
(19) United States
US 20020073398A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0073398A1
TINKER (43) Pub. Date: Jun. 13, 2002

(54) METHOD AND SYSTEM FOR MODIFYING
EXECUTABLE CODE TO ADD ADDITIONAL
FUNCTIONALITY

(76) Inventor: JEFFREY L. TINKER, KENMORE,
WA (US)

Correspondence Address:
SEED INTELLECTUAL PROPERTY LAW
GROUP PLLC
701 FIFTHAVE
SUTE 6300
SEATTLE, WA 98104-7092 (US)

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/212,182

(22) Filed: Dec. 14, 1998

Publication Classification

(51) Int. CI.7. ... G06F 9/44; G06F 9/45
(52) U.S. Cl. .. 717/110; 717/140

Command Subsystem 400
Routine

405
Receive command

(57) ABSTRACT
A System for modifying a compiled executable code file by
adding patches that add functionality when the modified
executable code file is executed. The modifying is per
formed without recompiling, relinking or rewriting the code
file. Adding a patch involves creating a patch handler which
when executed causes the patch Statements to be executed,
and may involve replacing one or more existing compiled
instructions in the file with patching instructions to transfer
flow of execution to the appropriate patch handler. The
instructions replaced by the patching instructions can also be
added to the patch handler. Patches can also include code
Statements which form a complete module, Such as an
invokable routine, which can be referenced by other patch
Statements to cause the module to be executed. Specialized
trace requests can also be added as patch Statements. The
trace requests will make Specified information about the
current execution of the executable code file available to a
Software developer. Patch Statements can include variables
and expressions that will be evaluated in the context of the
appropriate current variable Scope, regardless of whether the
Scope is defined within the patch or by existing compiled
instructions. After patches have been added, they can be
disabled So as to prevent their execution without removing
the patching instructions from the compiled executable file.
Patches can also be qualified with conditions such that the
patch will be executed only when the conditions are true at
the time of execution.

460

410

415

patch

Receive indication of
executable code to

y 420

symbol table
Load executable code

425
Receive patch request

s ---.
430

Process patch
request – 480

Receive indication of
patched executable
code to execute on
larget computer

system

Execute
interactively?

Notify Patch Interpreter
Subsystem to execute
code in interactive
execution mode

435 485 More patch — Y (E Notify Patch Interpreter Subsystem
of command

440 w 490

Receive command

together
Sequence patches Receive results of

command execution
445

Notify Patching

Sequences
Subsystem of patch More

interactive \495 Yes execlitic 450

Executables

fragments

Notify Code Fragment
Subsystem of code

commands?

470
Notify Patch

Interpreter Subsystem
Noli to execute code

without waiting for
interactive commands

More
commands

455

499

US 2002/0073398 A1 Jun. 13, 2002 Sheet 1 of 9

[O] a)]
Snq

a) „L)

Snq

TOE 931 preoqÁox
[…] - L

Patent Application Publication

Patent Application Publication Jun. 13, 2002 Sheet 2 of 9 US 2002/0073398 A1

Patch Handler PATCH 1

<Save State
PATCH 1

Trace "Trace: Patch"
Instr N+1 InStr N+1

Instr N+2 Instr N+2 <reStore State)
<Then Call FN 1(a)>

Patch Handler PATCH2

PATCH2 <SaWe State)

Instr N-I-4 Trace "Trace A:", a

Instr N-I-5 Instr N+5
<reStore State

Instr N-I-6
<Print "b=", b> Patch Handler PATCH 3

PATCH 3

b=b-1

| "t

InStr N+7
<End While>

|
InStr P--1 Patch Handler PATCH 4

InStr P
<If Time()="PM"> PATCH 4

<Then Print "Temp InStr P-1

High:", X> —
InStr P--2 Instr P+2

InStr P-3 Instr P+3
<RETURN>

Trace "Fn1", x

Trace "Global Y=", y

InStr P

<reStore State)

Instr M
<if y = TRUED
Instr M-1
<Then Print"Fn2:", x>

Fig. 2A Fig. 2B

Patent Application Publication Jun. 13, 2002 Sheet 3 of 9 US 2002/0073398 A1

a = a + (b. * 3) se

al / --

a >
b 3

Fig. 3A

Function Swap (Ptr C, Ptr-D) Swap (Ptr C, PtrD)
Global X = Value at Pitr C
Value at Ptr C = Value at Pir D
Value at Pir D = Global X P
RETURN / N --

/ N Value at Ptr C Value at Pitr D / N
Global X Value at Ptr C Value at Ptr D Global X

Fig. 3B

Patent Application Publication

Command Subsystem 400
Routine

405
Receive command

410
Patch code? No

Yes 415
Receive indication of
executable code to

patch
420

Load executable code
symbol table

425
Receive patch request

430
Process patch

request

More patch
requests?

440
Sequence patches

together
445

Notify Patching
Subsystem of patch

Sequences
450

Notify Code Fragment
Executables

Subsystem of code
fragments

Jun. 13, 2002 Sheet 4 of 9

460
Receive indication of
patched executable
code to execute on
target computer

system

465
Execute

interactively?
No

Yes 475
Notify Patch Interpreter
Subsystem to execute
code in interactive
execution mode

480
Receive command

485
Notify Patch

Interpreter Subsystem
of command

490
Receive results of
command execution a

More
interactive
execution
commands?

Yes 495

No

455 More
commands?

No

END
499

US 2002/0073398 A1

470
Notify Patch

Interpreter Subsystem
to execute code

without waiting for
interactive commands

Fig. 4

Patent Application Publication Jun. 13, 2002 Sheet 5 of 9 US 2002/0073398 A1

430
Process Patch

Request Subroutine

505 510
Add trace request for
indicated Source line

Trace Source
line?

520
Add trace request for

first code line of
indicated function

Trace function?

Trace
expression at

SOURCC

line?

Add trace request for
expression at
Source line

Add specified code
fragment at indicated

Source line
Add code
fragment?

Create code
module?

550
Create code module
with specified code

Group indicated
patches or degroup
indicated group patches?

Manipulate patch Manipulate
group as indicated patch groups?

Fig. 5

Patent Application Publication Jun. 13, 2002 Sheet 6 of 9 US 2002/0073398 A1

600
atching Subsystem

Routine

605
Receive patch
sequences for

executable code

610
Select next patch

Sequence

615
Create patch handler
for selected patch

Sequence

620
Replace executable
code line for patch

Sequence with jump to
created patch handler

625
More patch
Sequences?

630
Load patched

executable code onto
target computer

System

635
Load created patch
handlers onto target
computer system

640
Update target

computer System Link
Translation Table to
reflect created patch

handlers

More 645
patch Sequences

to receive?

Fig. 6

Patent Application Publication Jun. 13, 2002 Sheet 7 of 9 US 2002/0073398 A1

Code Fragment
Executables Subsystem

Routine

700

Receive code
fragments for

executable code

710
Select next code

fragment

715
Create target

independent code
fragment executable

720 More code
fragments?

Load created code
fragment executables
onto target computer

system

730
Update target

computer system Link
Translation Table to
reflect created code
fragment executables

More code
fragments to
receive?

735

Fig. 7

Patent Application Publication Jun. 13, 2002. Sheet 8 of 9

800

Patch Interpreter
Subsystem Routine

Yes

805
Receive indication of
patched executable
code to be executed

810
Load patch handlers &

code fragment
executables into

memory if necessary

815
Update Link

Translation Table to
reflect current memory

addresses for code
fragments and patch

handlers

820
Load patched

executable code into
memory

825

Execute Patched
Executable Code

830
More code to
execute?

NO
890

END

Fig. 8

US 2002/0073398 A1

Patent Application Publication Jun. 13, 2002. Sheet 9 of 9

825
Execute Patched
Executable Code

Subroutine

910 905
Yes

Receive command Interactive
execution?

No
Execute

instruction? 930
Select next
instruction

No. 920
931

No Currently
execute? 925

Notify Code Patcher
of execution results

932
Compiled Yes
instruction?

935

Includes Link
Identifier?

Use Link Translation
Table to resolve Link

Identifier

Yes

945

Trace request

965
Interpret executable
code fragment within
current function/file

COnteXt

Write trace
information to
Trace Log

O 70

Notify Code Patcher
of status if

interactive execution

No 990

RETURN

US 2002/0073398 A1

933
XeCue

instruction
in native
mode

Fig. 9

US 2002/0073398 A1

METHOD AND SYSTEM FOR MODIFYING
EXECUTABLE CODE TO ADD ADDITIONAL

FUNCTIONALITY

TECHNICAL FIELD

0001. The present invention relates generally to effi
ciently creating executable Software, and more particularly
to modifying compiled executable files to add additional
functionality.

BACKGROUND OF THE INVENTION

0002. In the past, creating executable software code
could be a time-consuming task. The typical code creation
process involved first creating a Source code program (i.e.,
a Series of lines of program Statements in a high-level
computer language) with a text processing program, com
piling and linking the Source code (Sometimes with an
intermediate assembling step) to create executable code (i.e.,
a Series of machine language instructions) for a specified
computer processor, and then Storing the executable code in
an executable file. The executable code could then be
debugged by executing the executable file on the Specified
computer processor to determine if the Software performed
its task correctly, or if instead it had one or more errors (i.e.,
bugs). If the executable code had errors, a Software devel
oper would modify the Source code in an attempt to remove
the errors, recompile the Source code, and then link the
recompiled code to produce a new executable file for
debugging. For large Software programs, this process was
iteratively performed a large number of times until all
known errors were removed.

0003. In many cases, the cause of an error (e.g., a mistake
in the program logic) is not obvious from executing the
executable file. Various options existed for a software devel
oper to identify errors. For example, a Software developer
could add print Statements throughout the Source code So
that as the corresponding executable print instructions are
executed (after compiling and linking), they would report
the current progreSS of the execution. Knowledge of the
current execution progreSS assists in identifying the Section
of the code which was executing when an error occurred. In
addition to merely reporting execution progress, print State
ments can also display the current value of variables or
Source code expressions at Specified points throughout the
execution. Since the print Statements were part of the
original compilation/linking process, the variables and
expressions that were part of the print Statements would be
evaluated in the context of the current variable Scope (e.g.,
using the value of a local variable in a currently executing
function rather than a variable with the same name in a
different non-executing function), as would any other com
piled code Statement.
0004. In addition to print requests, application programs
known as debuggers were developed to provide additional
control over execution of executable files. A debugger loads
executable code into memory and then controls execution of
the executable code. For example, the debugger can execute
a single executable code instruction at a time. Alternately,
the debugger can execute the executable code continuously
until a break point designated within the debugger is
reached. Such debuggers can also use additional information
Stored in an executable code file during the compiling and

Jun. 13, 2002

linking Steps to reconstruct and display the Source code lines
that correspond to the instructions in the executable code.
The display of the source code facilitates control by the
Software developer of the execution of the executable code
(e.g., Setting a breakpoint at a particular point in the Source
code). When execution of the executable code is stopped, a
user can interact with the debugger to view current values of
variables and expressions. In addition, Some debuggers
allow a user to view the effects of temporarily modifying a
Source code line. Nonetheless, although Such debuggerS can
assist with locating errors in executable compiled code,
recompiling and linking is needed to fix errors that are
located.

0005. In addition to the use of debuggers, other tech
niques have been developed to modify the functionality of
compiled code without requiring a full recompilation and
linking. One technique involves relinking previously com
piled code with different code than was previously used for
linking (e.g., using an updated Dynamic-Link Library or
replacing a stubbed routine with a functional routine). In this
Situation, no changes are made to the previously compiled
code, but changes in the overall program functionality can
occur due to the different operation of the newly linked code.
However, this technique is not typically useful in modifying
errors in the compiled code (since the compiled code is not
changed) or in flexibly adding functionality to an executable
file at a desired user-specified location (since only previ
ously specified link points can be used for the relinking).
0006 Another technique to modify the functionality of
compiled code without requiring recompilation and linking
involves rewriting an executable file. Rather than modifying
an existing file, rewriting involves creating an entirely new
executable compiled file based on an existing executable
file. Rewriting an executable file does allow new function
ality to be added to an executable file at a user-specified
location because new compiled instructions can be added to
the new file. However, rewriting is difficult to perform
without adding errors into the new file, and the Specific
mechanisms for adding instructions (e.g., adjusting offsets in
existing instructions) typically vary on each type of proces
SO.

0007 When executable code is being created for an
embedded System (e.g., an embedded controller for manu
facturing equipment), the problems with Software code
creation are exacerbated. Such embedded Systems may
include only a CPU and memory, without having access to
other Standard computer System components Such as a
keyboard or display. In addition, Standard application pro
grams Such as text processors and debuggerS may not be
available for an embedded system. In this environment, the
Source code will typically be created on a host computer
System Separate from the embedded target System. This
allows a user application Such as a text processor to create
the Source code. The Source code is then compiled for the
target embedded computer System and transferred (e.g., over
a network) to the embedded System for execution and
debugging. When an error occurs during execution of the
executable code on the embedded System, the lack of
Standard computer System components and application pro
grams on the target System make it extremely difficult to
determine the cause of the error. Even obtaining information
about the current state of the execution at the time of the
error is typically difficult. Moreover, even if such informa

US 2002/0073398 A1

tion is available, it will need to be transferred back to the
host computer System where modifications to the Source
code can begin another compile/link/transfer/debug cycle.

SUMMARY OF THE INVENTION

0008. In accordance with one aspect of the present inven
tion, a method and System are provided for modifying a
compiled executable code file So as to add functionality
when the modified executable code file is executed. The
modifying of the executable code file is performed without
recompiling, relinking or rewriting the executable code file.
In particular, the System allows a user to indicate changes to
be made to the compiled executable file, including adding
code Statements to the compiled executable file and manipu
lating previously added code Statements in a variety of ways.
Each set of code statements which are to be added is referred
to as a patch, with each Statement in a patch being referred
to as a patch Statement. After the patches have been Speci
fied, the System modifies the compiled executable code in a
non-transitory manner Such that the patch Statements will be
performed when the modified executable code is executed in
the future. This manner of modification allows the tradi
tional compile/link/debug cycle to be avoided, thus provid
ing significant time Savings.

0009 Adding a patch to a compiled executable code file
involves creating a patch handler which when executed
causes the patch Statements to be executed and which may
additionally perform various housekeeping functions. The
patch Statements may be stored in an executable machine
independent non-compiled format, and if So are interpreted
when executed on a target computer. Adding a patch may
also involve replacing one or more existing compiled
instructions in the compiled executable code file with patch
ing instructions which, when executed, will transfer flow of
execution to the appropriate patch handler loaded in
memory. When a patch is intended to be executed in addition
to the existing compiled instructions (rather than Substituting
for one or more instructions), the existing instructions
replaced by the patching instruction can be added to the
patch handler so that they will be executed in addition to the
patch Statements. The patching instructions can directly
identify the memory location of a patch handler, Such as with
a transfer instruction. Alternately, the patching instructions
can include a unique reference to the appropriate patch
handler, and if So the appropriate memory location for the
referenced patch handler will not be determined until the
time of execution. Patches can also include code Statements
which form a complete module, Such as an invokable
routine, which can be referenced by other patch Statements
to cause the module to be executed. In addition, patch
Statements can include variables and expressions that will be
evaluated in the context of the appropriate current variable
Scope, regardless of whether the Scope is defined within the
patch or by existing compiled instructions. Finally, Special
ized trace requests can also be added to the compiled
executable code as patch Statements. The trace requests will
make Specified information about the current execution of
the executable code file available to a Software developer,
Such as by Storing it on a local trace log file or transmitting
it electronically. After patches have been added, they can be
disabled So as to prevent their execution without removing
the patching instructions from the compiled executable file.

Jun. 13, 2002

Patches can also be qualified with conditions such that the
patch will be executed only when the conditions are true at
the time of execution.

0010. In accordance with one aspect of the present inven
tion, the System modifies on a target computer a compiled
file executable on the target computer, with the compiled file
including a plurality of compiled instructions. The modify
ing is performed under control of a Source computer, and it
involves first loading the compiled file onto the target
computer and then receiving an indication to modify the
compiled file by adding at least one instruction to be
executed upon execution of the compiled file. The System
then creates a patch group having instructions including the
indicated instructions. The System then modifies the com
piled file on the target computer by replacing an instruction
in the compiled file with a patch instruction, and loads the
patch group into a portion of memory on the target computer
distinct from the memory in which the compiled file is
loaded. The System then executes on the target computer the
instructions in the modified compiled file by, when an
instruction to be executed is the patch instruction, indicating
one of the plurality of instructions in the loaded patch group
as a next instruction to be executed.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 is a block diagram illustrating an embodi
ment of the Code Patcher system of the present invention.
0012 FIGS. 2A and 2B illustrate an example of patched
Software code.

0013 FIGS. 3A and 3B illustrate examples of source
code in an executable computer-independent non-compiled
parse tree format.
0014 FIG. 4 is an exemplary flow diagram of an embodi
ment of the Command Subsystem routine.
0015 FIG. 5 is an exemplary flow diagram of an embodi
ment of the Process Patch Request Subroutine.
0016 FIG. 6 is an exemplary flow diagram of an embodi
ment of the Patching Subsystem routine.
0017 FIG. 7 is an exemplary flow diagram of an embodi
ment of the Code Fragment Executables System routine.
0018 FIG. 8 is an exemplary flow diagram of an embodi
ment of the Patch Interpreter Subsystem routine.
0019 FIG. 9 is an exemplary flow diagram of an embodi
ment of the Execute Patched Executable Code Subroutine.

DETAILED DESCRIPTION OF THE
INVENTION

0020. An embodiment of the present invention provides
a method and System for modifying a compiled executable
code file so as to add functionality when the modified
executable code file is executed. The modifying of the
executable code file is performed without recompiling,
relinking or rewriting the executable code file. In particular,
the Code Patcher system loads compiled executable code
into memory on a target computer, and allows a user to
indicate patches to be made to the compiled executable file.
These patches can include adding code statements (i.e.,
compiled instructions or lines of Source code) to the com
piled executable file. In one embodiment, the Source code

US 2002/0073398 A1

lines corresponding to the compiled executable instructions
in the file can be shown, and the user can indicate the
changes to be made in the displayed Source code. After the
patches have been indicated, the Code Patcher System modi
fies the compiled executable code in a non-transitory manner
such that the patches will be performed when the modified
executable code is executed in the future. This manner of
modification allows the traditional compile/link/debug cycle
to be avoided, thus providing Significant time Savings.
0021 FIG. 1 illustrates an embodiment of a Code
Patcher system 133 in which the patching of a compiled
executable code file occurs on a host computer system 100
that is separate from a target computer System 150 on which
the patched executable code is to be executed. Compiled
executable code files to be patched contain compiled instruc
tions which are executable as native code on the CPU of
target computer System 150, and which may or may not be
executable as native code on the CPU of host computer
system 100. In addition, in the illustrated embodiment the
target computer system 150 has a RISC processor in which
all instructions are the same length, So one compiled instruc
tion will require the same memory Space as another com
piled instruction. Moreover, code Statements are converted
into a machine-independent non-compiled format that will
be executed interpretively on the target computer System
150. Those skilled in the art will appreciate that code
Statements could alternatively be compiled and that the Code
Patcher system 133 is not limited to patching code for RISC
processors.

0022. The host computer system 100 includes a CPU 110,
input/output devices 120, a memory 130, and a bus 105. The
input/output devices include a Storage device 126, a network
connection 122, a display 124, and a keyboard 125. The
Code Patcher system 133 is executing in memory 130, and
can be used to patch compiled executable code files Such as
compiled executable code file 132 Stored on the Storage
device 126. The Code Patcher system 133 can also be stored
on a storage device (not shown) Such as Storage device 126
before being loaded into memory 130, and the compiled
executable code file 132 may also be loaded into memory
130 to assist operation of the Code Patcher system (e.g., for
display to a user).
0023 The target computer system 150 similarly includes
a CPU 160, input/output devices 170, the memory 180, and
a bus 155. The input/output devices 170 include a storage
device 171 and a network connection 172. A Patch Inter
preter Subsystem 181 is executing in memory 180 to assist
in the execution of one or more patched executable code files
on target computer system 150. The executable code file 132
is loaded into memory 180 when it is to be executed. After
the executable code file is patched and becomes patched
executable code file 182, the patch handlers 184 and code
fragment executables 186 that are associated with the
patched executable code file are also loaded into memory
180. The memory 180 also includes some or all of a Link
Translation Table 188 in which current memory locations
asSociated with various identifiers are Stored, and of a Trace
Log 189 in which information will be stored by the Patch
Interpreter Subsystem 181 for later retrieval. In an alternate
embodiment, Link Translation Table 188 and Trace Log 189
could be stored on storage device 171 and be accessed by
Patch Interpreter Subsystem 181 only when needed. The
Patch Interpreter Subsystem 181, patched executable code

Jun. 13, 2002

file 182, patch handlers 184, and code fragment executables
186 can also be stored on a storage device (not shown) Such
as storage device 171 before being loaded into memory 180.

0024. When the Code Patcher system 133 is first invoked,
the Command Subsystem 134 provides a user interface to a
user (not shown) of the host computer system 100. The
Command Subsystem 134 allows the user to specify a
compiled executable code file that is to be patched, Such as
code file 132. The Command Subsystem 134 then loads
information from executable code file 132 (e.g., from the
symbol table) to allow a correspondence to be established
between the compiled executable code instructions in the file
and the original Source code lines (not shown) from which
the compiled executable code was created. The Command
Subsystem 134 then displays the source code to the user and
allows the user to specify a variety of commands.

0025. After specifying compiled executable file 132, a
user can use the Command Subsystem 134 to modify the file
by Specifying patches. Each Set of code Statements which are
to be added is referred to as a patch, with each added code
Statement in a patch referred to as a patch Statement.
Executable code which has been patched (i.e., modified by
having a patch added) is similarly referred to as patched
code. AS is explained in greater detail below, adding a patch
to a compiled executable code file involves first creating an
executable patch handler which causes the patch Statements
to be executed (and which may additionally perform various
housekeeping functions) and then replacing one or more
existing compiled instructions in the file with a patching
instruction to transfer flow of execution to the patch handler.

0026. In the illustrated embodiment, patch statements are
Stored in an executable machine-independent non-compiled
format, and are interpreted (i.e., interpretively evaluated) by
an evaluator when executed on target computer System 150.
Patch Interpreter Subsystem 181 acts as an evaluator in the
illustrated embodiment. Evaluators can be efficiently pro
Vided to a variety of target computer Systems by croSS
compiling an existing evaluator for each of the target Sys
tems. In an alternate embodiment, patch Statements are
Stored as the original lines of Source code and a Source code
interpreter (not shown) on target computer System 150 is
used to interpret the patch Statements. In yet another
embodiment, patch Statements are compiled for target com
puter system 150 before execution and are then executed
natively on the target computer System.

0027. A specified patch can take a variety of forms, such
as Substituting one or more new code Statements for one or
more existing compiled instructions or lines of Source code.
After they are Substituted for, existing compiled instructions
will no longer be executed. Rather than Substituting new
code Statements, a specified patch can also be added Such
that it is executed in addition to the existing compiled
instructions, including even the instructions replaced by
patching instructions. This is accomplished by adding the
replaced instructions to the patch handler for the patch.
Multiple lines or instructions can be included in a patch,
even when Substituting for a single instruction or when no
instructions are being Substituted for. Some patches include
code Statements which form a complete module, Such as an
invokable routine. If Such a module is being added So that it
can be invoked by other code Statements, rather than to be
directly executed at a designated location, it is not necessary

US 2002/0073398 A1

to use patching instructions to execute the module. Instead,
other patch Statements can reference the module and thus
transfer flow of execution to the module.

0028. Other patches include one or more code statements
which do not form a complete module, referred to as a code
fragment. Such patches will typically require that a patching
instruction be added So that flow of execution reaches the
code fragment. However, if a patch handler including a code
fragment is referenced by another patch handler, the code
fragment may not directly require a patching instruction for
it to be executed. In addition, patch Statements can include
variables and expressions that will be evaluated in the
context of the appropriate current variable Scope, regardless
of whether the scope is defined within the patch or by
existing compiled instructions. Access to various informa
tion for the compiled executable code file to be patched,
Such as the Symbol table, may be needed to resolve refer
ences to variables.

0029. In addition to adding code statements, specialized
trace requests can also be added to a compiled executable
code file as patch Statements. For Some target computer
Systems, Such as embedded Systems without a display, it can
be difficult to gather information about execution of execut
able code since traditional output mechanisms (e.g., print
Statements) are unavailable or are difficult to use. The trace
requests will Store specified information about the current
execution of the executable code file in a manner that is
accessible to a Software developer. For example, if the
executable code file is being executed on an embedded
computer System, the trace mechanism can Store execution
information in a trace log file on the embedded computer
System for later retrieval, or can transmit the information to
a separate computer System for access there. The Specified
information for a trace request can also include variables and
expressions that will be evaluated in the context of the
current variable Scope at the time of their execution. In
addition to reporting the current values of variables and
expressions, the trace requests can be used to track each time
that a particular instruction or block of code is executed. For
example, the first instruction in an invokable procedure can
be patched with a trace request indicating the current values
of the procedure parameters.

0.030. When a patch is to be added to compiled execut
able code file 132, the user indicates the patch statements for
the patch as well as where the patch is to be added (e.g., in
a particular function or at a specific Source code or compiled
instruction location). In the illustrated embodiment, a patch
ing instruction need replace only a single existing instruction
since all RISC instructions are the same size. The user also
Specifies whether the patch is to Substitute for existing
compiled instructions or is to be added in addition to the
existing instructions. In addition, when a patch is being
added in addition to existing instructions, it is determined or
specified whether the patch is to be added before or after the
existing instructions. When a function is indicated as the
patch location, the patch is added at the first instruction for
the function (i.e., the patching instruction replaces the first
instruction for the function). When a source code line is
indicated, the Command Subsystem 134 identifies the one or
more corresponding compiled instructions. If multiple
instructions correspond to a Source code line, one or more of
the compiled instructions are Selected to be replaced by the
patching instruction. The determination of whether the patch

Jun. 13, 2002

is to be added before or after the existing instructions may
affect which of the multiple corresponding instructions are
Selected (e.g., if the patch is added before the instructions,
Selecting the first of the multiple corresponding instruc
tions).
0031. The Command Subsystem 134 also allows the user
to perform actions on existing patches, Such as to group
patches together and to manipulate them either individually
or as a group. For example, a patch previously added to the
compiled executable code file can be disabled So as to
prevent its execution. Patches can also be qualified with
conditions such that the patch will be executed only when
the conditions are true at the time of execution. In addition,
different patches can be grouped together and each group
can be manipulated in the Same manner as a single patch. For
example, all patches in a group can be enabled or disabled,
or can be Saved for later use. This ability to group, disable/
enable, and qualify patches without recompiling the file
allows trace requests to be turned on or off in a simple and
efficient manner, greatly simplifying debugging. Finally, a
user can also use the Command Subsystem 134 to retrieve
and view previously created trace information, Such as from
a trace log.

0032. After all the patches have been specified and the
user is ready to execute the code file 132 as patched, the
Command Subsystem 134 notifies a Patching Subsystem
136 of the patches and notifies a Code Fragment Executables
Subsystem 138 of the code statements from the patches. The
Code Fragment Executables Subsystem 138 converts each
Sequence of one or more code Statements it receives into a
code fragment executable 186 in an executable machine
independent non-compiled format. Code fragment
executables can be executed in an interpreted manner on any
target System with an evaluator for the format. In one
embodiment, the code fragment executables are Stored as
parse trees, as is illustrated further with respect to FIGS. 3A
and 3B. Each code fragment executable will be associated
with the corresponding code file being patched, and will also
have a unique identifier by which it can be referenced. For
example, other Statements can use the unique identifier for
a code fragment executable representing a module to invoke
the module.

0033. After creating the code fragment executables 186
for the code Statements in the patches, the Code Fragment
Executables Subsystem 138 then transfers the created code
fragment executables to target computer System 150 and
updates Link Translation Table 188. Link Translation Table
188 includes a reference for each symbol in each of the code
fragment executables 186 which can be referenced by state
ments outside the code fragment executable (e.g., the unique
identifier for a code fragment executable and any exported
Symbols that can be referenced outside the code fragment
executable). Those skilled in the art will appreciate that in an
alternate embodiment, Link Translation Table 188 could be
Stored in an alternate location Such as on the host computer
system 100. In addition, those skilled in the art will appre
ciate that the code fragment executables 186 could initially
be stored on Storage device 126 before being transferred, and
could be transferred directly to memory 180 or first to
storage device 171.

0034). When the Patching Subsystem 136 receives noti
fication of the patches from the Command Subsystem 134,

US 2002/0073398 A1

the Patching Subsystem 136 creates the appropriate patch
handlers 184 and places patching instructions in the appro
priate locations in the compiled executable file 182. In
addition, in Some embodiments, the Patching Subsystem
136 can allocate and deallocate computer System resources
on the target computer system 150 needed for the patch
handlers 184 (e.g., memory in which to load the patch
handlers). The Patching Subsystem 136 first transfers the
compiled executable code file 132 to the target computer
system 150. After creating the patch handlers 184, the
Patching Subsystem 136 transfers the patch handlers 184 to
the target computer System 150, and updates Link Transla
tion Table 188 as necessary to include references for the
patch handlers 184. The Patching Subsystem 136 also modi
fies the compiled executable code file on the target computer
to include the patching instructions, thus creating patched
compiled executable code file 182. Those skilled in the art
will appreciate that the patch handlers 184 could initially be
Stored on Storage device 126 before being transferred, and
could be transferred directly to memory 180 or first to
storage device 171.
0035) In particular, at each location in the executable
code file 132 where a patch is to be added, the Patching
Subsystem 136 replaces an existing compiled instruction
with a patching instruction, thus removing the replaced
instruction from patched compiled executable file 182.
Those skilled in the art will appreciate that in an alternate
embodiment, an already-patched code file such as file 182
could have additional patches added. In that embodiment, an
old patching instruction could be selected as the instruction
to be replaced with a new patching instruction. If the new
patch is intended to Supplement rather than Substitute for the
previous patch, the replaced old patching instruction can be
added to the new patch handler so that the old patch handler
will be also executed. Each patching instruction alters the
flow of execution to an appropriate patch handler So that the
patch Statements for the patch will be executed.
0036). In one embodiment, each patch has a distinct patch
handler, while in an alternate embodiment a single patch
handler can handle all patches. Thus, when the flow of
execution reaches a patching instruction, execution will be
transferred to and will continue at the appropriate patch
handler. In Some embodiments, the patching instructions are
transfer Statements (e.g., jump, goto, branch, call, etc.)
which specify an explicit memory location (either directly or
via an offset) in which the patch handler will be executed. In
alternate embodiments, the patching instructions include a
unique reference to the appropriate patch handler, and the
appropriate memory location for the referenced patch han
dler is determined from Link Translation Table 188 at the
time of execution. In yet other embodiments, the patching
instructions are trap instructions, and the appropriate
memory location for the referenced patch handler is deter
mined from a return Program Counter map. Thus, in these
embodiments the patching of compiled executable file 132 is
performed without recompiling, relinking or rewriting the
file.

0037. In addition to inserting patching instructions,
Patching Subsystem 136 must also create appropriate patch
handlers 184 so that the patch statements are exhibited when
flow of execution is transferred to the patch handler. Each
patch handler 184 will first save the current state of execu
tion (e.g., register and Stack values) if necessary, and then

Jun. 13, 2002

include the code fragment executables and/or trace requests
to be executed for the patch. If the patch is to be added to
compiled executable code 132 rather than substituting for
the compiled instruction replaced by the patching instruc
tion, the replaced instruction must also be added to the patch
handler so that it will be executed. For example, if the patch
is to be added after the replaced instruction, then the
replaced instruction would be added at the beginning of the
patch handler before any of the patch Statements. Alter
nately, if the patch is to be added before the replaced
instruction, the replaced instruction would instead be added
after the patch statements. Finally, the patch handler will, if
necessary, restore the Saved State of the computer and will
then return the flow of execution to the instruction in the
compiled executable code after the patching instruction.
0038 Similarly to the created code fragment executables
186, each patch handler 184 will be uniquely identified in
Some way So that it can be referenced by its associated
patching instruction. In one embodiment, a patch handler
will always be loaded at a specific location in memory 180
on target computer System 150, and thus the patching
instruction can explicitly indicate that memory location
when the patching instruction is added to the patched
compiled executable file 182 by the Patching Subsystem
136. This memory 180 location can be identified at the time
the patch handler 184 is created if the Patching Subsystem
136 performs memory management for the target computer
system 150 in which it can allocate and deallocate blocks of
memory. Alternately, the Patching Subsystem 136 could
request that the target computer System 150 allocate a block
of memory 180 and provide the memory location informa
tion to the Patching Subsystem 136. In an alternate embodi
ment, patch handlers 184 are loaded into different locations
of memory 180 with each execution of the patched execut
able code file 182. In that embodiment, Link Translation
Table 188 can be used to map a unique identifier for each
patch handler 184 to its current location in memory 180. In
a similar manner, code fragment executables 186 can be
stored with patch handlers 184 and loaded into the memory
block for the patch handlers, or can instead be loaded into
separate locations in memory 180. If loaded separately in
memory 180, a patch handler can merely reference a unique
identifier for a code fragment executable, and Link Trans
lation Table 188 can be used to identify the current memory
location at which to access the code fragment executable. In
another embodiment, patch handlers 184 and code fragment
executables 186 are loaded into different locations of
memory 180 with each execution of the patched executable
code file 182, but rather than using Link Translation Table
188 the patched compiled executable file 182 is modified
before each execution So that identifiers are replaced with
the current memory location for the associated item.
0039. When the patched executable code file 182 is to be
executed, the Patch Interpreter Subsystem 181 on the target
computer System 150 controls the execution. In particular,
the Patch Interpreter Subsystem 181 ensures that compiled
instructions are executed as compiled native code on target
computer system 150, while patch statements (if stored in
machine-independent form) are interpreted. The Patch Inter
preter Subsystem 181 also uses Link Translation Table 188
to resolve references to Symbols, modules, code fragment
executables, and patch handlers as necessary. Thus, if a
patching instruction merely references the unique identifier
for a patch handler 184, the Patch Interpreter Subsystem 181

US 2002/0073398 A1

will identify the memory location of the patch handler and
transfer flow of execution there rather than trying to execute
the patching instruction as native code. AS trace requests are
encountered during execution, the Specified information for
the trace request is Stored in an appropriate manner, Such as
in Trace Log 189. The Patch Interpreter Subsystem 181
performs its interpreted evaluation in a manner So as to
ensure that variables and expressions are evaluated in the
context of the appropriate current variable Scope. In one
mode, the Patch Interpreter Subsystem 181 works indepen
dently without external influence. In an alternate mode, a
user on the host computer system 100 can use the Command
Subsystem 134 to interact with Patch Interpreter Subsystem
181 and to control execution of the patched executable file
182.

0040. In one embodiment, the target computer system
150 is an embedded computer system, the Code Patcher
System 133 is part of a debugger on the distinct host
computer system 100, and the compiled executable file 132
is a terminal emulator to be executed on the embedded
system. In this embodiment, the Code Patcher system 133
allows a user to perform normal debugging functions (e.g.,
Single stepping through a compiled program) but also allows
the user to interactively modify an existing compiled execut
able code file in a permanent manner without requiring a
compile/link/transfer/debug cycle. The user can also
manipulate the patches in a variety of ways in this embodi
ment. For example, a patch can be added to the compiled
executable code file but can be disabled. In this situation, the
functionality added by the patch is not executed while the
patch is disabled, either by replacing the patch with the
original patched instruction or by indicating to the Patch
Interpreter Subsystem 181 to not execute the patch state
ments. In addition, different patches can be grouped together
and each group can be manipulated in the same manner as
a single patch. For example, all patches in a group can be
enabled or disabled, or can be saved for later use. Patches
can also be qualified with conditions Such that the patch will
be executed only when the conditions are true at the time of
execution.

0041. In addition to significantly reducing the time
needed to create source code, the Code Patcher system 133
can be used for a variety of other purposes. For example, an
executable code file may have been incomplete when com
piled. In this situation, references to Symbols (e.g., variables
or functions) may have been Stubbed at the time of compi
lation. The Code Patcher system 133 can be used to replace
the StubS with references to code fragment executables. In
addition, additional functionality can be added even to
compiled executable code files that lack errors. For example,
a graphical user interface could be added to an executable
code file with only a command-line interpreter, or new
functionality can be added to handle inputs or situations not
anticipated at the original time of compilation. Those skilled
in the art will appreciate that any Such type of functionality
can be added using the Code Patcher system 133. Those
skilled in the art will also appreciate that computer Systems
100 and 150 are merely illustrative and are not intended to
limit the Scope of the present invention. The computer
Systems may contain additional components or may lack
Some illustrated components. Accordingly, the present
invention may be practiced with other computer System
configurations, including a single computer System.

Jun. 13, 2002

0042. As an illustrative example of patching compiled
executable code, consider FIGS. 2A and 2B. FIG. 2A
illustrates Sequences of compiled instructions from a com
piled executable code file. For readability, a corresponding
Source code line is shown for each instruction. Those skilled
in the art will appreciate that the particular Source code lines
are merely illustrative. FIG. 2B illustrates the same com
piled executable code file after various patches have been
added. In particular, five patches, including a code fragment
executable module, have been added to the original com
piled executable code file.

0043. Patch 1 demonstrates a patch that adds a trace
request before instruction N. As is shown in FIG. 2B,
instruction N is replaced in the compiled executable code
file with a patching instruction that indicates to transfer flow
of execution to a patch handler for Patch 1. When execution
is transferred to the patch handler for Patch 1, the patch
handler first Saves the current State of the target System on
which execution is occurring. The patch handler then issues
a trace request for a designated String of information. The
original patched instruction, instruction N, is then executed
in the patch handler.

0044) Thus, Patch 1 executes the trace request in addition
to, rather than substituted for, the replaced instruction N.
After executing instruction N, the original State of the
computer System is then restored before the flow of execu
tion is returned to instruction N+1. Those skilled in the art
will appreciate that an execution Such as the trace request
can be performed in a variety of ways, Such as by writing the
Specified information to a file or by Sending the information
to another computer, Such as in a message object or as text
in an email message. Alternately, trace information can be
output using any other communication means (e.g., pager,
cellular phone, display device, etc.). Note that although the
trace request in Patch 1 did not include any variables or
expressions to be evaluated, instruction N will require the
evaluation of the variables a and c. This evaluation will
occur in the context of the appropriate current variable
Scope.

0045 Patch 2 reflects a patch which replaces instruction
N+3 with multiple patch Statements, including both a trace
request and a code fragment executable. Patch 2 also dem
onstrates a patch that Substitutes for an existing instruction
rather than adding patch Statements, and thus existing
instruction N+3 will be not executed in the patched execut
able code file. When flow of execution is transferred to the
patch handler for Patch 2, the patch handler first saves the
current target computer System State. The patch handler then
executes the trace request and the code fragment executable
as shown. Note that this trace request will require the
evaluation of variable a, which will be performed in the
context of the appropriate current variable Scope. The code
fragment executable will be executed in an interpreted
manner. After executing the various instructions in the patch
handler, the original computer System State is restored before
returning flow of execution to instruction N+4.

0046 AS is shown in FIG.2B, the code fragment execut
able module labeled FN2 has also been added as part of the
patch process. Patch 3 adds patch Statements before instruc
tion N+6, including a call to the newly created module.
Patch 3 also illustrates that multiple code statements can be
executed within a patch handler (limited only by available

US 2002/0073398 A1

memory on the target computer System). After flow of
execution transfers to the patch handler for Patch 3, the
appropriate computer System State is first Saved. Next, the
code fragment executable for the code Statement b=b-1 is
executed in an interpreted manner. The next patch Statement
calls module FN2 with the variable b as a parameter. Flow
of execution will then transfer to the code fragment execut
able for module FN2, at which time instructions M, M+1,
and M--2 will be executed in Sequence in an interpreted
manner. Upon execution of the return Statement in instruc
tion M+2, the flow of execution will return to instruction
N+6 in the patch handler for Patch 3. After restoring state for
Patch 3, the flow of execution will return to instruction N+7
in the patched compiled executable code file. Those skilled
in the art will appreciate that each of the patch handlers can
return flow of execution to the compiled instructions in a
variety of ways, Such as using a return Statement or explic
itly using the memory location of the next compiled instruc
tion. In addition, in one embodiment each code Statement
has a separate code fragment executable, while in another
embodiment the various code Statements in a patch handler
are combined into a Single code fragment executable.
0047 Finally, Patch 4 illustrates that compiled functions
can be patched and traced in a manner Similar to that of any
other compiled instruction. For example, if a user desires to
trace all invocations of the function FN1, Patch 4 can be
added before the first instruction of the function, instruction
P. The trace requests in Patch 4 illustrate that when the
variable X is evaluated, it will be evaluated using the current
variable scope of function FN1, but that the global variable
Y will be evaluated using the appropriate variable Scope for
Y, which may be the entire program rather than the local
scope of function FN1. Those skilled in the art will appre
ciate that a variety of other patches are possible.
0048 Referring now to FIGS. 3A and 3B, illustrative
examples of code fragment executables Stored in an execut
able machine-independent non-compiled format are shown.
In particular, the exemplary machine-independent format
shown are parse trees. In FIG. 3A, the source code statement
A=A+(B3) is shown, along with a corresponding parse

tree that encodes this Source code Statement. The original
Source code line can be reconstructed by using depth-first
Search along the parse tree, using non-leaf nodes only after
the first child branch has been used. Similarly, FIG. 3B
illustrates a possible parse tree for the Source code function
Swap as shown. AS the parse tree is read from left to right
and upwards from the leaf nodes, the appropriate order of
statements for the Swap function is retrieved. Those skilled
in the art will appreciate that a parse tree can be represented
using different formats, and that parse trees are only one
possible format for encoding executable machine-indepen
dent code fragment executables.
0049 FIG. 4 is an exemplary flow diagram of an embodi
ment of the Command Subsystem routine 400. The Com
mand Subsystem routine will receive a command from a
user to either patch a compiled executable code file Such as
code file 132 or to execute an already patched executable
code file such as patched code file 182. In an alternate
embodiment, patches can be added to a compiled executable
code file that already contains patches (and can even patch
already patched instructions), as well as to a compiled
executable code file without patches. If the user is currently
patching a compiled executable code file, the routine will

Jun. 13, 2002

accept a variety of trace requests and code fragments to be
added to the code file, will combine multiple patches if they
are to be added at the same compiled instruction in the
compiled executable code file, and will notify the Patching
Subsystem 136 (FIG. 1) and the Code Fragment
Executables Subsystem 138 (FIG. 1) of the patches. If the
user is executing an already patched executable code file, the
routine can receive commands, relay them to the Patch
Interpreter Subsystem 181(FIG. 1), and receive and display
to the user the results of the execution of the command. In
one embodiment in which the Command Subsystem 134
(FIG. 1) provides interactive control over a patched execut
able code file, a user can determine whether or not to view
the Source code for patches (e.g., not viewing Source code
for disabled patches).
0050. The Command Subsystem routine begins at step
405 where a command is received from a user. The routine
continues in step 410 to determine if the command is to
patch a compiled executable code file. If So, the routine
continues to step 415 where it receives an indication of the
executable code file to be patched. The routine then contin
ues in step 420 to load information from the symbol table of
the indicated executable code file, thus allowing the Source
code lines corresponding to the compiled executable code
instructions to be displayed to the user. The routine then
continues to Step 425 where a request is received from the
user that is related to patching the compiled executable code
file. The routine continues in step 430 to execute the Process
Patch Request Subroutine to process the request. AS is
explained in greater detail with relation to FIG. 5, possible
patch requests include adding various trace requests or code
fragments, grouping and degrouping patches, and manipu
lating previously created patches. After the patch request has
been processed in step 430, the routine continues in step 435
to determine if there are more patch requests from the user.
If so, the routine returns to step 425 to receive the next patch
request.

0051) If there are not more patch requests from the user,
the routine continues to Step 440 to Sequence patches
together when they will replace the Same compiled instruc
tion. Since any given compiled instruction in the compiled
executable code file can only be replaced with a single
patching instruction to a patch handler, multiple patches that
have been associated with a single compiled instruction
must be sequenced together. Additional Steps may also need
to be taken to ensure that all patches are executed and that
the correct order of patch execution is followed. In the
illustrated embodiment, multiple patches associated with a
Single compiled instruction are placed in a Single patch
handler for the patching instruction that will replace the
compiled instruction. Alternately, multiple patch handlers
could be used, with each patch handler transferring flow of
execution to the next patch handler in Sequence and with the
last patch handler returning the flow of execution to the
compiled instruction following the patching instruction. In
either case, a Sequence in which to execute the multiple
patches must be Selected. For example, all trace requests
could be executed either before or after all code fragments.
In the illustrated embodiment, the user indicates the
Sequence of patches when the patches are created.

0052. After step 440, the routine continues to step 445 to
notify the Patching Subsystem 136 of the patch sequences to
be added to the compiled executable code file, including

US 2002/0073398 A1

Sequences of a single patch. The routine then continues to
step 450 to notify the Code Fragment Executables Sub
System 138 of the code fragments, including created mod
ules, that have been added as patches to the compiled
executable code file. The routine continues in step 455 to
determine if there are more commands from the user. If So,
the routine returns to step 405 to receive a user command,
and if not, the routine ends at step 499.
0053) If it is instead determined in step 410 that the
received user command is not to patch a compiled execut
able code file, the routine continues to step 460 where an
indication of a patched compiled executable code file is
received. This patched code file will be executed on an
indicated target computer System. In the illustrated embodi
ment, the patched code and any associated patch handlers
and code fragment executables will have been transferred to
the indicated target System when the patching occurred.
Alternately, the transferring could occur after step 460. The
routine next continues to step 465 to determine if the patched
code file is to be executed with interactive control by the
user. If the patched executable code file is not to be executed
interactively, the routine continues to step 470 where the
Patch Interpreter Subsystem 181 is notified to execute the
patched executable code file without waiting for interactive
commands. If instead it is determined in step 465 that the
patched executable code file is to be executed interactively,
the routine continues instead to step 475 where the Patch
Interpreter Subsystem 181 is notified to execute the patched
executable code file in an interactive eXecution mode.

0.054 The routine next continues to step 480 to receive an
execution-related command from the user. Such commands
could include Setting or removing break points, checking the
current values of variables and expressions, or Stepping
through the execution a single line at a time. In the illustrated
embodiments, the manipulation of patches does not occur
during interactive eXecution, but Such functionality could be
provided in an alternate embodiment. In step 485, the
routine notifies the Patch Interpreter Subsystem 181 of the
command, and in step 490 the results of the command
execution are received from the Patch Interpreter Subsystem
181 and are displayed to the user. The routine then continues
to step 495 to determine if there are more interactive
execution commands from the user. If So, the routine returns
to step 480 to receive the next user command. After step 470,
or if it is determined in step 495 that there are not more
interactive eXecution commands, the routine continues to
step 455 to determine if there are more user commands.
Those skilled in the art will appreciate that the Command
Subsystem routine can be implemented in a variety of ways.
For example, other top-level user commands than patching
compiled executable code files and executing patched com
piled executable code files could be processed by the rou
tine. Alternately, Separate routines could be used to patch a
compiled executable code file and to execute a patched
compiled executable code file.
0055 FIG. 5 is an exemplary flow diagram of an embodi
ment of the Process Patch Request Subroutine 430. The
ProceSS Patch Request Subroutine receives a user request
related to patching the compiled executable code file, deter
mines the type of patch request, and Satisfies the patch
request. In the illustrated embodiment, the user indicates
Source code lines corresponding to compiled instructions in
the compiled executable code file for patch requests, and the

Jun. 13, 2002

Code Patcher system 133 selects the appropriate compiled
instruction for the indicated Source code line when perform
ing the request.
0056. The subroutine begins at step 505 where it is
determined if the patch request is to add a trace request to
indicate when a Source code line is executed. If So, the
subroutine continues to step 510 to add the trace request to
an appropriate patch handler, which will be referenced by a
patching instruction that replaces a compiled instruction
corresponding to the indicated Source code line. If it is
instead determined that the trace request is not to trace a
Source code line, the Subroutine continues to step 515 to
determine if the patch request is to add a trace request to
indicate when a function in the compiled executable code
file is executed. If so, the subroutine continues to step 520
to add a trace request to a patch handler for the first
instruction of the indicated function. If the patch request is
not to trace a function, the subroutine continues to step 525
to determine if the patch request is to add a trace request for
a specified expression at a particular Source line. If So, the
subroutine continues to step 530 to add a trace request for
the expression to a patch handler at the indicated Source line.
If the patch request is not to trace a specified expression, the
subroutine instead continues to step 535 to determine if the
patch request is to add a specified code fragment to the
compiled executable code file. If So, the Subroutine contin
ues to step 540 to add the specified code fragment executable
to a patch handler at the compiled instruction corresponding
to an indicated Source line. The user can also indicate
whether the patch is to substitute for the instruction or to be
added in addition to the instruction, and when the patch is
added in addition to the instruction whether the patch is to
be executed before or after the Source code line.

0057) If it has been determined in steps 505, 515, 525,
and 535 that the patch request is not to add to the compiled
executable code file patch Statements that require patch
handlers, the subroutine continues to step 545 to determine
if the patch request is to create a code fragment module. If
So, the subroutine continues to step 550 where an invokable
code module with multiple Source code Statements is speci
fied by the user, and an associated code fragment executable
module is created for the patched executable code file. If it
is determined in step 545 that the patch request is not to
create a code module, then the Subroutine continues to Step
555 to determine if the patch request is to group patches
together or to degroup previously grouped patches into
individual patches. If So, the Subroutine continues to Step
560 to perform the indicated grouping or degrouping. If the
patch request is not to group or degroup patches, the
subroutine continues to step 565 to determine if the patch
request is to manipulate a patch or patch group. If So, the
subroutine continues in step 570 to manipulate the patch or
the patches in a patch group as indicated. After Step 510,
520, 530,540, 550,560, or 570, or if it is determined in step
565 that the patch request does not manipulate a patch or a
patch group, the Subroutine continues to step 590 where it
returns.

0058 FIG. 6 is an exemplary flow diagram of an embodi
ment of the Patching Subsystem routine 600. The Patching
Subsystem routine is notified by the Command Subsystem
routine when patch Sequences are to be added or manipu
lated for a compiled executable code file. The Patching
Subsystem routine then creates the necessary patch handlers,

US 2002/0073398 A1

patches the compiled executable code file in the appropriate
manner, and loads the patch handlers and the patched
compiled executable code file onto a target System. The
routine begins at step 605 where one or more patch
Sequences are received for a compiled executable code file.
This notification from the Command Subsystem 134 can
also indicate that previously added patches have been
manipulated (e.g., removed or disabled). The routine con
tinues in Step 610 to Select the next received patch Sequence
to be added or manipulated, beginning with the first received
patch Sequence. The routine then continues to Step 615,
where an appropriate patch handler is created if the Selected
patch Sequence indicates that a patching instruction is to be
added to the compiled executable code file. Alternately, if an
existing patch is being changed, an existing patch handler
can be accordingly modified or a new patch handler can be
created to replace an existing patch handler. For example, if
a previously added patch is being removed, the original
patched instruction can be reinserted in the compiled execut
able code file in place of the patching instruction. Alter
nately, if a patch handler is being disabled, the first instruc
tion of the patch handler could be modified to cause a jump
to the end of the patch handler or to the instruction following
the patching instruction. Similarly, if a patch is being quali
fied, the patch handler for that patch can be modified to
include evaluation Statements to determine if the Specified
conditions are true.

0059. After step 615, the routine continues to 620 to, if a
patching instruction needs to be added, replace the appro
priate compiled executable code instruction with a patching
instruction (e.g., a jump statement) to the created patched
handler. If an existing patch handler is merely being modi
fied, it will not be necessary to replace a compiled instruc
tion with a patching instruction Since the existing patching
instruction will still be effective. While the illustrated
embodiment uses a jump instruction for patching instruc
tions, those skilled in the art will appreciate that a patch
handler can be invoked in a variety of ways, Such as by using
an interrupt mechanism or by including an identifier that will
be resolved at execution time to indicate an appropriate
location in memory on the target System. In addition, those
skilled in the art will appreciate that a compiled transfer
Statement instruction could be used as a patching instruction.
After step 620, the routine continues in step 625 to deter
mine if there are more patch Sequences to be Selected. If So,
the routine returns to step 610 to select the next patch
Sequence, and if not, the routine continues to Step 630.
0060. After patch handlers have been created or modified
for each patch Sequence and patching instructions have been
added to the compiled executable code file, the routine in
step 630 loads the patched executable code file onto the
target system. The routine then continues in step 635 to load
any created and/or modified patch handlers onto the target
system. In the illustrated embodiment, the Patching Sub
System 136 does not perform memory management for
target computer System 150, So the memory locations on the
target System in which the created patch handlers will be
loaded will not be known until execution time. Thus, the
patching instructions inserted into the compiled executable
code file merely reference the appropriate patch handler,
with the reference to the appropriate memory location to be
resolved at execution time. This type of reference resolution
allows linking to be delayed until execution time. Thus, after
step 635, the routine continues in step 640 to update a Link

Jun. 13, 2002

Translation Table on the target System to reflect the unique
identifiers for the created patch handlers. After step 640, the
routine continues to step 645 to determine if there are more
patch Sequences to receive. If So, the routine returns to Step
605 to receive patch sequences, and if not the routine
continues to step 690 and ends.
0061 FIG. 7 is an exemplary flow diagram of an embodi
ment of the Code Fragment Executables Subsystem routine
700. The Code Fragment Executables Subsystem routine
receives notifications from the Command Subsystem 134
when code fragments are to be added to the compiled
executable code file, creates machine-independent non-com
piled code fragment executables that can be interpreted by
the Patch Interpreter Subsystem 181, and loads the created
code fragment executables onto the target System. The
routine begins in step 705 where code fragments to be added
to the compiled executable code file are received from the
Command Subsystem. The routine continues to step 710 to
Select the next code fragment, beginning with the first code
fragment. In Step 715, the routine then creates a code
fragment executable for the Selected code fragment in a
machine-independent format not specific to the target com
puter. In the illustrated embodiment, the code fragment
executables are Stored in parse tree format. The routine then
continues in step 720 to determine if there are more code
fragments to process. If so, the routine returns to step 710 to
Select the next code fragment, and if not the routine contin
ues to step 725.
0062. After the code fragment executables have been
created, the routine in step 725 loads the created code
fragment executables onto the target System. The routine
then continues to step 730 to update the Link Translation
Table on the target system to reflect the references for the
created code fragment executables. For example, if invok
able code modules have been created for the patched com
piled executable code file, an entry in the Link Translation
Table can be used to resolve at execution time a reference to
a code module, allowing flow of execution to be transferred
to the appropriate memory location where the code fragment
executable for the module is loaded in memory. Similarly, if
variables have been defined and made available to other
portions of the code outside a Self-contained variable Scope
(e.g., global variables), the Link Translation Table can be
used to resolve references to those variables by other por
tions of the code. Finally, if the code fragment executables
are loaded into memory Separate from the patch handlers
that will reference those code fragment executables, then the
Link Translation Table can be used to resolve the references
for each Such code fragment executable.
0063 Those skilled in the art will appreciate that if the
memory locations for code fragment executables are known
at the time that the patches and patch handlers are created,
it may not be necessary to use a Link Translation Table to
resolve those references. For example, if code fragment
executables are included with the patch handlers which
reference them, then each Such code fragment executable
would not need a unique identifier that could be resolved
through the use of the Link Translation Table. After step 730,
the routine continues in step 735 to determine if there are
more code fragments to receive. If So, the routine returns to
step 705, and if not the routine ends at step 790.
0064 FIG. 8 is an exemplary flow diagram of an embodi
ment of the Patch Interpreter Subsystem routine 800. The

US 2002/0073398 A1

Patch Interpreter Subsystem routine receives an indication
of a patched executable code file to be executed, loads the
patched compiled executable code file as well as associated
patch handlers and code fragment executables into memory,
executes the non-patched compiled instructions as native
code for the target System, and executes the patch Statements
in an interpreted manner. Those skilled in the art will
appreciate that in an alternate embodiment, before execution
time the Patch Interpreter Subsystem 181 or another sub
System could compile the target-independent code fragment
executables into compiled instructions that are native to the
particular target System. In this situation, the Patch Inter
preter Subsystem 181 would only be needed to resolve
references, Such as for patch handlers and code fragment
executable modules, when Such references are included in
the patched compiled executable code file.
0065. The routine begins in step 805 where an indication
is received of the patched executable code file to be
executed. In the illustrated embodiment, this indication is
received from the Command Subsystem 134 on the host
computer System. In an alternate embodiment, the Patch
Interpreter Subsystem 181 could receive instructions
directly from a user on the target computer System if the
target System included the necessary input/output devices.
The routine then continues to step 810 to load the patch
handlers and code fragment executables associated with the
patched compiled executable code file into memory if they
are not already Stored in memory. The routine then continues
to step 815 to ensure that the Link Translation Table reflects
the current memory addresses for the code fragment
executables and the patch handlers. After step 815, the
routine continues to step 820 where the patched compiled
executable code file is loaded into memory if it is not already
stored in memory. The routine then continues to step 825 to
execute the Execute Patched Executable Code Subroutine.
The routine then continues to step 830 to determine if there
are more patched compiled executable code files to execute.
If so, the routine returns to step 805, and if not, the routine
ends at step 890. Those skilled in the art will appreciate that
in an alternate embodiment, the Patch Interpreter Subsystem
routine could execute multiple different patched executable
code files at the same time.

0.066 FIG. 9 is an exemplary flow diagram of an embodi
ment of the Execute Patched Executable Code Subroutine
825. The Execute Patched Executable Code Subroutine
receives and executes user commands if an interactive
execution of the patched compiled executable code file is in
process. When a non-patched compiled instruction is to be
executed, it is executed as native code. For each patch
Statement, the Subroutine first determines if the Statement is
to be executed and then resolves link identifiers if necessary.
The Subroutine then Satisfies trace requests by writing the
Specified trace information to a trace log on the target
System, executes code fragment executables by interpreting
them, and notifies the Code Patcher system 133 of the
execution Status after the instruction has been processed.
0067. The subroutine begins at step 905 where it is
determined if the current execution of the patched compiled
executable code file is to be done in an interactive mode. If
So, the routine continues in step 910 to receive a user
command. The Subroutine then continues to step 915 to
determine if the received command is to execute the current
instruction in the patched executable code file. If not, the

Jun. 13, 2002

subroutine continues to step 920 to execute the user com
mand, and then continues to step 925 to notify the Code
Patcher system 133 of the results of executing the command.
For example, a user may wish to See a current value for a
variable or to specify a break point at a spot in the patched
compiled executable code file. After Such a break point has
been Set, the user may indicate to continue execution in a
non-interactive mode until a break point is reached, thus
causing execution to Stop and returning execution of the
patched executable code file to an interactive mode. After
step 925, the subroutine returns to step 905.
0068). If it was instead determined in step 905 that the
execution of the patched executable code file is not currently
in interactive mode, or if it was determined in step 915 that
the user command was to execute the current instruction, the
subroutine continues in step 930 to select the next instruc
tion in the patched executable code file, beginning with the
first instruction. The subroutine then continues to step 931 to
determine whether the current instruction is to be currently
executed. For example, the current instruction could be a
patching instruction for a patch that is disabled or that is
qualified with a condition that is not currently met in the
current environment. If the instruction is not to be currently
executed, the Subroutine continues to step 970 where the
Code Patcher system 133 will be notified of the status of
execution of the current instruction if execution is occurring
in an interactive mode. Those skilled in the art will appre
ciate that when an entire patch handler consisting of multiple
patch Statements has been disabled or is not qualified, the
Status of the patch handler can be indicated in a variety of
ways. For example, a flag could be set when the patch
handler was entered indicating that patch Statements are not
to be currently executed while the flag is Set, with the flag
being reset when the end of the patch handler is reached.
Alternately, the patch handler could cause the flow of
execution to Skip any disabled patch Statements.
0069. If it is determined in step 931 that the current
instruction is to be executed, the Subroutine continues to Step
932 to determine if the instruction is a compiled instruction.
If so, the Subroutine continues to step 933 to execute the
current instruction in native mode on the target System, and
then continues to step 970. If it is instead determined in step
932 that the current instruction is a non-compiled patch
Statement or patching instruction, the Subroutine continues
in step 935 to determine if the current instruction includes a
link identifier reference that needs to be resolved. If so, the
subroutine continues in step 940 to use the Link Translation
Table to resolve the link identifier so that the current position
in memory for the associated code can be accessed. After
step 940, or if it is determined in step 935 that a link
identifier is not present, the Subroutine continues in step 945
to determine if the current instruction is a trace request. If So,
the subroutine continues to step 950 to write the specified
trace information to a trace log on the target System that can
be retrieved by a user on the host computer system 100. If
the trace request includes variable or expressions to be
evaluated, they will be evaluated in the context of the current
variable Scope.
0070 If it is instead determined in step 945 that the
current instruction is not a trace request, the Subroutine
continues to Step 965 to execute the code fragment execut
able by interpreting it within the context of the current
variable Scope. For example, a global variable X may be

US 2002/0073398 A1

defined, with the current flow of execution first entering
Function 1 with a variable X that is local to that function and
then entering a Function 2 with a distinct local variable X for
that function. If patch code within Function 2 requires the
evaluation of variable X, its current variable binding within
the scope of Function 2 will be used for the evaluation.
Those skilled in the art will appreciate that the current
variable Scope can be determined in a variety of ways, Such
as by using Symbol table information from the patched
executable code file or the current variable block on the
stack. After step 950 or 965, the subroutine continues at step
970 to notify the Code Patcher system 133 of the status of
executing the current instruction if execution is occurring in
interactive mode. The Subroutine then continues to step 975
to determine if there are more instructions to be executed in
the patched compiled executable code file. If So, the Sub
routine returns to step 905, and if not the subroutine returns
in step 990.
0071. From the foregoing it will be appreciated that,
although Specific embodiments of the invention have been
described herein for purposes of illustration, various modi
fications may be made without deviating from the Spirit and
Scope of the invention. Accordingly, the invention is not
limited except as by the appended claims.

1. A method for modifying an executable file including a
plurality of compiled instructions, the compiled instructions
natively executable on a target computer but not on a Source
computer, the modifying performed under control of the
Source computer without recompiling or relinking or rewrit
ing the executable file, the method comprising:

under control of the Source computer,
(a) loading the executable file onto the target computer;
(b) receiving a plurality of indications to modify the

loaded executable file, each indication Specifying
one of the compiled instructions in the loaded
executable file and at least one non-compiled execut
able instruction to be added to the loaded executable
file;

(c) modifying the loaded executable file by, for each
indication,

creating an instruction group including the Specified
at least one non-compiled executable instruction;

converting the instruction group into an executable
non-compiled format not specific to the target
computer, and

replacing the Specified compiled instruction in the
loaded executable file with an executable patch
instruction associated with the converted instruc
tion group, the patch instruction when executed to
transfer flow of execution to the converted instruc
tion group with which the patch instruction is
asSociated; and

(d) loading the converted instruction groups into at
least one memory area on the target computer, the at
least one memory area distinct from a memory area
on the target computer containing the loaded execut
able file; and

Jun. 13, 2002

under control of the target computer, executing the modi
fied loaded executable file by, as the flow of execution
Sequentially reaches each executable instruction,
(e) when the executable instruction is a non-compiled

executable instruction from an instruction group,
interpretively evaluating the executable instruction;

(f) when the executable instruction is a patch instruc
tion, transferring flow of execution to the loaded
asSociated converted instruction group, and

(g) when the executable instruction is a compiled
instruction, natively executing the compiled execut
able instruction,

so that additional functionality is exhibited when the
modified loaded executable file is executed on the
target computer.

2. The method of claim 1 wherein at least one of the
non-compiled executable instructions is a trace instruction
Specifying information related to execution of the loaded
executable file, and wherein when the flow of execution
reaches the trace instruction a current State of the Specified
information is made available to the Source computer.

3. The method of claim 2 wherein at least one of the
instruction groups includes the Specified compiled instruc
tion that was replaced with the patch instruction associated
with that instruction group.

4. The method of claim 1 wherein when multiple indica
tions Specify a single compiled instruction a Single instruc
tion group is created for the multiple indications, the single
instruction group including the non-compiled executable
instructions Specified by each of the multiple indications.

5. The method of claim 1 wherein the patch instructions
are transfer Statements.

6. The method of claim 1 wherein the executable non
compiled format is a parse tree.

7. The method of claim 1 wherein when a non-compiled
executable instruction is interpretively evaluated, references
to variables are resolved using a current variable Scope
created by compiled instructions.

8. The method of claim 1 wherein after performing steps
(a)-(g) a first time, Steps (b)-(g) are performed a second time
without performing step (a) a Second time Such that the
modified loaded executable file is further modified and then
executed without reloading the executable file.

9. A method for modifying a compiled file loaded on a
target computer, the loaded compiled file including a plu
rality of instructions executable on the target computer, the
method comprising:

modifying the loaded compiled file by,

under control of a Source computer,
receiving an indication to modify the loaded com

piled file by adding at least one instruction to be
executed upon execution of the loaded compiled
file;

creating a patch group including a plurality of
instructions, the plurality of instructions including
the indicated at least one instruction; and

replacing an instruction in the loaded compiled file
with a patch instruction; and

US 2002/0073398 A1

loading the patch group into a first portion of memory
on the target computer distinct from a Second portion
of memory on the target computer containing the
loaded compiled file; and

on the target computer, executing the instructions in the
modified loaded compiled file by, when an instruction
to be executed is the patch instruction, indicating one of
the plurality of instructions in the loaded patch group as
a next instruction to be executed.

10. The method of claim 9 wherein the indicating of the
one of the plurality of instructions involves transferring flow
of execution to a first instruction in the loaded patch group.

11. The method of claim 10 wherein the plurality of
instructions in the compiled file are in a compiled format
Specific to the target computer, wherein the plurality of
instructions in the loaded patch group are in a non-compiled
format not specific to the target computer, and wherein when
an instruction to be executed is one of the plurality of
instructions in the loaded patch group, the instruction is
executed by interpreting the instruction.

12. The method of claim 11 wherein the non-compiled
format is a parse tree.

13. The method of claim 10 wherein the patch group
includes a return instruction that when executed transfers
flow of execution back to an instruction in the loaded
modified compiled file.

14. The method of claim 10 wherein the patch instruction
is a transfer Statement.

15. The method of claim 9 wherein the created patch
group includes the replaced instruction.

16. The method of claim 9 wherein the indicated at least
one instruction Specifies that information related to execu
tion of the loaded compiled file be provided for a user.

17. The method of claim 16 wherein when flow of
execution reaches the indicated at least one instruction a
current State of the Specified information is determined using
a current variable Scope.

18. The method of claim 9 wherein the executing of the
instructions in the modified loaded compiled file on the
target computer is performed under interactive control of the
Source computer.

19. The method of claim 9 including before the modifying
of the loaded compiled file, loading the compiled file into the
Second portion of memory.

20. The method of claim 19 including after the modifying
of the loaded compiled file and the executing of the instruc
tions in the modified loaded compiled file, performing the
modifying and the executing again without performing the
loading of the compiled file into memory again.

21. The method of claim 9 including:
halting the executing of the instructions in the modified

loaded compiled file before the executing has com
pleted;

performing the modifying of the loaded compiled file
again; and

continuing the halted executing without restarting execu
tion of the modified loaded compiled file.

22. A computer-implemented method for adding instruc
tions to be executed to an executable compiled file without
recompiling or rewriting the file, the method comprising:

Jun. 13, 2002

receiving an indication to modify the compiled file, the
indication Specifying a compiled instruction in the
compiled file and at least one executable instruction to
be added;

modifying the compiled file by,
creating a patch group including the Specified at least

one executable instruction; and
replacing the Specified compiled instruction in the

compiled file with a patch instruction such that flow
of execution will transfer to the created patch group
upon execution of the patch instruction, and

Storing Separate from the patch group the modified com
piled file including the patch instruction,

So that instructions in the patch group will be executed
when the modified compiled file is later executed.

23. The method of claim 22 wherein the instructions in the
patch group are in a non-compiled format Such that execu
tion of the instructions involves interpreted evaluation.

24. The method of claim 22 wherein the created patch
group includes a return instruction that when executed
transferS flow of execution back to an instruction in the
modified compiled file.

25. The method of claim 22 wherein the created patch
group includes the replaced instruction.

26. The method of claim 22 wherein the specified at least
one executable instruction will when executed provide trace
information about current execution of the modified file.

27. The method of claim 26 wherein the trace information
indicates when the Specified compiled instruction is
executed.

28. The method of claim 26 wherein the trace information
indicates when a function including the Specified compiled
instruction is invoked.

29. The method of claim 22 wherein a plurality of
executable instructions to be added are specified and
wherein the created patch group includes a function with
multiple instructions, the function invokable by other
instructions.

30. The method of claim 22 wherein the modified com
piled file is executed on a separate computer, and including:

Supplying to the Separate computer at least one direction
related to the execution of the modified compiled file;
and

displaying received results of performance of the Supplied
direction.

31. The method of claim 22 wherein without removing the
patch instruction from the modified compiled file, the patch
group is disabled Such that the instructions in the patch
group are not executed when the modified compiled file is
executed.

32. A computer-implemented method for executing a
modified compiled file including a plurality of original
compiled instructions and at least one patch instruction in
place of an original compiled instruction, each patch instruc
tion when executed to transfer flow of execution to an
asSociated patch group including a plurality of instructions,
the method comprising:

loading the modified compiled file and the associated
patch groups into memory; and

US 2002/0073398 A1

executing the modified compiled file by, as the flow of
execution reaches each executable instruction,
when the executable instruction is an original compiled

instruction, natively executing the executable
instruction;

when the executable instruction is one of the patch
instructions, transferring flow of execution to the
asSociated patch group for the patch instruction; and

when the executable instruction is one of the plurality
of instructions from a patch group, interpretively
evaluating the executable instruction.

33. The method of claim 32 wherein the modified com
piled file is loaded into memory on a target computer and
wherein the plurality of instructions in the loaded patch
groups are in a non-compiled format not Specific to the target
computer.

34. The method of claim 33 wherein the patch groups are
loaded into memory on a Source computer distinct from the
target computer.

35. The method of claim 32 wherein a location in memory
is determined for each patch group when the patch group is
to be loaded, wherein the memory location of each loaded
patch group is tracked, and wherein when a patch instruction
is to be executed, the tracked current memory location of the
asSociated patch group is determined to enable the transfer
ring of the flow of execution.

36. The method of claim 32 wherein before each patch
group is loaded into memory, a memory location is prede
termined for the patch group and the patch instruction for the
patch group indicates the predetermined memory location,
the predetermined memory location to be used for the
transferring of the flow of execution.

37. The method of claim 32 wherein the plurality of
instructions in the loaded patch groups are specified in a
non-compiled format.

38. The method of claim 32 wherein when interpretively
evaluating instructions from a patch group, Variables are
evaluated in the context of current variable Scopes.

39. The method of claim 32 wherein the executing of the
modified compiled file is performed under interactive con
trol of a distinct computer.

40. A computer System for adding instructions to be
executed to an executable compiled file without recompiling
or rewriting the file, comprising:

a command Subsystem for receiving indications to modify
the compiled file, each indication specifying a com
piled instruction in the compiled file and at least one
executable instruction to be added; and

a patching Subsystem for modifying the compiled file by
creating for each received indication an associated
patch group including the Specified at least one execut
able instruction, and by replacing the Specified com
piled instruction in the compiled file with a patch
instruction Such that flow of execution will transfer to
the associated patch group upon execution of the patch
instruction.

41. The computer System of claim 40 including a code
fragment executables Subsystem for converting instructions
in the patch group into a non-compiled format Such that
execution of the instructions involves interpreted evaluation.

42. The computer system of claim 40 wherein the modi
fied compiled file is executed on a separate computer, and

13
Jun. 13, 2002

wherein the command Subsystem is further for receiving an
indication to Supply to the Separate computer at least one
direction related to the execution of the modified compiled
file and for displaying received results of performance of the
Supplied direction.

43. The computer system of claim 40 wherein the speci
fied at least one executable instruction will when executed
provide trace information about current execution of the
modified file.

44. The computer System of claim 40 including a patch
interpreter Subsystem for executing the modified compiled
file by, as the flow of execution reaches each executable
instruction,
when the executable instruction is a compiled instruction,

natively executing the executable instruction;
when the executable instruction is one of the patch

instructions, transferring flow of execution to the asso
ciated patch group for the patch instruction; and

when the executable instruction is one of the instructions
from a patch group, interpretively evaluating the
executable instruction.

45. A computer-readable medium containing instructions
for controlling a computer System to add instructions to be
executed to an executable compiled file without recompiling
the file, by:

receiving an indication to modify the compiled file, the
indication Specifying a compiled instruction in the
compiled file and at least one executable instruction to
be added; and

modifying the compiled file by,
creating a patch group including the Specified at least

one executable instruction; and
replacing the Specified compiled instruction in the

compiled file with a patch instruction such that flow
of execution will transfer to the created patch group
upon execution of the patch instruction.

46. The computer-readable medium of claim 45 wherein
the instructions in the patch group are in a non-compiled
format Such that execution of the instructions involves
interpreted evaluation.

47. The computer-readable medium of claim 45 wherein
the modified compiled file is executed on a computer
Separate from the controlled computer System, and wherein
the controlled computer system is further controlled by:

Supplying to the Separate computer at least one direction
related to the execution of the modified compiled file;
and

displaying received results of performance of the Supplied
direction.

48. The computer-readable medium of claim 45 wherein
the Specified at least one executable instruction will when
executed provide trace information about current execution
of the modified file.

49. The computer-readable medium of claim 45 wherein
the computer System is further controlled to execute the
modified compiled file by, as the flow of execution reaches
each executable instruction,

when the executable instruction is a compiled instruction,
natively executing the executable instruction;

US 2002/0073398 A1

when the executable instruction is one of the patch
instructions, transferring flow of execution to the asso
ciated patch group for the patch instruction; and

when the executable instruction is one of the instructions
from a patch group, interpretively evaluating the
executable instruction.

50. The computer-readable medium of claim 45 wherein
the computer system is further controlled by, before the
modifying of the compiled file, loading the compiled file
into memory of a Second computer System, and wherein the
modifying of the compiled file modifies the loaded compiled
file Such that the Specified compiled instruction is replaced
in the loaded compiled file.

Jun. 13, 2002

51. The computer-readable medium of claim 45 wherein
the computer system is further controlled by, after the
modifying of the compiled file executing on a target com
puter the modified compiled file by, when an instruction to
be executed is the patch instruction, indicating an instruction
in the created patch group as a next instruction to be
executed.

52. The computer-readable medium of claim 51 wherein
the computer system is further controlled by, after the
executing of the modified compiled file, performing the
modifying and the executing again without reloading the
compiled file into memory.

k k k k k

