(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(11) 공개번호 특2001-0024790 (51) Int. CL. (43) 공개일자 2001년03월26일 CO7C 217/20 (21) 출원번호 10-2000-7006880 (22) 출원일자 2000년06월21일 번역문제출일자 2000년06월21일 (86) 국제출원번호 PCT/SE1998/02315 (87) 국제공개번호 WO 1999/32430 (86) 국제출원출원일자 1998년 12월 15일 (87) 국제공개일자 1999년07월01일 AP ARIPO특허 : 케냐 레소토 말라위 수단 스와질랜드 우간다 가나 (81) 지정국 감비아 짐바브웨 EA 유라시아특허 : 아르메니아 아제르바이잔 벨라루스 키르기즈 카자흐 스탄 몰도바 러시아 타지키스탄 투르크메니스탄 EP 유럽특허 : 오스트리아 벨기에 스위스 독일 덴마크 스페인 프랑스 영국 그리스 아일랜드 이탈리아 룩셈부르크 모나코 네덜란드 포르투 칼 스웨덴 핀랜드 사이프러스 OA OAPI특허 : 부르키나파소 베넹 중앙아프리카 콩고 코트디브와르 카 메룬 가봉 기네 말리 모리타니 니제르 세네갈 차드 토고 기네비쏘 국내특허 : 알바니아 아르메니아 오스트리아 오스트레일리아 아제르바 이잔 보스니아-헤르체고비나 바베이도스 불가리아 브라질 벨라루스 캐나다 스위스 중국 쿠바 체코 독일 덴마크 에스토니아 스페인 핀 랜드 영국 그루지야 헝가리 이스라엘 아이슬란드 일본 케냐 키르기 즈 북한 대한민국 카자흐스탄 세인트루시아 스리랑카 라이베리아 레 소토 리투아니아 룩셈부르크 라트비아 몰도바 마다가스카르 마케도니 아 몽고 말라위 멕시코 노르웨이 뉴질랜드 슬로베니아 슬로바키아 타지키스탄 투르크메니스탄 터어키 트리니다드토바고 우크라이나 우간 다 미국 우즈베키스탄 베트남 폴란드 포르투칼 루마니아 러시아 수 스웨덴 싱가포르 가나 감비아 짐바브웨 인도네시아 유고슬라비아 시에라리온 크로아티아 그레나다 (30) 우선권주장 9704834-2 1997년12월22일 스웨덴(SE) (71) 출원인 아스트라제네카 악티에볼라그 스웨덴왕국 소더탈제 에스-151 85 바스트라 말라레함넨 9 (72) 발명자 라르손.울프 스웨덴소더탈제에스-15185아스트라프로덕션케미칼스아베 주성민, 김영 (74) 대리인

(54) 이소프로필-메틸-[2-(3-N-프로폭시페녹시)에틸]아민의제조 방법

요약

식사청구 : 없음

본 발명은 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 신규한 합성 방법에 관한 것이다. 더욱이, 본 발명은 또한 상기 방법에서의 신규한 중간체 및 임의의 정제 단계에 관한 것이다. 또한, 본 발명은 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민을 함유한 제약 제제의 제조 및 정제된 이소 프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 약제상 용도에 관한 것이다.

색인어

이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민, 고상 불용성 염기, 상이동 촉매, 결정화, 일인산염, 국소 마취제

명세서

기술분야

본 발명은 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 신규한 합성 방법에 관한 것이다. 더욱이, 본 발명은 또한 상기 방법에서의 신규한 중간체 및 임의의 정제 단계에 관한 것이다. 또한, 본 발명은 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민을 함유한 제약 제제의 제조 및 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 약제상 용도에 관한 것이다.

배경기술

이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민은 마취 특성을 지닌 화합물이다. 이것은 특히, 비손상 피부상의 국소 통증을 비롯한 통증 치료용 국소 마취제로서 유용하다.

WO 제9715548호에는 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 제조 방법이 개시되어 있다. 상기 방법은 3-n-프로폭시페놀과 1,2-디브로모에탄의 반응으로 출발하여 1-(2-브로모에톡시)-3-n-프로폭 시벤젠을 생성하고, 또한 1-(2-브로모에톡시)-3-n-프로폭시벤젠을 오토클레이브에서 N-메틸이소프로필아 민과 반응시키는 2개의 반응 단계를 포함한다. 이 후에, 생성물인 이소프로필-메틸-[2-(3-n-프로폭시페 녹시)에틸]아민은 진공 증류에 의해 추가 정제된다.

<발명의 개요>

본 발명의 목적은 실규모 생산에 적합한 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 신규한 제조 방법을 제공하는 것이다.

하기 반응식 1에는 3-프로폭시페놀로부터 출발하는 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 제조시의 주 반응 단계가 설명되어 있다. 출발 물질이면서 반응물로도 사용되는 3-프로폭시페놀은 당업계에 공지된 방법을 통해 쉽게 입수할 수 있다.

반응식 1

단계 1

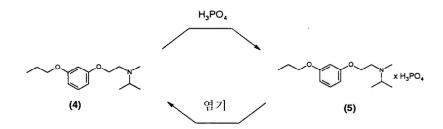
단계 2

X = 할로겐 또는 술포네이트 에스테르

단계 3

X = 할로겐 또는 술포네이트 에스테르

단계 4

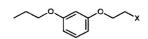

본 발명의 개선된 방법의 잇점은 하기 문단에 기술된다.

본 발명의 또다른 목적은 환경 친화적인 시약 및 용매를 사용하는 방법을 제공하는 것이다. 제약 산업이 환경 친화적 방법을 개발하여 사용해야 한다는 전반적인 관심이 제약 산업 안팎의 환경 단체로부터 존재한다. 본 발명의 방법은 선행기술에 따른 방법에 사용되는 1,2-디브로모에탄과 같은 돌연변이유발성 알킬화제를 전혀 사용하지 않는다. 따라서, 본 발명의 하나의 목적은 1,2-디브로모에탄의 사용을 피하는, 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 제조 방법을 제공하는 것이다. 1,2-디브로모에탄은 공지된 돌연변이유발성 화합물이므로 가능한 한 그의 사용을 제한해야 한다. 이는 실규모 생

산에 있어서 특히 그러하다.

본 발명의 또다른 목적은 신규한 조 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 및 그의 임의의 정제법을 제공하는 것이다. 본 발명자는 놀랍게도 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 의 일인산염이 결정질 화합물이라는 것을 밝혀내었다. 임의의 정제 단계는 하기 반응식 2에 나타낸다.

반응식 2


단계 1에서, 3-프로폭시페놀은 고-액 상이동 촉매작용 조건을 이용하여 에틸렌 카르보네이트와 반응시킨다. 이 반응은 60 내지 120 ℃에서 연장된 시간 동안 수행하는 것이 바람직하다. 이 반응은 비양성자성 유기 용매 또는 크실렌과 같은 유기 용매에서 수행하는 것이 바람직하다. 이러한 비양성자성 유기용매의 예로는 DMF 및 1-메틸-2-피롤리디논을 들 수 있으나 이에 제한되는 것은 아니다. 1-메틸-2-피롤리디논이 바람직한 비양성자성 유기용매이다. 임의로는, 이 반응은 추가의 유기용매 없이도 수행된다. 사용되는 에틸렌 카르보네이트의 양은 1 내지 4 몰당량, 바람직하게는 2 내지 3 몰당량이다. 고-액 상이동 촉매작용 조건은 고상의 불용성 염기 및 상이동 촉매를 사용하여 조성된다. 염기 및 상이동촉매의 양은 중요하지 않으며, 따라서 당업계에 공지된 방법에 따라 변할 수 있다. 염기 및 상이동촉매의 양은 중요하지 않으며, 따라서 당업계에 공지된 방법에 따라 변할 수 있다. 염기 및 상이동촉매는 고-액 상이동 촉매작용 조건을 조성하기에 적합한 당업계에 공지된 임의의 염기 및 상이동촉매일수 있다. 적합한 염기의 예로는 탄산나트륨, 탄산수소나트륨, 탄산칼륨 및 탄산수소칼륨을 들 수 있으나 이에 제한되는 것은 아니다. 탄산칼륨이 바람직한 염기이다. 적합한 상이동 촉매의 예로는 요오드화테트라부틸암모늄, 황산수소테트라부틸암모늄 및 브롬화테트라부틸암모늄을 들 수 있으나 이에 제한되는 것은 아니다. 브롬화테트라부틸암모늄이 바람직한 상이동 촉매이다.

단계 1에 사용되는 상이동 촉매는 단계 1에 사용되는 조건하에서 상이동 촉매로서 기능하는 고유 특성을 지닌 화합물로 대체될 수 있다. 이러한 화합물의 예에는 폴리에틸렌글리콜 (PEG), 예를 들어 PEG 6000 이 포함되나 이에 제한되는 것은 아니다.

반응 완료 후, 반응 혼합물은 냉각시키고, 물로 희석하여 크실렌 또는 메틸 tert-부틸 에테르와 같은 적합한 유기 용매로 추출시킨다. 유기상은 농축시키고, 조 2-(3-프로폭시페녹시)에탄올은 증류를 통해 정제한다.

단계 2에서, 상기 단계 1에서 형성된 2-(3-프로폭시페녹시)에탄올은 적합한 시약과 추가로 반응하여 하기 화학식 2의 화합물을 생성한다.

<화학식 2>

식 중, X는 브롬, 염소, 요오드 또는 술포네이트 에스테르기이다. 술포네이트 에스테르의 예에는 알칸-및 아릴술포네이트 에스테르, 예를 들어 메탄술포네이트, 에탄술포네이트, p-톨루엔술포네이트, p-브로모페닐술포네이트가 포함되나 이에 제한되는 것은 아니다. 화학식 2의 바람직한 화합물은 술포네이트 에스테르이다. 화학식 2의 바람직한 화합물을 생성할 수 있는 시약의 예에는 메탄술포닐 클로라이드, 에탄술포닐 클로라이드, p-톨루엔술포닐 클로라이드 및 p-브로모술포닐 클로라이드가 포함되나 이에 제한되는 것은 아니다.

단계 3에서, 메틸 tert-부틸 에테르 또는 톨루엔과 같은 유기 용매중의 화학식 2의 화합물은 물의 존재하에 이소프로필아민과 추가로 반응된다. 이 반응은 승온, 바람직하게는 60 내지 110 ℃에서 연장된 시간 동안 승압, 바람직하게는 1 내지 10 기압하에 수행된다. 이소프로필아민은 과량, 예컨대 2 내지 6당량, 바람직하게는 3 내지 4 당량으로 가해야 한다. 임의로는, 추가의 비친핵성 염기, 예컨대 탄산칼륨 또는 탄산나트륨을 반응 혼합물에 첨가할 수 있다. 반응 혼합물에 존재하는 물의 양은 중요하지 않고, 임의로 생략할 수 있다. 이 후에, 반응 혼합물은 냉각시키고, 수성 산의 pH가 3 내지 5, 바람직하게는 3 내지 3.5의 일정한 값에 도달할 때까지 격렬히 교반하면서 수성 산을 첨가한다. 수성상은 분리하여 메틸 tert-부틸 에테르 또는 톨루엔으로 세척하고, 이 후에 후속 단계에서 추가의 정제 없이 사용한다.

단계 4에서, 상기 단계 3에서 제조된 이소프로필-[2-(3-프로폭시페녹시)에틸]아민의 산성 수용액은 목탄 상의 팔라듐의 존재하에 포름알데히드와 반응시킨다. 반응 혼합물은 대기압 이상, 예컨대 1 내지 6 bar에서 수 시간 동안 수소화시킨다. 포름알데히드의 양은 중요하지 않으나, 중량을 기준으로 1 내지 10 당량일 수 있다. 사용된 목탄상의 팔라듐의 양은 0.01 내지 0.5 몰당량, 바람직하게는 0.05 내지 0.2 몰당량이다. 이 후에, 반응 혼합물은 수산화나트륨과 같은 수성 염기를 사용하여 pH 약 12로 처리하고,

메틸 tert-부틸 에테르로 추출한다. 유기상은 분리 및 증류시켜 순수한 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민을 얻는다.

놀랍게도, 본 발명자는 단계 4중의 반응 혼합물을 상응하는 일인산염으로 전환시킴으로써 단계 4중의 반응 혼합물로부터 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민을 결정화시킬 수 있게 되었다. 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 일인산염은 결정질이고 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 안정한 염이므로 이로운 특성을 갖는다. 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 제조 공정에 결정질 중간체를 도입시키는 것은 이롭다. 이로 인해, 모든 중간체가시럽제인 일련의 반응에서 간단하고 편리한 임의의 추가 정제 단계가 도입된다. 이 때문에, 선행기술에따른 공정에 사용된 시간 및 에너지 소비성 증류를 피하게 된다. 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 일인산염의 결정화는 간단한 알칼리화 단계에 의해 상응하는 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민으로 추가로 전환될 수 있는 고순도의 중간체를 생성시킨다.

임의의 정제 단계에서는, 먼저 에틸 아세테이트중의 상기 단계 4에서 제조된 조 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 함량을 분석하여 조 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 1 g 당 에틸 아세테이트 6 내지 10 째로 조정한다. 에틸 아세테이트중의 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 1 g 당 에틸 아세테이트 7 내지 9 째가 바람직하다. 분석된 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 1 g 당 에틸 아세테이트 7 내지 9 째가 바람직하다. 분석된 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 용액에 메탄올 및 메탄올중의 인산 용액을 첨가한다. 인산의 양은 약 0.9 내지 1.0 몰당량, 바람직하게는 0.95 몰당량이어야 한다. 분석된 용액에 첨가된 메탄올의 총량은 사용된 인산의 양으로 조정되어야 한다. 메탄올과 에틸 아세테이트의 혼합물중의 생성된 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 용액에서 인산의 농도는 약 5 내지 15 부피%, 바람직하게는 9 내지 11 부피%이어야 한다. 침전된 염은 예를 들어, 여과 또는 원심분리에 의해 수집한 후에 에틸 아세테이트로 세척한다.

이 후에, 상기 제조된 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 일인산염을 물과 혼합하고, 수성 수산화나트륨을 pH 약 11.5로 첨가한다. 메틸 tert-부틸 에테르 또는 다른 적합한 용매를 첨가하고, 2개의 상을 분리한다. 유기상을 수세 및 농축시켜 순수한 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민을 생성한다.

상기 단계 4에서 제조된 조 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 최종 증류는 임의의 정제 단계, 즉 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 일인산염의 제조에 의해 대체될 수 있다. 이러한 상황하에, 조 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민을 함유하는 알칼리성 수성상은 메틸 tert-부틸 에테르 대신에 에틸 아세테이트로 추출하는 것이 바람직할 것이다. 이 후에, 제조된 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 일인산염은 간단한 알칼리화 단계에 의해 상응하는 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민으로 전환시킬 수 있다. 상기 절차 양식은 임의의 기술자에 의해 용이하게 수행될 수 있다.

본 발명은 하기 비제한적인 실시예에서 보다 상세히 설명된다. 괄호안의 굵은 로마 숫자는 반응식 1 및 2를 참조한다.

실시예

<실시예 1>

<2-(3-프로폭시페녹시)에탄올 (1)>

3-프로폭시페놀 17.9 ㎏ (117.4 mol)에 에틸렌 카르보네이트 20.7 ㎏ (234.8 mol), K₂CO₃ 17.9 ㎏ (126.7 mol), 브롬화테트라부틸암모늄 3.8 ㎏ (11.5 mol) 및 1-메틸-2-피롤리디논 56.5 L를 첨가하였다. 혼합물을 약 10 시간 동안 약 90 ℃로 가열한 후, 45 ℃로 냉각시키고, 여기에 물 132 L에 이어서 메틸 tert-부틸 에테르 82 L를 첨가하였다. 상을 분리하고, 유기상을 0.5 M HCl (수성)에 이어서 0.5 M NaHCO₃ (수성)으로 세척하였다. 유기상을 감압하에 농축시키고, 조 (1)을 증류 (150 ℃/0.95 mbar)를 통해 정제하여 크로마토그래피로 측정한 순도가 97%가 넘는 오일로서 (1) 17.9 ㎏을 생성하였다.

MS (EI): 196 (34), 153 (13), 152 (7), 135 (4), 111 (67), 110 (100). 1H NMR (200 MHz): δ 7.15 (t, 1 H), 6.5 (m, 3 H), 4.0 (m, 2 H), 3.9 (m, 4 H), 2.5 (s, 1 H), 1.79 (m, 2 H), 1.0 (t, 3 H). ^{13}C NMR (50 MHz): δ 160.4, 159.8, 129.9, 107.2, 106.7, 101.6, 69.5, 69.2, 61.4, 22.6, 10.5.

<메탄술폰산 3-프로폭시페녹시에틸 에스테르 (2)>

메틸 tert-부틸 에테르 83 L 및 트리에틸아민 15.2 L (108.1 mol)에 용해된 (1) 17.9 ㎏ (91.0 mol)을 MsCl 7.7 L (99.12 mol)과 반응시켰다. 생성된 슬러리를 주변 온도에서 약 2 시간 동안 정치시키고, 물을 첨가하고, 상을 분리하고, 유기상을 후속 단계에서 사용하였다.

MS (EI): 274 (55), 232 (7), 195 (1), 153 (6), 135 (16), 123 (100), 110 (66), 79 (64).

<이소프로필-[2-(3-프로폭시페녹시)에틸]아민 (3)>

(2)의 용액에, K₂CO₃ 14.0 ㎏ (98.1 mol), 이소프로필아민 36.2 L (455.9 mol) 및 물 31 L를 첨가하였다. 밀봉된 반응기에서 혼합물을 16 시간 동안 90 ℃로 가열하여 압력이 약 2 bar가 되었다. 반응 혼합물을 주변 온도로 냉각하고, 수성상을 따라내고, 유기상을 수세시켰다. 유기상에 0.5 M H₂SO₄ (수성)을 pH 약 3.5로 첨가하고, 상을 분리하였다. 수성상을 메틸 tert-부틸 에테르로 세척하고, 후속 단계에 사용하였

다.

MS (EI): 237 (7), 222 (34), 194 (1), 135 (7), 85 (80), 72 (100). 1 H NMR (200 MHz): δ 7.1 (m, 1 H), 6.5 (m, 3 H), 4.1 (t, 2 H), 3.9 (t, 2 H), 3.0 (t, 2 H), 2.9 (m, 2 H), 1.9 (m, 2 H), 1.6 (m, 1 H), 1.0 (d + t, 9 H). 13 C NMR (50 MHz): δ 160.4, 160.1, 129.8, 107.0, 106.6, 101.5, 69.5, 67.6, 48.5, 46.5, 23.0, 22.6, 10.5.

<이소프로필-메틸-[2-(3-프로폭시페녹시)에틸]아민 (4)>

(3)의 산성 수용액에 습윤, 목탄상의 10% 팔라듐 5.2 ㎏ (41.1% Pd/C) 및 37% 포름알데히드 20.3 L (270.2 mol)을 첨가하였다. 혼합물을 3 bar에서 약 4 시간 동안 수소화시켰다. 반응 혼합물을 진한 NaOH를 사용하여 pH 약 12로 처리하였다. 고상물을 여과제거하고, 생성된 2상 계를 EtOAc로 추출하였다. 상을 분리하고, 유기상을 수세시킨 후에 농축시켰다. 잔류물을 128 내지 130 ℃/0.3 mbar에서 증류시켜 순수한 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 18.1 ㎏ (72.1 mol)을 생성하였다.

<조 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 임의의 정제>

에틸 아세테이트중의 조 (4) 19.0 ㎏ (75.7 mol)의 용액 ((4) 1 g 당 에틸 아세테이트 8 ㎡)에, Me아H 9.6 L에 이어서 MeOH 19.2 L에 용해된 H₈PO₄ 4.85 L (72.5 mol)을 주변 온도에서 3 시간에 걸쳐 첨가하였다. 이어서, 생성된 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 일인산염의 슬러리를 여과에의해 단리시키고, 고상 물질을 EtOAc로 세척하였다. 크로마토그래피로 측정한 순도가 99%가 넘는 습윤생성물 41.8 ㎏ (67.6 mol, 89% 수율)을 후속 단계에서 사용하였다. 융점: 131 내지 134 ℃. H₈PO₄의 함량은 27.8% (w/w)이었으며, 이는 (5)와 H₈PO₄ (28.0% w/w 이론치)의 1:1 몰비에 상응하였다. 습윤 생성물 41.8 ㎏ (67.6 mol)을 정수 66 L와 혼합하고, 진한 NaOH를 pH 약 11.5로 첨가하고, 생성된 2상 혼합물을 메틸 tert-부틸 에테르로 추출하였다. 상을 분리하고, 유기상을 정수로 세척한 후, 감압하에 농축시켰다. 잔류 용매를 최종적으로 박막 증발기를 사용하여 탈거시켜 크로마토그래피로 측정한 순도가 99%가 넘는 오일로서 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 14.28 ㎏ (56.67 mol)을 제공하였다.

MS (EI): 251 (10), 236 (9), 86 (100). 1 H NMR (400 MHz): δ 7.1 (m, 1 H), 6.5 (m, 3H), 4.0 (t, 2 H), 3.9 (t, 2 H), 2.9 (m, 1 H), 2.8 (t, 2 H), 2.3 (s, 3 H), 1.8 (m, 2 H), 1.0 (d + t, 9 H).

¹³C NMR (50 MHz): δ 160.3, 160.1, 129.7, 106.9, 106.5, 101.4, 69.4, 66.8, 54.0, 51.7, 38.2, 22.5, 17.9, 10.5.

실측치 %: C, 71.5; H, 10.3; N, 5.7; O, 12.5. 이론치 %: C, 71.67; H, 10.02; N, 5.57; O, 12.73.

(57) 청구의 범위

청구항 1

하기 반응식 1의 반응 단계를 포함하는 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민의 제조 방법.

<반응식 1>

단계 1

단계 2

X = 할로겐 또는 술포네이트 에스테르

단계 3

X = 할로겐 또는 술포네이트 에스테르

단계 4

청구항 2

제1항에 있어서, 고상 불용성 염기 및 상이동 촉매를 단계 1에 사용하는 것을 특징으로 하는 방법.

청구항 3

제2항에 있어서, 염기가 탄산나트륨, 탄산칼륨, 탄산수소나트륨 또는 탄산수소칼륨인 것을 특징으로 하는 방법.

청구항 4

제2항에 있어서, 상이동 촉매가 PEG 6000, 브롬화테트라부틸암모늄, 황산수소테트라부틸암모늄 또는 요오드화테트라부틸암모늄인 것을 특징으로 하는 방법.

청구항 5

제1항에 있어서, 단계 1을 비양성자성 유기 용매에서 수행하는 것을 특징으로 하는 방법.

청구항 6

제5항에 있어서, 비양성자성 유기 용매가 1-메틸-2-피롤리디논인 것을 특징으로 하는 방법.

청구항 7

제1항에 있어서, X가 브롬기, 염소기, 요오드기, 메탄술포네이트기, p-톨루엔술포네이트기 또는 p-브로모페닐술포네이트기인 것을 특징으로 하는 방법.

청구항 8

제1항에 있어서, 단계 3을 대기압이 넘는 압력에서 수행하는 것을 특징으로 하는 방법.

청구항 9

제1항에 있어서, 단계 3을 1 내지 10 bar의 압력에서 수행하는 것을 특징으로 하는 방법.

청구항 10

제1항에 있어서, 단계 3을 승온에서 수행하는 것을 특징으로 하는 방법.

청구항 11

제1항에 있어서, 단계 3을 60 내지 110 ℃에서 수행하는 것을 특징으로 하는 방법.

청구항 12

제1항에 있어서, 단계 3을 반응 혼합물에 존재하는 추가의 염기를 사용하여 수행하는 것을 특징으로 하는 방법.

청구항 13

제1항에 있어서, 단계 3을 용매로서 존재하는 물을 사용하여 수행하는 것을 특징으로 하는 방법.

청구항 14

제1항에 있어서, 단계 4에서의 금속 촉매가 팔라듐인 것을 특징으로 하는 방법.

청구항 15

제10항에 있어서, 팔라듐이 목탄상에 지지되는 것을 특징으로 하는 방법.

청구항 16

제1항에 있어서, 단계 4에서의 포름알데히드가 포름알데히드의 수용액으로서 첨가되는 것을 특징으로 하는 방법.

청구항 17

이소프로필-[2-(3-프로폭시페녹시)에틸]아민.

청구항 18

이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민이 제1 내지 16 항 중 어느 한 항에 따라 제조되는 것을 특징으로 하는, 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민 및 제약상 허용가능한 담체 또 는 희석제를 포함하는 제약 제제.

청구항 19

제1 내지 16항 중 어느 한 항 기재의 방법에 의해 제조된 이소프로필-메틸-[2-(3-n-프로폭시페녹시)에틸]아민.