

심사관: 조혜진

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

 CO8J
 7/04
 (2020.01)
 B29C
 69/02
 (2006.01)

 CO8G
 18/32
 (2006.01)
 CO8G
 18/34
 (2006.01)

 CO8G
 18/44
 (2006.01)
 CO8G
 18/76
 (2006.01)

 CO8L
 99/00
 (2006.01)
 CO9D
 175/02
 (2006.01)

C12N 1/14 (2018.01) B29L 31/00 (2006.01)

(52) CPC특허분류

CO8J 7/0427 (2022.01) **B29C 69/02** (2013.01)

(21) 출원번호 10-2022-0076898

(22) 출원일자 **2022년06월23일** 심사청구일자 **2022년06월23일**

(56) 선행기술조사문헌 JP2010529832 A* (뒷면에 계속)

전체 청구항 수 : 총 5 항

(45) 공고일자 2022년11월03일

(11) 등록번호 10-2463060

(24) 등록일자 2022년10월31일

(73) 특허권자

주식회사 어스폼

서울특별시 영등포구 국제금융로6길 33, 919호 비364(여의도동, 맨하탄빌딩)

(72) 발명자

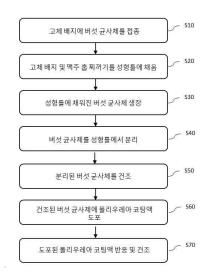
김용현

서울특별시 영등포구 양평로24길 9, 110동 1108호 (양평동한신아파트)

정성일

서울특별시 마포구 성산로4안길 54, 401호 (대원 파크빌라)

(74) 대리인


특허법인영비

(54) 발명의 명칭 **친환경 폴리우레아가 코팅된 버섯 균사체 및 맥주 홉 찌꺼기를 이용한 생분해성 친환경 부표** 의 제조방법 및 이에 의해 제조된 생분해성 친환경 부표

(57) 요 약

친환경 폴리우레아가 코팅된 버섯 균사체 및 맥주 홉 찌꺼기를 이용한 생분해성 친환경 부표의 제조방법 및 이에 의해 제조된 생분해성 친환경 부표가 제공된다. 생분해성 친환경 부표는 생분해가 가능하면서도 우수한 내구성 및 내충격성을 갖고, 산업폐기물로서 버려지는 맥주 홉 찌꺼기를 활용하여 제조 효율을 극대화하는 동시에 환경 오염을 개선할 수 있다.

대 표 도 - 도1

(52) CPC특허분류

CO8G 18/3225 (2013.01) **CO8G 18/341** (2013.01) **CO8G 18/44** (2013.01)

CO8G 18/7671 (2013.01)

CO8L 99/00 (2013.01) **CO9D 175/02** (2013.01)

C12N 1/14 (2021.05)

B29L 2031/706 (2013.01)

COSJ 2399/00 (2013.01)

(56) 선행기술조사문헌

KR1020200045381 A*

KR1020200131376 A

KR102200613 B1*

KR102224342 B1

JP11075540 A*

KR101619664 B1

*는 심사관에 의하여 인용된 문헌

명세서

청구범위

청구항 1

- (a) 물에 포플러 톱밥과 쌀겨를 혼합하여 제조된 고체 배지에 버섯 균사체를 접종하는 단계;
- (b) 상기 버섯 균사체가 접종된 고체 배지를 맥주 홉 찌꺼기와 함께 성형틀에 채우는 단계;
- (c) 온도 15-32 ℃, 상대습도 65-95% 및 이산화탄소 농도 2,000-5,000 ppm의 조건 하에서 상기 성형틀에 채워진 버섯 균사체를 생장시키는 단계;
- (d) 생장이 완료된 상기 버섯 균사체를 성형틀에서 분리하는 단계;
- (e) 분리된 상기 버섯 균사체를 75-100 ℃에서 1-3시간 동안 건조시키는 단계;
- (f) 상기 건조된 버섯 균사체에 폴리우레아 코팅액을 0.5-4 mm 두께로 도포하는 단계; 및
- (g) 상기 도포된 폴리우레아 코팅액을 온도 5 $^{\circ}$ 이상 및 상대습도 85% 이하에서 30초-60 분 동안 반응 및 건조 시키는 단계를 포함하는

생분해성 친환경 부표의 제조방법.

청구항 2

청구항 1에 있어서,

상기 폴리우레아 코팅액은 주제와 경화제를 1 : 0.5 - 2 중량비로 혼합하여 제조하고,

상기 주제는 메틸렌 디페놀계 이소시아네이트 화합물 및 카보네이트계 화합물을 포함하며,

상기 경화제는 아민계 화합물 및 프탈레이트계 화합물을 포함하는

생분해성 친환경 부표의 제조방법.

청구항 3

청구항 1에 있어서,

상기 버섯은 느타리버섯(Pleurotus ostreatus)인

생분해성 친환경 부표의 제조방법.

청구항 4

- (a) 물에 포플러 톱밥과 쌀겨를 혼합하여 제조된 고체 배지에 버섯 균사체를 접종하는 단계;
- (b) 상기 버섯 균사체가 접종된 고체 배지를 맥주 홉 찌꺼기와 함께 성형틀에 채우는 단계;
- (c) 온도 15-32 ℃, 상대습도 65-95% 및 이산화탄소 농도 2,000-5,000 ppm의 조건 하에서 상기 성형틀에 채워진 버섯 균사체를 생장시키는 단계;
- (d) 생장이 완료된 상기 버섯 균사체를 성형틀에서 분리하는 단계;
- (e) 분리된 상기 버섯 균사체를 75-100 ℃에서 1-3시간 동안 건조하는 단계;
- (f) 5-60 ℃ 온도 및 상대습도 85% 이하 중 하나 이상의 조건에서 상기 건조된 버섯 균사체에 프라이머를 0.5-1 mm 두께로 도포하는 단계;
- (g) 상기 프라이머가 도포된 버섯 균사체에 폴리우레아 코팅액을 0.5-4 mm 두께로 도포하는 단계; 및
- (h) 상기 폴리우레아 코팅액을 온도 5 ℃ 이상 및 상대습도 85% 이하 중 하나 이상의 조건에서 30초-60분 동안 반응 및 건조시키는 단계를 포함하는

생분해성 친환경 부표의 제조방법.

청구항 5

청구항 1 내지 4 중 어느 한 항의 방법으로 제조된 것으로서,

밀도가 70-200 kg/m³ 인

생분해성 친환경 부표.

발명의 설명

기술분야

[0001] 본 발명은 친환경 폴리우레아가 코팅된 버섯 균사체 및 맥주 홉 찌꺼기를 이용한 생분해성 친환경 부표의 제조 방법 및 이에 의해 제조된 생분해성 친환경 부표에 관한 것으로서, 구체적으로는 완전 생분해가 가능하면서도 우수한 방수성, 내구성 및 내충격성을 갖고, 산업폐기물로서 버려지는 맥주 홉 찌꺼기를 활용하여 제조 효율을 극대화하는 동시에 환경오염을 개선할 수 있는 생분해성 친환경 부표 및 그 제조방법에 관한 것이다.

배경기술

- [0002] 부표는 수면에 띄우는 부체로 항로표지에 이용되거나 굴, 전복 등과 같은 어패류와 해조류 양식을 위해 사용되는 것으로써 주로 스티로폼으로 만들어진 부표가 흔하게 사용되고 있다.
- [0003] 스티로폼은 물에 잘 띄워지는 성질이 있어 부력이 필수요건이 되는 부표로서 유용하게 쓰일 수 있는 반면에 파도나 바람 등에 쉽게 부서질 수 있어 미세플라스틱 발생 등의 환경을 위협하는 주요 요인이 된다.
- [0004] 미세플라스틱은 해양 오염을 일으킬 뿐만 아니라, 사람들의 먹거리로 활용되는 해양 생물들에게 흡수 또는 섭취되어 그대로 사람의 몸 속으로 전달되기 때문에 인체 건강에 악영향을 끼칠 우려가 있다.
- [0005] 이와 관련하여 해양수산부는 2024년까지 모든 양식장 및 바다에서 스티로폼 부표를 제로화 하고 친환경 부표를 반드시 사용하도록 의무화하기로 하였다.
- [0006] 한편, 맥주 제조 산업에서는 맥주 제조 시 맛과 향을 부여하기 위해 홉(hop)을 사용하는데, 제조 후 발생하는 다량의 홉 찌꺼기는 효모 등을 포함하는 막대한 영양원임에도 불구하고 산업폐기물로서 버려지며 환경오염을 야기하고 있다.
- [0007] 이에 따라 환경오염 개선책으로 활용될 수 있도록 스티로폼 부표를 대체할 친환경 부표에 대한 개발 및 산업 폐 기물로 버려지는 홉의 활용방안 발굴이 시급한 실정이다.

선행기술문헌

특허문허

[0008] (특허문헌 0001) 대한민국등록특허 제10-1743560호

발명의 내용

해결하려는 과제

- [0009] 이에 본 발명이 해결하고자 하는 과제는 완전 생분해가 가능하면서도 우수한 방수성, 내구성 및 내충격성을 갖고 친환경 코팅을 통하여 환경 오염을 예방하며, 산업폐기물로서 버려지는 맥주 홉 찌꺼기를 활용하여 제조 효율을 극대화하는 동시에 환경오염을 개선할 수 있는 생분해성 친환경 부표를 제조하는 방법을 제공하는 것이다.
- [0010] 본 발명이 해결하고자 하는 다른 과제는 상기 방법에 의해 제조되는 생분해성 친환경 부표를 제공하는 것이다.
- [0011] 본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.

과제의 해결 수단

- [0012] 상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 생분해성 친환경 부표의 제조방법은 (a) 물에 포플러 톱밥과 쌀겨를 혼합하여 제조된 고체 배지에 버섯 균사체를 접종하는 단계; (b) 상기 버섯 균사체가 접종된 고체 배지를 맥주 홉 찌꺼기와 함께 성형틀에 채우는 단계; (c) 온도 15-32 ℃, 상대습도 65-95% 및 이산화탄소 농도 2,000-5,000 ppm 중 하나 이상의 조건 하에서 상기 성형틀에 채워진 버섯 균사체를 생장시키는 단계; (d) 생장이 완료된 상기 버섯 균사체를 성형틀에서 분리하는 단계; (e) 분리된 상기 버섯 균사체를 75-100 ℃에서 1-3시간 동안 건조시키는 단계; (f) 상기 건조된 버섯 균사체에 폴리우레아 코팅액을 0.5-4 mm 두께로 도포하는 단계; (g) 상기 도포된 폴리우레아 코팅액을 온도 5 ℃ 이상 및 상대습도 85% 이하에서 30초-60 분 동안 반응 및 건조시키는 단계를 포함할 수 있다.
- [0013] 상기 폴리우레아 코팅액은 주제와 경화제를 1: 0.5 2 중량비로 혼합하여 제조하고, 상기 주제는 메틸렌 디페 놀계 이소시아네이트 화합물 및 카보네이트계 화합물을 포함하며, 상기 경화제는 아민계 화합물 및 프탈레이트 계 화합물을 포함할 수 있다.
- [0014] 상기 버섯은 느타리버섯(Pleurotus ostreatus)일 수 있다.
- [0015] 상기 (e) 단계 후 상기 (f) 단계 전에, 5-60 ℃ 온도 및 상대습도 85% 이하 중 하나 이상의 조건에서 상기 건조 된 버섯 균사체에 프라이머를 0.5-1 mm 두께로 도포하는 단계 단계를 더 포함할 수 있다.
- [0016] 상기 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 생분해성 친환경 부표는 상기 방법에 의해 제조될 수 있으며, 밀도가 70-200 kg/m³ 일 수 있다.
- [0017] 기타 실시예의 구체적인 사항들은 상세한 설명에 포함되어 있다.

발명의 효과

- [0018] 본 발명의 실시예들에 따른 생분해성 친환경 부표는 완전 생분해가 가능하면서도 우수한 방수성, 내구성 및 내 충격성을 갖고 친환경 코팅을 통하여 내마모성이 더욱 강화되기 때문에 생분해성 친환경 부표로서 사용되기 매우 적합하다.
- [0019] 또한, 본 발명의 실시예들에 따른 생분해성 친환경 부표의 제조방법은 산업폐기물로서 버려지는 맥주 홉 찌꺼기를 활용하여 제조 효율을 극대화하는 동시에 환경오염을 개선할 수 있다.
- [0020] 본 발명의 실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.

도면의 간단한 설명

[0021] 도 1은 본 발명의 일 실시예에 따른 생분해성 친환경 부표의 제조방법을 나타낸 순서도이다.

도 2는 본 발명의 다른 실시예에 따른 생분해서 친환경 부표의 제조방법을 나타낸 순서도이다.

도 3은 본 발명의 실험예에 따라 측정된 이산화탄소의 농도에 따른 버섯 균사체의 생장속도를 나타낸 그래프이다.

도 4는 본 발명의 일실시예 따라 제조된 폴리우레아 코팅층이 형성된 버섯 균사체의 사진이다.

발명을 실시하기 위한 구체적인 내용

- [0022] 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
- [0023] 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, '및/또는'은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다. 또, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는

(comprising)'은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. '-' 또는 '내지'를 사용하여 나타낸 수치 범위는 다른 언급이 없는 한 그 앞과 뒤에 기재된 값을 각각 하한과 상한 으로서 포함하는 수치 범위를 나타낸다. '약' 또는 '대략'은 그 뒤에 기재된 값 또는 수치 범위의 20% 이내의 값 또는 수치 범위를 의미한다.

- [0024] 또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
- [0025] 다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
- [0026] 그리고 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실 시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
- [0027] 도 1은 본 발명의 일 실시예에 따른 생분해성 친환경 부표의 제조방법을 나타낸 순서도이다.
- [0028] 도 1을 참조하면, 생분해성 친환경 부표의 제조방법은 (a) 물에 포플러 톱밥과 쌀겨를 혼합하여 제조된 고체 배지에 버섯 균사체를 접종하는 단계(S10); (b) 상기 버섯 균사체가 접종된 고체 배지를 맥주 홉 찌꺼기와 함께 성형틀에 채우는 단계(S20); (c) 온도 15-32 ℃, 상대습도 65-95% 및 이산화탄소 농도 2,000-5,000 ppm 중 하나 이상의 조건 하에서 상기 성형틀에 채워진 버섯 균사체를 생장시키는 단계(S30); (d) 생장이 완료된 상기 버섯 균사체를 성형틀에서 분리하는 단계(S40); (e) 분리된 상기 버섯 균사체를 75-100 ℃에서 1-3시간 동안 건조하는 단계(S50); (f) 상기 건조된 버섯 균사체에 폴리우레아 코팅액을 0.5-4 mm 두께로 도포하는 단계(S60); 및 (g) 상기 폴리우레아 코팅액을 온도 5 ℃ 이상, 상대습도 85% 이하 및 1-60 분 동안 반응 및 건조시키는 단계(S70)를 포함할 수 있다.
- [0029] 고체 배지에 버섯 균사체를 접종
- [0030] 물에 톱밥과 쌀겨를 혼합하여 고체 배지를 제조하고, 제조된 고체 배지에 버섯 균사체를 접종한다.
- [0031] 톱밥은 포플러(poplar) 톱밥일 수 있다. 포플러 톱밥은 사시나무속(Populus)의 수종에서 유래된 톱밥을 의미하며, 예를 들어 양버들, 은백양, 미루나무, 유럽사시나무(P. tremula) 등을 들 수 있으나, 본 발명의 범위가 이에 제한되는 것은 아니다.
- [0032] 고체 배지의 제조에 사용되는 물은 pH가 3-5일 수 있고, 구체적으로는 3-4.5, 3.5-5, 3.5-4.5, 3.5-4 또는 4-4.5일 수 있다. 고체 배지의 제조에 사용된 물의 pH가 상기 범위 내일 때 버섯 균사체의 생장이 가장 우수할 수 있다.
- [0033] 포플러 톱밥, 쌀겨 및 물은 2-4 : 1 : 1-3의 부피비로 혼합할 수 있으나, 본 발명의 실시예가 이에 제한되는 것은 아니다.
- [0034] 버섯 균사체는 균사의 집합체로서 진균의 영양기관이다. 일반적으로 버섯이라고 하는 균류의 자실체도 자실층을 제외하고는 모두 균사체로 구성되어 있다. 이러한 균사체는 생체 고분자가 적당한 환경조건에서 스스로 집합하여 특정한 고차 구조를 형성하는 자기조립성을 갖는다.
- [0035] 버섯 균사체(mycelium)로서 느타리버섯, 표고버섯, 암회색광대버섯, 목이버섯, 꽃송이버섯, 새송이버섯 등의 균 사체를 사용할 수 있으며, 구체적으로는 느타리버섯(*Pleurotus ostreatus*)의 균사체를 사용할 수 있다. 다만, 이에 제한되지 않는다.
- [0036] 고체 배지 및 맥주 홉 찌꺼기를 성형틀에 채움
- [0037] 버섯 균사체가 접종된 고체 배지는 맥주 홉 찌꺼기와 함께 성형틀에 채운다.
- [0038] 맥주 홉(hop)은 맥주 제조 시 향 또는 맛을 부여하기 위해 사용되는 재료로서, 맥주의 제조 후 발생하는 다량의 홉 찌꺼기(또는 잔사물)는 맥주 산업 분야에 국한되지 않는 산업폐기물로서 문제가 되고 있다. 맥주 홉 찌꺼기에는 맥주 제조 시 발생한 효모도 풍부하게 포함되어 있기 때문에 막대한 영양원으로 작용할 수 있다. 본 발명은 이러한 맥주 홉 찌꺼기를 버섯 균사체를 이용한 생분해성 친환경 부표의 제조에 활용함으로써, 버섯 균사체

를 효과적으로 생장시키는 동시에 산업폐기물의 재활용에도 일조할 수 있다.

- [0039] 즉, 본 발명의 맥주 홉 찌꺼기는 맥주 제조 후 발생한 부산물로서, 효모를 포함할 수 있다.
- [0040] 성형틀은 요구되는 부표의 형상 및 크기에 대응될 수 있으며, 예를 들어 육면체, 원통 등의 형상을 가질 수 있으나, 이에 제한되는 것은 아니다.
- [0041] 성형틀에 채워진 버섯 균사체 생장
- [0042] 살균된 성형틀에 버섯 균사체가 접종된 고체 배지와 맥주 홉 찌꺼기를 채운 후, 소정 배양 조건을 유지하며 버섯 균사체를 생장시킨다.
- [0043] 본 명세서에서 '생장'이란 균사체의 번식, 성장, 군집 및 집합을 모두 포함하는 포괄적인 용어로서 사용된다.
- [0044] 배양 온도는 15-32 ℃일 수 있고, 구체적으로는 20-32 ℃, 25-32 ℃, 15-30 ℃, 15-25 ℃, 15-20 ℃, 20-30 ℃ 또는 20-25 ℃일 수 있다. 상대습도는 65-95%일 수 있고, 구체적으로는 70-95%, 75-95%, 80-95%, 90-95%, 70-90%, 70-85%, 70-80%, 70-75%, 75-90% 또는 80-85%일 수 있다. 배양 온도 및 상대습도가 상기 범위 내일 때 버섯 균사체를 효과적으로 생장시킬 수 있으며, 상기 범위를 벗어나면 생장 지연, 세포 사멸 등의 문제가 발생할수 있다.
- [0045] 또한, 버섯 균사체의 생장을 가속시키기 위해 이산화탄소(CO₂)의 농도를 2,000-5,000 ppm으로 유지할 수 있다. 이산화탄소의 농도는 구체적으로 3,000-5,000 ppm, 4,000-5,000 ppm, 2,000-4,000 ppm, 2,000-3,000 ppm 또는 3,000-4,000 ppm일 수 있다. 이산화탄소의 농도가 상기 범위 내일 때 버섯 균사체의 생장 속도가 가장 빠를 수 있다.
- [0046] 배양 온도, 상대습도 및/또는 이산화탄소 농도는 상기 범위 내의 특정 값으로 유지되거나 상기 범위로 유지될 수 있다. 배양 온도, 상대습도 또는 이산화탄소 농도가 상기 범위로 유지되는 경우, 상기 범위의 상한 또는 하한을 초과하면 상기 범위 내로 배양 온도, 상대습도 또는 이산화탄소 농도를 변경하는 단계를 더 포함할 수 있다.
- [0047] 버섯 균사체는 상기와 같은 배양 온도, 상대습도 및 이산화탄소 농도 중 하나 이상의 조건 하에서 생장시킬 수 있으며, 구체적으로는 둘 이상의 조건 또는 상기 모든 조건 하에서 생장시킬 수 있다.
- [0048] 배양 시 직사광선을 최소화하기 위해 암실, 암막 등의 차광 수단을 적용하여 생장시키는 등의 조치를 취할 수 있으나, 이에 제한되는 것은 아니다.
- [0049] 성형틀에서 버섯 균사체의 생장 기간은 3-5일일 수 있다.
- [0050] 버섯 균사체를 성형틀에서 분리
- [0051] 성형틀에서의 버섯 균사체 생장이 완료되면 성형틀에서 버섯 균사체를 분리한다.
- [0052] 생장이 완료된 버섯 균사체 덩어리는 일종의 바이오폴리머(biopolymer)로서 강성과 내충격성을 갖고, 버섯류가 분비하는 다당류, 베타글루칸, 세포외 중합물질 등으로 인해 건조 후에는 100% 생분해가 가능한 친환경 부표로 서 사용할 수 있다.
- [0053] 버섯 균사체 건조
- [0054] 분리된 버섯 균사체를 건조한다. 건조 시 온도는 75-100 ℃, 구체적으로는 80-100 ℃, 85-100 ℃, 90-100 ℃, 95-100 ℃, 75-95 ℃, 75-90 ℃, 75-80 ℃, 80-95 ℃ 또는 85-90 ℃일 수 있다. 건조 시간은 1-3시간, 구체적으로는 1.5-3시간, 2-3시간, 2.5-3시간, 1.5-2.5시간, 1.5-2시간 또는 2-2.5시간일 수 있다.
- [0055] 상기와 같이 형성된 버섯 균사체는 일정 조건이 뒷받침되는 수중 또는 토중의 환경에서 미생물들의 작용에 의하여 분해될 수 있어 생분해성의 성질을 갖는다.
- [0056] 폴리우레아 코팅액 도포
- [0057] 건조된 버섯 균사체에 폴리우레아 코팅액을 도포한다. 구체적으로, 버섯 균사체가 외부에 노출되지 않도록 버섯 균사체 덩어리의 모든 외면을 폴리우레아 코팅액으로 도포할 수 있다.
- [0058] 상기 폴리우레아(Polyurea)는 분자구조 내에 우레아 결합을 갖고 있는 고분자 화합물로서 이소시아네이트 (Isocyanate) 구성요소와 아민(Amine) 구성요소의 반응산물로부터 유도된 탄성중합체이다. 또한, 폴리우레아는

반응성이 빠르고 경화 후 우수한 물성과 내구성을 보여주며, 특히 이소시아네이트 구성요소와 아민 구성요소가 중합반응 하여 얻어지는 상태가 액상 형태에 가깝기 때문에 용제를 혼합하는 공정을 생략할 수 있다.

- [0059] 폴리우레아 코팅을 하는 경우 인장강도, 인열강도, 신장율 및 경도가 증가하여 부표의 내구성, 내충격성, 내마모성 및 탄성을 강화시켜주며, 파도와 바람에 의하여 부표가 쉽게 부서지는 것을 감소시킬 수 있기 때문에 친환경적이다. 또한 방수성이 우수한데, 본 발명의 버섯 균사체는 100% 친환경 소재로서 물이나 습기에 취약할 수 있기 때문에 이러한 방수성이 우수한 폴리우레아 코팅을 통해 부표로서 장기간 안정적으로 사용할 수 있다.
- [0060] 상기 폴리우레아 코팅액은 0.5-4 mm 두께로 도포할 수 있으며 구체적으로는 1-4 mm, 2-3 mm, 2-4 mm, 1-2 mm, 1-3 mm 또는 1.5-2.5 mm 일 수 있으며 더 구체적으로는 2 mm일 수 있다.
- [0061] 폴리우레아 코팅층의 두께가 0.5 mm 미만일 경우 폴리우레아 코팅층의 효과가 미미할 수 있고, 4 mm 초과일 경우 부표의 밀도가 증가하고 부표 자체의 부력을 저하시킬 수 있다.
- [0062] 상기 도포는 분사하는 방법으로 할 수 있으며 구체적으로는 고압, 고온의 충돌혼합 스프레이기계를 통하여 분사하는 방법으로 할 수 있다.
- [0063] 상기 폴리우레아 코팅액은 주제와 경화제를 1 : 0.5-2 중량비로 포함할 수 있다. 구체적으로는 주제와 경화제를 약 1 : 1 중량비로 포함할 수 있다.
- [0064] 상기 주제는 디이소시아네이트계 화합물을 포함할 수 있으며 경화제는 아민계 화합물을 포함할 수 있다.
- [0065] 구체적으로, 상기 주제는 상기 디이소시아네이트계 화합물이 메틸렌 디페놀계 화합물일 수 있으며, 카보네이트 계 화합물을 더 포함할 수 있다. 상기 경화제는 프탈레이트계 화합물을 더 포함할 수 있다.
- [0066] 보다 더 구체적으로, 주제는 메틸렌 디페놀 디이소시아네이트-폴리프로필렌 글리콜 공중합체(MDI-POLYPROPYLENE GLYCOLCOPOLYMER) 90-100 중량부 및 4-메틸-1,3-다이옥솔레인-2-온(4-Methyl-1,3-dioxolan-2-one) 1-10 중량부 를 포함할 수 있다. 상기 경화제는 폴리(옥시프로필렌)디아민(POLY(OXYPROPYLENE)DIAMINE) 63-73 중량부, 다이 에틸톨루엔다이아민 22-32 중량부 및 1,4-벤젠다이카복실산 비스(2-에틸헥실) 1-10 중량부를 포함할 수 있다.
- [0067] 상기 경화제는 Poly[oxy(methyl-1,2-ethanediyl)], α, α΄, α''-1,2,3-propanetriyltris[ω-(2-aminomethylethoxy)- 1-10 중량부 및 이산화 규소(Silicon dioxide) 1-10 중량부를 더 포함할 수 있다.
- [0068] 폴리우레아 코팅액 반응 및 건조
- [0069] 버섯 균사체에 폴리우레아 코팅액을 도포한 후 반응 및 건조시킨다.
- [0070] 상기 반응은 도포된 폴리우레아가 건조된 버섯 균사체 표면에 접착력을 형성하며 균일하게 도포되어 도막을 형성하는 것일 수 있다.
- [0072] 상기 건조에 있어서 바람직하게는 5-60 ℃ 온도에서 건조할 수 있으며 30초-60분 동안 건조할 수 있고, 상대습도 60-85%의 조건으로 건조할 수 있다.
- [0073] 상기 건조에 있어서 지촉건조는 1분 이하로 할 수 있으며 경화건조는 60분 이하로 할 수 있다.
- [0074] 온도가 0 ℃ 이하이거나 60 ℃ 이상인 경우, 또는 습도가 85% 보다 높은 경우에는 폴리우레아의 물성에 변화가 생길 수 있어 폴리우레아 코팅의 효과가 떨어질 수 있고, 버섯 균사체의 표면 온도가 3 ℃ 이하인 경우에는 이 슬이 발생할 수 있어 코팅층 형성이 저해될 수 있다.
- [0075] 도 2는 본 발명의 다른 실시예에 있어서 생분해성 친환경 부표의 제조방법을 나타낸 순서도이다.
- [0076] 도 2를 참조하면 생분해성 친환경 부표의 제조방법은 상기 (e) 단계 이후 (f) 단계 이전에 (f-1) 온도 5-60 ℃ 및 상대습도 85% 이하 중 하나 이상의 조건에서 상기 건조된 버섯 균사체에 프라이머를 0.5-1 mm 두께로 도포하는 단계(S51)를 더 포함할 수 있다. 프라이머를 도포한 후 전술한 (f) 단계와 동일하게 폴리우레아 코팅을 진행할 수 있다.
- [0077] 프라이머 도포 단계
- [0078] 건조된 버섯 균사체에 프라이머를 도포한다.
- [0079] 상기 프라이머는 에폭시수지(epoxy resin)를 포함할 수 있다. 구체적으로, 상기 프라이머는 에폭시수지 10-30

중량부, 폴리아미드 수지(polyamide resin) 1-2 중량부 및 아민계 화합물 10-60 중량부를 포함할 수 있다.

- [0080] 구체적으로 에폭시수지는 비스페놀 A 에폭시 수지, 비스페놀 F 에폭시 수지, 노블락 에폭시 수지 및 지방족 에 폭시 수지로 이루어지는 군에서 선택된 하나 이상일 수 있다. 또한 상기 아민계 화합물은 디에틸렌트리아민 (Diethylene Triamine), 트리에틸렌테트라아민(TriethyleneTetramine), 에틸아미노프로필아민(Diethylamino propyl amine), 멘탄디아민(Menthanediamine: MDA), N-아미노에틸피페라진(N-aminoethyl piperazine), 엠크실 렌디아민(M-xylene diamine) 및 이소포론디아민(Isophorone diamine)으로 이루어지는 군에서 선택된 하나 이상일 수 있다.
- [0081] 상기 프라이머는 건조된 버섯 균사체의 표면의 요철을 줄이고 매끈하게 하며 폴리 우레아 코팅액과 버섯 균사체 표면의 접착력을 증대시킬 수 있고 버섯 균사체 표면의 강도 및 방수성을 증진시킬 수 있다.
- [0082] 프라이머는 0.5-1 mm 두께로 도포될 수 있으며 구체적으로는 0.6-1 mm, 0.8-1 mm 또는 0.6-0.8 mm로 도포될 수 있다.
- [0083] 상기 도포는 5-60 ℃ 온도에서 상대습도 85% 이하의 조건으로 도포하는 것일 수 있다.
- [0084] 상기 도포는 바람직하게는 10-35 ℃ 온도에서 도포할 수 있다.
- [0085] 온도가 0 ℃ 이하이거나 60 ℃ 이상인 경우 또는 습도가 85% 보다 높은 경우에는 프라이머의 물성에 변화가 생길 수 있어 프라이머 효과가 떨어질 수 있고, 버섯 균사체의 표면 온도가 3 ℃ 이하인 경우에는 이슬이 발생할수 있어 프라이머 도막 형성이 저해될 수 있다.
- [0086] 두께가 0.5 mm 미만으로 도포되는 경우에는 프라이머의 효과가 떨어질 수 있으며 1 mm 초과로 도포되는 경우에는 부표의 무게 및 밀도를 높여 부력을 떨어뜨릴 수 있다.
- [0087] 본 발명의 일 실시예에 따른 생분해성 친환경 부표는 상술한 방법으로 제조된 것일 수 있다.
- [0088] 본 발명의 일 실시예 따라 제조된 생분해성 친환경 부표는 밀도가 70 200 kg/m³ 일 수 있으며, 바람직하게는 70 150 kg/m³ 일 수 있다. 다만 본 발명의 실시예가 이에 제한되는 것은 아니다.
- [0089] 이하에서는 제조예 및 실험예를 통해 본 발명에 대하여 설명하나, 본 발명의 효과가 하기 실험예에 의해 제한되지 아니함은 자명하다.

[0090] 제조예 1

[0091] pH 3-5의 물에 포플러(poplar) 톱밥과 쌀겨를 혼합하여 고체 배지를 준비하고, 고체 배지에 느타리버섯 (Pleurotus ostreatus)의 균사체를 접종하였다. 균사체가 접종된 고체 배지를 맥주 홉(hop) 찌꺼기와 함께 살균된 성형틀(정육각면, 20 cm³)에 채웠다. 성형틀에 채워진 균사체의 생장을 위해 직사광선을 최소화하고, 온도 15-32 ℃ 및 상대습도 65-95% 내로 유지하였으며, 이산화탄소의 농도를 2,000-5,000 ppm으로 유지하였다. 약 3일 후 생장된 균사체를 성형틀에서 분리하였다. 성형틀에서 분리된 버섯 균사체에 전술한 폴리우레아 코팅액을 분사방식으로 하기 표 1과 같은 두께로 도포하였다. 습도 65% 및 온도 25 ℃ 조건에서 60분 동안 건조시켜 생분해성 친환경 부표를 제조하였다.

丑 1

[0092]	실시예	코팅두께(mm)
	1-1	0.3
	1-2	0.5
	1-3	1
	1-4	2
	1-5	3.5
	1-6	4
	1-7	4.5
	1-8	5

[0093] <u>비교예 1</u>

[0094] 폴리우레아 코팅액을 도포 및 건조를 진행하지 않은 점을 제외하고 상기 실시예 1-4와 동일하게 제조하였다.

[0095] 제조예 2

pH 3-5의 물에 포플러(poplar) 톱밥과 쌀겨를 혼합하여 고체 배지를 준비하고, 고체 배지에 느타리버섯 (Pleurotus ostreatus)의 균사체를 접종하였다. 균사체가 접종된 고체 배지를 맥주 홉(hop) 찌꺼기와 함께 살균된 성형틀(10 cm x 20 cm)에 채웠다. 성형틀에 채워진 균사체의 생장을 위해 직사광선을 최소화하고, 온도 15-32 ℃ 및 상대습도 65-95% 내로 유지하였으며, 이산화탄소의 농도를 2,000-5,000 ppm으로 유지하였다. 약 3일후 생장된 균사체를 성형틀에서 분리하였다. 습도 65%, 온도 25 ℃ 조건에서 성형틀에서 분리된 버섯 균사체에 전술한 프라이머를 분사방식으로 표 2와 같은 두께로 도포하였다. 프라이머가 도포된 버섯 균사체에 전술한 폴리우레아 코팅액을 분사방식으로 표 2와 같은 두께로 도포하였다. 습도 65%, 온도 25 ℃ 조건에서 60분 동안 건조시켜 생분해성 친환경 부표를 제조하였다.

丑 2

[0097]	

[0096]

실시예	코팅두께(mm)	프라이머 두께(mm)
2-1	2	0.3
2-2	2	0.5
2-3	2	1
2-4	2.	1.5

[0098] <u>실험예 1</u>

[0099] 제조된 실시예 1, 2 및 비교예의 생분해성 친환경 부표의 무게 및 밀도 측정 결과는 하기 표 3과 같다.

3

[0100]

실시예	무게(Kg)	밀도(kg/m³)
1-1	0.64	80
1-2	0.69	86
1-3	0.82	100
1-4	1.09	132
1-5	1.48	176
1-6	1.62	190
1-7	1.75	206
1-8	1.88	218
2-1	1.12	136
2-2	1.15	140
2-3	1.21	145
2-4	1.27	152
비교예 1	0.56	70

[0101] 상기 표에서 살펴볼 수 있는 바와 같이 코팅의 두께 또는 프라이머의 두께가 증가하는 경우 부표의 무게가 증가하였으며 이에 따라 밀도가 함께 증가하였다. 밀도가 증가할 수록 부력에 영향을 미쳐 부표로서 기능이 낮아질 수 있다. 또한 코팅의 두께 및 프라이머의 두께가 증가하는 경우 도포 및 건조의 시간이 증가하여 제조공정의 효율성이 낮아지게 되므로 밀도가 200 kg/m³을 초과하는 경우 제조공정 대비 부표의 기능성이 떨어진다.

[0102] <u>실험예 2</u>

[0103] 각 실시예 및 비교예를 금속판 위에 움직이지 않게 고정하고 고정된 실시예 상단 표면 중앙부에서 수직으로 2 m 높이에서 가지형 추(15 kg)를 낙하시켜서 표면에 균열, 파손, 찢김 여부를 확인하여 내충격성을 평가하였다.

[0104] 각 실시예 및 비교예의 내충격성 평가 결과는 하기 표 4와 같다.

丑 4

ı	υ	1	U	S	١
-					4

실시예	내충격성 결과		
1-1	표면에 균열이 발생		

1-2	이상 없음
1-3	이상 없음
1-4	이상 없음
1-5	이상 없음
1-6	이상 없음
1-7	이상 없음
1-8	이상 없음
2-1	이상 없음
2-2	이상 없음
2-3	이상 없음
2-4	이상 없음
비교예 1	표면에 파손 및 균열이 발생

[0106] 상기 표에서 살펴볼 수 있는 바와 같이 폴리우레아 코팅이 0.3 mm 인 실시예 1-1 및 폴리우레아가 코팅되지 않은 비교예는 내충격성 시험에서 표면에 파손이나 균열이 발생하였으나, 폴리우레아 코팅이 0.5 mm 이상인 실시예에서는 표면에 이상이 발생하지 않았다. 이와 같은 결과를 통해 폴리우레아 코팅 및 프라이머 도포를 통해 부표의 내충격성이 증대됨을 확인할 수 있다.

[0107] 실험예 3

- [0108] 각 실시예를 20개씩 제조하고 평균수심 5 m 이상이 실제 해수가 있는 장소에서 침수와 건조를 반복하는 시험을 진행하였으며 각 10개씩 A그룹은 3개월 B그룹은 5개월 동안 진행하여 시험결과를 확인하였다.
- [0109] 내구성 시험 평가
- [0110] 부표에 파손, 균열, 찢김이 있는지 확인하고 각 상태에 따라 수량을 평가하였다. 파손만 있는 경우 및 파손과 균열찢김이 동시에 있는 경우 파손에만 수량을 표시하고 파손이 있는 경우에는 균열찢김 수량에 포함하지 않았다.
- [0111] <u>박리 여부 평가</u>
- [0112] 폴리우레탄 코팅층이 부표와 박리되었는지 확인하였다. 박리는 찢김, 들뜸, 마모 등과 같이 폴리우레탄 코팅층이 부표와 분리된 경우를 포함하여 수량을 표시하였다.
- [0113] 방수성 평가

[0116]

- [0114] 수집된 부표의 표면을 마른 천으로 건조시킨 후 절단하여 내부에 수분이 흡수되었는지 여부 및 그 정도를 확인하였다.
- [0115] 상기 평가의 결과는 표 5와 같다.

₩ 5

				¥ 5				
실시예	그룹	내구성		박리	방수성		3	
		파손	균열찢김	없음		상당히 흡수	흡수	미흡수
1-1	A	3	6	1	9	7	2	1
	В	7	3	0	10	10	0	0
1-2	A	0	4	6	5	1	3	6
	В	3	3	4	7	5	1	4
1-3	A	0	2	8	3	0	2	8
	В	1	3	6	5	1	3	6
1-4	A	0	1	9	2	0	1	9
	В	0	2	8	5	0	2	8
1-5	A	0	1	9	2	0	1	9
	В	0	2	8	4	0	2	8
1-6	A	0	0	10	2	0	0	10
	В	0	1	9	4	0	1	9
1-7	A	0	1	9	3	0	1	9
	В	0	1	9	3	0	1	9
1-8	A	0	0	10	2	0	0	10

	В	0	1	9	3	0	1	9
2-1	A	0	1	9	1	0	1	9
	В	0	3	7	4	0	3	7
2-2	A	0	1	9	0	0	1	9
	В	0	1	9	2	0	1	9
2-3	A	0	0	10	0	0	0	10
	В	0	0	10	0	0	0	10
2-4	A	0	0	10	0	0	0	10
	В	0	0	10	0	0	0	10

[0117] 내구성 및 방수성 평가에 대한 검토

- [0118] 상기 표에서 살펴볼 수 있는 바와 같이 실시예 1-1(폴리우레아 코팅층 0.3mm)은 3개월 차에 대부분이 파손이나 균열 등의 이상이 생겼으며 방수성이 상당히 떨어졌고 5개월 차에는 모두 파손이나 균열이 발생하여 방수성이 상실되었다.
- [0119] 실시예 1-2 내지 실시예 2-4를 살펴보면 폴리우레아 코팅층이 0.5 mm 이상인 경우에는 파손, 균열 등이 발생의 정도가 낮아져 내구성이 상당히 높아지는 것으로 확인된다.
- [0120] 한편 실시예 1-6(폴리우레아 코팅층 4 mm), 실시예 1-7(폴리우레아 코팅층 4.5 mm) 및 실시예 1-8(폴리우리아 코팅층 5 mm)를 비교해 보면 폴리우레아 코팅층이 4 mm 이상인 경우 파손, 균열 등이 발생한 수량의 차이가 거의 없는바 코팅 두께 따른 내구성에 차이가 없다.
- [0121] 또한, 실시예 1-6(폴리우레아 코팅층 4 mm), 실시예 1-7(폴리우레아 코팅층 4.5 mm) 및 실시예 1-8(폴리우리아 코팅층 5 mm)를 비교해 보면 폴리우레아 코팅층이 4 mm 이상인 경우 미흡수된 부표의 수가 거의 같으며 코팅의 두께에 따라 부표의 수가 감소하는 것도 아니므로 코팅 두께 따른 방수성도 차이가 없다.
- [0122] 나아가 실시예 1-4(폴리우레아 코팅층 2 mm) 및 실시예 2-3(폴리우레아 코팅층 2 mm, 프라이머 1.5 mm)을 비교 하여 살펴보면 프라이머가 도포된 경우 파손, 균열이 발생하지 않았는바 프라이머가 도포되는 경우 내구성이 더욱 증대됨을 확인할 수 있다.

[0123] 박리여부 평가에 대한 검토

- [0124] 실시예 1-4(폴리우레아 코팅층 2 mm) 및 실시예 2-1 내지 실시예 2-4를 비교하여 살펴보면 프라이머가 처리되지 않은 실시예 1-4는 3개월차에 2개의 부표가 박리가 발생하고 5개월 차에 5개의 부표에 박리가 발생하여 폴리우 레아 코팅층과 부표의 접착력이 높지 않음이 확인된다.
- [0125] 실시예 2-1(폴리우레아 코팅층 2 mm, 프라이머 0.3 mm)은 3개월 차에 1개의 부표가 박리되고 5개월 차에 4개의 부표가 박리되는 한편, 실시예 2-2(폴리우레아 코팅층 2 mm, 프라이머 0.5 mm)는 3개월 차에 박리가 일어난 부표는 없었으며 5개월 차에는 2개의 부표에 박리가 확인되었다.
- [0126] 실시예 2-2(폴리우레아 코팅층 2 mm, 프라이머 1 mm) 및 실시예 2-3(폴리우레아 코팅층 2 mm, 프라이머 1.5 mm)는 3개월 차 및 5개월 차 모두에서 박리가 확인되지 않았다.
- [0127] 따라서 프라이머가 도포된 경우 도포되지 않은 경우보다 폴리우레아 코팅층과 부표 간의 접착력이 증대됨을 확인할 수 있으며 특히, 프라이머가 0.5 mm 두께 이상으로 도포되었을 때 3개월 차에는 박리가 일어나지 않아 접착력이 현저하게 증대됨을 확인할 수 있다.
- [0128] 한편 프라이머 두께가 1 mm 이상인 경우에는 그 두께에 따른 접착력에 차이가 발생하지 않는다.

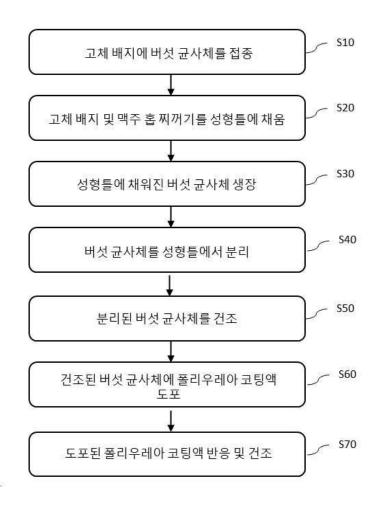
[0129] 제조예 3

[01

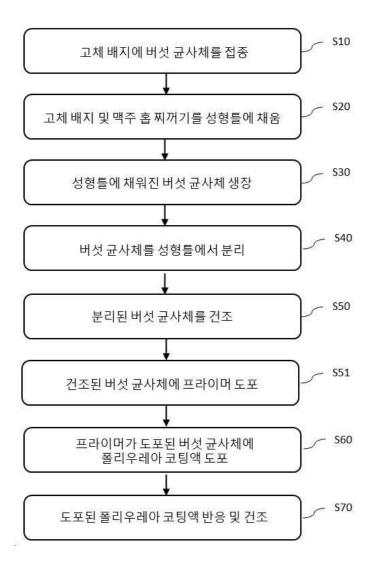
[0130] 이산화탄소의 농도에 따른 버섯 균사체의 생장속도를 평가하기 위해, 하기 표 6과 같이 이산화탄소의 농도를 달리한 점을 제외하고 상기 실시예 1-4와 동일하게 친환경 부표를 제조하였다.

6

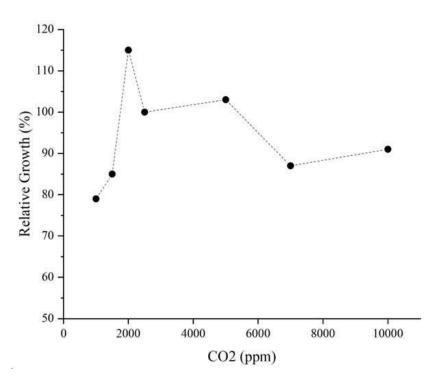
131]	실시예	농도(ppm)		
	3-1	1,000		
	3-2	1,500		


3-3	2,000
3-4	2,500
3-5	5,000
3-6	7,000
3-7	10,000

[0132] 실험예 4


- [0133] 성형틀에서의 생장 완료 후 실시예 2-4(CO₂ 2,500 ppm)의 생장 정도를 기준(100%)으로 설정하고 다른 실시예들 의 상대적인 생장 정도를 평가하였다. 생장 정도는 균사체의 양, 표면 특성, 경도 등을 종합적으로 고려하여 결정하였다.
- [0134] 평가 결과는 도 3과 같았으며, 도 3에 나타난 바와 같이 이산화탄소의 농도가 2,000-5,000 ppm 범위 내일때만 생장 정도가 실시예 2-4의 100% 이상이었기 때문에, 2,000-5,000 ppm이 버섯 균사체를 생장시키기 위한 최적의 농도임을 알 수 있다.
- [0135] 이상에서 본 발명의 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 본 발명의 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

도면


도면1

도면2

도면4

