
US 2013 0086113A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0086113 A1

Rutherglen et al. (43) Pub. Date: Apr. 4, 2013

(54) SECURE DATA ACCESSING SYSTEMAND which is a continuation of application No. 09/872,502,
METHOD filed on Jun. 1, 2001, now Pat. No. 7,428,752.

(71) Applicant: WASSAIL GROUP LLC, Wilmington, Publication Classification
DE (US)

(51) Int. Cl.
(72) Inventors: Jason J. Rutherglen, San Francisco, CA G06F 7/30 (2006.01)

(US); Sunil R. Palacherla, Belmont, CA (52) U.S. Cl.
(US); Anthony T. Sziklai, Half Moon CPC G06F 17/30283 (2013.01)
Bay, CA (US); David J. Stanley, Los USPC .. T07/781
Altos Hills, CA (US)

(73) Assignee: WASSAIL GROUP LLC, Wilmington, (57) ABSTRACT
DE (US) A system and method for accessing data located behind a

security mechanism is provided. In the preferred embodi
ment, the system may use the common HTTP protocol and
JDBC drivers. In more detail, a client may execute a Java
applet that generates database proxy objects that are commu
nicated to an application server using the HTTP protocol. The
application server may use a servlet to process the objects and

(63) Continuation of application No. 13/034,767, filed on generate database requests using JDBC drivers so that the
Feb. 25, 2011, which is a continuation of application data is retrieved from the database for the client Java applet
No. 12/098,203, filed on Apr. 4, 2008, now abandoned, without the security problems.

(21) Appl. No.: 13/681,317

(22) Filed: Nov. 19, 2012

Related U.S. Application Data

20 Applicatio
p- SerW&

Clienti wa (AS)
eit i2 S^a YNY

---.

M S. r 8. atabase
Seife
(OS)

Patent Application Publication Apr. 4, 2013 Sheet 1 of 6 US 2013/0086113 A1

A Applicatio
p: Serfs

*R X-> xka s (AS)
22-e- %.

Database
Seiye

(OS)

rare
it

US 2013/0086113 A1 Apr. 4, 2013 Sheet 2 of 6 Patent Application Publication

Patent Application Publication Apr. 4, 2013 Sheet 3 of 6 US 2013/0086113 A1

Appet takes request with object
and method name and parameters

Serviet execites rethod using
Os C city 88 -404

S&eiwet feceives data for
cataase serve -108

sixx

Serviet passes resuits lack to
appiet wia - "P

GRE 3A

Patent Application Publication Apr. 4, 2013 Sheet 4 of 6 US 2013/0086113 A1

20

Ciet

HTTP JDBc
Connection 6

- 30
State eit

Coirectic

State eit :
pic

Prepared Prepared
States ent

-- 3:
Caiase

State efit

- 3.
river

Database Serve

F: G R 33

Patent Application Publication Apr. 4, 2013 Sheet 5 of 6 US 2013/0086113 A1

Appiet Cient s jawa Application
X Server - Port 80

3ta&Se
S&fer x 5.

28

C. :

3.

/3. A? 36
Appet Cient is i- ->

S.S.C. Seifer - to 8
rives X (with JDBC

an an and av- drivers installed)

Socket
crise cities

aiaase
Series. Pat 32 X

FGFRE

Patent Application Publication Apr. 4, 2013 Sheet 6 of 6 US 2013/0086113 A1

&

s
Y 3

S.

S.

S.

US 2013/0086113 A1

SECURE DATA ACCESSING SYSTEMAND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 12/098,203, filed on Apr. 4, 2008 and
entitled “Secure Data Accessing System and Method (now
U.S. Patent Publication No. 2008/0250028 A-1), which is a
continuation of U.S. patent application Ser. No. 09/872,502,
filed on Jun. 1, 2001 and entitled “Secure Data Accessing
System and Method” (now U.S. Pat. No. 7,428,752), the
disclosure of each of which is incorporated herein by refer
ence in its entirety.

FIELD OF THE INVENTION

0002 The invention relates generally to a system for
accessing a computer and its database and in particular to a
system and method for accessing data, such as in a database,
that is protected by/located behind a typical computer Secu
rity system, such as a typical firewall.

APPENDICES

0003. The present application includes several Appendi
ces that are incorporated into the disclosure and are part of the
disclosure. Appendix A is 47 pages long and contains the
Source code of the various Java classes located on the client
computer that are used to implement one embodiment of the
invention. Appendix B is 8 pages long and contains the Source
code of the various Java classes shared by the client computer
and application server computer that are used to implement
one embodiment of the invention. Appendix C is 19 pages
long and contains the Source code of the various Java classes
located on the application server that are used to implement
one embodiment of the invention.

BACKGROUND OF THE INVENTION

0004 Modernly, computer systems are being put into
place wherein the software and data on which the computer
operates may be located at one or more disparate computer
resource locations. In addition, the databases being accessed
by the software may be located on a different computing
resource and may be, for example, located on a corporate
intranet so that the resources to implement and execute the
software are distributed. To accomplish this distributed soft
ware execution, it is necessary to be able to track the locations
of the various resources on the Internet, such as by the IP
addresses, so that the Software resources and the data from
one or more databases can be retrieved as needed. For
example, pieces of the Software code may be located at one
location while the data associated with the software code may
be distributed across the Internet.
0005. The problem with the distributed computing set
forth above is that the computer network of most corporate
users is behind a security device or system, Such as a firewall,
and/or subject to proxy servers and other security measures
that prevent users from easily accessing databases outside of
the firewall. The purpose of the firewall is to protect the
computer network from hackers outside of the system trying
to get into the computer network and to avoid a user behind
the firewall from downloading a potentially dangerous piece
of code from the Internet. In addition, if the software is
written in Java, the applet downloaded to the client can only

Apr. 4, 2013

interact with the server from which it was downloaded which
is a fundamental security feature of Java. Thus, trying to
connect through the Internet to distant servers cannot be done
using Java applets with most protocols. The exception is the
common hypertext transfer protocol (HTTP). By way of
background, the HTTP protocol is the protocol used for all
Internet traffic and it has over 10,000 ports. By specification,
each port is traditionally used for certain types of traffic. For
example, Oracle(R) database connections traditionally use port
1521. The general unprotected port for web-site Internet traf
fic, by default, is port 80. In addition, secure HTTP protocol
traffic (HTTPS) is typically communicated over port 433.
0006. In approaching this problem, there are well known
typical approaches such as those described in the Sun Micro
systems, Inc. Java 2.0 Enterprise Edition (“J2EE) specifica
tion. In particular, the application server would make the call
to the database server and then the application server would
obtain the results and create business objects on the applica
tion server itself. The objects would then be sent to the
requesting client. In this mode of operation, the objects would
he resident on the application server and would then be avail
able for other clients to use if they so chose to do so. This has
the benefit of not duplicating effort, because the application
server would maintain the objects for all clients to use, and the
client would transport the objects back as needed. While this
may be efficient, it has certain disadvantages for a dynamic
distributing computing environment. Such as: (1) it requires
that the applet downloaded to the client contain the classes
necessary to create the intended objects; and (2) the server
must install the same classes on itself for creating the business
objects intended for the client. These disadvantages make the
system much less dynamic, and create other problems. For
example, different clients may create different objects from
the same resultset that is returned from the database and the
classes required to create the objects for all of the clients may
not be available to the application server.
0007. In more detail, the clients that need a database con
nection may not be able to connect to the server from behind
secure corporate intranets. Since corporate intranets, in gen
eral, are secured with firewalls, proxies and other security
measures, the clients will have to tunnel through them to gain
access to the external resources. Furthermore, most firewalls
do not allow direct Internet Protocol (IP) traffic between the
Internet and the internal network they are protecting. Thus,
most organizations behind firewalls have a proxy server run
ning that allows people inside the organization to access the
Web. For a distributed computing environment across the
Internet, it is necessary to allow users to access multiple
databases through these security measures. Thus, it is neces
sary to provide a system and method for accessing data from
behind a corporate security system so that the distributed
computing system can be efficiently operated and for permit
ting a user behind a firewall to execute a distributed computer
application, and it is to this end that the present invention is
directed.

SUMMARY OF THE INVENTION

0008. The secure data accessing system and method in
accordance with the invention overcomes the limitations
associated with the typical systems. The secure data access
ing system may be particularly useful for a distributed appli
cation/computing environment in which there is a need for
extensive access to a variety of database servers. To accom
plish the communication by tunneling through a security

US 2013/0086113 A1

mechanism, such as a firewall, the well known HTTP proto
col is used in combination with JDBC drivers. The JDBC
drivers use a set of unique parameters for connecting to the
database server. In addition, database servers, like all other
servers, require the clients to connect to them through a par
ticular port using client libraries and/or JDBC drivers. In
particular, all JDBC drivers are required to conform to the
JDBC API specifications developed by Sun Microsystems,
Inc. Since all JDBC drivers are written to Java specifications,
all of them must implement the JDBC interfaces.
0009. In a distributed application environment that uses
Java, the applet or the stand alone application needs to com
municate with the database server. Java applets are only
allowed to communicate with the server that the applet is
originated/downloaded from due to security restrictions
imposed by the Java language specification. In a distributed
application environment, it is more likely that the database
server might be on a different server than the application
server and these servers might not be reachable by the client
using protocols other than HTTP. In addition, JDBC drivers
provided by the database vendors connect to the database
using Sockets. Furthermore, applets are restricted from mak
ing direct socket connections to other servers for the same
security concerns. Corporate intranets need to provide access
to the Internet to their users and, by default or de facto stan
dard, the HTTP protocol has become the preferred protocol.
Therefore, the best way for the applets to communicate with
the server in accordance with the invention would be to use
the HTTP protocol in combination with JDBC drivers in
order to be as compatible as possible with the proxy servers
and network firewalls.

0010. The HTTPJDBC driver system in accordance with
the invention may also be used to solve a problem faced by
systems that need to communicate with a database through a
firewall, such as web services. The system may also be used
effectively with other systems including peer-to-peer sys
tems, in jini services, mobile devices with Small footprints
and any other usage that requires a thin client to obtain data
from a data storage device through a firewall, a network
address translator (NAT) or other security mechanism, in a
dynamic powerful way. For example, a dynamic application
system that may need to be connected to multiple databases
that may be located behind security mechanisms such as the
dynamic application system described at http://www.verti
calsuite.com.

0011 Unlike a more traditional approach using the J2EE
specification (J2EE stands for Java 2.0 Enterprise Edition),
the HTTPJDBC driver in accordance with the invention has
significant advantages. Using the HTTP JDBC driver, the
application server may create a result and sends that to the
client who then creates the objects as needed at the client. The
advantages to this approach become apparent in a dynamic,
web-services type of environment in that it allows clients to
be very thin, and to unilaterally determine the way in which
they receive data. The client then has the power to dynami
cally determine how it wants the results presented or treated.
For example, the client could choose to create its own busi
ness objects, or it could simply manipulate the data and/or
present it to the user.
0012. The HTTPJDBC driver system in accordance with
the invention may affect/be beneficial to many different exist
ing systems. For example, the driver system in accordance
with the invention may be used to improve dynamic IP
addresses. In particular, where the addresses or locations are

Apr. 4, 2013

dynamic or not known to the client computer, the HTTP
connections could still be made with the results being sent
back via HTTP. This aspect may be crucial to a web services
type of environment. The change in the IP address or the
location of the database server will not in anyway effect the
client as long as the application server can connect and the
database server is able to accept the connection. The change
in the configuration of the database will not effect the HTTP
JDBC driver setup. For example, no additional classes are
needed and no additional configuration for the application is
required. The client only has to pass the right set of changed
parameters for connecting which will be used by the applica
tion server to connect to the database.
0013 The driver system may be used by intelligent agents
to obtain database access. In addition, jini services are built
using Java components and, therefore, this driver technology
could be used in a jini services environment. The driver sys
tem in accordance with the invention may also benefit a
distributed computing system. In particular, the technology
would support distributed computing generally, across the
Internet and through firewalls and other security mechanisms.
(0014) The HTTPJDBC driver system in accordance with
the invention may also be used to enhance peer-to-peer sys
tems. In particular, the driver technology may be critical in
Supporting peer-to-peer communications where a peer needs
to go through a firewall to get data from a data storage device.
In fact, in Project Jxta (http://www.Jxta.org), which is Sun
MicroSystems’s peer-to-peer specification and platform,
there are specific discussions about firewalls and network
address translator's (NATs) and the fact that you need one
peer on the outside and one peer on the inside of the firewall,
both being in the same peer group and able to transfer code
and/or data. The driver system in accordance with the inven
tion may also benefit N-tiered or multi-tiered architectures
wherein, regardless of the number of “clients’ and “servers'
or the number of connections, the driver system can be used to
transport data sets across firewalls as many times as may be
required in a complex series of connections.
(0015 The HTTPJDBC driver system in accordance with
the invention may be used with object-oriented databases and
other new data storage devices. For example, the driver sys
tem will Supportany new data storage device, including exist
ing types such as object-oriented databases (CloudScape), so
long as the proper drivers exist which can be loaded onto the
application server. This could become of critical importance
in a web services environment, because the client would not
be altered by the addition of new data storage devices or
means. In addition, data could be pulled from Such databases
as PointBase.com (a Java relational database that has such a
Small footprint it can sit on a device. Such as a router or
vending machine).
(0016. The HTTPJDBC driver system in accordance with
the invention may also be used with jini services or Web
services. In an environment of the future built onjini services
or web services, an application would be pulled together
dynamically as components being assembled on the fly to
create one-time applications. The driver system could act as a
component to the services to provide dynamic access to exter
nal disparate data sources. Alternatively, the driver of this
invention could be provided as its own service.
0017 Thus, in accordance with the invention, a system for
accessing data located behind a security mechanism is pro
vided. The system comprises a client that executes a first
application having a series of instructions that includes

US 2013/0086113 A1

accessing data from a database wherein the client creates one
or more database proxy objects that are used to indirectly
access the database. The system further comprises an appli
cation server that executes a second application that interacts
with the database and has one or more corresponding objects,
the application server further comprising one or more drivers
that interface with a database so that the application server
requests data from the database. The system causes the client
to interact with the database through the application server So
that a security mechanism protecting the client does not inter
rupt the accessing of the data from the database.
0018. The system comprises a client that executes a Java
applet having a series of instructions to access data from a
database and creates proxy objects in response to the database
request. The system further comprises a Java application
server that executes a servlet that receives the calls generated
by the proxy objects on the client and further generates data
base calls using the JDBC drivers.
0019. The application server further comprises a mecha
nism to send back the results and the unique name of the
object, if a new object is created on the server, or the resultset
created by the database call. Such a system comprised of the
above-mentioned components will make it possible for the
applet to communicate with the database through the appli
cation server with the help of proxy objects, and by doing so
the security mechanism protecting the client does not inter
rupt the database access and the JDBC functionality is
achieved.
0020. In accordance with yet another aspect of the inven

tion, a system for accessing data located behind a security
mechanism is provided wherein the system comprises a client
having means for creating one or more proxy objects in
response to a database request. The system further comprises
an application server comprising means for processing the
calls received from the database proxy objects and means for
using one or more drivers to generate one or more database
requests based on the calls from the proxy objects wherein the
client interacts with the database through the application
server so that a security mechanism protecting the client does
not interrupt the accessing of the data in the database.
0021. In accordance with yet another aspect of the inven
tion a system for accessing data by a Java applet wherein the
data is located behind a security mechanism is provided. The
system comprises a client that executes a Java applet having a
series of instructions to access data from a database and
creates proxy objects in response to the database request. The
system further comprises a Java application server that
executes a servlet that receives the calls generated by the
proxy objects on the client and further generates database
calls using the JDBC drivers. The application server further
comprises a mechanism to send back the results along with a
unique name of the object created by the database call, if any,
or sends the resultset back to the client. Such a system com
prised of the above-mentioned components will make it pos
sible for the applet to communicate with the database through
the application server so that a security mechanism protecting
the client does not interrupt the database access.

BRIEF DESCRIPTION OF THE DRAWINGS

0022 FIG. 1 is a block diagram illustrating a preferred
embodiment of the secure data accessing system in accor
dance with the invention;
0023 FIG. 2 illustrates more details of the system shown
in FIG. 1;

Apr. 4, 2013

0024 FIG. 3A illustrates a method for data accessing in
accordance with the invention using the HTTP protocol and
JDBC drivers;
0025 FIG. 3B is a block diagram illustrating the method
for using the HTTP JDBC driver in accordance with the
invention;
0026 FIG. 4 illustrates a typical JDBC client database
connection;
0027 FIG. 5 illustrates a connection to a database using
the HTTPJDBC driver in accordance with the invention; and
0028 FIG. 6 illustrates an application server being used as
the client for another server in accordance with the invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

0029. The invention is particularly applicable to a distrib
uted application system that uses Java applets, the HTTP
protocol and JDBC drivers and it is in this context that the
invention will be described. It will be appreciated, however,
that the system and method in accordance with the invention
has greater utility. Such as to other computing systems
wherein users behind security mechanisms need to access
external data or where users need to access data located
behind a security mechanism. The invention may also be
implemented with other protocols or with other programming
languages without departing from the scope of the invention.
0030 FIG. 1 is a block diagram illustrating a preferred
embodiment of the secure data accessing system 20 in accor
dance with the invention. In more detail, the system may
include one or more clients 22 (Client 1, Client 2, ..., Client
N), and a distributed computer application system 24. The
various elements of the system, such as the clients 22 and the
distributed computer application system 24 may be intercon
nected together by a communications network 26 that permits
all of the elements of the system to communicate with each
other using a communications protocol. In a preferred
embodiment, the communications network may be a com
puter network and more preferably the Internet and the World
WideWeb. In a preferred embodiment, the communications
over the communications network may be carried out using a
well known protocol. Such as the hypertext transfer protocol
(HTTP). It may also be carried out using a secure communi
cations protocol Such as the well known secure hypertext
transfer protocol (HTTPS).
0031. Each client 22 may permit an authorized user of the
system (e.g., someone with the appropriate access privileges)
to access the resources of the distributed computer applica
tion system 24 as will be described in more detail below. Each
client 22 may comprise a typical computer system that may
include a display device 32, such as a CRT or LCD, a com
puter chassis 34 and one or more input/output devices 36,
such as a keyboard 38 and a mouse 40 as shown. Each client
may also include an output device. Such as a printer (not
shown) for generating a hard copy of the results of the dis
tributed computer application being executed in accordance
with the invention. The reports may also be displayed on the
display device 32. The computer chassis 34 may further
include a central processing unit (CPU) 42 that controls the
operation of the computer system, a temporary memory 44.
such as DRAM or SRAM, that stores one or more pieces of
Software, Such as the operating system, that are being cur
rently executed by the CPU and a persistent storage device 46,
such as a hard disk drive, optical disk drive, tape drive or the
like, that permanently stores data and Software. In order to

US 2013/0086113 A1

access the distributed computer application system in accor
dance with the invention, a browser application 48 may be
loaded from the persistent storage device into the memory as
shown and executed by the CPU.
0032. The browser application, as is well known, permits
the computer to connect to and communicate over the Internet
26 with other computer systems, such as the central computer
application system 24. For example, the browser may com
municate using a typical protocol. Such as the well known
HTTP protocol or the HTTPS secure protocol as described
above. In general, the browser initiates a communications
connection with the computer system and then establishes the
protocol. In the preferred embodiment, the browser 48 per
mits a user of the client system 22 to access the system,
execute one or more distributed applications using the dis
tributed computer application system and receive output from
the distributed applications. Typically, the browser may dis
play a series of user interface Screens, such as web pages, that
permit the user to interact with the distributed computer appli
cation system. In a preferred embodiment, the client must
have, at a minimum, the Java runtime environment which
typically includes the ability to download applets, to create
resultset objects, and to communicate over the http protocol,
among other things.
0033. The distributed computer application system 24
may be one or more typical server computer systems in the
preferred embodiment wherein the one or more servers are
interconnected together and communicate with each other
over the communications network 26. In this manner, the
combination of servers required to generate a distributed soft
ware application may be dispersed from each other and, when
necessary, connect to each other and transfer data between
each other using the communications network. In the
example shown, the distributed computer application system
may include an application server 60 and a database server 62.
In operation, a Java applet may be downloaded from the
application server to the client so that it can be executed by the
client. The applet may generate requests that are communi
cated to the database server over the Internet to connect to and
retrieve the data from different databases. In a preferred
embodiment, the applet to be downloaded to the client should
contain the HTTP-JDBC client classes (See Appendix A and
the description below) and the common classes shared by
both the server and client (See Appendix B and the descrip
tion below). To accomplish this, the system may include a
routing database that maintains the properties (e.g., URLs) of
the various resources needed to execute the distributed com
puter application.
0034. In a preferred embodiment, the application server 60
will be a Java application server which will have, at a mini
mum, an http server, a servlet engine, and the ability to host
applets, among other things. The server should have the
JDBC drivers for the database that the client tries to connect
to and the servlet that the client communicates with. The
server should also have the common set of classes required by
our HTTP-JDBC driver (See Appendix Band the description
below) as well as the serverside classes (See Appendix C and
the description below).
0035. As shown, the database server 62 and CLIENT iiN
may be located behind a corporate security mechanism 64.
Such as a firewall that controls the access of users to the
resources located behind the security mechanism and con
trols the access that users behind the security mechanism have
to the Internet. Thus, as shown, the database server and the
application server are separated from each other by the Secu
rity mechanism that makes the execution of the distributed

Apr. 4, 2013

computer application more difficult. In a preferred embodi
ment, the database or dataSource should be able to accept
connection from the Java application server using the appro
priate JDBC drivers, with little or no interference from secu
rity measures or firewalls. In addition, the client (CLIENT
iN) and the distributed computer application system 24 are
also separated from each other by the security mechanism
that also makes the execution of the distributed computer
application more difficult as will now be described.
0036. In particular, the clients 22 that need a database
connection to the database server 62 to execute a distributed
computer application may not be able to connect to the server
from behind secure corporate intranets. In more detail, since
corporate intranets in general are secured with firewalls,
proxies and other security measures, the clients will have to
tunnel through them to gain access to the external resources.
The problem is that most firewalls do not allow direct Internet
Protocol (IP) traffic between the Internet and the internal
network they are protecting. For example, most organizations
behind firewalls have a well known proxy server running that
allows people inside the organization to access the Web and,
database servers.

0037. The distributed computer application system typi
cally needs extensive access to a variety of database servers
that contain the necessary data to execute the distributed
computer application. In general, JDBC drivers use a set of
unique parameters for connecting to the database server and
database servers, like all other servers, require the clients to
connect to them through a particular port using client libraries
and/or JDBC drivers. All JDBC drivers are required to con
form to the JDBC API specifications developed by Sun
Microsystems, Inc. Since all JDBC drivers are written to Java
specifications all of them must implement the JDBC inter
faces. The distributed computer application system in accor
dance with the invention connects and accesses data from
databases using the JDBC drivers developed by the database
vendors or third party developers. While connecting to the
database server from the client seems to be an easy solution,
JDBC drivers provided by the database vendors connect to the
database using Sockets and Java applets are restricted from
making direct socket connections to other servers.
0038. In a distributed computer application environment,
the Java applets that may be used by the distributed computer
application system to execute the application, need to com
municate with the database server 62. However, Java applets
are only allowed to communicate with the server that the
applet is originated or downloaded from due to security
restrictions. In addition, in a distributed computer application
environment, it is more likely that the database server might
be on a different server than the application server as shown in
FIG. 1. These servers may only be reachable by the client
using the HTTP protocol. Thus, connecting to the different
servers may be difficult and not all the servers are reachable
by the clients because they may be behind firewalls and proxy
SWCS.

0039 Thus, to establish a connection between the client
and the one or more servers of the distributed computer appli
cation system, the HTTP protocol is the common protocol
used to communicate with the servers and the best way for the
applets to communicate with the server is by using HTTP
protocol to be as compatible as possible with the proxy serv
ers and network firewalls. The details of this type of secure
connection will now be described in more detail.

US 2013/0086113 A1

0040 FIG. 2 illustrates more details of the system shown
in FIG. 1 wherein the client 22 is executing a database dis
tributed computer application and needs to access data stored
on a database server 62 wherein the client is behind a corpo
rate firewall 64. In more detail, each client 22 may further
include a database client application 70, that may be one or
more Java applets downloaded from the application server 60
and being executed by the client computer and a database
proxy object 72 that communicates with the application
server 60 as shown to request data. The application server 60
may further include a set of Java servlets 74 (which are Java
applets that are executed by the application server and whose
user interface is served to the client computer as one or more
web pages as is well known) and a set of database drivers 76
that access the data stored in the database server 62. In the
example herein, the database drivers may be JDBC drivers.
The set of servlets 74 help create the connections between the
client and the application server and the database server,
execute the database statements/queries on the application
server, and return the database query results back to the client.
The client interacts with the application server using the
standard HTTP protocol.
0041. In a preferred embodiment, other Java classes
required both on the server and the client are the javax.sql
package provided by JavaSoft. The common classes required
by both the client and the server should be the same version of
compiled classes as a requirement for serializing and deseri
alizing. Now, an example of the method for accessing data in
accordance with the invention will be described.

0042 FIG. 3A illustrates an example of a method 100 for
accessing data in accordance with the invention. In particular,
an applet being executed by the client as part of the database
client application 70 may make a request to the servlet 74
using the HTTP protocol with an object name, a method
name, and the parameters required to execute the method in
step 102. The Servlet 74 in turn responds to the request by
executing the method in Step 104 (including accessing the
database server). The servlet may then receive the results of
the query in step 106 and pass the results back to the client in
step 108 using the HTTP protocol. In accordance with the
invention, HTTP-JDBC clients (as described below) together
with Java's JDBC 2.0 API extension classes provide a better
way for the applet to communicate with the servlets and
provide the clients with the database driver functionality.
Now, each portion of the system shown in FIG. 2 will be
described in more detail.

0043. To execute the distributed computer application in
accordance with the invention, the application server 60 in
accordance with the invention must have all of the drivers for
the databases since these will not be downloaded to the clients
for use by the applets. Thus, each client will not make con
nections directly to any database server so that the security
problems may be avoided. In turn, the applets on the client
may communicate with the servlets to do all of the database
calls. The set of appropriate proxy objects 72 will communi
cate with the actual objects on the server as necessary.
0044. On the serverside, these driver classes 76 require the
set of servlets 74 for creating and managing the objects cre
ated by calls from the HTTP-JDBC clients. These servlets use
Java's reflection to reflect the specified public method of the
object, and execute it, and return the results to the client. If a
resultset is to be returned to the client, then a javax.sql.
CachedRowSet object is created and returned to the client.
The CachedRowSet object implements both a resultset and

Apr. 4, 2013

serializable interfaces which makes it easy to serialize it for
transporting it back to the client and the client can treat it as a
resultset.

0045 All the objects created on the server are added to a
hashtable with their unique name as the key. When the client
makes a request to execute a method on an object by passing
the unique name, the servlet gets it from the hashtable. These
objects are available on the server as long as the session is
active. Once the session is invalidated, the objects created in
the session are closed, if they need to be closed, and they are
removed from the session and the database connection is
disposed off thus freeing all the resources associated with the
database connections. These closed objects are then removed
from the hashtable and will be available for garbage collec
tion.

0046 Each client 22 uses the typical HTTP protocol to
communicate with the application server. The classes pro
vided by the database vendor may not be serializable and may
not be passed to the server and Vice-versa. Thus, in this model,
the client 22 may create the set of proxy objects 72 whose
methods will mirror the methods of the JDBC objects created
on the server. The client may then use these proxy objects 72
to communicate with the servlets 74. A new HTTP session is
created on the client for each call to the DriverManager.
connect() object. This object is the proxy for the actual
session object on the server used later to execute methods and
create statements on the server.

0047. Since there is always a delay in connecting to the
server via HTTP, the calls from the client to the server are
batched for better performance. When a batch of statements
are sent to the server for execution, the server executes them
in the sequence they are created and returns the resultset along
with the unique name of the actual object on the server. The
proxy object 72 holds this name for contacting the object at a
later time for executing another batch of methods on the same
object. Depending on the method executed, the server will
return either a resultset Such as a unique name of a new object
(e.g., Connection, Statement, PreparedStatement etc.) cre
ated on the server, or a null object. All the exceptions thrown
by the server are serialized and sent to the client, if they
should occur. If the execution of the method results in creating
a new object on the server, then the unique name of the object
is returned to the client. By overriding the finalize() method,
as the proxy objects are garbage collected on the client, the
actual objects will also be removed from the server and are
also garbage collected.
0048 Since the actual objects are created and held on the
server, as required by the client, the proxy objects on the client
are responsible for releasing them when they are not required.
The calling of the close()method on the JDBC statement
object releases all the resources held by the object. The servlet
on the server maintains a list of active objects and it becomes
the job of the servlet to remove all the references of the closed
object to release all the resources on the server. When a close(
)method is called on an object, the servlet closes the object
and also removes it from the list. If an object has a close(
)method, then the proxy object’s finalize() method is over
ridden to call close() if it is not already closed. The finalize(
)method on Java object is called when the object is out of
Scope of the executing program, and has no references to it.
This approach allows for better cleanup of inactive objects on
the server, thereby minimizing the memory requirements and
maximizing the server performance. The functioning of the
HTTP JDBC driver in accordance with the invention will be
described in more detail now with reference to FIG. 3B.

US 2013/0086113 A1

0049 FIG. 3B is a block diagram illustrating a preferred
embodiment of the method for using the HTTP JDBC driver
in accordance with the invention wherein the client 22, the
application server 60 and the database server 62 are shown
along with the communications network 26. The diagram
illustrates the interaction of the various Java classes that
implement the method. To understand this diagram, a brief
description of the Java classes is now provided. A more
detailed description of the Java classes is provided below.
0050 Client Classes
0051. These classes are downloaded as part of the applet to
the client. These classes are used to create proxy objects for
communicating with the server. These classes are responsible
for serializing the object that encapsulates the database calls
and de-serialize the results received from the server.
0052 Common Classes
0053. Since the classes that implement the JDBC inter
faces are not serializable, the client needs to communicate
with the server using serialized objects. For serialization to
work, some of the same classes are needed, for serializing and
deserializing, on both the client and server. These set of
common classes are to be installed on the server, and the same
classes are to be downloaded to the client along with the
applet. These set of classes also consist of JDBC 2.0 exten
sion classes.
0054 Server Classes
0055. These classes are available on the application server
and delegates the database calls between the database server
and the applet. These classes primarily consist of a servlet and
the supporting classes for processing the HTTP-JDBC calls
from the client. These classes are responsible for de-serializ
ing the object that encapsulates the database calls, executes
the database call using the JDBC driver installed on the
server, and returning back the results by serializing them.

Operation of Objects

0056 While client and server objects function in isolation,
the objects created using common classes are transported
between the applet and the servlet. The serialized objects are
tunneled through using HTTPbetween the client and the Java
application server. When a query is executed which causes to
return a table of data, java.sql. ResultSet object is created and
returned. The server side classes of the HTTP-JDBC driver
also makes use of the JDBC extension classes like javax.sql.
CachedRowSet, which is sent back to the client from the
server. Java.sql. ResultSet interface do not extend java.io. Se
rializable interface and so may not be capable of serializing.
So, to solve the problem with serializing result sets to the
client we create a CachedRowSet object from the result set
and serialize it and return to the client.
0057 The reason for creating proxy objects is because the
objects created on the server when a database call is made are
not transportable to the client as a Java object. For an object to
be transportable it should be able to be serialized and de
serialized. The server application creates a javax.sql. Cached
RowSet from the java.sql.ResultSet.javax.sql.Cached
RowSet creates a serializable object from the java.sql.
ResultSet object and since this also implements java.sql.
ResultSet interface, the client application can just treat it as an
object of type java.sql.ResultSet. There are many factors to
consider in determining whether or not to transport objects
and, in some instances, transporting objects is simply not
viable. In these and other instances, it may be better to use
proxy objects. Therefore, in the preferred embodiment of the
invention, certain objects are transported and certain objects
are proxied, as discussed herein.

Apr. 4, 2013

0058. Returning to FIG.3B, the different steps performed
during the secure data access in accordance with the invention
using the HTTPJDBC drivers are shown as numbers inside of
boxes (e.g., 1-6) wherein there may be interactions between
more than one object or class during each step. For example,
in the first step, the HTTPJDBCConnection, the HTTPJDB
CPreparedStatement, the HTTPJDBCStatement, the
HTTPJDBCCallableStatement and the HTTPJDBCDriver
communicate with the HTTPJDBCSession class as shown.
0059. The following steps are performed wherein the
interaction of the objects and classes are shown in FIG. 3B.
0060) 1. An object of type InCobject is created if it is a
single call. A MethodList object is created if the call can be
batched wherein the MethodList object consists of one or
more InObjects for executing in a particular sequence on the
SeVe.

0061 2. When a statement is executed on the client, the
InObject is serialized and sent to the server for execution by
the HTTPJDBCSession object which sets up the object for
execution on the server.
0062. 3. The HTTPJDBCSession object calls the servlet
(JDBCServlet) and passes the InObject to it. The Servlet
receives the InCbject along with the name of the actual object
to execute the method on and the session in which the actual
object exists. The servlet then retrieves the actual object from
the list using the name and executes the method on the object.
0063 4. The Servlet receives the return value from the
actual object after executing the method.
0064. 5. The Servlet returns the value back to HTTPJD
BCSession over the communications network using the
HTTP protocol.
0065. 6. The HTTPJDBCSession object returns the value
back to the proxy object which generated the method. The
proxy object returns the results back to the calling program.
0066. In more detail, the first step in a JDBC application is
to create a database connection. This is done by loading the
class of the appropriate driver. By doing so, all the connec
tions are made by specifying a URL that will use the appro
priate driver to make a connection. When an application
wants to use the HTTP-JDBC driver, the HTTPJDBCDriver
class is loaded. While making the connection the URL to be
specified may have the protocol as httpjdbc or httpsidbc.
When a connection is created using this HTTP-JDBC driver
the HTTPSession sends the URL and properties to connect to
the database to the server. The connection is made on the
server and the Connection object is given a unique name and
is added to the list of objects on the server. This unique name
may be sent back and the proxy object of type HTTPJDBC
Connection is created on the client and the unique name may
be the name of the newly created proxy object. Then the
application on the client may use the connection to execute
the sql statements.
0067. HTTPSession object on the client, created when a
driver is loaded, contacts the JDBCServlet on the application
server and sends the InCbject or MethodList object for pro
cessing. Application may start using the HTTPJDBCConnec
tion object just like a JDBC connection object. It may start
executing various methods on the Connection object, just like
in a typical JDBC application. When a method called by the
application is to return a result then the proxy object will send
the method(s) to the HTTPJDBCSession. HTTPJDBCSes
sion object then makes a connection to the servlet on the
server and sends the method(s) in one call. The JDBCServlet
executes all the methods on the object in the same sequence as

US 2013/0086113 A1

they are called on the client and returns the results to the
HTTPJDBCSession object which in turn may return this back
to the proxy object as a return value. Since the application that
made the call on the proxy object is expecting a return value,
the proxy object returns it to the application.
0068. The JDBCServlet will use the unique name of the
object to get the object from the list and execute the method,
or sequence of methods on the object. Since the object on the
server are JDBC objects, these objects are responsible for
performing the required actions by connecting to the database
and returning the values back. The JDBCServlet send back
the OutObject which has the result after executing the method
(s) and also the unique name if the servlet results in creating
a new JDBC object on the server.
0069. The table below illustrates an example of the key
proxy objects and other key client-side objects of the
HTTPJDBC driver, in the left column, and the corresponding
server-side objects of the typical JDBC driver, in the right
column. The purpose of the following table is to show a
relative comparison between typical key JDBC driver objects
and the key objects of the present invention in order to dem
onstrate a comparison of function and the relative differences.

TABLE 1.

Client Proxy Classes Conventional JDBC Classes

HTTPJDBCDriver java.sql. Driver
HTTPJDBCConnection java.sql. Connection
HTTPJDBCStatement java.sql. Statement
HTTPJDBCPrepared Statement
HTTPJDBCCallableStatement
HTTPJDBCDatabaseMetadata
CachedRowSet

java.sql. Prepared Statement
java.sql. CallableStatement
java.sql. DatabaseMetadata
java.sql. resultset

0070. An example using the HTTP-JDBC Driver is shown
below as a piece of code.

// creates a Connection object on the server HTTPJDBCConnection
connection = HTTPJDBCDriverconnect(URL, properties);
-- start batch
HTTPJDBCPrepared Statement pstmt =
connection.prepareStatement(Stringstmt);
pstmt.setString (1, String);
pstmt.setInt(2, int);
pstmt.setDate(3, Date);
ResultSet rset = (ResultSet)pstmt.execute(Query();
// Cached RowSet object is returned
pstmt.close();
rset.close()
-- end batch.

0071 Now, a technique for downloading the drivers in
accordance with the invention will be described. The distrib
uted computer application system requires a set of classes that
are to be downloaded as part of the applet to the clients. The
servlets must be registered on the server with a Servlet con
tainer. The registering of a servlet will deploy the servlet each
time a server is started or restarted. A set of initial arguments
can be provided to the servlet when it is registered. Some
servlet containers allows the registered servlets to work in the
security framework of the server, by defining access controls.
In addition, all of the drivers must be installed on the server
and made available to the servlets. The drivers may be loaded
by the servlet when required.

Apr. 4, 2013

0072 The details of the various Java classes used in the
preferred embodiment will now be described. In the attached
Appendices (Appendix A, Appendix B and Appendix C), the
Source code for the various novel classes being described
herein is provided. The server side classes may include vari
ous classes. For example, the serverside classes may include
a JDBCServerlet wherein this servlet, that is registered on the
server, is called from the client with the method or batch of
methods to be executed on the application server and return
the results back to the client. The server may also include a
ServerSessions class which is an object on the server created
for each client session that is responsible for holding the
JDBCServerSession objects (described below) created by the
servlet. The server may also include a ServerSessions class
which holds the active JDBCServerSession object that is
created for each HTTPJDBCSession on the client. The
JDBCServerSession object maintains all of the objects cre
ated for a session in a list. This class has the methods to close
an object, if it can be closed, and remove it from the list. A
SQLServer class is a particular implementation showing how
to connect to a SQLServer database, depending on the prop
erties provided by the client using the appropriate driver. The
server may also include an Oracle class which is a particular
implementation showing how to connect to a Oracle data
base, depending on the properties provided by the client using
the appropriate driver. The server may also include a DBCon
nectionFactory which is used by the JDBCServlet to create
connections to different databases and return them as type
java.sql.Connection. The server may also include a DBVen
dor class that provides a common interface for implementing
how to connect to a database using the driver provided by a
database driver vendor.

0073. In a preferred embodiment, there may be a number
of shared classes that are shared between the client and the
server. These classes may include an InCbject which is a class
that is responsible for creating the types for each parameter
and is sent to the server along with the values for the param
eters. The servlet takes this object and finds the correct object
from the list depending on the session name and object name.
The server then executes the method this object represents
and returns the value back to the client. An object of the type
InObject is created for each method call. The classes may
further include a MethodList class that extends java. util. Ar
rayList and holds all the methods to be executed as a batch.
Each element in this list is of type InCbject. When the server
completes executing the batch it adds a name to this Meth
odList and sends back to the client along with the unique
name. A NullObject is also included in the common objects
since a null value cannot be serialized and transported back to
the client. In particular, this object will be returned when a
method call results in returning a null object. The common
classes may further include an OutObject which is returned to
the client along with a unique name and the resultset.
0074. In a preferred embodiment, there may be a number
of client classes that reside on the client. These classes may
include a HTTPJDBCCallableStatement class that extends
java.sql. PreparedStatement and implements the java.sql.
CallableStatement interface. This proxy object is created on
the client when the HTTPJDBCConnection prepareCall(...
) is executed. The actual object of type CallableStatement is
created on the server and the unique name is sent back to the
proxy object on the client which holds it. The client may also
include a HTTPJDBCConnection class that extends JDBCS
tub (see below) and implements java.sql.Connection inter

US 2013/0086113 A1

face. This proxy object is created on the client when the
HTTPJDBCDriverconnect(. . .) is executed. The actual
object of type.java.sql.Connection is created on the server and
the unique name is sent back to the proxy object on the client
which holds it. The client may further include a HTTPJDB
CDatabaseMetaData class that extends JDBCStub and imple
ments java.sql. DatabaseMetaData interface. This proxy
object is created on the client when the HTTPJDBCConnec
tion.getMetalData() is executed. The actual object of type
DatabaseMetaData is created on the server and the unique
name is sent back to the proxy object on the client which holds
it. The client further includes a HTTPJDBCDriver class that
implements the java.sql. Driver interface. All of the connec
tions created using this driver will be of type HTTPJDBCCo
nnection. This follows the standard procedure for writing
JDBC driver java.sql. Driver specifications from Java Soft.
This creates a HTTPJDBCSession on the client and also
opens a communication channel with the server for executing
all JDBC calls.

0075. The client may further include a HTTPJDBCPre
paredStatement class that extends HTTPJDBCStatement and
implements java.sql. PreparedStatement interface. This proxy
object is created when the HTTPJDBCConnection.prepar
eStatement(. . .) is executed. The actual object of type
PreparedStatement is created on the server and the unique
name is sent back to the proxy object on the client which holds
it. A HTTPJDBCSession is the object that is responsible for
serializing and deserializing the InCobject or the MethodList
depending on the type of call that is made and sent to the
server and the OutObject or CachedRowSet object that is sent
back. A HTTPJDBCStatement is a class that extends JDBC
Stub and implements javasql. Statement interface. This proxy
object is created when the HTTPJDBCConnection.creat
eStatement() is executed. The actual object of type Statement
is created on the server and the unique name is sent back to the
proxy object on the client which holds it. A JDBCStub is a
client side class only that has a set of methods that is extended
by any class that needs to hold a unique name. Now, to better
understand the invention, the differences between the typical
JDBC driver and the HTTP JDBC driver in accordance with
the invention will now be described.

0076. The differences between the typical JDBC driver
and the HTTPJDBC driver in accordance with the invention
will illustrate the advantages and benefits of the HTTPJDBC
driver in accordance with the invention. For example, the
applet requirements for connection to a database is different.
In particular, for the typical JDBC drivers, the drivers have to
be downloaded to the client along with the applet. This is
problematic since the drivers may be bulky and the client may
take a longtime to download all of the required classes to start
using the driver. If the client needs to connect to different
databases with different drivers, then all of the compatible
drivers have to be downloaded at invocation of the applet. If
the database does not have a pure JDBC driver, then addi
tional software may be required to be installed on the client
with the applet is invoked. Using the HTTPJDBC drivers in
accordance with the invention, only a small set of classes
needs to be downloaded along with the applet to the client. In
addition, since connecting to multiple databases is made pos
sible on the serverside, none of those drivers to connect to the
multiple databases needs to be downloaded to the client.
Thus, the HTTP JDBC driver alone will make it possible to
connect to different database servers. This model in accor
dance with the invention will even support JDBC drivers

Apr. 4, 2013

which require additional software, since they will be installed
on the server itself instead of the client. The HTTP JDBC
driver in accordance with the invention provides the faster
downloading of applets to the clients since these drivers make
the clients thin, when it comes to communicating with the
database servers.

(0077. The typical JDBC drivers also differ from the HTTP
JDBC drivers in their protocol requirements. In particular, the
JDBC drivers typically use proprietary protocols for commu
nicating with the server so that each vendor may have differ
ent network protocol requirements. Thus, each different data
base may require its own protocol and hence must be
downloaded to the client applet. In contrast, the HTTP JDBC
driver uses the HTTP protocol to proxy the calls over HTTP
to the application server layer. Then, the JDBC drivers avail
able on the server are responsible for communicating with the
database server and returning the results. The HTTP JDBC
driver in accordance with the invention thus requires no spe
cial configuration at the client level. In addition, no matter
what protocol the driver actually uses, that specific protocol is
handled by the application server and the protocol is only
utilized between the application server and the database
SeVe.

(0078. The typical JDBC driver also differs in the way that
it may establish a connection as opposed to the HTTP JDBC
drivers. In particular, the typical JDBC drivers connect
directly to the server from the downloaded applet, if all the
security, firewall and proxy requirements are met. The JDBC
connection is based on parameters Supplied to the database
driver. The problem is that each database vendor uses differ
ent protocols and ports to connect to their database servers. In
addition, due to the security restrictions in using applets,
JDBC drivers downloaded to the client along with the applet
may not be able to communicate with the database server
because the database server may not be on the same hostas the
applet that was downloaded to the client so that the applet is
not permitted to communicate with the database server. Fur
thermore, protocol and port requirements to connect to the
database servers may not be satisfied in corporate environ
ments. The HTTPJDBC driver in accordance with the inven
tion connects to the database via the application server layer
and uses the same protocol and port that the client uses to
download the applet thus making it more secure. In addition,
since the application server actually establishes the connec
tion, this process may take less time due to the network speed
and processing capabilities of the servers. The advantages of
bettersecurity and faster response times result from the use of
the standard well known HTTP protocol and its standard
ports, such as port 80.
0079. The typical JDBC drivers and the HTTP JDBC
driver in accordance with the invention also differ in the
technique for sending SQL statements for execution. In par
ticular, for the JDBC driver, when a statement is created, it is
sent to the server immediately for compiling, after which this
is ready for execution. In contrast, for the HTTPJDBC driver,
a statement is sent to the application server, when it needs to
be executed, for compilation and execution in batch mode all
at the same time, using the built in batching techniques
wherein one or more database requests are combined together
in a single request. The batching of the SQL statements
reduces the number of calls to the application server, thereby
improving the performance and speed of the system.

US 2013/0086113 A1

0080. The typical JDBC driver and the HTTPJDBC driver
in accordance with the invention also differ in the way that
they process the results. In particular, for the typical JDBC
driver, the client, after executing the SQL statement, receives
the results from the database and processes them. In contrast,
with the HTTPJDBC driver in accordance with the invention,
the server executes the statement, receives and processes the
results, creates a “serializable' object(CachedRowSet) and
sends it using the HTTP protocol to the client. Thus, the
processing of results and the computation load for the pro
cessing is shared by both server and client so that it may be
executed more quickly. An example of the above differences
will now be described with reference to FIGS. 4 and 5 to
better illustrate those differences.
I0081 FIG. 4 illustrates a typical JDBC client database
connection system 120. In particular, an applet client 122 is
shown that is located behind a firewall 124. With this typical
arrangement, the client applet may include the JDBC drivers
which has the disadvantages set forth above. The system may
also include a Java application server 126 and a database
server 128 that interact with the client in order to retrieve data
from the database. As shown, to accomplish this task using
this typical system and connection, the applet and the Java
application server may interact and communicate with each
other over Port 80 as is well known. Then, the client applet
must communicate directly with the database server using the
JDBC drivers and a typical socket connection using port 1521
which is the usual port for database access. As described
above, this configuration is problematic since the client applet
may be unable to connect to the database server using port
1521 due to the firewall. In the alternative, it is necessary that
the firewall is programmed to allow the applet to connect to
the database server running on port 1521 which leaves a hole
in the security of the firewall that can be exploited.
0082. The following piece of code illustrates how a typical
applet can connect to the database server using JDBC drivers
that are downloaded along with the applet as shown in FIG. 4.

if load the appropriate driver for connecting to the desired database server,
// Oracle Sybase, or SQL Server
Class.forName(dbc.DriverClassName”);
fi connect to the database at the specified URL with the login and
password
// URL string specifies the database host, server name, port other
required parameters to connect to
f the database.
Connection con = DriverManager.getConnection (URL, “my Login,
“myPassword);
Statement stmt = concreateStatement();
Connection con = DriverManager.getConnection (URL, “my Login,
“myPassword);
Statement stmt = concreateStatement();
ResultSet rset = stmt.execute(Query(“select * from table');
While (rset.next()) {

String col1Value = rset.getString(“column1);
fi get the values from the resultset

0083. Now, the HTTPJDBC driver in accordance with the
invention that has the above described advantages and ben
efits over the typical client applet with JDBC drivers will be
described.
0084 FIG. 5 illustrates a connection to a database using
the HTTP JDBC driver system 130 in accordance with the
invention. In particular, an applet client with the HTTPJDBC
drivers 132 is shown behind a firewall 134. In particular, the

Apr. 4, 2013

firewall separates the applet client from an Java application
server 136. To request data from a database server 138, the
applet client may generate an HTTP request that passes
through the firewall to the application server over the typical
port 80. The application server, with JDBC drivers installed in
accordance with the invention, may then generate a database
request and then create a socket connection over port 1521 to
the database server as shown without passing through the
firewall. The application server may receive the response
from the database server and then forward the response back
to the applet client using the typical HTTP protocol. As
shown, with the system in accordance with the invention, the
applet client does not have to attempt to access the database
server directly and the socket connection between the appli
cation server and the database server is not interfered with by
the firewall.

I0085. The following piece of code illustrates how a HTTP
JDBC applet in accordance with the invention requests data
from the database server using the HTTP JDBC drivers in
accordance with the invention.

i? load the HTTP-JDBC Driver using the appropriate class name
Class.forName(“com.VSDV.HTTPJDBC.Client. Driver);
fi connect to the database at the specified URL with the login and
password
if URL string specifies the protocol, database host, server name, port
if other required parameters to connect to the database
// While using the HTTP-JDBC driver the protocol should be httpjdbc or
httpsidbc
Connection con = DriverManager.getConnection (URL, “my Login,
“myPassword);
Statement stmt = concreateStatement();
ResultSet rset = stmt.execute(Query(“select * from table');
While (rset.next()) {

String col1Value = rset.getString(“column1);
fi get the values from the resultset

I0086. The HTTPJDBC driver system in accordance with
the invention may be used with various different JDBC driv
ers. In particular, since the driver system in accordance with
the invention uses proxy objects to communicate with the
application server, any type of JDBC driver can be supported
without any change to the existing code. In other words, all of
the JDBC driver types can be supported without having the
clients download any code so that no installation of the drivers
is required on the client. Thus, the HTTPJDBC driver system
is adaptable and can be used with any past, current or future
JDBC driver. In addition, the servlets of the application server
that are executed when a JDBC call is made can use any type
of driver available for a specific platform. This driver can
support any or all the types of drivers that are available for the
platform that the application server is installed. These types of
drivers may include the following:
I0087. Type 1 JDBC-ODBC bridge plus ODBC driver;
I0088 Type 2 Native-API partly-Java driver;
I0089. Type 3–JDBC-Net pure Java driver; and
0090 Type 4 Native-protocol pure Java driver.
0091 For more information on these types of drivers refer
to the driver types documentation page at http://java. Sun.com/
j2se/1.3/docs/guide/dbc/getstart/intro.html#1018502. Now,
the advantages of using the HTTP JDBC driver system in
different scenarios will be described in more detail.

US 2013/0086113 A1

0092. The downloading of the code to the client as part of
the applet and creating proxy objects on the client for com
municating with the JDBC objects gives the clients enormous
power during runtime. For example, a client may dynamically
connect to any database through the application server if the
suitable drivers are loaded on the server. Since the JDBC
communication is proxied by the client, all that is needed are
the set of parameters for connecting to a database server. If a
JDBC compliant driver can be found for the Java application
server then the client can create a proxy object to communi
cate with the database connection object on the server. In fact,
regardless of the protocol and communication requirements
for a particular database, the client code does not change and
no additional code will need to be downloaded for connecting
to a different database. In addition, the client side of the driver
can delegate calls to any database provided the application
server has the suitable driver for connecting to the database.
Unlike traditional JDBC drivers that are different for each
different database, the HTTPJDBC driver in accordance with
the invention remains the same for accessing any database. A
first scenario that may use the HTTP JDBC driver in accor
dance with the invention is a client/server system.
0093. In this scenario, the database server and the Java
application server are both on the same physical machine?
computing resource. The client that is accessing the applica
tion is behind a firewall. The firewall allows only HTTP
protocol communications and permits connections to a par
ticular port, typically port 80. Both the web service provided
by the Java application server and the database server cannot
listen for incoming requests on the same port and both the
services use different protocols. Thus, even though the applet
is allowed to make Socket connections to the server it is
downloaded from, the firewall might prevent this from occur
ring when using a traditional JDBC driver. Thus, the HTTP
JDBC driver can be very useful in this scenario.
0094. In another scenario, the database server and the
application server are on separate physical machines and have
different IP addresses. This is the scenario that was shown in
FIG. 2 and described above. In another scenario, the applica
tion server may be a client for anotherapplication server. FIG.
6 illustrates a system 140 wherein an application server 142 is
being used as the client for another server in accordance with
the invention. In particular, a client 144 may connect and
communicate with the application server 142 wherein the
client and application server are both on the same side of a
firewall 146. On the other side of the firewall is a second
application server 148 and a database server 150. In more
detail, the Java application server 142 behind a firewall would
become a client to another Java application server 148 that is
outside the firewall and has access to the database 150. This
architecture is very useful for server side programs requiring
database access to disparate data sources wherein all the
security restrictions can be overcome by using the HTTP
JDBC driverinaccordance with the invention. In one embodi
ment, the HTTP JDBC driver system may be used by all the
J2EE components that are provided by the Java application
server that requires database access.
0095. In another scenario, the HTTP JDBC driver in
accordance with the invention may be used effectively in
distributed computing. In particular, the HTTP-JDBC driver
will provide a solution for connecting to disparate and/or
external data sources in a distributed computing environment.
Since the HTTP JDBC driver is based on the most common
Internet communication protocol, the driver can be used by

Apr. 4, 2013

any device in a network that has a Java runtime environment
with HTTP protocol support. In addition, since the technol
ogy for distributed computing using Java components is
emerging and evolving rapidly, any Java component in a Java
enabled distributed environment can efficiently use HTTP
JDBC driver to gain access to disparate data sources
(0096. In another scenario, the HTTPJDBC driver may be
used with Jini Services. The Jini technology enables open
end-to-end solutions for creating dynamically networked
products, services, and applications that scale from device to
the enterprise. The HTTP-JDBC driver may be used to pro
vide dynamic database access to a wide variety of databases
and other data sources that are required by a Jini service.
Since Jini clients can be behind secure networks, the same
problems, explained earlier, arise when trying to connect to
the database using a protocol and a port that is prohibited by
the firewall. Because of the advantages this has over typical
JDBC drivers, explained earlier, this will provide a better
Solution both in terms of downloading a small piece of code
and delegating all the database access to the Java application
server that is outside the firewall and has access to the data
base server. This driver can be Snapped into a service dynami
cally and provide the database access without the communi
cation restrictions of the firewall. In this scenario the database
connectivity parameters may be provided dynamically
depending on the client requiring access to the database.
0097. In another scenario, the driver may be used with
peer-to-peer computing systems such as project JXTA. In
particular, in a Java peer-to-peer environment, the driver in
accordance with the invention may be used to access a dis
parate data source without having to download a lot of classes
while using the most common internet protocol HTTP. Since
JXTA does not specify any language requirements, this driver
can Support any two peers in which one peer has a Java virtual
machine and the other has a Java application server. Since the
HTTP-JDBC driver can work on clients with a small memory
footprint this can be used by virtually any device in a peer
group that has the Java runtime environment. Since JXTA
specification does not specify that the peers be developed in a
particular language for interoperability, this driver can Sup
portany peer in a peer-to-peer environment with a Java virtual
machine and HTTP support. The peers can use this driver to
gain access to a database outside of the firewall by connecting
to a Java application server and delegating all the database
communication to the server side components of the driver
installed on the application server.
(0098. In more detail, Project JXTA addresses the need for
an open, generalized protocol that inter-operates with any
peer on the network including PCs, servers and other con
nected devices. The goal of project JXTA is to develop basic
building blocks and services that would enable innovative
applications for peer groups. A peer can offer a service by
itself or in co-operation with other peers. In a peer-to-peer
service model, if a service should provide access to a data
base, then using this driver would make access to the database
simple and efficient. If a peer was to gain access to a database
outside of the firewall then using this driver would make it
easier to penetrate the firewall using the most widely used
protocol HTTP and port 80. In this environment the param
eters to connect to a database might vary from service to
service or even at a peer level, this driver provides an efficient
way of gaining access to the database because of all its
virtues explained above.

US 2013/0086113 A1

0099. In a peer group one of the peers can provide this
driver as a part of the peer group service to connect to any
database. The peer delivering this service component can
have all the required drivers to connect to different databases
or it can discover these drivers available on the network and
provide the database access to the required database.
0100. Additional details of the HTTP tunneling, servlets
and session tracking used to implement the HTTP JDBC
driver in accordance with the invention may be found at the
locations below. The information located at those links are
incorporated herein by reference.
0101 HTTP Tunneling
0102 http://developer.java.sun.com/developer/technica
lArticles/InnerWorki-ngs/Burrowing/index.html
0103 http://developer.java.sun.com/developer/technica
lArticles/InnerWorki-ngs/JDCPerformTips/
0104 Servlets and Session Tracking
0105 http://java. Sun.com/docs/books/tutorial/servlets/
client-state?sessio-n-tracking.html
0106 http://java. Sun.com/2ee/tutorial/doc/Servlets 11.
html
0107 http://java. Sun.com/docs/books/tutorial/servlets/
TOC.html
0108. While the foregoing has been with reference to a
particular embodiment of the invention, it will be appreciated
by those skilled in the art that changes in this embodiment
may be made without departing from the principles and spirit
of the invention, the scope of which is defined by the
appended claims.

1. (canceled)
2. A method, comprising:
receiving, at an application server computing device, a first

message from a database proxy object on a client com
puting device, the first message including a request for
information from a database;

generating, by the application server computing device, a
database communication object, wherein the database
communication object sends a second message to the
database, the second message including the request for
information;

receiving, by the database communication object, a
response from the database; and

transmitting, by the application server computing device, a
result from the database communication object to the
database proxy object.

3. The method of claim 2, wherein the database is hosted on
a database server computing device different from the appli
cation server computing device.

4. The method of claim 2, wherein a firewall computing
device is configured to prevent a direct connection between
the client computing device and the database.

5. The method of claim 2, wherein the database communi
cation object sends the second message to the database via a
database driver installed on the application server computing
device.

6. The method of claim 5, wherein the database driver is a
JDBC driver.

7. The method of claim 1, wherein the first message uses an
HTTP port and the second message uses a database port
different from the HTTP port.

Apr. 4, 2013

8. A system, comprising:
an application server computing device configured to

accept first messages from database proxy objects on
client computing devices, and further configured togen
erate database communication objects corresponding to
the database proxy objects;

wherein the database communication objects are usable by
the application server to send second messages to a
database server computing device;

wherein the database communication objects are further
usable by the application server to receive responses
including database information from the database server
computing device; and

wherein the database communication objects are further
usable by the application server to respond to the first
messages with the database information.

9. The system of claim 8, wherein the application server
computing device and the database server computing device
are the same computing device.

10. The system of claim 8, wherein a servlet on the appli
cation server device is usable to generate the database com
munication objects.

11. The system of claim 8, wherein the client computing
devices are not configured with drivers to communicate
directly with the database server computing device.

12. The system of claim 8, wherein the application server
computing device is further configured to process the first
messages in a batch by accepting at least two of the first
messages before generating the corresponding database com
munication objects.

13. The system of claim 8, wherein the first messages are
received via an HTTP protocol.

14. The system of claim 8, wherein the database commu
nication objects respond to the first messages with the data
base information via HTTP protocol.

15. A non-transitory computer-readable medium having
instructions stored thereon that, in response to execution by a
computer-based system, cause the computer-based system to
perform operations comprising:

receiving a first message from a database proxy object on a
client computing device, the first message including a
request for information from a database;

generating a database communication object, wherein the
database communication object is usable by the com
puter-based system to send a second message to the
database, the second message including the request for
information;

receiving a response from the database; and
transmitting a result from the database communication

object to the database proxy object.
16. The non-transitory computer-readable medium of

claim 15, wherein the operations further comprise:
transmitting an applet to the client computing device,

wherein the applet is usable by the client computing
device to send the first message to the computer-based
system.

17. The non-transitory computer-readable medium of
claim 15, wherein the operations further comprise:

storing the response from the database in a response object
on the computer-based system; and

transmitting a unique name for the response object to the
database proxy object.

k k k k k

