
USOO7698434B2 

(12) United States Patent (10) Patent No.: US 7.698,434 B2 
June et al. (45) Date of Patent: Apr. 13, 2010 

(54) J2EE CONNECTOR ARCHITECTURE 5,765,171 A 6/1998 Gehani ....................... 707/2O3 
5,768,504 A 6/1998 Kells et al. ..... ... 395,187.01 

(75) Inventors: Deborah C. June, Groton, MA (US); 5,774,689 A 6/1998 Curtis et al. ................ 395,500 
Brian Chesebro, Londonderry, NH (US) 5,799,173 A * 8/1998 Gossler et al. ................ TO3/21 

5,802,291 A 9, 1998 Balicket al. ........... 395.200.32 
(73) Assignee: BEA Systems, Inc., Redwood Shores, 5,805,798 A 9, 1998 Kearns 

CA (US) 5,819,107 A 10/1998 Lichtman et al. ............ 395/828 
5,835,769 A 11/1998 Jervis et al. 

(*) Notice: Subject to any disclaimer, the term of this 5,836,014 A 1 1/1998 Faiman 
patent is extended or adjusted under 35 5,894.554 A * 4/1999 Lowery et al. .............. TO9,203 
U.S.C. 154(b) by 0 days. 5,909,689 A 6/1999 Van Ryzin 

5,910, 180 A 6/1999 Flory et al. ................. TO9,301 
(21) Appl. No.: 10/248,744 5,926,775 A 7/1999 Brumley et al. ............. 7O2/127 

22) Filed: Feb. 13, 2003 
(22) File e 9 (Continued) 

(65) Prior Publication Data OTHER PUBLICATIONS 

US 2004/OO450O8 A1 Mar. 4, 2004 H. Bergsten, “Improved Performance with a Connection Pool'. Sep. 
1999. www.webdevel 1. : Related U.S. Application Data webdevelpoperjournal.com 

(60) Provisional application No. 60/406,745, filed on Aug. (Continued) 
29, 2002. Primary Examiner Diem K Cao 

(74) Attorney, Agent, or Firm Fliesler Meyer LLP 
(51) Int. Cl. 

G06F 5/16 (2006.01) (57) ABSTRACT 
(52) U.S. Cl. ........................ 709/227; 71.9/319; 709/223 
(58) Field of Classification Search ................. 718/105, 

718/104; 709/223, 224, 227, 228; 707/1, G it. plots that is J2EE com 707/10 plant and provides improved connection management capa 
See application file for complete search histo bilities. The connector architecture implementation provides 

pp p ry. a connector leak detection mechanism that detects connection 
(56) References Cited leaks both automatically and manually. The connector archi 

U.S. PATENT DOCUMENTS 

4,714,996 A 12/1987 Gladney 
5,163,148 A 11, 1992 Walls 
5,212,793 A 5/1993 Donica et al. ............... 395/7OO 
5,249,290 A 9/1993 Heizer ........................ 395/650 
5,553,242 A * 9/1996 Russell et al. ............... 709,227 
5,586.260 A 12, 1996 Hu 
5,613,060 A 3/1997 Britton ........................ T14f15 
5,682.478 A * 10/1997 Watson et al. ............... 709,229 
5,748,975 A 5, 1998 Van De Vanter 
5,751,967 A 5, 1998 Raab et al. 
5,761,507 A 6/1998 Govett ........................ 395/684 

tecture implementation pre-configures and manages the 
growth and reduction of a connection pool. The connector 
architecture implementation may be pre-configured by pre 
populating the connection pool. Connection pool growth may 
be managed by generating connections in response to con 
nection requests. A connection pool may also be configured to 
reduce the number of connections in the pool. The number of 
connections may be reduced if the connection demand 
decreases. Password credentials allowing access to services 
are used to provide additional connection management. 

17 Claims, 7 Drawing Sheets 

800 

N 

Creats N8w N/ New Mgrit 
- Managed connectines 36 

corristors Maximum? 
48S Y 

LogWarning 
Reging- freeust 

ex:it: 4. Fale 
Y 

45 
FF Celection elonso 
(end) 495 

  



US 7,698,434 B2 
Page 2 

U.S. PATENT DOCUMENTS 2003/0041135 A1 2/2003 Keyes et al. 
2003/0060214 A1 3/2003 Hendrey et al. 

5,933,838 A 8/1999 Lomet ........................ 707/2O2 2003, OO65826 A1 4/2003 Skufca 
6,018,805 A 1/2000 Ma et al. 2003. O105837 A1 6, 2003 Kamen 
6,023,722 A 2/2000 Colyer ....................... TO9,201 2003.01.10467 A1 6/2003 Balakrishnan 
6,044,217 A 3/2000 Brealey et al. 2003/0233.433 A1 12/2003 Halpern 
6,055.243 A 4/2000 Vincent et al. .............. 370/466 2003/0233631 A1 12/2003 Curry et al. 
6,105,067 A * 8/2000 Batra ......... 709/227 2003/0236923 Al 12/2003 Jeyaraman 
6,122,629 A 9/2000 Walker .......................... 707/8 2004/0059735 A1 3/2004 Gold et al. 
6,134,673 A 10/2000 Chrabaszcz 2004/0068568 A1 4/2004 Griffin et al. 
6,173,327 B1 1/2001 De Borst et al. TO9,231 2004/O153558 A1 8/2004 Gunduc et al. 
6,182,109 B1* 1/2001 Sharma et al. .... ... 718, 104 2004/0230747 A1 11, 2004 Ims et al. 
6,189,046 B1 2, 2001 Moore et al. ... ... 709,315 2006, 0080435 A1 4/2006 Tankov et al. 
6,212,521 B1 4/2001 Minami 2006/01681 18 A1 7/2006 Godlin et al. 
6.212,556 B1 4/2001 Arunachalam .............. TO9,219 2006/0212453 A1 9, 2006 Eshel et al. 
6,243,753 B1 6, 2001 Machin et al. ... TO9,227 2008/0270600 A1 10, 2008 Tankov et al. 
6,269,373 B1 7/2001 Apte et al. .................... 707/10 
6,304.879 B1 10/2001 Sobeski OTHER PUBLICATIONS 
6,338,089 B1 1/2002 Quinlan ...................... 709,227 
6,343,287 B1 1/2002 Kumar et al. .................. 707/4 (no name) “Database Connection Pool Management”. IBM TDB, 
6.353,923 B1 3/2002 Bogle et al. Dec. 1998. 
6,356,931 B2 3, 2002 Ismael et al. A.Thomas, Selecting Enterprise JavaBeans Techonology, Jul. 1998, 
6,389,462 B1 5/2002 Cohen ........................ TO9.218 Patricia Seybold Group.* 
6,411,956 B1 6/2002 Ng ....... ... 707/10 BEA System, WebLogic Server 6.1, Sep. 13, 2001.* 
6.425,005 B1 7/2002 Dugan ........................ 709,223 Visveswaran, Dive into connection pooling with J2EE, Oct. 2001, pp. 
6,430,564 B1 8/2002 Judge 1-7.* 
6,438,705 B1 8, 2002 Chao et al. Bea Systems, Connection Management, 2001, pp. 1-3.* 
6,453,321 B1 9, 2002 H11 Bea Systems, WebLogic 6.1—About this Document, Bea Systems, 
6,453,356 B1 9/2002 Sheard et al. ............... TO9,231 2001, pp. 1-4.* 
6,463,503 B1 10/2002 Jones et al. .... ... 711/114 BEA Systems, BEA WebLogic Server Programming WebLogic 
6,466.972 B1 10/2002 Paul et al. ................... 709,222 J2EE Connectors, Release 7.0, Bea Systems, Inc, Aug. 20, 2002, pp. 
6,505,200 B1 1/2003 Ims et al. 1-119. 
6,505,241 B2 1/2003 Pitts ........................... TO9.218 BEA Systems, BEA WebLogic Server 6.1, Bea Systems, Jun. 24. 
6,523,130 B1 2/2003 Hickman et al. 2002, pp. 1-113.* 
6,539,381 B1 3/2003 Prasadet al. Mohan, C. etal. "ARIES: A Transaction Recovery Method Support 
6,542,845 B1 4/2003 Grucci et al. ............... TO2/122 ing Fine-Granularity Locking and Partial Rollbacks. Using Write 
6,567,809 B2 5/2003 Santosuosso Ahead Logging”. ACM Transaction on Database Systems, vol. 17. 
6,651,140 B1 1 1/2003 Kumar No. 1, Mar. 1992, pp. 94-162. 
6,687,848 B1 2/2004 Najmi ........................... 714.f4 Mariucci, Marcello. Enterprise Application Server Development 
6,721,777 B1 4/2004 Sharma Environmens, Overview, University of Stuttgart, Oct. 10, 2000, pp. 
6,732,237 B1 5/2004 Jacobs et al. 1-10. 
6,757,708 B1 6/2004 Craig et al. Sun Microsystems, IPlanet Application Server 6.0 White Paper, 
6,766,324 B2 7/2004 Carlson Technical Reference Guide, May 25, 2000. 
6,775,703 B1 8/2004 Burns ......................... TO9,228 Roman, Ed and Rickard Oberg, The Technical Benefits of EJB and 
6,779,017 B1 8, 2004 Lamberton J2EE Technologies over COM+ and Windows DNA, Dec. 1999, pp. 
6,804.686 B1 10/2004 Stone et al. 1-24. 
6,826,601 B2 11/2004 Jacobs ........................ 709/217 Hewlett-Packart, HP Application Server Technical Guide Version 
6,832,238 B1 12/2004 Sharma 8.0, 1999-2001. 
6,836,889 B1 12/2004 Chan Duvos, Enrique and Azer Bestavros, An Infrastructure for the 
6,854,120 B1 2, 2005 LO Dynamic Distribution of Web Applications and Services, Department 
6,898,587 B2 5/2005 Messinger of Computer Science, Boston University, Dec. 2000, pp. 1-22. 
6,944,785 B2 9, 2005 Gadir et al. Lauer, C., Introducing Microsoft.net, http:web.archive.org/web/ 
6,963,857 B1 1 1/2005 Johnson 20020702162429/http:www.freevbcode.com/ShowCode. 
6,983,465 B2 1/2006 Mandal et al. asp?ID=2171 (Jul. 2, 2002). 
7,089,584 B1 8, 2006 Sharma Kooijmans, Enterprise JavaBeans for z/OS and OS/390 WebSphere 
7,100,195 B1 8, 2006 Underwood Application Server V4.0; 2001, p. 31-78, 185-240. 
7,171,692 B1 1, 2007 DeMello Bainbridge, “CICS and Enterprise JavaBeans.” 2001, v. 40, No. 1, p. 
7.203,756 B2 * 4/2007 Tapperson .................. 709,227 1-19. 
7,240,101 B2 7, 2007 Rich Stearns, B., “Using the J2EE Connector Architecture Common Client 
7,454,492 B2 11/2008 Bauer et al. Interface.” Sun Systems, Apr. 2001, pp. 1-10. 
7,484.224 B2 1/2009 Potter et al. Marinescu, F. "BEA Weblogic Server 6.1 has been released.” 
7,506,342 B2 3/2009 Mousseau et al. TheServerSide.com, p. 1. 
7,546,606 B2 6/2009 Upton Flowers, B., “The J2EE Connector Architecture.” Sys-Con Media, 

2001/0042073 A1 11/2001 Saether et al. May 1, 2001, pp. 1-4. 
2002fOO73188 A1 6, 2002 Rawson Rana, A., et al., “Java Junction.” Intelligent Enterprise, Apr. 16, 2001, 
2002/0107934 A1 8/2002 Lowery pp. 1-9. 
2002/0147961 A1 10, 2002 Charters Stanhope, J., “J2EE Connector Architecture Promises to Simplify 
2002/016 1839 A1 10, 2002 Colasurdo Connection to Back-End Systems.” Giga Information Group, Nov. 
2002/016 1860 A1* 10, 2002 Godlin et al. ............... TO9,219 16, 2000, pp. 1-4. 
2002/0184444 Al 12/2002 Shandony Sarathy, V., et al., “Integrating Java Applications with the Enterprise.” 
2002/0188591 A1 12/2002 SantOSuOSSO EAI Journal, May 2001, pp. 50-55. 
2003, OO18732 A1 1/2003 Jacobs Rodoni, J., “The J2EE Connector Architecture's Resource Adapter.” 
2003/0037181 A1 2/2003 Freed Sun Systems, Dec. 2001, pp. 1-12. 

  



US 7,698,434 B2 
Page 3 

BEA Systems, WebLogic Server 6.1, Sep. 15, 2001. Sun Microsystems, Enterprise JavaBeansTM Specification, Version 
Gamma, E., al., “Design Patterns Elements of Reusable Object- 2.0, Aug. 14, 2001. 
Oriented Software.” Addison-Wesley Publishing Company, 1998, 
pp. 293-303. * cited by examiner 



U.S. Patent Apr. 13, 2010 Sheet 1 of 7 US 7.698,434 B2 

100 

Application Server 110 

Application 
Component 

Resource Adaptor 120 

Enterprise information System 130 
(EIS) 

F.G. 1 

  

    

  

  

  

  

  

  



U.S. Patent Apr. 13, 2010 Sheet 2 of 7 US 7.698,434 B2 

Application 
Component 
Terminates 

220 

Garbage Collector 
Calls Connection 

Object 

  

  

  

    

  



U.S. Patent Apr. 13, 2010 Sheet 3 of 7 US 7.698,434 B2 

310 

Component Using 
Y - Connection? 

N 

      

  



U.S. Patent Apr. 13, 2010 Sheet 4 of 7 US 7.698,434 B2 

(star) 405 
Pre-Population 410 400 
Configured? 

Pre-Populate 
Connection Pool 420 

Configure 
Connection 430 
Crefet 

Receive 
Connection 440 
Request 

Abs to Fulfil 
Y Request? 450 

N 

Create New N New Mgmt 
Managed Connections > 

Connections Maximum? 

Log Warning 
f Requst 
Failed 

  

  

  

  

    

  

  



U.S. Patent Apr. 13, 2010 Sheet 5 Of 7 US 7.698,434 B2 

510 500 

Usage Decreased? 

Decrease 
Connection Pool 

  



U.S. Patent Apr. 13, 2010 Sheet 6 of 7 US 7.698,434 B2 

610 600 

onitor Connection 620 
Type 

Leaked de 

View Leaked View ide 
Connections Connections 

630 

Delete N 
Connections? 

Y 

Delete 
Connections 

Monitor Additional Y 
Connections 

N STO 

Gend) 680 

F.G. 6 

  



U.S. Patent Apr. 13, 2010 Sheet 7 Of 7 

tristantiate 
Resource Object 720 

TSO) Principal 

740 

750 

Add Credentials to 160 Subject File 

US 7.698,434 B2 

    

  

  

  

  



US 7,698,434 B2 
1. 

J2EE CONNECTOR ARCHITECTURE 

CLAIM OF PRIORITY AND CROSS REFERENCE 
TO RELATED APPLICATIONS 

The present application claims the benefit of priority under 
35 U.S.C. S 119(e) to U.S. Provisional Patent Application 
entitled IMPROVED J2EE CONNECTOR ARCHITEC 
TURE', application Ser. No. 60/406,745, filed on Aug. 29, 
2002, which application is incorporated herein by reference. 
The current application hereby incorporates by reference the 
material in the following patent applications: U.S. patent 
application Ser. No. 60/354,738, entitled “J2EE COMPO 
NENTEXTENSION ARCHITECTURE filed Feb. 6, 2002: 
and U.S. patent application Ser. No. 60/397.916, entitled 
SYSTEMAND METHOD FOR IMPLEMENTING J2EE 
CONNECTOR ARCHITECTURE filed Jul 23, 2002. 

COPYRIGHT STATEMENT 

A portion of the disclosure of this patent document con 
tains material which is Subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc 
tion by anyone of the patent document or the patent disclo 
sure, as it appears in the Patent and Trademark Office patent 
file or records, but otherwise reserves all copyright rights 
whatsoever. 

BACKGROUND OF INVENTION 

1. Field of the Invention 
The current invention relates generally to connector archi 

tectures, and more particularly to a J2EE connector architec 
ture for managing resource adapters. 

2. Background 
The JavaTM 2 Platform, Enterprise Edition (J2EE), from 

Sun Microsystems, Inc. of Palo Alto, Calif., defines a stan 
dard for developing multi-tier enterprise applications. AJ2EE 
Connector Architecture is useful for the integration of J2EE 
compliant application servers with at least one enterprise 
information system (EIS). There are typically two parts to this 
architecture: an EIS vendor-provided resource adapter and an 
application server to which the resource adapter plugs in. The 
J2EE Connector Architecture also defines a common client 
interface (CCI) that can be used to access an EIS. A CCI 
defines a client API for interacting with heterogeneous EIS 
systems, which enables application components and Enter 
prise Application Integration (EAI) frameworks to drive 
interactions across heterogeneous EIS systems using a com 
mon client API. 
A resource adapter is a segment of code that represents an 

Enterprise Information System (EIS). More specifically, a 
resource adaptor is a system-level software driver used by an 
application server, such as WebLogic Server, to connect to an 
enterprise information system (EIS). A resource adapter 
serves as the “J2EE connector.” The connector architecture 
implementation Supports resource adapters developed by EIS 
Vendors and third-party application developers that can be 
deployed in any application server Supporting the Sun Micro 
systems J2EE Platform Specification, Version 1.3. Resource 
adapters contain the Java, and if necessary, the native com 
ponents required to interact with the EIS. 
J2EE Connector Architecture is an architecture for inte 

grating J2EE-compliant application servers with enterprise 
information systems (EIS). There are two parts to this archi 
tecture: an EIS vendor-provided resource adapter and an 
application server, such as WebLogic Server, by BEA Sys 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
tems of San Jose, Calif., to which the resource adapter plugs 
in. This architecture defines a set of contracts, such as trans 
actions, security, and connection management, that both the 
resource adapter and application server need to Support to 
communicate with one another. The J2EE Connector Archi 
tecture also defines a Common Client Interface (CCI) for EIS 
access. The CCI defines a client API for interacting with 
heterogeneous EIS’s. 
What is needed is an improved connector architecture 

implementation system that is more efficient and allows an 
administrator to monitor and make changes to connections 
within the application server as needed. 

SUMMARY OF INVENTION 

A connector architecture implementation is provided that 
includes advantageous features in connection management as 
well as other areas. In one embodiment of the present inven 
tion, connector leaks may be detected both automatically and 
manually. Connection pools for an EIS may be configured to 
more efficiently fulfill connection requests. In one embodi 
ment, connection pools are pre-populated when the applica 
tion server starts up. In another embodiment, connection 
pools that experience reduced usage are decreased in size. 
Managed connections may be recycled to fulfill connection 
requests. In another embodiment, managed connections may 
be monitored by an administrator. A user may monitor con 
nections such as leaking connections and idle connections 
and delete connections as needed. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is an illustration of a connector architecture in 
accordance with one embodiment of the present invention. 

FIG. 2 is an illustration of a method for automatically 
detecting a connection leak in accordance with one embodi 
ment of the present invention. 

FIG.3 is an illustration of a method for manually detecting 
a connection leak in accordance with one embodiment of the 
present invention. 

FIG. 4 is an illustration of a method for configuring a 
connection pool in accordance with one embodiment of the 
present invention. 

FIG. 5 is an illustration of a method for controlling con 
nection pool shrinkage in accordance with one embodiment 
of the present invention. 

FIG. 6 is an illustration of a method for monitoring con 
nections in accordance with one embodiment of the present 
invention. 

FIG. 7 is an illustration of a method for storing credentials 
in accordance with one embodiment of the present invention. 

DETAILED DESCRIPTION 

A connector architecture implementation is provided that 
is J2EE compliant and provides improved connection man 
agement capabilities. In one embodiment of the present 
invention, the connector architecture implementation pro 
vides a connector leak detection mechanism. The connector 
leak detector may detect connection leaks both automatically 
and manually. In another embodiment of the present inven 
tion, the connectorarchitecture implementation is operable to 
pre-configure a connection pool and manage the growth and 
reduction of a connection pool. The connector architecture 
implementation may be pre-configured by pre-populating the 
connection pool. Connection pool growth may be managed 
by connections that are created in response to connection 



US 7,698,434 B2 
3 

requests. A connection pool in the present invention may also 
be configured to reduce the number of connections in the 
pool. In one embodiment, the number of connections is 
reduced if the connection demand decreases. Password cre 
dentials allowing access to services are used to provide addi 
tional connection management. 

FIG. 1 is an illustration of a connector architecture imple 
mentation 100 in accordance with one embodiment of the 
present invention. Connector architecture implementation 
100 includes application server 110, resource adapter 120, 
enterprise information system (EIS) 130, and application 
component 140. In one embodiment of the present invention, 
the connectorarchitecture implementation is compatible with 
J2EE. The connector architecture implementation may be 
implemented in an application server and an EIS-specific 
resource adapter. 
A resource adapter is a system level software driver used by 

an application server to connect to an EIS. A resource adapter 
may serve as a connector. Resource adapters contain the Java 
and any native components required for the application server 
to interact with the EIS. In one embodiment, the connector 
architecture of the present invention Supports resource adapt 
ers developed by EIS vendors and third party application 
developers that can be deployed in any application server 
supporting the J2EE platform specification. An EIS provides 
the information infrastructure for an enterprise and offers a 
set of services to its clients. The services may be exposed to 
clients as local or remote interfaces, or both. An application 
component may be an EJB, JSP or servlet that is deployed, 
managed, or executed on an application server. 
The connector architecture implementation 100 of FIG. 1 

further includes system level contracts. System level con 
tracts exist between the resource adapter and the application 
server. The contracts may relate to connection management 
or other aspects of the connector architecture. Connection 
management contracts allow an application server the ability 
to provide a pool of connections to underlying EISS that 
enable application components to connect to an EIS. In one 
embodiment of the present invention, the connection man 
agement relates to connection pool configuration, connection 
pool management, and connection management. 

In connector systems, multiple applications may attempt to 
establish a connection with the EIS. One connection pool 
holds all available managed connections to this EIS. Some 
times, after connecting to and using the services of an EIS, 
connector applications may not close the connection object. A 
connection object that is not closed after the application has 
completed using the connection object is considered a leaking 
connection. 

In one embodiment of the present invention, leak detection 
is performed automatically by leveraging the garbage collec 
tor. FIG. 2 illustrates a method 200 for detecting connection 
leaks automatically. Method 200 begins with start step 210. 
Next, an application component terminates in step 220. Once 
an application component terminates, the connection object 
used by the application component becomes de-referenced. 
After the application component terminates, the garbage col 
lector calls a connection object in step 230. In one embodi 
ment, the “finalize() method of a connection object is called 
by the garbage collector. Operation then continues to step 
240. In one embodiment, the connector architecture imple 
mentation then determines if the application component 
closed the connection object at step 240. If the application 
component was determined to have closed the connection, or 
if the application server determines it is not safe to close the 
connection object, (for example, another application has a 
reference to the connection object), the method proceeds to 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
end step 260. If the application component did not close the 
connection object and the application server confirms that it is 
safe, then the connection object is closed in step 250. In one 
embodiment, the server automatically closes the connection 
object in step 250. The server may close the connection object 
by calling the resource adapter’s “ManagedConnection. 
cleanup() method. The application server then operates as it 
would have if it received a “ConnectionClosed event upon a 
proper closure of the application component connection. 
After closing the connection object in step 250, the method 
ends in step 260. 

In some instances, a leak detection system in addition to the 
automatic leak detection system is desirable. For example, the 
garbage collector may not call the finalize() method of the 
connection object used by the faulty application component. 
In this situation, additional leak detection methods would be 
useful for establishing increased connection management 
efficiency. 
The connector architecture implementation of the present 

invention also provides for a manual leak detection mecha 
nism. The manual leak detection mechanism may be advan 
tageous in detecting leaks when the garbage collector is unre 
liable and in the case of multiple connection object 
references. A method 300 for manual leak detection per 
formed within the connector architecture of the present inven 
tion is shown in FIG. 3. Method 300 begins with start step 
310. Next, in step 320 the connector architecture implemen 
tation determines whether the application component is 
actively using the connection it has requested. An active con 
nection is a connection wherein an application component is 
currently using a requested connection object by calling 
methods on it or calling a request for a connection object 
request. If the application component connection is deter 
mined to be active, then operation returns to step 320. If an 
application component connection is determined to be inac 
tive, operation continues to step 330. In step 330, a mecha 
nism is triggered to monitor the time an application compo 
nent connection is inactive. In one embodiment, the 
mechanism is a timer. The timer measures the last time a 
particular connection was active. In one embodiment, a timer 
may be configured to transpire in seconds for each connection 
associated with an EIS. In step 340, if an inactive connection 
becomes active while the timer transpires, operation contin 
ues to step 320. While the connection remains inactive, opera 
tion continues to step 350 and the timer continues to transpire. 
In step 360, it is determined whether or not the timer has 
reached a particular value. In one embodiment, the particular 
value is configured as a maximum idle time parameter. The 
maximum idle time parameter is a period of time in which 
after it has elapsed, the connection is considered expired. If 
the value of the timer is less then the maximum idle time 
parameter in step 360, operation continues to step 340. If the 
value of the timer has reached the maximum idle time param 
eter, then operation continues to step 370. In step 370, the 
connector architecture implementation determines if there is 
a demand for a managed connection. In one embodiment, a 
demand for a managed connection exists if the connection 
pool has reached a maximum capacity of managed connec 
tions and the connector architecture implementation receives 
a managed connection request. If either no connection request 
has been made or a connection request has been made but the 
connection pool may fulfill the request, then operation 
regarding the particular connection object request continues 
to step 340. If the connection pool has no available allocated 
connections and a connection request is made, operation con 
tinues to step 380. In step 380, the connector architecture 
implementation closes the connection object associated with 



US 7,698,434 B2 
5 

the timer that has exceeded the maximum idle time parameter. 
The managed connection is now available to service connec 
tion requests. Operation of the manual leak detection system 
then ends in step 390. 

In addition to detecting connection leaks, the connector 
architecture implementation of the present invention may 
configure a connection pool for an EIS to aid in fulfilling 
connection requests. In one embodiment, the connection pool 
can be configured for pre-population. Pre-populating the con 
nection pool with an initial number of managed connections 
is done upon startup of the application server and connector 
architecture implementation of the present invention. This 
pre-population prevents experiencing a decrease in perfor 
mance when the managed connections are later created upon 
request. FIG. 4 illustrates a method 400 for configuring a 
connection pool in accordance with one embodiment of the 
present invention. Method 400 begins with start step 405. 
Next, the connector architecture implementation of the 
present invention determines whether or not an EIS is con 
figured in Such a manner as to pre-populate the connection 
pool associated with the EIS with an initial number of man 
aged connections. If the connection pool is not to be pre 
populated, then operation continues to step 430. If pre-popu 
lation is to occur, then operation continues to step 420. In step 
420, the connection pool is populated with managed connec 
tions. In one embodiment, the number of managed connec 
tions used to pre-populate a connection pool may be config 
ured by a pre-population parameter. The parameter is specific 
to a particular connection pool associated with the resource 
adapter. In one embodiment of the present invention, the 
pre-population parameter is an initial-capacity element, 
located in an XML formatted descriptor file of the connector 
architecture implementation of the present invention. The 
initial capacity element specifies how many managed con 
nections a connection pool should be pre-populated with at 
the deployment of a resource adapter with the application 
server. In one embodiment of the present invention, pre 
population of managed connections may not be done where 
runtime parameters are required. 
A connection increment parameter is then configured in 

step 430. The connection increment parameter represents the 
number of managed connections that are created at the time a 
connection request is made. The connection increment 
parameter allows a user to control the connection pool growth 
and when to incur the performance and processing costs of 
connection pool growth. In one embodiment, the connection 
increment parameter is a capacity-increment element located 
in an XML formatted descriptor file of the connector archi 
tecture implementation of the present invention. 
A connection request is then received in step 440. In one 

embodiment, a connection request may involve an applica 
tion component requesting a connection object to an EIS 
through the resource adapter. Once a connection request is 
received, the connector architecture implementation deter 
mines whether the request may be fulfilled with existing 
available managed connections in Step 450. If the connection 
request can be fulfilled, then operation continues to step 480. 
If the connection request can not be fulfilled with existing and 
available managed connections, the operation continues to 
step 460. 

In step 460, it is determined whether creating a new man 
aged connection will exceed a maximum allowed number of 
managed connections. In one embodiment, the maximum 
number of allowed connections is determined by a maximum 
capacity element located in an XML formatted descriptor file 
of the connector architecture implementation of the present 
invention. The maximum number of managed connections 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
may be configured for a single EIS. In one embodiment, more 
than one managed connection may be created when a con 
nection request is received and no available managed connec 
tions exist. In particular, the number of managed connections 
created may correspond to the capacity-increment parameter. 
Thus, if the connection increment parameter has a value of 
three, then the connector architecture implementation will 
attempt to add three managed connections if a connection 
request can not be fulfilled by existing and available managed 
connections. In any case, if adding managed connections in 
the amount of the connection increment parameter does not 
bring the number of managed connections associated with an 
EIS over the maximum managed connections allowed for that 
EIS, then operation continues to step 465 where the new 
managed connections are created within the connection pool. 
If adding the new managed connections does bring the num 
ber of managed connections over the maximum allowed for 
an EIS, then operation continues to step 470. 
The connection architecture implementation determines 

whether or not managed connections can be recycled in step 
470. In one embodiment, recycling includes terminating con 
nection objects that are determined to be inactive. The con 
nector architecture implementation may determine a connec 
tion object is inactive according to the method 300 for 
manually detecting connection leaks as illustrated in FIG. 3 
and discussed above. In particular, in step 370, if it is deter 
mined that the timer associated with a connection has tran 
spired and a connection request is received in step 370, then 
the connection object will be closed in step 380 and recycled 
for use in step 470. If no connection objects exist that can be 
recycled, then operation continues to step 475 where a warn 
ing is logged and the connection request fails. If existing 
connection objects may be recycled to meet the connection 
request, the connection request is fulfilled in step 480. Opera 
tion then ends in step 495. 

In addition to managing the growth of a connection pool, 
the connector architecture implementation of the present 
invention can manage the reduction of the connection pool. In 
one embodiment of the present invention, the connector 
architecture implementation may monitor the managed con 
nection usage and reduce the size of the connection pool if the 
usage has decreased. A method 500 for reducing the number 
of managed connections in accordance with one embodiment 
of the present invention is illustrated in FIG. 5. Method 500 
begins with start step 510. Next, the connector architecture 
implementation of the present invention determines whether 
managed connection usage has decreased in step 520. If the 
managed connection usage has decreased through the use of 
fewer managed connections or in Some other manner, then 
operation continues to step 530. If the managed connection 
usage has not decreased, then operation returns to step 520. In 
step 530, the connector architecture implementation deter 
mines if the managed connection usage decrease has existed 
for a specified period of time. In one embodiment of the 
present invention, the period of time may be configured as a 
parameter in the shrink-period-minutes element located in an 
XML formatted descriptor file of the connector architecture 
implementation. The period of time is associated with a single 
connection pool associated with the resource adapter. If the 
usage decrease has not existed for the specified period of time, 
then operation returns to step 520. If the usage decrease has 
existed for the specified period of time, operation continues to 
step 540. The size of the connection pool is decreased in step 
540. In one embodiment, at least one managed connection is 
closed to reduce the size of the connection pool. The connec 
tor architecture implementation may close a number of man 
aged connections to establish a number of managed connec 



US 7,698,434 B2 
7 

tions to efficiently satisfy ongoing connection requests in one 
embodiment, connection object usage is monitored by taking 
"Snapshots of connection object usage at intervals of time, 
the Snapshots triggered by a monitor timer. When shrinking is 
detected as a result of a comparison of the Snapshots, or if the 
connector architecture determines shrinking should occur, 
the connection pool is reduced to the higher of the initial 
capacity of the pool or the average usage level. In one embodi 
ment, the method for reduction of the connection pool may be 
enabled or disabled by the user. In one embodiment, reduc 
tion of the connection pool may be enabled by configuring a 
shrinking-enabled element located in an XML formatted 
descriptor file of the connector architecture implementation. 
The connector architecture implementation may also pro 

vide for monitoring of managed connections. In one embodi 
ment of the present invention, a user may view and monitor 
managed connections. Types of managed connections to view 
and monitor may include leaked and idle connections. In one 
embodiment of the present invention, a connection-profiling 
enabled element located in an XML formatted descriptor file 
of the connector architecture implementation indicates 
whether a connection pool should store the call stacks of 
where each connection is allocated. In one embodiment, if the 
connection-profiling-enabled element is configured to be 
true, the stacks for leaked, and idle connections can be viewed 
and a user may debug components that fail to close connec 
tion objects. A method 600 for monitoring of connections in 
accordance with one embodiment of the present invention is 
illustrated in FIG. 6. Method 600 begins with start step 610. 
Next, a user may choose between viewing information 
regarding and monitoring leaked connections and idle con 
nections. If leaked connections are to be viewed, then opera 
tion continues to step 630. In step 630, a user may view 
information regarding leaked connections. The leaked con 
nection information may be displayed through a console, a 
log window, or some other manner. The leaked connection 
information may include run time information of leaked con 
nections, profile information. In one embodiment, profile 
information displayed includes dates from the call stack of 
the connection object usage. This data helps the administrator 
determine which application or application component 
caused the leak. If idle connections are to be viewed, then 
operation continues to step 640. In step 640, idle information 
Such as profile information for idle connections may be 
viewed by a user. After viewing connection information in 
steps 630 or 640, a user may then decide to delete a connec 
tion object in step 650. In one embodiment, a leaked connec 
tion object may be deleted if the connection object has 
exceeded a specified idle time and is not involved in a trans 
action. If no connection is to be deleted, then operation con 
tinues to step 670. If a connection object is to be deleted, then 
operation continues to step 660 where the connection object 
is deleted. Next, operation continues to step 670 where a user 
may view more connections or end the monitoring of man 
aged connections. If a user wishes to further monitor man 
aged connections, operation continues to step 620. If no fur 
ther monitoring of managed connections is to occur, 
operation ends at step 680. 
The connector architecture implementation provides Secu 

rity management. In one embodiment of the present inven 
tion, credentials are stored in a javaX.securtiy.auth. Subject 
object to comply with Sun's J2EE Connector Specification, 
version 1.0 final release. A method 700 for storing credentials 
in accordance with one embodiment of the present invention 
is shown in FIG. 7. Method 700 begins with start step 710. 
Next, an EIS resource object is instantiated in step 710. In one 
embodiment, a weblogic.security. Service.EISResource 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
object is instantiated with the following command: new EIS 
Resource(java.lang. String applicationName, java 
lang. String moduleName, java.lang.String eisName). The 
command is executed from the security management code of 
the WebLogic Server. Next, the initiating principal for the 
connection request is obtained in step 730. In one embodi 
ment, the initiating principal is obtained by querying the 
WebLogic Serversecurity code for the user initiated principal 
associated with the application component making the con 
nection request. Then, credentials for the initiating principal 
are obtained in step 740. In one embodiment, the credentials 
are obtained with the following command: weblogic.securi 
ty.Service. PrincipalAuthenticator(String initiatingPrincipal, 
weblogic.security.Service.Resource eisResource). A Subject 
file is then instantiated in step 750. In one embodiment, the 
file is a javax...Security.auth. Subject. Then, credentials are 
added to the subject file in step 760. In one embodiment, the 
credentials are added to the private set in the credentials with 
the following command:Subject.getPrivateOredentials().add 
(Credential). The Subject file is then completed and method 
700 ends at step 770. 
The connector architecture implementation of the present 

invention is provided that is J2EE compliant and provides 
improved connection management capabilities. In one 
embodiment of the present invention, the connector architec 
ture implementation provides a connector leak detection 
mechanism. The connector leak detector may detect connec 
tion leaks both automatically and manually. In another 
embodiment of the present invention, the connector architec 
ture implementation is operable to pre-configure a connection 
pool and manage the growth and reduction of a connection 
pool. The connector architecture may be pre-configured by 
pre-populating the connection pool. Connection pool growth 
may be managed by connections that are created in response 
to connection requests. A connection pool in the present 
invention may also be configured to reduce the number of 
connections in the pool. In one embodiment, the number of 
connections is reduced if the connection demand decreases. 
Password credentials allowing access to services are used to 
provide additional connection management. 

In addition to an embodiment consisting of specifically 
designed integrated circuits or other electronics, the present 
invention may be conveniently implemented using a conven 
tional general purpose or a specialized digital computer or 
microprocessor programmed according to the teachings of 
the present disclosure, as will be apparent to those skilled in 
the computer art. 

Appropriate software coding can readily be prepared by 
skilled programmers based on the teachings of the present 
disclosure, as will be apparent to those skilled in the software 
art. The invention may also be implemented by the prepara 
tion of application specific integrated circuits or by intercon 
necting an appropriate network of conventional component 
circuits, as will be readily apparent to those skilled in the art. 
The present invention includes a computer program prod 

uct which is a storage medium (media) having instructions 
stored thereon/in which can be used to program a computer to 
perform any of the processes of the present invention. The 
storage medium can include, but is not limited to, any type of 
disk including floppy disks, optical discs, DVD, CD-ROMs, 
microdrive, and magneto-optical disks, ROMs, RAMs. 
EPROMs, EEPROMs, DRAMs, VRAMs, flash memory 
devices, magnetic or optical cards, nanosystems (including 
molecular memory ICs), or any type of media or device 
Suitable for storing instructions and/or data. 

Stored on any one of the computer readable medium (me 
dia), the present invention includes software for controlling 



US 7,698,434 B2 

both the hardware of the general purposef specialized com 
puter or microprocessor, and for enabling the computer or 
microprocessor to interact with a human user or other mecha 
nism utilizing the results of the present invention. Such soft 
ware may include, but is not limited to, device drivers, oper 
ating systems, and user applications. Ultimately, Such 
computer readable media further includes software for per 
forming the methods of the present invention. 

Included in the programming (Software) of the general/ 
specialized computer or microprocessor are software mod 
ules for implementing the teachings of the present invention, 
including, but not limited to, a connector architecture imple 
mentation according to the processes of the present invention. 

Other features, aspects and objects of the invention can be 
obtained from a review of the figures and the claims. It is to be 
understood that other embodiments of the invention can be 
developed and fall within the spirit and scope of the invention 
and claims. 
The foregoing description of preferred embodiments of the 

present invention has been provided for the purposes of illus 
tration and description. It is not intended to be exhaustive or 
to limit the invention to the precise forms disclosed. Obvi 
ously, many modifications and variations will be apparent to 
the practitioner skilled in the art. The embodiments were 
chosen and described in order to best explain the principles of 
the invention and its practical application, thereby enabling 
others skilled in the art to understand the invention for various 
embodiments and with various modifications that are suited 
to the particular use contemplated. It is intended that the 
scope of the invention be defined by the following claims and 
their equivalence. 

The invention claimed is: 
1. A computer implemented method comprising: 
providing a connection in a pool of connections to enable 

an application component to connect to an Enterprise 
Information System (EIS), wherein the application com 
ponent executes on a web application server that com 
plies with the J2EE Connector Architecture (JCA); 

measuring, with a timer, a last time that the connection was 
active; 

determining whether the connection has reached a maxi 
mum idle time, wherein the maximum idle time is con 
figured in a maximum idle time parameter; 

if a value measured by the timer has reached the maximum 
idle time, considering the connection an expired connec 
tion; 

receiving a connection request from an application com 
ponent deployed on the web application server for a new 
connection; 

determining that there are no free connections in the pool of 
connections and that the pool of connections has reached 
a maximum capacity; 

Subsequent to receiving the request for the new connection 
and determining that there are no free connections and 
that the pool has reached the maximum capacity, recy 
cling the expired connection to free the expired connec 
tion; 

assigning the connection that was freed to the application 
component that requested the new connection; 

terminating the application component that was associated 
with the connection, wherein the connection is de-refer 
enced and a finalize method associated with the connec 
tion is called; 

if the application component does not close the connection, 
determining whether another entity has a reference to 
the connection; 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
if the application server determines that no other entities 

have references to the connection, closing the connec 
tion and designating the connection as a leaked connec 
tion; and 

profiling the leaked connection by rendering a call stack, 
wherein the call stack of the leaked connection provides 
information for determining which application failed to 
close the connection, wherein a connection profiling 
enabled element located in an XML formatted descrip 
tor file indicates whether the pool of connections stores 
call stacks of where each connection is allocated. 

2. The computer-implemented method of claim 1, further 
comprising: 

terminating the application component that was associated 
with the connection, wherein the connection is de-refer 
enced and a garbage collector calls a finalize method 
associated with the connection; 

if the application component does not close the connection, 
determining whether it is safe for the application server 
to close the connection; and 

if the application server determines that it is safe to close 
the connection, closing the connection. 

3. The computer-implemented method of claim 1, further 
comprising displaying a call stack of the connection, wherein 
the call Stack of the connection can be used to debug the 
application component if the application component fails to 
close the connection. 

4. The computer-implemented method of claim3, wherein 
displaying the call Stack includes dates from call stacks of the 
connection. 

5. The computer-implemented method of claim 1, further 
comprising monitoring stacks for active, leaked, and idle 
connections. 

6. The computer-implemented method of claim 1, wherein 
recycling the expired connection includes terminating the 
expired connection after the expired connection is deter 
mined to be inactive. 

7. The computer-implemented method of claim 1, wherein 
a connection that is not closed after an application component 
has completed using the connection is considered a leaked 
connection. 

8. A computer-implemented system for detecting connec 
tion leaks, comprising: 

a processor; 
an application server that complies with the J2EE Connec 

tor Architecture (JCA); 
an application component, executable by the processor, 
a resource adapter to enable communication from the 

application server to an enterprise information server 
(EIS); 

a pool of connections, managed by the application server, 
to enable the application component to connect to the 
EIS: 

a garbage collector to recycle connection leaks, wherein 
after the application component terminates and a con 
nection associated with the application component 
becomes de-referenced, the garbage collector calls a 
finalize method associated with the connection, wherein 
after the garbage collector calls the finalize method, if 
the application component has not closed the connec 
tion, determining whether another entity has a reference 
to the connection, and if the application server deter 
mines that no other entities have references to the con 
nection, closing the connection and designating the con 
nection as a leaked connection; 

a call stack that profiles the leaked connection, wherein the 
call Stack of the leaked connection provides information 



US 7,698,434 B2 
11 

for determining which application failed to close the 
connection, wherein a connection profiling enabled ele 
ment located in an XML formatted descriptor file indi 
cates whether the pool of connections stores call stacks 
of where each connection is allocated; and 

an idle timer that allows the application server to measure 
a last time each connection was active, wherein if a value 
measured by the timer has reached the maximum idle 
time, considering the connection an expired connection, 
if an application component makes a request for a new 
connection, and it is determined that there are no avail 
able allocated connections and the pool of connections is 
at maximum size, the application server frees the 
expired connection and assigns the connection that was 
freed to the application component. 

9. The computer-implemented system of claim 8, wherein 
the application server closes the connection by calling a 
method associated with the resource adapter. 

10. The computer-implemented system of claim8, wherein 
the connection is active if the application component is cur 
rently using the connection by calling methods on the con 
nection or the application component is calling a request for 
a new connection. 

11. The computer-implemented system of claim8, wherein 
a connection that is not closed after an application component 
has completed using the connection is considered a leaked 
connection. 

12. A computer-readable storage medium, including 
instructions stored thereon which when read and executed by 
a computer cause the computer to perform steps comprising: 

measuring, with a timer, a last time that a connection was 
active; 

determining whether the connection has reached a maxi 
mum idle time, wherein the maximum idle time is con 
figured in a maximum idle time parameter; 

if a value measured by the timer has reached the maximum 
idle time, considering the connection an expired connec 
tion; 

receiving a request, from an application component, for a 
new connection; 

determining that there are no free connections in a pool of 
connections and that the pool of connections has reached 
a maximum capacity; 

Subsequent to receiving the request for the connection and 
determining that there are no free connections and that 
the pool has reached the maximum capacity, recycling 
the expired connection to free the connection; 

10 

15 

25 

30 

35 

40 

45 

12 
assigning the connection that was freed to the application 

component that requested the new connection; 
terminating the application component that was associated 

with the connection, wherein the connection is de-refer 
enced and a finalize method associated with the connec 
tion is called; 

if the application component does not close the connection, 
determining whether another entity has a reference to 
the connection; 

if the application server determines that no other entities 
have references to the connection, closing the connec 
tion and designating the connection as a leaked connec 
tion; and 

profiling the leaked connection by rendering a call stack, 
wherein the call stack of the leaked connection provides 
information for determining which application failed to 
close the connection, wherein a connection profiling 
enabled element located in an XML formatted descrip 
tor file indicates whether the pool of connections stores 
call stacks of where each connection is allocated. 

13. The computer-readable storage medium of claim 12, 
further comprising: 

terminating the application component that was associated 
with the connection, wherein the connection becomes 
de-referenced and a garbage collector calls a finalize 
method associated with the connection; 

if the application does not close the connection, determin 
ing whether it is safe for the application server to close 
the connection; and 

if the application server determines that it is safe to close 
the connection, closing the connection. 

14. The computer-readable storage medium of claim 12, 
wherein recycling the expired connection includes terminat 
ing the expired connection after the expired connection is 
determined to be inactive. 

15. The computer-readable storage medium of claim 12, 
wherein the application server closes the connection by call 
ing a method associated with a resource adapter. 

16. The computer-readable storage medium of claim 12, 
wherein the connection is active if the application component 
is currently using the connection by calling methods on the 
connection or the application component is calling a request 
for a new connection. 

17. The computer-readable storage medium of claim 12, 
wherein a connection that is not closed after an application 
component has completed using the connection is considered 
a leaked connection. 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 7,698,434 B2 Page 1 of 1 
APPLICATIONNO. : 10/248744 
DATED : April 13, 2010 
INVENTOR(S) : June et al. 

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: 

Title page, Item (56) 
On page 2, under “Other Publications, in column 2, line 3, delete “Techonology, and 
insert -- Technology, --, therefor. 

On page 2, under “Other Publications, in column 2, line 21, delete “Environmens, and 
insert -- Environments, --, therefor. 

Signed and Sealed this 
Eighth Day of March, 2011 

David J. Kappos 
Director of the United States Patent and Trademark Office 

  


