10

(19) 日本国特許庁(JP) (12)特許	公 報(B2) (11)特許番号
		特許第4569157号
(45) 発行日 平成225	年10月27日 (2010. 10. 27)	(24)登録日 平成22年8月20日 (2010.8.20)
(51) Int.Cl. GO2B 17/00 GO2B 13/18 GO2B 13/24 GO3F 7/20 G21K 1/06	F I (2006.01) GO2B (2006.01) GO2B (2006.01) GO2B (2006.01) GO3F (2006.01) G21K	17/00 A 13/18 13/24 7/20 521 1/06 A
 (21)出願番号 (22)出願日 (65)公開番号 (43)公開日 審査請求日 	特願2004-130625 (P2004-130625) 平成16年4月27日 (2004.4.27) 特開2005-315918 (P2005-315918A) 平成17年11月10日 (2005.11.10) 平成19年2月23日 (2007.2.23)	請求項の数12 (主 24 頁) 最終頁に続く (73)特許権者 000004112 株式会社ニコン 東京都千代田区有楽町1丁目12番1号 (72)発明者 高橋 友刀 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 審査官 吉川 陽吾
		最終百に続く

(54) 【発明の名称】反射型投影光学系および該反射型投影光学系を備えた露光装置

(57)【特許請求の範囲】

【請求項1】

第1面の縮小像を第2面上に形成する反射型投影光学系において、

第1面側からの光の入射順に、凹面の第1反射鏡M1と、開口絞りASを備えた凸面の第 2反射鏡M2と、凹面の第3反射鏡M3と、凹面の第4反射鏡M4と、凹面の第5反射鏡 M5と、第6面反射鏡M6と、凸面の第7反射鏡M7と、凹面の第8反射鏡M8とを有し 、<u>前記第4反射鏡M4と前記第5反射鏡M5の間に中間像を形成</u>することを特徴とする反 射型投影光学系。

【請求項2】

請求項1に記載の反射型投影光学系であって、

d 1:第2反射鏡M2と第3反射鏡M3の間の面間隔

d 2 : 第 3 反射鏡 M 3 と第 4 反射鏡 M 4 の間の面間隔

とすると、前記第4反射鏡M4の位置が以下の条件を満足することを特徴とする反射型投 影光学系。

0 . 2 < d 1 / d 2 < 0 . 9

【請求項3】
 請求項1<u>又は</u>2に記載の反射型投影光学系であって、
 d3:第4反射鏡M4と第5反射鏡M5の間の面間隔
 d4:第5反射鏡M5と第6反射鏡M6の間の面間隔
 とすると、前記第6反射鏡M6の位置が以下の条件を満足することを特徴とする反射型投 20

影光学系。 3 < d 3 / d 4 < 1 2 【請求項4】 前記第2反射鏡M2の中心曲率半径をR2とすると、 - 6 0 0 0 m m < R 2 < - 4 0 0 m m であることを特徴とする請求項1乃至3のいずれか1項に記載の反射型投影光学系。 【請求項5】 請求項1乃至4のいずれか1項に記載の反射型投影光学系であって、 TL:第1面(物体面)と第2面(結像面)の間の間隔 10 R2:第2反射鏡M2の中心曲率半径 とすると、以下の条件を満足することを特徴とする反射型投影光学系。 -3.0 < R2 / TL < -0.4【請求項6】 請求項1乃至5のいずれか1項に記載の反射型投影光学系であって、 TL:第1面(物体面)と第2面(結像面)の間の間隔 R3:第3反射鏡M3の中心曲率半径 とすると、以下の条件を満足することを特徴とする反射型投影光学系。 - 3.0 < R 3 / T L < - 0.3 【請求項7】 20 請求項1乃至6のいずれか1項に記載の反射型投影光学系において、 前記第6反射鏡M6は、凹面で構成されていることを特徴とする反射型投影光学系。 【請求項8】 請求項1乃至6のいずれか1項に記載の反射型投影光学系において、 前記第6反射鏡M6は、凸面で構成されていることを特徴とする反射型投影光学系。 【請求項9】 請求項1乃至8のいずれか1項に記載の反射型投影光学系であって、 TL:第1面(物体面)と第2面(結像面)の間の間隔 R 6 : 第 6 反射鏡 M 6 の中心曲率半径の絶対値 30 とすると、以下の条件を満足することを特徴とする反射型投影光学系。 1.5 < R 6 / T L < 1 0.0 【請求項10】 像側開口数NAは、0.27より大きく、好ましくは0.43であることを特徴とする請 求項1乃至9のいずれか1項に記載の反射型投影光学系。 【請求項11】 前記第1面に設定されるマスクを照明するための照明系と、前記マスクのパターンを前記 第2面に設定される感光性基板上へ投影露光するための請求項1乃至10のいずれか1項 に記載の反射型投影光学系とを備えていることを特徴とする露光装置。 【請求項12】 40 前記照明系は、露光光としてX線を供給するための光源を有し、前記反射型投影光学系に 対して前記マスクおよび前記感光性基板を相対移動させて、前記マスクのパターンを前記 感光性基板上に投影露光することを特徴とする請求項11に記載の露光装置。 【発明の詳細な説明】 【技術分野】 [0001]本発明は、反射型投影光学系および該反射型投影光学系を備えた露光装置に関し、例え ばX線を用いてミラープロジェクション方式によりマスク上の回路パターンを感光性基板 上に転写するX線投影露光装置に好適な反射型の投影光学系に関するものである。

【背景技術】

[0002]

従来、半導体素子などの製造に使用される露光装置では、マスク(レチクル)上 に形成された回路パターンを、投影光学系を介して、ウエハーのような感光性基板上 に投影転写する。感光性基板にはレジストが塗布されており、投影光学系を介した 投影露光によりレジストが感光し、マスクパターンに対応したレジストパターンが 得られる。

【 0 0 0 3 】

ここで、露光装置の解像力Wは、露光光の波長 と投影光学系の開口数NAとの 依存し、次の式(a)で表わされる。

W=K・ /NA (K:定数) (a) したがって、露光装置の解像力を向上させるためには、露光光の波長 を短くするか、 ¹⁰ あるいは投影光学系の開口数NAを大きくすることが必要となる。一般に、投影光学系 の開口数NAを所定値以上に大きくすることは光学設計の観点から困難であるため、 今後は露光光の短波長化が必要となる。たとえば、露光光として、波長が248nmの KrFエキシマレーザーを用いると0.25µmの解像力が得られ、波長が193nmの ArFエキシマレーザーを用いると、0.18µmの解像力が得られる。露光光として更 に波長の短いX線を用いると、例えば波長が13nmで0.1µm以下の解像力が得られ る。

【 0 0 0 4 】

ところで、露光光としてX線を用いる場合、使用可能な透過光学材料および屈折光学 材料がなくなるため、反射型のマスクを用いるとともに、反射型の投影光学系を用いる ことになる。従来、露光光としてX線を用いる露光装置に適用可能な投影光学系として、 たとえば米国特許第5,815,310号明細書、対応日本出願の特開平9-21132 2号公報、米国特許第6,183,095B1号明細書、などがある。また反射鏡を8枚 使用した光学系としては、米国特許第5,686,728号明細書、対応日本出願の特開 平10-90602号公報、日本出願の特開2002-139672号公報など、種々の 反射光学系が提案されている。

以上をまとめると、

【特許文献1】米国特許第5,815,310号明細書 【特許文献2】特開平9-211322号公報 【特許文献3】米国特許第6,183,095B1号明細書 【特許文献4】米国特許第5,686,728号明細書 【特許文献5】特開平10-90602号公報 【特許文献6】米国特許第6,710,917B2号明細書がある。 【発明の開示】

【発明が解決しようとする課題】

【 0 0 0 5 】

しかしながら、特開平9-211322号公報に開示された従来の反射型投影光学系では、反射鏡が6枚構成で、NA=0.25と比較的明るN光学系を達成しているが、さらに明るNNAを達成することはできていない。

【 0 0 0 6 】

また、米国特許第6,183,095B1号明細書に開示の第1実施例では、反射鏡が 6枚構成で、NA=0.25の比較的明るい光学系を達成しているが、これもまたさらに 明るいNAを達成することはできていない。さらに反射鏡が8枚構成の反射型投影光学系 では、米国特許第5,686,728号明細書より提案されている。この反射型投影光学 系は、大きな開口数(NA)0.3以上を確保しながらコンパクトにまとめられているも のの、8枚の反射鏡の各面での光線入射角が40°~50°とあまりに大きく、このため 、反射多層膜の設計で困難であり、また製造時の精度保証や、投影露光時の安定性に難点 がある。

[0007]

また、米国特許第6,710,917B2号明細書に開示の実施例では、反射鏡への光 ⁵⁰

30

40

線の入射角はそれほど大きくないが、反射鏡の中心曲率半径が大きくなり過ぎ、非球面反 射鏡の形状誤差の検査には、有効な検査手段が存在せず、非球面反射鏡の形状誤差の検査 が困難である。

(4)

【 0 0 0 8 】

現在もっとも有効な検査手段は PDIと言われるピンホールを光源として、反射させる 検査手段であるが、その場合、各反射鏡の曲率半径の絶対値は、ある程度小さい値の方が 、検査精度も良く、効果が高い。

【0009】

本発明は、前述の課題に鑑みてなされたものであり、開口数(NA)を少なくとも 0.27以上、さらに好ましくは0.43を確保することを目的としている。また、本発 ¹⁰ 明の反射型投影光学系を露光装置に適用することにより、たとえば露光光としてX線を用 いて大きな解像力を確保することの出来る露光装置を提供することを目的とする。 【課題を解決するための手段】

[0010]

前記課題を解決するために、本発明の第1発明では、第1面の縮小像を第2面上に形成 する反射型投影光学系において、第1面側からの光の入射順に、凹面の第1反射鏡M1と 、開口絞りASを備えた凸面の第2反射鏡M2と、凹面の第3反射鏡M3と、凹面の第4 反射鏡M4と、凹面の第5反射鏡M5と、第6面反射鏡M6と、凸面の第7反射鏡M7と 、凹面の第8反射鏡M8とを有することを特徴とする反射型投影光学系を提供する。

【0011】

第1発明の好ましい態様によれば、第2反射鏡M2と第3反射鏡M3の間の面間隔をd 1とし、第3反射鏡M3と第4反射鏡M4の間の面間隔をd2とするとき、第4反射鏡M 4の位置が、0.2<d1/d2<0.9の条件を満足することが好ましい。

これにより、M3から測ったM4までの距離を、M2に干渉するのを避けながら、出来るだけ短くすることができるため、M4の有効径の拡大を抑えることが出来る。この値が上限を外れると、M4がM2に干渉する恐れがあり、下限を外れるとM4の有効径が大きくなり過ぎる。

【0012】

また、第4反射鏡M4と第5反射鏡M5の間の面間隔をd3とし、第5反射鏡M5と第 6反射鏡M6の間の面間隔d4とするとき、第6反射鏡M6の位置が、3<d3/d4< 12の条件を満足することが好ましい。

これにより、まず出来るだけM4とM5の間隔を十分に採ることにより、M1とM8の干 渉を避けることが出来、かつM5から測ったM6までの距離をM1やM8に干渉するのを 避ける様にとることにより、さらにM6の有効径の大型化を避けることが出来る。

この値の下限を外れると、M4とM5の間隔が小さくなり過ぎるため、M1とM8の干渉 が起きる恐れが生じる。また上限を外れると、M6がM5に干渉する恐れが生じ、またM 1とM8の間隔が大きくなり過ぎ、光学系が大型化する。

【0013】

mm以下にすることができる。また、M6を凹面で構成することにより、M2の中心曲率 半径の絶対値を3000mm以上にすることができる。このように、M6のパワーの凹凸 で、所望のM2の中心曲率半径の絶対値を管理することが出来る。

【0014】

第6反射鏡M6の中心曲率半径の絶対値をR6とするとき、1.5 < R6 / TL < 10. 0の条件を満足することが好ましい。この範囲の下限を外れると、M6の中心曲率半径が 小さくなるため、光束の反射角の変化が大きくなり過ぎる。また、上限を外れると、M6 の中心曲率半径が大きくなり過ぎ、ミラーの研磨や加工、面精度の検査が困難となる。 【0015】

さらに、本発明の第1の実施形態において、反射型投影光学系が、第4反射鏡M4と第 ¹⁰ 5 反射鏡M5の間、または第5 反射鏡M5と第6反射鏡M6の間に中間像を有する。また 、像側開口数NAは、できるだけ解像力を向上させるために、少なくとも0.27以上あ ることが好ましい。さらに0.43とされていることが好ましい。

【0016】

本発明の第2発明では、前記第1面に設定されたマスクを照明するための照明系と、前 記マスクのパターンを前記第2面に設定された感光性基板上へ投影露光するための第1発 明の反射型投影光学系とを備えていることを特徴とする露光装置を提供する。

【0017】

第2発明の好ましい態様によれば、前記照明系は、露光光としてX線を供給するための 光源を有し、前記反射型投影光学系に対して前記マスクおよび前記感光性基板を相対移動 ²⁰ させて、前記マスクのパターンを前記感光性基板上に投影露光する。

【発明の効果】

【0018】

本発明の反射型投影光学系では、第2反射鏡M2に開口絞りASを配置しているので、 開口絞り部材による光束のけられも、出来るだけ回避できる。また、第1反射鏡M1、第 3反射鏡M3、第4反射鏡M4、第5反射鏡M5、第6反射鏡M6の曲率をある程度強く し、収差補正に効果のある形状にしたので、NA0.43に達する大開口数の光学系が達 成できる。さらに、このような強い曲率による構成にしたので、各反射鏡の有効径を縮小 させることができ、特に有効径が大きくなりがちな第5反射鏡M5の有効径を小さく抑え ることができる。すなわち、本発明では、X線に対しても良好な反射特性を有し、反射鏡 の大型化を抑えつつ収差補正を良好に行うことのできる反射型の投影光学系を実現するこ とができる。

[0019]

また、本発明の反射型投影光学系を露光装置に適用することにより、露光光としてX線 を使用することができる。この場合、反射型投影光学系に対してマスクおよび感光性基板 を相対移動させて、マスクのパターンを感光性基板上へ投影露光することになる。 その結果、大きな解像力を有する走査型の露光装置を用いて、良好な露光条件のもとで、 高精度なマイクロデバイスを製造することができる。

【発明を実施するための最良の形態】

[0020]

本発明の反射型投影光学系では、第1面(物体面)からの光が、第1反射結像光学系G 1を介して、第1面の中間像を形成する。そして、第1反射結像光学系G1を介して形成 された第1面の中間像からの光が、第2反射結像光学系G2を介して、中間像の像(第1 面の縮小像)を第2面(像面)上に形成する。

【0021】

ここで、第1反射結像光学系G1は、第1面からの光を反射するための凹面の第1反射 鏡M1と、第1反射鏡M1で反射された光を反射するための、開口絞りASを備えた凸面 の第2反射鏡M2と、第2反射鏡M2で反射された光を反射するための凹面の第3反射鏡 M3と、第3反射鏡M3で反射された光を反射するための凹面の第4反射鏡M4とにより 構成されている。また、第2反射結像光学系G2は、中間像からの光を反射するための凹 30

面の第 5 反射鏡 M 5 と、第 5 反射鏡 M 5 で反射された光を反射するための第 6 反射鏡 M 6 と、第 6 反射鏡 M 6 で反射された光を反射するための凸面の第 7 反射鏡 M 7 と、第 7 反射 鏡 M 7 で反射された光を反射するための凹面の第 8 反射鏡 M 8 とにより構成されている。 【 0 0 2 2 】

本発明では、第1反射結像光学系G1を介して形成された第1面の中間像からの光が、 第2反射結像光学系G2を介して、中間像の像(第1面の縮小像)を第2面(像面)上に 形成する所謂2回結像光学系を採用した。物体側より光の入射順に、反射鏡が凹凸凹凹凹 凹凸凹面鏡または、凹凸凹凹凹凸凸凹面鏡で構成されており、このような配置にすること により、該2回結像光学系では、各反射鏡の曲率半径の拡大を抑え、かつ各反射鏡への、 光線入射角を小さく抑えることが出来き、かつ各反射鏡の有効径を抑えたコンパクトでN Aの大きな光学系を開発することができた。光線の入射角が大きいと、反射ミラーの反射 率が劣化し易くなり、また製造公差も非常に厳しいものとなる。また、発生する収差も大 きくなり、反射ミラー表面の場所毎の収差変動も大きくなるからである。 【0023】

まず、第1反射結像光学系G1を構成する物体側から数えて最初の4枚の反射鏡につい て、凸面反射鏡を、物体側から2番目の反射鏡に採用し、その周りを凹面反射鏡で囲む配 置を構成することにより、大きくなりがちな反射鏡の有効径を抑えつつ、各反射鏡への入 射光束の入射角を抑え、かつ、各反射鏡の中心曲率半径の絶対値を400mm以上、60 00mm以下程度の中に収めて、製造時の容易さを考慮にいれた設計が可能になったもの である。

【0024】

さらに第2反射結像光学系G2を構成する4枚の反射鏡についても、凸面反射鏡を、像 側から2番目の反射鏡に採用し、さらに2つの強い曲率の凹面反射鏡を向かい合わせに配 置することにより、大きくなりがちな反射鏡の有効径を抑えつつ、各反射鏡への入射光束 の入射角を抑え、かつ、各反射鏡の中心曲率半径の絶対値を400mm~6000mm程 度の中に収めて、製造時の容易さを考慮にいれた設計が可能になったものである。

【0025】

また全体光学系が縮小光学系であることから、第1反射結像光学系G1および第2反射 結像光学系G2の物体側に凹面鏡を連続して用いることで、無理無く光束を像面に向かっ て導いている。これにより、反射鏡の配置では、本発明のような、大きなNAで、しかも 、小さい反射鏡有効径、小さな反射面光線入射角、小さな反射面曲率半径を有する点にお いて優れた小型の反射型投影光学系が実現できる。

【0026】

さらに、第1、第2、第3反射鏡の構成セットや、第5、第7、第8反射鏡の構成セットを、凹凸凹面鏡で構成することにより、全ての反射鏡の中心曲率半径の絶対値は、6000mm以上となるような大きな曲率半径でもなく、400mm以下となるような小さい曲率半径でもない、適切な曲率半径を維持しつつ、高NAでありながら、高い光学性能を達成することが出来る。

[0027]

また、開口絞りを第2反射鏡M2に備えたことにより、光束のけられを回避した小型の 40 光学系が得られ、また第1面の縮小像を第2面上に2回結像で形成する構成を採用するこ とにより、歪曲収差(ディストーション)の補正を良好に行うことが出来、さらに、小型 で結像倍率を1/4に保ちながら、良好な光学性能を実現することができる。 【0028】

以上のような配置を採用することにより、反射鏡の最大径を抑えられると共に、各反射 鏡や開口絞りを光束のけられもなく適切に配置することが出来る。

また、第3反射鏡M3及び第6反射鏡M6への光線の入射角を小さく抑えることにより、 有効径が大きくなりがちな第4反射鏡M4及び第5反射鏡M5の有効径を小さく抑える ことができる。

【 0 0 2 9 】

50

10

20

以上のように、本発明では、 X線に対しても良好な反射特性を有し、反射鏡の大型化を 抑えつつ収差補正を良好に行うことのできる反射型の投影光学系を実現することができる。

【 0 0 3 0 】

また、本発明では、第3反射鏡M3及び第6反射鏡M6への光線の最大入射角Aが、次の条件式(1)を満足することが望ましい。

A < 3 0 ° (1)

条件式(1)の上限値を上回ると、反射多層膜への光線の最大入射角 A が大きくなり過ぎ て、反射ムラが発生し易くなり且つ十分に高い反射率を得ることができなくなるので好ま しくない。

【0031】

また、本発明では、第1面から第1反射鏡M1への光束の主光線の光軸に対する傾き が、次の条件式(2)を満足することが望ましい。

5°<||<10° (2)

条件式(2)の上限値を上回ると、第1面に反射マスクを設置した場合に、反射による 影の影響を受け易くなるので、好ましくない。一方、条件式(2)の下限値を下回ると、 第1面に反射マスクを設置した場合に、入射光と反射光とが干渉するので、好ましくない

【0032】

また、本発明では、各反射鏡M1~M8の有効径 Mは、次の条件式(3)を満足する ²⁰ ことが望ましい。

M 700mm (3) 条件式(3)の上限値を上回ると、当該反射鏡の有効径が大きくなり過ぎて、光学系が 大型化するので好ましくない。

【 0 0 3 3 】

また本発明では、収差を良好に補正して光学性能を向上させるために、各反射鏡の反射 面は光軸に関して回転対称な非球面で形成され、各反射面を規定する非球面の最大次数は 10次以上であることが望ましい。また、像側にテレセントリックな光学系の構成により 、たとえば露光装置に適用される場合、投影光学系の焦点深度内でウエハーに凹凸があっ ても良好な結像が可能である。

【0034】

また、本発明の反射型投影光学系を露光装置に適用することにより、露光光としてX線 を使用することができる。この場合、反射型投影光学系に対してマスクおよび感光性基板 を相対移動させて、マスクのパターンを感光性基板上へ投影露光することになる。その結 果、高い解像力を有する走査型の露光装置を用いて、良好な露光条件のもとで、高精度な マイクロデバイスを製造することができる。

【 0 0 3 5 】

本発明の実施形態を、添付図面に基づいて説明する。

図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。

また、図2は、ウェハ上に形成される円弧状の露光領域(すなわち実効露光領域)と光軸 40 との位置関係を示す図である。図1において、投影光学系の光軸方向すなわち感光性基板 であるウェハの法線方向に沿ってZ軸を、ウェハ面内において図1の紙面に平行な方向に Y軸を、ウェハ面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。 【0036】

図1の露光装置は、露光光を供給するための光源として、たとえばレーザプラズマX線 源1を備えている。X線源1から射出された光は、波長選択フィルタ2を介して、照明光 学系3に入射する。ここで、波長選択フィルタ2は、X線源1が供給する光から、所定波 長(13.5 nm)のX線だけを選択的に透過させ、他の波長光の透過を遮る特性を有す る。

【0037】

10

波長選択フィルタ2を透過したX線は、複数の反射鏡から構成された照明光学系3を介 して、転写すべきパターンが形成された反射型のマスク4を照明する。

マスク4は、そのパターン面がXY平面に沿って延びるように、Y方向に沿って移動可能 なマスクステージ5によって保持されている。そして、マスクステージ5の移動は、図示 を省略したレーザー干渉計により計測されるように構成されている。こうして、マスク4 上には、Y軸に関して対称な円弧状の照明領域が形成される。

【 0 0 3 8 】

照明されたマスク4のパターンからの光は、反射型の投影光学系6を介して、感光性基 板であるウェハ7上にマスクパターンの像を形成する。すなわち、ウェハ7上には、図2 に示すように、Y軸に関して対称な円弧状の露光領域が形成される。図2を参照すると、 光軸AXを中心とした半径 を有する円形状の領域(イメージサークル)IF内において 、このイメージサークルIFに接するようにX方向の長さがLXでY方向の長さがLYの 円弧状の実効露光領域ERが設定されている。

【0039】

ウェハ7は、その露光面がXY平面に沿って延びるように、X方向およびY方向に沿っ て二次元的に移動可能なウェハステージ8によって保持されている。なお、ウェハステー ジ8の移動は、マスクステージ5と同様に、図示を省略したレーザー干渉計により計測さ れるように構成されている。こうして、マスクステージ5およびウェハステージ8をY方 向に沿って移動させながら、すなわち投影光学系6に対してマスク4およびウェハ7をY 方向に沿って相対移動させながらスキャン露光(走査露光)を行うことにより、ウェハ7 の1つの露光領域にマスク4のパターンが転写される。

[0040]

このとき、投影光学系6の投影倍率(転写倍率)が1/4である場合、ウェハステージ 8の移動速度をマスクステージ5の移動速度の1/4に設定して同期走査を行う。また、 ウェハステージ8をX方向およびY方向に沿って二次元的に移動させながら走査露光を繰 り返すことにより、ウェハ7の各露光領域にマスク4のパターンが逐次転写される。以下 、第1実施例~第3実施例を参照して、投影光学系6の具体的な構成について説明する。 【0041】

各実施例において、投影光学系6は、マスク4のパターンの中間像を形成するための第 1反射結像光学系G1と、マスクパターンの中間像の像(マスク4のパターンの二次像) をウェハ7上に形成するための第2反射結像光学系G2とから構成されている。ここで、 第1反射結像光学系G1は4つの反射鏡M1~M4から構成され、第2反射結像光学系G 2は4つの反射鏡M5~M8から構成されている。中間像がM5とM6の間にある場合は

第1反射結像光学系G1は5つの反射鏡M1~M5から構成され、第2反射結像光学系G 2は3つの反射鏡M6~M8から構成される。

【 0 0 4 2 】

なお、各実施例において、すべての反射鏡の反射面が光軸に関して回転対称な非球面で 形成されている。また、各実施例において、第2反射鏡M2の直前には、開口絞りASが 配置されている。さらに、各実施例において、投影光学系6は、ウェハ側(像像)にテレ セントリックな光学系である。

[0043]

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、非球面の頂点におけ る接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をzとし 、頂点曲率半径をrとし、円錐係数を とし、n次の非球面係数をCn としたとき、以下 の数式(b)で表される。

[0044]

(数1) $z = (y^2/r) / \{1 + \{1 - (1 +) \cdot y^2/r^2\}^{1/2}\}$ + C4 · y⁴ + C6 · y⁶ + C8 · y⁸ + C10 · y¹⁰ + · · · (b) 10

20

【実施例1】

[0045]

図3は、本実施形態の第1実施例にかかる投影光学系の構成を示す図である。 図3を参照すると、第1実施例の投影光学系では、マスク4(図3では不図示)からの光 は、凹面の第1反射鏡M1の反射面、凸面の第2反射鏡M2の反射面、凹面の第3反射鏡 M3の反射面、および凹面の第4反射鏡M4の反射面で順次反射された後、マスクパター ンの中間像(IMI)を形成する。そして、第1反射結像光学系G1を介して形成された マスクパターンの中間像からの光は、凹面の第5反射鏡M5の反射面、凹面の第6反射鏡 M6の反射面、凸面の第7反射鏡M7の反射面、および凹面の第8反射鏡M8の反射面で 順次反射された後、ウェハ7上にマスクパターンの縮小像(二次像)を形成する。 【0046】

(9)

次の表(1)に、第1実施例にかかる投影光学系の諸元の値を掲げる。表(1)において、 は露光光の波長を、 は投影倍率を、NAは像側(ウェハ側)開口数を、H0はマスク4上における最大物体高を、 はウェハ7上でのイメージサークルIFの半径(最大像高)を、LXは実効露光領域ERのX方向に沿った寸法を、LYは実効露光領域ERの Y方向に沿った寸法をそれぞれ表している。

【0047】

また、面番号は物体面であるマスク面から像面であるウェハ面への光線の進行する方向 に沿ったマスク側からの反射面の順序を、rは各反射面の頂点曲率半径(mm)を、dは 各反射面の軸上間隔すなわち面間隔(mm)をそれぞれ示している。なお、面間隔dは、 反射される度にその符号を変えるものとする。そして、光線の入射方向にかかわらずマス ク側に向かって凸面の曲率半径を正とし、凹面の曲率半径を負としている。上述の表記は 、以降の表(2)および表(3)においても同様である。

20

30

40

10

- 【0048】 (表1) (主要諸元)
- = 1 3 . 5 n m = 1 / 4 N A = 0 . 3 5 H 0 = 1 6 0 m m = 4 0 m m L X = 2 6 m m

L Y = 2 m m

(光学部材諸元)	
面番号 r	d
(マスク面)	698.156
1 - 9 7 5 . 2 2 3	- 2 9 7 . 0 1 9(第1反射鏡M1)
2	0.0 (開口絞りAS)
3 - 1 0 6 0 . 1 7 6	2 5 2 . 3 1 1 (第 2 反射鏡 M 2)
4 - 1 8 8 1 . 7 7 6	- 4 7 0 . 6 9 3(第 3 反射鏡 M 3)
5 1960.840	1 0 7 7 . 1 6 4 (第 4 反射鏡 M 4)
6 - 951.847	- 1 4 7 . 1 2 2 (第 5 反射鏡 M 5)
7 5859.745	269.124 (第6反射鏡M6)
8 211.421	- 3 7 1 . 6 9 7 (第 7 反射鏡 M 7)
9 441.230	4 1 6 . 6 2 0 (第 8 反射鏡 M 8)
(ウェハ面)	

(非球面データ)

(10)

2 面

3 面

= 0 . 0 0 0 0 0 0 C 4 = - 0 . 2 3 0 5 7 3 × 1 0⁻⁸ C 6 = 0 . 8 3 5 4 1 7 × 1 0⁻¹⁴ C 8 = - 6 2 7 4 8 4 × 1 0⁻¹⁹ C 10 = - 0 . 1 9 7 3 4 7 × 1 0⁻²⁵ C 12 = 0 . 2 7 6 0 6 8 × 1 0⁻²⁸ C 14 = - 0 . 9 0 7 4 7 2 × 1 0⁻³³ C 16 = 0 . 1 1 2 5 3 8 × 1 0⁻³⁷

4 面

5 面

6面

7 面

8面

= 0 . 0 0 0 0 0 0

10

20

30

C6 = 0. 3 2 7 8 6 0 x 1 0⁻¹⁵ C4 = 0 . 4 0 6 4 7 0 × 1 0 ⁻¹⁰ C 8 = 0. 1 5 0 2 1 2 × 1 0 - 20 C 10 = 0. 2 1 9 8 2 6 x 1 0 - 25 C 12 = -0. 3 3 8 8 4 2 × 1 0 - 30 $C_{14} = 0$, $6_{16} + 6_{35} + 3 \times 10^{-35}$ C 16 = -0. 3 7 3 7 1 5 x 1 0 $^{-40}$ (条件式対応値) (1) NA = 0.35(2) | |=6.02° (105.00 mrad) (3) M = 4 4 8 m m (第5反射鏡 M 5 において最大) 10 (4) d1 / d2 = 0.536(5) d3/d4=7.33 (6) R 2 / T L = -0.74(7) R3/TL=-1.32 (8) R6/TL=4.11 図4は、第1実施例の投影光学系におけるコマ収差を示す図である。 図4では、像高100%、像高98%、および像高95%におけるメリディオナルコマ収 差およびサジタルコマ収差を示している。収差図から明らかなように、第1実施例では、 実効露光領域ERに対応する領域において、コマ収差が良好に補正されていることがわか る。また、図示を省略したが、実効露光領域ERに対応する領域において、コマ収差以外 20 の他の諸収差、たとえば球面収差やディストーションなども良好に補正されていることが 確認されている。 【実施例2】 [0049]図5は、本実施形態の第2実施例にかかる投影光学系の構成を示す図である。 図5を参照すると、第2実施例の投影光学系においても第1実施例と同様に、マスク4(図5では不図示)からの光は、凹面の第1反射鏡M1の反射面、凸面の第2反射鏡M2の 反射面、凹面の第3反射鏡M3の反射面、および凹面の第4反射鏡M4の反射面で順次反 射された後、マスクパターンの中間像(IMI)を形成する。そして、第1反射結像光学 系G1を介して形成されたマスクパターン中間像からの光は、凹面の第5反射鏡M5の反 射面、凸面の第6反射鏡M6の反射面、凸面の第7反射鏡M7の反射面、および凹面の第 30 8 反射鏡M8の反射面で順次反射された後、ウェハ7上にマスクパターンの縮小像(二次) 像)を形成する。 [0050]次の表(2)に、第2実施例にかかる投影光学系の諸元の値を掲げる。 [0051](表2) (主要諸元) = 13.5 nm = 1 / 4 40 N A = 0 . 4 3H 0 = 1 6 0 mm= 4 0 m m L X = 2.6 mmLY = 2mm(光学部材諸元) 面番号 r Ь (マスク面) 590.955 - 9 8 5 . 0 4 6 - 3 1 0 . 3 6 7 (第 1 反射鏡 M 1)

1

(11)

(12)

2		0		0						(開		絞) A	١S)		
3	- 3 0 0 0 . 0 0 0	2	2	8		6	0	7		(第	2	反!	討翁	€N	12))
4	- 1 6 3 1 , 5 4 7	-	2	7	7		6	6	0	(第	3	反	討翁	€N	13))
5	2998.808	7	3	5	•	5	8	2		(第	4	反	討翁	€N	4))
6	- 5 9 6 . 5 8 1	-	1	2	3		7	5	7	(第	5	反	討翁	€N	15))
7	- 4 2 3 0 . 1 5 0	2	2	3		7	5	7		(第	6	反	討翁	€N	6 ו))
8	169.128	3	2	3		7	5	7		(第	7	反	討翁	€N	17))
9	381.614	3	6	3	•	7	5	7		(第	8	反	討翁	€N	8 1))
	(ウェハ面)																	

(非球面データ)

1 面

= 0 . 0 0 0 0 0 0 C 4 = - 0 . 7 2 1 4 8 5 \times 1 0⁻⁹ C 6 = 0 . 3 3 5 7 7 8 \times 1 0⁻¹³ C 8 = - 0 . 1 0 8 2 2 0 \times 1 0⁻¹⁷ C 10 = 0 . 1 8 2 9 0 5 \times 1 0⁻²² C 12 = - 0 . 3 9 8 7 0 9 \times 1 0⁻²⁸ C 14 = - 0 . 4 2 9 4 6 7 \times 1 0⁻³² C 16 = 0 . 5 4 6 7 9 2 \times 1 0⁻³⁷

2 面

3 面

= 0 . 0 0 0 0 0 0 C 4 = - 0 . 5 2 5 9 8 9 × 1 0⁻⁸ C 6 = 0 . 2 4 2 3 7 4 × 1 0⁻¹³ C 8 = - 0 . 3 4 7 1 8 6 × 1 0⁻¹⁸ C 10 = 0 . 8 6 9 0 5 6 × 1 0⁻²³ C 12 = - 0 . 3 8 7 4 0 6 × 1 0⁻²⁷ C 14 = 0 . 1 2 9 1 1 9 × 1 0⁻³¹ C 16 = - 0 . 1 8 0 0 9 3 × 1 0⁻³⁶

4 面

= 0 . 0 0 0 0 0 0 C 4 = - 0 . 3 0 4 5 2 2 \times 1 0 ⁻⁸ C 6 = - 0 . 2 5 1 5 0 4 \times 1 0 ⁻¹³ C 8 = 0 . 5 8 5 8 7 3 \times 1 0 ⁻¹⁸ C 10 = - 0 . 8 0 9 6 7 2 \times 1 0 ⁻²² C 12 = 0 . 3 8 9 1 6 2 \times 1 0 ⁻²⁶ C 14 = - 0 . 1 0 2 2 9 4 \times 1 0 ⁻³⁰ C 16 = 0 . 1 1 2 2 2 8 \times 1 0 ⁻³⁵

5 面

= 0 . 0 0 0 0 0 0 C 4 = - 0 . 3 5 8 5 9 6 x 1 0 $^{-09}$ C 6 = - 0 . 4 3 2 2 9 8 x 1 0 $^{-15}$

 $C8 = -0 . 926858 \times 10^{-18} C10 = 0 . 284672 \times 10^{-22}$ C12 = -0 . 411796 × 10⁻²⁷ C14 = 0 . 300284 × 10⁻³² C16 = -0 . 895302 × 10⁻³⁸

6面

= 0 . 0 0 0 0 0 0 C4 = - 0 . 4 3 5 7 4 7 \times 1 0 ⁻⁸ C6 = - 0 . 6 1 6 4 8 7 \times 1 0 ⁻¹³ 10

20

 $C8 = 0 . 380556 \times 10^{-17} C10 = -0 . 799599 \times 10^{-22}$ C12 = 0 . 568693 × 10⁻²⁷ C14 = 0 . 605155 × 10⁻³² C16 = -0 . 962701 × 10⁻³⁷

7 面

= 0 . 0 0 0 0 0 0 C 4 = 0 . 2 5 9 2 2 1 x 1 0⁻⁰⁷ C 6 = - 0 . 2 1 8 3 1 3 x 1 0⁻¹¹ C 8 = 0 . 5 0 8 6 3 9 x 1 0⁻¹⁵ C 10 = 0 . 1 1 2 4 4 4 x 1 0⁻¹⁸ C 12 = - 0 . 5 6 4 7 7 3 x 1 0⁻²² C 14 = 0 . 1 0 8 3 0 9 x 1 0⁻²⁵ C 16 = - 0 . 7 8 3 8 0 8 x 1 0⁻³⁰

8面

= 0 . 0 0 0 0 0 0 C 4 = 0 . 5 7 2 6 5 3 × 1 0⁻¹⁰ C 6 = 0 . 6 0 7 0 8 5 × 1 0⁻¹⁵ C 8 = 0 . 3 2 9 7 4 1 × 1 0⁻²⁰ C 10 = 0 . 8 9 5 5 2 4 × 1 0⁻²⁵ C 12 = -0 . 1 4 5 6 1 5 × 1 0⁻²⁹ C 14 = 0 . 2 6 3 7 1 8 × 1 0⁻³⁴ C 16 = -0 . 1 2 3 5 3 2 × 1 0⁻³⁹

(条件式対応値)

	Μ	5	=		5	0	5		m	m																
(1)	Ν	А	=	= ()	. 4	4 3	3																
(2)			I	=	6	•	0	2	0	(1	0	5		0	0		m	r	а	d)	
(3)		Μ	=	5	0	5	m	m	(第	5	反	射	鏡	Μ	5	に	お	L١	τ	最	大)	
(4)	d	1	/	d	2	=	0		8	2	3													
(5)	d	3	/	d	4	=	5		9	4														
(6)	R	2	/	Т	L	=	-	2		7	1													
(7)	R	3	/	Т	L	=	-	1	•	4	7													
(8)	R	6	/	Т	L	=		3	•	8	2													

図6は、第2実施例の投影光学系におけるコマ収差を示す図である。 図6では、像高100%、像高98%、および像高95%におけるメリディオナルコマ収 差およびサジタルコマ収差を示している。収差図から明らかなように、第2実施例におい ても第1実施例と同様に、実効露光領域ERに対応する領域において、コマ収差が良好に 補正されていることがわかる。また、図示を省略したが、実効露光領域ERに対応する領 域において、コマ収差以外の他の諸収差、たとえば球面収差やディストーションなども良 好に補正されていることが確認されている。

【実施例3】

【0052】

図7は、本実施形態の第3実施例にかかる投影光学系の構成を示す図である。 図7を参照すると、第3実施例の投影光学系においても第1実施例および第2実施例と同様に、マスク4(図7では不図示)からの光は、凹面の第1反射鏡M1の反射面、凸面の 第2反射鏡M2の反射面、凹面の第3反射鏡M3の反射面、および凹面の第4反射鏡M4 の反射面で順次反射された後、マスクパターンの中間像(IMI)を形成する。そして、 第1反射結像光学系G1を介して形成されたマスクパターン中間像からの光は、凹面の第 5反射鏡M5の反射面、凹面の第6反射鏡M6の反射面、凸面の第7反射鏡M7の反射面 、および凹面の第8反射鏡M8の反射面で順次反射された後、ウェハ7上にマスクパター ンの縮小像(二次像)を形成する。

【0053】

次の表(3)に、第3実施例にかかる投影光学系の諸元の値を掲げる。

【 0 0 5 4 】

(表3)

10

= 1 3 . 5 n m = 1 / 4 N A = 0 . 3 H 0 = 1 6 0 m m = 4 0 m m L X = 2 6 m m L Y = 2 m m

(光学部材諸元)

r

(マスク面)

- 9 6 9 . 9 8 2

- 1 1 8 2 . 2 7 6

- 2 3 5 0 . 8 2 0

1883.389

- 9 7 5 . 5 4 9

3387.139

207.259

441.870

(ウェハ面)

面番号

1

2

3

4

5 6

7

8

9

10

20

30

40

(非球面データ) 1 面

 $\begin{array}{l} = 0 & . & 0 & 0 & 0 & 0 & 0 \\ C & 4 & = & - & 0 & . & 7 & 0 & 3 & 2 & 0 & 7 \times & 1 & 0 & ^{-10} \\ C & 8 & = & - & 0 & . & 3 & 7 & 5 & 6 & 6 & 8 \times & 1 & 0 & ^{-18} \\ C & 12 & = & - & 0 & . & 2 & 2 & 3 & 7 & 8 & 5 \times & 1 & 0 & ^{-27} \\ C & 12 & = & - & 0 & . & 2 & 2 & 3 & 7 & 8 & 5 \times & 1 & 0 & ^{-27} \\ C & 16 & = & 0 & . & 1 & 6 & 9 & 7 & 0 & 5 \times & 1 & 0 & ^{-37} \end{array}$

(14)

d

750.955

0.0

- 2 8 8 . 7 9 0 (第 1 反射鏡 M 1)

251.134 (第2反射鏡M2)

- 3 9 1 . 1 1 5 (第 3 反射鏡 M 3)

1007.342(第4反射鏡M4)

-146.509(第5反射鏡M5)

271.523 (第6反射鏡M6) -373.841(第7反射鏡M7)

417.685 (第8反射鏡M8)

(開口絞りAS)

2 面

3 面

 $\begin{array}{rl} = & 0 & . & 0 & 0 & 0 & 0 & 0 \\ C & 4 = & - & 0 & . & 2 & 7 & 7 & 5 & 6 & \times & 1 & 0 & ^{-8} \\ C & 8 = & - & 0 & . & 7 & 5 & 7 & 4 & 1 & 0 & \times & 1 & 0 & ^{-19} \\ C & 12 = & 0 & . & 1 & 1 & 5 & 8 & 3 & 5 & \times & 1 & 0 & ^{-27} \\ C & 16 = & 0 & . & 5 & 0 & 8 & 2 & 7 & 8 & \times & 1 & 0 & ^{-37} \end{array}$ $\begin{array}{r} C & 6 = & 0 & . & 1 & 0 & 5 & 8 & 3 & 1 & \times & 1 & 0 & ^{-13} \\ C & 10 = & - & 0 & . & 1 & 3 & 0 & 5 & 1 & 1 & \times & 1 & 0 & ^{-23} \\ C & 14 = & - & 0 & . & 3 & 7 & 7 & 9 & 5 & 6 & \times & 1 & 0 & ^{-32} \end{array}$

4 面

5 面

6面

7 面

8面

(条件式対応値)

M 5 = 4 4 0 mm (1) N A = 0.3 (2) | | = 6.02°(105.00 mrad) (3) M = 4 4 0 mm(第5反射鏡M5において最大) (4) d 1 / d 2 = 0.642 (5) d 3 / d 4 = 6.85 (6) R 2 / T L = -0.79 (7) R 3 / T L = -1.57 (8) R 6 / T L = 2.26 四04 の の た の の の 形 とと が て に かけ ス ー つ 服 文 ち 一 寸 四 つ の

図8は、第3実施例の投影光学系におけるコマ収差を示す図である。図8では、像高 100%、像高98%、および像高95%におけるメリディオナルコマ収差およびサジタ ルコマ収差を示している。収差図から明らかなように、第3実施例においても第1実施例 および第2実施例と同様に、実効露光領域ERに対応する領域において、コマ収差が良好 に補正されていることがわかる。また、図示を省略したが、実効露光領域ERに対応する 領域において、コマ収差以外の他の諸収差、たとえば球面収差やディストーションなども 良好に補正されていることが確認されている。

【0055】

以上のように、上述の各実施例では、波長が13.5nmのレーザプラズマX線に対して、0.3~0.43の像側開口数を確保するとともに、ウェハ7上において諸収差が良好に補正された26mm×2mmの円弧状の実効露光領域を確保することができる。した

30

20

10

50

(15)

がって、ウェハ7において、たとえば26mmx66mmの大きさを有する各露光領域に 、マスク4のパターンを走査露光により0.1μm以下の高解像で転写することができる 。

【 0 0 5 6 】

また、上述の各実施例では最も大きい凹面の第5反射鏡M5の有効径が約440~約5 05mm程度であり、十分に小さく抑えられている。このように、各実施例において、反 射鏡の大型化が抑えられ、光学系の小型化が図られている。また、一般に反射面の曲率半 径が大きくなって平面に近くなると精度良く製造することが困難になるが、上述の各実施 例では曲率半径の最も大きい第6反射鏡M6において曲率半径R6が6000mm以下に 抑えられているので、各反射面の製造を良好に行うことができる。

[0057]

また非球面次数は、各面16次まで使用され、条件の10次以上を満足しており、像側 主光線の傾きもほぼ0であり、テレセントリックな光学系となっている。

また、上述の各実施例では、マスク4に入射する光線群およびマスク4で反射される光 線群の光軸AXとなす角度 が約6。程度に小さく抑えられているので、反射型マスク4 を用いていても、入射光と反射光との干渉を避けることができるとともに、反射による影 の影響を受けにくく、したがって性能が悪化しにくい。また、マスク4の設定位置につい てわずかな誤差が発生しても、大きな倍率変化を招きにくいという利点がある。 【0058】

また、上述の各実施例では、中間像がM4とM5の間に形成される構成であるが、これ ²⁰ に限らず中間像がM5とM6の間に形成される構成も可能である。

中間像は各反射鏡のパワーのちょっとした違いにより、 M 4 と M 5 の間に形成される構成や、 M 5 と M 6 の間に形成される構成が可能であるからである。

【0059】

ただし、中間像は反射鏡から離れた位置に形成されることが望ましい。中間像の位置が 反射鏡から離れる事により、反射鏡の鏡面上での、光束の幅が広がるため、反射鏡の鏡面 上の微細な構造のうねりによる影響が、平均化されて小さくなるからである。

【 0 0 6 0 】

上述の実施形態にかかる露光装置では、照明系によってマスクを照明し(照明工程)、 投影光学系を用いてマスクに形成された転写用のパターンを感光性基板に露光する(露光 30 工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表示素子、薄膜磁気 ヘッド等)を製造することができる。以下、本実施形態の露光装置を用いて感光性基板と してのウェハ等に所定の回路パターンを形成することによって、マイクロデバイスとして の半導体デバイスを得る際の手法の一例につき図9のフローチャートを参照して説明する

【0061】

先ず、図9のステップ301において、1ロットのウェハ上に金属膜が蒸着される。次のステップ302において、その1ロットのウェハ上の金属膜上にフォトレジストが塗布 される。その後、ステップ303において、本実施形態の露光装置を用いて、マスク(レ チクル)上のパターンの像がその投影光学系を介して、その1ロットのウェハ上の各ショ ット領域に順次露光転写される。

【0062】

その後、ステップ304において、その1ロットのウェハ上のフォトレジストの現像が 行われた後、ステップ305において、その1ロットのウェハ上でレジストパターンをマ スクとしてエッチングを行うことによって、マスク上のパターンに対応する回路パターン が、各ウェハ上の各ショット領域に形成される。その後、更に上のレイヤの回路パターン の形成等を行うことによって、半導体素子等のデバイスが製造される。上述の半導体デバ イス製造方法によれば、極めて微細な回路パターンを有する半導体デバイスをスループッ ト良く得ることができる。

[0063]

40

なお、上述の本実施形態では、X線を供給するための光源としてレーザプラズマ光源(LPP)を用いているが、これに限定されることなく、光源としてたとえば放電プラズマ 光源(DPP)やシンクロトロン放射(SOR)光を用いることもできる。 【0064】 また、上述の本実施形態では、X線を供給するための光源を有する露光装置に本発明を 適用しているが、これに限定されることなく、X線以外の他の波長光を供給する光源を有 する露光装置に対しても本発明を適用することができる。

【0065】

さらに、上述の本実施形態では、露光装置の投影光学系に本発明を適用しているが、これに限定されることなく、他の一般的な投影光学系に対しても本発明を適用することがで ¹⁰ きる。

【図面の簡単な説明】

【0066】

【図1】本発明の実施形態にかかる露光装置の構成を概略的に示す図である。

【図2】ウェハ上に形成される円弧状の露光領域(すなわち実効露光領域)と光軸との位 置関係を示す図である。

【図3】本実施形態の第1実施例にかかる投影光学系の構成を示す図である。

【図4】第1実施例の投影光学系におけるコマ収差を示す図である。

【図5】本実施形態の第2実施例にかかる投影光学系の構成を示す図である。

【図6】第2実施例の投影光学系におけるコマ収差を示す図である。

【図7】本実施形態の第3実施例にかかる投影光学系の構成を示す図である。

【図8】第3実施例の投影光学系におけるコマ収差を示す図である。

【図9】マイクロデバイスとしての半導体デバイスを得る際の手法の一例について、その フローチャートを示す図である。

【符号の説明】

[0067]

1 レーザプラズマ X 線源

2 波長選択フィルタ

- 3 照明光学系
- 4 マスク
- 5 マスクステージ

6 投影光学系

7 ウェハ

8 ウェハステージ

M1~M8 反射鏡

AS 開口絞り

IMI 中間像

【図1】

【図2】

【図4】

【図6】

【図8】

【図9】

フロントページの続き

(51)Int.CI.			FΙ		
G 2 1 K	5/02	(2006.01)	G 2 1 K	5/02	Х
H 0 1 L	21/027	(2006.01)	H 0 1 L	21/30	531A
			H 0 1 L	21/30	517

(56)参考文献 特開2002-196242(JP,A) 特開2002-139672(JP,A) 特開2002-116382(JP,A) 特開2003-107354(JP,A) 特開平10-090602(JP,A)

(58)調査した分野(Int.CI., DB名)

G02B 13/00-17/08