(19) World Intellectual Property Organization International Bureau ## | 1888 | 1997 | 1997 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 | 1887 (43) International Publication Date 14 December 2000 (14.12.2000) **PCT** ## (10) International Publication Number WO 00/74477 A1 - (51) International Patent Classification⁷: A01K 67/027 - (21) International Application Number: PCT/IT99/00160 - (22) International Filing Date: 4 June 1999 (04.06.1999) - (25) Filing Language: English - (26) Publication Language: English - (71) Applicant (for all designated States except US): IS-TITUTO ZOOTECNICO E CASEARIO PER LA SARDEGNA [IT/IT]; Frazione Tottubella, I-07040 Olmedo (IT). - (72) Inventors; and - (75) Inventors/Applicants (for US only): LOI, Pasqualino [IT/IT]; Strada Statale SS-Fertilia, I-07100 Sassari (IT). CAPPAI, Pietro [IT/IT]; 29, Via Bellini, I-07100 Sassari (IT) - (74) Agents: BARDINI, Marco, Luigi et al.; Società Italiana Brevetti S.p.A., 25, Corso dei Tintori, I-50122 Firenze (IT). - (81) Designated States (national): AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW. - (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). #### Published: With international search report. For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette. 74477 A1 (54) Title: PROCESS FOR RECONSTRUCTING A NON-HUMAN ANIMAL EMBRYO BY NUCLEAR TRANSFER AND PREPARING THE ANIMAL THEREFROM, AND EMBRYOS AND ANIMALS OBTAINED THEREBY (57) Abstract: This invention relates to the generation of animals by the transfer of somatic cells which have been denatured preferably by heating, into enucleated metaphase II oocytes. This invention may be useful for the cloning of mammals including but not being limited to genetically selected and/or transgenic animals. -1- PROCESS FOR RECONSTRUCTING A NON-HUMAN ANIMAL EMBRYO BY NUCLEAR TRANSFER AND PREPARING THE ANIMAL THEREFROM, AND EMBRYOS AND ANIMALS OBTAINED THEREBY ## DESCRIPTION #### 5 FIELD OF THE INVENTION 10 15 20 25 30 35 The present invention relates to the field of the generation of animals, carried out by the reconstruction of the relevant animal embryos by nuclear transfer, including but being not limited to the generation of genetically selected and genetically modified animals. ## BACKGROUND OF THE INVENTION ## 1. Introduction Cloning by nuclear transfer is a classical example of how experimental models designed for basic research have been subsequently adopted by applied research. In fact, the transfer of a differentiated cell into enucleated oocytes was suggested first by Spemann (Spemann H., Embryonic Development and Induction. Hafner Publishing Company, New York, 1938: 210-211) to see whether the totipotentiality of a nucleus from a differentiated cell became restricted during development. A large number of papers stemmed from that suggestion and culminated with the work of Briggs and King (Briggs and King, PNAS 1952, 38: 455-461) where nuclei taken from the intestinal epithelium transferred into enucleated Xenopus eggs developed into viable genetically identical animals, in the proper word, a clone. Technical limitations restricted nuclear transfer to the Amphybia for 30 years before a seminal paper by McGrath and Solter (McGrath and Solter, Science 1983, 220: 1300-1302) initiated the modern development in new era This mammalian cloning. transplantation was given further impetus by its use for cloning embryos from domestic species when nuclei of blastomeres taken from 16 cell stage sheep embryos were competent to support full development till normal lambs after transfer into enucleated oocytes (Willadsen S., 10 15 20 25 30 Nature 1986, 320: 63-65). Since this article was published, many embryologists started to focus on nuclear transfer and several private companies set out for the commercial application of embryo cloning in the cattle industry. - 2 - 2. Description of the procedure for nuclear transfer As a result of the efforts made in these years, the following procedure for reconstructing an animal embryo by nuclear transfer has been developed. ## a. Individuation of a recipient cell Metaphase II oocytes are commonly used as a recipient cytoplast for nuclear transfer, especially when the procedure is carried out on ungulates. However also fertilised one cell zygotes which had had both pronuclei removed can be used in principle as well. When the former procedure is adopted, the oocytes, which can be maturated *in vitro* or *in vivo* and are usually collected after the appearance of the first polar body, are kept in hepes buffered medium containing Cytochalasin B, an inhibitor of microfilaments that confers the oolemma the plasticity necessary for the further manipulation exposed hereinafter. ## b. Enucleation of the recipient cell The oocytes so individuated are in fact usually enucleated prior to the transfer of the nucleus from the donor cell. In the majority of economically important animals, the oocytes ovulates in the metaphase of the second meiotic division with the 2n chromatids arranged in a metaphase spindle underneath the first polar body. The high content of lipids renders the sheep cytoplasm quite dark thus making impossible, in contrast to other species like mouse and rabbit, the localisation of the chromosomes. For that reason, the enucleation was originally carried out with a bevelled pipette by aspirating blindly a portion of cytoplasm underneath the first polar body. 25 30 35 Because quite often the metaphase spindle migrates under the oocyte cortex, specially in aged oocytes, enucleation was successful only in 70-75% of the cases. The introduction of the vital dye Hoechst 33342, which binds reversibly to DNA (Tsunoda et al., J Reprod Fertil 1988, 82: 173-177) allows the precise localisation of the chromosomes after UV exposure and is widely used in nuclear transfer. ## c. Identification of a donor cell 10 Fully or partially differentiated cell or also an undifferentiated cell can be used as a donor cell (the so called "karyoplast": blastomeres from an early embryo or somatic cells). Such a donor cell can be both cultivated in vitro and abstracted ex vivo, provided that it has however a normal content of DNA and is karyotipically normal. More preferably are used cells in GO or G1 phase as in fact, it is the only cell cycle stage that guarantees a correct ploidy after embryo reconstruction (Campbell et al., Rev of Reprod 1996, 1: 40-46). No development of embryo has ever been obtained using as a donor cell non-living cells. # $\underline{\it d. Possible genetic modification of the chromatin of}$ the donor cell The nucleus of the donor cell can be genetically modified prior to the transfer in the recipient cell, in order to obtain transgenic animals. The term "transgenic" cover not only the animal containing at least one gene from another species in their somatic and germ line, but any animal whose germ line is subjected to technical intervention by recombinant DNA technology. # e. <u>Nucleus transfer from the donor cell to the</u> recipient cell The nucleus of such a donor cell is therefore transferred in the recipient cell. Such a transfer can be carried out by two different procedures: i) cell fusion and ii) nuclear injection. According to the former procedure, which is the most commonly adopted for nuclei 10 15 20 25 30 35 of big dimension, the donor cell as a whole is then inserted by the same enucleation pipette used for the enucleation of the recipient cell in the relevant perivitelline space. The reconstructed embryo is then placed in a fusion chamber between two platinum wires whose gap is filled with fusion medium (0.3 M mannitol with 0.050 mM CaCl2 and 0.100 mM MgSO4). Cell fusion is induced by one or more electrical pulses of direct current applied perpendicularly to the two partners. The frequency of fusion is proportionally related to the area of contact between cytoplast and karyoplast and it is usually high in the case of blastomeres, but it becomes sensibly lower in the case of small foetal or somatic cells. The electric pulse opens temporary pores in the adjacent membranes and cytoplasmic communication established between karyoplast and cytoplast starts the fusion process which is usually completed within one hour; meanwhile, an influx extracellular calcium ions induces the activation of the oocyte (Sun et al., Development 1991, 115: 947-956). According to the procedure reported on point ii) above, the nuclear transfer is carried out by microinjection of the donor nuclei with a process which is getting more used when small cells have to be transferred. The final outline of the process is however the same as the transfer carried out by cell fusion with minimal modification (Collas P and Barnes FL., Mol Reprod Dev 1994, 38: 264-267; Wakayama et al., Nature 1998, 394: 374). ## f. Transfer of the embryo in a recipient animal The successfully fused couplets or microinjected oocytes are embedded in agar chips and transferred into the oviduct of a temporary recipient animal. The embedding is a necessary procedure that protects the embryos from immuno-competent cells present in the oviductal lumen. After seven days the oviducts are flushed back and - 5 - those embryos that developed to blastocysts or morulae are dissected out from the agar and transferred to synchronous recipients for development to term. ## 3. Technical
problem 5 10 35 Despite the efforts done by many laboratories, the efficiency of cloning in terms of offspring production has been invariably low and unpredictable (Bondioli et al., Theriogenology 1994, 33: 165-174) for several years. This low efficiency was primarily due to the empirical approach used for nuclear transfer. As a consequence of the studies made in the last years some of the technical limitations, which such a low efficiency was due to, were evidenced. In particular basic studies undertaken in the last five years on the understanding of nuclear cytoplasmatic interaction in reconstructed embryos clarified how at least one of the reasons for the poor development of cloned embryos is the cell-cycle combination, indicating also the ideal combination for reconstructing embryos by nuclear transfer (Collas et al., Biol Reprod 1992, 46:492-500; Barnes et al., Mol Reprod Dev 1993, 36: 33-41; Campbell et al., Biol Reprod 1994, 50: 1385-1393; reviewed by Campbell et al., Rev of Reprod 1996, 1: 40-46). Another, insurmountable, limit of embryo cloning was identified in the limited number of nuclei obtainable from an individual embryo. In this connection however the ability to use cultured cell lines derived from embryos have offered a large number of advantages over the use of cleavage stage embryos. In this connection the ideal cells for this purpose were firstly identified in the embryonic stem cell (ES), which however, unfortunately, have not been isolated from embryos of large animals (Galli et al., Zygote 1994, 2: 385-389). The production of the first sheep cloned from cultured cell line derived from embryos overcame this 10 15 20 25 30 35 limit (Campbell et al., Nature 1996, 380: 64-66) opening new and important opportunities in both basic and applied research. The possibility to use cultured cells not only represented the ideal solution to the production of a large number of high genetic merit or genetically modified animals, but also the distinct cell cycle phases displayed by cells in culture opens the possibility to work out the ideal cell-cycle combination for nuclear transfer of differentiated cells. -6- This seminal paper was in fact immediately followed by other two, the report of the first mammal produced by the nuclear transfer of a somatic cell (Wilmut et al., Nature 1997, 385: 810-813) and the first transgenic lambs produced by nuclear transfer of genetically modified cells (Schieke et al., Science 1997, 278: 2130-2133). After that two subsequent reports referring to somatic cloning in mice and cow respectively confirmed the fact that the animal resulting from such a process is effectively a clone (Wakayama et al., Nature 1998, 394: 369-374; Kato et al., Science 1998, 282: 2095-2099). Further progress made in the last years made embryo cloning a reliable technology potentially applicable in animal breeding (Heyman Y and Renard JP, Anim Reprod Science 1996, 42: 427-436; Loi et al., Theriogenology 1997, 48: 1-10; Loi et al., Biol of Reprod 1998, 58: 1177-1187). ## Reprogramming of the nucleus of the donor cell From all these reports it can be concluded that at least a small proportion of somatic nuclei can be developed into viable offspring, and that such a development is strictly consequent to the success in the "reprogramming" of the donor nucleus which occur in the oocyte immediately after transfer. What it is still not clear is the mechanism that regulates this reprogramming which is in fact due to unknown factors present in the cytoplast. Following transplantation into oocytes, somatic 5 10 15 20 25 -7- nuclei lose in fact part (or all in the case of Dolly: see Campbell et al., Nature 1996, 380: 64-66) the structural components of the chromosomes that maintain their differentiated state and gain the capacity to execute the regulated expression of genes through embryonic and fetal development (Patterton and Wolffe, Dev Biol 1996, 173: 2-13). Basically, the differentiation process which starts concomitantly with the activation of the embryonic genome (it does occur in sheep at the 5th cell cycle, 8-16 cell transition) is completely reversed after nuclear transfer, and the transferred nucleus behaves like a zygote. Somatic nuclei transplanted into mature eggs are therefore remodelled and this morphological change is associated with the re-acquisition of pluripotency, and in some cases, totipotency (Gurdon I., J Embryol Exp Morphol 1962, 10: 622-640). The molecular machinery responsible of such a remodelling (and therefore reprogramming) of the genome (diploid, somatic or whatever genome) transferred into the oocyte is not yet fully clarified. However as of course no specific and efficient molecular mechanism for this purpose could have been developed in the oocyte during the evolution for a differentiated cell nucleus inserted in the oocyte itself, such a mechanism is deemed to be the same which operates on the aploid spermatozoo genome at the time of activation. fact rapidly remodelled by the egg cytoplasm to assemble the paternal pronucleus. The assembly of the pronucleus requires the molecular chaperone nucleoplasmin (Philpott et al., Cell 1991, 65: 569-578). Nucleoplasmin specifically removes the basic, sperm specific proteins and on the same time deposits histones H2A.X and H2.B onto chromatin (Philpott and Leno, Cell 1992, 69: 759-767). The resulting specialised chromosomal conformation 5 10 15 20 25 30 35 - 8 - found in the pronucleus is also maintained in nuclei of cleavage stage embryos (Dimitrov et al., J Cell Biol 1994, 126: 591-601). Similarly, there is experimental evidence that nucleoplasmin plays also a major role in the remodelling of somatic nuclei strictly linked to the acquisition of totipotency of somatic nuclei, which requires the release of chromatin components and the uptake of structural and regulatory proteins from the cytoplasm (Philpott et al., Cell 1991 65: 569-578; Wangh et al., J Cell Science 1995, 108: 2187-2196). In particular it has been observed that the specific dissociation of somatic linker histones H1 and H1° associated with the incorporation of oocyte-specific linker histone B4 into the remodelled chromatin mediated by nucleoplasmin, increases the trascriptional competence, and thus the totipotence of somatic nuclei (Dimitrov and Wolffe, the EMBO Journal 1996, 15: 5897-5906). While however the nucleosomal transition during remodelling have been described in detail (for review see Patterton and Wolffe, Dev Biol 1996, 173: 2-13), the regulation of long-range chromatin structure during development is far less clear. There is increasing evidence that high order chromatin structures play a role in the acquisition and maintenance of the committed status of the cells. In particular, it has been shown that the protein of the SMC (Segregation of Mitotic Chromosome) and chromodomain families are important for transcriptional control (Chang et al., Cell 1994, 79: 459-474; for review see: Patterton and Wolffe, Dev Biol 1996, 173: 2-13). From the above consideration it was suggested that changes in the chromatin structures can facilitate the reprogramming of the transferred nucleus upon the relevant transfer (Wilmuth I. et al., Nature 1997, vol. 385, pag. 810-813; Campbell et al., 1996), and that more 5 10 15 20 25 30 35 - 9 - accessible is the chromatin to cytoplasmatic remodelling factors, better chances the nucleus has to be completely reprogrammed upon nuclear transfer. In particular it was suggested that the reduced transcriptional activity of quiescent cells may be beneficial for reprogramming (Campbell et al., 1996), although no direct comparison has been done with nuclei in different stage of the cell cycle. Also, the displacement of sequence-specific transcription factors from mitotic chromatin (Martinez-Balbas et al., Cell 1995, 83: 229-238) positively influences the remodelling of mitotic cells into metaphase cytoplasm (Fulka et al., BioEssay 1996, 18: 835-840) and consequently induces a better reprogramming as indicated in mice experiment (Kwon and Kono PNAS 1996, 93: 13010-13013). Such a displacement is a "physiological" consequence of the reduced metabolic activity in starved GO cells (Campbell et al., Nature, 1996), and a consequence of a prolonged chromosome condensation in the method suggested by Wakayama (Wakayama et al., 1998). In both cases, the displacement or the termination of transcriptional activity falls into the normal activity of the cell and it is not "per se" responsible for genome reprogramming as clearly indicated by the fact that the phenotype of the cell is stably maintained after both cell cycle stages. However, despite the use of a highly defined synchronous population of GO nuclei donors, or uniform, prolonged exposure of the transferred nuclei into the cytoplasmic environment, less than 2% of nuclei are fully reprogrammed and develop into viable young upon nuclear transfer. Considering that the oocyte cytoplasm would normally encounter a transcriptionally inactive sperm nucleus rather than a fully differentiated nucleus, the low efficiency resulting from the above procedures is unsurprising. No alternative procedures have suggested so far and foremost more invasive procedures 5 10 15 30 35 - 10 - that may lead to the loss of cell viability for two reasons: firstly, nuclear transfer is still accomplished by electro-mediated cell transfer, this method working only with living cells, secondly, a no-living cell is commonly believed to not be a good candidate for nuclear transfer. In spite of the fact that numerous studies have indicated that high temperatures denature proteins and nucleic acids with a melting transition occurring when the temperature exceeds 55°C (Pain RH., Symp Soc Exp Biol 1987, 41: 21-33), and that the denatured state of proteins is the primary target for degradative enzymes (McLendon and Radany, J Biol Chem 1978, 253: 6335-6337)—and therefore in the specific case also for the specific proteasome activity
present in mature occytes (Saro CK and Hoschi M, J Biochem 1997, 122: 286-293)— the elimination of such factors by the denaturation and subsequent degradation by degradative enzymes, was not considered in art. In this connection, however it shall be kept into account the proved existence of a real epigenetic "cell memory" which is necessary for maintaining a stable pattern of gene expression in dividing cells, and allows the cellular phenotypes of differentiated cells to be stably propagated through cell division. DNA methylation and the propagation of specific chromatin structures are in particular suggested as good candidates for the maintenance of the cell memory (Patterson and Wolffe, Dev. Biol 1996, 173: 2-13). Alternatively or concomitantly, some factors might remain bound to mitotic chromosomes acting as bookmark for those genes that must be re-expressed. The same consideration can be drawn for quiescent GO cells. These cells are still metabolically active, although at reduced levels, and no longer proliferated unless called to do so by appropriated extracellular signals. Of course, the phenotype of quiescent cells does 5 10 15 20 25 30 35 - 11 - not change after re-activation indicating that a stable pattern of gene expression is maintained by specific chromatin structures during GO too. Accordingly both mitotic and quiescent cells retain the epigenetic cell memory that maintains the differentiated status. The essential condition for a full reprogramming of a somatic cell is therefore its complete remodelling which involves a transition in chromosomal structures and composition associated with the acquisition to carry out the rapid cleavage cycle of early development and to execute the regulated expression of genes through embryonic and fetal development till the birth of a normal, viable animal. Two distinct approach have been suggested for the induction of full reprogramming of somatic nuclei. The first, postulated by Campbell and co-workers (Campbell et al., Nature 1996, 380: 64-66) says that inducted by serum deprivation quiescence is fundamental condition for nuclear reprogramming; second one, claimed by Wakayama (Wakayama et al., Nature 1998, 394: 369-374), but also anticipated by Campbell (Campbell et al., Nature 1996, 380: 64-66), says that a prolonged exposition of the nuclei into the cytoplasm environment increases the chances for reprogramming. However, the importance of nuclear quiescence for somatic nuclear transfer is still controversial. In fact, in the first report on the use of GO cells as nuclear donors (Campbell et al., Nature 1996, 380: 64-66) no comparison is done with cells in other stages of the cell cycle. The situation did not change in the following report (Wilmut et al., Nature 1997, 385: 810-813) where quiescent cells from three different cell lines, embryo, fetal and adult derived cells have been used as nuclei donors. Moreover, actively proliferating fetal fibroblast cells have been shown to direct normal embryonic and - 12 - fetal development in the cow (Cibelli et al., Science 1998. 280: 1256-1258) and no differences in blastocysts production were found between proliferating and quiescent somatic and fetal bovine cells in a recent comparative study (Le Bourhis D et al., Clevage et Insemination 1998, Octobre, n 287, 3-9). So the question is: why, although nearly all the cells used for nuclei transfer are in GO, only a small proportion, 2%, develop into viable offspring? What helps those cell to gain a full totipotency after nuclear transfer? ## 4.SUMMARY OF THE INVENTION 5 10 15 20 30 35 It is an object of the present invention to provide a process comprising the denaturation of the nucleosomes and chromatin of the donor nuclei before nuclear transfer. This denaturation facilitates a more complete reprogramming of differentiated somatic, embryonic or fetal derived cells prior to nuclear transfer. In particular such denaturation can be carried out by heat-treating of the chromatin of the donor cell, which results in the thermal denaturation of nucleosomes as well as long-range chromatin structures, and in favouring the complete remodelling of donor nuclei prior to nuclear transfer. In particular the denaturation by thermal treatment affects the structural proteins involved in the maintenance of the differentiate state. In the present study we estimated the efficiency of nuclear transfer using thermally destabilised donor cells from adult ewes. The rationale was that the heat treatment would produce chromatin more amenable for reprogramming as a result of the denaturation of DNA regulating proteins. Given that denatured proteins are more readily degraded by proteolytic enzymes (Parsell and Sauer, J. Biol. Chem. 1989, 264; 7590-7595), it was reasoned that the oocyte proteolytic machinery (Tokumoto T. International review of cytology, 1999, 186; 261-294) 5 10 15 20 25 30 35 - 13 - may more readily process nucleosomal and chromatin protein complexes following thermal denaturation. It was considered that the resulting DNA might then be more accessible to programming factors present in the ooplasm. The scientific explanation of the success of the process according to the present invention, which however do not bind the relevant scope, is that while the oocyte owns the molecular machinery for remodelling somatic chromatin at nucleosomal level, the oocyte itself does not have the specific pathways for remodeling long-range chromatin structures present in G0 or condensed chromatin. Presumely, the full reprogramming of somatic accidentally induced by is non-specific nuclei of nucleoplasmin activity remodelling alternatively, may be that the small proportion successfully reprogrammed cells are degenerating or early apoptic cells, in other words, they may have lost a tight control of gene expression. The present invention can be used for basic research and also applied to all mammalian species excluding human beings, in particular to economically important ungulates: cattle, sheep, goats, pigs, water buffalo, horses and also laboratory animals: mice, rabbits, guinea pigs or fur animals. The invention is applicable for the production of high genetic merit animals, endangered species and transgenic animals. It should be noted that for "transgenic" animal it is not intended only an animal carrying in his genome one or more genes from other species, but also animals whose genome has been modified somehow by recombinant DNA technology. In the case the present method is applied for the production of a transgenic animal, the donor nucleus may be genetically modified to contain one or more transgenes before its use for nuclear transfer. The donor nuclei may be genetically modified by the different procedures now available: transfection, electroporation, viral transfection, lipofection and gold microprojectile - 14 - bombardment. 5 10 15 20 25 30 There are several applications of the present invention both for basic and for applied research. The knowledge of the thermal stability of the different families of DNA regulatory proteins, associated with the method of nuclear transfer here proposed, may provide unique insights on the mechanism of genome reprogramming. For the first time, it has been proved that no-living cells can be efficiently reprogrammed upon transfer into enucleated oocytes. This fact certainly has practical applications, one of which may be possibility to create genetic banks at low cost for the preservation of rare and endangered species. Most of living in Africa species are engendered environmental conditions render un-practical the use of liquid nitrogen (-196°C) for cell storage as indicated by FAO experts in occasion of the workshop "The implication of development in biotechnology for the conservation of genetic resources at risk: reversible quiescence and cloning". A report of the workshop is available at FAO homepage http://www.fao.org/. The fact that no-living cells can develop into embryos and fetus following nuclear transfer opens for the first time the possibility to store cells in cheaper systems like in a freeze-dried status. This would have a dramatic impact for the creation of genetic banks for endangered species. Being cell viability not longer the absolute requisite for cloning, it will be possible to increase dramatically the extent of genetic manipulation before transfer. It might be possible to produce an individual simply by assembly single chromosomes from different inter-intra-specific individual provided that functional centriole is injected together with chromosomes. PCT/IT99/00160 As a consequence of what set forth above and below 35 the object of the present invention is a process for reconstructing an animal embryo, comprising the following PCT/IT99/00160 WO 00/74477 operations: 5 10 15 30 35 identification of the chromatin which will constitute the chromatin of the animal embryo, said chromatin being selected from at least one donor cell; - 15 - - denaturation of said chromatin; - transfer of the denaturated chromatin into a recipient cell. The chromatin can be organized in chromosomes, which can be selected from more than one donor cell. Specific embodiments are the cases wherein the donor cell is collected from a single individual or from different individuals, which can belong to a single species or to different species. The donor cell can be cultured or extracted ex vivo, preferably in G1 or G0 phase but also in M phase, provided that the ploidy is corrected after nuclear transfer; the donor cell can be further freeze-dried or dead, and can be in particular an embryonic cell, a foetal cell, a somatic cell or a granulosa cell. 20 In another embodiment of the invention the chromatin is subjected to at least a genetical modification, which can consist in the insertion of at least an etherologous DNA sequence, the deletion of at least one homologous gene, the modification of at least one homologous gene, 25 and the duplication of at least one
homologous gene. The denaturation of the chromatin can in particular be carried out directly on the nucleo-protein assembly, on the nucleus inside or outside the donor cells, by selecting a combination of temperature, pH, strenght and other chromatin-destabilizing agents, or by heat-treating. In the last case the temperature can be the melting temperature of the transcriptional regulatory proteins, and in particular a range from 45°C to 95°C, wherein the preferred embodiments are 55° C and 75°C. The recipient cell is usually an oocyte, metaphase II matured in vitro, which is enucleated prior to the transfer of the nucleus of the donor cell, and the - 16 - nuclear transfer is preferably carried out by injection. The resulting animal embryo belongs to a non-human mammalian species in particular can be a mouse, a rat, a rabbit, a guinea pig, a fur, or an ungulate species like cattle, sheep, goat, pig, water buffalo and horse. A further object of the present invention is a process for preparing an animal, comprising the following operations: - a. reconstructing an animal embryo according to anyone of claims 1 to 37; - b. culture of the reconstructed embryo; 5 10 20 25 30 35 - c. transfer of the blastocysts into a suitable recipient animal; - d. causing said animal embryo to develop to term, after transfer into a suitable recipient animal. Such a process can further comprise the operation of the breeding from the resulting animal. In a particular embodiment, the embryo of the operation a. is subcloned for obtaining more than one animal developing to term, and is a genetically modified embryo resulting from the process described above. The embryo can be also genetically modified before the operation a. prior to the development to term, and the operation c. can be carried out *in vitro* or *in vivo* by transferring the embryo in a temporary recipient animal. A further object of the present invention is the reconstructed animal embryo and animal, resulting from the processes described above. Such an animal can be transgenic or not, and in particular can be a laboratory animal or an ungulate, as described above. ## DETAILED DESCRIPTION OF THE INVENTION The process of the present invention involves the transfer into a suitable recipient cell of a diploid nucleus from a donor cell after being denatured by an appropriate combination of temperature, pH, ionic strength and other chromatin-destabilising agents. In particular the denaturation has been carried out by 5 10 15 20 25 30 35 - 17 - heating the cell in Hepes buffered medium at $55\,^{\circ}\text{C}$ or $75\,^{\circ}\text{C}$. The relevant treatment is exemplified in the Example 1. Preferably a granulosa cell is used to this purpose, even if the process of the present invention is not restricted to granulosa cells only; all cells from an adult animal, including also embryonic and fetal cells, may be used given the fact that they are normal diploid G1 or G0 cells. Cells may be or may be not cultured prior to nuclear transfer. However, culture is necessary when this invention is used for the generation of transgenic animals. In fact, the application of the molecular biology technologies for genetic modification of a cell population requires the culture of the cells either for the transformation and for screening and selection of the successfully modified cell clones. After the treatment exemplified in Example 1 below, the nuclei are therefore transferred into enucleated metaphase II oocyte. The oocyte is enucleated by micromanipulation after the localisation under UV light of the chromosomes; however, the present method is not restricted to the above procedure but also alternative solutions like non-invasive approaches like UV irradiation for enucleation will be also considered. The recipient oocytes may be produced by superovulation of donor ewes or more conveniently in vitro from ovaries collected at the abattoir according to the protocol given in the following Example 2 in vitro maturation of sheep oocytes. In vitro maturation of ocytes collected by individual females of high genetic merit or transgenic will be necessary in the case the invention is applied to the multiplication of the oocyte donors themselves, or alternatively, when a particular cytoplasmatic background is required. Since the method herein proposed involves the denaturation of the cells by heating or other suitable denaturating agents, electro-mediated cell fusion cannot be used for nuclear transfer, therefore the injection of the treated nuclei will be the preferred method. The injected cytoplasts is activated with one of these methods: one or more electrical pulses, ionomycin-5 6DMAP association (Loi et al., Biol Reprod 1998, 58: 1177-1187), or ionomycin plus cycloheximide (Presicce and 1994, 37: 61-68). Yang, Mol Reprod Dev activation, the reconstructed embryos can be embedded in 10 (Willadsen S., Nature 1979, 277: 298-300) and cultured in vivo into ligated oviduct of temporary recipient ewes according to the method previously published (Loi et al., Theriogenology 1997, 48: 1-10) or more conveniently cultured in vitro according to the 15 method described in Example 2. Culture in vitro will be also preferred in the case the cloned embryos must be used themselves as nuclei donors for a serial nuclear transfer in order to further amplify the number valuable cloned animals. After a suitable period of culture in vitro, usually 6-9 days, the embryos which 20 develop to blastocyst stage are transferred recipient ewes for development to term. Cloned animals generated with the present method may be breed and used for creating a flock of animals with the predicted 25 characteristics. The process of the present invention for the reconstruction of an animal embryo in its preferred embodiments comprises eventually the following steps: 1) selection of a suitable donor cell which can be directly taken from the desired animal or from cultured cell lines in the case a genetically modified cell is used for the production of a transgenic animal - 2) heat treatment of the cells to be used as nuclear donor - 35 3) embryo reconstruction by injection of heattreated cells - 4) culture in vitro or in vivo of the reconstructed embryo WO 00/74477 5 10 15 20 5) transfer of the blastocysts into final recipients. Thermal destabilised nuclei developed in higher proportion to blastocysts in comparison to control embryos reconstructed with fresh, untreated cells (see Table 1 with the results of Example 2). In the accompanying Example 1, the cells are heated in Hepes buffered Synthetic Oviductal Fluid (SOF) but whatever medium, whose ionic strength and pH have optimised for chromosome destabilisation, may be preferred. Two temperatures have been selected in the present application, 55°C and 75°C, but intermediate or higher temperatures may exert a better effect onto genomic reprogramming. In case of the generation of a transgenic embryo after the operation 1) and before the operation 2) the two following additional operations shall be carried out: - 1a) genetic modification of the cultured cells with the more suitable DNA recombinant technology; this may include: gene knock-out, deletion, addition, duplication and other gene modifications; - 1b) screening and selection of successfully modified cells. - So far a general description has been given of the present invention. With the aid of the following examples, a more detailed description of specific embodiments will now be given, in order to give a better understanding of the objects, characteristics, advantages and operating methods of the invention. Such examples serve merely to illustrate and do not limit the scope of the present invention, which is defined in the annexed claims. #### EXAMPLES Example 1. Heat-denaturation of the donor cell Pooled granulosa cells from Cumulus Oocyte Complexes (COCs) have been used throughout the examples although other kind of cells may be used. COCs were incubated in hyaluronidase (300 UI/ml) for few seconds then dissociated into a single cell population by vigorous pipetting. Cells were washed twice in Hepes SOF and heated in Hepes SOF at either $55\,^{\circ}\text{C}$ and $75\,^{\circ}\text{C}$ in a water bath for 15 minutes. After the treatment, the cells are centrifuged, re-suspended in manipulation medium (Hepes buffered TCM 199 + 4 mg/ml BSA) and used for nuclear transfer within one-two hours. ## Freeze-drying of granulosa cells WO 00/74477 5 10 15 20 25 30 35 An aliquot of granulosa cells taken from in vitro matured oocytes was centrifuged and the resulting pellet re-suspended with 100 μ l of Hepes TCM 199 plus 7% DMSO (Dimethylsulphoxide), loaded into 2 ml glass ampoules and directly plunged in liquid nitrogen (-196 °C). Frozen cells were placed in a pre-cooled aluminium block and freeze-dried in a lyophilizer (Edwards). Freeze-dried cells were kept in the dark at room temperature until use. Before the use for nuclear transfer the freeze-dried cells were re-hydrated with 100 μl of Milli-Q water and heat treated as described in Example 1. # Example 2. Embryo reconstruction by nuclear transfer Oocyte in vitro maturation Ovaries were collected immediately after slaughter and transported to the laboratory in saline at approximately 35°C within 1-2 hours. Occytes were obtained by dissection of ovaries in TCM-199 enriched with 5% calf serum, 0.05 mg/ml heparin, 0.05 mg/ml gentamicin sulphate. Follicular oocytes were evaluated under the stereomicroscope and only these covered by at least 2 layers of granulosa cells and with evenly granulated cytoplasm were selected for IVM. The medium used for maturation was bicarbonate-buffered TCM-199 with the osmolarity adjusted to 275 mOsm/Kg and glutamine present at the concentration of 2 mM. Maturation medium was enriched with 10% fetal bovine serum, 5 μ g/ml FSH (Ovagen, ICP, New Zealand) 5 μ g/ml LH, 1 μ g/ml estradiol, 0.3 mM sodium piruvate and 100 μ M cysteamine. Oocytes
were incubated in 0.4 ml of medium in 4-well dishes (Nunc, Nunclon, Denmark) covered with mineral oil. IVM conditions were 5% CO₂ in a humidified air at 39°C for 24 hours. ## Embryo reconstruction 5 10 15 20 25 30 Metaphase II oocytes were stripped off from the cumulus cells and incubated for 15 minutes in the presence of 5 $\mu g/ml$ Hoecsht 33342. Enucleation was accomplished in manipulating medium (Hepes TCM 199 + 4 mg/ml BSA) supplemented with 7.5 $\mu g/ml$ Cytochalasin B. The oocytes were immobilised with a holding pipette and exposed for 2-3 seconds to UV light for the localisation of the chromosomes. A portion of cytoplasm with the metaphase spindle was then aspirated into the enucleation pipette. Enucleated oocytes were put back in culture for 30 minutes in order to wash off the Cytochalasin B. The same medium was used for nuclear transfer. Fresh cells were picked up and down with a injection pipette (4 $\mu s)$ until the membrane was completely destroyed, then the nucleus injected into the oocyte. Heat-treated cells were injected with a broader pipette (10 $\mu s)$ with the same procedure. ## Oocyte activation Immediately after injection, the reconstructed embryos were activated with 5 minutes treatment of 5 μM ionomycin followed by 5 hours incubation at 38.5 °C in SOF supplemented with 10 μM cycloeximide. After 5 hours, the reconstructed embryos were cultured in vitro for 7-9 days. ## In Vitro Culture 35 The reconstructed embryos were allocated to 20 μl culture drops consisting of SOF supplemented with 2% (v/v) BME-essential amino acids, 1% (v/v) MEM- - 22 - nonessential amino acids, 1 mM glutamine and 8 mg/ml BSA-fatty acid free. At 3rd and 5th day of culture (day 0-the day of nuclear transfer) 5% charcoal stripped FBS was added to the medium. Culture was continued until 9 days, then reconstructed embryos that developed to blastocyst stage were transferred to synchronised recipients. ## Results of Example 1 The heat treatment killed all the cells and induced an evident denaturation in all the cell compartments including the cytoplasmatic membrane which was completely removed. Heated freeze-dried cells displayed the same features than the fresh ones. The results of Example 2 are summarised in table 1. 15 10 5 ## Table 1 Development to blastocyst stage of fresh and heattreated granulosa cells transplanted into enucleated metaphase II oocytes. 20 | treatment | n injected | cultured | blastocysts (%) of embryo cultured | |-----------|------------|----------|------------------------------------| | fresh | 230 | 127 | 8 (6%) | | 55 °C | 301 | 229 | 29 (12.6%) | | 75 °C | 215 | 120 | 33 (27.1%) | In average, 60% of cultured embryos in fresh group and more than 70% in both 55 and 75°C groups developed to morula stage (range: 2-25 cells); however, only blastocysts stage embryos were considered. Blastocysts from all groups (total n. 50) were transferred into recipient ewes for development to term, the results are summarised in Table 2. Table 2 | | | | pregnan | cies | detect | ed by | |-----------|------------|--------------|---------|----------------|--------|-----------| | | | | | und scan | | _ | | recipient | group (°C) | n blastocyst | day 40 | day 60 | day 80 | offspring | | 8013 | 55 | 3+1 morula | + | + | _ | | | 3961 | 55 | 3 | + | _ | - | | | 5836 | 55 | 2 | _ | | _ | | | 2239 | 55 | 3 | + | + | + | | | 2554 | 55 | 2 | + | - | _ | | | 2582 | 55 | 2 | _ | | _ | | | 6509 | 55 | 2 | + | + | _ | | | 2640 | 55 | 2+ 1 morula | + | + | + | + | | 5734 | 55 | 3 | + | | _ | | | 9007 | 55 | 3 | + | + | | | | pregnancy | rate | | 80% | 30% | 20% | | | | | | | · _ | T | | | 5651 | fresh | 1 | | | _ | | | 6801 | fresh | 2 | + | + - | | | | 2727 | fresh | 2 | + | - | _ | | | 4893 | fresh | 3 | | _ | _ | | | pregnancy | rate | | 50% | _ | | | | 8147 | 75 | 4+2 morule | + | | | | | clone | 75 | 3 | + | | | | | pregnancy | rate | | 100% | | | | - 24 - Three recipients are not examined yet so the proportion of pregnant animals is likely to change. 5 Development of embryos reconstructed with denaturated, freeze-dried granulosa cells | group | n. injected | n. cultured | embryos (morula stage) | |-----------|-------------|-------------|------------------------| | freeze | 72 | 47 | 28 (59.5%)* | | dried 75° | | | | *no embryo developed to blastocyst in these preliminary trial probably because the quality of the oocytes used as a recipient cytoplast was very poor. However, it is not excluded that freeze-dried cell can be successful reprogrammed by the method proposed in the present invention. - 25 - #### CLAIMS 1. A process for reconstructing an animal embryo, comprising the following operations: - identification of the chromatin which will constitute the chromatin of the animal embryo, said chromatin being selected from at least one donor cell; - denaturation of said chromatin; 5 - transfer of the denaturated chromatin into a recipient cell. - 10 2. The process according to claim 1, wherein said chromatin is organised in chromosomes. - 3. The process according to claim 2, wherein said chromosomes are selected from more than one donor cell. - 4. The process according to claim 3, wherein the donor cell is collected from a single individual. - 5. The process according to claim 3, wherein the donor cell is collected from different individuals. - 6. The process according to claim 5, wherein said individuals belong to a single species. - 7. The process according to claim 5, wherein said individuals belong to different species. - 8. The process according to anyone of claims 1 to 7, wherein said donor cell is selected from the group consisting of embryonic cell, foetal cell, somatic cell. - 9. The process according to anyone of claims 1 to 8, wherein said donor cell is a cultured cell. - 10. The process according to anyone of claims 1 to 9, wherein said donor cell is a granulosa cell. - 11. The process according to anyone of claims 1 to 10, wherein said donor cells is freeze-dried. - 12. The process according to anyone of claims 1 to 11, wherein said donor cells is a dead cell. - 26 - 13. The process according to anyone of claims 1 to 12, wherein said chromatin is subjected to at least one genetical modification. 14. The process according to claim 13, wherein said genetical modification includes the insertion of at least one etherologous DNA sequence. 5 15 - 15. The process according to claim 13, wherein said genetical modification includes the deletion of at least one homologous gene. - 10 16. The process according to claim 13, wherein said genetical modification includes the modification of at least one homologous gene. - 17. The process according to claim 13, wherein said genetical modification includes the duplication of at least one homologous gene. - 18. The process according to anyone of claims 1 to 17, wherein said donor cell is in G1 or G0 phase, - 19. The process according to anyone of claims 1 to 17, wherein said donor cell is a cell in M phase, and the ploidy is corrected after nuclear transfer. - 20. The process according to anyone of claims 1 to 19, wherein said denaturation is carried out on the nucleo-protein assembly. - 21. The process according to anyone of claims 1 to 20, wherein said denaturation is carried out on the nucleus inside the donor cells. - 22. The process according to anyone of claims 1 to 20, wherein said denaturation is carried out on the nucleus outside the donor cell. - 23. The process according to anyone of claims 1 to 22, wherein said denaturation is carried out by selecting a combination of temperature, pH, ionic strength and other chromatin-destabilising agents. - 27 - 24. The process according to anyone of claims 1 to 22, wherein said denaturation is carried out by heat-treating. - 25. The process according to claim 24, wherein said heat-treating is carried out at melting temperature of the transcriptional regulatory proteins. - 26. The process according to claim 25, wherein said heat treating is carried out in a range from $45\,^{\circ}\text{C}$ to 95 $^{\circ}\text{C}$. - 10 27. The process according to claim 26, wherein said heat-treating is carried out at 55° C. - 28. The process according to claim 26, wherein said heat-treating is carried out at $75\,^{\circ}\text{C}$. - 29. The process according to anyone of claims 1 to 28, wherein said suitable recipient cell is an oocyte. - 30. The process according to claim 29, wherein said oocyte is in metaphase II. - 31. The process according to claim 29 or 30, wherein said oocyte is matured in vitro. - 32. The process according to anyone of claims 29 to 31, wherein said oocyte is enucleated prior to the transfer of the nucleus of the donor cell. - 33. The process according to anyone of claims 1 to 32, wherein the nuclear transfer is carried out by injection. - 34. The process according to anyone of claims 1 to 33, wherein said animal embryo belongs to a non-human mammalian species - 35. The process according to claim 34, wherein said non-human mammalian species is selected from the group consisting of mouse, rat, rabbit, guinea pig and fur. - 36. The process according to claim 34, wherein said - 28 - non-human mammalian species is an ungulate species. - 37. The process according to claim 36, wherein said ungulate species is selected from the group consisting of cattle, sheep, goat, pig, water buffalo and horse. - 5 38. A process for preparing an animal, comprising the following operations: - a. reconstructing an animal embryo according to anyone of claims 1 to 37; - b. culture of the reconstructed; 20 - 10 c. transfer of the blastocysts into a suitable recipient animal; - d. causing said animal embryo to develop to term. - 39. The process according to claim 38, further comprising the breeding from the resulting animal. - 40. The process according to claim 38 or 39, wherein said embryo is subcloned for obtaining more than one animal developing to term. - 41. The process according to anyone of claims
38 to 40, wherein the embryo of the operation a. is a genetically modified embryo resulting form the process according to anyone of claims 13 to 17. - 42. The process according to anyone of claims 38 to 40, wherein the embryo of the operation a. is genetically modified prior to the development to term. - 43. The process according to anyone of claims 38 to 42 wherein the operation b. is carried out *in vitro*. - 44. The process according to anyone of claims 38 to 42, wherein the operation b. is carried out *in vivo*. - 45. A reconstructed animal embryo, resulting from the process according to anyone of claims 1 to 37. - - 47. A transgenic animal resulting from the process - 29 - according to claims 41 or 42. 5 48. A transgenic animal according to claim 47, wherein said animal is selected from the group comprising laboratory animals as claimed in claim 35 and ungulates as claimed in claim 37. ## INTERNATIONAL SEARCH REPORT Inc. national Application No PCT/IT 99/00160 | A. CLASSI | FICATION OF | SUBJECT | MATTER | |-----------|-------------|---------|--------| | IPC 7 | A01K67 | /027 | | According to International Patent Classification (IPC) or to both national classification and IPC ## B. FIELDS SEARCHED $\begin{array}{ccc} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ \text{IPC 7} & \text{A01K} \end{array}$ Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) | Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | |------------|---|--| | X | WO 94 18344 A (UNIV BRANDEIS)
18 August 1994 (1994-08-18) | 1,2,8,
11,12,
20-23,
29,32,
38,45,46 | | | page 7, paragraph 3; page 58, line 19 -
page 60 -line 3
examples 11-13 | | | A | WO 97 07669 A (CAMPBELL KEITH HENRY
STOCKMAN ;ROSLIN INST EDINBURGH (GB);
WILMUT) 6 March 1997 (1997-03-06) | 1-48 | | A | WO 99 21415 A (STEM CELL SCIENCES PTY LTD; BIOTRANSPLANT INC (US)) 6 May 1999 (1999-05-06) page 18, line 11 - line 15 | 1-48 | | | -/ | | | X Further documents are listed in the continuation of box C. | X Patent family members are listed in annex. | |---|--| | "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family | | Date of the actual completion of the international search 2 March 2000 | Date of mailing of the international search report 09/03/2000 | | Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 | Authorized officer Lonnoy, 0 | ## INTERNATIONAL SEARCH REPORT PCT/IT 99/00160 | | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | | |-----------------------|--|-----------------------| | Category ³ | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | | A | WO 98 39416 A (STRELCHENKO NIKOLAI S
;INFIGEN INC (US); PACE MARVIN M (US);
JURGE) 11 September 1998 (1998-09-11)
figure 1 | 1-48 | | 4 | WO 98 57538 A (PRATHER RANDALL S ;UNIV
MISSOURI (US); MACHATY ZOLTAN (US))
23 December 1998 (1998-12-23) | 1-48 | | A | CHASTANT S ET AL: "QUANTITATIVE CONTROL OF GENE EXPRESSION BY NUCLEOCYTOPLASMIC INTERACTIONS IN EARLY MOUSE EMBRYOS: CONSEQUENCE FOR REPROGRAMMATION BY NUCLEAR TRANSFER" MOLECULAR REPRODUCTION AND DEVELOPMENT, US, NEW YORK, NY, vol. 44, no. 4, 1 August 1996 (1996-08-01), pages 423-432, | | | | XP000750072 | international application No. ## **INTERNATIONAL SEARCH REPORT** PCT/IT 99/00160 | Box I | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) | |------------|--| | This Inte | ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: | | 1. X
2. | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 1-44 are directed to methods of surgery/treatment practiced on the human/animal body, the search has been carried out and based on the alleged effects of the procedures. Claims Nos.: | | 3. | because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: Claims Nos.: | | ч.
 | because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). | | Box II | Observations where unity of invention is lacking (Continuation of item 2 of first sheet) | | This Inte | ernational Searching Authority found multiple inventions in this international application, as follows: | | 1. | As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. | | 2. | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. | | 3. | As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: | | 4. | No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: | | Remark | on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees. | ## INTERNATIONAL SEARCH REPORT Information on patent family members ir. ..ational Application No PCT/IT 99/00160 | Patent document cited in search report | | Publication date | Patent family
member(s) | | Publication date | | |--|---------|------------------|----------------------------|----------|----------------------|----------------| | WO | 9418344 | A | 18-08-1994 | US | 5480772 A | 02-01-1996 | | | | | | CA | 2155309 A | 18-08-1994 | | | | | | EP | 0686202 A | 13-12-1995 | | | | | | US | 5651992 A | 29-07-1997 | | | | | | US | 5773217 A | 30-06-1998 | | WO | 9707669 | Α | 06-03-1997 | AU | 6831096 A | 19-03-1997 | | | | | | CA | 2229568 A | 06-03-1997 | | | | | | CN | 1202084 A | 16-12-1998 | | | | | | CZ | 9800608 A | 15-07-1998 | | | | | | EP | 0849990 A | 01-07-1998 | | | | | | EP | 0930009 A | 21-07-1999 | | | | | | GB
 2318578 A,B | 29-04-1998 | | | | | | GB | 2331751 A,B | 02-06-1999 | | | | | | HU | 9900234 A | 28-05-1999 | | | | | | NO
NZ | 980845 A | 29-04-1998 | | | | | | NZ
PL | 316149 A
325331 A | 28-10-1999 | | | | | | гL
 | 222221 H | 20-07-1998
 | | WO | 9921415 | Α | 06-05-1999 | AU | 1581899 A | 17-05-1999 | | WO | 9839416 | Α | 11-09-1998 | AU | 6688098 A | 22-09-1998 | | | | | | EP | 0 97 3871 A | 26-01-2000 | | | | | | US | 6011197 A | 04-01-2000 | | WO. | 9857538 |
А | 23-12-1998 |
AU | 7979098 A | 04-01-1999 |