using a deep learning
framework or a plurality of deep learning frameworks, such as one for each process. Broadly
speaking, the deep learning framework may implement any suitable statistical model (e.g., a
neural network or other model implemented through a machine learning process) that will
be applied to each of the received images and other data (e.g., genomic and outcome data).
As discussed herein, that statistical model may be implemented in a variety of manners. In

some examples, machine learning is used to evaluate training images and develop classifiers
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that correlate predetermined image features to specific categories. For example, image
features can be identified as training classifiers using a learning algorithm such as Neural
Network, Support Vector Machine (SVM) or other machine learning process. Once classifiers
within the statistical model are adequately trained with a series of training images, the
statistical model may be employed in real time to analyze subsequent images provided as
input to the statistical model for identifying radiomic features and correlations. In some
examples, when statistical model implemented using a neural network, the neural network
may be configured in a variety of ways. In some examples, the neural network may be a deep
neural network and/or a convolutional neural network. In some examples, the neural
network can be a distributed and scalable neural network. The neural network may be
customized in a variety of manners, including providing a specific top layer such as but not
limited to a logistics regression top layer. A convolutional neural network can be considered
as a neural network that contains sets of nodes with tied parameters. A deep convolutional
neural network can be considered as having a stacked structure with a plurality of layers. The
neural network or other machine learning processes may include many different sizes,
numbers of layers and levels of connectedness. Some layers can correspond to stacked
convolutional layers (optionally followed by contrast normalization and max-pooling)
followed by one or more fully-connected layers. For neural networks trained by large
datasets, the number of layers and layer size can be increased by using dropout to address
the potential problem of overfitting. In some instances, a neural network can be designed to
forego the use of fully connected upper layers at the top of the network. By forcing the
network to go through dimensionality reduction in middle layers, a neural network model can
be designed that is quite deep, while dramatically reducing the number of learned

parameters.

[0076] The 3D models, master set of radiomic features, selected set of radiomic features,
and correlations and significant associations determined herein may then be visually
indicated to a user, for example Provider_1, through a dashboard graphical user interface

provided to a computer monitor or other display.

[0077] Throughout this specification, plural instances may implement components,
operations, or structures described as a single instance. Although individual operations of
one or more methods are illustrated and described as separate operations, one or more of
the individual operations may be performed concurrently, and nothing requires that the
operations be performed in the order illustrated. Structures and functionality presented as

separate components in example configurations may be implemented as a combined

16



WO 2020/010163 PCT/US2019/040428

structure or component. Similarly, structures and functionality presented as a single
component may be implemented as separate components or multiple components. These
and other variations, modifications, additions, and improvements fall within the scope of the

subject matter herein.

[0078] Additionally, certain embodiments are described herein as including logic or a
number of routines, subroutines, applications, or instructions. These may constitute either
software (e.g., code embodied on a machine-readable medium or in a transmission signal) or
hardware. In hardware, the routines, etc., are tangible units capable of performing certain
operations and may be configured or arranged in a certain manner. In example
embodiments, one or more computer systems (e.g., a standalone, client or server computer
system) or one or more hardware modules of a computer system (e.g., a processor or a group
of processors) may be configured by software (e.g., an application or application portion) as a

hardware module that operates to perform certain operations as described herein.

[0079] In various embodiments, a hardware module may be implemented mechanically or
electronically. For example, a hardware module may comprise dedicated circuitry or logic
that is permanently configured (e.g., as a special-purpose processor, such as a
microcontroller, field programmable gate array (FPGA) or an application-specific integrated
circuit (ASIC)) to perform certain operations. A hardware module may also comprise
programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or
other programmable processor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to implement a hardware module
mechanically, in dedicated and permanently configured circuitry, or in temporarily
configured circuitry (e.g., configured by software) may be driven by cost and time

considerations.

[0080] Accordingly, the term "hardware module" should be understood to encompass a
tangible entity, be that an entity that is physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or
to perform certain operations described herein. Considering embodiments in which hardware
modules are temporarily configured (e.g., programmed), each of the hardware modules need
not be configured or instantiated at any one instance in time. For example, where the
hardware modules comprise a general-purpose processor configured using software, the
general-purpose processor may be configured as respective different hardware modules at

different times. Software may accordingly configure a processor, for example, to constitute a
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particular hardware module at one instance of time and to constitute a different hardware

module at a different instance of time.

[0081] Hardware modules can provide information to, and receive information from, other
hardware modules. Accordingly, the described hardware modules may be regarded as being
communicatively coupled. Where multiple of such hardware modules exist
contemporaneously, communications may be achieved through signal transmission (e.g.,
over appropriate circuits and buses) that connects the hardware modules. In embodiments in
which multiple hardware modules are configured or instantiated at different times,
communications between such hardware modules may be achieved, for example, through
the storage and retrieval of information in memory structures to which the multiple
hardware modules have access. For example, one hardware module may perform an
operation and store the output of that operation in a memory device to which it is
communicatively coupled. A further hardware module may then, at a later time, access the
memory device to retrieve and process the stored output. Hardware modules may also
initiate communications with input or output devices, and can operate on a resource (e.g., a

collection of information).

[0082] The various operations of the example methods described herein can be performed,
at least partially, by one or more processors that are temporarily configured (e.g., by
software) or permanently configured to perform the relevant operations. Whether
temporarily or permanently configured, such processors may constitute processor-
implemented modules that operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodiments, comprise processor-

implemented modules.

[0083] Similarly, the methods or routines described herein may be at least partially
processor-implemented. For example, at least some of the operations of a method can be
performed by one or more processors or processor-implemented hardware modules. The
performance of certain of the operations may be distributed among the one or more
processors, not only residing within a single machine, but also deployed across a number of
machines. In some example embodiments, the processor or processors may be located in a
single location (e.g., within a home environment, an office environment or as a server farm),

while in other embodiments the processors may be distributed across a number of locations.

[0084] The performance of certain of the operations may be distributed among the one or

more processors, not only residing within a single machine, but also deployed across a
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number of machines. In some example embodiments, the one or more processors or
processor-implemented modules may be located in a single geographic location (e.g., within
a home environment, an office environment, or a server farm). In other example
embodiments, the one or more processors or processor-implemented modules may be

distributed across a number of geographic locations.

[0085] Unless specifically stated otherwise, discussions herein using words such as

"processing," "computing," "calculating," "determining," "presenting," "displaying," or the
like may refer to actions or processes of a machine (e.g., a computer) that manipulates or
transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-volatile memory, or a combination
thereof), registers, or other machine components that receive, store, transmit, or display

information.

[0086] As used herein any reference to "one embodiment” or "an embodiment" means that
a particular element, feature, structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. The appearances of the phrase "in one
embodiment" in various places in the specification are not necessarily all referring to the

same embodiment.

[0087] Some embodiments may be described using the expression "coupled" and
"connected" along with their derivatives. For example, some embodiments may be described
using the term "coupled" to indicate that two or more elements are in direct physical or
electrical contact. The term "coupled," however, may also mean that two or more elements
are not in direct contact with each other, but yet still co-operate or interact with each other.

The embodiments are not limited in this context.

[0088] As used herein, the terms "comprises," "comprising," "includes," "including," "has,"
"having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For
example, a process, method, article, or apparatus that comprises a list of elements is not
necessarily limited to only those elements but may include other elements not expressly
listed or inherent to such process, method, article, or apparatus. Further, unless expressly
stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example,
a condition A or B is satisfied by any one of the following: A is true (or present) and B is false

(or not present), A is false (or not present) and B is true (or present), and both A and B are

true (or present).
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[0089] In addition, use of the "a" or "an" are employed to describe elements and
components of the embodiments herein. This is done merely for convenience and to give a
general sense of the description. This description, and the claims that follow, should be read
to include one or at least one and the singular also includes the plural unless it is obvious

that it is meant otherwise.

[0090] This detailed description is to be construed as an example only and does not
describe every possible embodiment, as describing every possible embodiment would be
impractical, if not impossible. One could implement numerous alternate embodiments, using

either current technology or technology developed after the filing date of this application.
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What is Claimed:

1. A computer-implemented method to analyze medical image data, the method
comprising:

obtaining, using one or more processors, the medical image data comprising a plurality of
two-dimensional (2D) medical images;

performing, using the one or more processors, target tissue detection and target tissue
segmentation for each 2D medical image to produce a set of segmented target tissue images;

generating, using the one or more processors, a three-dimensional (3D) model of detected
and segmented target tissue;

identifying, using the one or more processors, a master set of radiomic features for the 3D
model of detected and segmented target tissue;

comparing, using the one or more processors, at least some of the radiomic features in the
master set to identify redundant radiomic features for the 3D model of detected and segmented
target tissue;

excluding, using the one or more processors, the redundant radiomic features from the 3D
model of detected and segmented target tissue; and

extracting, using the one or more processors, a selected set of radiomic features from the

3D model of detected and segmented target tissue.

2. The method of claim 1, wherein the target tissue is tumor tissue.

3. The method of claim 2, wherein the tumor tissue comprises breast cancer tissue,
colon cancer tissue, gastric cancer tissue, endometrium cancer tissue, ovarian cancer tissue,
hepatobiliary tract cancer tissue, urinary tract cancer tissue, lung cancer tissue, brain cancer tissue,

or skin cancer tissue.

4, The method of claim 1, wherein the target tissue is tumor tissue and surrounding

tissue.

5. The method of claim 1, further comprising:
identifying from among the selected set of radiomic features, radiomic features that are

significantly associated with clinical outcomes and/or genomic data.

6. The method of claim 5, further comprising:
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identifying from among the selected set of radiomic features, the radiomic features that are
significantly associated with clinical outcomes and/or genomic data using a Cox proportional hazards

model.

7. The method of claim 6, wherein the radiomic features significantly associated with
clinical outcomes and/or genomic data have a p-value <0.005 using the Cox proportional hazards

model.

8. The method of claim 6, wherein the radiomic features are shape-based features.

9. The method of claim 6, wherein the radiomic features are intensity-based features.
10. The method of claim 6, wherein the radiomic features are textural features.

11. The method of claim 6, wherein the radiomic features are filter-based features.

12. The method of claim 1, further comprising identify redundant radiomic features of

the 3D model using a pair-wise comparison.

13. The method of claim 1, further comprising:
performing the method of claim 1 (i) at a first time period before a tumor therapy and again

(i) at a second time period after the tumor therapy.

14. The method of claim 13, further comprising:
determining changes in radiomic features from the first time period before the tumor

therapy to the second time period after the tumor therapy.

15. The method of claim 14, wherein the therapy is a chemotherapy.

16. The method of claim 14, wherein the therapy is a radiation.

17. The method of claim 14, wherein the therapy is an immunotherapy.

18. The method of claim 14, wherein the therapy is a poly ADP ribose polymerase
(PARP) inhibitors therapy.

19. The method of claim 14, wherein the therapy is a CAR T-cell therapy.
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20. The method of claim 14, wherein the therapy is a cancer vaccine.

21. The method of claim 14, further comprising: determining efficacy of the therapy
from the changes in radiomic features from the first time period before the tumor therapy to the

second time period after the tumor therapy.

22. The method of claim 21, further comprising: determining a next therapy in response

to determining the efficacy of the therapy.

23. A computer-implemented method for generating radiomic features for use in a 3D
model of a tumor, the method comprising:

performing, using the one or more processors, using a convolution neural network, model
target tissue detection and target tissue segmentation for a plurality of 2D medical images to
produce a set of segmented target tissue images;

generating, using the one or more processors, a 3D model of detected and segmented target
tissue from a plurality of 2D medical images;

identifying, using the one or more processors, using a convolution neural network, a master
set of radiomic features for the 3D model of detected and segmented target tissue;

identifying, using the one or more processors, using a statistical model, radiomic features
that are significantly associated with clinical outcomes and/or genomic data; and

storing or displaying the significantly associated radiomic features in an enhanced 3D model

or in a digital report.

24. A computing device comprising:

one or more processors;

a user interface; and

a computer-readable memory coupled to the one or more processors, the memory storing
instructions that cause the one or more processors to:

perform target tissue detection and target tissue segmentation for each of a plurality of 2D
medical image and produce a set of segmented target tissue images;

generate a 3D model of detected and segmented target tissue;

identify a master set of radiomic features for the 3D model of detected and segmented
target tissue;

compare at least some of the radiomic features in the master set to identify redundant

radiomic features for the 3D model of detected and segmented target tissue;
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exclude the redundant radiomic features from the 3D model of detected and segmented
target tissue;

extract a selected set of radiomic features from the 3D model of detected and segmented
target tissue; and

store or display the extracted set of radiomic features in an enhanced 3D model orin a

digital report.

25. The computing device of claim 24, wherein the memory stores instructions that
cause the one or more processors to: analyze the selected set of radiomic features and identify from
the selected set of radiomic features, radiomic features that are significantly associated with clinical

outcomes and/or genomic data.

26. The computing device of claim 25, wherein the memory stores instructions that
cause the one or more processors to: identify the significantly associated radiomic features using a
Cox proportional hazards model, wherein the significantly associated radiomic features have a p-

value <0.005.

27. The computing device of claim 25, wherein the memory stores instructions that
cause the one or more processors to: identify the significantly associated radiomic features

correlated to tumor treatment effectiveness.

28. A computer-implemented method to analyze medical image data, the method
comprising:

obtaining, using one or more processors, a first plurality of 2D medical images captured at a
first time period, performing, using the one or more processors, target tissue detection and target
tissue segmentation on each of the first plurality of 2D medical images to produce a set of
segmented target tissue images, and generating, using the one or more processors, a first 3D model
of detected and segmented target tissue;

identifying, using the one or more processors, set of radiomic features in the first 3D model;

obtaining, using one or more processors, a second plurality of 2D medical images captured
at a second time period different from the first time period, performing, using the one or more
processors, target tissue detection and target tissue segmentation for each the second plurality of
2D medical images to produce a set of segmented target tissue images, and generating, using the
one or more processors, a second 3D model of detected and segmented target tissue;

identifying, using the one or more processors, the set of radiomic features in the second 3D

model; and
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comparing, using the one or more processors, the set of radiomic features in the first 3D

model and the second 3D model and determining a change in the set of radiomic features.

29. The method of claim 28, wherein first time period is before a tumor therapy and the

second time period is after the tumor therapy.

30. The method of claim 29, further comprising determining a tumor treatment
effectiveness from the comparison of the set of radiomic features in the first 3D model and the

second 3D model.

31. The method of claim 28, wherein identifying the set of radiomic features in the first
3D model and/or identifying the set of radiomic features in the second 3D model comprises:

identifying a master set of radiomic features;

excluding redundant radiomic features from the master set of radiomic features; and

extracting a selected set of radiomic features from the first 3D model and/or the second 3D

model.

32. The method of claim 28, wherein identifying the set of radiomic features in the first
3D model and/or identifying the set of radiomic features in the second 3D model comprises:

identifying a master set of radiomic features;

extracting a selected set of radiomic features from the first 3D model and/or the second 3D
model; and

identifying from among the selected set of radiomic features, radiomic features that are

significantly associated with clinical outcomes and/or genomic data.
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