РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19) **RU**(11) **2014 133 045**(13) **A**

(51) ΜΠΚ *H02M* 5/00 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ

(21)(22) Заявка: 2014133045, 04.06.2013

Приоритет(ы):

(22) Дата подачи заявки: 04.06.2013

(43) Дата публикации заявки: 27.02.2016 Бюл. № 06

(85) Дата начала рассмотрения заявки РСТ на национальной фазе: 11.08.2014

(86) Заявка РСТ: JP 2013/065429 (04.06.2013)

Адрес для переписки:

129090, Москва, ул. Б. Спасская, 25, строение 3, ООО "Юридическая фирма Городисский и Партнеры"

(71) Заявитель(и):

ТОСИБА МИТСУБИСИ-ЭЛЕКТРИК ИНДАСТРИАЛ СИСТЕМС КОРПОРЕЙШН (JP)

(72) Автор(ы):

ДЗИМИТИ Такуси (JP), АЗУМА Сатоси (JP), КОЯНАГИ Кимиюки (JP), НАКАМУРА Ритака (JP), СИМОМУРА Ясухито (JP), КАТО Йосихито (JP)

(54) УСТРОЙСТВО ПРЕОБРАЗОВАНИЯ МОЩНОСТИ

(57) Формула изобретения

1. Устройство преобразования мощности, которое выполняет преобразование мощности между входными клеммами многофазного переменного тока и выходными клеммами многофазного переменного тока, содержащее:

устройство трансформатора напряжения, включающее в себя первичные обмотки, соединенные с входными клеммами, и вторичные обмотки, содержащие множество однофазных открытых обмоток, которые изолированы друг от друга;

множество ячеек преобразователя, включающих в себя переключающие элементы, в которых их входные концы соединены с соответствующими однофазными открытыми обмотками, а их выходные концы соединены взаимно последовательным образом с выходной клеммой каждой фазы, причем каждая из упомянутых ячеек преобразователя, выполняет преобразование между одним однофазным переменным током и другим однофазным переменным током; и

управляющую схему для управления включением/выключением переключающих элементов:

при этом каждая из ячеек преобразователя содержит: последовательное соединение конденсаторов; преобразователь, который преобразует напряжение однофазного переменного тока от входных концов в трех- или более уровневое напряжение постоянного тока и выводит его на последовательное соединение конденсаторов; и инвертор, который преобразует напряжение постоянного тока от последовательного соединения конденсаторов в однофазное напряжение переменного тока и выводит его на выходные концы.

2. Устройство преобразования мощности по п. 1, при этом управляющая схема

⋖

4 Ն

ന

က

0

2

D

D

содержит блок управления напряжением шины, который управляет напряжением шины постоянного тока, которое является напряжением последовательного соединения конденсаторов в каждой из ячеек преобразователя, чтобы иметь предварительно определенное командное значение напряжения шины.

- 3. Устройство преобразования мощности по п. 2, в котором блок управления напряжением шины содержит блок управления средним напряжением, который управляет средним значением напряжений шины постоянного тока ячеек преобразователя, соединенных со взаимно различными фазами выходных клемм, и блок управления средним напряжением управляет активной составляющей входного тока первичных обмоток устройства трансформатора напряжения, так что среднее значение становится командным значением напряжения шины.
- 4. Устройство преобразования мощности по п. 2, в котором блок управления напряжением шины содержит блок управления межфазным балансом, который обеспечивает баланс между напряжениями шины постоянного тока ячеек преобразователя, соединенных с взаимно различными фазами выходных клемм, и блок управления межфазным балансом управляет командными значениями напряжения инверторов в ячейках преобразователя так, что множество напряжений шины постоянного тока равномерно сбалансированы друг с другом.
- 5. Устройство преобразования мощности по п. 2, в котором блок управления напряжением шины содержит блок управления внутрифазным балансом, который обеспечивает баланс между напряжениями шины постоянного тока множества ячеек преобразователя, соединенных взаимно последовательным образом в каждой фазе выходных клемм, и блок управления внутрифазным балансом управляет командными значениями напряжения инверторов во множестве ячеек преобразователя так, что множество напряжений шины постоянного тока равномерно сбалансированы друг с другом.
- 6. Устройство преобразования мощности по п. 2, в котором последовательное соединение конденсаторов сконфигурировано с помощью конденсатора положительной стороны и конденсатора отрицательной стороны, которые последовательно соединены друг с другом, и напряжение шины постоянного тока ячейки преобразования установлено посредством напряжения шины постоянного тока положительной стороны, приложенного к конденсатору положительной стороны, и напряжения шины постоянного тока отрицательной стороны, приложенного к конденсатору отрицательной стороны; и

4

S

4

0

3

3

~

4

0

2

2

при этом блок управления напряжением шины содержит блок управления балансом внутри ячейки, который обеспечивает баланс между напряжением шины постоянного тока положительной стороны и напряжением шины постоянного тока отрицательной стороны в каждой из ячеек преобразователя, и блок управления балансом внутри ячейки управляет командными значениями напряжения переключающих элементов, которые составляют, по меньшей мере, один из преобразователя и инвертора, так что напряжение шины постоянного тока положительной стороны и напряжение шины постоянного тока отрицательной стороны равномерно сбалансированы друг с другом.

7. Устройство преобразования мощности по любому из пп. 1-6, в котором управляющая схема управляет моментами переключения переключающих элементов, которые составляют, по меньшей мере, один из преобразователя и инвертора в каждом из множества ячеек преобразователя, соединенных взаимно последовательным образом в каждой фазе выходных клемм, чтобы смещаться между множеством ячеек преобразователя так, чтобы уменьшать гармоническую составляющую, которая содержится, по меньшей мере, в одном из входного тока к входным клеммам и выходного напряжения с выходных клемм.

 \triangleright

Z

- 8. Устройство преобразования мощности по п. 7, в котором управляющая схема содержит блок модуляции, который выполняет ШИМ-управление с помощью несущего сигнала, и блок модуляции управляет моментами переключения переключающих элементов, чтобы смещать множество ячеек преобразователя, смещая фазу несущего сигнала во множестве ячеек преобразователя.
- 9. Устройство преобразования мощности по любому из пп. 1-6, в котором устройство трансформатора напряжения сконфигурировано посредством множества трансформаторов, соответствующие из первичных обмоток которых соединены параллельно с входными клеммами.
- 10. Устройство преобразования мощности по любому из пп. 1-6, в котором устройство трансформатора напряжения сконфигурировано посредством единого трансформатора, включающего в себя вторичные обмотки, множество которых дано для каждой из первичных обмоток в одной фазе.
- 11. Устройство преобразования мощности по любому из пп. 1-6, в котором числа фаз многофазного переменного тока входных клемм и многофазного переменного тока выходных клемм равны друг другу, и

при этом входные концы множества ячеек преобразователя, выходные концы которых соединены взаимно последовательным образом с выходной клеммой, соединены взаимно параллельным образом, через устройство трансформатора напряжения, с входной клеммой, фаза которой является такой же, что и фаза выходной клеммы, с которой соединены упомянутые входные концы.

- 12. Устройство преобразования мощности по любому из пп. 1-6, в котором многофазный переменный ток является трехфазным током, а первичные обмотки устройства трансформатора напряжения предусмотрены в трехфазном соединении звездой.
- 13. Устройство преобразования мощности по п. 12, в котором сердечник устройства трансформатора напряжения сконфигурирован с помощью сердечника с четырьмя или более ветвями.

4

S

4

0

3

3

4

0

2

~

- 14. Устройство преобразования мощности по любому из пп. 1-6, в котором группа полупроводниковых элементов, включающих в себя переключающие элементы и диоды, которые составляют, по меньшей мере, один из преобразователя и инвертора в каждой из ячеек преобразователя, сконфигурирована с возможностью хранения в едином модуле.
- 15. Устройство преобразования мощности по любому из пп. 1-6, в котором, по меньшей мере, один из переключающих элементов и диодов, которые составляют, по меньшей мере, одну из схем преобразователя и инвертора в каждой из ячеек преобразователя, сформированы из полупроводникового материала с широкой запрещенной зоной, который шире в запрещенной зоне, чем кремний.
- 16. Устройство преобразования мощности по п. 15, при этом полупроводниковый материал с широкой запрещенной зоной является карбидом кремния, материалом из семейства нитридов галлия или алмазом.