
USOO791.3092B1

(12) United States Patent (10) Patent No.: US 7,913,092 B1
Hiltunen et al. (45) Date of Patent: Mar. 22, 2011

(54) SYSTEMAND METHOD FOR ENFORCING 2004/0205411 A1* 10/2004 Hong et al. T14? 38
APPLICATION SECURITYPOLICES USING 2005/0060568 A1 3/2005 Beresnevichiene et al. .. 713/200

2005/0193428 A1* 9/2005 Ring et al. 726/22
AUTHENTICATED SYSTEM CALLS 2005, O246554 A1* 11/2005 Batson 713,194

2005/0257243 A1* 11/2005 Baker T26.1
(75) Inventors: Matti Aarno Hiltunen, Chatham, NJ 2006/005.3492 A1 3/2006 Wallace T26/26

(US); Mohan Rajagopalan, Mountain 2006/0059335 A1* 3, 2006 Bernardi et al. 713, 164
View, CA (US); Richard Dale 2006/0090193 Al 42006 Johnson et al. T26.1
Schlichting, New Providence, NJ (US); 2006/0101.413 A1 : 5, 2006 Kinno et al. ... 717/127
Trevor Jim, Princeton, NJ (US) 2007, OO16914 A1 1/2007 Yeap T19,328

OTHER PUBLICATIONS
(73) Assignee: AT&T Intellectual Property II, L.P.,

Atlanta, GA (US) Jesus Molina and William Arbaugh, Using Indepentend Auditors as
s intrusion detection systems, ICICS 2002, Spinrger-verlag Berlin

(*) Notice: Subject to any disclaimer, the term of this Heidelberg 2002, p. 291-302.*
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 1358 days. y

Primary Examiner — Matthew B Smithers 21) Appl. No.: 11/321479 (21) Appl. No 9 Assistant Examiner — Abu Sholeman

22) Filed: Dec. 29, 2005 (22) File ec. 2d. (57) ABSTRACT

(51) Int. Cl. Disclosed is an approach to system call monitoring in which
G06F II/30 (2006.01) authenticated system calls from an application are easily Veri

(52) U.S. Cl. .. 713/187; 726/1 fied by an operating system kernel. The authenticated system
(58) Field of Classification Search 713/189, call may be a system call augmented with extra arguments,

713/187, 165, 167; 726/1, 22, 23, 26; 717/126-133, which specify the policy for that call as well as a crypto
717/136-161, 174, 141, 143, 144, 156, 157, graphic message authentication code (MAC) that guarantees

717/159 the integrity of the policy and the system call arguments. This
See application file for complete search history. extra information is used by the operating system kernel to

verify the system call with little processing overhead. Ver
56 References Cited sions of the applications in which regular SVstem calls have pp 9. y

been replaced by authenticated calls are generated automati
U.S. PATENT DOCUMENTS cally by a trusted installer program that reads the application

5,485.409 A * 1/1996 Gupta et al. 726/25 binary, uses static analysis to generate policies, and then
5,909,577 A * 6/1999 Devanbu 717/127 rewrites the binary with the authenticated calls. As a result,
6,006,328 A : 12, 1999 Drake ... T26/23 hacker attacks, malicious software and the like are less likely
3. As R ck 1758. SE et al... 72.9 to be successful in compromising any computers or networks

2002/000745.6 A1 1/2002 Peinado et al. 713/64 that employ such authenticated system calls.
2004/0031030 A1 2/2004 Kidder et al. 717/172
2004/0139342 A1* 7/2004 Aho et al. T13/200 7 Claims, 7 Drawing Sheets

a set a we f * as a was we w is tra is

meta-policy: P :

policy
generation

t Trusted Installer

w is a : complete;
: policy :
is as a as a if

key

104
100

U.S. Patent Mar. 22, 2011 Sheet 1 of 7 US 7,913,092 B1

100 a is :
Y : policy :

policy rewriting
generation

Trusted Installer

protected
program

104 102

F.G. 1

U.S. Patent Mar. 22, 2011 Sheet 2 of 7 US 7,913,092 B1

200 Y

SYSTEM CALL
INTERCEPTED BY

KERNEL
202

VERIFY MAC OF
SYSTEM CALL

204

DOES
SYSTEM CALL BEHAVOR

MATCH POLICYT
206

ALLOW SYSTEM CALL
TO PROCEED

208

REJECT SYSTEM CALL
210

FIG. 2

U.S. Patent

300 Y

syscall
close

font

fstatfs

getdirentries
getpid
gettimeofday
kill

inadvise

Inkdir

inmap

Mar. 22, 2011

ASC policy
for Linux

yes (fswrite)
yes

Sheet 3 of 7

ASC policy
for OpenBSD

FIG. 3

FIG. 4

Systrace policy
for OpenBSD

24

24

55

nanosleep
readlink

indir

sendto

Sagaction
socket

sysconf
ae

unlink

writew

US 7,913,092 B1

Systrace

yes (fsread)
yes (fswrite)

yes (fswrite)
NO

U.S. Patent Mar. 22, 2011 Sheet 4 of 7 US 7,913,092 B1

500 N

90 bison 2 69

calc 83 09

SC'ee 363 X 297

s 238 52

F.G. 5

600 Y

Authenticated

Overhead System Call
(%)

getpidO 342.2

gettimeofdayO 3O8.8

read(4096) 36.7

write(4096) 2.3

brkO
rdtsc cost

S40.

loop cost

U.S. Patent Mar. 22, 2011 Sheet 5 Of 7 US 7,913,092 B1

700 Y

Program Name Type Description

bzip2 file compression program from SPECINT2000 benchmark.
gzip-spec file compression program from SPECINT2000 benchmark.
crafty Gameplaying (Chess) program from SPECINT2000 benchmark
mcf combinatorial optimization program from SPECINT2000
vpr FPGA circuit and routing placement from SPECINT2000
twolf Place and route simulator from SPECINT2000

gcc. syscall & CPU Gnu C compiler from SPECINT2000
Wortex syscall & CPU Object oriented database from SPECINT2000
pyramid syscall Multidimensional database index creation

gzip syscall file compression program

FIG 7

U.S. Patent Mar. 22, 2011 Sheet 6 of 7 US 7,913,092 B1

800
Y

Authenticated

Run time Stod. Dev Overhead

(%)

bzip 196.80 O 1.46 98.56 r 2.67 oss

gzip-spec 55.38 O. 4 56.39 O. 9 0.65

crafty 08.32 0.15 108.39 O.27 OO6

mcf 240.96 8.22 244.96 35 166

vpr 22 2S 24 228.25 3.38 3.16

twolf 38997 S.58 402.59 8.38 3.24

gcc. 92.88 19 93.97 O.74 17

WOrtex 3.80 0.0 3.9 O,Ol 2,89

pyramid O.99 0.0 1.02 O.O. 3.03

gzip 2.78 O.O3 2.82 0.03 1.01

Average | | | | | 1.78

FIG. 8

U.S. Patent Mar. 22, 2011 Sheet 7 of 7 US 7,913,092 B1

as P Siirt: ;copiete ; meta-policy: policy ; ; co, seapolicy. template: Policy.

policy Awamura | generation rewriting

r
d

f key

/ protected
program

104

Trusted astaller

102 1OO

FIG. 9

US 7,913,092 B1
1.

SYSTEMAND METHOD FORENFORCNG
APPLICATION SECURITYPOLICES USING

AUTHENTICATED SYSTEM CALLS

TECHNICAL FIELD

This disclosure generally relates to data processing, and in
particular it relates to software upgrading.

BACKGROUND OF THE DISCLOSURE

Outside attacks that attempt to compromise a computer
system are an increasingly common and important threat.
Computer programs and applications on Such compromised
systems can generally only be used to cause real damage by
exploiting system calls, making the system call interface the
ideal point to detect and control various types of attacks.
Consequently, system call monitoring has been a widely used
technique for detecting and quarantining compromised appli
cations, in an effort to minimize any damage that could be
caused.

Prior system call monitoring approaches have been based
on developing a model, or policy, of an application's normal
system call behavior, and then halting execution when an
application deviates from its modeled behavior. Policy check
ing and enforcement are security-critical. Hence, in prior
systems, such functions are performed entirely within the
operating system kernel, or within the operating system ker
nel and in conjunction with a separate, protected policy server
(daemon). Both Such approaches require large-scale changes
to the kernel. In addition, the former can have unacceptably
high execution costs, while the latter can result in a substan
tially more complex kernel, which then has further associated
increases in execution overhead.

Accordingly, there is a need for a system and method for
enforcing application security policies that addresses certain
problems of existing technologies.

SUMMARY OF THE DISCLOSURE

The present disclosure, therefore, introduces a system and
method for enforcing application security policies using
authenticated system calls as a more efficient technique for
monitoring and enforcing system call policies. An authenti
cated system call is similar to an original or existing system
call of an application, but includes additional arguments that
specify a policy that the system call should satisfy, and a
message authentication code (MAC) that guarantees the
integrity of the policy as well as other arguments to the system
call. Since the policy and MAC are typically provided to an
untrusted application, the MAC is computed with a crypto
graphic key that is available only to the kernel. At each invo
cation of an authenticated system call, the kernel uses the key
to re-compute the MAC, and only allows the call to proceed if
this matches the MAC passed by the application. Since the
application never has access to the key, it cannot successfully
create a new authenticated system call or tamper with an
existing authenticated system call, thereby denying attacks
which attempt to do the same. The approach of dividing
functionalities between the application and the kernel in these
manners has not heretofore been described or Suggested for
policy enforcement using authenticated system calls.

In various embodiments, automatic transformation of the
application is applied to replace each system call with a
corresponding authenticated call. This is done by a trusted
installer program that may, for example, read the application
binary of application system calls, use static analysis to deter

10

15

25

30

35

40

45

50

55

60

65

2
mine an appropriate policy for each Such call, and then rewrite
the original application binary with binary code comprising
corresponding authenticated system calls. The use of static
analysis of various embodiments has significant advantages
over methods based on hand-written policies or policies
obtained by training, i.e., recording the system call behavior
of the application over a period of time. In particular, the
analysis and replacement of system calls in these manners are
completely automatic, and quickly produce useful policies
for all system calls, including those invoked by rarely-used
parts of an application.

BRIEF DESCRIPTION OF THE DRAWINGS

Further aspects of the present disclosure will be more
readily appreciated upon review of the detailed description of
its various embodiments, described below, when taken in
conjunction with the accompanying drawings, of which:

FIG. 1 depicts an exemplary block diagram of a trusted
installer according to various embodiments of the present
disclosure;

FIG. 2 depicts an exemplary system call checking method,
performed by the trusted installer program of FIG. 1;

FIG. 3 is a table displaying a number of system calls
typically found in the policies of different programs;

FIG. 4 is a table displaying a comparison of policies for a
bison program;

FIG. 5 is a table displaying argument coverage for a num
ber of programs;

FIG. 6 is a table displaying the effect of authentication on
individual system calls;

FIG. 7 is a table displaying benchmark descriptions for a
number of programs;

FIG. 8 is a table displaying processing overhead using
authenticated system calls; and

FIG. 9 is a diagram of an exemplary trusted installer that
accepts further inputs and operates in conjunction with a
human operator, according to certain embodiments of the
present disclosure.

DETAILED DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

Referring now to FIGS. 1-9, wherein similar components
of the present disclosure are referenced in like manner, Vari
ous embodiments of a method and system for enforcing appli
cation security policies using authenticated system calls will
now be described in more detail.
System call monitoring has been a known technique for

detecting and controlling compromised applications by
checking at runtime that various original system calls con
form to a policy that specifies the program’s normal behavior.
This disclosure introduces a new approach to system call
monitoring based on authenticated system calls. An authen
ticated system call is a system call augmented with extra
arguments that specify the policy for that call and a crypto
graphic message authentication code (MAC) that guarantees
the integrity of the policy and the system call arguments. This
extra information is used by the operating system kernel to
verify the system call. The version of the application in which
regular system calls have been replaced by authenticated calls
is generated automatically by a trusted installer program that
reads the application binary, uses static analysis to generate
policies, and then rewrites the binary with the authenticated
calls.

This approach makes it harder for hackers and/or malicious
Software to get access to, and control of computers without

US 7,913,092 B1
3

authorization. It ensures that if a program or application has
been compromised (e.g., through a successful buffer overflow
attack), the compromised program is prevented from per
forming actions not permitted by the program's security
policy. The security policy is based on the program's normal
behavior. Furthermore, this approach prevents an attacker or
malicious software from installing and running new applica
tions or daemons on a compromised machine.

The approach provides an efficient method for system call
monitoring without requiring the operating system kernel to
maintain state (e.g., application security policy) for each
application program, and without requiring use of additional
application space trusted daemons for policy checking. Both
of these alternative approaches have their security threats and
performance implications. For example, the disclosed
approach only requires the kernel to perform a simple MAC
check to verify a system call. This approach has low runtime
overhead (approximately 2% additional usage), and is highly
effective in the prevention of various types of security attacks,
as described in detail later below.
As noted above, there are two steps needed to protect

systems using the systems and methods disclosed herein,
namely, (i) installing authenticated system calls to replace the
original system calls of an application, and (ii) runtime check
ing by the kernel to ensure that each and every system call
matches its policy. An exemplary trusted installer program
100 is illustrated in FIG. 1. First, the binary of an application
and its system calls is read by a trusted installer program,
which then generates a policy according to a policy module
102. The policy captures the allowed behavior for each sys
tem call by using, for example, static analysis, and then a
rewriting module 104 rewrites the binary as an authenticated
system call. Such that each system call includes the policy and
a cryptographic MAC that protects the policy. The key for the
MAC is also specified during the installation process.
A system call (syscall) checking method 200 performed by

the trusted installer 100 is further illustrated in FIG. 2. At
runtime, each system call is intercepted by the kernel (step
202) and, when the MAC is verified (step 204) using the same
key as used during installation, the behavior of the call is next
verified against the policy (step 206). If the MAC is verified
and the behavior matches the policy, the call is allowed (step
208), otherwise, the call is rejected (step 210) and the syscall
checking method 200 is terminated.
A policy can be a set of verifiable properties of a system call

request. One exemplary system call policy may be of the
following form:

Permit open from location 0x806c462
Parameter 0 equals “/dev/console'
Parameter 1 equals 5

This policy allows an application to invoke an open system
call from a call site at memory address 0x806c462, provided
that the first parameter is a pointer to the string “/dev/con
Sole” and the second parameter is the constant 5. In general,
Such policies could, in addition, specify a system call number,
the call site, constant parameter values (e.g., integer con
stants), and constant parameter addresses in an un-modifiable
data segment (e.g., Strings). If a policy does not give a value
for a parameter, then the parameter may unconstrained and
any value may be allowed.

These policies may be more complex than prior System call
policies for existing system call monitoring systems, such as
SYSTRACE, which typically constrain only the system call
number, constant parameter values and addresses. Various
embodiments of the present disclosure, on the other hand,
extend policies to include, for example, policies derived from
call graphs, policies that allow argument values to match

10

15

25

30

35

40

45

50

55

60

65

4
patterns, and capability tracking policies for arguments such
as file handles, all of which are described in detail later below.
The trusted installer program is used by a system admin

istrator to generate the policy for an application, and to pro
duce an executable binary that contains authenticated system
calls. This program, which is an advance on the Pentium Link
Time Optimizer (PLTO) BINARY REWRITING SYSTEM
(described in B. Schwarz, S. K. Debray, and G. R. Andrews,
“PLTO: A link-time optimizer for the Intel IA-32 architec
ture.” Proc. 2001 Workshop on Binary Translation (2001), the
entirety of which is hereby incorporated by reference), reads
in an application binary, disassembles it, and constructs a
control flow graph that includes all the system calls in the
application. Additional static analysis techniques, such as
constant propagation, and the like, are used to try to determine
the values of the system call arguments. This results in a
policy for each system call consisting of the system call
number, call site, and some argument values. Such policies
may be refer to as the system calls authenticated system call
(ASC) policy, while the combination of ASC policies for all
system calls in an application make up the application’s ASC
policy. Once an application's policy has been generated in
this way, it can be printed out for the administrator to review,
or the installer can proceed directly to the rewriting process.

In the rewriting step, the installer transforms the binary by
replacing the original system calls with authenticated system
calls. An authenticated system call consists of the original
system call extended by two arguments: a policy descriptor
and the MAC, as described previously above. The policy
descriptor may be a single 32-bit integer value that describes
what parts of the system call are protected by the MAC. In
particular, for each original argument of the system call, it
encodes whether the argument is unconstrained or con
strained to be a constant value or address. The installer com
putes the MAC over the encoded policy, such as a byte string
that is a self-contained representation of the policy. It builds
this encoded policy by concatenating two or more of the
system call number, the address of the call site, the policy
descriptor, and the argument values for those arguments that
are constrained.

For example, for an exemplary policy:
Permit fentl from location 0x806c57b
Parameter 1 equals value 2

the installer may compute the byte string:
OO5c OOOOOO11 0806c57b OOOOOO2

Here, "005c' is the system call number of fentl, and
“00000011” is a 32-bit number that says that the call site and
parameter 1 should be constrained and parameter 0 should be
unconstrained, “0806c5b7 is the call site, and “00000002 is
the value for parameter 1. The installer computes a MAC over
this byte string using a key provided by the system adminis
trator. For example, the known AES-CBC-OMAC message
authentication may be used, which produces a 128-bit code.
The installer adds the MAC to the data segment of the binary,
and adds a pointer to the MAC as an argument to the system
call. The result, in this instance, is an authenticated system
call with two more arguments than the original system call.
The trusted installer completes once it has processed each

and every system call in the program, and the system as a
whole is protected once all binaries that run in a user space
have been transformed to use authenticated system calls by
the trusted installer.

Enforcement of an application’s ASC policy is done by the
kernel at runtime. When an authenticated system call occurs,
the kernel receives arguments that include the system call
number, the arguments to the original unmodified call, the
policy descriptor, and the MAC. Furthermore, it can deter

US 7,913,092 B1
5

mine the call site based on the return address of the kernel
interrupt handler. Using this information, the kernel performs
the following computation to validate that the actual system
call complies with the specified policy. It first constructs an
encoding of the system call by concatenating the system call
number, the call site, the policy descriptor, and those argu
ment values that are specified in the policy descriptor. The
kernel then computes a MAC over this encoding of the system
call using the same key used during installation, and checks
that the result matches the MAC passed in as an argument. If
the MACs match, the kernel carries out the system call. Oth
erwise, it terminates the process, logs the system call, and
alerts the administrator. Unauthenticated calls are also
blocked.

Syscall checking is designed so that MAC matching fails if
an application has been compromised. Note that the argu
ments to the authenticated system call are under the control of
the application, which means that a compromised application
could tampered with the policy descriptor and MAC, or could
attempt to construct a new authenticated system call some
where in the heap. However, any change to the system call
number, call site, policy descriptor, or values of arguments
constrained by the policy would result in a change to the
encoding of the system call that is constructed by the kernel.
This, in turn, would change the MAC needed to pass the
kernel test. However, it is nearly always infeasible for an
attacker to construct a matching MAC without access to the
key used by the kernel. Hence, any attempt by the application
to change the system call to violate the policy will fail.
One implementation of the trusted installer may be based

on the PLTObinary rewriting system, as described above. The
installer could therefore run on LINUX, PLTO's native plat
form. The policy generation portion of the installer in this
form may also ported to OPENBSD to compare policies
generated on the two platforms.
PLTO is fundamentally an optimization tool and, as a

result, it requires relocatable binaries (i.e., binaries in which
the locations of addresses are marked), so that addresses can
be adjusted as code transformations move data and code
locations. Various embodiments of the present disclosure
may incorporate this requirement, although policies forbina
ries may be generated without relocation information. One
impact of this restriction is that the binaries must be compiled
from a source, since binaries shipped with standard LINUX
and UNIX distributions do not contain relocation informa
tion.

Syscall checking has been implemented in LINUX by add
ing a little over 200 lines of code to the kernel's software trap
handler, and including a cryptographic library of about 3000
lines of code for MAC functionality. The software trap han
dler is responsible for identifying the system call number and
arguments, invoking the appropriate system call handler, and
returning the result to the calling application. Standard han
dlers have been modified to call a routine that uses the MAC
to verify that the system call satisfies the required policy.

The ideal policy for an application would permit the system
call behaviors needed for normal operation and no others. On
the one hand, if the policy permits system calls not used by the
uncompromised application (unneeded calls), it leaves open
the possibility that such calls could be exploited by an
attacker. On the other hand, if the policy omits some system
calls actually used by the application (needed calls), it raises
the possibility of a false alarm that causes the application to be
terminated unnecessarily. False alarms are a significant
administrative headache and barrier to use, and thus are to be
avoided.

5

10

15

25

30

35

40

45

50

55

60

65

6
Various embodiments of the present disclosure replace all

needed calls since ASC policies are generated using conser
Vative static analysis, so it avoids false alarms. In contrast,
policies generated by hand or by training may miss needed
system calls, for example, because they occur only in parts of
the program that are rarely executed.
ASC policies might include unneeded system calls,

because no static analysis is able to identify the exact set of
needed calls for every program. Note, however, that unneeded
calls might also appear in policies produced by hand or by
training. Hand produced policies can include mistakes, for
example. System calls identified through training are never
unneeded by definition, but there are still opportunities for
errors. For example, policies might be obtained by training on
one version of an application and operating system, and used
on another. In general, policies generated by training are not
portable between operating systems, or even between differ
ent versions of the same operating system, and they may need
to be adjusted even when only libraries are updated.

In order to gather some empirical evidence regarding false
alarms, unneeded system calls, and operating system effects,
the policy generator used in various embodiments herein was
ported from LINUX to OPENBSD, as noted above. OPEN
BSD is a useful test case because it supports a system call
monitor, SYSTRACE, in its default build, and others have
published many SYSTRACE policies for OPENBSD appli
cations. The SYSTRACE policies are generated through
training along with hand edits, so their availability provides a
useful benchmark against which to compare automatically
generated ASC policies.
The table 300 of FIG. 3 compares the number of distinct

system calls permitted in both ASC and SYSTRACE policies
for several common UNIX programs: bison, the GNU Project
parser generator, calc (an arbitrary-precision calculator pro
gram), and screen (a screen manager with terminal emula
tion). The first column of the table 300 gives the numbers for
the ASC policy generated on LINUX, the second column the
ASC policy generated on OPENBSD, and the third column
gives the numbers for SYSTRACE policies published by the
PROJECT HAIRY EYEBALL web site. This table 300 dem
onstrates that there are significant differences in the system
calls needed for the same application running on different
operating systems, which in turn, implies that policies for one
operating system cannot simply be used on another. The
results in table 300 also illustrate that ASC policies identify
system calls that are not present in SYSTRACE policies.
The table 400 of FIG. 4 examines the policies for bison in

more detail. The table 400 shows system calls that are per
mitted by the ASC policy generated on OPENBSD, but not by
the SYSTRACE policy, and vice versa. Note that the ASC
policy includes many system calls that are not present in the
SYSTRACE policy. It is believed that most of these calls are
in fact needed, and some of them have been verified by hand
using a system call tracer on actual runs of various applica
tions. This means that the SYSTRACE policy can cause false
alarms.

Conversely, there are a few system calls permitted by the
SYSTRACE policies that are not allowed in the ASC policy.
They break down as follows:
“mmap.” The mmap system callis implemented on OPEN

BSD by invoking syscall, a generic indirect system call func
tion. The ASC policy correctly constrains the arguments of
syscall so that only mmap can be invoked, however. With
SYSTRACE, this indirection is hidden from users since its
policy does not explicitly allow Syscall.

“close.” The call of close is not identified by PLTO due to
an unusual implementation on OPENBSD that PLTO cur

US 7,913,092 B1
7

rently cannot disassemble. However, PLTO always reports
when it cannot completely disassemble a binary, so that the
system administrator would always be aware of Such a prob
lem. To date, similar difficulties have not been experienced
with LINUX, PLTO's native platform.

“mkdir,” “readlink.” “rmdir,” “unlink.” The file system
operations are specified in SYSTRACE policies using two
generic names, fisread and fswrite, each of which denotes any
read or write-related system call, respectively. The fact that
mkdir, etc. are not in the ASC policy indicates that they are
unneeded system calls, but their execution would be allowed
with SYSTRACE since its policy includes fsread and fswrite.

The second issue in evaluating ASC policies is determining
the degree to which each system call is protected from alter
ation by the MAC. In various implementations of authenti
cated system call generation herein, the system call site and
call number are always protected by the MAC, as are those
arguments whose values can be determined by static analysis.
It is, of course, impossible to determine all argument values
using such techniques; for example, the value may be read as
a user input, generated as a result of a system call, or may be
unknown because of the use of things such as pointeraliasing.
However, static analysis can determine enough values to be
useful in practice. In addition, it can provide a partially filled
policy template that can then be extended by the system
administrator using dynamic profiling and application knowl
edge, as described below and depicted in FIG. 9.

The table 500 of FIG. 5 provides the results of generating
ASC policies for four programs: the three from above and tar,
a UNIX archiving program. The “sites’ column indicates the
number of separate system call locations in the program,
"calls” indicates the number of different system calls, and
“arguments’ gives the total number of arguments (not includ
ing the system call number) from all the call sites. The “out
put column gives the number of system call arguments that
are output only arguments. That is, the argument is an address
of a structure where the kernel stores the result of the call. The
“protected’ column lists the number of arguments that could
be determined by the static analysis done by the installer and
that could be protected by the basic approach. These results
indicated that 30-40% of the arguments can be protected
based on Static analysis and the basic approach.

In addition to these arguments, there are many others that
might be protected by using extensions such as those
described herein. The table 500 includes statistics for two of
these as well: arguments where the argument value can be
determined using static analysis, but each argument may have
two or more values (disjunction); and arguments that are file
descriptors that were returned previously as a result of system
calls such as open or socket (fds).
The performance overhead introduced by the syscall

checking mechanism will now be described in more detail.
The table 600 of FIG. 6 presents the overheads introduced by
the techniques described herein on a per system call basis.
These results were obtained by executing each system call
10,000 times using a loop, and measuring the total number of
central processing unit (CPU) cycles using the Pentium pro
cessor's rdtsc instruction, which reads a 64-bit hardware
cycle counter. The last two rows of the table 600 indicate the
overhead of the measurement process itself. Each experiment
was repeated 12 times. The highest and lowest readings were
discarded and the average of the remaining 10 readings are
displayed in the table 600. The “original cost gives the
number of cycles required to execute an unmodified system
call on an unmodified kernel, while the “authenticated cost
and “authenticated overhead' columns show the respective
effects of authenticated system calls.

10

15

25

30

35

40

45

50

55

60

65

8
The results displayed in the table 600 indicate a noticeable

cost for the checking mechanism, namely about 4000 cycles
for each call. As might be expected, however, on a percentage
basis, the overhead is much more significant for simple sys
tem calls, such as getpid and gettimeofday, than for more
complex calls like write, where the costs associated with
buffering and memory accesses dominate.
To measure the effect of these techniques on the overall

performance of applications, the running times often pro
grams were compared to their protected counterparts, the
results of which are displayed in the table 700 of FIG. 7. The
programs therein can be classified as either CPU or system
call intensive, as shown in the table 700. The CPU-intensive
programs are from the SPECint-2000 benchmark suite, while
the system call intensive programs are a collection of com
mon applications that incur a large number of system calls.
The programs were compiled using GCC 3.2.2, with addi
tional flags to create statically-linked relocatables that were
then processed using our binary rewriting system, PLTO. Two
types of executables were created: untransformed binaries
corresponding to the unmodified program and authenticated
binaries that use authenticated system calls. Untransformed
binaries generated by PLTO were used rather than simply
GCC 3.2.2 as the baseline, since PLTO itself applies certain
optimizations such as dead code elimination, basic block
layout, and instruction scheduling. As a result, applying these
optimizations in both cases gives the most accurate represen
tation of the actual cost of an authenticated call. The cost of
actually transforming the programs ranged from 3.19 seconds
for mcf to 85.37 seconds for GCC 3.2.2.
To determine the above, the time taken for each program to

execute on a fixed set of inputs was measured. The time
utility was used to measure the time taken by each program,
with the total computed as the Sum of the user and system
time. As before, each experiment was repeated twelve times.
The highest and lowest readings were discarded, and the
average of the remaining ten readings is used in the table. The
results, reported in the table 800 of FIG. 8, indicate a modest
overhead ranging from 0.06% to 3.24%.
The effect of the authentication mechanism on a multi

program benchmark was also studied in detail. The bench
mark performed was similar to the Andrew Benchmark and
consists of a series of tasks that perform routine operations
Such as file creation, directory creation, file compression, file
archival, permission checking, moving files, deleting files,
and sorting the content of files. Each iteration of the bench
mark results in the invocation of about 12,000 system calls.
Authenticated versions of several general purpose tools such
as gzip, gunzip, rm, chdir, my, chmod, tar, cat, and cp were
used to perform the tasks. The execution time of the bench
mark using original binaries was 258.68 seconds, while the
execution time for authenticated binaries was 261.50 sec
onds, an increase of only 1.09%.

Different techniques for improving the expressiveness of
policies to allow, for example, more complete argument cov
erage were also explored.
An ASC meta-policy is a specification that dictates how

strict a policy is required for each system call. In particular,
for each system call, the meta-policy indicates whether the
call site must be specified in the policy and which arguments
of the system call must be constrained. Compared with the
approaches above, meta-policies focus on what must be pro
tected for a system call rather than what can be protected
automatically based on Static analysis. Meta-policies would
typically be derived from the threat level of different system
calls and local administrative policies.

US 7,913,092 B1

In a refinement of the trusted installer program shown in
FIG. 1, a meta-policy may be given as input to the trusted
installer 100 along with the original program, as shown in
FIG. 9. If the policy generator cannot determine all the argu
ment values required by the meta-policy based on static
analysis, it generates a policy template with spaces for the
additional required arguments. An administrator can then
either specify an absolute value based on application knowl
edge or dynamic profiling, for example, or if the absolute
value is not known, a pattern (e.g., “/home/Smith/www/*)
can be used. The result of this is the complete ASC policy,
which is then used during the rewriting phase by the installer.

Patterns in meta-policies are implemented by having the
installer store the patterns in the program address space. For
each system call, the policy descriptor argument is extended
to contain an index to the appropriate pattern in the structure.
The MAC then is calculated over the required patterns in
addition to the fields used in the basic approach. The kernel
can then check the MAC to verify that the policy and the
patterns have not been modified, and then use normal pattern
matching routines to match the argument runtime value
against the pattern. Program checking techniques might be
used to do the pattern matching in the untrusted application,
with a quick verification by the kernel.

Meta-policies also play a role in extending the authenti
cated System call approach to address the issue of dynamic
libraries mentioned above. Dynamic libraries are different
from statically-linked binaries because call sites for invoca
tions within a function in the dynamic library—to system
calls in this case—are not known until the library is loaded at
runtime. This means that various embodiments of the dis
closed authenticated system call generation processes above
may not protect the call site from alteration using the MAC, as
done with statically-linked binaries. In addition, arguments
used by System calls in dynamic libraries are often passed as
arguments to the function, meaning that their values cannot be
determined by static analysis.

Dynamic libraries are processed based on the security
requirements stated in the meta-policy as follows. The
dynamic libraries on a machine are installed first before the
application programs. During this process, if a system call in
a dynamic library function cannot satisfy the meta-policy,
that is, static analysis cannot generate a complete policy, the
specific function is removed from the dynamic library and set
aside for static linking with application programs that require
the function. Once this has been done for all system calls in
the library, the functions that remain have their system calls
transformed into authenticated calls in the same manner as
before. Functions in this new protected dynamic library can
then be loaded at runtime. Note that since a single meta
policy is used for the installation of each dynamic library, it
must be something that is appropriate for all applications that
use that library.

Another useful feature is to allow policies that rely on state
of Some sort. For example, one might want a policy that
requires that each call to open must be followed by a close
before open can be called again. Here, the state would be a
boolean indicating whether open is allowed. The state vari
able would be checked and modified by the syscall checker
when an open is called, and modified again when close is
called.
An obvious way to Support policy state is to store the state

in the kernel. However, one of the virtues of authenticated
system calls is that they require minimal change to the kernel,
Something that would be lost if the State is large or has a
complex structure. Therefore, it would be preferable to keep
any policy state in the application itself, with only the updates

10

15

25

30

35

40

45

50

55

60

65

10
and maintenance being done by the kernel. This can be
achieved using the idea of on-line memory checkers, where a
data structure is stored in unreliable memory, and a trusted
checker with a small amount of reliable memory verifies the
correctness of each update as it occurs. Assuming that some
per-process state in the form of a byte string is required to
implement policy state, then the basic authenticated system
call approach may be modified as follows. First, the kernel is
modified to maintain a single counter variable for each pro
cess, initialized to 0 and stored in kernel space. Then, the
installer is changed to add one variable to the data segment of
each application to hold the policy state (the byte string), and
a second variable to hold a MAC for the state. The state
variable is initialized as needed by the policy, and the state
MAC is calculated over the initial state and the initial appli
cation counter value, O. Pointers to the policy state and state
MAC are then passed as additional arguments in each authen
ticated system call.
At Syscall checking time, if the policy for the system call

depends on the policy state, the kernel recomputes the state
MAC using the application counter and the policy state
passed in the call. If the recomputed MAC matches the state
MAC passed in by the application, the call is allowed to
proceed; otherwise, the application is terminated. If the
policy requires changing the policy state, the kernel incre
ments the application’s state counter and calculates a new
state MAC over the new counter value and policy state. The
new state MAC is stored over the previous state MAC in
application space. It is computationally infeasible for an
adversary to compute a valid MAC for some desired policy
state and state counter and the kernel-space state counter
prevents the adversary from re-using state MACs computed
by the kernel for previous states.
A simple but useful example of a policy requiring state is

one based on the application’s call graph. Such apolicy could,
for example, require that the application's system call trace be
a path in the call graph, providing further protection against
compromised applications. In policies of this type, static
analysis is used to construct a conservative approximation of
the call graph, which is then encoded as a finite automaton for
Syscall checking.

Policies of this type are easily implemented with authenti
cated system calls. The installer already computes the call
graph of the system calls of an application. Given this call
graph, one can label each node of the call graph by its call site.
The policy state becomes the call site of the last node executed
by the application. The policy of each system call is then
extended to say that the policy state must be one of the
predecessors of the system call in the static call graph. Syscall
checking in the kernel is extended to verify that the previous
call site is in the list of predecessors given in the policy, and to
update the policy state to the new call site.
AS was the case with the general issue of state-based poli

cies, some of the work can be moved from the kernel to the
application to minimize the impact on the kernel. For
example, we could force the application to calculate the pre
decessor of the node from the list of possibilities, and pass this
in to the kernel to verify.

Another useful feature for policies is the ability to specify
that an argument to a system call be based on arguments or
return values of previous system calls. An example would be
a policy for a read system call that requires that the file
descriptor argument be a value returned by a previous open
system call. Policies of this type are referenced as capability
tracking policies, since Such arguments are being used in a
manner analogous to capabilities. The authenticated system

US 7,913,092 B1
11

call approaches described above can be extended to Support
this feature using the example of tracking file descriptors.
One implementation of file descriptor tracking would use

policy state to store the last file descriptor returned by each
call to open. The policy for each read system call would
specify that the file descriptor should match the file descriptor
for the desired open system call. However, this ignores the
fact that an open system call can be executed more than once,
that more than one file descriptor returned by the open can be
active at once, and that file descriptors can be reused after they
have been closed.
A Superior approach would to store, for each open system

call, a set of currently active file descriptors. The policy for
each open then adds a file descriptor to the set, while the
policy for close removes a file descriptor. This involves fairly
complicated data structures, so it may not use the simple
policy state implementation described above, but rather a
more efficient implementation based, for example, on authen
ticated dictionaries.
A recurring problem for system call monitors has been

dealing with race conditions caused by features such as sym
bolic links and relative file names. For example, consider a
policy that allows an application to open a temporary file,
/tmp/foo. An attacker could try to exploit this by creating a
symbolic link named /tmp/foo that points to /etc/passwd, and
then overwriting the password file by opening and writing
/tmp/foo.

To avoid this, system call monitors often use the conven
tion that a file name in a policy must refer to the normalized
file name, that is, the name of the file after all symbolic links
have been followed. While doing normalization correctly can
be complex, strategies developed elsewhere for performing
this step in the kernel during syscall checking apply to the
various embodiments described herein. In addition, it is pos
sible to move Some of the processing into the untrusted appli
cation, using techniques similar to those described above for
state-dependent policies.
An application may become compromised, for example,

through a buffer overflow, giving an attacker control of the
application process. In such an instance, the application
would not be able to execute arbitrary system calls, but it
could execute any authenticated system calls in the applica
tion, provided it did not change the call site and parameters
covered by the policy. This can lead to mimicry attacks, which
are well known and which can be defended against by using
more precise policies.

Various implementations of the present disclosure may be
Vulnerable to a similar, but more subtle attack: the compro
mised application could execute authenticated system calls
that it finds in other applications on the system. Once the
attacker has control of an application, it might use it to exam
ine the other applications on the system, and construct and
execute a new application composed of authenticated system
calls from many applications. This is generally known as a
Frankenstein attack.
A simple variation on call graph policies can defend

against Frankenstein attacks. Recall that a call graph policy
requires an application to execute system calls in an order
consistent with its static call graph. The call graph of an
application is self-contained, so if a call graph policy is
imposed on all of the applications, a Frankenstein program
would be forced into executing only the system calls of a
single application, namely, the application that Supplies the
first authenticated system call executed by the Frankenstein
program. In Such case, one needs only to take care that the
installer uses distinct labels for the nodes of all the application
programs.

10

15

25

30

35

40

45

50

55

60

65

12
System call monitoring falls into the broader area of intru

sion detection systems. An intrusion detection system can try
to detect misuse (known attacks) or anomalies (deviation
from normal behavior). Misuse detectors can be vulnerable to
previously unknown attacks, while anomaly detectors can
suffer from false alarms. The processes disclosed hereinform
an anomaly detector that avoids false alarms because of static
analysis. System call monitoring can be implemented entirely
in user space, but typically this is not secure against attacks
such as buffer overflows, so this is not appropriate for our
setting. User-space implementations can be secure for appli
cations written in a safe language such as JAVA. However,
most systems have focused on applications written in unsafe
languages, so they are implemented entirely in the kernel or
by using kernel hooks or patches in combination with a user
space policy daemon or monitor.
The implementations herein, on the other hand, use a ker

nel modification in combination with binary modifications to
the untrusted user application itself, and do not rely on a
separate policy daemon. Instead, cryptographic techniques
and program checking techniques are employed to ensure that
any work done by the untrusted application regarding policy
decisions is done correctly.

In comparison to systems implemented entirely in-kernel,
the kernel modifications described herein are minor, on the
order of a couple of hundred lines of code, compared to
thousands with other systems. A completely-in-kernel imple
mentation must maintain the policies and the logic for deter
mining which policy applies to a given call. In the implemen
tations herein, these burdens are placed on the application.
Note in particular that the exact policy for a given authenti
cated system call is provided by the call itself. This provides
an advantage in speed and simplicity.

In comparison to systems implemented with user-space
policy daemons, the processes disclosed herein have the
advantage offewer context Switches, leading to a very modest
overhead. Avoiding a separate monitor process simplifies
policy checking, because the operating environment (current
working directory, etc.) does not have to be mirrored, and
Some race conditions are avoided.

Various additional modifications to the processes
described above can be made by those of ordinary skill in the
art without departing from the scope of the present disclosure.
For example, policies for most system call monitors may be
developed by hand or by training. In addition, the steps of
rewriting binary code to replace normal system calls with
authenticated system calls could also be done by a compiler.

Although various methodologies have been particularly
described in the foregoing disclosure, it is to be understood
that such descriptions have been provided for purposes of
illustration only, and that other equivalents and variations,
both in form and in detail, can be readily employed by those
of ordinary skill in the art without departing from the spirit
and scope thereof, as defined first and foremost by the
appended claims.

What is claimed is:
1. A method for securing a computer system, comprising:
identifying an original system call used by an application;
generating an authenticated system call corresponding to

the original system call using a key stored at an operating
system kernel level, the authenticated system call
including a message authentication code component
comprising a code encrypted by the key and a policy
component based upon the original system call;

US 7,913,092 B1
13

replacing, via a processor, the original system call with the
authenticated system call by re-writing the binary code
of the application;

receiving the authenticated system call from the applica
tion, the authenticated system call having the message
authentication code component;

decrypting the message authentication code component
using the key to determine a received code; and

Verifying the authenticated system call by comparing the
received code to the code encrypted by the key.

2. The method of claim 1, wherein the policy component
comprises a call graph policy.

3. The method of claim 1, wherein the policy component
comprises a policy that allows argument values of the system
call to match patterns.

4. The method of claim 1, wherein the policy component
comprises a capability tracking policy.

5

10

15

14
5. The method of claim 1, comprising:
determining a behavior for the original system call,

wherein the determining comprises:
using static analysis to generate a model of accepted

behavior of the application; and
determining a policy for the original system call of the

application based on the model.
6. The method of claim 1, further comprising:
accepting the authenticated System call when the code

matches the message authentication code component
encrypted by the key.

7. The method of claim 1, further comprising:
rejecting the authenticated system call when the code does

not match the message authentication code component
encrypted by the key.

k k k k k

