wO 2021/008514 A1 |0 0000 KA 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2021/008514 A1l

21 January 2021 (21.01.2021) WIPOIPCT

(51) International Patent Classification:
HO4N 19/117 (2014.01) HO4N 19/70 (2014.01)

(21) International Application Number:
PCT/CN2020/101820

(22) International Filing Date:
14 July 2020 (14.07.2020)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
PCT/CN2019/095921
14 July 2019 (14.07.2019) CN

(71) Applicants: BEIJING BYTEDANCE NETWORK
TECHNOLOGY CO., LTD. [CN/CN]; Room B-0035, 2/
F, No. 3 Building, No. 30, Shixing Road, Shijingshan Dis-
trict, Beijing 100041 (CN). BYTEDANCE INC. [US/US];
12655 West Jefferson Boulevard, Sixth Floor, Suite No.
137, Los Angeles, California 90066 (US).

(72) Inventors: ZHANG, Li; 12655 West Jefferson Boulevard,
Sixth Floor, Suite No. 137, Los Angeles, California 90066
(US). ZHANG, Kai; 12655 West Jefferson Boulevard,
Sixth Floor, Suite No. 137, Los Angeles, California 90066
(US). LIU, Hongbin; Jinritoutiao Post Office, China Satel-
lite Communications Tower, No. 63, Zhichun Road Haidian
District, Beijing 100080 (CN). WANG, Yue; Jinritoutiao
Post Office, China Satellite Communications Tower, No.
63, Zhichun Road Haidian District, Beijing 100080 (CN).

(74) Agent: LIU, SHEN & ASSOCIATES; 10th Floor, Build-
ing 1, 10 Caihefang Road, Haidian District, Beijing 100080
(CN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of'inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))

(54) Title: INDICATION OF ADAPTIVE LOOP FILTERING IN ADAPTATION PARAMETER SET

2300

N

applying a pruning process to a merge list
construction of a current video block that is

artitioned using a triangular partition mode
P g (TMPg) P —— 2302

performing a conversion between the current

video block and a bitstream representation ——— 2304

of the current video block based on the
merge list construction

FIG. 23

(57) Abstract: A method of visual media processing, comprising;
performing a conversion between a current video block of a visual
media data and a bitstream representation of the current video block
using an adaptive loop filter (ALF), wherein the bitstream represen-
tation is configured according to a format rule specifying that one
or more syntax elements included in the bitstream representation in-
dicative of whether an ALF filter applied to the current video block
is determined based on an adaptation parameter set (APS) or based
on fixed filter sets.

WO 2021/008514 PCT/CN2020/101820

INDICATION OF ADAPTIVE LOOP FILTERING IN ADAPTATION PARAMETER SET
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] Under the applicable patent law and/or rules pursuant to the Paris Convention, this
application is made to timely claim the priority to and benefits of International Patent Application No.
PCT/CN2019/095921, filed on July 14, 2019. For all purposes under the law, the entire disclosure of the

aforementioned application is incorporated by reference as part of the disclosure of this application.

TECHNICAL FIELD
[0002] This document is related to video and image coding and decoding technologies.
BACKGROUND
[0003] Digital video accounts for the largest bandwidth use on the internet and other digital

communication networks. As the number of connected user devices capable of receiving and displaying

video increases, it is expected that the bandwidth demand for digital video usage will continue to grow.

SUMMARY

[0004] In one example aspect, a method of visual media processing is disclosed. The method
includes performing a conversion between a current video block of a visual media data and a bitstream
representation of the current video block, wherein the bitstream representation is configured according to
a format rule that specifies that a syntax element is selectively included or excluded in the bitstream
representation indicative of a maximum number of merge candidates for a coding tool, thereby indicating
whether the coding tool is enabled or disabled for the conversion, wherein the maximum number of merge

candidates for the coding tool is zero or a positive number.

[0005] In one example aspect, a method of visual media processing is disclosed. The method
includes performing a conversion between a video comprising one or more video regions comprising
multiple video blocks and a bitstream representation of the video, wherein the bitstream representation
conforms to a format rule specifying that a number of allowed geometric partitioning mode (GPM)
motion candidates for a video region determines whether a syntax element related to applicability of a
coding tool to the video region is included in the bitstream representation, wherein the coding tool is
different from a GPM coding tool, wherein the GPM comprises splitting a video block into multiple
prediction partitions to apply motion prediction separately, and at least one partition having a non-

rectangular shape.

[0006] In one example aspect, a method of visual media processing is disclosed. The method
includes performing a conversion between a current video unit of a visual media data and a bitstream

representation of the visual media data, wherein the bitstream representation is configured in accordance

WO 2021/008514 PCT/CN2020/101820

with a format rule that specifies that a maximum transform block size is equal to or less than a maximum

coding tree unit (CTU) size used for the conversion.

[0007] In one example aspect, a method of visual media processing is disclosed. The method
includes performing a conversion between a current video block of a visual media data and a bitstream
representation of the current video block, wherein the conversion uses an adaptive loop filter (ALF) in

which coefficients of the ALF filter are based on a depth of a sample in a video region of the current
video block.

[0008] In one example aspect, a method of visual media processing is disclosed. The method
includes performing a conversion between a current video block of a visual media data and a bitstream
representation of the current video block using an adaptive loop filter (ALF), wherein the bitstream
representation is configured according to a format rule specifying that one or more syntax elements
included in the bitstream representation indicative of whether an ALF filter applied to the current video

block is determined based on an adaptation parameter set (APS) or based on fixed filter sets.

[0009] In another example aspect, the above-described methods may be implemented by a video

decoder apparatus that comprises a processor.

[0010] In another example aspect, the above-described methods may be implemented by a video

encoder apparatus that comprises a processor.

[0011] In yet another example aspect, these methods may be embodied in the form of processor-

executable instructions and stored on a computer-readable program medium.

[0012] These, and other, aspects are further described in the present document.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 shows a derivation process for merge candidate list construction.
[0014] FIG. 2 shows an example of positions of spatial merge candidates.
[0015] FIG. 3 shows an example of candidate pairs considered for redundancy check of spatial

merge candidates.

[0016] FIG. 4 shows an example positions for the second PU of Nx2N and 2NxN partitions.
[0017] FIG. 5 shows examples of illustration of motion vector scaling for temporal merge
candidate.

[0018] FIG. 6 shows an example of candidate positions for temporal merge candidate, CO and C1.
[0019] FIG. 7 shows example of combined bi-predictive merge candidate.

[0020] FIG. 8 shows examples of derivation process for motion vector prediction candidates.

WO 2021/008514 PCT/CN2020/101820

[0021] FIG. 9 shows an example illustration of motion vector scaling for spatial motion vector
candidate.
[0022] FIG. 10 shows an example simplified affine motion model for 4-parameter affine mode

(left) and 6-parameter affine model (right).

[0023] FIG. 11 shows an example of affine motion vector field per sub-block.

[0024] FIG. 12 shows an example Candidates position for affine merge mode.

[0025] FIG. 13 shows an example of Modified merge list construction process.

[0026] FIG. 14 shows an example of triangle partition based inter prediction.

[0027] FIG. 15 shows an example of a CU applying the 1*' weighting factor group.

[0028] FIG. 16 shows an example of motion vector storage.

[0029] FIG. 17 shows an example of ultimate motion vector expression (UMVE) search process.
[0030] FIG. 18 shows an example of UMVE search points.

[0031] FIG. 19 shows an example of MVD (0, 1) mirrored between list 0 and list 1 in DMVR.
[0032] FIG. 20 shows MVs that may be checked in one iteration.

[0033] FIG. 21 is an example of intra block copy.

[0034] FIG. 22 is a block diagram of an example of a video processing apparatus.

[0035] FIG. 23 is a flowchart for an example of a video processing method.

[0036] FIG. 24 is a block diagram of an example video processing system in which disclosed

techniques may be implemented.

[0037] FIG. 25 is a flowchart for an example of a visual media processing method.
[0038] FIG. 26 is a flowchart for an example of a visual media processing method.
[0039] FIG. 27 is a flowchart for an example of a visual media processing method.
[0040] FIG. 28 is a flowchart for an example of a visual media processing method.
[0041] FIG. 29 is a flowchart for an example of a visual media processing method.
DETAILED DESCRIPTION
[0042] The present document provides various techniques that can be used by a decoder of image

or video bitstreams to improve the quality of decompressed or decoded digital video or images. For

brevity, the term “video™ is used herein to include both a sequence of pictures (traditionally called video)

WO 2021/008514 PCT/CN2020/101820

and individual images. Furthermore, a video encoder may also implement these techniques during the

process of encoding in order to reconstruct decoded frames used for further encoding.

[0043] Section headings are used in the present document for ease of understanding and do not
limit the embodiments and techniques to the corresponding sections. As such, embodiments from one

section can be combined with embodiments from other sections.

1. Brief Summary

[0044] This document is related to video coding technologies. Specifically, it is related to merge
coding including triangular prediction mode. It may be applied to the existing video coding standard like
HEVC, or the standard (Versatile Video Coding) to be finalized. It may be also applicable to future video

coding standards or video codec.

2. Initial Discussion

[0045] Video coding standards have evolved primarily through the development of the well-
known ITU-T and ISO/IEC standards. The ITU-T produced H.261 and H.263, ISO/IEC produced
MPEG-1 and MPEG-4 Visual, and the two organizations jointly produced the H.262/MPEG-2 Video and
H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/HEVC standards. Since H.262, the video
coding standards are based on the hybrid video coding structure wherein temporal prediction plus
transform coding are utilized. To explore the future video coding technologies beyond HEVC, Joint
Video Exploration Team (JVET) was founded by VCEG and MPEG jointly in 2015. Since then, many
new methods have been adopted by JVET and put into the reference software named Joint Exploration
Model (JEM). In April 2018, the Joint Video Expert Team (JVET) between VCEG (Q6/16) and ISO/IEC
JTC1 SC29/WG11 (MPEG) was created to work on the VVC standard targeting at 50% bitrate reduction
compared to HEVC.

[0046] The latest version of VVC draft, i.¢., Versatile Video Coding (Draft 5) could be found at:
http://phenix.it-sudparis.eu/jvet/doc_end user/documents/14 Geneva/wgl 1/JVET-N1001-v7.zip

[0047] The latest reference software of VVC, named VTM, could be found at:
https://vegit.hhi.fraunhofer.de/jvet/VVCSoftware VIM/tags/VTM-5.0

2.1 Inter prediction in HEVC/H.265

[0048] For inter-coded coding units (CUs), it may be coded with one prediction unit (PU), 2 PUs
according to partition mode. Each inter-predicted PU has motion parameters for one or two reference

picture lists. Motion parameters include a motion vector and a reference picture index. Usage of one of

WO 2021/008514 PCT/CN2020/101820

the two reference picture lists may also be signalled using inter pred idc. Motion vectors may be

explicitly coded as deltas relative to predictors.

[0049] When a CU is coded with skip mode, one PU is associated with the CU, and there are no
significant residual coefficients, no coded motion vector delta or reference picture index. A merge mode
is specified whereby the motion parameters for the current PU are obtained from neighbouring PUs,
including spatial and temporal candidates. The merge mode can be applied to any inter-predicted PU,
not only for skip mode. The alternative to merge mode is the explicit transmission of motion parameters,
where motion vector (to be more precise, motion vector differences (MVD) compared to a motion vector
predictor), corresponding reference picture index for each reference picture list and reference picture list
usage are signalled explicitly per each PU. Such a mode is named Advanced motion vector prediction

(AMVP) in this disclosure.

[0050] When signalling indicates that one of the two reference picture lists is to be used, the PU
is produced from one block of samples. This is referred to as “uni-prediction”. Uni-prediction is available

both for P-slices and B-slices.

[0051] When signalling indicates that both of the reference picture lists are to be used, the PU is
produced from two blocks of samples. This is referred to as ‘bi-prediction’. Bi-prediction is available

for B-slices only.

[0052] The following text provides the details on the inter prediction modes specified in HEVC.
The description will start with the merge mode.

2.1.1 Reference picture list

[0053] In HEVC, the term inter prediction is used to denote prediction derived from data elements
(e.g., sample values or motion vectors) of reference pictures other than the current decoded picture. Like
in H.264/AVC, a picture can be predicted from multiple reference pictures. The reference pictures that
are used for inter prediction are organized in one or more reference picture lists. The reference index

identifies which of the reference pictures in the list should be used for creating the prediction signal.

[0054] A single reference picture list, List 0, is used for a P slice and two reference picture lists,
List 0 and List 1 are used for B slices. It should be noted reference pictures included in List 0/1 could be

from past and future pictures in terms of capturing/display order.

WO 2021/008514 PCT/CN2020/101820

2.1.2 Merge Mode
2.1.2.1 Derivation of candidates for merge mode

[0055] When a PU is predicted using merge mode, an index pointing to an entry in the merge
candidates list is parsed from the bitstream and used to retrieve the motion information. The construction
of'this list is specified in the HEVC standard and can be summarized according to the following sequence

of steps:

e Step 1: Initial candidates derivation
o Step 1.1: Spatial candidates derivation
o Step 1.2: Redundancy check for spatial candidates
o Step 1.3: Temporal candidates derivation

e Step 2: Additional candidates insertion
o Step 2.1: Creation of bi-predictive candidates
o Step 2.2: Insertion of zero motion candidates

[0056] These steps are also schematically depicted in FIG. 1. For spatial merge candidate
derivation, a maximum of four merge candidates are selected among candidates that are located in five
different positions. For temporal merge candidate derivation, a maximum of one merge candidate is
selected among two candidates. Since constant number of candidates for each PU is assumed at decoder,
additional candidates are generated when the number of candidates obtained from step 1 does not reach
the maximum number of merge candidate (MaxNumMergeCand) which is signalled in slice header.
Since the number of candidates is constant, index of best merge candidate is encoded using truncated
unary binarization (TU). If the size of CU is equal to 8, all the PUs of the current CU share a single

merge candidate list, which is identical to the merge candidate list of the 2Nx2N prediction unit.

[0057] In the following, the operations associated with the aforementioned steps are detailed.
2.1.2.2 Spatial candidates derivation

[0058] In the derivation of spatial merge candidates, a maximum of four merge candidates are
selected among candidates located in the positions depicted in FIG. 2. The order of derivation is A, By,
Bo. Ao and Bs. Position Bs is considered only when any PU of position Ai, B1, Bo, Ao is not available (¢.g.
because it belongs to another slice or tile) or is intra coded. After candidate at position A; is added, the
addition of the remaining candidates is subject to a redundancy check which ensures that candidates with
same motion information are excluded from the list so that coding efficiency is improved. To reduce

computational complexity, not all possible candidate pairs are considered in the mentioned redundancy

WO 2021/008514 PCT/CN2020/101820

check. Instead only the pairs linked with an arrow in FIG. 3 are considered and a candidate is only added
to the list if the corresponding candidate used for redundancy check has not the same motion information.
Another source of duplicate motion information is the “second PU” associated with partitions different
from 2Nx2N. As an example, FIG. 4 depicts the second PU for the case of Nx2N and 2NxN, respectively.
When the current PU is partitioned as Nx2N, candidate at position A; is not considered for list
construction. In fact, by adding this candidate will lead to two prediction units having the same motion
information, which is redundant to just have one PU in a coding unit. Similarly, position B; is not

considered when the current PU is partitioned as 2NxN.
2.1.2.3 Temporal candidates derivation

[0059] In this step, only one candidate is added to the list. Particularly, in the derivation of this
temporal merge candidate, a scaled motion vector is derived based on co-located PU in a co-located
picture. The scaled motion vector for temporal merge candidate is obtained as illustrated by the dotted
line in FIG. 5, which is scaled from the motion vector of the co-located PU using the POC distances, tb
and td, where tb is defined to be the POC difference between the reference picture of the current picture
and the current picture and td is defined to be the POC difference between the reference picture of the
co-located picture and the co-located picture. The reference picture index of temporal merge candidate
is set equal to zero. A practical realization of the scaling process is described in the HEVC specification
[1]. For a B-slice, two motion vectors, one is for reference picture list 0 and the other is for reference

picture list 1, are obtained and combined to make the bi-predictive merge candidate.
2.1.2.4 Co-located picture and co-located PU

[0060] When TMVP is enabled (ic., slice temporal mvp_enabled flag is equal to 1), the

variable ColPic representing the col-located picture is derived as follows:

— Ifcurrent slice is B slice and the signalled collocated from 10 flag is equal to 0, ColPic is set equal

to RefPicList1] collocated ref idx |.

— Otherwise (slice_type is equal to B and collocated from 10 flag is equal to 1, or slice_type is equal

to P), ColPic is set equal to RefPicList0[collocated ref idx |.

wherein collocated ref idx and collocated from 10 flag are two syntax clements which may be

signalled in slice header.

[0061] In the co-located PU (Y) belonging to the reference frame, the position for the temporal
candidate is selected between candidates Co and Ci, as depicted in FIG. 6. If PU at position Co is not
available, is intra coded, or is outside of the current coding tree unit (CTU aka. LCU, largest coding unit)

row, position C; is used. Otherwise, position Co is used in the derivation of the temporal merge candidate.

WO 2021/008514 PCT/CN2020/101820

[0062] Related syntax elements are described as follows:

7.3.6.1 General slice segment header syntax

slice_segment header() { Descriptor
first_slice_segment_in_pic_flag u(l)
if(slice type == P || slice type == B){
num_ref_idx_active_override_flag u(l)
if(num_ref idx_active override flag) {
num_ref_idx_10_active_minusl ue(v)
if(slice type == B)
num_ref _idx_I1_active_minus1 ue(v)
H
IF(SLICE TEMPORAL MVP ENABLED FLAG){
IF(SLICE TYPE == B)
COLLOCATED FROM L0 FLAG um
IF((COLLOCATED FROM 10 FLAG &&
NUM REF IDX 10 ACTIVE MINUS1>0) ||
(ICOLLOCATED FROM L0 FLAG &&
NUM REF IDX L1 ACTIVE MINUS1>0))
COLLOCATED REF IDX UE(Y)
H
byte_alignment()
H
2.1.2.5 Derivation of MVs for the TMVP candidate
[0063] More specifically, the following steps are performed in order to derive the TMVP

candidate:

1) set reference picture list X = 0, target reference picture to be the reference picture with index equal to

0 (i.e., curr_ref) in list X. Invoke the derivation process for collocated motion vectors to get the MV for

list X pointing to curr_ref.

WO 2021/008514 PCT/CN2020/101820

2) if current slice is B slice, set reference picture list X = 1, target reference picture to be the reference
picture with index equal to 0 (i.c., curr_ref) in list X. Invoke the derivation process for collocated motion

vectors to get the MV for list X pointing to curr_ref.

[0064] The derivation process for collocated motion vectors is described in the next sub-section
21251,

2.1.2.5.1 Derivation process for collocated motion vectors

[0065] For the co-located block, it may be intra or inter coded with uni-prediction or bi-prediction.
If it 1s intra coded, TMVP candidate is set to be unavailable.

[0066] Ifit is uni-prediction from list A, the motion vector of list A is scaled to the target reference

picture list X.

[0067] If it is bi-prediction and the target reference picture list is X, the motion vector of list A is

scaled to the target reference picture list X, and A is determined according to the following rules:

— Ifnone of reference pictures has a greater POC values compared to current picture, A is set equal

to X.
— Otherwise, A is set equal to collocated from 10 flag.

[0068] The related working draft in JCTVC-W1005-v4 is described as follows:
8.5.3.2.9 Derivation process for collocated motion vectors

[0069] Inputs to this process are:
— avariable currPb specifying the current prediction block,

— avariable colPb specifying the collocated prediction block inside the collocated picture specified by
ColPic,

— aluma location (xColPb, yColPb) specifying the top-left sample of the collocated luma prediction
block specified by colPb relative to the top-left luma sample of the collocated picture specified by
ColPic,

— areference index refldxLX, with X being 0 or 1.
[0070] Outputs of this process are:

— the motion vector prediction mvLXCol,

— the availability flag availableFlagL.XCol.

[0071] The variable currPic specifies the current picture.

WO 2021/008514 PCT/CN2020/101820

[0072]

The arrays predFlagLOCol[x |[v |, mvLOCol| x || ¥ |, and refldxLOCol[x |[¥ | are set

equal to PredFlaglO[x][y], MvLO[x]| y], and RefldxLO[x][y |, respectively, of the collocated

picture specified by ColPic, and the arrays predFlagL1Col] x|[y], mvL1Col[x]|[y], and
refldxL1Col| x [y] are set equal to PredFlagLl[x][y], MvL1[x][y], and RefldxL1] x][y],

respectively, of the collocated picture specified by ColPic.

[0073]

The variables mvLXCol and availableFlagl. XCol are derived as follows:

— If colPb is coded in an intra prediction mode, both components of mvLXCol are set equal to 0 and

availableFlagLXCol is set equal to 0.

— Otherwise, the motion vector mvCol, the reference index refldxCol, and the reference list identifier

listCol are derived as follows:

If predFlagLOCol| xColPb |[yColPb | is equal to 0, mvCol, refldxCol, and listCol are set equal
to mvL1Col| xColPb || yColPb], refldxL.1Col| xColPb || yColPb |, and L1, respectively.

Otherwise, if predFlagl.OCol| xColPb][yColPb | 1S equal to 1 and
predFlagl.1Col| xColPb |[yColPb | is equal to 0, mvCol, refldxCol, and listCol are set equal to
mvLOCol[xColPb |[yColPb], refldxL.OCol| xColPb |[yColPb], and L0, respectively.

Otherwise (predFlagL.OCol| xColPb || yColPb | 1S equal to 1 and
predFlagl.1Col| xColPb |[yColPb | is equal to 1), the following assignments are made:

— If NoBackwardPredFlag is equal to 1, mvCol, refldxCol, and listCol are set equal to
mvLXCol| xColPb][yColPb], refldxLXCol| xColPb |[yColPb], and LX, respectively.

— Otherwise, mvCol, refldxCol, and listCol are set equal to mvLNCol[xColPb || yColPb |,
refldxLNCol[xColPb |[yColPb |, and LN, respectively, with N being the value of
collocated from 10 flag.

and mvLXCol and availableFlagL.XCol are derived as follows:

If LongTermRefPic(currPic, currPb, refldxLX, LX) is not equal to LongTermRefPic(ColPic,
colPb, refldxCol, listCol), both components of mvLXCol are set equal to 0 and
availableFlagl. XCol is set equal to 0.

Otherwise, the variable availableFlagL.XCol is set equal to 1, refPicListCol[refldxCol | is set to
be the picture with reference index refldxCol in the reference picture list listCol of the slice
containing prediction block colPb in the collocated picture specified by ColPic, and the following

applies:
colPocDiff = DiffPicOrderCnt(ColPic, refPicListCol| refldxCol |) (2-1)

currPocDiff = DiffPicOrderCnt(currPic, RefPicListX] refldxL.X |) (2-2)

10

WO 2021/008514 PCT/CN2020/101820

— If RefPicListX[refldxLLX | is a long-term reference picture, or colPocDiff is equal to

currPocDiff, mvLXCol is derived as follows:
mvLXCol = mvCol (2-3)
— Otherwise, mvLXCol is derived as a scaled version of the motion vector mvCol as follows:
tx=(16384 + (Abs(td) >> 1))/td (2-4)
distScaleFactor = Clip3(—4096, 4095, (tb * tx +32) >> 6) (2-5)

mvLXCol = Clip3(—32768, 32767, Sign(distScaleFactor * mvCol) *
((Abs(distScaleFactor * mvCol) +127) >> 8)) (2-6)

where td and tb are derived as follows:

td = Clip3(—128, 127, colPocDiff) 2-7)
tb = Clip3(—128, 127, currPocDift) (2-8)
[0074] Definition of NoBackwardPredFlag is:
[0075] The variable NoBackwardPredFlag is derived as follows:

— If DiffPicOrderCnt(aPic, CurrPic) is less than or equal to 0 for each picture aPic in RefPicList0 or
RefPicList] of the current slice, NoBackwardPredFlag is set equal to 1.

— Otherwise, NoBackwardPredFlag is set equal to 0.
2.1.2.6 Additional candidates insertion

[0076] Besides spatial and temporal merge candidates, there are two additional types of merge
candidates: combined bi-predictive merge candidate and zero merge candidate. Combined bi-predictive
merge candidates are generated by utilizing spatial and temporal merge candidates. Combined bi-
predictive merge candidate is used for B-Slice only. The combined bi-predictive candidates are generated
by combining the first reference picture list motion parameters of an initial candidate with the second
reference picture list motion parameters of another. If these two tuples provide different motion
hypotheses, they will form a new bi-predictive candidate. As an example, FIG. 7 depicts the case when
two candidates in the original list (on the left), which have mvLO0 and refldxL.O or mvL1 and refldxL.1,
are used to create a combined bi-predictive merge candidate added to the final list (on the right). There
are numerous rules regarding the combinations which are considered to generate these additional merge

candidates, defined in [1].

[0077] Zero motion candidates are inserted to fill the remaining entries in the merge candidates

list and therefore hit the MaxNumMergeCand capacity. These candidates have zero spatial displacement

11

WO 2021/008514 PCT/CN2020/101820

and a reference picture index which starts from zero and increases every time a new zero motion candidate

is added to the list. Finally, no redundancy check is performed on these candidates.
2.1.3 AMVP

[0078] AMVP exploits spatio-temporal correlation of motion vector with neighbouring PUSs,
which is used for explicit transmission of motion parameters. For each reference picture list, a motion
vector candidate list is constructed by firstly checking availability of left, above temporally neighbouring
PU positions, removing redundant candidates and adding zero vector to make the candidate list to be
constant length. Then, the encoder can select the best predictor from the candidate list and transmit the
corresponding index indicating the chosen candidate. Similarly with merge index signalling, the index
of the best motion vector candidate is encoded using truncated unary. The maximum value to be encoded
in this case is 2 (see FIG. 8). In the following sections, details about derivation process of motion vector

prediction candidate are provided.
2.1.3.1 Derivation of AMVP candidates

[0079] FIG. 8 summarizes derivation process for motion vector prediction candidate.

[0080] In motion vector prediction, two types of motion vector candidates are considered: spatial
motion vector candidate and temporal motion vector candidate. For spatial motion vector candidate
derivation, two motion vector candidates are eventually derived based on motion vectors of each PU

located in five different positions as depicted in FIG. 2.

[0081] For temporal motion vector candidate derivation, one motion vector candidate is selected
from two candidates, which are derived based on two different co-located positions. After the first list
of spatio-temporal candidates is made, duplicated motion vector candidates in the list are removed. If
the number of potential candidates is larger than two, motion vector candidates whose reference picture
index within the associated reference picture list is larger than 1 are removed from the list. If the number
of spatio-temporal motion vector candidates is smaller than two, additional zero motion vector candidates

is added to the list.
2.1.3.2 Spatial motion vector candidates

[0082] In the derivation of spatial motion vector candidates, a maximum of two candidates are
considered among five potential candidates, which are derived from PUs located in positions as depicted
in FIG. 2, those positions being the same as those of motion merge. The order of derivation for the left
side of the current PU is defined as Ao, A, and scaled Ao, scaled A;. The order of derivation for the
above side of the current PU is defined as Bo, B1, Bz, scaled Bo, scaled By, scaled B;. For each side there

are therefore four cases that can be used as motion vector candidate, with two cases not required to use

12

WO 2021/008514 PCT/CN2020/101820

spatial scaling, and two cases where spatial scaling is used. The four different cases are summarized as

follows.
* No spatial scaling
— (1) Same reference picture list, and same reference picture index (same POC)
— (2) Different reference picture list, but same reference picture (same POC)
» Spatial scaling
— (3) Same reference picture list, but different reference picture (different POC)
— (4) Different reference picture list, and different reference picture (different POC)

[0083] The no-spatial-scaling cases are checked first followed by the spatial scaling. Spatial
scaling is considered when the POC is different between the reference picture of the neighbouring PU
and that of the current PU regardless of reference picture list. If all PUs of left candidates are not available
or are intra coded, scaling for the above motion vector is allowed to help parallel derivation of left and

above MV candidates. Otherwise, spatial scaling is not allowed for the above motion vector.

[0084] In a spatial scaling process, the motion vector of the neighbouring PU is scaled in a similar
manner as for temporal scaling, as depicted as FIG. 9. The main difference is that the reference picture
list and index of current PU is given as input; the actual scaling process is the same as that of temporal

scaling.
2.1.3.3 Temporal motion vector candidates

[0085] Apart for the reference picture index derivation, all processes for the derivation of temporal
merge candidates are the same as for the derivation of spatial motion vector candidates (see FIG. 6). The

reference picture index is signalled to the decoder.
2.2 Inter prediction methods in VVC

[0086] There are several new coding tools for inter prediction improvement, such as Adaptive
Motion Vector difference Resolution (AMVR) for signaling MVD, Merge with Motion Vector
Differences (MMVD), Triangular prediction mode (TPM), Combined intra-inter prediction (CIIP),
Advanced TMVP (ATMVP, aka SbTMVP), affine prediction mode, Generalized Bi-Prediction (GBI),
Decoder-side Motion Vector Refinement (DMVR) and Bi-directional Optical flow (BIO, a.k.a BDOF).

[0087] There are three different merge list construction processes supported in VVC:

1) Sub-block merge candidate list: it includes ATMVP and affine merge candidates. One merge
list construction process is shared for both affine modes and ATMVP mode. Here, the ATMVP

13

WO 2021/008514 PCT/CN2020/101820

and affine merge candidates may be added in order. Sub-block merge list size is signaled in slice

header, and maximum value 1s 5.

2) Regular merge list: For inter-coded blocks, one merge list construction process is shared. Here,
the spatial/temporal merge candidates, HMVP, pairwise merge candidates and zero motion
candidates may be inserted in order. Regular merge list size is signaled in slice header, and

maximum value is 6. MMVD, TPM, CIIP rely on the regular merge list.
3) IBC merge list: it is done in a similar way as the regular merge list.
[0088] Similarly, there are three AMVP lists supported in VVC:
1) Affine AMVP candidate list
2) Regular AMVP candidate list
3) IBC AMVP candidate list: the same construction process as the IBC merge list due to the
adoption of IVET-NO0843

2.2.1 Coding block structure in VVC

[0089] In VVC, a Quad-Tree/Binary Tree/Temary-Tree (QT/BT/TT) structure is adopted to

divide a picture into square or rectangle blocks.

[0090] Besides QT/BT/TT, separate tree (a.k.a. Dual coding tree) is also adopted in VVC for I-
frames. With separate tree, the coding block structure are signaled separately for the luma and chroma
components.

[0091] In addition, the CU is set equal to PU and TU, except for blocks coded with a couple of

specific coding methods (such as intra sub-partition prediction wherein PU is equal to TU, but smaller
than CU, and sub-block transform for inter-coded blocks wherein PU is equal to CU, but TU is smaller
than PU).

222 Affine prediction mode

[0092] In HEVC, only translation motion model is applied for motion compensation prediction
(MCP). While in the real world, there are many kinds of motion, €.g. zoom in/out, rotation, perspective
motions and the other irregular motions. In VVC, a simplified affine transform motion compensation
prediction is applied with 4-parameter affine model and 6-parameter affine model. As shown FIG. 10,
the affine motion field of the block is described by two control point motion vectors (CPMVs) for the 4-

parameter affine model and 3 CPMVs for the 6-parameter affine model.

[0093] The motion vector field (MVF) of a block is described by the following equations with the

4-parameter affine model (wherein the 4-parameter are defined as the variables ¢, b, e and /) in equation

14

WO 2021/008514 PCT/CN2020/101820

(1) and 6-parameter affine model (wherein the 4-parameter are defined as the variables a, b, ¢, d, e and /)

in equation (2) respectively:

h h v v
mvh(x,y):ax—by+e:(mv1 mvo)x_(mvl mvo)y+mvg (1)
w w
’ (mv] —mvy) (mvlh - mvg) R
mv' (x,y)=bx+ay+ f = x+ y+mv,
w w
n (mvlh - mvg) (mvf - mvg) n
my"'(x,y)=ax+cy+e= x+ y+mv, Q)
w h
y (mv] —mvy) (mv) —mvy) y
mv' (x,y)=bx+dy+ [= X+ P ytmy,
w

where (mv", mv"y) is motion vector of the top-left corner control point, and (mv";, mv";) is motion vector
of the top-right corner control point and (#v"2, mv";) is motion vector of the bottom-left corner control
point, all of the three motion vectors are called control point motion vectors (CPMV), (x, y) represents
the coordinate of a representative point relative to the top-left sample within current block and (mvh(x,y),
mv'(x,y)) is the motion vector derived for a sample located at (x, y). The CP motion vectors may be
signaled (like in the affine AMVP mode) or derived on-the-fly (like in the affine merge mode). w and 4
are the width and height of the current block. In practice, the division is implemented by right-shift with
arounding operation. In VTM, the representative point is defined to be the center position of a sub-block,
e.g., when the coordinate of the left-top comer of a sub-block relative to the top-left sample within current
block is (xs, ys), the coordinate of the representative point is defined to be (xs+2, ys+2). For each sub-
block (i.c., 4x4 in VIM), the representative point is utilized to derive the motion vector for the whole

sub-block.

[0094] In order to further simplify the motion compensation prediction, sub-block based affine
transform prediction is applied. To derive motion vector of cach MxN (both M and N are set to 4 in
current VVC) sub-block, the motion vector of the center sample of each sub-block, as shown in FIG. 11,
is calculated according to Equation (1) and (2), and rounded to 1/16 fraction accuracy. Then the motion
compensation interpolation filters for 1/16-pel are applied to generate the prediction of each sub-block

with derived motion vector. The interpolation filters for 1/16-pel are introduced by the affine mode.

[0095] After MCP, the high accuracy motion vector of each sub-block is rounded and saved as

the same accuracy as the normal motion vector.

15

WO 2021/008514 PCT/CN2020/101820

2.2.3 MERGE for whole block
2.2.3.1 Merge list construction of translational regular merge mode
2.2.3.1.1 History-based Motion Vector Prediction (HMVP)

[0096] Different from the merge list design, in VVC, the history-based motion vector prediction
(HMVP) method is employed.

[0097] In HMVP, the previously coded motion information is stored. The motion information of
a previously coded block is defined as an HMVP candidate. Multiple HMVP candidates are stored in a
table, named as the HMVP table, and this table is maintained during the encoding/decoding process on-
the-fly. The HMVP table is emptied when starting coding/decoding a new tile/LCU row/a slice.
Whenever there is an inter-coded block and non-sub-block, non-TPM mode, the associated motion
information is added to the last entry of the table as a new HMVP candidate. The overall coding flow is
depicted in FIG. 12.

2.2.3.1.2. Regular merge list construction process

[0098] The construction of the regular merge list (for translational motion) can be summarized

according to the following sequence of steps:
e Step 1: Derivation of spatial candidates
e Step 2: Insertion of HMVP candidates
e Step 3: Insertion of pairwise average candidates
e Step 4: default motion candidates

[0099] HMVP candidates could be used in both AMVP and merge candidate list construction
processes. FIG. 13 depicts. The modified merge candidate list construction process (shown in dotted
pattern). When the merge candidate list is not full after the TMVP candidate insertion, HMVP candidates
stored in the HMVP table could be utilized to fill in the merge candidate list. Considering that one block
usually has a higher correlation with the nearest neighbourring block in terms of motion information, the
HMVP candidates in the table are inserted in a descending order of indices. The last entry in the table is
firstly added to the list, while the first entry is added in the end. Similarly, redundancy removal is applied
on the HMVP candidates. Once the total number of available merge candidates reaches the maximal
number of merge candidates allowed to be signaled, the merge candidate list construction process is

terminated.

[0100] It is noted that all the spatial/temporal/HMVP candidate shall be coded with non-IBC

mode. Otherwise, it is not allowed to be added to the regular merge candidate list.

16

WO 2021/008514 PCT/CN2020/101820

[0101] HMVP table contains up to 5 regular motion candidates and each of them is unique.
2.2.3.1.2.1 Pruning processes

[0102] A candidate is only added to the list if the corresponding candidate used for redundancy

check has not the same motion information. Such comparison process is called pruning process.

[0103] The pruning process among the spatial candidates is dependent on the usage of TPM for
current block.
[0104] When current block is coded without TPM mode (¢.g., regular merge, MMVD, CIIP), the

HEVC pruning process (i.c., five pruning) for the spatial merge candidates is utilized.
224 Triangular Prediction mode (TPM)

[0105] In VVC, a triangle partition mode is supported for inter prediction. The triangle partition
mode is only applied to CUs that are 8x8 or larger and are coded in merge mode but not in MMVD or
CIIP mode. For a CU satisfying these conditions, a CU-level flag is signalled to indicate whether the

triangle partition mode is applied or not.

[0106] When this mode is used, a CU is split evenly into two triangle-shaped partitions, using
either the diagonal split or the anti-diagonal split, as depicted in FIG. 14. Each triangle partition in the
CU is inter-predicted using its own motion; only uni-prediction is allowed for each partition, that is, each
partition has one motion vector and one reference index. The uni-prediction motion constraint is applied
to ensure that same as the conventional bi-prediction, only two motion compensated prediction are needed

for each CU.

[0107] Ifthe CU-level flag indicates that the current CU is coded using the triangle partition mode,
a flag indicating the direction of the triangle partition (diagonal or anti-diagonal), and two merge indices
(one for each partition) are further signalled. After predicting each of the triangle partitions, the sample
values along the diagonal or anti-diagonal edge are adjusted using a blending processing with adaptive
weights. This is the prediction signal for the whole CU and transform and quantization process will be
applied to the whole CU as in other prediction modes. Finally, the motion ficld of a CU predicted using

the triangle partition mode is stored in 4x4 units.

[0108] The regular merge candidate list is re-used for triangle partition merge prediction with no
extra motion vector pruning. For each merge candidate in the regular merge candidate list, one and only
one of its LO or L1 motion vector is used for triangle prediction. In addition, the order of selecting the
L0 vs. L1 motion vector is based on its merge index parity. With this scheme, the regular merge list can

be directly used.

17

WO 2021/008514 PCT/CN2020/101820

2.2.41 Merge list construction process for TPM
[0109] Basically, the regular merge list construction process is applied as proposed in JVET-
NO0340. However, some modifications are added.
[0110] Specifically, the followings are applied:
1) How to do the pruning process is dependent on the usage of TPM for current block

— Ifthe current block is not coded with TPM, the HEVC 5 pruning applied to spatial merge

candidates is invoked

— Otherwise (if the current block is coded with TPM), full pruning is applied when adding
a new spatial merge candidates. That is, B1 is compared to Al; BO is compared to Al

and B1; A0 is compared to Al, B1, and BO; B2 is compared to A1, B1, A0, and BO.

2) The condition on whether to check of motion information from B2 is dependent on the usage of

TPM for current block

— Ifthe current block is not coded with TPM, B2 is accessed and checked only when there

are less than 4 spatial merge candidates before checking B2.
— Otherwise (if the current block is coded with TPM), B2 is always accessed and checked
regardless how many available spatial merge candidates before adding B2.

2.24.2 Adaptive weighting process

[0111] After predicting each triangular prediction unit, an adaptive weighting process is applied
to the diagonal edge between the two triangular prediction units to derive the final prediction for the

whole CU. Two weighting factor groups are defined as follows:

e [*'weighting factor group: {7/8, 6/8, 4/8,2/8, 1/8} and {7/8, 4/8, 1/8} are used for the luminance and

the chrominance samples, respectively;

e 2™ weighting factor group: {7/8, 6/8, 5/8, 4/8, 3/8, 2/8, 1/8} and {6/8, 4/8, 2/8} are used for the

luminance and the chrominance samples, respectively.

[0112] Weighting factor group is selected based on the comparison of the motion vectors of two
triangular prediction units. The 2™ weighting factor group is used when any one of the following

condition is true:
— the reference pictures of the two triangular prediction units are different from each other
— absolute value of the difference of two motion vectors™ horizontal values is larger than 16 pixels.

— absolute value of the difference of two motion vectors” vertical values is larger than 16 pixels.

18

WO 2021/008514 PCT/CN2020/101820

[0113] Otherwise, the 1* weighting factor group is used. An example is shown in FIG. 15.
2243 Motion vector storage

[0114] The motion vectors (Mv1 and Mv2 in FIG. 16) of the triangular prediction units are stored
in 4x4 grids. For each 4x4 grid, either uni-prediction or bi-prediction motion vector is stored depending
on the position of the 4x4 grid in the CU. As shown in FIG. 16, uni-prediction motion vector, either Mv1
or Mv2, is stored for the 4x4 grid located in the non-weighted area (that is, not located at the diagonal
edge). On the other hand, a bi-prediction motion vector is stored for the 4x4 grid located in the weighted

area. The bi-prediction motion vector is derived from Mv1 and Mv2 according to the following rules:

1) Inthe case that Mv1 and Mv2 have motion vector from different directions (LO or L1), Mv1 and

Mv?2 are simply combined to form the bi-prediction motion vector.
2) In the case that both Mv1 and Mv2 are from the same LO (or L1) direction,

— Ifthe reference picture of Mv2 is the same as a picture in the L1 (or LO) reference picture
list, Mv2 is scaled to the picture. Mv1 and the scaled Mv2 are combined to form the bi-

prediction motion vector.

— Ifthe reference picture of Mv1 is the same as a picture in the L1 (or LO) reference picture
list, Mv1 is scaled to the picture. The scaled Mv1 and Mv2 are combined to form the bi-

prediction motion vector.

— Otherwise, only Mv1 is stored for the weighted area.
2.2.44 Syntax tables, semantics and decoding process for merge mode

7.3.5.1 General slice header syntax

slice_header() { Descriptor

slice_pic_parameter_set_id ue(v)

if(rect_slice flag || NumBricksInPic > 1)

slice_address u(v)

if(Irect_slice flag && !single brick per slice flag)

num_bricks_in_slice_minus1 ue(v)

slice_type ue(v)

IF (SLICE_TYPE != I) {

if(sps_temporal mvp enabled flag)

19

WO 2021/008514 PCT/CN2020/101820

slice_temporal_mvp_enabled_flag

u(l)

if(slice type == B)

mvd_11_zero_flag

u(l)

if(cabac_init_present flag)

cabac_init_flag

u(l)

if(slice_temporal mvp enabled flag) {

if(slice type == B)

collocated_from_10_flag

u(l)

3

if((weighted pred flag && slice type == P) ||
(weighted bipred flag && slice type == B))

pred_weight table()

SIX MINUS MAX NUM MERGE CAND ue(v)

IF(SPS_AFFINE_ENABLED FLAG)

FIVE_MINUS_MAX NUM_SUBBLOCK MERGE_CAND UE(Y)

IF(SPS_FPEL_MMVD_ENABLED FLAG)

SLICE_FPEL_MMVD_ENABLED FLAG um

IF(SPS_TRIANGLE_ENABLED FLAG && MAXNUMMERGECAND >=2)

MAX NUM_MERGE_CAND MINUS_MAX NUM_TRIANGLE_CAND UE(Y)
} ELSE IF (SPS_IBC_ENABLED FLAG)

SIX MINUS MAX NUM MERGE CAND ue(v)
slice_qp_delta se(v)
if(pps_slice_chroma qp_offsets present flag) {

slice_cb_qp_offset se(v)

slice_cr_qp_offset se(v)

H
byte_alignment()
H
7.3.7.5 Coding unit syntax
coding_unit(x0, yO, cbWidth, cbHeight, treeType) { Descriptor

if(slice_type != 1 || sps_ibc_enabled flag) {

20

WO 2021/008514 PCT/CN2020/101820

if(treeType = DUAL TREE CHROMA &&
'(cbWidth = =4 && cbHeight ==4 && !sps_ibc_enabled flag))

cu_skip_flag[x0][yO |

ae(v)

if(cu_skip_flag[x0 J[y0] ==0 && slice_type != 1
&& 1(cbWidth ==4 && cbHeight==4))

pred_mode_flag

ae(v)

if(((slice type==1 && cu_skip flag[xO[[y0 |==0) ||
(slice_type !=1 && (CuPredMode[x0 |[yO] '=MODE_INTRA ||
(cbWidth==4 && cbHeight==4 && cu_skip flag[x0][y0]==0)))) &&
sps_ibc_enabled flag && (cbWidth !=128 || cbHeight |=128))

pred_mode_ibc_flag

ae(v)

j

if(CuPredMode[x0][y0] == MODE_INTRA) {

j

} else if(treeType != DUAL_TREE_CHROMA) { /* MODE_INTER or MODE_IBC */

if(cu_skip flag[x0][y0]==0)

general_merge flag[x0 |[yO |

ae(v)

if(general merge flag[x0][y0]) {

merge _data(x0, y0, cbWidth, cbHeight)

} ELSE IF (CUPREDMODE[X0][YO] == MODE _IBC) {

MVD_CODING(X0, Y0, 0,0)

MVP_L0 FLAG[X0][YO]

AE(®Y)

IF(SPS AMVR _ENABLED FLAG &&
(MVDLO[X0][YO][0]!=0 || MVDLO[X0O][YO][1]!=0)) {

AMVR_PRECISION FLAG[X0][YO]

AE(®Y)

}

}else {

if(slice type == B)

inter_pred_idc[x0][yO]

ae(v)

if(sps_affine enabled flag && cbWidth>=16 && cbHeight>=16) {

inter_affine_flag[x0][yO |

ae(v)

if(sps_affine type flag && inter affine flag[x0][yO0])

cu_affine_type flag[x0][yO |

ae(v)

21

WO 2021/008514 PCT/CN2020/101820

j

if(sps_smvd_enabled flag && inter pred ide[xO][y0 |==PRED BI &&
linter_affine flag[x0][vO] && RefldxSymL0> -1 && RefldxSymL1>-1)

sym_mvd_flag[x0][yO | ae(v)
H
H
7.3.7.7 Merge data syntax
merge data(x0, y0, cbWidth, cbHeight) { Descriptor
IF (CUPREDMODE[X0][YO] == MODE_IBC) §
IF(MAXNUMMERGECAND > 1)
MERGE_IDX] X0][YO] AE(®V)
} ELSE §
if(sps_mmvd_enabled flag || cbWidth * cbHeight !=32)
regular_merge flag[x0 |[yO | aec(v)
if (regular_merge flag[xO][vO]==1){
if(MaxNumMergeCand > 1)
merge_idx[x0][yO] ae(v)
}else {
if(sps_mmvd_enabled flag && cbWidth * cbHeight !=32)
mmvd_merge_flag[x0][yO | ae(v)
if(mmvd merge flag[x0][y0]==1){
if(MaxNumMergeCand > 1)
mmvd_cand_flag[x0][yO] ae(v)
mmvd_distance_idx[x0][yO | ae(v)
mmvd_direction_idx[x0][yO | ae(v)
}else {
if(MaxNumSubblockMergeCand > 0 && cbWidth >=8 && cbHeight>=8)
merge_subblock_flag[x0][yO] ae(v)
if(merge_subblock flag[x0][y0] == 1) ¢
if(MaxNumSubblockMergeCand > 1)
merge_subblock_idx[x0][yO] ae(v)

22

WO 2021/008514 PCT/CN2020/101820

telse {

if(sps_ciip_enabled flag && cu_skip flag[x0][y0] == 0 &&
(cbWidth * cbHeight) >= 64 && cbWidth < 128 && cbHeight <128) {

ciip_flag[x0][yO] ae(v)

if(ciip_flag[xO [[y0] && MaxNumMergeCand > 1)

merge_idx| x0][yO] ae(v)

H

if(MergeTriangleFlag] xO [[yO) {
merge_triangle_split_dir[x0][yO | aec(v)
merge_triangle_idx0[x0][yO] ae(v)
merge_triangle_idx1[x0][yO] ae(v)

H

H

H
H
H
H

7.4.6.1 General slice header semantics

six_minus_max_num_merge _cand specifies the maximum number of merging motion vector
prediction (MVP) candidates supported in the slice subtracted from 6. The maximum number of merging

MVP candidates, MaxNumMergeCand is derived as follows:
MaxNumMergeCand = 6 — six_minus max_num_merge cand (7-57)
[0115] The value of MaxNumMergeCand shall be in the range of 1 to 6, inclusive.

five_minus_max_num_subblock_merge cand specifies the maximum number of subblock-based
merging motion vector prediction (MVP) candidates supported in the slice subtracted from 5. When
five_ minus_max _num_subblock merge cand is not present, it is inferred to be equal to
5 — sps_sbtmvp_enabled flag. The maximum number of subblock-based merging MVP candidates,
MaxNumSubblockMergeCand is derived as follows:

MaxNumSubblockMergeCand = 5 — five_minus max num_subblock merge cand(7-58)

[0116] The value of MaxNumSubblockMergeCand shall be in the range of 0 to 5, inclusive.

23

WO 2021/008514 PCT/CN2020/101820

7.4.8.5 Coding unit semantics

pred_mode_flag cqual to 0 specifies that the current coding unit is coded in inter prediction mode.
pred_mode flag equal to 1 specifies that the current coding unit is coded in intra prediction mode.
[0117] When pred mode flag is not present, it is inferred as follows:

— If cbWidth is equal to 4 and cbHeight is equal to 4, pred_mode_flag is inferred to be equal to 1.

— Otherwise, pred_mode_flag is inferred to be equal to 1 when decoding an I slice, and equal to 0 when

decoding a P or B slice, respectively.

[0118] The variable CuPredMode[x][v] is derived as follows for x = x0..x0 + cbWidth — 1 and
y =v0..y0 + cbHeight — 1:

— Ifpred mode_flag is equal to 0, CuPredMode| x][y | is set equal to MODE INTER.
— Otherwise (pred_mode_flag is equal to 1), CuPredMode[x |[y] is set equal to MODE INTRA.

pred_mode_ibc_flag equal to 1 specifies that the current coding unit is coded in IBC prediction mode.

pred_mode_ibc_flag equal to 0 specifies that the current coding unit is not coded in IBC prediction mode.
[0119] When pred mode ibc flag is not present, it is inferred as follows:

— If cu_skip flag] x0][yO] is equal to 1, and cbWidth is equal to 4, and cbHeight is equal to 4,

pred mode ibc flag is inferred to be equal 1.

— Otherwise, if both cbWidth and cbHeight are equal to 128, pred mode ibc flag is inferred to be
equal to 0.

— Otherwise, pred_mode_ibc flag is inferred to be equal to the value of sps_ibc enabled flag when

decoding an I slice, and 0 when decoding a P or B slice, respectively.

[0120] When pred mode ibc flag is equal to 1, the variable CuPredMode[x][v] is set to be
equal to MODE_IBC for x = x0..x0 + cbWidth — 1 and vy = y0..y0 + cbHeight — 1.

general_merge_flag| x0 || yO | specifies whether the inter prediction parameters for the current coding
unit are inferred from a neighbouring inter-predicted partition. The array indices x0, y0 specify the
location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma
sample of the picture.

[0121] When general _merge flag| x0 |[v0 | is not present, it is inferred as follows:
— Ifcu_skip flag[x0][yO] is equal to 1, general merge flag[x0 |[yO] is inferred to be equal to 1.

— Otherwise, general merge flag| x0][y0] is inferred to be equal to 0.

24

WO 2021/008514 PCT/CN2020/101820

mvp_ 10 flag| x0 || yO | specifies the motion vector predictor index of list 0 where x0, y0 specify the
location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma

sample of the picture.
[0122] When mvp 10 flag| xO |[yO | is not present, it is inferred to be equal to 0.

mvp_11_flag[x0]| yO | has the same semantics as mvp 10 flag, with 10 and list O replaced by 11 and

list 1, respectively.

inter_pred_idc[x0][yO] specifies whether listO, listl, or bi-prediction is used for the current coding
unit according to Table 7-10. The array indices x0, y0 specify the location (x0, y0) of the top-left luma

sample of the considered coding block relative to the top-left luma sample of the picture.

Table 7-10 — Name association to inter prediction mode

inter_pred_idc

Name of inter_pred_idc

(cbWidth + cbHeight) > 12 | (¢cbWidth + cbHeight) == 12 | (cbWidth + cbHeight) == 8
0 PRED L0 PRED L0 n.a
1 PRED L1 PRED L1 n.a
2 PRED BI n.a. n.a
[0123] When inter pred_idc[xO |[y0] is not present, it is inferred to be equal to PRED LO.
7.4.8.7 Merge data semantics

regular_merge flag| x0][y0 | equal to 1 specifies that regular merge mode is used to generate the inter
prediction parameters of the current coding unit. The array indices x0, v0 specify the location (x0, y0)
of the top-left luma sample of the considered coding block relative to the top-left luma sample of the

picture.
[0124] When regular merge flag| x0][y0] is not present, it is inferred as follows:
— If all the following conditions are true, regular merge flag| x0][yO | is inferred to be equal to 1:
— sps_mmvd enabled flag is equal to 0.
— general merge flag| xO |[yO Jisequal to 1.
— cbWidth*cbHeight is equal to 32.

— Otherwise, regular merge flag| x0 || yO0 | is inferred to be equal to 0.

mmvd_merge_flag| x0][y0] equal to 1 specifies that merge mode with motion vector difference is used
to generate the inter prediction parameters of the current coding unit. The array indices x0, y0 specify
the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left

luma sample of the picture.

25

WO 2021/008514 PCT/CN2020/101820

[0125] When mmvd_merge flag| x0]| yO | is not present, it is inferred as follows:
— If all the following conditions are true, mmvd_merge flag| x0 |[yO | is inferred to be equal to 1:
— sps_mmvd enabled flagisequal to 1.
— general merge flag| x0 |[yO] isequal to 1.
— cbWidth*cbHeight is equal to 32.
— regular merge flag| x0][yO] is equal to 0.
— Otherwise, mmvd_merge flag| x0][yO | is inferred to be equal to 0.

mmvd_cand_flag[x0 |[y0 | specifies whether the first (0) or the second (1) candidate in the merging
candidate list is used with the motion vector difference derived from mmvd distance idx[x0 || y0] and
mmvd_direction idx[x0 |[yO]. The array indices x0, yO specify the location (x0, y0) of the top-left

luma sample of the considered coding block relative to the top-left luma sample of the picture.
[0126] When mmvd_cand flag[xO |[yO] is not present, it is inferred to be equal to 0.

mmvd_distance_idx| x0]| yO] specifies the index used to derive MmvdDistance| x0 |[yO | as specified
in Table 7-12. The array indices x0, y0 specify the location (x0, v0) of the top-left luma sample of the

considered coding block relative to the top-left luma sample of the picture.

Table 7-12 — Specification of MmvdDistance[x0 || y0 | based on mmvd distance idx[x0 [[y0].

mmvd_distance MmvdDistance[x0][yO |
_1dx[x0 |[yO] | slice_fpel mmvd enabled flag == | slice fpel mmvd enabled flag ==
0

0 1 4
1 2 8
2 4 16
3 8 32
4 16 64
5 32 128
6 64 256
7 128 512

mmvd_direction_idx| x0][yO | specifies index used to derive MmvdSign| x0][yO | as specified in
Table 7-13. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the

considered coding block relative to the top-left luma sample of the picture.

Table 7-13 — Specification of MmvdSign/ x0][y0 | based on mmvd direction idx[x0][y0]

26

WO 2021/008514 PCT/CN2020/101820

mmvd_direction idx[x0 |[yO] | MmvdSign[x0 |[yO][0] | MmvdSign[x0][yO][1]
0 +1 0
1 -1 0
2 0 +1
3 0 -1
[0127] Both components of the merge plus MVD offset MmvdOffset| x0 |[yO | are derived as

follows:

MmvdOffset[x0][y0][0 | = (MmvdDistance[x0][y0] << 2) * MmvdSign[x0][v0][0]
(7-124)

MmvdOffset[x0][y0][1 | = (MmvdDistance[x0][y0] << 2) * MmvdSign[x0][v0][]
(7-125)

merge_subblock flag| x0][y0 | specifies whether the subblock-based inter prediction parameters for
the current coding unit are inferred from neighbouring blocks. The array indices x0, v0O specify the
location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma
sample of the picture. When merge subblock flag| x0 || yO] is not present, it is inferred to be equal to
0.

merge_subblock idx[x0][yO | specifies the merging candidate index of the subblock-based merging
candidate list where x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered

coding block relative to the top-left luma sample of the picture.
[0128] When merge subblock idx[x0][yO | is not present, it is inferred to be equal to 0.

ciip_flag| x0]| y0O] specifies whether the combined inter-picture merge and intra-picture prediction is
applied for the current coding unit. The array indices x0, y0 specify the location (x0, yO) of the top-left

luma sample of the considered coding block relative to the top-left luma sample of the picture.
[0129] When ciip_flag[x0 |[yO] is not present, it is inferred to be equal to 0.

[0130] When ciip flag| xO |[yO | is equal to 1, the variable IntraPredModeY][x][y] with
x = xCb..xCb + cbWidth — 1 and y = yCb..yCb + cbHeight — 1 is set to be equal to INTRA PLANAR.

[0131] The variable MergeTriangleFlag| x0][yO |, which specifies whether triangular shape
based motion compensation is used to generate the prediction samples of the current coding unit, when

decoding a B slice. is derived as follows:
— If all the following conditions are true, MergeTriangleFlag| x0][yO | is set equal to 1:
— sps_triangle enabled flag is equal to 1.

— slice_type is equal to B.

27

WO 2021/008514 PCT/CN2020/101820

— general merge flag[x0 |[yO] isequal to 1.
— MaxNumTriangleMergeCand is greater than or equal to 2.
— cbWidth * cbHeight is greater than or equal to 64.
— regular merge flag| x0][yO] is equal to 0.
— mmvd_merge flag| x0]| yO] is equal to 0.
— merge subblock flag| x0 |[yO0 | is equal to 0.
— ciip_flag[xO |[yO] is equal to 0.
— Otherwise, MergeTriangleFlag| x0][yO | is set equal to 0.

merge_triangle_split_dir[x0][yO | specifies the splitting direction of merge triangle mode. The array
indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block

relative to the top-left luma sample of the picture.
[0132] When merge triangle split dir| x0][yO | is not present, it is inferred to be equal to 0.

merge_triangle idx0[x0 || y0] specifies the first merging candidate index of the triangular shape based
motion compensation candidate list where x0, y0 specify the location (x0, y0) of the top-left luma

sample of the considered coding block relative to the top-left luma sample of the picture.
[0133] When merge triangle 1dx0[x0][y0] is not present, it is inferred to be equal to 0.

merge_triangle idx1[x0][yO | specifies the second merging candidate index of the triangular shape
based motion compensation candidate list where x0, y0 specify the location (x0, y0) of the top-left luma

sample of the considered coding block relative to the top-left luma sample of the picture.
[0134] When merge triangle idx1[x0][y0] is not present, it is inferred to be equal to 0.

merge_idx| x0 |[yO | specifies the merging candidate index of the merging candidate list where x0, y0
specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the

top-left luma sample of the picture.
[0135] When merge idx[x0 |[y0] is not present, it is inferred as follows:

— If mmvd merge flag| x0][yO] is equal to 1, merge idx| x0][yO] is inferred to be equal to
mmvd cand flag| x0 |[yO].

— Otherwise (mmvd merge flag| x0][yO | is equal to 0), merge _idx| x0]| yO] is inferred to be equal
to 0.

2.2.4.4.1 Decoding process

[0136] The decoding process as provided in the JVET-N0340 is defined as follows:

28

WO 2021/008514 PCT/CN2020/101820

8.5.2.2

[0137]

Derivation process for luma motion vectors for merge mode

This process is only invoked when general merge flag| xCb || yCb | is equal to 1, where

(xCb, yCb) specify the top-left sample of the current luma coding block relative to the top-left luma

sample of the current picture.

[0138]

Inputs to this process are:

— aluma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the

top-left luma sample of the current picture,

— avariable cbWidth specifying the width of the current coding block in luma samples,

— avariable cbHeight specifying the height of the current coding block in luma samples.

[0139]

Outputs of this process are:

the luma motion vectors in 1/16 fractional-sample accuracy mvLO[O [[0 | and mvL1[O][O],

— the reference indices refldxL0 and refldxL1,

— the prediction list utilization flags predFlagl.O] 0][O | and predFlagL.1] 0][O],

— the bi-prediction weight index bewldx.

— the merging candidate list mergeCandList.

[0140]

[0141]

The bi-prediction weight index bewldx is set equal to 0.

The motion vectors mvLO[O |[0] and mvL1[O][O], the reference indices refldxL.O and

refldxL.1 and the prediction utilization flags predFlagL.O] O |[0 | and predFlagL1[O][O] are derived by

the following ordered steps:

L.

The derivation process for spatial merging candidates from neighbouring coding units as
specified in clause 8.5.2.3 is invoked with the luma coding block location (xCb, yCb), the luma
coding block width cbWidth, and the luma coding block height cbHeight as inputs, and the output
being the availability flags availableFlagA,, availableFlagA, availableFlagB,, availableFlagB:
and availableFlagB., the reference indices refldxL.XAo, refldxL.XA;, refldxL.XB,, refldxL.XB;
and refldxLXB,, the prediction list utilization flags predFlagLXAo, predFlagLXA,,
predFlagl. XBo, predFlagLXB; and predFlagLXB,, and the motion vectors mvLX Ao, mvLXA;,
mvLXBy, mvLXB; and mvLXB;, with X being 0 or 1, and the bi-prediction weight indices
bewldxAo, bewldxA;, bewldxBo, becwldxB,, bewldxB..

The reference indices, refldxL.XCol, with X being 0 or 1, and the bi-prediction weight index

bewldxCol for the temporal merging candidate Col are set equal to 0.

29

WO 2021/008514 PCT/CN2020/101820

3. The derivation process for temporal luma motion vector prediction as specified in in
clause 8.5.2.11 is invoked with the luma location (xCb, yCb), the luma coding block width
cbWidth, the luma coding block height cbHeight and the variable refldxLLOCol as inputs, and the
output being the availability flag availableFlagl.OCol and the temporal motion vector mvLOCol.
The variables availableFlagCol, predFlagL0Col and predFlagl.1Col are derived as follows:

availableFlagCol = availableFlagL0Col (8-263)
predFlaglL.OCol = availableFlagl.0Col (8-264)
predFlagl.1Col =0 (8-265)

4. Whenslice type is equal to B, the derivation process for temporal luma motion vector prediction
as specified in clause 8.5.2.11 is invoked with the luma location (xCb, yCb), the luma coding
block width cbWidth, the luma coding block height cbHeight and the variable refldxL.1Col as
inputs, and the output being the availability flag availableFlagl.1Col and the temporal motion
vector mvL1Col. The variables availableFlagCol and predFlagl.1Col are derived as follows:

availableFlagCol = availableFlagL0OCol || availableFlagL1Col (8-266)
predFlagl. 1Col = availableFlagl.1Col (8-267)
5. The merging candidate list, mergeCandList, is constructed as follows:
i=0
if(availableFlagA)
mergeCandList| i++ | = A,
if(availableFlagB,)
mergeCandList[i++ | = By
if(availableFlagBo)
mergeCandList[i++ | = Bo (8-2638)
if(availableFlagA,)
mergeCandList[i++ | = Ao
if(availableFlagB-)
mergeCandList[i++ | = B»
if(availableFlagCol)
mergeCandList[i++ | = Col

6. The variable numCurrMergeCand and numOrigMergeCand are set equal to the number of

merging candidates in the mergeCandList.

7. When numCurrMergeCand is less than (MaxNumMergeCand — 1) and NumHmvpCand is
greater than 0, the following applies:

30

WO 2021/008514 PCT/CN2020/101820

10.

— The derivation process of history-based merging candidates as specified in 8.5.2.6 is invoked
with mergeCandList and numCurrMergeCand as inputs, and modified mergeCandList and

numCurrMergeCand as outputs.
— numOrigMergeCand is set equal to numCurrMergeCand.

When numCurrMergeCand is less than MaxNumMergeCand and greater than 1, the following
applies:

— The derivation process for pairwise average merging candidate specified in clause 8.5.2.4 is
invoked with mergeCandList, the reference indices refldxLON and refldxL 1N, the prediction
list utilization flags predFlaglL.ON and predFlagL 1N, the motion vectors mvLON and mvL1N
of every candidate N in mergeCandList, and numCurrMergeCand as inputs, and the output is
assigned to mergeCandList, numCurrMergeCand, the reference indices refldxL.OavgCand and
refldxLlavgCand, the prediction list utilization flags predFlagl.OavgCand and
predFlagl.1avgCand and the motion vectors mvLOavgCand and mvL lavgCand of candidate
avgCand being added into mergeCandList. The bi-prediction weight index bewldx of
candidate avgCand being added into mergeCandList is set equal to 0.

— numOrigMergeCand is set equal to numCurrMergeCand.

The derivation process for zero motion vector merging candidates specified in clause 8.5.2.5 is
invoked with the mergeCandList, the reference indices refldxLON and refldxL 1N, the prediction
list utilization flags predFlagLON and predFlagl. 1N, the motion vectors mvLON and mvL1N of
every candidate N in mergeCandList and numCurrMergeCand as inputs, and the output is
assigned to mergeCandList, numCurrMergeCand, the reference indices refldxL.OzeroCandn and
refldxL1zeroCandn, the prediction list utilization flags predFlagl.OzeroCand, and
predFlagl.1zeroCand,, and the motion vectors mvLOzeroCand,, and mvL1zeroCand,, of every
new candidate zeroCandy, being added into mergeCandList. The bi-prediction weight index
bewldx of every new candidate zeroCandn being added into mergeCandList is set equal to 0.
The number of candidates being added, numZeroMergeCand, is set equal to
(numCurrMergeCand — numOrigMergeCand). When numZeroMergeCand is greater than 0, m

ranges from 0 to numZeroMergeCand — 1, inclusive.

The following assignments are made with N being the candidate at position
merge idx[xCb][yCb] in the merging candidate list mergeCandList
(N =mergeCandList]| merge idx[xCb][yCb]]) and X being replaced by 0 or 1:

refldxL.X = refldxLXN (8-269)

predFlagL.X[O]| 0 | = predFlagL. XN (8-270)

31

WO 2021/008514 PCT/CN2020/101820

mvLX[O0][0][0]=mvLXN] 0] (8-271)
mvLX[O][O][1]=mvLXN][1] (8-272)
bewldx = bewldxN (8-273)

11. When mmvd_merge flag| xCb || yCb | is equal to 1, the following applies:

— The derivation process for merge motion vector difference as specified in 8.5.2.7 is invoked
with the luma location (xCb, yCb), the reference indices refldxLO, refldxL1 and the
prediction list utilization flags predFlaglL.O[O]| O | and predFlagL.1] O || O] as inputs, and the

motion vector differences mMvdL0 and mMvdL1 as outputs.

— The motion vector difference mMvdLX is added to the merge motion vectors mvLX for X

being 0 and 1 as follows:

mvLX[0][0] 0] +=mMvdLX[0| (8-274)
mvLX[0][0] 1]+=mMvdLX][1] (8-275)
mvLX[0][01][0] = Clip3(—2'7,217 = 1, mvLX[0][0][0]) (8-276)
mvLX[0][0][1]=Clip3(-27,2"~ 1, mvLX[0][O][1]) (8-277)

8.5.2.3 Derivation process for spatial merging candidates

[0142] Inputs to this process are:

— aluma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the

top-left luma sample of the current picture,
— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
[0143] Outputs of this process are as follows, with X being 0 or 1:

— the availability flags availableFlagA,, availableFlagA,, availableFlagBo, availableFlagB; and
availableFlagB; of the neighbouring coding units,

— the reference indices refldxLXAo, refldxLXA,, refldxLXB,, refldxLXB; and refldxLLXB, of the

neighbouring coding units,

— the prediction list utilization flags predFlagL. X Ao, predFlagLXA, predFlaglL X B, predFlagl. XB; and
predFlaglLXB:; of the neighbouring coding units,

— the motion vectors in 1/16 fractional-sample accuracy mvLXA,, mvLXA;, mvLXB,, mvLXB; and

mvLXB: of the neighbouring coding units,

32

WO 2021/008514 PCT/CN2020/101820

the bi-prediction weight indices gbildxAo, gbildxA,, gbildxBo, gbildxBi, and gbildxBs.

[0144] For the derivation of availableFlagA,, refldxLXA;, predFlagLXA; and mvLXA; the

following applies:

The luma location (xNbA;, yNbA;) inside the neighbouring luma coding block is set equal to
(xCb —1, yCb + cbHeight — 1).

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbA:, yNbA;) as inputs, and the
output is assigned to the block availability flag availableA;.

The variables availableFlagA;, refldxLLXA;, predFlagL.XA; and mvLXA; ar¢ derived as follows:

— IfavailableA; is equal to FALSE, availableFlagA, is setequal to 0, both components of mvLXA;
are set equal to 0, refldxLLXA; is set equal to —1 and predFlaglL.XA; is set equal to 0, with X
being 0 or 1, and gbildxA; is set equal to 0.

— Otherwise, availableFlagA; is set equal to 1 and the following assignments are made:

mvLXA; = MvLX][xXNbA; || yNbA, | (8-294)
refldxLXA; = RefldxLX]| xNbA; |[yNbA, | (8-295)
predFlagl. XA; = PredFlagLX| xNbA;]| yNbA; | (8-296)
gbildxA; = Gbildx| xNbA, || yNbA, | (8-297)
[0145] For the derivation of availableFlagB:, refldxLXB,, predFlagl. XB: and mvLXB; the

following applies:

The luma location (xNbB;, yNbB,) inside the neighbouring luma coding block is set equal to
(xCb +cbWidth—1,yCb—1).

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbB;, yNbB,) as inputs, and the
output is assigned to the block availability flag availableB;.

The variables availableFlagBi, refldxLXB,, predFlagl.XB, and mvLXB, ar¢ derived as follows:

— If one or more of the following conditions are true, availableFlagB, is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB; is
set equal to 0, with X being 0 or 1, and gbildxB; is set equal to O:

— availableB; is equal to FALSE.

33

WO 2021/008514 PCT/CN2020/101820

— availableA; is equal to TRUE and the Iuma locations (xNbA;, yNbA;) and

(xNbB;, yNbB;) have the same motion vectors and the same reference indices.

— Otherwise, availableFlagB, is set equal to 1 and the following assignments are made:

mvLXB; = MvLX]| xNbB; |[yNbB; | (8-298)
refldxLXB; = RefldxLX| xNbB;][yNbB; | (8-299)
predFlagl. XB; = PredFlagLX| xNbB;]| yNbB; | (8-300)
gbildxB; = Gbildx| xNbB, |[yNbB; | (8-301)
[0146] For the derivation of availableFlagBo, refldxLXB,, predFlagl. XB, and mvLXBy the

following applies:

— The luma location (xXNbBo, yNbBy) inside the neighbouring luma coding block is set equal to
(xCb + cbWidth, yCb— 1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xNbBo, yNbBy) as inputs, and the
output is assigned to the block availability flag availableBo.

— The variables availableFlagBo, refldxLXBo, predFlagL.XB, and mvLXBy are derived as follows:

— If one or more of the following conditions are true, availableFlagB; is set equal to 0, both
components of mvLXBy are set equal to 0, refldxLXBy is set equal to —1 and predFlaglL XBy is
set equal to 0, with X being 0 or 1, and gbildxB, is set equal to O:

— availableBy is equal to FALSE.

— availableB: is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbBo, yNbBy)

have the same motion vectors and the same reference indices.

— availableA; is equal to TRUE, the luma locations (xNbA:, yNbA;) and (xNbBo, yNbBy)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

— Otherwise, availableFlagBs is set equal to 1 and the following assignments are made:

mvLXBo = MvLX]| xNbBy |[yNbBy | (8-302)
refldxLXBo, = RefldxLX| xNbBy || yNbBo | (8-303)
predFlagl. XB, = PredFlagLX| xNbBy || yNbBy | (8-304)
gbildxB, = Gbildx| xNbBy || yNbBo | (8-305)

34

WO 2021/008514 PCT/CN2020/101820

[0147]

For the derivation of availableFlagAo, refldxLXAo, predFlagl. XA, and mvLXA, the

following applies:

— The luma location (xNbAo, yNbAy) inside the neighbouring luma coding block is set equal to
(xCb -1, yCb + cbWidth).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring

blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)

set equal to (xCb, yCb) and the neighbouring luma location (xNbAo, yNbAo) as inputs, and the

output is assigned to the block availability flag availableAo.

— The variables availableFlagAo, refldxL. XA, predFlagLX A, and mvL XA, are derived as follows:

[0148]

If one or more of the following conditions are true, availableFlagA, is set equal to 0, both
components of mvLXA, are set equal to 0, refldxL.XAq is set equal to —1 and predFlagL. XA, is
set equal to 0, with X being 0 or 1, and gbildxA, is set equal to 0:

— availableAy is equal to FALSE.

availableA; is equal to TRUE and the Iuma locations (xNbAi, yNbA;) and

(xNbAo, yNbAy) have the same motion vectors and the same reference indices.

availableB; is equal to TRUE, the luma locations (xNbB1, yNbB1) and (xXNbA,, yNbA,)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

availableBy is equal to TRUE, the luma locations (xNbBo, yNbB;) and (xXNbA,, yNbA)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

Otherwise, availableFlagA, is set equal to 1 and the following assignments are made:

mvLXAo = MvLX][xNbAy || vNbAy | (8-306)
refldxLX A, = RefldxLX]| xNbAy |[yNbAy | (8-307)
predFlagl. XA, = PredFlagL.X| xNbAo || yNbAy | (8-308)
gbildxA, = Gbildx| xNbAy || yNbAy | (8-309)

For the derivation of availableFlagB,, refldxLXB,, predFlagl. XB> and mvLXB: the

following applies:

— The luma location (xXNbB-, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb—1,yCb—1).

35

WO 2021/008514 PCT/CN2020/101820

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring

blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)

set equal to (xCb, yCb) and the neighbouring luma location (xXNbB-, yNbB-) as inputs, and the

output is assigned to the block availability flag availableB..

— The variables availableFlagB,, refldxLLXB,, predFlagL.XB, and mvLXB: are derived as follows:

225

[0149]

If one or more of the following conditions are true, availableFlagB: is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB: is
set equal to 0, with X being 0 or 1, and gbildxB: is set equal to O:

— availableB; is equal to FALSE.

availableA; is equal to TRUE and the Iuma locations (xNbAi, yNbA;) and

(xNbB:, yNbB-) have the same motion vectors and the same reference indices.

availableB; is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbB.,, yNbB;)

have the same motion vectors and the same reference indices.

availableBy is equal to TRUE, the luma locations (xXNbBo, yNbB;) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

availableAy is equal to TRUE, the luma locations (xNbAo, yNbA) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

availableFlagA, + availableFlagA, + availableFlagB, + availableFlagB; is equal to 4 and
merge_triangle flag| xCb |[vCb] is equal to 0.

Otherwise, availableFlagB: is set equal to 1 and the following assignments are made:

mvLXB; = MvLX| xNbB; |[yNbB: | (8-310)

refldxLXB, = RefldxLX[xNbB;][yNbB:] (8-311)

predFlagl. XB; = PredFlagL X[xNbB: || yNbB:] (8-312)

gbildxB, = Gbildx[xNbB;][yNbB; | (8-313)
MMVD

In JVET-L0054, ultimate motion vector expression (UMVE, also known as MMVD) is

presented. UMVE is used for either skip or merge modes with a proposed motion vector expression

method.

36

WO 2021/008514 PCT/CN2020/101820

[0150] UMVE re-uses merge candidate as same as those included in the regular merge candidate
listin VVC. Among the merge candidates, a base candidate can be selected, and is further expanded by

the proposed motion vector expression method.

[0151] UMVE provides a new motion vector difference (MVD) representation method, in which

a starting point, a motion magnitude and a motion direction are used to represent a MVD.

[0152] This proposed technique uses a merge candidate list as it is. But only candidates which
are default merge type (MRG_TYPE DEFAULT N) are considered for UMVE’s expansion.

[0153] Base candidate index defines the starting point. Base candidate index indicates the best

candidate among candidates in the list as follows.

Table 4. Base candidate IDX

Base candidate IDX 0 1 2 3
N*"MVP 1** MVP 2 MVP 3 MVP 4" MVP
[0154] If the number of base candidate is equal to 1, Base candidate IDX is not signaled.
[0155] Distance index is motion magnitude information. Distance index indicates the pre-defined

distance from the starting point information. Pre-defined distance is as follows:

Table 5. Distance IDX
Distance IDX 0 1 2 3 4 5 6 7
Pixel distance | 1/4-pel | 1/2-pel 1-pel 2-pel 4-pel 8-pel 16-pel | 32-pel

[0156] Direction index represents the direction of the MVD relative to the starting point. The

direction index can represent of the four directions as shown below.

Table 6. Direction IDX

Direction IDX 00 01 10 11
x-axis + - N/A N/A
y-axis N/A N/A + -
[0157] UMVE flag is signaled right after sending a skip flag or merge flag. If skip or merge flag

is true, UMVE flag is parsed. If UMVE flag is equal to 1, UMVE syntaxes are parsed. But, if not 1,
AFFINE flag is parsed. If AFFINE flag is equal to 1, that is AFFINE mode, But, if not 1, skip/merge
index is parsed for VIM’s skip/merge mode.

[0158] Additional line buffer due to UMVE candidates is not needed. Because a skip/merge
candidate of software is directly used as a base candidate. Using input UMVE index, the supplement of

MV is decided right before motion compensation. There is no need to hold long line buffer for this.

37

WO 2021/008514 PCT/CN2020/101820

[0159] In current common test condition, either the first or the second merge candidate in the

merge candidate list could be selected as the base candidate.

[0160] UMVE is also known as Merge with MV Differences (MMVD).
2.2.6 Combined intra-inter prediction (CIIP)
[0161] In JVET-L0100, multi-hypothesis prediction is proposed, wherein combined intra and

inter prediction is one way to generate multiple hypotheses.

[0162] When the multi-hypothesis prediction is applied to improve intra mode, multi-hypothesis
prediction combines one intra prediction and one merge indexed prediction. In a merge CU, one flag is
signaled for merge mode to select an intra mode from an intra candidate list when the flag is true. For
luma component, the intra candidate list is derived from only one intra prediction mode, i.¢., planar mode.
The weights applied to the prediction block from intra and inter prediction are determined by the coded

mode (intra or non-intra) of two neighboring blocks (A1 and B1).
2.2.7 MERGE for sub-block-based technologies
[0163] It is suggested that all the sub-block related motion candidates are put in a separate merge

list in addition to the regular merge list for non-sub block merge candidates.

[0164] The sub-block related motion candidates are put in a separate merge list is named as ‘sub-

block merge candidate list’.

[0165] In one example, the sub-block merge candidate list includes ATMVP candidate and affine

merge candidates.
[0166] The sub-block merge candidate list is filled with candidates in the following order:
a. ATMYVP candidate (maybe available or unavailable);

b. Affine merge lists (including Inherited Affine candidates; and Constructed Affine

candidates)

c. Padding as zero MV 4-parameter affine model
2.2.71.1 ATMYVP (aka Sub-block Temporal Motion Vector Predictor, SbTMVP)

[0167] Basic idea of ATMVP is to derive multiple sets of temporal motion vector predictors for
one block. Each sub-block is assigned with one set of motion information. When an ATMVP merge

candidate is generated, the motion compensation is done in 8x8 level instead of the whole block level.

[0168] In current design, ATMVP predicts the motion vectors of the sub-CUs within a CU in two
steps which are described in the following two sub-sections 2.2.7.1.1.1 and 2.2.7.1.1.2, respectively.

38

WO 2021/008514 PCT/CN2020/101820

2.2.7.1.1.1 Derivation of initialized motion vector

[0169] Denote the initialized motion vector by tempMv. When block Al is available and non-
intra coded (i.¢., coded with inter or IBC mode), the following is applied to derive the initialized motion

vector.

— If all of the following conditions are true, tempMy is set equal to the motion vector of block Al from

list 1, denoted by mvL1A;:

— Reference picture index of list 1 is available (not equal to -1), and it has the same POC value
as the collocated picture (i.e., DiffPicOrderCnt(ColPic, RefPicList| 1 [[refldxL1A;]) is
equal to 0),

— All reference pictures are with no larger POC compared to the current picture (i.c.,
DiffPicOrderCnt(aPic, currPic) is less than or equal to O for every picture aPic in every

reference picture list of the current slice),
— Current slice is equal to B slice,
— collocated from 10 flag is equal to 0.

— Otherwise if all of the following conditions are true, tempMy is set equal to the motion vector of

block A1 from list 0, denoted by mvLOA;:
— Reference picture index of list 0 is available (not equal to -1),

— it has the same POC value as the collocated picture (i.e., DiffPicOrderCnt(ColPic,
RefPicList| O |[refldxLLOA;]) is equal to 0).

— Otherwise, zero motion vector is used as the initialized MV.

[0170] A corresponding block (with center position of current block plus the rounded MV, clipped
to be in certain ranges in necessary) is identified in the collocated picture signaled at the slice header with

the initialized motion vector.

[0171] If the block is inter-coded, then go to the 2™ step. Otherwise, the ATMVP candidate is set
to be NOT available.

2.2,7.1.1.2 Sub-CU motion derivation

[0172] The second step is to split the current CU into sub-CUs and obtain the motion information
of each sub-CU from the block corresponding to each sub-CU in the collocated picture.

[0173] If the corresponding block for a sub-CU is coded with inter mode, the motion information
is utilized to derive the final motion information of current sub-CU by invoking the derivation process

for collocated MVs which is not different with the process for conventional TMVP process. Basically,

39

WO 2021/008514 PCT/CN2020/101820

if the corresponding block is predicted from the target list X for uni-prediction or bi-prediction,
the motion vector is utilized; otherwise, if it is predicted from list Y (Y=1-X) for uni or bi-prediction
and NoBackwardPredFlag is equal to 1, MV for list Y is utilized. Otherwise, no motion candidate

could be found.

[0174] If the block in the collocated picture identified by the initialized MV and location of
current sub-CU is intra or IBC coded, or no motion candidate could be found as described aforementioned,

the following further apply:

[0175] Denote the motion vector used to fetch the motion field in the collocated picture Re. as
MV To minimize the impact due to MV scaling, the MV in the spatial candidate list used to derive
MV..iis selected in the following way: if the reference picture of a candidate MYV is the collocated picture,
this MV is selected and used as MVt without any scaling. Otherwise, the MV having a reference picture

closest to the collocated picture is selected to derive MV with scaling.
[0176] The related decoding process for collocated motion vectors derivation process in JVET-
N1001 is described as follows, with the parts related to ATMVP highlighted in bolded, capitalized font:

8.5.2.12 Derivation process for collocated motion vectors

[0177] Inputs to this process are:
— avariable currCb specifying the current coding block,

— avariable colCb specifying the collocated coding block inside the collocated picture specified by
ColPic,

— a luma location (xColCb, yColCb) specifying the top-left sample of the collocated luma coding
block specified by colCb relative to the top-left luma sample of the collocated picture specified by
ColPic,

— areference index refldxLX, with X being 0 or 1,

— aflag indicating a subblock temporal merging candidate sbFlag.

[0178] Outputs of this process are:

— the motion vector prediction mvLXCol in 1/16 fractional-sample accuracy,
— the availability flag availableFlagL.XCol.

[0179] The variable currPic specifies the current picture.

[0180] The arrays predFlagLOCol| x][v], mvLOCol[x |[y | and refldxLOCol[x][v | are set
equal to PredFlagLO[x][y |, MvDmvrLO[x |[v] and RefldxL0O] x |[v], respectively, of the collocated
picture specified by ColPic, and the arrays predFlagL1Col[x][y], mvLICol[x][y] and

40

WO 2021/008514 PCT/CN2020/101820

refldxL.1Col| x |[y] are set equal to PredFlagL1] x |[y |, MvDmvrL1[x][v | and RefldxL1[x |[¥],
respectively, of the collocated picture specified by ColPic.

[0181] The variables mvLXCol and availableFlagl. XCol are derived as follows:

— IfcolCb is coded in an intra or IBC prediction mode, both components of mvLXCol are set equal to

0 and availableFlagL.XCol is set equal to 0.

— Otherwise, the motion vector mvCol, the reference index refldxCol and the reference list identifier

listCol are derived as follows:
— If sbFlag is equal to O, availableFlagl.XCol is set to 1 and the following applies:

— If predFlagL.OCol| xColCb]| yColCb | is equal to 0, mvCol, refldxCol and listCol are set
equal to mvL1Col] xColCb || yColCb], refldxL1Col[xColCb][yColCb] and L1,

respectively.

— Otherwise, if predFlagLOCol[xColCb |[yColCb] is equal to 1 and
predFlagl.1Col[xColCb][yColCb | is equal to 0, mvCol, refldxCol and listCol are set
equal to mvLOCol] xColCb || yColCb], refldxLOCol[xColCb][yColCb] and LO,

respectively.

— Otherwise (predFlagLOCol| xColCb || yColCb | 1S equal to 1 and
predFlagl.1Col| xColCb]| yColCb] is equal to 1), the following assignments are made:

— If NoBackwardPredFlag is equal to 1, mvCol, refldxCol and listCol are set equal to
mvLXCol[xColCb][yColCb |, refldxLXCol| xColCb |[yColCb| and LX,

respectively.

— Otherwise, mvCol, refldxCol and listCol are set equal to
mvLNCol[| xColCb][yColCb |, refldxLNCol| xColCb |[yColCb| and LN,
respectively, with N being the value of collocated from 10 flag.

— OTHERWISE (SBFLAG IS EQUAL TO 1), THE FOLLOWING APPLIES:

- IF PREDFLAGLXCOLIXCOLCBI][YCOLCB] IS EQUAL TO 1, MVCOL,
REFIDXCOL, AND LISTCOL ARE SET EQUAL TO
MVLXCOL] XCOLCBJ[YCOLCB], REFIDXLXCOL[XCOLCB][YCOLCB],
AND LX, RESPECTIVELY, AVAILABLEFLAGLXCOL ISSET TO 1.

— OTHERWISE (PREDFLAGLXCOL[XCOLCB][YCOLCB] IS EQUAL TO 0),
THE FOLLOWING APPLIES:

— IF DIFFPICORDERCNT(APIC, CURRPIC) IS LESS THAN OR EQUAL TO 0
FOR EVERY PICTURE APIC IN EVERY REFERENCE PICTURE LIST OF

41

WO 2021/008514 PCT/CN2020/101820

THE CURRENT SLICE AND PREDFLAGLYCOL[XCOLCB][YCOLCB] IS
EQUAL TO 1, MVCOL, REFIDXCOL, AND LISTCOL ARE SET TO
MVLYCOL| XCOLCB][YCOLCB],

REFIDXLYCOL[XCOLCB || YCOLCB| AND LY, RESPECTIVELY, WITH
Y BEING EQUAL TO !X WHERE X BEING THE VALUE OF X THIS
PROCESS IS INVOKED FOR. AVAILABLEFLAGLXCOL IS SET TO 1.

- BOTH THE COMPONENTS OF MVLXCOL ARE SET TO 0 AND
AVAILABLEFLAGLXCOL IS SET EQUAL TO 0.

— When availableFlagl. XCol is equal to TRUE, mvL.XCol and availableFlagl. XCol are derived as

follows:

— If LongTermRefPic(currPic, currCb, refldxLX, LX) is not equal to
LongTermRefPic(ColPic, colCb, refldxCol, listCol), both components of mvL.XCol are set
equal to 0 and availableFlagl.XCol is set equal to O.

— Otherwise, the variable availableFlagLXCol is set equal to 1,
refPicList| listCol || refldxCol | is set to be the picture with reference index refldxCol in the
reference picture list listCol of the slice containing coding block colCb in the collocated

picture specified by ColPic, and the following applies:
colPocDiff = DiffPicOrderCnt(ColPic, refPicList| listCol || refldxCol |)(8-402)
currPocDiff = DiffPicOrderCnt(currPic, RefPicList] X][refldxLX |) (8-403)

— The temporal motion buffer compression process for collocated motion vectors as
specified in clause 8.5.2.15 is invoked with mvCol as input, and the modified mvCol

as output.

— If RefPicList] X][refldxLLX] is a long-term reference picture, or colPocDiff is equal

to currPocDiff, mvLXCol is derived as follows:
mvLXCol = mvCol (8-404)

— Otherwise, mvLXCol is derived as a scaled version of the motion vector mvCol as

follows:
tx = (16384 + (Abs(td) >> 1))/td (8-405)
distScaleFactor = Clip3(—4096, 4095, (tb * tx +32) >> 6) (8-406)

mvLXCol = Clip3(—131072, 131071, (distScaleFactor * mvCol +
128 — (distScaleFactor * mvCol >=0)) >> 8)) (8-407)

where td and tb are derived as follows:

42

WO 2021/008514 PCT/CN2020/101820

td = Clip3(—128, 127, colPocDiff) (8-408)

tb = Clip3(—128, 127, currPocDift) (8-409)
2.2.8 Regular inter mode (AMVP)
2.2.8.1 AMYVP motion candidate list

[0182] Similar to the AMVP design in HEVC, up to 2 AMVP candidates may be derived.
However, the HMVP candidates may also be added after the TMVP candidate. The HMVP candidates
in the HMVP table are traversed in an ascending order of index (i.e., from index equal to 0, the oldest
ong). Up to 4 HMVP candidates may be checked to find whether its reference picture is the same as the

target reference picture (i.¢., same POC value).
2282 AMVR

[0183] In HEVC, motion vector differences (MVDs) (between the motion vector and predicted
motion vector of a PU) are signalled in units of quarter luma samples when use_integer mv_flag is equal
to 0 in the slice header. In the VVC, a locally adaptive motion vector resolution (AMVR) is introduced.
In the VVC, MVD can be coded in units of quarter luma samples, integer luma samples or four luma
samples (i.c., ¥a-pel, 1-pel, 4-pel). The MVD resolution is controlled at the coding unit (CU) level, and
MVD resolution flags are conditionally signalled for each CU that has at least one non-zero MVD

components.

[0184] For a CU that has at least one non-zero MVD components, a first flag is signalled to
indicate whether quarter luma sample MV precision is used in the CU. When the first flag (equal to 1)
indicates that quarter luma sample MV precision is not used, another flag is signalled to indicate whether

integer luma sample MV precision or four luma sample MV precision is used.

[0185] When the first MVD resolution flag of a CU is zero, or not coded for a CU (meaning all
MVDs in the CU are zero), the quarter luma sample MV resolution is used for the CU. When a CU uses
integer-luma sample MV precision or four-luma-sample MV precision, the MVPs in the AMVP candidate

list for the CU are rounded to the corresponding precision.
2.2.83 Symmetric motion vector difference in JVET-N1001-v2

[0186] In JVET-N1001-v2, symmetric motion vector difference (SMVD) is applied for motion

information coding in bi-prediction.

[0187] Firstly, in slice level, variables RefldxSymL0 and RefldxSymlL1 to indicate the reference

picture index of list 0/1 used in SMVD mode, respectively, are derived with the following steps as

43

WO 2021/008514 PCT/CN2020/101820

specified in N1001-v2. When at least one of the two variables are equal to -1, SMVD mode shall be
disabled.

2.2.9 Refinement of motion information

2.2.9.1 Decoder-side Motion Vector Refinement (DMVR)

[0188] In bi-prediction operation, for the prediction of one block region, two prediction blocks,
formed using a motion vector (MV) of list0 and a MV of list1, respectively, are combined to form a single
prediction signal. In the decoder-side motion vector refinement (DMVR) method, the two motion vectors

of the bi-prediction are further refined.

[0189] For DMVR in VVC, MVD mirroring between list O and list 1 is assumed as shown in FIG.
19 and bilateral matching is performed to refine the M Vs, i.e., to find the best MVD among several MVD
candidates. Denote the M Vs for two reference picture lists by MVLO(L0X, LOY), and MVL1(L1X, L1Y).
The MVD denoted by (MvdX, MvdY) for list 0 that could minimize the cost function (e.g., SAD) is
defined as the best MVD. For the SAD function, it is defined as the SAD between the reference block of
list 0 derived with a motion vector (LOX+MvdX, LOY+MvdY) in the list 0 reference picture and the
reference block of list 1 derived with a motion vector (L1X-MvdX, L1Y-MvdY) in the list 1 reference

picture.

[0190] The motion vector refinement process may iterate twice. In each iteration, at most 6
MVDs (with integer-pel precision) may be checked in two steps, as shown in FIG. 20. In the first step,
MVD (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1) are checked. In the second step, one of the MVD (-1, -1), (-1,
1), (1, -1) or (1, 1) may be selected and further checked. Suppose function Sad(x, y) returns SAD value
of the MVD (x, y). The MVD, denoted by (MvdX, MvdY), checked in the second step is decided as

follows:
MvdX =-1;
MvdY =-1;
If (Sad(1, 0) < Sad(-1, 0))
MvdX =1;
If (Sad(0, 1) < Sad(0, -1))
MvdY =1;
[0191] In the first iteration, the starting point is the signaled MV, and in the second iteration, the

starting point is the signaled MV plus the selected best MVD in the first iteration. DMVR applies only

44

WO 2021/008514 PCT/CN2020/101820

when one reference picture is a preceding picture and the other reference picture is a following picture,

and the two reference pictures are with same picture order count distance from the current picture.

[0192]

To further simplify the process of DMVR, JVET-M0147 proposed several changes to the

design in JEM. More specifically, the adopted DMVR design to VIM-4.0 (to be released soon) has the

following main features:

Early termination when (0,0) position SAD between list0 and listl is smaller than a threshold.
Early termination when SAD between list0 and list1 is zero for some position.

Block sizes for DMVR: W*H>=64 && H>=8, wherein W and H are the width and height of the
block.

Split the CU into multiple of 16x16 sub-blocks for DMVR of CU size > 16*16. If only width or
height of the CU is larger than 16, it is only split in vertical or horizontal direction.

Reference block size (W+7)*(H+7) (for luma).
25 points SAD-based integer-pel search (i.e. (+-) 2 refinement search range, single stage)
Bilinear-interpolation based DMVR.

“Parametric error surface equation” based sub-pel refinement. This procedure is performed only
when the minimum SAD cost is not equal to zero and the best MVD is (0, 0) in the last MV

refinement iteration.
Luma/chroma MC w/ reference block padding (if needed).

Refined MVs used for MC and TMVPs only.

2.2.9.1.1 Usage of DMVR

[0193]

When the following conditions are all true, DMVR may be enabled:
DMVR enabling flag in the SPS (i.e., sps_dmvr_enabled flag) is equal to 1

TPM flag, inter-affine flag and subblock merge flag (either ATMVP or affine merge), MMVD
flag are all equal to 0

Merge flag is equal to 1

Current block is bi-predicted, and POC distance between current picture and reference picture in

list 1 is equal to the POC distance between reference picture in list O and current picture
The current CU height is greater than or equal to 8

Number of luma samples (CU width*height) is greater than or equal to 64

45

WO 2021/008514 PCT/CN2020/101820

2.2.9.1.2 “Parametric error surface equation” based sub-pel refinement

[0194] The method is summarized below:

1. The parametric error surface fit is computed only if the center position is the best cost position

in a given iteration.

2. The center position cost and the costs at (-1,0), (0,-1), (1,0) and (0,1) positions from the center

are used to fit a 2-D parabolic error surface equation of the form
E(xy) = A(x —x%0)* + By —y9)* + C

where (xg, Vo) corresponds to the position with the least cost and C corresponds to the minimum

cost value. By solving the 5 equations in 5 unknowns, (X, ¥g) is computed as:
xo = (E(—1,0) — E(1,0))/(2(E(—1,0) + E(1,0) — 2E(0,0)))
Yo = (E(0,—1) — E(0,1))/(2((E(0,—1) + £(0,1) — 2E(0,0)))

(xg, Vo) can be computed to any required sub-pixel precision by adjusting the precision at which
the division is performed (i.e. how many bits of quotient are computed). For 1/16®-pel accuracy,
Just 4-bits in the absolute value of the quotient needs to be computed, which lends itself to a fast-

shifted subtraction-based implementation of the 2 divisions required per CU.

3. The computed (xq, Vo) are added to the integer distance refinement MV to get the sub-pixel

accurate refinement delta MV.
23 Intra block copy

[0195] Intra block copy (IBC), ak.a. current picture referencing, has been adopted in HEVC
Screen Content Coding extensions (HEVC-SCC) and the current VVC test model (VIM-4.0). IBC
extends the concept of motion compensation from inter-frame coding to intra-frame coding. As
demonstrated in FIG. 21. the current block is predicted by a reference block in the same picture when
IBC is applied. The samples in the reference block must have been already reconstructed before the
current block is coded or decoded. Although IBC is not so efficient for most camera-captured sequences,
it shows significant coding gains for screen content. The reason is that there are lots of repeating patterns,
such as icons and text characters in a screen content picture. IBC can remove the redundancy between
these repeating patterns effectively. In HEVC-SCC, an inter-coded coding unit (CU) can apply IBC if it
chooses the current picture as its reference picture. The MV is renamed as block vector (BV) in this case,
and a BV always has an integer-pixel precision. To be compatible with main profile HEVC, the current
picture is marked as a “long-term” reference picture in the Decoded Picture Buffer (DPB). It should be
noted that similarly, in multiple view/3D video coding standards, the inter-view reference picture is also

marked as a “long-term” reference picture.

46

WO 2021/008514 PCT/CN2020/101820

[0196] Following a BV to find its reference block, the prediction can be generated by copying the
reference block. The residual can be got by subtracting the reference pixels from the original signals.

Then transform and quantization can be applied as in other coding modes.

[0197] However, when a reference block is outside of the picture, or overlaps with the current
block, or outside of the reconstructed area, or outside of the valid area restricted by some constrains, part
or all pixel values are not defined. Basically, there are two solutions to handle such a problem. One is
to disallow such a situation, ¢.g. in bitstream conformance. The other is to apply padding for those

undefined pixel values. The following sub-sessions describe the solutions in detail.
2.3.1 IBC in VVC Test Model (VITM4.0)

[0198] In the current VVC test model, i.e. VIM-4.0 design, the whole reference block should be
with the current coding tree unit (CTU) and does not overlap with the current block. Thus, there is no
need to pad the reference or prediction block. The IBC flag is coded as a prediction mode of the current
CU. Thus, there are totally three prediction modes, MODE INTRA, MODE_INTER and MODE IBC
for each CU.

23.1.1 IBC Merge mode

[0199] In IBC merge mode, an index pointing to an entry in the IBC merge candidates list is
parsed from the bitstream. The construction of the IBC merge list can be summarized according to the

following sequence of steps:
e Step 1: Derivation of spatial candidates
e Step 2: Insertion of HMVP candidates
e Step 3: Insertion of pairwise average candidates

[0200] In the derivation of spatial merge candidates, a maximum of four merge candidates are
selected among candidates located in the positions depicted in A;, Bi, Bo, Ao and B: as depicted in FIG. 2.
The order of derivation is A;, Bi, Bo, Ag and B,. Position B, is considered only when any PU of position
A1, Bi, Bo, Ao is not available (e.g. because it belongs to another slice or tile) or is not coded with IBC
mode. After candidate at position A; is added, the insertion of the remaining candidates is subject to a
redundancy check which ensures that candidates with same motion information are excluded from the

list so that coding efficiency is improved.

[0201] After insertion of the spatial candidates, if the IBC merge list size is still smaller than the
maximum IBC merge list size, IBC candidates from HMVP table may be inserted. Redundancy check
are performed when inserting the HMVP candidates.

47

WO 2021/008514 PCT/CN2020/101820

[0202] Finally, pairwise average candidates are inserted into the IBC merge list.

[0203] When a reference block identified by a merge candidate is outside of the picture, or
overlaps with the current block, or outside of the reconstructed area, or outside of the valid area restricted

by some constrains, the merge candidate is called invalid merge candidate.

[0204] It is noted that invalid merge candidates may be inserted into the IBC merge list.
2.3.1.2 IBC AMVP mode

[0205] In IBC AMVP mode, an AMVP index point to an entry in the IBC AMVP list is parsed
from the bitstream. The construction of the IBC AMVP list can be summarized according to the

following sequence of steps:
e Step 1: Derivation of spatial candidates
o Check Ay, A until an available candidate is found.
o Check B, By, Bz until an available candidate is found.
e Step 2: Insertion of HMVP candidates
e Step 3: Insertion of zero candidates

[0206] After insertion of the spatial candidates, if the IBC AMVP list size is still smaller than the
maximum IBC AMVP list size, IBC candidates from HMVP table may be inserted.

[0207] Finally, zero candidates are inserted into the IBC AMVP list.

2.3.13 Chroma IBC mode

[0208] In the current VVC, the motion compensation in the chroma IBC mode is performed at
sub block level. The chroma block will be partitioned into several sub blocks. Each sub block determines
whether the corresponding luma block has a block vector and the validity if it is present. There is encoder
constrain in the current VIM, where the chroma IBC mode will be tested if all sub blocks in the current
chroma CU have valid luma block vectors. For example, on a YUV 420 video, the chroma block is NxM
and then the collocated luma region is 2Nx2M. The sub block size of a chroma block is 2x2. There are

several steps to perform the chroma mv derivation then the block copy process.
1) The chroma block will be first partitioned into (N >> 1)*(M >> 1) sub blocks.

2) Each sub block with a top left sample coordinated at (x, y) fetches the corresponding luma block

covering the same top-left sample which is coordinated at (2x, 2y).

3) The encoder checks the block vector(bv) of the fetched luma block. If one of the following

conditions is satisfied, the bv is considered as invalid.

48

WO 2021/008514 PCT/CN2020/101820

a. A bv of the corresponding luma block is not existing.
b. The prediction block identified by a bv is not reconstructed yet.

¢. The prediction block identified by a bv is partially or fully overlapped with the current
block.

4) The chroma motion vector of a sub block is set to the motion vector of the corresponding luma

sub block.

[0209] The IBC mode is allowed at the encoder when all sub blocks find a valid bv.
2.3.2 Single BV list for IBC (in VTMS5.0)

[0210] JVET-NO0843 is adopted to the VVC. In the JVET-N0843, the BV predictors for merge
mode and AMVP mode in IBC will share a common predictor list, which consist of the following

clements:
e 2 spatial neighboring positions (A1, B1 as in FIG. 2)
e 5 HMVP entries
e Zero vectors by default

[0211] The number of candidates in the list is controlled by a variable derived from the slice
header. For merge mode, up to first 6 entries of this list will be used; for AMVP mode, the first 2 entries
of this list will be used. And the list conforms with the shared merge list region requirement (shared the

same list within the SMR).

[0212] In addition to the above-mentioned BV predictor candidate list, JVET-N0843 also
proposed to simplify the pruning operations between HMVP candidates and the existing merge
candidates (A1, B1). In the simplification there will be up to 2 pruning operations since it only compares

the first HMVP candidate with spatial merge candidate(s).
3. Problems

[0213] The current design of merge modes may have the following problems:
1. The regular merge list construction process depends on the usage of TPM for the current block.
a. For TPM-coded blocks, full pruning is applied among spatial merge candidates.
b. Fornon-TPM-coded blocks, partial pruning is applied among spatial merge candidates.

2. According to current design, all merge related tools (including IBC merge, regular merge,

MMVD, sub-block merge, CIIP, TPM) are signalled by one flag, named general merge flag.

49

WO 2021/008514 PCT/CN2020/101820

9.

However, it is possible that when this flag is true, all merge related tools are signaled or to be
derived to be disabled. How to handle this case is unknown. In addition, it is disallowed to turn
off the merge mode, that is the maximum number of merge candidate shall be unequal to 0.

However, for high throughput encoder/decoder, it may need to force disabling the merge mode.

The decision of initialized MV for ATMVP process is dependent on slice type, all reference
pictures” POC values, collocated from 10 flag, etc. al, which delays the throughput of MVs.

Derivation process of collocated MVs is dependent on the usage of sub-block technology, such

as the conventional TMVP process or ATMVP process which requires additional logic.

For a sub-CU in ATMVP coded block, even its corresponding collocated block is inter coded, it
is possible the sub-CU’s motion information couldn’t be derived from the corresponding
collocated block, but filled with other motion information. Such design is sub-optimal for both

coding efficiency and throughput.

The HEVC specification defines the availability of one neighbouring block in current or
reference picture based on whether the block is constructed or in a different CTU row/slice etc.
al. However, in VVC, multiple coding methods have been introduced. Different definitions of

a block’s availability may need to be defined.

JVET-00545 proposes to signal the indication of maximum transform block size by sending

sps_sbt max size 64 flag.

sps_sbt max size 64 flag equal to O specifies that the maximum CU width and height
for allowing subblock transform is 32 luma samples. sps_sbt max_size 64 flag equal
to 1 specifies that the maximum CU width and height for allowing subblock transform

is 64 luma samples.

MaxSbtSize = sps_sbt max_size 64 flag ? 64 : 32 (731)

To support maximum transform size (indicated by MaxTransformSize) smaller than 64,
the derivation of MaxSbtSize is modified as below,

MaxSbtSize = min(MaxTransformSize, sps_sbt max_size 64 flag ? 64 : 32)

Adaptive loop filter (ALF) coefficients are restricted to be within a fixed range. For example:
chroma ALF filter coefficients, denoted by AlfCoeff-, and luma ALF filter coefficients, denoted
by AlfCoeffi, shall be in the range of =27 to 27 — 1, inclusive. Such restriction is based on the
assumption of 8-bit depth.

Indication of predictors of ALF filters is signalled as follows:

if(slice_alf enabled flag)¢

50

WO 2021/008514 PCT/CN2020/101820

alf_ctb_flag[O][xCtb >> Log2CtbSize][yCtb >> Log2CtbSize | ae(v)

if(alf ctb_flag[O][xCtb >> Log2CtbSize][yCtb >> Log2CtbSize |) {

if(slice_num_alf aps ids luma > 0)

alf_ctb_use_first_aps_flag aec(v)

if(lalf ctb use first aps flag) {

if(slice num_alf aps ids luma>1)

alf_use_aps_flag aec(v)

if(alf use_aps flag)

if(slice_num_alf aps ids luma>2)

alf_luma_prev_filter_idx_minus1 aec(v)

else

alf_luma_fixed_filter_idx aec(v)

It can be seen that such a method needs to parse multiple syntax elements to determine to use

filters from which APS sets or from fixed filters.

10. Merge related coding tools are as follows:

merge data(x0, y0, cbWidth, cbHeight) { Descriptor

if (CuPredMode[x0][y0] == MODE _IBC) {

if(MaxNumMergeCand > 1)

merge_idx[x0 |[yO | ae(v)

}else {

if(MaxNumSubblockMergeCand > 0 && cbWidth >=8 && cbHeight >=8)

merge_subblock_flag[x0][yO] ae(v)

if(merge_subblock flag[x0][y0] == 1) {

if(MaxNumSubblockMergeCand > 1)

merge_subblock_idx[x0][yO] ae(v)

+else {

if((cbWidth * cbHeight) >= 64 && ((sps_ciip_enabled flag && cu_skip flag[x0][yO]
==0 && cbWidth < 128 && cbHeight < 128) || (sps_triangle enabled flag && slice type ==
B)) {

regular_merge flag[x0][yO] aec(v)

51

WO 2021/008514 PCT/CN2020/101820

j

if(regular_merge flag[x0][y0]) {

if(sps_mmvd_enabled flag)

IS
I8

mmvd_merge flag[x0 |[yO] ae(v)

if(mmvd merge flag[x0][y0]==1)¢

if(MaxNumMergeCand > 1)

mmvd_cand_flag[x0][yO | ae(v)

mmvd_distance_idx[x0][yO | ae(v)

mmvd_direction_idx[x0][yO] ae(v)
}else {

if(MaxNumMergeCand > 1)

merge_idx[x0 |[yO | ae(v)

3

j

}else {

if(sps_ciip_enabled flag && cu_skip flag[x0 J[y0 | ==0 && cbWidth < 128 &&
cbHeight < 128 && sps_triangle enabled flag && slice_type ==B) {

ciip_flag[x0][yO | ae(v)

if(ciip_flag[x0 [[vO] && MaxNumMergeCand > 1)

merge_idx[x0 |[yO | ac(v)
b
if(! ciip_flag[x0][y0]) {
merge_triangle_split_dir[x0 |[yO | ac(v)
merge_triangle_idx0[x0 |[yO | ac(v)
merge_triangle_idx1[x0 |[yO | ac(v)
b
b
b
b
b

52

WO 2021/008514 PCT/CN2020/101820

[0214] It is noted that the sub-block merge related syntax elements are firstly signalled; followed
by the indication of regular merge mode (which controls both MMVP and conventional merge like in
HEVC). When such indication is false, additional bits may be further signalled to indicate whether it is
CIIP or TPM mode.

[0215] However, such information doesn’t take into consideration of the case that number of
allowed TPM candidates is less than 2.

4. Examples of techniques and embodiments

[0216] The detailed listing below should be considered as examples to explain general concepts.
These embodiments should not be interpreted in a narrow way. Furthermore, these techniques can be

combined in any manner.
[0217] The neighbouring blocks denoted as A0, Al, BO, B1, B2 etc. are shown in FIG. 2.

1. The regular merge list construction process for conventional merge and TPM coded blocks is

decoupled from the coding method of the current block.

a. In one example, partial pruning is applied to spatial merge candidates when TPM is

applied to one block.

1. In one example, whether two candidates are compared with each other are

determined in the same way as that used for a non-TPM merge coded blocks.

ii. In one example, B1 is compared to A1, BO is compared to B1, A0 is compared

to Al, B2 is compared to B1 and A1.

iii. Alternatively, full pruning is applied to spatial merge candidates even TPM is

not used for one block.

iv. Altematively, furthermore, full pruning may be applied to some specific block

dimensions.

1. For example, full pruning may be applied to block dimensions wherein

TPM is allowed.

2. For example, when a block size contains less than M*H samples, ¢.g.,

16 or 32 or 64 luma samples, full pruning is not allowed.

3. For example, when a block’s width > thl or >=thl and/or a block’s
height > th2 or >=th2, full pruning is not allowed.

b. In one example, whether to check B2 is based on the number of available merge

candidates before checking B2 when TPM is applied to one block.

53

WO 2021/008514 PCT/CN2020/101820

1. Altematively, B2 is always checked regardless the number of available merge

candidates for non-TPM merge coded blocks.

2. The initialized MV used for identifving a block to determine whether ATMVP is available or not
may just rely on the list X information of a spatial neighbouring block (¢.g., Al), and X is set to
where the collocated picture used for temporal motion vector prediction is derived from (e.g.,

collocated from_10 flag).

a. Altemnatively, X is decided according to whether all reference pictures in all reference
lists are with smaller POC values or no greater POC values compared to the current

picture.
1. In on example, if it is true, X is set to 1. Otherwise, X is set to 0.

b. Altematively, if the reference picture associated with list X of a spatial neighbouring
block (e.g., Al) is available and has the same POC value as the col-located picture, the
initialized MV is set to the MV associated with list X of the spatial neighbouring block.
Otherwise, a default MV (e.g., (0, 0)) is utilized.

c. Alternatively, motion information stored in HMVP table may be used as the initialized

MV in ATMVP.

1. For example, the first available motion information stored in HMVP table may

be used.

ii. For example, the first available motion information stored in HMVP table that

is associated with certain reference picture (e.g., collocated picture) may be used.
d. Alternatively, X is a fixed number, such as 0 or 1.

3. The derivation process of collocated MVs used for sub-block based coding tools and non-sub-
block based coding tools may be aligned, i.¢., the process is independent from the usage of a

certain coding tool.

a. Inone example, the whole or partial of the derivation process of collocated MV for sub-

block based coding tools is aligned to that used for TMVP.

1. In one example, if it is uni-prediction from list Y, the motion vector of list Y is

scaled to a target reference picture list X

ii. In one example, if it is bi-prediction and the target reference picture list is X, the
motion vector of list Y is scaled to the target reference picture list X, and Y may

be determined according to the following rules:

54

WO 2021/008514 PCT/CN2020/101820

b.

— If none of reference pictures has a greater POC values or all reference
pictures have smaller POC values compared to current picture, Y is set

equal to X.
— Otherwise, Y is set equal to collocated from 10 flag.

In one example, the whole or partial of the derivation process of collocated MVs for

TMVP is aligned to that used for sub-block-based coding tools.

4. The motion candidate list construction process (¢.g., regular merge list, IBC merge/AMVP list)

may depend on the block dimensions and/or merge sharing conditions. Denote a block’s width

and height as W and H, respectively. Condition C may depend on W and H and/or merge sharing

conditions.

a.

g.

In one example, derivation of spatial merge candidates is skipped if condition C is

satisfied.
In one example, derivation of HMVP candidates is skipped if condition C is satisfied.

In one example, derivation of pairwise merge candidates is skipped if condition C is

satisfied.

In one example, number of maximum pruning operations is reduced or set to 0 if

condition C i1s satisfied.

In one example, condition C is satisfied when W*H is smaller or no larger than a

threshold (¢.g., 64 or 32).

In one example, condition C is satisfied when W and/or H is smaller or no larger than a

threshold (¢.g., 4 or 8).

In one example, condition C is satisfied when the current block is under a shared node.

5. The maximum number of allowed regular merge candidates/maximum number of allowed IBC

candidates/maximum number of allowed sub-block merge candidates may be setto 0. Therefore,

certain tools may be disabled, and related syntax elements are not needed to be signalled.

a.

In one example, when the maximum number of allowed regular merge candidates is
equal to 0, a coding tool which relies on regular merge list may be disabled. The coding

tool may be regular merge, MMVD, CIIP, TPM, DMVR e¢tc. al.

In one example, when the maximum number of allowed IBC candidates is equal to 0,

IBC AMVP and/or IBC merge may be disabled.

55

WO 2021/008514 PCT/CN2020/101820

c. In one example, when the maximum number of allowed sub-block based merge
candidates is equal to 0, sub-block based technologies, ¢.g., ATMVP, affine merge mode
may be disabled.

d. When a tool is disabled according to the maximum number of allowed candidates,

signaling of related syntax elements is skipped.

1. Alternatively, furthermore, the signalling of merge related tools may need to

check whether the maximum number of allowed candidates is unequal to 0.

ii. Alternatively, furthermore, invoking of a process for the merge related tools may
need to check whether the maximum number of allowed candidates is unequal

to 0.

6. The signalling of general merge flag and/or cu_skip flag may depend on the maximum number
of allowed regular merge candidates/maximum number of allowed IBC candidates/maximum

number of allowed sub-block merge candidates/usage of merge related coding tools.

a. In one example, merge related coding tools may include IBC merge, regular merge,

MMVD, sub-block merge, CIIP, TPM, DMVR and etc.

b. In one example, when the maximum number of allowed regular merge candidates, the
maximum number of allowed IBC merge/AMVP candidates, the maximum number of
allowed sub-block merge candidate are equal to 0, the general merge flag and/or

cu_skip flag is not signaled.

1. Alternatively, furthermore, general merge flag and/or cu_skip flag is inferred

to be 0.

7. A conformance bitstream shall satisfy that at least one of the merge related tools including IBC
merge, regular merge, MMVD, sub-block merge, CIIP, TPM, DMVR and etc. is enabled when

the general merge_flag or cu_skip_flag of the current block is true.

8. A conformance bitstream shall satisfy that at least one of the merge related tools including regular
merge, MMVD, sub-block merge, CIIP, TPM, DMVR and ectc. is enabled when the
(general merge flag or cu_skip flag) of the current block is true and IBC is disabled for one

slice/tile/brick/picture/current block.

9. A conformance bitstream shall satisfy that at least one of the merge related tools including IBC
merge, regular merge, sub-block merge, CIIP, TPM is enabled when the (general merge flag or
cu_skip flag) of the current block is true and MMVD is disabled for one

slice/tile/brick/picture/current block.

56

WO 2021/008514 PCT/CN2020/101820

10.

1.

12.

13.

14.

A conformance bitstream shall satisfy that at least one of the merge related tools including IBC
merge, regular merge, MMVD, sub-block merge, TPM is enabled when the (general merge flag
or cu skip flag) of the current block is true and CIIP is disabled for one

slice/tile/brick/picture/current block.

A conformance bitstream shall satisfy that at least one of the merge related tools including IBC
merge, regular merge, MMVD, sub-block merge, CIIP is enabled when the (general merge flag
or cu skip flag) of the current block is true and TPM is disabled for one

slice/tile/brick/picture/current block.

A conformance bitstream shall satisfy that at least one of the enabled merge related tools
including IBC merge, regular merge, MMVD, sub-block merge, CIIP, TPM is applied when the
general _merge_flag or cu_skip flag of the current block is true. When coding a first block, the
check of availability of a 2* block may depend on the coded mode information of the first block,
for example, if different modes are used in the 15" and 2™ block, the 2™ block may be treated as

unavailable even regardless of other condition checking results (¢.g., has been constructed).

a. In one example, when 1% block is inter coded and 2™ block is IBC code, 2™ block is

marked as unavailable.

b. In one example, when 1* block is IBC coded and 2™ block is inter code, 2™ block is

marked as unavailable.

c. When the 2™ is marked as unavailable, the related coded information (e.g., motion

information) is disallowed to be utilized for coding the 1* block.

The signalling of syntax elements irrelated to TPM side information may be also under the

condition check of number of allowed TPM candidates.

a. In one example, the signalling of CIIP related syntax elements (e.g., ciip_flag) may

dependent on number of allowed TPM candidate is greater than a threshold K.

b. In one example, the signalling of regular merge mode flag (¢.g., regular_merge flag)

may dependent on number of allowed TPM candidate is greater than a threshold K.
¢. Inone example, Kis setto 1.

d. Alternatively, furthermore, certain syntax clements may be not signalled when the

number of allowed TPM candidate is no greater than a threshold K.

A conformance bitstream shall satisfy that the maximum transform block sizes shall not exceed

the maximum CTU sizes.

57

WO 2021/008514 PCT/CN2020/101820

a. Alternatively, when the indication of maximum transform block size may be

conditionally signalled under the maximum CTU sizes or vice versa.

1. In one example, if the maximum CTU size is no greater than or equal to MxN
(e.g., M=N=32), there is no need to signal the indication of maximum transform

block size.

15. The ALF filter coefficients range may be dependent on the sample depth (e.g., internal bit-depth
or input bit-depth) instead of being in a fixed range.

16. One flag may be directly signalled to indicate whether to use ALF filters in ALF APS to fixed
filters.

a. In addition, such a flag may be signalled under the condition that number of available

ALF APS is greater than 0.

b. Alternatively, furthermore, when ALF filters from APS is signalled, one additional
syntax may be further signalled to indicate the index of ALF APS. Such an index may
be coded with Fixed-length coding, unary coding, truncated unary coding, truncated

binary coding, exp-golomb coding.
5. Embodiment

[0218] The suggested changes on top of the latest VVC working draft (JVET-N1001 v7) are
given as follows. The deleted text is marked with underlined italicized font. The newly added parts are

highlighted in bolded capitalized font.
5.1 Embodiment #1

[0219] This embodiment is to align the pruning process for non-TPM coded block to that for TPM
coded blocks i.¢., full pruning operations for non-TPM coded blocks.

8.5.2.3 Derivation process for spatial merging candidates

[0220] Inputs to this process are:

— aluma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the

top-left luma sample of the current picture,
— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.

[0221] Outputs of this process are as follows, with X being 0 or 1:

58

WO 2021/008514 PCT/CN2020/101820

the availability flags availableFlagA,, availableFlagA:, availableFlagBo, availableFlagB: and
availableFlagB; of the neighbouring coding units,

the reference indices refldxLXAo, refldxL.XA;, refldxLXBo, refldxL.XB; and refldxL.XB, of the

neighbouring coding units,

the prediction list utilization flags predFlagLX Ao, predFlagl. X A, predFlagLXB,, predFlagl.XB; and
predFlaglLXB:; of the neighbouring coding units,

the motion vectors in 1/16 fractional-sample accuracy mvLXA,, mvLXA;, mvLXB,, mvLXB; and

mvLXB: of the neighbouring coding units,

the bi-prediction weight indices gbildxAo, gbildxA,, gbildxBo, gbildxBi, and gbildxB-:.

[0222] For the derivation of availableFlagA,, refldxLXA;, predFlagLXA; and mvLXA; the

following applies:

The luma location (xNbA:, yNbA;) inside the neighbouring luma coding block is set equal to
(xCb —1, yCb + cbHeight — 1).

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbA:, yNbA;) as inputs, and the
output is assigned to the block availability flag availableA;.

The variables availableFlagA;, refldxLLXA;, predFlagL.XA; and mvLXA; ar¢ derived as follows:

— IfavailableA; is equal to FALSE, availableFlagA, is setequal to 0, both components of mvLXA;
are set equal to 0, refldxLLXA; is set equal to —1 and predFlaglL.XA; is set equal to 0, with X
being 0 or 1, and gbildxA; is set equal to 0.

— Otherwise, availableFlagA; is set equal to 1 and the following assignments are made:

mvLXA; = MvLX][xXNbA; || yNbA, | (8-294)
refldxLXA; = RefldxLX]| xNbA; |[yNbA | (8-295)
predFlagl. XA; = PredFlagLX| xNbA;]| yNbA; | (8-296)
gbildxA; = Gbildx| xNbA, || yNbA, | (8-297)
[0223] For the derivation of availableFlagB:, refldxLXB,, predFlagl. XB: and mvLXB; the

following applies:

The luma location (xNbB;, yNbB,) inside the neighbouring luma coding block is set equal to
(xCb +cbWidth—1,yCb—1).

59

WO 2021/008514 PCT/CN2020/101820

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbB;, yNbB,) as inputs, and the
output is assigned to the block availability flag availableB;.

The variables availableFlagBi, refldxL.XB,, predFlagLXB: and mvLXB; are derived as follows:

— If one or more of the following conditions are true, availableFlagB, is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB; is
set equal to 0, with X being 0 or 1, and gbildxB; is set equal to O:

— availableB; is equal to FALSE.

— availableA; is equal to TRUE and the Iuma locations (xNbA;, yNbA;) and

(xNbB;, yNbB;) have the same motion vectors and the same reference indices.

— Otherwise, availableFlagB, is set equal to 1 and the following assignments are made:

mvLXB; = MvLX]| xNbB; |[yNbB; | (8-298)
refldxLXB; = RefldxLX| xNbB;][yNbB; | (8-299)
predFlagl. XB; = PredFlagLX| xNbB;]| yNbB; | (8-300)
gbildxB; = Gbildx| xNbB, |[yNbB; | (8-301)
[0224] For the derivation of availableFlagBo, refldxLXB,, predFlagl. XB, and mvLXBy the

following applies:

The luma location (xNbBo, yNbBy) inside the neighbouring luma coding block is set equal to
(xCb + cbWidth, yCb— 1).

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xNbBo, yNbBy) as inputs, and the
output is assigned to the block availability flag availableBo.

The variables availableFlagBo, refldxL.XBo, predFlaglL.XB, and mvLXBy are derived as follows:

— If one or more of the following conditions are true, availableFlagB; is set equal to 0, both
components of mvLXBy are set equal to 0, refldxLXBo is set equal to —1 and predFlagLXBy is
set equal to 0, with X being 0 or 1, and gbildxB, is set equal to O:

— availableBy is equal to FALSE.

— availableB: is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbBo, yNbBy)

have the same motion vectors and the same reference indices.

60

[0225]

WO 2021/008514 PCT/CN2020/101820

— availableA; is equal to TRUE, the luma locations (xNbA:, yNbA;) and (xNbBo, yNbBy)

have the same motion vectors and the same reference indices and merge _triangle flag/ xCb

/[vCh] is equal to 1.

Otherwise, availableFlagBy is set equal to 1 and the following assignments are made:

mvLXBo = MvLX]| xNbBy |[yNbBy | (8-302)
refldxLXBo = RefldxLX| xNbBy || yNbBo | (8-303)
predFlagl. XB, = PredFlagLX| xNbBy || yNbBy | (8-304)
gbildxB, = Gbildx| xNbBy || yNbBo | (8-305)

For the derivation of availableFlagAo, refldxLXAo, predFlagl. XA, and mvLXA, the

following applies:

The luma location (xNbAo,, yNbA,) inside the neighbouring luma coding block is set equal to
(xCb -1, yCb + cbWidth).

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring

blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)

set equal to (xCb, yCb) and the neighbouring luma location (xNbAo, yNbAo) as inputs, and the

output is assigned to the block availability flag availableAo.

The variables availableFlagA,, refldxL.XAo, predFlaglL.X A, and mvLXAy are derived as follows:

If one or more of the following conditions are true, availableFlagA, is set equal to 0, both
components of mvLXA, are set equal to 0, refldxL.XAq is set equal to —1 and predFlagL. XA, is
set equal to 0, with X being 0 or 1, and gbildxA, is set equal to 0:

availableAy is equal to FALSE.

availableA; is equal to TRUE and the Iuma locations (xNbAi, yNbA;) and

(xNbAo, yNbAy) have the same motion vectors and the same reference indices.

availableB; is equal to TRUE, the luma locations (xNbB1, yNbB1) and (xXNbA,, yNbA,)
have the same motion vectors and the same reference indices and merge _triangle flag/ xCb

/[vCh] is equal to 1.

availableBy is equal to TRUE, the luma locations (xXNbBo, yNbBy) and (xNbAo, yNbAy)
have the same motion vectors and the same reference indices and merge _triangle flag/ xCb

/[vCh] is equal to 1.

Otherwise, availableFlagA is set equal to 1 and the following assignments are made:

mvLXA, = MvLX[xNbA,][yNbA, | (8-306)

61

WO 2021/008514 PCT/CN2020/101820

refldxLXA, = RefldxLX]| xNbA, |[yNbAy | (8-307)

predFlagl. XA, = PredFlagL.X]| xNbAo || yNbAy | (8-308)

gbildxA, = Gbildx| xNbAy || yNbAy | (8-309)
[0226] For the derivation of availableFlagB,, refldxLXB,, predFlagl. XB, and mvLXB: the

following applies:

The luma location (xNbB-, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb—1,yCb—1).

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbB-, yNbB-) as inputs, and the
output is assigned to the block availability flag availableB:.

The variables availableFlagB,, refldxL.XB,, predFlagLXB; and mvLXB; are derived as follows:

— If one or more of the following conditions are true, availableFlagB. is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB: is
set equal to 0, with X being 0 or 1, and gbildxB: is set equal to O:

— availableB; is equal to FALSE.

— availableA; is equal to TRUE and the Iuma locations (xNbA;, yNbA;) and

(xNbB:, yNbB-) have the same motion vectors and the same reference indices.

— availableB: is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbB.,, yNbB;)

have the same motion vectors and the same reference indices.

— availableBy is equal to TRUE, the luma locations (xXNbBo, yNbB;) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge _triangle_flag/ xCb

1/ vCh [is equal to 1.

— availableAy is equal to TRUE, the luma locations (xNbAo, yNbA,) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge _triangle flag/ xCb

/[vCh] is equal to 1.

— availableFlagA, + availableFlagA,; + availableFlagB, + availableFlagB, is equal to 4 and
merge_triangle flag| xCb |[vCb] is equal to 0.

— Otherwise, availableFlagB: is set equal to 1 and the following assignments are made:
mvLXB; = MvLX] xNbB: |[yNbB; | (8-310)

refldxLXB, = RefldxLX[xNbB; |[yNbB:] (8-311)

62

WO 2021/008514 PCT/CN2020/101820

predFlagl. XB; = PredFlagL X[xNbB: || yNbB:] (8-312)
gbildxB, = Gbildx[xNbB;][yNbB; | (8-313)

5.2 Embodiment #2

[0227] This embodiment is to align the pruning process for TPM coded block to that for non-TPM

coded blocks, i.¢., limited pruning operations for TPM coded blocks.

8.5.2.3 Derivation process for spatial merging candidates

[0228] Inputs to this process are:

— aluma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the

top-left luma sample of the current picture,
— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
[0229] Outputs of this process are as follows, with X being 0 or 1:

— the availability flags availableFlagA,, availableFlagA,, availableFlagBo, availableFlagB; and
availableFlagB; of the neighbouring coding units,

— the reference indices refldxLXAo, refldxLXA,, refldxLXB,, refldxLXB; and refldxLLXB, of the

neighbouring coding units,

— the prediction list utilization flags predFlagL. X Ao, predFlagLXA, predFlagL X B, predFlagl. XB; and
predFlaglLXB:; of the neighbouring coding units,

— the motion vectors in 1/16 fractional-sample accuracy mvLXA,, mvLXA;, mvLXB,, mvLXB; and

mvLXB: of the neighbouring coding units,
— the bi-prediction weight indices gbildxAo, gbildxA;, gbildxBo, gbildxBi, and gbildxB-.

[0230] For the derivation of availableFlagA,, refldxLXA;, predFlagLXA; and mvLXA; the

following applies:

— The luma location (xNbA:, yNbA,) inside the neighbouring luma coding block is set equal to
(xCb — 1, yCb + cbHeight — 1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbA:, yNbA;) as inputs, and the
output is assigned to the block availability flag availableA;.

63

WO 2021/008514 PCT/CN2020/101820

— The variables availableFlagA,, refldxL. XA, predFlagLXA; and mvL XA are derived as follows:

— IfavailableA; is equal to FALSE, availableFlagA, is setequal to 0, both components of mvLXA;
are set equal to 0, refldxLLXA; is set equal to —1 and predFlaglL.XA; is set equal to 0, with X
being 0 or 1, and gbildxA; is set equal to 0.

— Otherwise, availableFlagA; is set equal to 1 and the following assignments are made:

mvLXA; = MvLX][xXNbA; || yNbA; | (8-294)
refldxLXA; = RefldxLX]| xNbA; |[yNbA, | (8-295)
predFlagl. XA; = PredFlagLX| xNbA;]| yNbA; | (8-296)
gbildxA; = Gbildx| xNbA, || yNbA, | (8-297)
[0231] For the derivation of availableFlagB:, refldxLXB,, predFlagl. XB: and mvLXB; the

following applies:

— The luma location (xXNbBi, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb +cbWidth—1,yCb—1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbB;, yNbB,) as inputs, and the
output is assigned to the block availability flag availableB;.

— The variables availableFlagB, refldxLXB;, predFlagLXB, and mvLXB; are derived as follows:

— If one or more of the following conditions are true, availableFlagB, is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB; is
set equal to 0, with X being 0 or 1, and gbildxB; is set equal to O:

— availableB; is equal to FALSE.

— availableA; is equal to TRUE and the Iuma locations (xNbA;, yNbA;) and

(xNbB;, yNbB;) have the same motion vectors and the same reference indices.

— Otherwise, availableFlagB, is set equal to 1 and the following assignments are made:

mvLXB; = MvLX]| xNbB; |[yNbB; | (8-298)
refldxLXB; = RefldxLX| xNbB;][yNbB; | (8-299)
predFlagl. XB; = PredFlagLX| xNbB;]| yNbB; | (8-300)
gbildxB; = Gbildx| xNbB, |[yNbB; | (8-301)

64

WO 2021/008514 PCT/CN2020/101820

[0232] For the derivation of availableFlagBo, refldxLXB,, predFlagl. XB, and mvLXBy the

following applies:

— The luma location (xXNbBo, yNbBy) inside the neighbouring luma coding block is set equal to
(xCb + cbWidth, yCb— 1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xNbBo, yNbBy) as inputs, and the
output is assigned to the block availability flag availableBo.

— The variables availableFlagBo, refldxL.XBo, predFlaglL.XB, and mvLXB, are derived as follows:

— If one or more of the following conditions are true, availableFlagB; is set equal to 0, both
components of mvLXBy are set equal to 0, refldxLXBy is set equal to —1 and predFlaglL XBy is
set equal to 0, with X being 0 or 1, and gbildxB, is set equal to O:

— availableBy is equal to FALSE.

— availableB: is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbBo, yNbBy)

have the same motion vectors and the same reference indices.

— availableA; is equal to TRUE, the luma locations (xNbA; vNbA;) and (xNbBy. vNbBy)

have the same motion vectors and the same reference indices and merge triangle flag/ xCbh

[/ vCh] is equal to I.

— Otherwise, availableFlagBs is set equal to 1 and the following assignments are made:

mvLXBo = MvLX]| xNbBy |[yNbBy | (8-302)
refldxLXBo, = RefldxLX| xNbBy || yNbBo | (8-303)
predFlagl. XB, = PredFlagLX| xNbBy || yNbBy | (8-304)
gbildxB, = Gbildx| xNbBy || yNbBo | (8-305)
[0233] For the derivation of availableFlagA,, refldxLXA,, predFlaglL XA, and mvLXA, the

following applies:

— The luma location (xNbAo, yNbAy) inside the neighbouring luma coding block is set equal to
(xCb — 1, yCb + cbWidth).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xNbAo, yNbAo) as inputs, and the
output is assigned to the block availability flag availableAo.

65

WO 2021/008514 PCT/CN2020/101820

— The variables availableFlagAo, refldxL. XA, predFlagLX A, and mvL XA, are derived as follows:

[0234]

If one or more of the following conditions are true, availableFlagA, is set equal to 0, both
components of mvLXA, are set equal to 0, refldxL.XAq is set equal to —1 and predFlagL. XA, is
set equal to 0, with X being 0 or 1, and gbildxA, is set equal to 0:

— availableAy is equal to FALSE.

availableA; is equal to TRUE and the Iuma locations (xNbAi, yNbA;) and

(xNbAo, yNbAy) have the same motion vectors and the same reference indices.

availableB; is equal to TRUE, the luma locations (xNbB; vNbB;) and (xNbA,. vNbAy)

have the same motion vectors and the same reference indices and merge triangle flag/ xCbh

[/ vCh] is equal to I.

availableBy is equal to TRUE, the luma locations (xNbBo, vNbBy) and (xNbA, yINbAy)

have the same motion vectors and the same reference indices and merge triangle flag/ xCh

/[vCbh] is equal to 1.

Otherwise, availableFlagA is set equal to 1 and the following assignments are made:

mvLXAo = MvLX][xNbAy || vNbAy | (8-306)
refldxLXA, = RefldxLX]| xNbA, |[yNbAy | (8-307)
predFlagl. XA, = PredFlagL.X]| xNbAo || yNbAy | (8-308)
gbildxA, = Gbildx| xNbAy || yNbAy | (8-309)

For the derivation of availableFlagB,, refldxLXB,, predFlagLXB, and mvLXB; the

following applies:

— The luma location (xXNbB, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb—1,yCb—1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring

blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)

set equal to (xCb, yCb) and the neighbouring luma location (xXNbB-, yNbB-) as inputs, and the

output is assigned to the block availability flag availableB..

— The variables availableFlagB,, refldxL.XB;, predFlagLXB; and mvLXB; are derived as follows:

If one or more of the following conditions are true, availableFlagB: is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB: is
set equal to 0, with X being 0 or 1, and gbildxB: is set equal to O:

— availableB; is equal to FALSE.

66

WO 2021/008514 PCT/CN2020/101820

— availableA; is equal to TRUE and the Iuma locations (xNbA;, yNbA;) and

(xNbB:, yNbB-) have the same motion vectors and the same reference indices.

— availableB: is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbB.,, yNbB;)

have the same motion vectors and the same reference indices.

— availableBy is equal to TRUE, the Iuma locations (xNbBo, vNbBo) and (xNbB>, yNbB>)

have the same motion vectors and the same reference indices and merge triangle flag/ xCbh

[/ vCh] is equal to I.

— availableAy is equal to TRUE, the luma locations (xNbAo vINbAy) and (xNbB>. vNbB>)

have the same motion vectors and the same reference indices and merge triangle flag/ xCbh

[/ vCh] is equal to I.

— availableFlagA, + availableFlagA; + availableFlagB, + availableFlagB: is equal to 4 and
merge_triangle flag| xCb |[vCb] is equal to 0.

— Otherwise, availableFlagB: is set equal to 1 and the following assignments are made:

mvLXB; = MvLX| xNbB; |[yNbB: | (8-310)
refldxL.XB, = RefldxL.X[xNbB: || yNbB: | (8-311)
predFlagl. XB; = PredFlagL X[xNbB: || yNbB:] (8-312)
gbildxB, = Gbildx[xNbB;][yNbB; | (8-313)
5.3 Embodiment #3
[0235] This embodiment is to align the conditions for invoking the checking of B2.

8.5.2.3 Derivation process for spatial merging candidates

[0236] Inputs to this process are:

— aluma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the

top-left luma sample of the current picture,
— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
[0237] Outputs of this process are as follows, with X being 0 or 1:

— the availability flags availableFlagA,, availableFlagAi, availableFlagBo, availableFlagB; and
availableFlagB; of the neighbouring coding units,

67

WO 2021/008514 PCT/CN2020/101820

— the reference indices refldxLXAo, refldxLXA,, refldxLXB,, refldxLXB; and refldxLLXB, of the

neighbouring coding units,

— the prediction list utilization flags predFlagL. X Ao, predFlagLXA, predFlagL X B, predFlagl. XB; and
predFlaglLXB:; of the neighbouring coding units,

— the motion vectors in 1/16 fractional-sample accuracy mvLXA,, mvLXA;, mvLXB,, mvLXB; and

mvLXB: of the neighbouring coding units,
— the bi-prediction weight indices gbildxAo, gbildxA;, gbildxBo, gbildxBi, and gbildxB-.

[0238] For the derivation of availableFlagA,, refldxLXA;, predFlagLXA; and mvLXA; the

following applies:

— The luma location (xNbA:, yNbA,) inside the neighbouring luma coding block is set equal to
(xCb —1, yCb + cbHeight — 1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbA:, yNbA;) as inputs, and the
output is assigned to the block availability flag availableA;.

— The variables availableFlagA,, refldxL. XA, predFlagLXA; and mvL XA are derived as follows:

[0239] For the derivation of availableFlagB:, refldxLXB,, predFlagl. XB: and mvLXB; the

following applies:

— The luma location (xXNbBi, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb +cbWidth—1,yCb—1).

[0240] For the derivation of availableFlagBo, refldxLXB,, predFlagl. XB, and mvLXBy the

following applies:

— The luma location (xXNbBo, yNbBy) inside the neighbouring luma coding block is set equal to
(xCb + cbWidth, yCb— 1).

[0241] For the derivation of availableFlagA,, refldxLXA,, predFlaglL XA, and mvLXA, the

following applies:

— The luma location (xNbAo, yNbAy) inside the neighbouring luma coding block is set equal to
(xCb -1, yCb + cbWidth).

68

WO 2021/008514 PCT/CN2020/101820

[0242] For the derivation of availableFlagB,, refldxLXB,, predFlagl. XB, and mvLXB: the

following applies:

The luma location (xNbB-, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb—1,yCb—1).

The availability derivation process for a block as specified in clause 6.4 X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbB-, yNbB-) as inputs, and the
output is assigned to the block availability flag availableB:.

The variables availableFlagB., refldxLLXB,, predFlagl. XB> and mvLXB:; are derived as follows:

— If one or more of the following conditions are true, availableFlagB: is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB: is
set equal to 0, with X being 0 or 1, and gbildxB: is set equal to O:

— availableB; is equal to FALSE.

— availableA; is equal to TRUE and the Iuma locations (xNbA;, yNbA;) and

(xNbB:, yNbB-) have the same motion vectors and the same reference indices.

— availableB: is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbB.,, yNbB;)

have the same motion vectors and the same reference indices.

— availableBy is equal to TRUE, the luma locations (xXNbBo, yNbB;) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

— availableAy is equal to TRUE, the luma locations (xNbAo, yNbA,) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

— availableFlagA, + availableFlagA; + availableFlagB, + availableFlagB: is equal to 4 and
merge_triangle flag/ xCb][yCb] is equal to 0.

— Otherwise, availableFlagB: is set equal to 1 and the following assignments are made:

mvLXB; = MvLX]| xNbB; |[yNbB: | (8-310)
refldxLXB, = RefldxLX| xNbB; || yNbB: | (8-311)
predFlagl. XB: = PredFlagLX| xNbB; || yNbB: | (8-312)
gbildxB; = Gbildx| xNbB; || yNbB: | (8-313)

69

WO 2021/008514 PCT/CN2020/101820

5.4 Embodiment #4

[0243] This embodiment is to align the conditions for invoking the checking of B2.

8.5.2.3 Derivation process for spatial merging candidates

[0244] Inputs to this process are:

— aluma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the

top-left luma sample of the current picture,
— avariable cbWidth specifying the width of the current coding block in luma samples,
— avariable cbHeight specifying the height of the current coding block in luma samples.
[0245] Outputs of this process are as follows, with X being 0 or 1:

— the availability flags availableFlagA,, availableFlagAi, availableFlagBo, availableFlagB; and
availableFlagB; of the neighbouring coding units,

— the reference indices refldxLXAo, refldxLXA,, refldxLXB,, refldxLXB; and refldxLLXB, of the

neighbouring coding units,

— the prediction list utilization flags predFlagL. X Ao, predFlagLXA, predFlaglL X B, predFlagl. XB; and
predFlaglLXB:; of the neighbouring coding units,

— the motion vectors in 1/16 fractional-sample accuracy mvLXA,, mvLXA;, mvLXB,, mvLXB; and

mvLXB: of the neighbouring coding units,
— the bi-prediction weight indices gbildxAo, gbildxA;, gbildxBo, gbildxBi, and gbildxB-.

[0246] For the derivation of availableFlagA,, refldxLXA;, predFlagLXA; and mvLXA; the

following applies:

— The luma location (xNbA:, yNbA,) inside the neighbouring luma coding block is set equal to
(xCb —1, yCb + cbHeight — 1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbA:, yNbA;) as inputs, and the
output is assigned to the block availability flag availableA;.

— The variables availableFlagA,, refldxL. XA, predFlagLXA; and mvL XA are derived as follows:

[0247] For the derivation of availableFlagB:, refldxLXB,, predFlagl. XB: and mvLXB; the

following applies:

70

WO 2021/008514 PCT/CN2020/101820

— The luma location (xXNbBi, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb +cbWidth—1,yCb—1).

[0248] For the derivation of availableFlagBo, refldxLXB,, predFlagl. XB, and mvLXBy the

following applies:

— The luma location (xXNbBo, yNbBy) inside the neighbouring luma coding block is set equal to
(xCb + cbWidth, yCb— 1).

[0249] For the derivation of availableFlagA,, refldxLXA,, predFlaglLXA, and mvLXA, the

following applies:

— The luma location (xNbAo, yNbAy) inside the neighbouring luma coding block is set equal to
(xCb -1, yCb + cbWidth).

[0250] For the derivation of availableFlagB,, refldxLXB,, predFlagl. XB, and mvLXB: the
following applies:

— The luma location (xXNbB-, yNbB:) inside the neighbouring luma coding block is set equal to
(xCb—1,yCb—1).

— The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): Neighbouring
blocks availability checking process tbd] is invoked with the current luma location (xCurr, yCurr)
set equal to (xCb, yCb) and the neighbouring luma location (xXNbB-, yNbB-) as inputs, and the
output is assigned to the block availability flag availableB.

— The variables availableFlagB,, refldxLLXB,, predFlagL.XB, and mvLXB: are derived as follows:

— If one or more of the following conditions are true, availableFlagB: is set equal to 0, both
components of mvLXB; are set equal to 0, refldxLXB; is set equal to —1 and predFlaglLXB: is
set equal to 0, with X being 0 or 1, and gbildxB: is set equal to O:

— availableB; is equal to FALSE.

— availableA; is ecqual to TRUE and the luma locations (xNbA;, yNbA;) and

(xNbB:, yNbB-) have the same motion vectors and the same reference indices.

— availableB: is equal to TRUE and the luma locations (xNbB1, yNbB;) and (xXNbB.,, yNbB;)

have the same motion vectors and the same reference indices.

71

WO 2021/008514 PCT/CN2020/101820

— availableBy is equal to TRUE, the luma locations (xXNbBo, yNbB;) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

— availableAy is equal to TRUE, the luma locations (xNbAo, yNbA,) and (xNbB,, yNbB:)
have the same motion vectors and the same reference indices and merge_triangle flag| xCb

][yCb] isequal to 1.

— availablellagdy + availableFlagA; + availablellagBg + availablellagB; is equal to 4 and

merge_triangle flag/ xCb][yvCb] is equal to 0.

— Otherwise, availableFlagB: is set equal to 1 and the following assignments are made:

mvLXB; = MvLX| xNbB; |[yNbB: | (8-310)
refldxLXB, = RefldxLLX| xNbB;][yNbB: | (8-311)
predFlagl. XB; = PredFlagL X[xNbB: || yNbB:] (8-312)
gbildxB, = Gbildx[xNbB;][yNbB; | (8-313)
55 Embodiment #5
[0251] This embodiment is to simplify the decision of initialized MV in ATMVP process.

8.5.54 Derivation process for subblock-based temporal merging base motion data

[0252] Inputs to this process are:

— the location (xCtb, yCtb) of the top-left sample of the luma coding tree block that contains the

current coding block,

— the location (xColCtrCb, yColCtrCb) of the top-left sample of the collocated luma coding block that

covers the below-right center sample.
— the availability flag availableFlagA; of the neighbouring coding unit,
— the reference index refldxLLXA; of the neighbouring coding unit,

— the prediction list utilization flag predFlagLXA, of the neighbouring coding unit,

the motion vector in 1/16 fractional-sample accuracy mvLXA; of the neighbouring coding unit.
[0253] Outputs of this process are:
— the motion vectors ctrMvL0 and ctrMvL1,

— the prediction list utilization flags ctrPredFlagl.0 and ctrPredFlagl.1,

72

WO 2021/008514 PCT/CN2020/101820

— the temporal motion vector tempMyv.

[0254]

[0255]

[0256]

The variable tempMy is set as follows:

tempMv] 0] = 0 (8-529)

tempMv[1] =0 (8-530)

The variable currPic specifies the current picture.

When availableFlagA, is equal to TRUE, the following applies:

SET A VARIABLE X TO COLLOCATED_FROM_LO0_FLAG.

IF

MVLXAL.

PREDFLAGLXA1 IS EQUAL TO 1 AND DIFFPICORDERCNT(COLPIC,
REFPICLIST|[X |[REFIDXLXAT1]) IS EQUAL TO 0 ARE TRUE, TEMPMV IS SET EQUAL TO

— Ifall of the following conditions are true, tempMy is set equal to mvLIA;:

predlFlagl 1A is equal to 1,

DiffPicOrderCnt(ColPic, RefPicList/ 1][refldxL1A:]) is equal fo 0,

DiffPicOrderCnt(aPic, currPic) is less than or equal to 0 for every picture aPic in every

reference picture list of the current slice,

slice_type is equal to B,

collocated from 10 flag is equal to 0.

— Otherwise if all of the following conditions are frue, tempMv is set equal to mvL0A;:

[0257]

follows.

[0258]

predllagl04; is equal fo 1.

DiffPicOrderCni(ColPic_ RefPicList] 0][refldxL0A;]) is equal to 0.

The location (xColCb, yColCb) of the collocated block inside ColPic is derived as

xColCb = Clip3(xCtb,
Min(CurPicWidthInSamplesY — 1, xCtb + (1 << CtbLog2S8izeY) +3), (8-531)
xColCtrCb + (tempMv[0] >> 4))

yColCb = Clip3(yCtb,
Min(CurPicHeightInSamplesY — 1, yCtb + (1 << CtbLog2SizeY)—1), (8-532)
yColCtrCb + (tempMv[1] >> 4))

The array colPredMode is set equal to the prediction mode array CuPredMode of the

collocated picture specified by ColPic.

73

WO 2021/008514 PCT/CN2020/101820

[0259] The motion vectors ctrMvL0O and ctrMvL1, and the prediction list utilization flags
ctrPredFlagl.0 and ctrPredFlagl.1 are derived as follows:

5.6 Embodiment #6

[0260] Examples for alignment of derivation process of collocated MVs for sub-block and non-

sub-block based methods.

8.5.2.12 Derivation process for collocated motion vectors

[0261] Inputs to this process are:
— avariable currCb specifying the current coding block,

— avariable colCb specifying the collocated coding block inside the collocated picture specified by
ColPic,

— a luma location (xColCb, yColCb) specifying the top-left sample of the collocated luma coding
block specified by colCb relative to the top-left luma sample of the collocated picture specified by
ColPic,

— areference index refldxLX, with X being 0 or 1,

a flag indicating a subblock temporal merging candidate sbFlag.

[0262] Outputs of this process are:

— the motion vector prediction mvLXCol in 1/16 fractional-sample accuracy,
— the availability flag availableFlagL.XCol.

[0263] The variable currPic specifies the current picture.

[0264] The arrays predFlagLOCol| x][v], mvLOCol[x |[y | and refldxLOCol[x][v | are set
equal to PredFlagLO[x][y |, MvDmvrLO[x |[v] and RefldxL0O] x |[v], respectively, of the collocated
picture specified by ColPic, and the arrays predFlagL1Col[x][y], mvLICol[x][y] and
refldxL.1Col[x |[y] are set equal to PredFlagL 1] x |[v |, MvDmvrL1[x][v | and RefldxL1[x |[¥],
respectively, of the collocated picture specified by ColPic.

[0265] The variables mvLXCol and availableFlagl. XCol are derived as follows:

— IfcolCb is coded in an intra or IBC prediction mode, both components of mvLXCol are set equal to

0 and availableFlagL.XCol is set equal to 0.

74

WO 2021/008514 PCT/CN2020/101820

— Otherwise, the motion vector mvCol, the reference index refldxCol and the reference list identifier

listCol are derived as follows:

— IfshFlag is equal to 0, availableFlagl. XCol is set to 1 and the following applies:

If predFlagLOCol| xColCb || yColCb | is equal to 0, mvCol, refldxCol and listCol are set
equal to mvL1Col] xColCb || yColCb], refldxL1Col[xColCb][yColCb] and L1,

respectively.

Otherwise, if predFlagLOCol[xColCb |[yColCb|] is equal to 1 and
predFlagl.1Col[xColCb][yColCb | is equal to 0, mvCol, refldxCol and listCol are set
equal to mvLOCol] xColCb || yColCb], refldxLOCol[xColCb][yColCb] and LO,

respectively.

Otherwise (predFlagLOCol| xColCb || yColCb | 1S equal to 1 and
predFlagl.1Col| xColCb]| yColCb] is equal to 1), the following assignments are made:

— If NoBackwardPredFlag is equal to 1, mvCol, refldxCol and listCol are set equal to
mvLXCol| xColCb][yColCb |, refldxLXCol| xColCb || yColCb| and LX,

respectively.

— Otherwise, mvCol, refldxCol and listCol are set equal to
mvLNCol[| xColCb][yColCb |, refldxLNCol| xColCb |[yColCb| and LN,
respectively, with N being the value of collocated from 10 flag.

— QOtherwise (sbllag is equal to 1), the following applies:

If PredFlagl XColl xColCbh][vColCb] is equal to 1. mvCol, refldxCol, and listCol are set
equal _to _mvILXColl xColCb][vColCh]. refldxIXColl xColCbh][yColCh]. and LX.

respectively, availablellagl XCol is set to 1.

Otherwise (Predllagl XColl xColCbh][vColCb] is equal to 0), the following applies:

— If DiffPicOrderCnt(aPic, currPic) is less than or equal to 0 for every picture aPic in

every reference picture list of the current slice and
PredFlagLYColl xColCh]/ vColCh] is equal to 1, mvCol, refldxCol, and listCol are
set to mvLYColl xColCh] vColCh], reflaxLYColl xColCh]/ vColCh] and LY,

respectively, with Y being equal to /X where X being the value of X this process is

invoked for. availableFlagl XCol is set to 1.

— Both the components of mvIL.XCol are set to 0 and availableFlagl XCol is set equal to
0.

75

WO 2021/008514 PCT/CN2020/101820

— When availableFlagl. XCol is equal to TRUE, mvL.XCol and availableFlagl. XCol are derived as

follows:

— If LongTermRefPic(currPic, currCb, refldxLX, LX) is not equal to
LongTermRefPic(ColPic, colCb, refldxCol, listCol), both components of mvL.XCol are set
equal to 0 and availableFlagL.XCol is set equal to O.

— Otherwise, the variable availableFlagLXCol is set equal to 1,
refPicList| listCol || refldxCol | is set to be the picture with reference index refldxCol in the
reference picture list listCol of the slice containing coding block colCb in the collocated

picture specified by ColPic, and the following applies:

[0266] FIG. 22 is a block diagram of a video processing apparatus 2200. The apparatus 2200 may
be used to implement one or more of the methods described herein. The apparatus 2200 may be embodied
in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on. The apparatus 2200 may
include one or more processors 2202, one or more memories 2204 and video processing hardware 2206.
The processor(s) 2202 may be configured to implement one or more methods described in the present
document. The memory (memories) 2204 may be used for storing data and code used for implementing
the methods and techniques described herein. The video processing hardware 2206 may be used to
implement, in hardware circuitry, some techniques described in the present document. The video
processing hardware 2206 may be partially or completely includes within the processor(s) 2202 in the

form of dedicated hardware, or graphical processor unit (GPU) or specialized signal processing blocks.

[0267] Some embodiments may be described using the following clause-based description.
[0268] Some example embodiments of techniques described in item 1 of section 4 include:
[0269] 1. A method of video processing (e.g., method 2300 depicted in FIG. 23), comprising:

applying (2302) a pruning process to a merge list construction of a current video block that is partitioned
using a triangular partition mode (TMP) in which the current video block is partitioned into at least two
non-rectangular sub-blocks, wherein the pruning process is same as another pruning process for another
video block that is partitioned using a non-TMP partition; and performing (2304) a conversion between
the current video block and a bitstream representation of the current video block based on the merge list

construction.

[0270] 2. The method of claim 1, wherein the pruning process comprises using a partial

pruning to spatial merge candidates of the current video block.

76

WO 2021/008514 PCT/CN2020/101820

[0271] 3. The method of claim 1, wherein the pruning process comprises applying full or
partial pruning to the current video block based on a block dimension rule that specifies to use full or

partial pruning based on dimensions of the current video block.

[0272] 4, The method of claim 1, wherein the pruning process comprises using a different

order of neighboring blocks during the merge list construction process.
[0273] Some example embodiments of techniques described in item 2 of section 4 include:

[0274] 1. A method of video processing, comprising: determining, during a conversion
between a current video block and a bitstream representation of the current video block, about availability
of an alternative temporal motion vector predictor coding (ATMVP) mode for the conversion based on
list X of a neighboring block of the current video block, wherein X is an integer and a value of X depends
on an encoding condition of the current video block, and performing the conversion based on the

availability of the ATMVP mode.

[0275] 2. The method of claim 1, wherein X indicates a location of a collocated video
picture from which a temporal motion vector prediction used for the conversion between the current video

block and the bitstream representation is performed.

[0276] 3. The method of claim 1, wherein X is determined by comparing picture order
counts (POCs) of all reference pictures in all reference lists for the current video block with a POC of a

current video picture of the current video block.

[0277] 4, The method of claim 3, wherein in case that the comparing shows that the POCs
are <= the POC of'the current picture, then setting X = 1, otherwise, setting X=0.

[0278] 5. The method of claim 1, wherein motion information stored in a history-based

motion vector predictor table is used for initializing motion vector in the ATMVP mode.
[0279] Some example embodiments of techniques described in item 3 of section 4 include:

[0280] 1. A method of video processing, comprising: determining, during a conversion
between a current video block and a bitstream representation of the current video block, that a sub-block
based coding technique in which the current video block is partitioned into at least two sub-blocks,
wherein each sub-block capable of deriving its own motion information, is used for the conversion; and
performing the conversion using a merge list construction process for the current video block that is

aligned with a block based derivation process for collocated motion vectors.

[0281] 2. The method of claim 1, wherein the merge list construction process and the
derivation process comprise performing uni-prediction from list Y, and wherein motion vectors of list Y

are scaled to a target reference picture list X.

77

WO 2021/008514 PCT/CN2020/101820

[0282] 3. The method of claim 1, wherein the merge list construction process and the
derivation process comprise performing bi-prediction with target reference picture list X, then motion

vectors of list Y are scaled to that of list X, where Y is determined according to a rule.
[0283] Some example embodiments of techniques described in item 4 of section 4 include:

[0284] 1. A method of video processing, comprising: determining, based on dimensions of
a current video block of a video picture and/or an enablement of a merge sharing status in which merge
candidates from different coding tools are shared, between a condition being met and the condition being
not met; and performing a conversion between the current video block and a bitstream representation of

the current video block based on the condition.

[0285] 2. The method of claim 1, wherein the performing the conversion comprises skipping

deriving spatial merge candidates in case that the condition is met.

[0286] 3. The method of claim 1, wherein the performing the conversion comprises skipping

deriving history-based motion vector candidates in case that the condition is met.

[0287] 4, The method of any of claims 1-3, wherein it is determined that the condition is

met based on the current video block being under a shared node in the video picture.
[0288] Some example embodiments of techniques described in item 5 of section 4 include:

[0289] 1. A method of video processing, comprising: making a determination, during a
conversion between a current video block and a bitstream representation of the current video block, that
a coding tool is disabled for the conversion, wherein the bitstream representation is configured to provide
an indication that a maximum number of merge candidates for the coding tool is zero; and performing

the conversion using the determination that the coding tool is disabled.

[0290] 2. The method of claim 1, wherein the coding tool corresponds to intra block copy
in which pixels of the current video block are coded from other pixels in a video region of the current

video block.
[0291] 3. The method of claim 1, wherein the coding tool is a sub-block coding tool.

[0292] 4, The method of claim 3, wherein the sub-block coding tool is an affine coding tool

or an alternate motion vector predictor tool.

[0293] 5. The method of any of claims 1-4, wherein the performing the conversion includes

processing the bitstream by skipping syntax elements related to the coding tool.
[0294] Some example embodiments of techniques described in item 6 of section 4 include:

[0295] 1. A method of video processing, comprising: making a determination, during a

conversion between a current video block and a bitstream representation of the current video block using

78

WO 2021/008514 PCT/CN2020/101820

a rule that specifies that a first syntax element in the bitstream representation is conditionally present
based on a second syntax element indicative of a maximum number of merge candidates used by a coding
tool used during the conversion; and performing the conversion between the current video block and a

bitstream representation of the current video block based on the determination.

[0296] 2. The method of claim 1, wherein the first syntax element corresponds to a merge
flag.

[0297] 3. The method of claim 1, wherein the first syntax element corresponds to a skip flag.
[0298] 4, The method of any of claims 1-3, wherein the coding tool is a sub-band coding

tool and the second syntax element corresponds to a maximum allowed merge candidates for the sub-

band coding tool.

[0299] 34. The method of any of clauses 1 to 33, wherein the conversion includes generating

the bitstream representation from the current video block.

[0300] 35. The method of any of clauses 1 to 33, wherein the conversion includes generating

samples of the current video block from the bitstream representation.

[0301] 36. A video processing apparatus comprising a processor configured to implement a

method recited in any one or more of clauses 1 to 35.

[0302] 37. A computer readable medium having code stored thereon, the code, upon

execution, causing a processor to implement a method recited in any one or more of clauses 1 to 35.

[0303] FIG. 24 is a block diagram showing an example video processing system 2400 in which
various techniques disclosed herein may be implemented. Various implementations may include some
or all of the components of the system 2400. The system 2400 may include input 2402 for receiving
video content. The video content may be received in a raw or uncompressed format, ¢.g., 8 or 10 bit
multi-component pixel values, or may be in a compressed or encoded format. The input 2402 may
represent a network interface, a peripheral bus interface, or a storage interface. Examples of network
interface include wired interfaces such as Ethernet, passive optical network (PON), etc. and wireless

interfaces such as Wi-Fi or cellular interfaces.

[0304] The system 2400 may include a coding component 2404 that may implement the various
coding or encoding methods described in the present document. The coding component 2404 may reduce
the average bitrate of video from the input 2402 to the output of the coding component 2404 to produce
a coded representation of the video. The coding techniques are therefore sometimes called video
compression or video transcoding techniques. The output of the coding component 2404 may be either
stored, or transmitted via a communication connected, as represented by the component 2406. The stored

or communicated bitstream (or coded) representation of the video received at the input 2402 may be used

79

WO 2021/008514 PCT/CN2020/101820

by the component 2408 for generating pixel values or displayable video that is sent to a display interface
2410. The process of generating user-viewable video from the bitstream representation is sometimes
called video decompression. Furthermore, while certain video processing operations are referred to as
“coding” operations or tools, it will be appreciated that the coding tools or operations are used at an
encoder and corresponding decoding tools or operations that reverse the results of the coding will be

performed by a decoder.

[0305] Examples of a peripheral bus interface or a display interface may include universal serial
bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on. Examples of
storage interfaces include SATA (serial advanced technology attachment), PCI, IDE interface, and the
like. The techniques described in the present document may be embodied in various electronic devices
such as mobile phones, laptops, smartphones or other devices that are capable of performing digital data

processing and/or video display.

[0306] FIG. 25 is a flowchart for an example of a visual media processing method. Steps of this
flowchart are discussed in connection with example 5d in Section 4 of this document. At step 2502, the
process performs a conversion between a current video block of a visual media data and a bitstream
representation of the current video block, wherein the bitstream representation is configured according to
a format rule that specifies that a syntax element is selectively included or excluded in the bitstream
representation indicative of a maximum number of merge candidates for a coding tool, thereby indicating
whether the coding tool is enabled or disabled for the conversion, wherein the maximum number of merge

candidates for the coding tool is zero or a positive number.

[0307] FIG. 26 is a flowchart for an example of a visual media processing method. Steps of this
flowchart are discussed in connection with example 13 in Section 4 of this document. At step 2602, the
process performs a conversion between a video comprising one or more video regions comprising
multiple video blocks and a bitstream representation of the video, wherein the bitstream representation
conforms to a format rule specifying that a number of allowed geometric partitioning mode (GPM)
motion candidates for a video region determines whether a syntax element related to applicability of a
coding tool to the video region is included in the bitstream representation, wherein the coding tool is
different from a GPM coding tool, wherein the GPM comprises splitting a video block into multiple
prediction partitions to apply motion prediction separately, and at least one partition having a non-

rectangular shape.

[0308] FIG. 27 is a flowchart for an example of a visual media processing method. Steps of this
flowchart are discussed in connection with example 14 in Section 4 of this document. At step 2702, the
process performs a conversion between a current video unit of a visual media data and a bitstream

representation of the visual media data, wherein the bitstream representation is configured in accordance

80

WO 2021/008514 PCT/CN2020/101820

with a format rule that specifies that a maximum transform block size is equal to or less than a maximum

coding tree unit (CTU) size used for the conversion.

[0309] FIG. 28 is a flowchart for an example of a visual media processing method. Steps of this
flowchart are discussed in connection with example 15 in Section 4 of this document. At step 2802, the
process performs a conversion between a current video block of a visual media data and a bitstream
representation of the current video block, wherein the conversion uses an adaptive loop filter (ALF) in
which coefficients of the ALF filter are based on a depth of a sample in a video region of the current

video block.

[0310] FIG. 29 is a flowchart for an example of a visual media processing method. Steps of this
flowchart are discussed in connection with example 16 in Section 4 of this document. At step 2902, the
process performs a conversion between a current video block of a visual media data and a bitstream
representation of the current video block using an adaptive loop filter (ALF), wherein the bitstream
representation is configured according to a format rule specifying that one or more syntax elements
included in the bitstream representation indicative of whether an ALF filter applied to the current video

block is determined based on an adaptation parameter set (APS) or based on fixed filter sets.

[0311] Some embodiments of the present document are presented in clause-based format.
[0312] Al. A method of visual media processing, comprising:
[0313] performing a conversion between a current video block of a visual media data and a

bitstream representation of the current video block, wherein the bitstream representation is configured
according to a format rule that specifies that a syntax element is selectively included or excluded in the
bitstream representation indicative of a maximum number of merge candidates for a coding tool, thereby

indicating whether the coding tool is enabled or disabled for the conversion,

[0314] wherein the maximum number of merge candidates for the coding tool is zero or a positive
number.
[0315] A2. The method of clause Al, wherein the format rule specifies that the syntax element

is excluded in the bitstream representation in response to determining that the coding tool is disabled for

the conversion.

[0316] A3. The method of clause A2, wherein in a case that the maximum number of merge
candidates for the coding tool is zero, the format rule specifies excluding the syntax element in the

bitstream representation.

[0317] A4. The method of clause A3, wherein the coding tool corresponds to intra block copy in
which pixels of the current video block are coded from other pixels in a video region of the current video

block.

81

WO 2021/008514 PCT/CN2020/101820

[0318] AS5. The method of any one or more of clauses Al-A4, wherein the coding tool
corresponds to a regular merge, Mmerge with motion vector differences (MMVD), combined intra-inter

prediction (CIIP), triangular partition mode (TPM), decoder side motion vector refinement (DMVR).

[0319] A6. The method of any one or more of clause Al-A4, wherein the coding tool is a sub-
block coding tool.
[0320] A7. The method of clause A6, wherein the sub-block coding tool is an affine coding tool

or an alternate motion vector predictor tool.

[0321] A8. The method of any one or more of clauses Al-A4, wherein the performing the

conversion includes processing the bitstream by skipping syntax elements related to the coding tool.

[0322] A9. The method of any one or more of clauses Al-A4, wherein the performing the
conversion includes processing the bitstream to determine that the maximum number of merge candidates

for the coding tool is unequal to zero.

[0323] A10. The method of any one or more of clauses A1-A9, wherein the conversion includes

determining that the maximum number of merge candidates for the coding tool is unequal to zero.
[0324] El. A method of visual media processing, comprising:

[0325] performing a conversion between a video comprising one or more video regions

comprising multiple video blocks and a bitstream representation of the video,

[0326] wherein the bitstream representation conforms to a format rule specifying that a number
of allowed geometric partitioning mode (GPM) motion candidates for a video region determines whether
a syntax element related to applicability of a coding tool to the video region is included in the bitstream
representation, wherein the coding tool is different from a GPM coding tool, wherein the GPM comprises
splitting a video block into multiple prediction partitions to apply motion prediction separately, and at

least one partition having a non-rectangular shape.

[0327] E2. The method of clause E1, wherein the coding tool corresponds to a combined inter-
intra prediction (CIIP) mode, and wherein in a case that the number of allowed GPM motion candidates
exceeds the threshold value, the format rule specifies including the one or more syntax elements in the

bitstream representation.

[0328] E3. The method of any one or more of clauses E1-E2, wherein the threshold value equals
one.
[0329] E4. The method of any one or more of clauses E1-E3, wherein in a case that the number

of allowed GPM motion candidates is less than or equal to the threshold value, the format rule specifies

excluding the syntax element in the bitstream representation.

82

WO 2021/008514 PCT/CN2020/101820

[0330] B1. A method of visual media processing, comprising:

[0331] performing a conversion between a current video unit of a visual media data and a
bitstream representation of the visual media data, wherein the bitstream representation is configured in
accordance with a format rule that specifies that a maximum transform block size is equal to or less than

a maximum coding tree unit (CTU) size used for the conversion.

[0332] B2. The method of clause B1, wherein the format rule specifies selectively including a
syntax element indicative of the maximum transform block size in the bitstream representation based on

the maximum CTU size.

[0333] B3. The method of clause B2, wherein the format rule specifies excluding a syntax
element indicative of the maximum transform block size in the bitstream representation based on a

determination that the maximum CTU size is less than or equal to a defined MxN block size.

[0334] B4. The method of clause B3, wherein M =32 and N=32.
[0335] C1. A method of visual media processing, comprising:
[0336] performing a conversion between a current video block of a visual media data and a

bitstream representation of the current video block, wherein the conversion uses an adaptive loop filter
(ALF) in which coefficients of the ALF filter are based on a depth of a sample in a video region of the

current video block.

[0337] C2. The method of clause C1, wherein the ALF filter coefficients correspond to chroma
ALF filter coefficients.

[0338] C3. The method of clause C1, wherein the ALF filter coefficients correspond to luma
ALF filter coefficients.

[0339] DI1. A method of visual media processing, comprising:

[0340] performing a conversion between a current video block of a visual media data and a
bitstream representation of the current video block using an adaptive loop filter (ALF), wherein the
bitstream representation is configured according to a format rule specifying that one or more syntax
clements included in the bitstream representation indicative of whether an ALF filter applied to the
current video block is determined based on an adaptation parameter set (APS) or based on fixed filter

sets.

[0341] D2. The method of clause D1, wherein in a case that a number of available ALF APSs is
greater than zero, the format rule further specifies that the one or more syntax elements are included in

the bitstream representation.

83

WO 2021/008514 PCT/CN2020/101820

[0342] D3. The method of clause D1, wherein in a case that the ALF is based on the APS, the
format rule further specifies that the one or more syntax elements are included in the bitstream

representation indicative of an index of the APS.

[0343] D4. The method of clause D3, wherein the index of the APS is included in the bitstream

representation using a coding technique.

[0344] D5. The method of clause D1, wherein the coding technique includes one of’ Fixed-length

coding, unary coding, truncated unary coding, truncated binary coding, or exp-golomb coding.

[0345] L1. The method of any one or more of clauses Al to D5, wherein the conversion includes

generating the bitstream representation from the current video block.

[0346] L2. The method of any one or more of clauses Al to D5, wherein the conversion includes

generating samples of the current video block from the bitstream representation.

[0347] L3. A video processing apparatus comprising a processor configured to implement a

method recited in any one or more of clauses Al to D5.

[0348] L4. A computer readable medium having code stored thercon, the code, upon execution,

causing a processor to implement a method recited in any one or more of clauses Al to D5.

[0349] In the present document, the term “video processing” or “visual media processing” may
refer to video encoding, video decoding, video compression or video decompression. For example, video
compression algorithms may be applied during conversion from pixel representation of a video to a
corresponding bitstream representation or vice versa. The bitstream representation of a current video
block may, for example, correspond to bits that are either co-located or spread in different places within
the bitstream, as is defined by the syntax. For example, a macroblock may be encoded in terms of
transformed and coded error residual values and also using bits in headers and other fields in the bitstream.
Furthermore, during conversion, a decoder may parse a bitstream with the knowledge that some fields
may be present, or absent, based on the determination, as is described in the above solutions. Similarly,
an encoder may determine that certain syntax fields are or are not to be included and generate the coded
representation accordingly by including or excluding the syntax fields from the coded representation. It
will be appreciated that the disclosed techniques may be embodied in video encoders or decoders to
improve compression efficiency using techniques that include the use of sub-block based motion vector

refinement.

[0350] From the foregoing, it will be appreciated that specific embodiments of the presently
disclosed technology have been described herein for purposes of illustration, but that various
modifications may be made without deviating from the scope of the invention. Accordingly, the presently

disclosed technology is not limited except as by the appended claims.

84

WO 2021/008514 PCT/CN2020/101820

[0351] The disclosed and other solutions, examples, embodiments, modules and the functional
operations described in this document can be implemented in digital electronic circuitry, or in computer
software, firmware, or hardware, including the structures disclosed in this document and their structural
equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be
implemented as one or more computer program products, i.€., one or more modules of computer program
instructions encoded on a computer readable medium for execution by, or to control the operation of,
data processing apparatus. The computer readable medium can be a machine-readable storage device, a
machine-readable storage substrate, a memory device, a composition of matter effecting a machine-
readable propagated signal, or a combination of one or more them. The term “data processing apparatus”
encompasses all apparatus, devices, and machines for processing data, including by way of example a
programmable processor, a computer, or multiple processors or computers. The apparatus can include,
in addition to hardware, code that creates an execution environment for the computer program in question,
¢.g., code that constitutes processor firmware, a protocol stack, a database management system, an
operating system, or a combination of one or more of them. A propagated signal is an artificially
generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated

to encode information for transmission to suitable receiver apparatus.

[0352] A computer program (also known as a program, software, software application, script, or
code) can be written in any form of programming language, including compiled or interpreted languages,
and it can be deployed in any form, including as a stand-alone program or as a module, component,
subroutine, or other unit suitable for use in a computing environment. A computer program does not
necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds
other programs or data (e.g., one or more scripts stored in a markup language document), in a single file
dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer program can be deployed to be executed on
one computer or on multiple computers that are located at one site or distributed across multiple sites and

interconnected by a communication network.

[0353] The processes and logic flows described in this document can be performed by one or
more programmable processors executing one or more computer programs to perform functions by
operating on input data and generating output. The processes and logic flows can also be performed by,
and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (ficld

programmable gate array) or an ASIC (application specific integrated circuit).

[0354] Processors suitable for the execution of a computer program include, by way of example,
both general and special purpose microprocessors, and any one or more processors of any kind of digital
computer. Generally, a processor will receive instructions and data from a read only memory or a

random-access memory or both. The essential elements of a computer are a processor for performing

85

WO 2021/008514 PCT/CN2020/101820

instructions and one or more memory devices for storing instructions and data. Generally, a computer
will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more
mass storage devices for storing data, ¢.g., magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices. Computer readable media suitable for storing computer program
instructions and data include all forms of non-volatile memory, media and memory devices, including by
way of example semiconductor memory devices, ¢.g., EPROM, EEPROM, and flash memory devices;
magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and
DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special

purpose logic circuitry.

[0355] While this patent document contains many specifics, these should not be construed as
limitations on the scope of any subject matter or of what may be claimed, but rather as descriptions of
features that may be specific to particular embodiments of particular techniques. Certain features that
are described in this patent document in the context of separate embodiments can also be implemented
in combination in a single embodiment. Conversely, various features that are described in the context of
a single embodiment can also be implemented in multiple embodiments separately or in any suitable
subcombination. Moreover, although features may be described above as acting in certain combinations
and even initially claimed as such, one or more features from a claimed combination can in some cases
be excised from the combination, and the claimed combination may be directed to a subcombination or

variation of a subcombination.

[0356] Similarly, while operations are depicted in the drawings in a particular order, this should
not be understood as requiring that such operations be performed in the particular order shown or in
sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover,
the separation of various system components in the embodiments described in this patent document

should not be understood as requiring such separation in all embodiments.

[0357] Only a few implementations and examples are described and other implementations,
enhancements and variations can be made based on what is described and illustrated in this patent

document.

86

WO 2021/008514 PCT/CN2020/101820

CLAIMS

What is claimed is:

1. A method of visual media processing, comprising:

performing a conversion between a current video block of a visual media data and a bitstream
representation of the current video block using an adaptive loop filter (ALF), wherein the bitstream
representation is configured according to a format rule specifying that one or more syntax elements
included in the bitstream representation indicative of whether an ALF filter applied to the current video

block is determined based on an adaptation parameter set (APS) or based on fixed filter sets.

2. The method of claim 1, wherein in a case that a number of available ALF APSs is greater
than zero, the format rule further specifies that the one or more syntax elements are included in the

bitstream representation.

3. The method of claim 1, wherein in a case that the ALF is based on the APS, the format
rule further specifies that the one or more syntax elements are included in the bitstream representation

indicative of an index of the APS.

4. The method of claim 3, wherein the index of the APS is included in the bitstream

representation using a coding technique.

5. The method of claim 4, wherein the coding technique includes one of: Fixed-length

coding, unary coding, truncated unary coding, truncated binary coding, or exp-golomb coding.

6. A method of visual media processing, comprising:

performing a conversion between a current video block of a visual media data and a bitstream
representation of the current video block, wherein the conversion uses an adaptive loop filter (ALF) in
which coefficients of the ALF filter are based on a depth of a sample in a video region of the current

video block.

7. The method of claim 6, wherein the ALF filter coefficients correspond to chroma ALF

filter coefficients.

87

WO 2021/008514 PCT/CN2020/101820

8. The method of claim 1, wherein the ALF filter coefficients correspond to luma ALF filter
coefficients.
9. The method of any one or more of claims 1 to 8, wherein the conversion includes

generating the bitstream representation from the current video block.

10. The method of any one or more of claims 1 to 8, wherein the conversion includes

generating samples of the current video block from the bitstream representation.

11. A video processing apparatus comprising a processor configured to implement a method

recited in any one or more of claims 1 to 8.

12. A computer readable medium having code stored thercon, the code, upon execution,

causing a processor to implement a method recited in any one or more of claims 1 to 8.

88

WO 2021/008514

PCT/CN2020/101820

initial candidates derivation

Spatial candidates derivation Temporal candidates derivation

}

Redundancy check for spatial
candidates

’ W

Additional candidates insertion

b4
[Creation of bi-predictive candidates]

v

[Insertion of zero motion candidates]

b4
[Final merge candidates list ’

FIG. 1

1/29

WO 2021/008514

B B | E
Al
‘&'b

FIG. 2

2/29

PCT/CN2020/101820

WO 2021/008514

PCT/CN2020/101820

FIG. 3

3/29

WO 2021/008514 PCT/CN2020/101820

I
i i —d
e o]
current I o4
PU
current PU
e
:.....
L L
{a) second PU of Nx2N {blsecond PU of 2NxN
FIG. 4

4/29

WO 2021/008514 PCT/CN2020/101820

col_ref curr_ref curr_pic col_pic
(“'-.,.....'
curr_PU col_PU
—y
th
td
FIG. 5

5/29

WO 2021/008514

FIG. 6

6/29

PCT/CN2020/101820

WO 2021/008514 PCT/CN2020/101820

Original Merge candidate list Merge candidate list after adding combined candidates
Merge idx 18 L1 Merge idx Lo Lt
0 myLi_A,refl . ¢ mvLO_A, ref0l cnobine
1 wvLl_B,reff { S‘ mvLi_B, refl
combine

2 2 wvld ArefiY | mvLi Borel

3 3

4 4

FIG. 7

7/29

WO 2021/008514 PCT/CN2020/101820

For each reference picture list with refidxas an input

Spatial candidate positions (5) Temporal candidate positions (2}
Select 2 candidates Select 1 candidate
¥ v

Remove duplicated MV candidates

1]
Add zero MV candidates
v
Remove MV candidates whose index is larger than 1

1)

fFinal motion vector candidates {2)

FIG. 8

8/29

WO 2021/008514 PCT/CN2020/101820

neigh ref curr_ref curr_pic

\

neighbor PU

"--.._.___

curr_PU

th

td

FIG. 9

9/29

WO 2021/008514

Reference Preture

Current Picture

PCT/CN2020/101820

P,

Reterence Picture

FIG. 10

10/29

Current Picture

WO 2021/008514 PCT/CN2020/101820

B
g “’u » ’v’;
£ 3
- . \
'Y >
> A
> »
. N
-)
A
> *
o
FIG. 11

11/29

WO 2021/008514

PCT/CN2020/101820

—p | 0adl 2 table with HM VP candidates

—>

Decode a block with HMVP
gandidates

Update the table with decoded l
motion information

FIG. 12

12/29

WO 2021/008514 PCT/CN2020/101820

Initial Candidates Derivation

Spatial Merge ‘ ‘
‘ Candidates TMvP

Virtual Candidates Derivation

Pair -wise bi -predictive merge
candidates

Zero MV candidates ‘

Final Merge List

FIG. 13

13/29

WO 2021/008514

PCT/CN2020/101820

FIG. 14

14/29

WO 2021/008514 PCT/CN2020/101820

factor forthe
chrominance samples

weighting factor for the
uminance samples

FIG. 15

15/29

WO 2021/008514 PCT/CN2020/101820

FIG. 16

16/29

WO 2021/008514 PCT/CN2020/101820

LO reference Current frame L1 reference

e e

v"),,@
Current block s o
,xg:—f:j i D
}‘%M
",J"
—
e e
Mf -
&% - ,x‘,.»-

%2y

FIG. 17

17/29

WO 2021/008514

PCT/CN2020/101820

LO reference L1 reference
o o
L] L 4
Cee0 OeCe0
. .
[O
FIG. 18

18/29

WO 2021/008514

,,,,,

> e

i

Reference picture 0

MV

e

0440

I

MVI+0-1)

PCT/CN2020/101820

R S e U D

r——

MVI

Current picture

FIG. 19

19/29

Reference picture |

WO 2021/008514 PCT/CN2020/101820

o e O @ MYV that may be checked m the first step

o /‘. ® 0 MV that may be checked m the second step
‘/ e O

Starting point

FIG. 20

20/29

WO 2021/008514 PCT/CN2020/101820

Reference block

Current block

o
S
i
S
L » -
[RARN N
N N {
“ N
N N
N N
" N
N ot
™ 7

Current picture

FIG. 21

21/29

WO 2021/008514

PCT/CN2020/101820

2200
2202
Processor
Video processing
2204 Circuitry
Memory 2906

FIG. 22

22/29

WO 2021/008514

2300

PCT/CN2020/101820

applying a pruning process to a merge list

construction of a current video block that is

partitioned using a triangular partition mode
(TMP)

[2302

performing a conversion between the current
video block and a bitstream representation
of the current video block based on the
merge list construction

T 2304

FIG. 23

23/29

WO 2021/008514

2402

2400

2404 2406 2408

PCT/CN2020/101820

2410

FIG. 24

24/29

WO 2021/008514

2500

PCT/CN2020/101820

performing a conversion between a current
video block of a visual media data and a
bitstream representation of the current video
block, wherein the bitstream representation
is configured according to a format rule that
specifies that a syntax element is selectively
included or excluded in the bitstream
representation indicative of a maximum
number of merge candidates for a coding
tool, thereby indicating whether the coding
tool is enabled or disabled for the
conversion, wherein the maximum number
of merge candidates for the coding tool is
zero or a positive number

—— 2502

FIG. 25

25/29

WO 2021/008514

2600

PCT/CN2020/101820

performing a conversion between a video
comprising one or more video regions
comprising multiple video blocks and a
bitstream representation of the video,
wherein the bitstream representation
conforms to a format rule specifying that a
number of allowed geometric partitioning
mode (GPM) motion candidates for a video
region determines whether a syntax element
related to applicability of a coding tool to the
video region is included in the bitstream
representation, wherein the coding tool is
different from a GPM coding tool, wherein
the GPM comprises splitting a video block
into multiple prediction partitions to apply
motion prediction separately, and at least
one partition having a non-rectangular shape

[2602

FIG. 26

26/29

WO 2021/008514

2700

PCT/CN2020/101820

performing a conversion between a current
video unit of a visual media data and a

bitstream representation of the visual media

data, wherein the bitstream representation is

configured in accordance with a format rule
that specifies that a maximum transform

block size is equal to or less than a
maximum coding tree unit (CTU) size used
for the conversion

—— 2702

FIG. 27

27129

WO 2021/008514

2800

PCT/CN2020/101820

performing a conversion between a current
video block of a visual media data and a

bitstream representation of the current video

block, wherein the conversion uses an
adaptive loop filter (ALF) in which

coefficients of the ALF filter are based on a

depth of a sample in a video region of the
current video block

—— 2802

FIG. 28

28/29

WO 2021/008514

2900

PCT/CN2020/101820

performing a conversion between a current
video block of a visual media data and a

bitstream representation of the current video
block using an adaptive loop filter (ALF),
wherein the bitstream representation is

configured according to a format rule

specifying that one or more syntax elements
included in the bitstream representation

indicative of whether an ALF filter applied to

the current video block is determined based
on an adaptation parameter set (APS) or

based on fixed filter sets

[2902

FIG. 29

29/29

INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2020/101820

A. CLASSIFICATION OF SUBJECT MATTER
HO4N 19/117(2014.01)i; HO4N 19/70(2014.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, CNKI, WPI, EPODOC: video, +cod+, block, adaptive, loop, filter, coefficient, parameter, set, fix, bitstream, luma,
chroma, depth, index, sample, ALF, APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™® Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2017332075 Al (QUALCOMM INCORPORATED) 16 November 2017 (2017-11-16) 1-12
description, paragraphs 0061-0100
A CHUBACH, Olena et al. "CE5-related: On the syntax constraints of ALF APS (JVET- 1-12
00288-v1)"

Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
15th Meeting: Gothenburg, SE, 12 Iuly 2019 (2019-07-12),

the whole document

A PALURI, Seethal et al. "Simplification of ALF Coefficients in the APS (JVET-00302_r1)" 1-12
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
15th Meeting: Gothenburg, SE, 12 July 2019 (2019-07-12),

the whole document

A CN 103081467 A (QUALCOMM INC.) 01 May 2013 (2013-05-01) 1-12
the whole document

A CN 109076218 A (QUALCOMM INC.) 21 December 2018 (2018-12-21) 1-12
the whole document

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: «T™ later document published after the international filing date or priority
«“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the
to be of particular relevance principle or theory underlying the invention
“g~ earlier application or patent but published on or after the international ~ «X» document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive step
«[» document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other «y» document of particular relevance; the claimed invention cannot be
special reason (as specified)) o considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art
“p” document published prior to the international filing date but later than . g,»

et ; document member of the same patent famil
the priority date claimed P y

Date of the actual completion of the international search Date of mailing of the international search report
28 September 2020 20 October 2020

Name and mailing address of the ISA/CN Authorized officer

National Intellectual Property Administration, PRC

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing LLPi

100088 g

China
Facsimile No. (86-10)62019451 Telephone No. 86-(10)-53961700

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

PCT/CN2020/101820

C.

DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A

US 2011228854 A1 (ELECTRONICS AND TELECOMMUNICATIONS RESEARCH
INSTITUTE) 22 September 2011 (2011-09-22)
the whole document

1-12

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CN2020/101820
. Pat(.ant document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
Us 2017332075 Al 16 November 2017 CA 3020233 Al 23 November 2017
KR 20190008230 A 23 January 2019
Us 10419755 B2 17 September 2019
BR 112018073380 A2 06 March 2019
CN 109076218 A 21 December 2018
™ 201743619 A 16 December 2017
WO 2017201011 Al 23 November 2017
EP 3459245 Al 27 March 2019
IP 2019519982 A 11 July 2019
CN 103081467 A 01 May 2013 KR 20130070636 A 27 June 2013
Us 9819966 B2 14 November 2017
EP 2612498 Al 10 July 2013
KR 101529800 Bl 17 June 2015
JP 2013539288 A 17 October 2013
WO 2012030760 Al 08 March 2012
us 2012051438 Al 01 March 2012
IP 5602948 B2 08 October 2014
CN 103081467 B 01 June 2016
CN 109076218 A 21 December 2018 CA 3020233 Al 23 November 2017
KR 20190008230 A 23 January 2019
Us 10419755 B2 17 September 2019
uUs 2017332075 Al 16 November 2017
BR 112018073380 A2 06 March 2019
™ 201743619 A 16 December 2017
WO 2017201011 Al 23 November 2017
EP 3459245 Al 27 March 2019
IP 2019519982 A 11 July 2019
Us 2011228854 Al 22 September 2011 WO 2010058895 A3 28 February 2013
KR 101098739 Bl 23 December 2011
KR 20100058201 A 03 June 2010
WO 2010058895 A2 27 May 2010

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - claims
	Page 89 - claims
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - wo-search-report
	Page 120 - wo-search-report
	Page 121 - wo-search-report

