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1. 

SYSTEMAND METHOD FORENFORCNG 
APPLICATION SECURITYPOLICES USING 

AUTHENTICATED SYSTEM CALLS 

TECHNICAL FIELD 

This disclosure generally relates to data processing, and in 
particular it relates to software upgrading. 

BACKGROUND OF THE DISCLOSURE 

Outside attacks that attempt to compromise a computer 
system are an increasingly common and important threat. 
Computer programs and applications on Such compromised 
systems can generally only be used to cause real damage by 
exploiting system calls, making the system call interface the 
ideal point to detect and control various types of attacks. 
Consequently, system call monitoring has been a widely used 
technique for detecting and quarantining compromised appli 
cations, in an effort to minimize any damage that could be 
caused. 

Prior system call monitoring approaches have been based 
on developing a model, or policy, of an application's normal 
system call behavior, and then halting execution when an 
application deviates from its modeled behavior. Policy check 
ing and enforcement are security-critical. Hence, in prior 
systems, such functions are performed entirely within the 
operating system kernel, or within the operating system ker 
nel and in conjunction with a separate, protected policy server 
(daemon). Both Such approaches require large-scale changes 
to the kernel. In addition, the former can have unacceptably 
high execution costs, while the latter can result in a substan 
tially more complex kernel, which then has further associated 
increases in execution overhead. 

Accordingly, there is a need for a system and method for 
enforcing application security policies that addresses certain 
problems of existing technologies. 

SUMMARY OF THE DISCLOSURE 

The present disclosure, therefore, introduces a system and 
method for enforcing application security policies using 
authenticated system calls as a more efficient technique for 
monitoring and enforcing system call policies. An authenti 
cated system call is similar to an original or existing system 
call of an application, but includes additional arguments that 
specify a policy that the system call should satisfy, and a 
message authentication code (MAC) that guarantees the 
integrity of the policy as well as other arguments to the system 
call. Since the policy and MAC are typically provided to an 
untrusted application, the MAC is computed with a crypto 
graphic key that is available only to the kernel. At each invo 
cation of an authenticated system call, the kernel uses the key 
to re-compute the MAC, and only allows the call to proceed if 
this matches the MAC passed by the application. Since the 
application never has access to the key, it cannot successfully 
create a new authenticated system call or tamper with an 
existing authenticated system call, thereby denying attacks 
which attempt to do the same. The approach of dividing 
functionalities between the application and the kernel in these 
manners has not heretofore been described or Suggested for 
policy enforcement using authenticated system calls. 

In various embodiments, automatic transformation of the 
application is applied to replace each system call with a 
corresponding authenticated call. This is done by a trusted 
installer program that may, for example, read the application 
binary of application system calls, use static analysis to deter 
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2 
mine an appropriate policy for each Such call, and then rewrite 
the original application binary with binary code comprising 
corresponding authenticated system calls. The use of static 
analysis of various embodiments has significant advantages 
over methods based on hand-written policies or policies 
obtained by training, i.e., recording the system call behavior 
of the application over a period of time. In particular, the 
analysis and replacement of system calls in these manners are 
completely automatic, and quickly produce useful policies 
for all system calls, including those invoked by rarely-used 
parts of an application. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Further aspects of the present disclosure will be more 
readily appreciated upon review of the detailed description of 
its various embodiments, described below, when taken in 
conjunction with the accompanying drawings, of which: 

FIG. 1 depicts an exemplary block diagram of a trusted 
installer according to various embodiments of the present 
disclosure; 

FIG. 2 depicts an exemplary system call checking method, 
performed by the trusted installer program of FIG. 1; 

FIG. 3 is a table displaying a number of system calls 
typically found in the policies of different programs; 

FIG. 4 is a table displaying a comparison of policies for a 
bison program; 

FIG. 5 is a table displaying argument coverage for a num 
ber of programs; 

FIG. 6 is a table displaying the effect of authentication on 
individual system calls; 

FIG. 7 is a table displaying benchmark descriptions for a 
number of programs; 

FIG. 8 is a table displaying processing overhead using 
authenticated system calls; and 

FIG. 9 is a diagram of an exemplary trusted installer that 
accepts further inputs and operates in conjunction with a 
human operator, according to certain embodiments of the 
present disclosure. 

DETAILED DESCRIPTION OF THE SPECIFIC 
EMBODIMENTS 

Referring now to FIGS. 1-9, wherein similar components 
of the present disclosure are referenced in like manner, Vari 
ous embodiments of a method and system for enforcing appli 
cation security policies using authenticated system calls will 
now be described in more detail. 
System call monitoring has been a known technique for 

detecting and controlling compromised applications by 
checking at runtime that various original system calls con 
form to a policy that specifies the program’s normal behavior. 
This disclosure introduces a new approach to system call 
monitoring based on authenticated system calls. An authen 
ticated system call is a system call augmented with extra 
arguments that specify the policy for that call and a crypto 
graphic message authentication code (MAC) that guarantees 
the integrity of the policy and the system call arguments. This 
extra information is used by the operating system kernel to 
verify the system call. The version of the application in which 
regular system calls have been replaced by authenticated calls 
is generated automatically by a trusted installer program that 
reads the application binary, uses static analysis to generate 
policies, and then rewrites the binary with the authenticated 
calls. 

This approach makes it harder for hackers and/or malicious 
Software to get access to, and control of computers without 
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authorization. It ensures that if a program or application has 
been compromised (e.g., through a successful buffer overflow 
attack), the compromised program is prevented from per 
forming actions not permitted by the program's security 
policy. The security policy is based on the program's normal 
behavior. Furthermore, this approach prevents an attacker or 
malicious software from installing and running new applica 
tions or daemons on a compromised machine. 

The approach provides an efficient method for system call 
monitoring without requiring the operating system kernel to 
maintain state (e.g., application security policy) for each 
application program, and without requiring use of additional 
application space trusted daemons for policy checking. Both 
of these alternative approaches have their security threats and 
performance implications. For example, the disclosed 
approach only requires the kernel to perform a simple MAC 
check to verify a system call. This approach has low runtime 
overhead (approximately 2% additional usage), and is highly 
effective in the prevention of various types of security attacks, 
as described in detail later below. 
As noted above, there are two steps needed to protect 

systems using the systems and methods disclosed herein, 
namely, (i) installing authenticated system calls to replace the 
original system calls of an application, and (ii) runtime check 
ing by the kernel to ensure that each and every system call 
matches its policy. An exemplary trusted installer program 
100 is illustrated in FIG. 1. First, the binary of an application 
and its system calls is read by a trusted installer program, 
which then generates a policy according to a policy module 
102. The policy captures the allowed behavior for each sys 
tem call by using, for example, static analysis, and then a 
rewriting module 104 rewrites the binary as an authenticated 
system call. Such that each system call includes the policy and 
a cryptographic MAC that protects the policy. The key for the 
MAC is also specified during the installation process. 
A system call (syscall) checking method 200 performed by 

the trusted installer 100 is further illustrated in FIG. 2. At 
runtime, each system call is intercepted by the kernel (step 
202) and, when the MAC is verified (step 204) using the same 
key as used during installation, the behavior of the call is next 
verified against the policy (step 206). If the MAC is verified 
and the behavior matches the policy, the call is allowed (step 
208), otherwise, the call is rejected (step 210) and the syscall 
checking method 200 is terminated. 
A policy can be a set of verifiable properties of a system call 

request. One exemplary system call policy may be of the 
following form: 

Permit open from location 0x806c462 
Parameter 0 equals “/dev/console' 
Parameter 1 equals 5 

This policy allows an application to invoke an open system 
call from a call site at memory address 0x806c462, provided 
that the first parameter is a pointer to the string “/dev/con 
Sole” and the second parameter is the constant 5. In general, 
Such policies could, in addition, specify a system call number, 
the call site, constant parameter values (e.g., integer con 
stants), and constant parameter addresses in an un-modifiable 
data segment (e.g., Strings). If a policy does not give a value 
for a parameter, then the parameter may unconstrained and 
any value may be allowed. 

These policies may be more complex than prior System call 
policies for existing system call monitoring systems, such as 
SYSTRACE, which typically constrain only the system call 
number, constant parameter values and addresses. Various 
embodiments of the present disclosure, on the other hand, 
extend policies to include, for example, policies derived from 
call graphs, policies that allow argument values to match 
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4 
patterns, and capability tracking policies for arguments such 
as file handles, all of which are described in detail later below. 
The trusted installer program is used by a system admin 

istrator to generate the policy for an application, and to pro 
duce an executable binary that contains authenticated system 
calls. This program, which is an advance on the Pentium Link 
Time Optimizer (PLTO) BINARY REWRITING SYSTEM 
(described in B. Schwarz, S. K. Debray, and G. R. Andrews, 
“PLTO: A link-time optimizer for the Intel IA-32 architec 
ture.” Proc. 2001 Workshop on Binary Translation (2001), the 
entirety of which is hereby incorporated by reference), reads 
in an application binary, disassembles it, and constructs a 
control flow graph that includes all the system calls in the 
application. Additional static analysis techniques, such as 
constant propagation, and the like, are used to try to determine 
the values of the system call arguments. This results in a 
policy for each system call consisting of the system call 
number, call site, and some argument values. Such policies 
may be refer to as the system calls authenticated system call 
(ASC) policy, while the combination of ASC policies for all 
system calls in an application make up the application’s ASC 
policy. Once an application's policy has been generated in 
this way, it can be printed out for the administrator to review, 
or the installer can proceed directly to the rewriting process. 

In the rewriting step, the installer transforms the binary by 
replacing the original system calls with authenticated system 
calls. An authenticated system call consists of the original 
system call extended by two arguments: a policy descriptor 
and the MAC, as described previously above. The policy 
descriptor may be a single 32-bit integer value that describes 
what parts of the system call are protected by the MAC. In 
particular, for each original argument of the system call, it 
encodes whether the argument is unconstrained or con 
strained to be a constant value or address. The installer com 
putes the MAC over the encoded policy, such as a byte string 
that is a self-contained representation of the policy. It builds 
this encoded policy by concatenating two or more of the 
system call number, the address of the call site, the policy 
descriptor, and the argument values for those arguments that 
are constrained. 

For example, for an exemplary policy: 
Permit fentl from location 0x806c57b 
Parameter 1 equals value 2 

the installer may compute the byte string: 
OO5c OOOOOO11 0806c57b OOOOOO2 

Here, "005c' is the system call number of fentl, and 
“00000011” is a 32-bit number that says that the call site and 
parameter 1 should be constrained and parameter 0 should be 
unconstrained, “0806c5b7 is the call site, and “00000002 is 
the value for parameter 1. The installer computes a MAC over 
this byte string using a key provided by the system adminis 
trator. For example, the known AES-CBC-OMAC message 
authentication may be used, which produces a 128-bit code. 
The installer adds the MAC to the data segment of the binary, 
and adds a pointer to the MAC as an argument to the system 
call. The result, in this instance, is an authenticated system 
call with two more arguments than the original system call. 
The trusted installer completes once it has processed each 

and every system call in the program, and the system as a 
whole is protected once all binaries that run in a user space 
have been transformed to use authenticated system calls by 
the trusted installer. 

Enforcement of an application’s ASC policy is done by the 
kernel at runtime. When an authenticated system call occurs, 
the kernel receives arguments that include the system call 
number, the arguments to the original unmodified call, the 
policy descriptor, and the MAC. Furthermore, it can deter 
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mine the call site based on the return address of the kernel 
interrupt handler. Using this information, the kernel performs 
the following computation to validate that the actual system 
call complies with the specified policy. It first constructs an 
encoding of the system call by concatenating the system call 
number, the call site, the policy descriptor, and those argu 
ment values that are specified in the policy descriptor. The 
kernel then computes a MAC over this encoding of the system 
call using the same key used during installation, and checks 
that the result matches the MAC passed in as an argument. If 
the MACs match, the kernel carries out the system call. Oth 
erwise, it terminates the process, logs the system call, and 
alerts the administrator. Unauthenticated calls are also 
blocked. 

Syscall checking is designed so that MAC matching fails if 
an application has been compromised. Note that the argu 
ments to the authenticated system call are under the control of 
the application, which means that a compromised application 
could tampered with the policy descriptor and MAC, or could 
attempt to construct a new authenticated system call some 
where in the heap. However, any change to the system call 
number, call site, policy descriptor, or values of arguments 
constrained by the policy would result in a change to the 
encoding of the system call that is constructed by the kernel. 
This, in turn, would change the MAC needed to pass the 
kernel test. However, it is nearly always infeasible for an 
attacker to construct a matching MAC without access to the 
key used by the kernel. Hence, any attempt by the application 
to change the system call to violate the policy will fail. 
One implementation of the trusted installer may be based 

on the PLTObinary rewriting system, as described above. The 
installer could therefore run on LINUX, PLTO's native plat 
form. The policy generation portion of the installer in this 
form may also ported to OPENBSD to compare policies 
generated on the two platforms. 
PLTO is fundamentally an optimization tool and, as a 

result, it requires relocatable binaries (i.e., binaries in which 
the locations of addresses are marked), so that addresses can 
be adjusted as code transformations move data and code 
locations. Various embodiments of the present disclosure 
may incorporate this requirement, although policies forbina 
ries may be generated without relocation information. One 
impact of this restriction is that the binaries must be compiled 
from a source, since binaries shipped with standard LINUX 
and UNIX distributions do not contain relocation informa 
tion. 

Syscall checking has been implemented in LINUX by add 
ing a little over 200 lines of code to the kernel's software trap 
handler, and including a cryptographic library of about 3000 
lines of code for MAC functionality. The software trap han 
dler is responsible for identifying the system call number and 
arguments, invoking the appropriate system call handler, and 
returning the result to the calling application. Standard han 
dlers have been modified to call a routine that uses the MAC 
to verify that the system call satisfies the required policy. 

The ideal policy for an application would permit the system 
call behaviors needed for normal operation and no others. On 
the one hand, if the policy permits system calls not used by the 
uncompromised application (unneeded calls), it leaves open 
the possibility that such calls could be exploited by an 
attacker. On the other hand, if the policy omits some system 
calls actually used by the application (needed calls), it raises 
the possibility of a false alarm that causes the application to be 
terminated unnecessarily. False alarms are a significant 
administrative headache and barrier to use, and thus are to be 
avoided. 
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6 
Various embodiments of the present disclosure replace all 

needed calls since ASC policies are generated using conser 
Vative static analysis, so it avoids false alarms. In contrast, 
policies generated by hand or by training may miss needed 
system calls, for example, because they occur only in parts of 
the program that are rarely executed. 
ASC policies might include unneeded system calls, 

because no static analysis is able to identify the exact set of 
needed calls for every program. Note, however, that unneeded 
calls might also appear in policies produced by hand or by 
training. Hand produced policies can include mistakes, for 
example. System calls identified through training are never 
unneeded by definition, but there are still opportunities for 
errors. For example, policies might be obtained by training on 
one version of an application and operating system, and used 
on another. In general, policies generated by training are not 
portable between operating systems, or even between differ 
ent versions of the same operating system, and they may need 
to be adjusted even when only libraries are updated. 

In order to gather some empirical evidence regarding false 
alarms, unneeded system calls, and operating system effects, 
the policy generator used in various embodiments herein was 
ported from LINUX to OPENBSD, as noted above. OPEN 
BSD is a useful test case because it supports a system call 
monitor, SYSTRACE, in its default build, and others have 
published many SYSTRACE policies for OPENBSD appli 
cations. The SYSTRACE policies are generated through 
training along with hand edits, so their availability provides a 
useful benchmark against which to compare automatically 
generated ASC policies. 
The table 300 of FIG. 3 compares the number of distinct 

system calls permitted in both ASC and SYSTRACE policies 
for several common UNIX programs: bison, the GNU Project 
parser generator, calc (an arbitrary-precision calculator pro 
gram), and screen (a screen manager with terminal emula 
tion). The first column of the table 300 gives the numbers for 
the ASC policy generated on LINUX, the second column the 
ASC policy generated on OPENBSD, and the third column 
gives the numbers for SYSTRACE policies published by the 
PROJECT HAIRY EYEBALL web site. This table 300 dem 
onstrates that there are significant differences in the system 
calls needed for the same application running on different 
operating systems, which in turn, implies that policies for one 
operating system cannot simply be used on another. The 
results in table 300 also illustrate that ASC policies identify 
system calls that are not present in SYSTRACE policies. 
The table 400 of FIG. 4 examines the policies for bison in 

more detail. The table 400 shows system calls that are per 
mitted by the ASC policy generated on OPENBSD, but not by 
the SYSTRACE policy, and vice versa. Note that the ASC 
policy includes many system calls that are not present in the 
SYSTRACE policy. It is believed that most of these calls are 
in fact needed, and some of them have been verified by hand 
using a system call tracer on actual runs of various applica 
tions. This means that the SYSTRACE policy can cause false 
alarms. 

Conversely, there are a few system calls permitted by the 
SYSTRACE policies that are not allowed in the ASC policy. 
They break down as follows: 
“mmap.” The mmap system callis implemented on OPEN 

BSD by invoking syscall, a generic indirect system call func 
tion. The ASC policy correctly constrains the arguments of 
syscall so that only mmap can be invoked, however. With 
SYSTRACE, this indirection is hidden from users since its 
policy does not explicitly allow Syscall. 

“close.” The call of close is not identified by PLTO due to 
an unusual implementation on OPENBSD that PLTO cur 
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rently cannot disassemble. However, PLTO always reports 
when it cannot completely disassemble a binary, so that the 
system administrator would always be aware of Such a prob 
lem. To date, similar difficulties have not been experienced 
with LINUX, PLTO's native platform. 

“mkdir,” “readlink.” “rmdir,” “unlink.” The file system 
operations are specified in SYSTRACE policies using two 
generic names, fisread and fswrite, each of which denotes any 
read or write-related system call, respectively. The fact that 
mkdir, etc. are not in the ASC policy indicates that they are 
unneeded system calls, but their execution would be allowed 
with SYSTRACE since its policy includes fsread and fswrite. 

The second issue in evaluating ASC policies is determining 
the degree to which each system call is protected from alter 
ation by the MAC. In various implementations of authenti 
cated system call generation herein, the system call site and 
call number are always protected by the MAC, as are those 
arguments whose values can be determined by static analysis. 
It is, of course, impossible to determine all argument values 
using such techniques; for example, the value may be read as 
a user input, generated as a result of a system call, or may be 
unknown because of the use of things such as pointeraliasing. 
However, static analysis can determine enough values to be 
useful in practice. In addition, it can provide a partially filled 
policy template that can then be extended by the system 
administrator using dynamic profiling and application knowl 
edge, as described below and depicted in FIG. 9. 

The table 500 of FIG. 5 provides the results of generating 
ASC policies for four programs: the three from above and tar, 
a UNIX archiving program. The “sites’ column indicates the 
number of separate system call locations in the program, 
"calls” indicates the number of different system calls, and 
“arguments’ gives the total number of arguments (not includ 
ing the system call number) from all the call sites. The “out 
put column gives the number of system call arguments that 
are output only arguments. That is, the argument is an address 
of a structure where the kernel stores the result of the call. The 
“protected’ column lists the number of arguments that could 
be determined by the static analysis done by the installer and 
that could be protected by the basic approach. These results 
indicated that 30-40% of the arguments can be protected 
based on Static analysis and the basic approach. 

In addition to these arguments, there are many others that 
might be protected by using extensions such as those 
described herein. The table 500 includes statistics for two of 
these as well: arguments where the argument value can be 
determined using static analysis, but each argument may have 
two or more values (disjunction); and arguments that are file 
descriptors that were returned previously as a result of system 
calls such as open or socket (fds). 
The performance overhead introduced by the syscall 

checking mechanism will now be described in more detail. 
The table 600 of FIG. 6 presents the overheads introduced by 
the techniques described herein on a per system call basis. 
These results were obtained by executing each system call 
10,000 times using a loop, and measuring the total number of 
central processing unit (CPU) cycles using the Pentium pro 
cessor's rdtsc instruction, which reads a 64-bit hardware 
cycle counter. The last two rows of the table 600 indicate the 
overhead of the measurement process itself. Each experiment 
was repeated 12 times. The highest and lowest readings were 
discarded and the average of the remaining 10 readings are 
displayed in the table 600. The “original cost gives the 
number of cycles required to execute an unmodified system 
call on an unmodified kernel, while the “authenticated cost 
and “authenticated overhead' columns show the respective 
effects of authenticated system calls. 
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8 
The results displayed in the table 600 indicate a noticeable 

cost for the checking mechanism, namely about 4000 cycles 
for each call. As might be expected, however, on a percentage 
basis, the overhead is much more significant for simple sys 
tem calls, such as getpid and gettimeofday, than for more 
complex calls like write, where the costs associated with 
buffering and memory accesses dominate. 
To measure the effect of these techniques on the overall 

performance of applications, the running times often pro 
grams were compared to their protected counterparts, the 
results of which are displayed in the table 700 of FIG. 7. The 
programs therein can be classified as either CPU or system 
call intensive, as shown in the table 700. The CPU-intensive 
programs are from the SPECint-2000 benchmark suite, while 
the system call intensive programs are a collection of com 
mon applications that incur a large number of system calls. 
The programs were compiled using GCC 3.2.2, with addi 
tional flags to create statically-linked relocatables that were 
then processed using our binary rewriting system, PLTO. Two 
types of executables were created: untransformed binaries 
corresponding to the unmodified program and authenticated 
binaries that use authenticated system calls. Untransformed 
binaries generated by PLTO were used rather than simply 
GCC 3.2.2 as the baseline, since PLTO itself applies certain 
optimizations such as dead code elimination, basic block 
layout, and instruction scheduling. As a result, applying these 
optimizations in both cases gives the most accurate represen 
tation of the actual cost of an authenticated call. The cost of 
actually transforming the programs ranged from 3.19 seconds 
for mcf to 85.37 seconds for GCC 3.2.2. 
To determine the above, the time taken for each program to 

execute on a fixed set of inputs was measured. The time 
utility was used to measure the time taken by each program, 
with the total computed as the Sum of the user and system 
time. As before, each experiment was repeated twelve times. 
The highest and lowest readings were discarded, and the 
average of the remaining ten readings is used in the table. The 
results, reported in the table 800 of FIG. 8, indicate a modest 
overhead ranging from 0.06% to 3.24%. 
The effect of the authentication mechanism on a multi 

program benchmark was also studied in detail. The bench 
mark performed was similar to the Andrew Benchmark and 
consists of a series of tasks that perform routine operations 
Such as file creation, directory creation, file compression, file 
archival, permission checking, moving files, deleting files, 
and sorting the content of files. Each iteration of the bench 
mark results in the invocation of about 12,000 system calls. 
Authenticated versions of several general purpose tools such 
as gzip, gunzip, rm, chdir, my, chmod, tar, cat, and cp were 
used to perform the tasks. The execution time of the bench 
mark using original binaries was 258.68 seconds, while the 
execution time for authenticated binaries was 261.50 sec 
onds, an increase of only 1.09%. 

Different techniques for improving the expressiveness of 
policies to allow, for example, more complete argument cov 
erage were also explored. 
An ASC meta-policy is a specification that dictates how 

strict a policy is required for each system call. In particular, 
for each system call, the meta-policy indicates whether the 
call site must be specified in the policy and which arguments 
of the system call must be constrained. Compared with the 
approaches above, meta-policies focus on what must be pro 
tected for a system call rather than what can be protected 
automatically based on Static analysis. Meta-policies would 
typically be derived from the threat level of different system 
calls and local administrative policies. 
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In a refinement of the trusted installer program shown in 
FIG. 1, a meta-policy may be given as input to the trusted 
installer 100 along with the original program, as shown in 
FIG. 9. If the policy generator cannot determine all the argu 
ment values required by the meta-policy based on static 
analysis, it generates a policy template with spaces for the 
additional required arguments. An administrator can then 
either specify an absolute value based on application knowl 
edge or dynamic profiling, for example, or if the absolute 
value is not known, a pattern (e.g., “/home/Smith/www/*) 
can be used. The result of this is the complete ASC policy, 
which is then used during the rewriting phase by the installer. 

Patterns in meta-policies are implemented by having the 
installer store the patterns in the program address space. For 
each system call, the policy descriptor argument is extended 
to contain an index to the appropriate pattern in the structure. 
The MAC then is calculated over the required patterns in 
addition to the fields used in the basic approach. The kernel 
can then check the MAC to verify that the policy and the 
patterns have not been modified, and then use normal pattern 
matching routines to match the argument runtime value 
against the pattern. Program checking techniques might be 
used to do the pattern matching in the untrusted application, 
with a quick verification by the kernel. 

Meta-policies also play a role in extending the authenti 
cated System call approach to address the issue of dynamic 
libraries mentioned above. Dynamic libraries are different 
from statically-linked binaries because call sites for invoca 
tions within a function in the dynamic library—to system 
calls in this case—are not known until the library is loaded at 
runtime. This means that various embodiments of the dis 
closed authenticated system call generation processes above 
may not protect the call site from alteration using the MAC, as 
done with statically-linked binaries. In addition, arguments 
used by System calls in dynamic libraries are often passed as 
arguments to the function, meaning that their values cannot be 
determined by static analysis. 

Dynamic libraries are processed based on the security 
requirements stated in the meta-policy as follows. The 
dynamic libraries on a machine are installed first before the 
application programs. During this process, if a system call in 
a dynamic library function cannot satisfy the meta-policy, 
that is, static analysis cannot generate a complete policy, the 
specific function is removed from the dynamic library and set 
aside for static linking with application programs that require 
the function. Once this has been done for all system calls in 
the library, the functions that remain have their system calls 
transformed into authenticated calls in the same manner as 
before. Functions in this new protected dynamic library can 
then be loaded at runtime. Note that since a single meta 
policy is used for the installation of each dynamic library, it 
must be something that is appropriate for all applications that 
use that library. 

Another useful feature is to allow policies that rely on state 
of Some sort. For example, one might want a policy that 
requires that each call to open must be followed by a close 
before open can be called again. Here, the state would be a 
boolean indicating whether open is allowed. The state vari 
able would be checked and modified by the syscall checker 
when an open is called, and modified again when close is 
called. 
An obvious way to Support policy state is to store the state 

in the kernel. However, one of the virtues of authenticated 
system calls is that they require minimal change to the kernel, 
Something that would be lost if the State is large or has a 
complex structure. Therefore, it would be preferable to keep 
any policy state in the application itself, with only the updates 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
and maintenance being done by the kernel. This can be 
achieved using the idea of on-line memory checkers, where a 
data structure is stored in unreliable memory, and a trusted 
checker with a small amount of reliable memory verifies the 
correctness of each update as it occurs. Assuming that some 
per-process state in the form of a byte string is required to 
implement policy state, then the basic authenticated system 
call approach may be modified as follows. First, the kernel is 
modified to maintain a single counter variable for each pro 
cess, initialized to 0 and stored in kernel space. Then, the 
installer is changed to add one variable to the data segment of 
each application to hold the policy state (the byte string), and 
a second variable to hold a MAC for the state. The state 
variable is initialized as needed by the policy, and the state 
MAC is calculated over the initial state and the initial appli 
cation counter value, O. Pointers to the policy state and state 
MAC are then passed as additional arguments in each authen 
ticated system call. 
At Syscall checking time, if the policy for the system call 

depends on the policy state, the kernel recomputes the state 
MAC using the application counter and the policy state 
passed in the call. If the recomputed MAC matches the state 
MAC passed in by the application, the call is allowed to 
proceed; otherwise, the application is terminated. If the 
policy requires changing the policy state, the kernel incre 
ments the application’s state counter and calculates a new 
state MAC over the new counter value and policy state. The 
new state MAC is stored over the previous state MAC in 
application space. It is computationally infeasible for an 
adversary to compute a valid MAC for some desired policy 
state and state counter and the kernel-space state counter 
prevents the adversary from re-using state MACs computed 
by the kernel for previous states. 
A simple but useful example of a policy requiring state is 

one based on the application’s call graph. Such apolicy could, 
for example, require that the application's system call trace be 
a path in the call graph, providing further protection against 
compromised applications. In policies of this type, static 
analysis is used to construct a conservative approximation of 
the call graph, which is then encoded as a finite automaton for 
Syscall checking. 

Policies of this type are easily implemented with authenti 
cated system calls. The installer already computes the call 
graph of the system calls of an application. Given this call 
graph, one can label each node of the call graph by its call site. 
The policy state becomes the call site of the last node executed 
by the application. The policy of each system call is then 
extended to say that the policy state must be one of the 
predecessors of the system call in the static call graph. Syscall 
checking in the kernel is extended to verify that the previous 
call site is in the list of predecessors given in the policy, and to 
update the policy state to the new call site. 
AS was the case with the general issue of state-based poli 

cies, some of the work can be moved from the kernel to the 
application to minimize the impact on the kernel. For 
example, we could force the application to calculate the pre 
decessor of the node from the list of possibilities, and pass this 
in to the kernel to verify. 

Another useful feature for policies is the ability to specify 
that an argument to a system call be based on arguments or 
return values of previous system calls. An example would be 
a policy for a read system call that requires that the file 
descriptor argument be a value returned by a previous open 
system call. Policies of this type are referenced as capability 
tracking policies, since Such arguments are being used in a 
manner analogous to capabilities. The authenticated system 
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call approaches described above can be extended to Support 
this feature using the example of tracking file descriptors. 
One implementation of file descriptor tracking would use 

policy state to store the last file descriptor returned by each 
call to open. The policy for each read system call would 
specify that the file descriptor should match the file descriptor 
for the desired open system call. However, this ignores the 
fact that an open system call can be executed more than once, 
that more than one file descriptor returned by the open can be 
active at once, and that file descriptors can be reused after they 
have been closed. 
A Superior approach would to store, for each open system 

call, a set of currently active file descriptors. The policy for 
each open then adds a file descriptor to the set, while the 
policy for close removes a file descriptor. This involves fairly 
complicated data structures, so it may not use the simple 
policy state implementation described above, but rather a 
more efficient implementation based, for example, on authen 
ticated dictionaries. 
A recurring problem for system call monitors has been 

dealing with race conditions caused by features such as sym 
bolic links and relative file names. For example, consider a 
policy that allows an application to open a temporary file, 
/tmp/foo. An attacker could try to exploit this by creating a 
symbolic link named /tmp/foo that points to /etc/passwd, and 
then overwriting the password file by opening and writing 
/tmp/foo. 

To avoid this, system call monitors often use the conven 
tion that a file name in a policy must refer to the normalized 
file name, that is, the name of the file after all symbolic links 
have been followed. While doing normalization correctly can 
be complex, strategies developed elsewhere for performing 
this step in the kernel during syscall checking apply to the 
various embodiments described herein. In addition, it is pos 
sible to move Some of the processing into the untrusted appli 
cation, using techniques similar to those described above for 
state-dependent policies. 
An application may become compromised, for example, 

through a buffer overflow, giving an attacker control of the 
application process. In such an instance, the application 
would not be able to execute arbitrary system calls, but it 
could execute any authenticated system calls in the applica 
tion, provided it did not change the call site and parameters 
covered by the policy. This can lead to mimicry attacks, which 
are well known and which can be defended against by using 
more precise policies. 

Various implementations of the present disclosure may be 
Vulnerable to a similar, but more subtle attack: the compro 
mised application could execute authenticated system calls 
that it finds in other applications on the system. Once the 
attacker has control of an application, it might use it to exam 
ine the other applications on the system, and construct and 
execute a new application composed of authenticated system 
calls from many applications. This is generally known as a 
Frankenstein attack. 
A simple variation on call graph policies can defend 

against Frankenstein attacks. Recall that a call graph policy 
requires an application to execute system calls in an order 
consistent with its static call graph. The call graph of an 
application is self-contained, so if a call graph policy is 
imposed on all of the applications, a Frankenstein program 
would be forced into executing only the system calls of a 
single application, namely, the application that Supplies the 
first authenticated system call executed by the Frankenstein 
program. In Such case, one needs only to take care that the 
installer uses distinct labels for the nodes of all the application 
programs. 
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12 
System call monitoring falls into the broader area of intru 

sion detection systems. An intrusion detection system can try 
to detect misuse (known attacks) or anomalies (deviation 
from normal behavior). Misuse detectors can be vulnerable to 
previously unknown attacks, while anomaly detectors can 
suffer from false alarms. The processes disclosed hereinform 
an anomaly detector that avoids false alarms because of static 
analysis. System call monitoring can be implemented entirely 
in user space, but typically this is not secure against attacks 
such as buffer overflows, so this is not appropriate for our 
setting. User-space implementations can be secure for appli 
cations written in a safe language such as JAVA. However, 
most systems have focused on applications written in unsafe 
languages, so they are implemented entirely in the kernel or 
by using kernel hooks or patches in combination with a user 
space policy daemon or monitor. 
The implementations herein, on the other hand, use a ker 

nel modification in combination with binary modifications to 
the untrusted user application itself, and do not rely on a 
separate policy daemon. Instead, cryptographic techniques 
and program checking techniques are employed to ensure that 
any work done by the untrusted application regarding policy 
decisions is done correctly. 

In comparison to systems implemented entirely in-kernel, 
the kernel modifications described herein are minor, on the 
order of a couple of hundred lines of code, compared to 
thousands with other systems. A completely-in-kernel imple 
mentation must maintain the policies and the logic for deter 
mining which policy applies to a given call. In the implemen 
tations herein, these burdens are placed on the application. 
Note in particular that the exact policy for a given authenti 
cated system call is provided by the call itself. This provides 
an advantage in speed and simplicity. 

In comparison to systems implemented with user-space 
policy daemons, the processes disclosed herein have the 
advantage offewer context Switches, leading to a very modest 
overhead. Avoiding a separate monitor process simplifies 
policy checking, because the operating environment (current 
working directory, etc.) does not have to be mirrored, and 
Some race conditions are avoided. 

Various additional modifications to the processes 
described above can be made by those of ordinary skill in the 
art without departing from the scope of the present disclosure. 
For example, policies for most system call monitors may be 
developed by hand or by training. In addition, the steps of 
rewriting binary code to replace normal system calls with 
authenticated system calls could also be done by a compiler. 

Although various methodologies have been particularly 
described in the foregoing disclosure, it is to be understood 
that such descriptions have been provided for purposes of 
illustration only, and that other equivalents and variations, 
both in form and in detail, can be readily employed by those 
of ordinary skill in the art without departing from the spirit 
and scope thereof, as defined first and foremost by the 
appended claims. 

What is claimed is: 
1. A method for securing a computer system, comprising: 
identifying an original system call used by an application; 
generating an authenticated system call corresponding to 

the original system call using a key stored at an operating 
system kernel level, the authenticated system call 
including a message authentication code component 
comprising a code encrypted by the key and a policy 
component based upon the original system call; 
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replacing, via a processor, the original system call with the 
authenticated system call by re-writing the binary code 
of the application; 

receiving the authenticated system call from the applica 
tion, the authenticated system call having the message 
authentication code component; 

decrypting the message authentication code component 
using the key to determine a received code; and 

Verifying the authenticated system call by comparing the 
received code to the code encrypted by the key. 

2. The method of claim 1, wherein the policy component 
comprises a call graph policy. 

3. The method of claim 1, wherein the policy component 
comprises a policy that allows argument values of the system 
call to match patterns. 

4. The method of claim 1, wherein the policy component 
comprises a capability tracking policy. 
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5. The method of claim 1, comprising: 
determining a behavior for the original system call, 

wherein the determining comprises: 
using static analysis to generate a model of accepted 

behavior of the application; and 
determining a policy for the original system call of the 

application based on the model. 
6. The method of claim 1, further comprising: 
accepting the authenticated System call when the code 

matches the message authentication code component 
encrypted by the key. 

7. The method of claim 1, further comprising: 
rejecting the authenticated system call when the code does 

not match the message authentication code component 
encrypted by the key. 
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