(19)日本国特許庁(JP)

(12)特許公報(B2)

(11)特許番号 **特許第7385894号**

(P7385894)

(45)発行日	令和5年11月24日(2023.11	.24)		(24)登録日	令和5年11月	15日(2023.11.15)
(51)国際特許	分類	FΙ				
G 0 2 B	5/00 (2006.01)	G 0 2 B	5/00	А		
G 0 2 C	7/10 (2006.01)	G 0 2 C	7/10			
G 0 2 B	5/22 (2006.01)	G 0 2 B	5/22			
C 2 3 C	14/08 (2006.01)	C 2 3 C	14/08	J		
C 2 3 C	14/20 (2006.01)	C 2 3 C	14/08	F		
			請認	求項の数 9	(全17頁)	最終頁に続く
(21)出願番号	特願2019-108919(P2	019-108919)	(73)特許権者	0002197	38	
(22)出願日	令和1年6月11日(2019	9.6.11)		東海光学林	朱式会社	
(65)公開番号	特開2020-201412(P2	020-201412		愛知県岡山	倚市恵田町字下日	田5番地26
	A)		(74)代理人	1000787	21	
(43)公開日	令和2年12月17日(202	20.12.17)		弁理士 7	5田 喜樹	
審査請求日	令和4年4月11日(2022	2.4.11)	(74)代理人	1001244	20	
				弁理士 🛽	園田 清隆	
			(72)発明者	鈴木 亮佑	ī	
				愛知県岡山	倚市恵田町字下日	田5番地26
				東海光学権	朱式会社内	
			審査官	堀部 修平	Ē	
						最終頁に続く

(54)【発明の名称】 プラスチック基材NDフィルタ及び眼鏡用プラスチック基材NDフィルタ

(57)【特許請求の範囲】

【請求項1】

プラスチックからなる基材と、

前記基材の少なくとも一面に配置された、複数の層を有する光吸収膜と、

を備えており、

前記光吸収膜は、NiO_x(×は0以上1以下)からなるNiO_x層を複数含んでいる と共に、

<u>前記基材に最も近い</u>前記NiO_x層<u>に対し、</u>前記基材と逆側に<u>おいて隣接するように</u>配置されており、シリカ化合物層に逆応力層が挟まれているサンドイッチ構造部を含んでおり、

前記NiO_x層は、<u>前記サンドイッチ構造部における前記基材側及び前記基材と逆側に</u> 配置されていて、</u>何れも物理膜厚が6ナノメートル以下である

ことを特徴とするプラスチック基材NDフィルタ。

【請求項2】

前記基材は、チオウレタン樹脂製である

ことを特徴とする<u>請求項1</u>に記載のプラスチック基材NDフィルタ。

【請求項3】

前記逆応力層は、ZrO2からなるZrO2層、TiO2からなるTiO2層、Nb2O 5からなるNb2O5層、及びHfO2からなるHfO2層の内の少なくとも何れかである ことを特徴とする請求項1<u>又は請求項2</u>に記載のプラスチック基材NDフィルタ。

【請求項4】 前記シリカ化合物層は、SiO2とAl2O3の混合体からなるSiO2+Al2O3層 である ことを特徴とする請求項1ないし請求項3の何れかに記載のプラスチック基材NDフィル タ。 【請求項5】 前記シリカ化合物層は、イオンアシストのない蒸着によって形成される程度の密度を有 する ことを特徴とする請求項1ないし請求項4の何れかに記載のプラスチック基材NDフィル タ。 【請求項6】 前記光吸収膜は、低屈折率層と高屈折率層が交互に配置されたものである ことを特徴とする請求項1ないし請求項5の何れかに記載のプラスチック基材NDフィル タ。 【請求項7】 前記基材には、表面と裏面が存在しており、 前記光吸収膜は、前記裏面に配置されている ことを特徴とする請求項1ないし請求項6の何れかに記載のプラスチック基材NDフィル タ。 【請求項8】 前記表面には、反射防止膜が配置されている ことを特徴とする請求項7に記載のプラスチック基材NDフィルタ。 【請求項9】 請求項1ないし請求項8の何れかに記載されたプラスチック基材NDフィルタを含んで いる ことを特徴とする眼鏡用プラスチック基材NDフィルタ。 【発明の詳細な説明】 【技術分野】 [0001]本発明は、基材(基板)がプラスチック製であるND(Neutral Densit y)フィルタ、及び当該NDフィルタを用いた眼鏡用NDフィルタに関する。 【背景技術】 [0002]眼鏡用のNDフィルタとして、特開2017-151430号公報(特許文献1)に記 載されたものが知られている。 このNDフィルタの光吸収膜は、複数の層を有しており、エピスルフィド(屈折率1. 76程度)等の樹脂製の基材から1層目(初期層)がSiO2層又はAl2O3層とされ、 又NiOx層(×は0以上1以下)を1つ以上含んでいる。 【先行技術文献】 【特許文献】 [0003]【文献】特開2017-151430号公報 【発明の概要】 【発明が解決しようとする課題】 [0004]上記のNDフィルタは、チオウレタン製(屈折率1.60程度)の基板上にA1203 層を含む光吸収膜を成膜して形成されると、玉型加工後の恒温恒湿試験(促進試験)にお いて、加工クラック及び透過率異常の少なくとも一方が発生する可能性がある。

即ち、エピスルフィドが吸湿し難く、又外力に対して伸び難く破断するのに対し、チオ ウレタンは吸湿し易く、外力に対してある程度追従変形可能となっている。又、Al2O3 10

20

30

40

は、SiO2及びZrO2に比べ、外力に対して伸び難くなっている。そして、玉型加工 時、チオウレタン基材が若干変形し、その際に伸び難いAl2O3層において目視できな い微細なクラックが発生する可能性がある。この微細なクラックに対し、恒温恒湿試験に おいて水分が集中し、光吸収膜において目視可能なクラックが発生したり、水分がNiO ×層に作用して透過率異常が発生したりする可能性がある。

又、上記のNDフィルタは、チオウレタン製の基板上にAl2O3層を含む光吸収膜を 成膜して形成されると、恒温恒湿試験において、成膜面に歪みが発生して外観異常が発生 する可能性がある。

即ち、恒温恒湿試験においてチオウレタン製基材が吸湿により膨潤し、Al2O3層が 基材に追従できずに外観異常が発生する可能性がある。

そこで、本発明の主な目的は、チオウレタン等のプラスチック製の基材を有しており、 耐久性に優れているNDフィルタ,眼鏡用NDフィルタを提供することを目的とするもの である。

【課題を解決するための手段】

【0005】

上記目的を達成するために、請求項1に記載の発明は、NDフィルタであって、プラス チックからなる基材と、前記基材の少なくとも一面に配置された、複数の層を有する光吸 収膜と、を備えており、前記光吸収膜は、NiO_X(×は0以上1以下)からなるNiO_X 層を1つ以上含んでいると共に、<u>前記基材に最も近い</u>前記NiO_X層<u>に対し、</u>前記基材と 逆側に<u>おいて隣接するように</u>配置されており、シリカ化合物層に逆応力層が挟まれている サンドイッチ構造部を含んでおり、前記NiO_X層は、<u>前記サンドイッチ構造部における</u> <u>前記基材側及び前記基材と逆側に配置されていて、</u>何れも物理膜厚が6ナノメートル以下 であることを特徴とするものである。

20

30

40

10

<u>請求項2</u>に記載の発明は、上記発明において、前記基材は、チオウレタン樹脂製である ことを特徴とするものである。

<u>請求項3</u>に記載の発明は、上記発明において、前記逆応力層は、ZrO2からなるZrO2層、TiO2からなるTiO2層、Nb2O5からなるNb2O5層、及びHfO2からなるHfO2層の内の少なくとも何れかであることを特徴とするものである。

<u>請求項4</u>に記載の発明は、上記発明において、前記シリカ化合物層は、SiO₂とAl₂ O₃の混合体からなるSiO₂ + Al₂O₃層であることを特徴とするものである。

<u>請求項5</u>に記載の発明は、上記発明において、前記シリカ化合物層は、イオンアシストのない蒸着によって形成される程度の密度を有することを特徴とするものである。

<u>請求項6</u>に記載の発明は、上記発明において、前記光吸収膜は、低屈折率層と高屈折率 層が交互に配置されたものであることを特徴とするものである。

<u>請求項7</u>に記載の発明は、上記発明において、前記基材には、表面と裏面が存在しており、前記光吸収膜は、前記裏面に配置されていることを特徴とするものである。

<u>請求項8</u>に記載の発明は、上記発明において、前記表面には、反射防止膜が配置されていることを特徴とするものである。

<u>請求項9</u>に記載の発明は、眼鏡用プラスチック基材NDフィルタであって、上記発明の プラスチック基材NDフィルタを含んでいることを特徴とするものである。

【発明の効果】

【 0 0 0 6 】

本発明の主な効果は、チオウレタン等のプラスチック製の基材を有しており、耐久性に 優れているNDフィルタ,眼鏡用NDフィルタを提供することが可能となることである。 【図面の簡単な説明】

【0007】

【図1】本発明に係る実施例1~5及び本発明に属さない比較例1~2の、可視域及び隣 接域における分光透過率分布が示されるグラフである。

【図2】本発明に係る実施例5~<u>7</u>の可視域における分光透過率分布が示されるグラフで ある。

【図3】実施例1~5,比較例1~2の凹面(ND成膜面)側に係る、可視域及び隣接域における分光反射率分布(片面)が示されるである。

【図4】実施例5~7の凹面(ND成膜面)側に係る、可視域及び隣接域における分光反 射率分布(片面)が示されるグラフである。

【図 5】実施例 1 ~ 7 の凸面側に係る、可視域における分光反射率分布(片面,共通)が 示されるグラフである。

【図6】比較例2における耐候密着性試験後に剥がれ(剥離)を生じた箇所、及び光吸収 膜が基材側から3層目まで残存し4層目以降を失った場合のシミュレーションに係る、可 視域及び隣接域における分光反射率分布(片面)が示されるグラフである。

【発明を実施するための形態】

【0008】

以下、本発明に係る実施の形態の例が、適宜図面を用いて説明される。尚、本発明の形 態は、以下のものに限定されない。

【0009】

本発明に係るNDフィルタは、少なくとも波長が可視域(例えば400ナノメートル(nm)以上800nm以下、400nm以上760nm以下、400nm以上700nm 以下、410nm以上760nm以下、又は420nm以上760nm以下)内である光 (可視光)を均一に吸収するフィルタである。

[0010]

NDフィルタの基材は、透明(半透明を適宜含む)なプラスチック製である。基材の材質の例としては、ポリウレタン樹脂、チオウレタン樹脂、エピスルフィド樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエーテルサルホン樹脂、ポリ4-メチルペンテン-1 樹脂、ジエチレングリコールビスアリルカーボネート樹脂が挙げられる。

又、基材は、凸レンズであっても良いし、凹レンズであっても良いし、フラットレンズ であっても良く、基材の度数及び累進は、どのようなものであっても良い。

本発明のNDフィルタは、基材がプラスチック製のものであれば、どのような用途で用 いられても良く、好適にはカメラレンズ系の一部(他のレンズの保護用及びカメラ本体内 蔵用を含む)に含ませるためのカメラ用、又同様にプロジェクタ用、双眼鏡用、望遠鏡用 であり、更に好適には眼鏡用(眼鏡レンズ自体とする用途、あるいは眼鏡レンズに被さる 眼鏡であるオーバーグラスレンズ用)である。

【0011】

基材の片面あるいは両面には、光学多層膜が形成されている。

光学多層膜は、主に可視光を均一に吸収する機能を具備しており、更に適宜可視光の反 射を防止する機能を具備する。可視光の吸収を目的とした光学多層膜あるいはその部分は 光吸収膜であり、光吸収膜が1つの層である場合には光吸収層とすることもある。又、可 視光の反射防止を目的とした光学多層膜あるいはその部分は、反射防止膜である。反射防 止膜は、光吸収膜を含むことがある。基材の両面に光学多層膜が配置される場合、双方の 光学多層膜が同一の構成とされても良いし、互いに異なる構成とされても良い。

光学多層膜は、光吸収膜のみから構成されても良いし、光吸収膜の表面側(空気側)に 防汚膜や保護膜が付加されたものであっても良いし、光吸収膜の基材側にハードコート膜 を始めとする中間層が単数又は複数付加されたものであっても良いし、光吸収膜内あるい は光吸収膜外に導電性向上等の他の目的のための単数又は複数の層や膜が付加されたもの であっても良いし、これらの組合せであっても良い。尚、ハードコート膜や導電層、反射 防止膜等は、光学多層膜に含まれないものとされたり、それぞれあるいはこれらの組合せ で別個の光学多層膜であるものとされたりしても良い。

【0012】

ハードコート膜は、例えば、オルガノシロキサン系化合物から形成され、あるいは有機 ケイ素化合物、又はアクリル化合物から形成される。

ハードコート膜の下層(基材側の層)として、プライマー層が設けられても良い。プラ イマー層は、例えば、ポリウレタン系樹脂、アクリル系樹脂、メタクリル系樹脂、有機ケ 10

30

イ素系樹脂の少なくとも何れかから形成される。

【0013】

反射防止膜は、例えば、低屈折率材料及び高屈折率材料を含む複数種類の誘電体材料か ら形成される。低屈折率材料としては、酸化ケイ素(特にSiO₂)やフッ化マグネシウ ム(特にMgF₂)の少なくとも一方が例示され、高屈折率材料としては、酸化ジルコニ ウム(特にZrO₂)、酸化チタン(特にTiO₂)、酸化タンタル(特にTa₂O₅)、 酸化ニオブ(特にNb₂O₅)の少なくとも何れかが例示される。反射防止膜は、好まし くは、低屈折率材料と高屈折率材料が、何れか一方を基材側として交互に積層されること で形成される。

[0014]

光吸収膜は、ニッケル(Ni)を含む光吸収層を1層あるいは2層以上有するように形成される。

Niは、単体でも良いが、好ましくは不飽和金属酸化膜(NiO_x; xは0を超えて1 以下)である。 xの値は、例えばNiが蒸着材料とされ、蒸着用真空装置内に酸素ガスを 所定流量で供給した状態で蒸着されることで調整可能であり、酸素ガスを流さなければ x = 0 (単体)となる。

光吸収膜は、他の層を有する多層膜として形成されても良い。この場合の他の層として、例えば、ZrO2層、Al2O3層、SiO2層を始めとするシリカ化合物層、あるいはこれらの組合せが例示される。ここで、シリカ化合物は、ケイ素の化合物あるいはその化合物と他の化合物の混合体であるが、好ましくは酸化ケイ素と酸化アルミニウムの混合体であり、より好ましくはSiO2とAl2O3の混合体である。

光吸収膜が、光吸収層、即ちNiO_×層(×は0以上1以下)を覆うシリカ化合物層等 を有すると、光吸収層がキズの付着及び水分による変質から保護される。 【0015】

少なくとも1つの光吸収層における、基材と反対側(空気側)には、シリカ化合物層に 逆応力層が挟まれたサンドイッチ構造部が配置される。即ち、サンドイッチ構造部は、基 材側から順にシリカ化合物層、逆応力層、シリカ化合物層が配置されたものであり、何れ かの光吸収層より空気側に設けられる。

サンドイッチ構造部は、1つのシリカ化合物層の中央に逆応力層を挿入してシリカ化合物層を2つに分割したものと捉えることができる。シリカ化合物層は、その膜強度、並びに光学的安定性及び透明度(高透過率)等の優れた光学性能の具備のため、多層の光吸収膜が形成される際に含まれる1以上の層として適切なものであるところ、成膜後、圧縮応力を保持し、微視的に空気側に凸となるように屈曲する。他方、逆応力層は、優れた光学性能を備えつつ、成膜後に圧縮応力と反対方向となる引張応力を呈し、サンドイッチ構造部における両側のシリカ化合物層の圧縮応力を打ち消す。

逆応力層は、引張応力を保持するものであり、例えば、ZrO₂製のZrO₂層、TiO 2製のTiO₂層、Nb₂O₅製のNb₂O₅層、酸化ハフニウム(特にHfO₂)製のH fO₂層が挙げられる。

シリカ化合物層は、水分を完全密閉してしまうほどの超高密度ではないものの、逆応力 層より密度が高く、逆応力層より水分を通過させずに水分透過量が小さいものである。

サンドイッチ構造部は、好ましくは光吸収層に隣接して配置される。又、光吸収層が複 数存在する場合、サンドイッチ構造部は、好ましくは最も基板側の光吸収層の空気側に配 置される。

【0016】

シリカ化合物層及び逆応力層は、どのように成膜されても良く、例えば蒸着により成膜 されても良いし、スパッタリングにより成膜されても良い。

シリカ化合物層は、イオンアシストのない蒸着によって形成される程度の密度を有する ことが好ましい。蒸着膜の密度は、当業者にとっても直接の測定が極めて困難である。又 、蒸着時のイオンアシストの有無で蒸着膜の密度の程度を特定することは、当業者にとっ て分かり易く有用である。 10

光吸収膜は、低屈折率層と高屈折率層が交互に配置されることで、光吸収機能に加えて 反射防止膜としての機能も併有するようにされても良い。ここで、NiO_x層は、高屈折 率層として扱われて良い。

【 0 0 1 7 】

基材は、眼鏡用等のように、表裏の存在するものが好ましい。眼鏡用NDフィルタ基材の表は環境側であり、裏は顔側である。

光学多層膜は、好ましくは、基材の表側に反射防止膜が配置され、裏側に光吸収膜が配置される。現状、光吸収膜に比べて反射防止膜の耐久性が高く、より厳しい環境に晒され る表側に比較的耐久性の高い反射防止膜が配置され、比較的に保護される裏側に光吸収膜 が配置されることで、光吸収(ND)と反射防止の機能を確保して良好な特性を実現しな がら、全体的な耐久性の向上が図れる。

又、かようなNDフィルタは、眼鏡用として好適に用いられる。即ち、NDフィルタ自 体が眼鏡レンズとされても良いし、NDフィルタが他の眼鏡レンズに被せるものとして用 意されていても良い。

一般の眼鏡(サングラス)は、可視域で可視光の吸収率が波長毎に大きく変化するもの であり、裸眼視と色みやコントラスト等が異なってみえるものであるところ、本発明の眼 鏡用 N D フィルタでは、可視域における可視光の均一な吸収により、裸眼視と同等な視認 性を提供することができる。

【実施例】

【0018】

次いで、本発明の好適な実施例、及び本発明に属さない比較例につき、数例説明する(実施例1~7,比較例1~2)。尚、本発明の捉え方により、実施例が比較例となったり 、比較例が実施例となったりすることがある。

【0019】

実施例1~7,比較例1~2に係るプラスチック基材NDフィルタとして、直径75ミ リメートル(mm)の丸玉である眼鏡用凸レンズが作成された。その度数は何れもS-3 .00である。

基材は、次の3種のうちの何れかが選択された。即ち、第1に、比重が1.30g/c m³(グラム毎立方センチメートル)であるチオウレタン樹脂製であって、屈折率は1. 60、アッベ数は42である(実施例1~5,比較例1~2)。又、第2に、比重が1. 37g/cm³であるチオウレタン樹脂製であって、屈折率は1.67、アッベ数は32 である(実施例6)。更に、比重が1.41g/cm³であるエピスルフィド樹脂製であ って、屈折率は1.70、アッベ数は36である(実施例7)。

基材の表裏両面の上には、ハードコート膜(HC膜)が形成された。何れのハードコート膜も、同じハードコート液を同様に塗布することにより形成された。

ハードコート液は、次のように作成された。まず、容器中に、メタノール206g(グ ラム)、メタノール分散チタニアゾル(日揮触媒化成株式会社製、固形分30%)300 g、 - グリシドキシプロピルメチルジエトキシシラン30g、テトラエトキシシラン6 0gが滴下され、その混合液中に0.01N(規定度)の塩酸水溶液が滴下されたうえで 撹拌されて加水分解が行われた。次いで、フロー調整剤0.5g及び触媒1.0gが加え られ、室温で3時間撹拌されて、ハードコート液とされた。

ハードコート液は、スピンコート法によりハードコート液を基材の面に均一に行き渡ら せ、その後120 の環境に1.5時間置くことで加熱硬化させて、ハードコート膜となった。

かように形成されたハードコート膜の物理膜厚は、2.5µm(マイクロメートル)となった。

【 0 0 2 0 】

更に、各基材の凸面(表面)側に反射防止膜(AR膜)及び撥水膜が形成された。 即ち、ハードコート膜付きの基材が固定する治具(ドーム)にセットされて、真空装置 内に扉から投入される。その後、扉が閉められ、真空装置内が真空排気される。基材の水 10

分を抜くため、真空装置内の温度は60 に保持される。真空装置内の真空度が1.0E -03(1.0×10⁻³)Pa(パスカル)となると、次のような成膜が開始される。 即ち、まず中間層(ハードコート膜)とこれから形成される光学多層膜の密着性を向上す るために、基材表面に酸素イオンを60秒間照射することで、基材表面を活性化させる。

次に、低屈折材料であるSiO2と高屈折材料であるZrO2が交互に各所定時間だけ 蒸着されて、各層がそれぞれ所望の膜厚を有する全5層の反射防止膜が基材の凸面上に成 膜された。

SiO₂として、キヤノンオプトロン株式会社製「SiO₂」が用いられ、成膜レート 10.0 / s(オングストローム毎秒)で蒸着された。成膜後のSiO₂層の屈折率(基準波長 = 500 nm)は1.465であった。

ZrO₂として、キヤノンオプトロン株式会社製「ZrO₂」が用いられ、成膜レート
0 / sで蒸着された。成膜後のZrO₂層の屈折率(= 500nm)は2.03
7であった。

続いて、真空装置内で反射防止膜付きの基材の凸面側に撥水剤が蒸着され、反射防止膜の上(最表層)に撥水膜が形成された。

実施例1~7,比較例1~2に係る凸面側の光学多層膜の構成は、次の表1に記載の通 りである。尚、特に記載されない限り、膜厚は物理膜厚である。

[0021]

【表1】

	材質等	膜厚(nm)
-	基材	-
-	HC膜	-
1	SiO ₂	80
2	ZrO ₂	30
3	SiO ₂	30
4	ZrO ₂	60
5	SiO ₂	90
6	撥水膜	-

[0022]

又、基材の凹面(裏面)側に光吸収膜及び撥水膜が形成された。

即ち、光吸収膜の成膜は、反射防止膜の形成と同様に成膜開始時の条件を整えて行われ る。成膜においては、同様に基材表面に酸素イオンを照射した後、次の材料を次の条件で 成膜した。光吸収膜の蒸着においては、所定値以上の層密度を有して水分バリア性が過剰 にならないようにするため、最初の酸素イオンの照射を除き、イオンは照射されず、光吸 収膜の蒸着はイオンのアシストのない状態(Ion Assist <u>Deposition</u> ではない状態)で行われた。

Z r O₂層は、上述のA R 膜の場合と同様に形成された。

シリカ化合物に属するSiO₂とAl₂O₃の混合材料(SiO₂+Al₂O₃)として、メルクパフォーマンスマテリアルズ株式会社製「Substance L5 HD」が用いられ、成膜レート10.0 / s(オングストローム毎秒)で蒸着された。成膜後のSiO₂+Al₂O₃層の屈折率(基準波長 = 500 nm)は1.477であった。一般に、SiO₂+Al₂O₃濯合材料は、SiO₂の重量がAl₂O₃の重量に比べて高く、例えばSiO₂の重量比に対するAl₂O₃の重量比は数%程度である。尚、本発明において、SiO₂とAl₂O₃の重量比は特に限定されず、シリカ化合物の成分もSiO₂とAl₂O₃に限定されない。

Al2O3として、キヤノンオプトロン株式会社製「Al2O3」が用いられ、成膜レート10.0 / sで蒸着された。成膜後の屈折率(= 500 nm)は1.629であった。

N i O _x 用のN i として、株式会社高純度化学研究所製のものが用いられ、何れも成膜

10

20

レート3.0 / sで蒸着された。この蒸着時、酸素ガスが流量10sccm(standard cubic centimeter per minute)で供給されて、NiO_x層が形成された。成膜後のNiO_x層の屈折率(= 500nm)は1.928であり、消衰係数は2.134であった。尚、NiO_x層の屈折率が約2.00程度と比較的に高いので、NiO_x層は高屈折率層として用いることができる。

(8)

又、撥水膜が、光吸収膜の上(空気側)に、反射防止膜の上のものと同様にして形成さ れた。

実施例1~5,比較例1~2は、光吸収膜の構成のみが互いに異なる。実施例6,7の 光吸収膜は、実施例5と同じ構成であり、上述の通り基材が異なる。それぞれの光吸収膜 の構成は、次の表2~4に記載の通りである。

[0023]

【表 2 】

	比較	列1	比較	列2
	材質等	膜厚(nm)	材質等	膜厚(nm)
-	チオウレタン	-	チオウレタン	_
	1.60基材		1.60基材	
-	HC膜	-	HC膜	-
1	Al ₂ O ₃	40	ZrO ₂	10
2	NiO _x	4.5	$SiO_2 + Al_2O_3$	45
3	$SiO_2 + Al_2O_3$	60	NiO _x	4.5
4	NiO _x	5.5	$SiO_2 + Al_2O_3$	60
5	$SiO_2 + Al_2O_3$	50	NiO _x	5.5
6	NiO _x	5.5	$SiO_2 + Al_2O_3$	50
7	$SiO_2 + Al_2O_3$	65	NiO _x	5.5
8	撥水膜	_	$SiO_2 + AI_2O_3$	65
9	_	_	撥水膜	_

【表3】

	実施値	列1	実施住	列2	実施住	列3	実施	列4
	材質等	膜厚(nm)	材質等	膜厚(nm)	材質等	膜厚(nm)	材質等	膜厚(nm)
١	チオウレタン	-	チオウレタン	-	チオウレタン	-	チオウレタン	_
	1.60基材		1.60基材		1.60基材		1.60基材	
-	HC膜	-	HC膜	-	HC膜	-	HC膜	-
1	ZrO ₂	10						
2	$SiO_2 + AI_2O_3$	45	$SiO_2 + Al_2O_3$	45	$SiO_2 + Al_2O_3$	45	$SiO_2 + Al_2O_3$	45
3	NiO _x	4.5						
4	$SiO_2 + AI_2O_3$	30	$SiO_2 + Al_2O_3$	30	$SiO_2 + Al_2O_3$	30	$SiO_2 + Al_2O_3$	25
5	ZrO ₂	10	ZrO ₂	10	ZrO ₂	15	ZrO ₂	15
6	$SiO_2 + AI_2O_3$	30	$SiO_2 + Al_2O_3$	30	$SiO_2 + Al_2O_3$	30	$SiO_2 + Al_2O_3$	25
7	NiO _x	5.5						
8	$SiO_2 + AI_2O_3$	50	$SiO_2 + AI_2O_3$	25	$SiO_2 + Al_2O_3$	50	$SiO_2 + AI_2O_3$	50
9	NiO _x	5.5	ZrO ₂	10	NiO _x	5.5	NiO _x	5.5
10	$SiO_2 + AI_2O_3$	65	$SiO_2 + AI_2O_3$	25	$SiO_2 + Al_2O_3$	65	$SiO_2 + AI_2O_3$	65
11	撥水膜	_	NiO _x	5.5	撥水膜	-	撥水膜	_
12		_	$SiO_2 + Al_2O_3$	65	_	-	_	_
13	_	_	撥水膜	_	_	_	_	_

10

ľ	表	4	1
•	25	-	

	実施	列5	実施	列6	実施	列7
	材質等	膜厚(nm)	材質等	膜厚(nm)	材質等	膜厚(nm)
-	チオウレタン 1.60基材	-	チオウレタン 1.67基材	-	エピスルフィ ド基材	-
1	HC膜	-	HC膜	-	HC膜	-
1	ZrO ₂	10	ZrO ₂	10	ZrO ₂	10
2	$SiO_2 + Al_2O_3$	45	$SiO_2 + Al_2O_3$	45	$SiO_2 + Al_2O_3$	45
3	NiO _x	4.5	NiO _x	4.5	NiO _x	4.5
4	$SiO_2 + Al_2O_3$	20	$SiO_2 + Al_2O_3$	20	$SiO_2 + Al_2O_3$	20
5	ZrO ₂	15	ZrO ₂	15	ZrO ₂	15
6	$SiO_2 + AI_2O_3$	30	$SiO_2 + Al_2O_3$	30	$SiO_2 + Al_2O_3$	30
7	NiO _x	5.5	NiO _x	5.5	NiO _x	5.5
8	$SiO_2 + AI_2O_3$	50	$SiO_2 + Al_2O_3$	50	$SiO_2 + Al_2O_3$	50
9	NiO _x	5.5	NiOx	5.5	NiO _x	5.5
10	$SiO_2 + Al_2O_3$	65	$SiO_2 + AI_2O_3$	65	$SiO_2 + Al_2O_3$	65
11	撥水膜	-	撥水膜	-	撥水膜	_

[0024]

ここで、SiO₂膜とAl₂O₃膜に係るイオンアシストの有無と蒸着膜の密度(これと 密接に関連した水蒸気透過性)に関する試験の結果が、次の表5に示される。尚、表5の 「No.」列は、水蒸気透過性が大きいものからの順位が記載されている。

この試験は、 P E T (ポリエチレンテレフタレート)フィルムを基材とし、基材のみの 場合と、基材に S i O 2 膜や A 1 2 O 3 膜、 S i O 2 + A 1 2 O 3 混合膜がイオンアシスト の有無を変化させて蒸着された場合における、水蒸気透過性(1日当たりのグラム毎立方 メートル,g/m²・d a y)を調べたものである。

基材のみの場合、水蒸気透過性は、7.29である。

これに対し、SiO2膜,Al2O3膜,SiO2+Al2O3混合膜(表5の「材料」 列に蒸着材料を記載している)がイオンアシストなしで膜厚90.3,94.8,74. 4 nmで蒸着された場合、水蒸気透過性が6.75,6.28,6.12と、基材のみの 場合より僅かに下がる。これは、SiO2膜,Al2O3膜,SiO2+Al2O3混合膜 が水蒸気の透過を妨げるからである。

更に、SiO2膜がイオンアシストあり(イオン銃における加速電圧900ボルト(V),加速電流900ミリアンペア(mA),バイアス電流600mA,導入酸素(O2) ガス50sccm)で膜厚69.1nmで蒸着された場合、水蒸気透過性が3.77と更に大きく下がる。これは、イオンアシストのある蒸着によって形成されたSiO2膜の密 度がイオンアシストなしの場合の密度より大きく、かように密度の大きいSiO2膜が水 蒸気の透過を更に妨げるからである。

同様に、Al2O3膜がイオンアシストあり(加速電圧1000V,加速電流1000 mA,バイアス電流600mA,導入酸素ガス50sccm)で膜厚79.0nmで蒸着 された場合、水蒸気透過性が0.89と大きく下がる。これは、イオンアシストのある蒸 着によって形成されたAl2O3膜の密度がイオンアシストなしの場合の密度より大きく 、かように密度の大きいAl2O3膜が水蒸気の透過を更に妨げるからである。

更に同様に、SiO₂ + Al₂O₃混合膜がSiO₂膜と同様のイオンアシストのある状態で膜厚75.0nmで蒸着された場合、水蒸気透過性が1.61と小さくなる。これは、イオンアシストのある蒸着によって形成されたSiO₂ + Al₂O₃混合膜の密度がイオンアシストなしの場合の密度より大きく、かように密度の大きいSiO₂ + Al₂O₃混合 膜が水蒸気の透過を更に妨げるからである。 【0025】

20

10

30

【表5】

	す茶倉茶道杯		イオン	빌뭒		イオン	銑状態	
" () ()		材料	アシスト	ぼう	加速電圧	加速電流	バイアス	導入ガス
Lg/	m⁻•aay_		処理	נווווין	Ξ	[mA]	電流[mA]	$0_2[sccm]$
	7.29	PETフィルムのみ		1	1	1	1	1
	6. 75	S i 02	なし	90. 3	1	. 1	I	I
	6. 28	AI 203	なし	94.8	I	ļ	I	I
	6.12	Si02+AI203	なし	74.4	1	1	1	I
	3. 77	Si02	መ	69.1	006	006	600	50
	0.89	AI 203	መ	79. 0	1000	1000	600	50
	1. 61	Si02+AI203	あり	75. 0	006	900	600	50

[0026]

図1は、実施例1~5,比較例1~2の可視域(波長400nm以上700nm以下) 及び隣接域における分光透過率分布が示されるグラフである。

分光透過率分布の測定は、分光光度計(株式会社日立ハイテクノロジーズ製U-410 0)によって行われた。

実施例1~5,比較例1~2の何れも、可視域における透過率が27.5±4%の帯状 領域に収まっており、可視光が吸収率27.5%程度で均一に吸収されていて、グレーの 外観でありながら、装用時に認識される色みが裸眼視とさほど変わらない眼鏡用NDフィ ルタとなっている。均一に吸収する際の吸収率は、主にNiO_x層の総膜厚(合計膜厚) の大小により、様々に変更することができる。

図2は、実施例5~7の可視域及び隣接域における分光透過率分布が示されるグラフで ある。

実施例5(屈折率1.60のチオウレタン基材)に係る分光透過率分布は、図1で示されたものと同じである。実施例6(屈折率1.67のチオウレタン基材)及び実施例7(屈折率1.70のエピスルフィド基材)に係る分光透過率分布は、何れも、実施例5と同様に、可視域で27.5%程度の均一な吸収率を呈する。

又、実施例1~7,比較例1~2、そしてシミュレーションの結果から、NiO_×層の 膜厚が6nm以下であれば、サンドイッチ構造部(逆応力層)による応力差の緩和作用が 30

10

20

N i O x 層との関係においても良く及ぼされることが分かった。 N i O x 層を薄くすることにより可視光の吸収量が十分でなくなる場合には、(6 n m 以下の) 層が複数設けられて良い(光吸収層の分割)。

【 0 0 2 7 】

図3は、実施例1~5,比較例1~2の凹面(ND成膜面)側に係る、可視域及び隣接 域における分光反射率分布(片面)が示されるグラフである。

分光反射率分布は、反射率測定器(オリンパス株式会社製USPM-RU)によって測 定された。

実施例1~5,比較例1~2の凹面側において、可視域で反射率が4%以下となってお り、又視認性に大きく関与する緑色域内(450nm以上580nm以下程度)に反射率 分布の最小値(全体的な分布の極小値)が入っているので、各光吸収膜は、反射防止膜と しての機能も備えている。

図4は、実施例5~7の凹面(ND成膜面)側に係る、図3同様のグラフである。

実施例5~7の凹面側においても、可視域で反射率が4%以下となっており、又視認性 に大きく関与する緑色域内ないしその隣接領域(440nm以上580nm以下程度)に 反射率分布の最小値(全体的な分布の極小値)が入っているので、各光吸収膜は、反射防 止膜としての機能も備えている。

図5は、同様に測定された、実施例1~5,比較例1~2の凸面側に係る、可視域にお ける分光反射率分布(片面,共通)が示されるグラフである。

実施例1~5,比較例1~2の凸面側においても、可視域で概ね反射率が4%以下となっており、又可視域の大部分である420nm以上700nm以下の域において反射率2%以下となっているので、凸面側では十分に可視光の反射が防止されている。

又、実施例6,7は、実施例1~5,比較例1~2と同様の凸面側片面反射率分布を有 する。

実施例1~7,比較例1~2では、NDフィルタとしての機能(均一な吸収)は、光吸 収膜が配置された凹面側のみで十分に果たしているため、凸面側では、反射防止機能を更 に追求した反射防止膜が配置される。

【0028】

次の表 6 ~ 7 には、実施例 1 ~ 7 ,比較例 1 ~ 2 について、耐久性に関する各種の試験 、即ち恒温恒湿試験、玉型加工後の恒温恒湿試験、凹面の耐候密着性試験を行った際の結 果が示される。

恒温恒湿試験では、恒温恒湿試験機(エスペック株式会社製LHU‐113)が用いられ、60 ,90%の環境となった試験機内に、それぞれのNDフィルタが投入された。 投入開始から1日,3日,7日が経過した後に、NDフィルタがそれぞれ一旦取り出され、むくみや変色、クラック等の外観異常の発生の有無が観察された。

玉型加工後の恒温恒湿試験では、実施例1~7,比較例1~2のそれぞれが、中心部を 保持された状態で直径50mmの同心円形に削られて玉型加工が施された後、上述の恒温 恒湿試験と同様の手順(7日経過後の観察を除く)がなされた。

凹面(光吸収膜形成面)の耐候密着性試験では、各凹面において計100マスが形成されるようにカッターでマス目が入れられ、マス目全体にセロハンテープが貼り付けられて、勢いよく剥がされた。これが計5回繰り返され、計5回完了後において内部で剥がれを生じなかったマスの数が確認された(初期)。更に、NDフィルタがサンシャインウェザーメータ(スガ試験機株式会社製S80B)に投入され、投入時間が60時間(h)となったら取り出されて、上記のマス目形成、5回のセロハンテープ剥がし及びマス数確認が行われた。同様にして、更に投入のうえで投入時間が計120,180,240時間となった場合にも、上記のマス目形成、5回のセロハンテープ剥がし及びマス数確認が行われた。

【0029】

10

30

20

【表6】

		比較例1	比較例2	実施例1	実施例2	実施例3
±++	材質	チオウレタン	チオウレタン	チオウレタン	チオウレタン	チオウレタン
至何	屈折率	1.60	1.60	1.60	1.60	1.60
后间后间常路	1日目	有	無	無	無	無
	3日目	有	無	兼	兼	無
00 C, 90%RH	7日目	有	有	有	有	有
玉形加工後	1日目	有	無	無	無	無
恒温恒湿試験	3日目	有	無	無	無	無
	初期	100	100	100	100	100
耐候密着性	60h	100	99	100	100	100
試験、凹面	120h	100	90	99	99	100
(ND成膜面)	180h	100	75	98	98	99
	240h	100	60	95	95	97

【表7】

		実施例4	実施例5	実施例6	<u>実施例7</u>
甘材	材質	チオウレタン	チオウレタン	チオウレタン	エヒ。スルフィト゛
至17	屈折率	1.60	1.60	1.67	1.70
后间后间背路	1日目	無	無	無	無
	3日目	無	無	無	無
00 C, 90/1KH	7日目	有	有	無	無
玉形加工後	1日目	無	無	無	無
恒温恒湿試験	3日目	無	無	無	無
	初期	100	100	100	100
耐候密着性	60h	100	100	100	100
試験、凹面	120h	100	100	100	100
(ND成膜面)	180h	100	100	100	100
	240h	99	100	100	100

【0030】

実施例1~5,比較例2では、恒温恒湿試験において、3日経過後まで外観異常は観察 されず(変化「無」)、7日経過後で周辺部変色とクラックの発生が認められた(変化「 有」)。

実施例6,7では、7日経過後においても外観異常は観察されなかった。比較例1では、1日経過後から光学的な歪みが発生した。

比較例1の光吸収膜は基材から1層目(初期層)にA12O3層を有するところ、吸湿量が比較的に多いチオウレタン樹脂製の基材の膨潤にA12O3層が追従できず、光学的な歪みの原因となるものと考えられる。

これに対し、実施例1~7,比較例2では、初期層がZrO2層であり、チオウレタン 基材の膨潤に追従して光学的な歪みの発生が防止されているものと推察される。

【0031】

又、実施例1~7,比較例2では、玉型加工後の恒温恒湿試験において、3日経過後まで外観異常は観察されなかった。

これに対し、比較例1では、レンズ中央部において線状の変色が浮き出た。かような変 色は、玉型加工の直後では確認されなかった。変色の原因は、玉型加工時におけるレンズ 保持部であるレンズ中央部において微細なクラックが発生し、加湿することでクラックに 水分が集中して、局所的にNiOx層が変質し、透過率に異常が発生しているものと考え られる。

Al2O3は、ZrO2及びSiO2に比べ、外力に対する変形量が少ない。又、チオウ レタン樹脂は、エピスルフィド樹脂より外力に対して変形し易い。よって、比較例1では 、玉型加工時の保持によりレンズ表面が僅かに撓み、その量はチオウレタン基材の方が大

きく、A1203層では追従できずにクラックが発生しているものと考えられる。

他方、実施例1~7,比較例2では、A12O3層は用いられず、SiO2+A12O3 層及びZrO2層が用いられており、チオウレタン基材(実施例7ではエピスルフィド基 材)であっても、SiO2+A12O3層及びZrO2層が玉型加工時のレンズ表面の撓み に追従して、玉型加工後に恒温恒湿環境に晒されてもクラックは発生しないものと推察さ れる。

【0032】

更に、実施例1~7,比較例1では、耐候密着性試験において、240時間においても 剥がれを生じたマスが5マス以内となっており、良好な耐候性が示された。特に、実施例 5~7,比較例1では、240時間においても剥がれを生じたマスが無く(剥がれ無し1 00マス)、優れた耐候性が示された。

これに対し、比較例2では、剥がれを生じたマスが180時間で25マス(同75マス)、240時間で40マス(同60マス)となっており、耐候性に劣っている。

比較例2が耐候性に劣る原因は、全てのNiO_x層がSiO₂ + Al₂O₃層で挟まれて おり、SiO₂ + Al₂O₃層の圧縮応力が同方向で重畳することで、SiO₂ + Al₂O 3層のNiO_x層に対する密着性が低下したことであると考えられる。

図6は、比較例2における耐候密着性試験後に剥がれ(剥離)を生じた箇所、及び光吸 収膜が基材側から3層目まで残存し4層目以降を失った場合のシミュレーションに係る、 可視域及び隣接域における分光反射率分布(片面)が示されるグラフである。

3層目までのシミュレーションに係る分布と剥離箇所の分布とが類似する図6の状況等から、剥離は、基材側から3層目のNiO_x層と4層目のSiO₂ + Al₂O₃層との間において起きたものと推察される。

【0033】

実施例1は、比較例2における4層目のSiO₂ + Al₂O₃層(膜厚60nm)を、ZrO₂層をSiO₂ + Al₂O₃層で挟むサンドイッチ構造部(膜厚30,10,30nm)に置き換えたものとなっている。これにより、耐候密着性試験において剥がれを生じ得る3層目のNiO_x層の空気側隣接層における応力が緩和され、実施例1では良好な耐候密着性が得られる。尚、サンドイッチ構造部により、基材側から1,2番目のNiO_x層が、何れもZrO₂層ではなくSiO₂ + Al₂O₃層に隣接し、水分から保護される。

実施例2は、実施例1における基材側から2番目(7層目)のNiO_x層に空気側で隣 接するSiO₂ + Al₂O₃層(膜厚50nm)を、サンドイッチ構造部(膜厚25,10 ,25nm)に置き換えたものとなっている。実施例2は、耐候密着性試験の結果におい て実施例1と同等となっており、基材側から2番目のNiO_x層にサンドイッチ構造部が 追加されても実施例2の耐候密着性は実施例1と変わらず、さほど向上しないと言える。

実施例3は、実施例1におけるサンドイッチ構造部のZrO2層の膜厚を増加したもの となっている(10nmから15nm)。当該ZrO2層の膜厚は、1つのSiO2+A1 2O3層(膜厚30nm)の半分(50%)に達しており、サンドイッチ構造部のSiO2 +A12O3層の合計膜厚の1/4(25%)に達している。実施例3の耐候密着性試験 の結果は、実施例1に比べて向上している。かような向上は、ZrO2層の応力緩和作用 がより強まっていることによるものと考えられる。

【0034】

実施例4は、実施例3におけるサンドイッチ構造部の各SiO₂ + Al₂O₃層の膜厚を 減少したものとなっている(30 n m から25 n m)。かような減少により、サンドイッ チ構造部における1つのSiO₂ + Al₂O₃層の膜厚に対するZrO₂層の膜厚の割合が 60%と実施例3に対して増加し、SiO₂ + Al₂O₃層の合計膜厚に対する割合が30 %に増加している。よって、ZrO₂層の応力緩和作用が更に強まり、実施例4の耐候密 着性試験の結果は、実施例3に比べて向上している。又、かような程度でSiO₂ + Al₂ O₃層の合計膜厚が減少したとしても、ZrO₂層(高屈折率層)の追加による寄与もあ り、光吸収膜における反射防止性能を始めとする光学性能に大きな影響は与えない。 実施例5は、実施例4におけるサンドイッチ構造部のSiO₂ + Al₂O₃層の膜厚につ 10

いて、基材側で減少し(25 nmから20 nm)、空気側で当該減少分だけ増加(25 n mから30 nm)することで、基材側の膜厚を空気側の膜厚より小さくしたものである。 剥離が起きる部分である最も基材側(3層目)のNiO_x層に空気側で隣接するSiO₂ + Al₂O₃層の膜厚を薄くすることで、NiO_x層に直接作用する応力が緩和し、240 時間の耐候密着性試験において剥がれ無し(100マス残存)という極めて優れた結果が もたらされている。

【0035】

実施例6は、実施例5と同様の光吸収膜が屈折率1.67のチオウレタン基材に対して 形成されたものであり、7日目の恒温恒湿試験においても光学的な歪みが発生しない等、 実施例5と同等以上の耐久性を有する。

実施例7は、実施例5と同様の光吸収膜がエピスルフィド基材に対して形成されたもの であり、実施例6と同等の極めて優れた耐久性を有するものである。

20

30

10

(15)

10

20

【図3】

30

| 550 波長(nm)

片面反射率測定結果

ŝ

フロントページの続	ð.	
(51)国際特許分類	FI	
	C 2 3 C 14/08	G
	C 2 3 C 14/08	Κ
	C 2 3 C 14/20	А
(56)参考文献	特開2001-074911(JP,A)	
	特開2002-341107(JP,A)	
	特表2013-510931(JP,A)	
	国際公開第2017/145910(WO,A1)	
	特開2018-036325(JP,A)	
(58)調査した分野	(Int.Cl.,D B 名)	
	G02B 5/00 - 5/136	
	G 0 2 C 7 / 1 0	
	G 0 2 B 5 / 2 2	
	C 2 3 C 1 4 / 0 8	
	C 2 3 C 1 4 / 2 0	